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 An understanding of historical and present land use and land cover (LULC) 

information and its changes is critical for city planners, land managers, and resource 

managers. Meanwhile, land surface temperature (LST) is also a crucial parameter in 

land surface processes, not only acting as an indicator of climate change but also a 

pointer of LULC changes due to urbanization. To deal with these situations, dynamic 

LULC classification and impact study of land use and land cover change on land surface 

temperature are necessary. The specific research objectives are (1) to apply 

unsupervised classification algorithms for multitemporal LULC classification based on 

time-series Landsat datasets, (2) to develop a nearly real-time supervised LULC 

classification and change detection method using a time-series model and a minimum 

spectral distance algorithm, and (3) to reconstruct time-series LST dataset and 

investigate the impact of LULC on LST. The research methodology consisted of five 

main components: (1) data collection and preprocessing of time-series Landsat datasets, 

(2) optimum spectral features selection for LULC classification, (3) time-series LULC 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background problem and significance of the study 

Land use and land cover (LULC) relates to the biophysical cover of the Earth’s 

terrestrial surface, identifying vegetation, inland water, bare soil, or human 

infrastructure. Distinct LULC types provide specific habitats and determine the 

exchange of energy and carbon between terrestrial and atmospheric regions (DeVries, 

2015; Houghton et al., 2012; Running et al., 1999). Additionally, LULC is an essential 

element for description and studying of the environment (Herold, Latham, Di Gregorio, 

and Schmullius, 2006) and is a crucial input to model ecosystem services (Andrew, 

Wulder, and Nelson, 2014). 

In the meantime, urban growth induces the replacement of natural land covers 

with the impervious urban materials, the modifications of the biophysical environment, 

and the alterations of the land surface energy processes (Lo and Quattrochi, 2003). As 

reports of Ministry of Housing and Urban-Rural Development of the People’s Republic 

of China (MOHURD, 2017) and Nanjing Municipal Bureau Statistics (NJMBS, 2017) 

in 2017, the gross regional product of the city during the last two decades had 

continuously increased from 107.35 billion Yuan in 2000 to 1,050.30 billion Yuan in 

2016. The urban population of the city had increased from 3.10 million persons in 2000 

to 5.91 million persons in 2016; these phenomena induce LULC change in the city. 
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Urban and built-up areas had been increased from 201.40 km2 in 2000 to 773.79 km2 

in 2016 (Table 1.1). 

 

Table 1.1 Urban population, urban and built-up areas, and gross regional product 

of Nanjing city from 2000 to 2016. 

Year 
Urban Population 

(10,000 Persons) 

Urban and built-up areas 

(Km2) 

Gross Regional Product 

(Billion Yuan) 

2000 309.52 201.40 107.35 

2001 323.86 211.80 121.85 

2002 339.35 438.63 138.51 

2003 372.39 446.79 169.08 

2004 394.80 484.27 206.72 

2005 410.54 512.60 245.19 

2006 431.32 574.94 282.28 

2007 466.75 577.44 334.01 

2008 478.16 592.07 381.46 

2009 482.60 598.14 423.03 

2010 484.87 618.64 513.07 

2011 503.76 637.71 614.55 

2012 537.27 653.31 720.16 

2013 567.11 713.29 808.02 

2014 572.65 734.34 882.08 

2015 581.65 755.27 972.08 

2016 590.60 773.79 1,050.3 

 

Further, changes in land surface conditions (e.g., albedo, soil moisture, land 

surface temperature, and surface roughness) and atmospheric composition (e.g., CO2 

and methane) have had significant effects on regional and global climates due to LULC 

change (Bonan, Pollard, and Thompson, 1992; Foley et al., 2005; Lee, He, Zhou, and 

Liang, 2015; Mahmood et al., 2014; McPherson, 2007; Pielke, 2005). Thus, many 

researchers attempt to observe and model the effects of LULC change on climate based 
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on Earth observation satellites (Douglas et al., 2006; Kaufmann and Stern, 1997; 

Lawrence and Chase, 2010; Lawrence et al., 2012; Lee et al., 2009; Lee et al., 2015; 

Lee, Sacks, Chase, and Foley, 2011). Both observation and modeling studies require 

LULC maps for characterizing the pattern of LULC changing over time. 

Remote sensing data have always been an essential source for LULC and 

change detection because of their macroscopic and real-time nature. In the previous 

studies, maps that relate change between two or several specific year dates typically 

lack information regarding underlying processes and are not enable insights on the 

nature of the transformations present, such as rate or persistence of change (Gillanders, 

Coops, Wulder, Gergel, and Nelson, 2008). Ideally, both subtle modifications and rapid 

changes should be accounted for by LULC change studies (Lambin, Geist, and Lepers, 

2003). A time-series of LULC maps can capture the complexities of Earth’s changing 

surface (Liu and Cai, 2012; Sexton, Urban, Donohue, and Song, 2013) and can be used 

to parameterize biogeochemical models (Feddema, 2005; Running, Loveland, and 

Pierce, 1994). Therefore, obtaining a continuous sequence of LULC maps over an 

extended time, for at least multiple decades, is critical for quantifying the effects of 

LULC change on climate. 

Besides, land surface temperature (LST) provides a valuable set of observations 

for characterizing land surface states and land-atmosphere exchange. LST is widely 

used in a variety of fields including evapotranspiration, climate change, hydrological 

cycle, vegetation monitoring, urban climate and environmental studies (Arnfield, 2003; 

Bastiaanssen, Menenti, Feddes, and Holtslag, 1998; Hansen, Ruedy, Sato, and Lo, 2010; 

Kogan, 2001; Su, 2002; Voogt and Oke, 2003; Weng, 2009; Weng, Lu, and Schubring, 

2004). Besides, it has been recognized as one of the high priority parameters of the 
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International Geosphere and Biosphere Program (IGBP) (Townshend et al., 1994). 

Therefore, LST is a crucial parameter in land surface processes, not only acting as an 

indicator of climate change but also a pointer of LULC changes due to urbanization. 

Early studies on LULC and LST from Earth observation satellite commonly use 

of coarse spatial resolution sensors such as the Advanced Very High Resolution 

Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) (Keenan et al., 2014). With the opening of the United States Geological 

Survey (USGS) archive in 2008 (Woodcock et al., 2008), time-series Landsat imageries 

have become a new potential data source for monitoring LULC and LST change. The 

Landsat sensor series span more than 40 years of continuous earth observation data at 

a spatial resolution of 30 m, and a potential eight days repeat the cycle in the periods 

where different Landsat sensors overlap (Roy et al., 2014). It is promising to utilize the 

temporal feature better to reconstruct a long-term history of urban expansion and LST 

change for any city. 

Nevertheless, it is challenging to automatically characterize urban LULC 

changes consistently at an acceptable accuracy (Loveland and Defries, 2004; Sexton et 

al., 2013; Zhu and Woodcock, 2014b). Furthermore, thermal characteristics over time 

may change to respond to land cover changes and thus become non-stationary, e.g., the 

mean and yearly amplitude of LSTs may change over time. A temporal analysis of 

thermal landscapes, therefore, requires the consideration of time-varying thermal 

characteristics. One way to avoid non-stationary in modeling, the temporal thermal 

landscape patterns are divided time-series observations into an individual segment that 

correspond to different land covers. This individual segment refers to as temporally 

homogeneous segments in the study. As such, consistent time-series LST datasets 
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reveal the urban thermal dynamics caused by land cover conversions (Weng, Fu, and 

Gao, 2014). 

In this study, an unsupervised classification algorithm based on the Harmonic 

Analysis (HA) model by using intercept, slope, amplitude, and phase as coefficient 

values of a harmonic wave is first applied to classify time-series LULC data using K-

Means and ISODATA (Iterative Self-Organizing Data Analysis) algorithms. Then, a 

nearly-real-time supervised classification using a time-series model with a minimum 

spectra distance is developed to classify multitemporal LULC maps and to detect LULC 

change. For the validation of these two classification methods, a case study in Nanjing 

City, Jiangsu Province, China is here examined using time-series Landsat 5, 7, 8 

datasets between 2000 and 2017. Also, the impact of LULC change on LST between 

2000 and 2017 is investigated. 

 

1.2 Research objectives 

The ultimate goal of the study is to develop a new supervised classification 

method using harmonic analysis with a minimum spectral distance algorithm for 

multitemporal LULC mapping. The specific research objectives are as follows: 

(1) To apply unsupervised classification algorithms for multitemporal LULC 

classification based on time-series Landsat datasets. 

(2) To develop a nearly real-time supervised LULC classification and change 

detection method using a time-series model and a minimum spectral distance algorithm. 

(3) To reconstruct the time-series LST dataset and investigate the impact of 

LULC on LST. 
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1.3 Scope of the study 

Scope of the study can be summarized as follows: 

(1) The LST data of time-series Landsat datasets between 2000 and 2017 are 

retrieved using the Single Channel (SC) algorithm. Meanwhile, spectral reflectance 

data are extracted using a standard conversion method that recommends by USGS from 

Landsat 5, 7, and 8 Data User Handbook. Also, the MODIS product (MOD05) that 

provides water vapor content is downloaded for LST extraction. 

(2) Two generic unsupervised classification algorithms, namely K-Means and 

ISODATA, are applied to classify multitemporal LULC maps based on the derived 

coefficient of HA. Herein, the K-Means and ISODATA algorithms are implemented 

using the MATLAB software. Main LULC types include urban and built-up land (U), 

agricultural land (A), forest land (F), and water bodies (W). 

(3) A new supervised classification method using harmonic analysis with a 

minimum spectral distance algorithm is developed to classify multitemporal LULC 

maps using MATLAB software. 

(4) An optimum method for multitemporal LULC classification and change 

detection from unsupervised and supervised classification methods is identified based 

on overall accuracy and Kappa hat coefficient that are derived by comparison between 

classified LULC in 2000, 2006, 2011, and 2017 and high spatial resolution image of 

Google Earth from corresponding years. 

(5) The impact of LULC on LST is assessed based on the derived LULC data 

between 2000 and 2017 using decomposition analysis. 
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1.4 Limitation of the study 

Due to the limitation of ground reference data in 2000, 2006, 2011, and 2017 

for accuracy assessment of LULC classification maps, available high spatial resolution, 

imageries from the Google Earth, and Landsat data are applied as reference ground 

information for accuracy assessment. 

 

1.5 Study area 

Jiangning, as the largest district from eleven districts of Nanjing city, Jiangsu 

Province, China, is selected as a study area. It covers an area of 1,587 km2 or about 24% 

of Nanjing City (6,598 km2) and situates between 118°28’-119°7’E and 31°37’-32°7’N. 

The climate of Jiangning belongs to a humid subtropical climate, and its landform is 

characterized by hillocks, low maintains, hills, plains, rivers, and lakes (Figure 1.1). 

The selected study area represents the rapid urbanization and economic growth of 

Nanjing City, as mentioned earlier in this chapter. Many agricultural lands in the city 

were converted to urban and built-up land due to population growth and rapid 

urbanization. 
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Figure 1.1 Location map of the study area. 

 

1.6 Benefit of the study 

The benefits of the study are as follows: 

(1) The traditional classification method mostly uses the spectral features from 

a single date image (single sensor or multiple sensors) for LULC classification. 

However, if the single date image is affected by unforeseen factors (such as cloud 

coverage, cloud shadow, snowfall, heavy rainfall, and flood), the LULC classification 

will have a significant error. This research introduces time-series features for LULC 

classification to remove the influence of these unforeseen factors so that we can 

understand the changes of LULC over a long period. 
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(2) The comprehensive utilization of spectral and temporal features that 

generate a large number of feature information can be used for multitemporal LULC 

classification. This research explores the suitable feature information for LULC 

classification of time-series data through a systematic comparison of the results. 

(3) Results about the impact of long-term LULC changes on LST can be further 

applied to describe the relationship between LULC and LST in the context of global 

climate change and urbanization. 

(4) A new supervised classification method using harmonic analysis with 

minimum spectral distance algorithm for multitemporal land use and land cover 

mapping from the time-series Landsat datasets (2000-2017) was developed in this study. 

The results revealed that the newly developed supervised classification method could 

provide an average overall accuracy and Kappa hat coefficient of more than 80%. With 

a newly developed classification method for multitemporal land use and land cover 

mapping, it will be a benefit to operators, managers, and researchers who are interested 

in the field of remote sensing, particularly multitemporal LULC classification and 

mapping. 

 

 

 



 

 

 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

Basic concepts and literature reviews related to the research are here 

summarized, including (1) Single Channel algorithm for LST extraction, (2) time-series 

of the harmonic analysis, (3) time-series change detection and classification model, and 

(4) feature selection for LULC change detection and classification. 

 

2.1 Single channel algorithm for LST extraction 

2.2.1 Development background 

The LST is an essential parameter in the surface process of land and air 

interaction. Over the past several decades, LST estimation from satellite thermal 

infrared (TIR) band measurements has been significantly improved and applied in 

various research aspects e. g. urbanization, urban heat island, etc. Meanwhile, due to 

high spatial resolution of the thermal infrared band of the Landsat series, such as the 

band 6 of Landsat 5 Thematic Mapper (TM), band 6 of the Landsat 7 Enhanced 

Thematic Mapper (ETM), and band 10, band 11 of the Landsat 8, these TIR data have 

been widely applied for LST extraction. Thus, to reduce the dependence on radiosonde 

data, several Single Channel (SC) algorithms have been proposed within the past 

decade to estimate the LST from satellite data assuming that the Land Surface 

Emissivity (LSE) is known. 
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Based on the thermal radiance transfer equation, Qin, Karnieli, and 

Berliner (2001) had developed a mono-window algorithm for retrieving LST from 

Landsat TM data. Three parameters are required for the algorithm: emissivity, 

transmittance, and effective mean atmospheric temperature. Sensitivity analysis of the 

algorithm indicated that the possible error of ground emissivity, which is difficult to 

estimate, has a relatively insignificant impact on the probable LST estimation error, 

which is sensitive to the possible error of transmittance and atmospheric temperature. 

Validation of the simulated data for various situations of seven typical atmospheres 

indicated that the algorithm could provide an accurate LST retrieval from TM data. The 

LST difference between the retrieved and the simulated ones is less than 0.4 °C for 

most situations.  

Wang et al. (2015) presented an Improved Mono-Window (IMW) 

algorithm for LST extraction from the Landsat 8 TIR band 10 data. Sensitivity analysis 

conducted for the IMW algorithm revealed that the possible error in estimating the 

required atmospheric water vapor content has the most significant impact on the 

probable LST estimation error. Under moderate errors in both water vapor content and 

ground emissivity, the algorithm had an accuracy of 1.4 K for LST estimation. 

Validation of the IMW algorithm using the simulated datasets for various situations 

indicated that the LST difference between the estimated and the simulated ones was 

0.67 K on average, with a root mean square error (RMSE) of 0.43 K. Comparison of 

the IMW algorithm with the SC algorithm for three-atmosphere profiles indicated that 

the average error and RMSE of the IMW algorithm were -0.05 K and 0.84 K, 

respectively, which were less than the -2.86 K and 1.05 K of the SC algorithm.  
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Jiménez-Muñoz and Sobrino (2003) proposed a generalized SC 

algorithm that only uses the total atmospheric water vapor content and the effective 

channel wavelength, which can apply to thermal sensors characterized with a full width 

half maximum (FWHM) of around 1 µm operative onboard satellites. The main 

advantage of this algorithm compared with the other SC methods is that in-situ radio 

soundings or effective mean atmospheric temperature values are not needed. 

Meanwhile, the main advantage of this algorithm compared with split-window and 

dual-angle methods is that it can be applied to different thermal sensors using the same 

equation and coefficients. The validation for different test sites showed a root mean 

square deviations (RMSD) is lower than 2 K for AVHRR channel 4 and ATSR-2 

channel 2, and lower than 1.5 K for Landsat TM band 6. 

Jiménez-Muñoz et al. (2009) presented a revision, an update, and an 

extension of the generalized SC algorithm developed by Jiménez-Muñoz and Sobrino 

(2003), which was applied to the TIR channel located in the Landsat 5 TM sensor. The 

SC algorithm relies on the concept of atmospheric functions, which are dependent on 

atmospheric transmissivity and upwelling and downwelling atmospheric radiances. 

These atmospheric functions are fitted versus the atmospheric water vapor content for 

operational purposes. They presented updated fits using MODTRAN 4 radiative 

transfer code, and they also extended the application of the SC algorithm to the TIR 

channel of the TM sensor onboard the Landsat 4 platform and the ETM sensor onboard 

the Landsat 7 platform. Five different atmospheric sounding databases had been 

examined to create simulated data used for testing the algorithm. The test from 

independent simulated data provided RMSE values below 1 K in most cases when 
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atmospheric water vapor content is lower than two g·cm-2. For values higher than three 

g·cm-2, errors are not acceptable, as what occurs with other SC algorithms.  

Jiménez-Muñoz, Sobrino, Skoković, Mattar, and Cristóbal (2014) 

proposed SC algorithm for LST estimation from Landsat 8 TIRs data. The algorithm 

was tested with simulated data obtained from forwarding simulations using atmospheric 

profile databases and emissivity spectra extracted from spectral libraries. Results 

showed mean errors typically were below 1.5 K for both SC and Split Window (SW) 

algorithms, with slightly better results for the SW algorithm than for the SC algorithm 

with increasing atmospheric water vapor contents.  

Cristóbal, Jiménez-Muñoz, Sobrino, Ninyerola, and Pons (2009) 

presented an improved methodology to extract LST from Landsat 4 TM, Landsat 5 TM, 

and Landsat 7 ETM using four atmospheric databases covering different water vapor 

ranges (from 0 to 8 g·cm-2) to build the LST retrieval models and using both water 

vapor and air temperature as input variables. They also compared this method with LST 

estimation using only water vapor or only air temperature, as well as with an existing 

LST retrieval algorithm. Herewith, seventy-seven Landsat images taken between 2002 

and 2006 and two sources of water vapor (radiosonde data and remote sensing 

estimations) and air temperature (radiosonde data and air temperature modeling) were 

selected to validate the results. The best results using radiosonde data are obtained when 

both air temperature and water vapor are present in the LST retrieval models with a 

mean RMSE of 0.9 K, followed by only water vapor models with a mean RMSE of 1.5 

K and only air temperature models with a mean RMSE of 5.6 K. The results obtained 

using Terra MODIS Level 2 water vapor product and at-satellite-pass air temperature 

modeling as input data also showed that this kind of input data offers best results, with 
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a mean RMSE of 0.9 K, followed by water vapor models with a mean RMSE of 2.1 K 

and only air temperature models with a mean RMSE of 5.6 K. Similar errors when 

using radiosonde or modeled water vapor and air temperature as input data suggested 

the avoidance of radiosonde data to retrieve LST over extensive areas. 

In this study, the SC algorithm based on Jiménez-Muñoz and Sobrino 

(2003) is selected for LST extraction from Landsat series data. Since the USGS (2017) 

pointed out that, given the more substantial uncertainty in the band 11 values, users 

should work with band 10 data as a single spectral band (like TM, ETM) and should 

not attempt a split-window correction using both TIRs bands 10 and 11. 

 

2.1.2 Single channel algorithm 

The Single Channel (SC) algorithm developed by Jiménez-Muñoz and 

Sobrino (2003) retrieves LST (Ts) using the following equation: 

𝑇𝑠 = 𝛾 [
1

𝜀
(𝜑1𝐿𝑠𝑒𝑛 + 𝜑2) + 𝜑3] + 𝛿  (2.1) 

where Ts is land surface temperature, 𝐿𝑠𝑒𝑛 is the at-sensor radiance, ε is 

the surface emissivity, and (γ, δ) are two parameters given by: 

γ ≈
𝑇𝑠𝑒𝑛

2

𝑏𝛾𝐿𝑠𝑒𝑛
,   δ ≈ 𝑇𝑠𝑒𝑛 −

𝑇𝑠𝑒𝑛
2

𝑏𝛾
  (2.2) 

where Tsen is the at-sensor Brightness Temperature (BT); bγ = c2/λ; and 

φ1, φ2, and φ3 are so-called atmospheric functions, given by: 

φ1 =1/τ; φ2 = -Ld - Lu/τ; φ3 = Ld  (2.3) 

where τ is the total atmospheric transmissivity, Ld is the down-welling 

radiance, Lu is the up-welling atmospheric radiance. 
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The practical approach proposed in the SC algorithm consists of the 

approximation of the atmospheric functions defined in (Eq. 2.3) versus the atmospheric 

water vapor content 𝑤 from a second-order polynomial fit, expressed in matrix notation 

as follows (φ = 𝑐 𝑤): 

[

𝜑1

𝜑2

𝜑3

] = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] [
𝑤2

𝑤
w

]  (2.4) 

where coefficients cij are obtained by simulation.  

Alternatively, if atmospheric parameters τ, Lu, and Ld are known, the 

atmospheric functions can be calculated from Eq. 2.3, thus avoiding the empirical 

relationship versus 𝑤. 

The atmospheric functions φ1, φ2, and φ3 for Landsat series data can be 

obtained as a function of the total atmospheric water vapor content (w) using the 

following equations. Eq. 2.5 (Jiménez-Muñoz et al., 2009; Sobrino, Jiménez-Muñoz, 

and Paolini, 2004) is used for Landsat 5/7 band 6 data while Eq. 2.6 (Jiménez-Muñoz 

et al., 2014) is used for Landsat 8 band 10 data. 

[

𝜑1

𝜑2

𝜑3

] = [
0.14714 −0.15583 1.1234
−1.1836 −0.37607 −0.52894
0.04554 1.8719 −0.39071

] [
𝑤2

𝑤
1

]  (2.5) 

[

𝜑1

𝜑2

𝜑3

] = [
0.04019 0.02916 1.01523

−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514

] [
𝑤2

𝑤
1

]  (2.6) 

 

2.1.3 Emissivity extraction 

Three required parameters for the SC algorithm include emissivity, 

atmospheric water vapor content, and BT. Herein emissivity is an important one. In 

principle, the emissivity of an object is mainly determined by its thermo-physical 
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characteristics. For the ground surface, the components composing the surface are the 

main factors determining the ground emissivity. At present, many effective methods 

have been approved to estimate the emissivity for LST retrieval. Since the emissivity 

is variable with the wavelength, the Normalized Difference Vegetation Index (NDVI) 

threshold method (Sobrino et al., 2008) can be used to estimate the emissivity of 

different land surfaces in the 10-12 μm range. Additionally, the spectral range of band 

6 of Landsat 5/7 and band 10 of Landsat 8 is suitable in this range. At this wavelength 

range, the emissivity could be estimated as follows:  

휀𝜆 = {

휀𝑤

휀𝑠𝜆

휀𝑣𝜆 ∙ 𝑃𝑣 + 휀𝑠𝜆 ∙ (1 − 𝑃𝑣) + 𝐶𝜆

휀𝑣𝜆 ∙ 𝑃𝑣 + 𝐶𝜆

        

𝑁𝐷𝑉𝐼 ≤ 0
0 < 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

  (2.7) 

subject to: 

𝐶𝜆 = (1 − 휀𝑠𝜆) ∙ 휀𝑣𝜆 ∙ 𝐹′ ∙ (1 − 𝑃𝑣) (2.8) 

where ελ is the band emissivity, εvλ and εsλ are respectively the vegetation 

and soil emissivity, Pv is the proportion of vegetation, C is a term due to surface 

roughness (C = 0 for a flat surface), NDVIv and NDVIs are the NDVI for a fully vegetated 

pixel and a soil one, respectively, and F' is a geometrical factor ranging between zero 

and one. 

Usually, the vegetation cover fraction at the pixel scale can be computed 

from its NDVI as follows (Sobrino et al., 2004): 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)

2

 (2.9) 

 



17 

 

Over particular areas, NDVIv and NDVIs values can be extracted from 

the NDVI histogram. Values of NDVIv = 0.5 and NDVIs = 0.2 were proposed to apply 

in global conditions (Sobrino et al., 2008). 

Meanwhile, the TIR band 10 of Landsat 8 is different from band 6 of 

Landsat 5/7. It is worth noting that most satellite sensors measure the outgoing radiation 

with a finite spectral-bandwidth, and the channel-effective quantities of interest, 

therefore a weighted average are expressed by Li et al. (2013): 

𝑋 =
∫ 𝑓(𝜆)𝑋(𝜆)𝑑𝜆

𝜆2
𝜆1

∫ 𝑓(𝜆)𝑑𝜆
𝜆2

𝜆1

 (2.10) 

where X is a weighted average value of emissivity in a thermal infrared 

band, X(λ) is various spectral quantity considered as emissivity, λ1 and λ2 are the lower 

and upper boundaries of the wavelength in TIR channel, and f(λ) is the spectral response 

function. 

 

2.2 Time-series of harmonic analysis 

Many time-series reconstruction models have been developed to eliminate the 

effect of the negative deviations which may be contaminated by atmospheric conditions 

or snow cover, and most of them perform differently in different applications and 

regions. The harmonic analysis (HA) is one of the most widely used time-series 

reconstruction models owing to their simplicity of implementation or the capability to 

extract phenological metrics from the time-series. 

A series of algorithms based on discrete Fourier analysis (Immerzeel, Quiroz, 

and de Jong, 2005; Menenti, Azzali, Verhoef, and van Swol, 1993; Roerink, Menenti, 

and Verhoef, 2000; Sellers et al., 1996; Verhoef, Menenti, and Azzali, 1996) is also 
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called HA model. The time curve for each data point is expressed as the sum of a series 

of residual (positive) sine wave additive terms, each determined by a unique amplitude 

and phase. These continuous harmonic terms are summed to produce a complex curve. 

Each harmonic term occupies a certain percentage of the total variance of the original 

time-series curve. Since some input parameters cannot be determined by specific 

objective criteria, they are obtained through empirical comparisons, which puts the 

method at a disadvantage. However, it is one of the favorite algorithms for time-series 

remotely sensed data reconstruction.  

Figure 2.1 shows how a function f(x) can represent a linear combination of sine 

and cosine (Leica, 2005). In this example, the function is a square wave whose cosine 

coefficients are zero, leaving only sine terms. 

 

Source: (Leica, 2005) 

Figure 2.1 One-dimensional Fourier analysis. 

 

The harmonic form of a time-series y can be expressed as: 

𝑦 = 𝑎0 + 𝑏0𝑡 + ∑ [𝐴𝑖 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑖𝑡 − 𝜑𝑖)]∞

𝑖=1  (2.11) 

where i is the number of frequencies, T is period (365 days), Ai and φi are the 

amplitude and phase of ith harmonic, and t is point time. 
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Many researchers applied HA to reconstruct time-series of NDVI for detecting 

forest lost (Azzali and Menenti, 2000; Geerken, Zaitchik, and Evans, 2005; Menenti et 

al., 1993; Menenti et al., 2010; Verhoef et al., 1996). Menenti et al. (2016) applied HA 

for leaf area index estimation and LST extraction as well as the polarization difference 

BT by Shang, Jia, and Menenti (2015) for removing random noise or eliminating 

cloud/snow/ice contamination. Weng et al. (2004) explored the potential for the cloud 

removal of HA to reconstruct ten days of composited AVHRR data over the 

mountainous regions of the Tibetan Plateau. The capability of HA for processing NDVI 

time-series from SPOT-VEGETATION and for defining the start and end of the 

growing season was investigated by Wit and Su (2005). Additionally, the global 

applicability of HA had been evaluated by de Jong, de Bruin, de Wit, Schaepman, and 

Dent (2011) in the study of global greening and browning trends using GIMMS NDVI 

dataset (1981-2006). Besides cloud removal, the amplitude and phase of harmonic 

components are quantitative measures of vegetation phenology (Azzali and Menenti, 

2000; Menenti et al., 1993), which makes HA immensely appealing for phenological 

studies. By concurrently processing LST and NDVI time-series derived from the Path 

finder AVHRR dataset, Julien, Sobrino, and Verhoef (2006) estimated changes in 

vegetation in the European continent between 1982 and 1999, which highlights the 

cloud removal as well as the extraction of quantitative phenological information by HA. 

Once more, building upon both these two capabilities, Jia, Shang, Hu, and Menenti 

(2011) analyzed the phenological response of vegetation to upstream river flow in the 

Heihe river basin of China based on NDVI time-series from MODIS. Alfieri, Lorenzi, 

and Menenti (2013) developed an approach to map air temperature based on daily LST 

products from MODIS. Likewise, Jakubauskas, Legates, and Kastens (2002) and 
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Geerken (2009) used the frequency domain information (i.e., amplitude and phase of 

harmonic components) provided by HA without the cloud detection procedure for 

cropland classification and phenology monitoring. 

Zhu, Woodcock, Holden, and Yang (2015) had developed and tested an HA 

modeling approach that does not depend on any sensor. The approach has evolved from 

an initial version intended for change and near-real-time change applications (Zhu, 

Woodcock, and Olofsson, 2012). It had been tested for post-seasonal cloud screening 

with Landsat (Zhu and Woodcock, 2014b), and land cover monitoring (Zhu and 

Woodcock, 2014a). In their approaches, time-series are modeled with harmonic sine 

and cosine basis, linear trend, and offset terms. The fit was carried out for segments of 

the time-series where land cover change had not been detected. For abrupt changes, the 

time-series is modeled separately before and after the change event. In their works, the 

model fit has been determined by least squares, weighted least squares, and regularized 

least-squares methods to enhance stability and efficiency. As stated in Zhu et al. (2015), 

the minimum sampling requirements are twelve samples to obtain a reliable result. 

Since no systematic study on the accuracy of such reconstruction had been done, 

Zhou, Jia, and Menenti (2015) took the global MODIS vegetation index as an example 

to develop a generic method to evaluate the reconstruction performance of HA of time-

series. The overall reconstruction errors were divided into gap-related errors and fitting-

method related errors. The results suggested that the gap-related errors for most of the 

high latitude forest area (between 50°N and 70°N) were rather large (average root mean 

squared deviation (RMSD) reached 0.15), which may be attributed to the fact that large 

gaps appeared in the NDVI profiles between snow melting and vegetation re-greening 

season. The gap-related errors were found negligible for the other areas of the globe 
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except for the North China Plain, North India, and several mountainous areas where the 

average RMSD was around 0.1. The inadequate capability of low-frequency harmonics 

to capture the rapid transition during snowmelt in spring at the high latitude region of 

the North Hemisphere made the fitting-method related error in this region rather large 

(RMSD can reach 0.1). 

 

2.3 Time-series change detection and classification model 

Many algorithms have been developed for detecting land cover change by 

analyzing time-series of satellite data (Hermosilla, Wulder, White, Coops, and Hobart, 

2015; Huang et al., 2010; Kennedy, Cohen, and Schroeder, 2007; Verbesselt, Hyndman, 

Newnham, and Culvenor, 2010; Yang and Lo, 2002). 

A new algorithm, “Continuous Change Detection and Classification (CCDC) 

model,” was developed by Zhu and Woodcock (2014b). It can detect many kinds of 

land cover changes continuously as new images are collected and providing land cover 

maps for any given time. A two-step cloud removal, cloud shadow, and snow masking 

algorithm is used for eliminating “noisy” observations. A time-series model that has 

components of seasonality, trend, and break estimates surface reflectance and BT. The 

time-series model is updated dynamically with newly acquired observations. Due to the 

differences in spectral response for various kinds of land cover change, the CCDC 

algorithm uses a threshold derived from all seven Landsat bands. When the difference 

between observed and predicted images exceeds a threshold three consecutive times, a 

pixel is identified as land surface change. Land cover classification is done after change 

detection. Coefficients from the time-series models and the RMSE from model 

estimation are used as input to the Random Forests Classifier. A random stratified 
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sample design was used for assessing the change detection accuracy, with 250 pixels 

selected within areas of persistent land cover and 250 pixels selected within areas of 

change identified by the CCDC algorithm. The accuracy assessment shows that CCDC 

results were accurate for detecting the land surface change, with producer's accuracy of 

98% and user's accuracies of 86% in the spatial domain and temporal accuracy of 80%. 

Land cover reference data were used as the basis for assessing the accuracy of the land 

cover classification. The land cover map with 16 categories resulting from the CCDC 

algorithm had an overall accuracy of 90%.  

Fu and Weng (2016) took the Atlanta metropolitan area as a case study to 

illustrate LULC change and its impact on LST variations. The Landsat L1T images 

from TM/ETM from 1984 to 2011 were consistently calibrated to surface reflectance 

and BT. The cloud, cloud shadow, and snow contaminated pixels were excluded in the 

analysis according to the metadata, and a further screening procedure based on the 

Robust Iteratively Reweighted Least Squares (RIRLS) technique was implemented. 

The LULC classification and change detection were accomplished by using the CCDC 

algorithm. Results showed that the overall LULC classification and change detection 

accuracies were 89% and 92%, respectively. 

Zhu et al. (2016) comparatively analyzed the potential of the simple linear trend 

and CCDC algorithm in the detection of the green trend of the urban suburbs. The 

results show that the simple linear trend method is more accurate than the CCDC 

algorithm in detecting the general trend of the greenness change; when covering the 

trend of the greenness of the changing area, the CCDC algorithm can provide more 

detailed and more accurate information (evaluating gradients and mutations, 
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respectively). Its mapping accuracy and user accuracy are 67.88% to 85.19% and 68% 

to 97.30%, respectively. 

The CCDC algorithm (Zhu and Woodcock, 2014b) includes two steps of change 

detection and classification. Herein, continuous change detection was developed based 

on the HA model, while continuous land cover classification used Random Forest 

Classifier. 

 

2.3.1 Continuous Change Detection 

Using all available TM/ETM observations from Landsat 4, 5, and 7, the 

CCDC algorithm (Zhu and Woodcock, 2014b) was developed. The use of the term 

“continuous” here refers to the capability to detect change detection every time a new 

image is collected. If it is updated as new images are collected, then the approach begins 

to approach near-real-time change detection. The use of “continuous” in the name of 

the algorithm also follows from the idea that a land cover map can be produced for any 

given time within the period covered by images. One additional note is that this new 

algorithm can detect many kinds of land cover change. 

Generally, land surface change can be divided into three categories: (1) 

intra-annual change, caused by vegetation phenology driven by seasonal patterns of 

environmental factors like temperature and precipitation; (2) gradual inter-annual 

change, caused by climate variability, vegetation growth or gradual change in land 

management or land degradation; and (3) abrupt change, caused by deforestation, 

floods, fire, insects, and urbanization. Therefore, a time-series model that has 

components of seasonality, trend, and breaks is used to captures all three categories of 

surface change. 
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The model coefficients are estimated by the Ordinary Least Squares 

(OLS) method based on the remaining clear Landsat observations. 

�̂�(𝑖, 𝑑) = 𝑎𝑖 + 𝑏1𝑖 cos (
2𝜋𝑑

𝑇
) + 𝑏2𝑖 sin (

2𝜋𝑑

𝑇
) + 𝑐𝑖𝑑 (2.12) 

where �̂�(𝑖, 𝑑) is the predicted value for reflectance and LST at Julian 

day d, ai is overall value, b1i, b2i are the coefficients for the seasonal component (or 

intra-annual changes), ci are the coefficients for the trend component (inter-annual 

change), d is Julian date, and T is 365.  

Ideally, the more the coefficients included, the more accurate the model 

will be. However, when there are too many coefficients, the model may start to fit noise. 

The basis of the method is the comparison of model predictions with 

clear satellite observations to find change. Ideally, a single date comparison would be 

definitive for detecting change. However, there is sufficient noise in the system due to 

factors like undetected clouds, cloud shadows, snow, atmospheric haze, smoke, and 

changes in soil wetness, which lead to numerous false-positive errors in change 

detection when using a single date for comparison. While noise factors tend to be 

ephemeral, land cover change is more persistent through time. The CCDC algorithm 

minimizes ephemeral effects by processing a set of dates together as a group for 

identifying land cover change (Zhu and Woodcock, 2014b). 

Based on previous studies (Zhu et al., 2012), changes identified in three 

successive dates showed the best results. Therefore, pixels showing change for one or 

two consecutive times will be flagged as “possible change”, and if a third consecutive 

change is found, the pixel is assigned to the “change” class. 
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Figure 2.2 Using the threshold of three times RMSE for continuous change 

detection. 

 

In Figure 2.2, Zhu and Woodcock (2014b) illustrated how the “three 

times RMSE” criterion was used for detecting land cover change for a deforestation 

pixel. When there is no land cover change, the next three clear observations are always 

within the model predicted ranges (±3 × RMSE) (Figures 2.2A and 2.2C). Figure 2.2B 

showed how change is initially detected by comparing the next three consecutive clear 

observations with model predictions. 

Therefore, the continuous change detection model of the CCDC 

algorithm averages the difference between observations and model predictions that 

have been normalized by three times RMSE for all seven Landsat bands. If the result is 

larger than 1 for three consecutive clear observations, a change is identified (Eq. 2.13). 
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Otherwise, if the values for only one or two consecutive observations are larger than 1, 

it is regarded as an ephemeral change, and the observations are flagged as outliers. The 

CCDC algorithm updates the time-series model when new clear observations become 

available, adding a dynamic character to the process that allows the time-series to adjust 

over time. Eq. 2.13 provides the details of the land cover change algorithm. 

1

𝑘
∑

|ρ(𝑖,𝑑)−ρ̂(𝑖,𝑑)|

3×𝑅𝑀𝑆𝐸i

𝑘

𝑖=1
> 1   (three times consecutively) (2.13) 

while d is Julian date, i is the ith Landsat band, k is the number of Landsat 

bands, ρ(𝑖, 𝑑) is the observed value for the ith Landsat band at Julian date, d, ρ̂(𝑖, 𝑑) is 

predicted value for the ith Landsat band at Julian date, d, and RMSE is a root mean 

square error that shows the difference between observed and predicted values. 

The model began to detect the land cover change when there are 15 clear 

sky observations (the model initialization phase). The first 12 observations were used 

to determine outliers. The last three observations allowed the model to determine 

whether changes in land cover occurred.  

 

2.3.2 Continuous land cover classification 

Instead of classifying the original Landsat images as conventional 

methods would, the CCDC algorithm uses the coefficients of time-series models as the 

inputs for land cover classification. After the change detection process, each pixel will 

have its time-series models before and after any changes. By classifying the time-series 

model coefficients, this algorithm can provide a land cover type for the entire period 

for each time-series model. Time-series observations from all seven Landsat bands 

were used for the land cover classification. The main idea of the land cover 
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classification is that different land cover classes will have different shapes for the 

estimated time-series models. 

The classification was accomplished through a Random Forests 

Classifier with inputs of the coefficients derived from the time-series model. The 

principle of the classification supposed that different land covers showed different 

modeling characteristics (i.e., different coefficients for seasonal and trend components 

and modeling errors) for reflectance and LST. The variables, �̅�, b1i, b2i, ci, and RMSE 

derived from the time-series model were used as inputs for the classification with �̅� 

representing the mean value: 

�̅� = 𝑎 + 𝑐 ×
𝑡1+𝑡𝑛

2
 (2.14) 

with t1 and tn are the Julian dates for the starting and ending time of the 

model. 

 

2.4 Features selection for LULC change detection and 

classification 

Many spectral features (also named variables) can be used as input data in 

change detection and classification scheme. These features can be divided into three 

categories (Tang, Fan, and Zhang, 2017): band type, index type, and transformation 

type (linear and non-linear transformation). 

 

2.4.1 Band type 

Band type refers to the direct use of the original band for change 

detection, the most commonly used is SWIR band, which is a famous band that 
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describes the vegetation structure and the detection of forest changes, or inferred 

vegetation burns (Brown, Chen, Leblanc, and Cihlar, 2000; Healey, Yang, Cohen, and 

Pierce, 2006). 

However, a single band cannot make full use of all band information, 

and it is challenging to diagnose different types of changes. Therefore, it is generally 

recommended to use multiple bands or multiple indicators for comparative analysis 

(Zhu et al., 2016; Zhu and Woodcock, 2014b; Zhu et al., 2012). 

Under this study, top of atmosphere (TOA) spectral reflectance data of 

Landsat time-series include Blue, Green, Red, NIR, SWIR1, and SWIR2 bands are 

applied as band type for time-series data analysis. 

 

2.4.2 Index type 

The spectral indices had been developed for remotely sensed data to 

improve the appearance of an image for human visual analysis or occasionally for 

subsequent machine analysis (Jensen, 2015). Among them, NDVI (Normalized 

Difference Vegetation Index) developed by Rouse, Haas, Schell, and Deering (1973) is 

the most widely used vegetation index (Myneni, 1995). NDVI and Enhanced 

Vegetation Index (EVI) have a high correlation with chlorophyll content, leaf area 

index, photosynthesis ability, etc. They are widely used to analyze the greenness trend 

of vegetation (Carlson and Ripley, 1997; Huete et al., 2002; Zhu et al., 2016), to detect 

forest disturbance (Zhu et al., 2012), to identify vegetation change (vegetation 

restoration, pests, and diseases) (Vogelmann, Gallant, Shi, and Zhu, 2016). However, 

EVI is less affected by atmospheric conditions and soil background when it is compared 

with NDVI (Huete, Justice, and Leeuwen, 1999). 
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Zha, Gao, and Ni (2003) proposed a method based on NDBI 

(Normalized Difference Built-up Index) to automate the process for built-up areas 

mapping. Shingare, Hemane, and Dandekar (2014) modified the NDBI formula by 

using SWIR2 instead of SWIR1. The final results of the decision tree algorithm using 

original NDBI and MNDBI (Modified Normalized Difference Built-up Index) were 

compared, and it was found that the decision tree algorithm using MNDBI provided 

more accurate results for urban area classification. 

The NDWI (Normalized Difference Water Index) has been developed 

by McFeeters (1996) to delineate open water features and enhance their presence in 

remotely sensed data. The NDWI makes use of reflected near-infrared radiation and 

visible green light to enhance the presence of such features while eliminating the 

presence of soil and terrestrial vegetation features. It was suggested that the NDWI 

might also provide researchers with turbidity estimations of water bodies using 

remotely sensed data. Meanwhile, the MNDWI (Modified Normalized Difference 

Water Index) by Xu (2006) can enhance open water features while efficiently 

suppressing and even removing built‐up land noise as well as vegetation and soil noise. 

The enhanced water information using the NDWI is often mixed with built‐up land 

noise, and the area of the extracted water is thus overestimated. Accordingly, the 

MNDWI is more suitable for enhancing and extracting water information for a water 

region with a background dominated by built‐up land because of its advantage in 

reducing and even removing built‐up land noise over the NDWI. 

In this research, spectral indices for time-series data analysis consist of 

NDVI, EVI, NDWI, MNDWI, NDBI, and MNDBI. The equations for these selected 

spectral indices are listed as below:  
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (2.15) 

𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+6∗𝑅𝑒𝑑−7.5∗𝐵𝑙𝑢𝑒+1
 (2.16) 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
 (2.17) 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅1
 (2.18) 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
 (2.19) 

𝑀𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅2−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2+𝑁𝐼𝑅
 (2.20) 

 

2.4.3 Transformation type 

In general, transformation types are composed of linear and non-linear 

transformation. The most frequent use of transformation type is linear form, including 

tasseled cap and principal component transformations. 

Tasseled cap transformation that describes characteristics of crops and 

other types (Crist and Cicone, 1984; J. Kauth and S. Thomas, 1976) is applied only for 

Landsat images. Huang, Wylie, Yang, Homer, and Zylstra (2002) had developed a new 

tasseled cap transformation based on Landsat 7 at-satellite reflectance. They found that 

this transformation is the most appropriate for regional applications where atmospheric 

correction is not feasible. Baig, Zhang, Shuai, and Tong (2014) applied the new 

development of tasseled cap transformation for biomass estimation of Landsat 8 images. 

The first tasseled cap band corresponds to the Tasseled Cap Brightness 

(TCB) of the image. The second tasseled-cap band corresponds to Tasseled Cap 

Greenness (TCG) and is typically used as an index of photosynthetically active 

vegetation. The third tasseled-cap band is often interpreted as an index of Tasseled Cap 

 



31 

 

Wetness (TCW) (e.g., soil or surface moisture). The equations for calculation of 

tasseled cap transformation of Landsat series data are summarized as follows: 

For Landsat 5: 

TCB = 0.2909 × B + 0.2493 × G + 0.4806 × R + 0.5568 × NIR  

 + 0.4438 × SWIR1 + 0.1706 × SWIR2 (2.21) 

TCG = − 0.2728 × B − 0.2174 × G − 0.5508 × R + 0.7221 × NIR 

+ 0.0733 × SWIR1 − 0.1648 × SWIR2 (2.22) 

TCW = 0.1446 × B + 0.1761 × G + 0.3322 × R + 0.3396 × NIR  

− 0.621 × SWIR1 − 0.4186 × SWIR2 (2.23) 

For Landsat 7 and 8: 

TCB = 0.3561 × B + 0.3972 × G + 0.3904 × R + 0.6966 × NIR  

+ 0.2286 × SWIR1 + 0.1596 × SWIR2 (2.24) 

TCG = − 0.3344 × B − 0.3544 × G − 0.4556 × R + 0.6966 × NIR 

− 0.0242 × SWIR1 − 0.2630 × SWIR2 (2.25) 

TCW = 0.2626 × B + 0.2141 × G + 0.0926 ×R + 0.0656 × NIR  

− 0.7629 × SWIR1 − 0.5388 × SWIR2 (2.26) 

In the meantime, the Principal Component Transformation (PCT) or 

Principal Component Analysis (PCA) is a feature space transformation designed to 

remove the spectral redundancy (Ready and Wintz, 1973). PCA has been widely used 

in remote sensing studies to isolate specific components related to vegetation dynamics 

(Anyamba and Eastman, 1996; Eastman and Fulk, 1993; Gurgel and Ferreira, 2003; 

Hall-Beyer, 2003; Hirosawa, Marsh, and Kliman, 1996) or to perform classification 

based on time-series similarity (Benedetti, Rossini, and Taddei, 1994; Lobo and 

Maisongrande, 2008). 
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To calculate the PCA, the eigenvectors and eigenvalues of the n 

principal components are derived from the covariance matrix of original remotely 

sensed data, as shown in the following equation (Leica, 2005): 

Λ = [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 0 𝜆𝑛

] (2.27) 

𝐸 ∙ 𝐶𝑜𝑣 ∙ 𝐸𝑇 = Λ (2.28) 

where Cov is the covariance matrix, E is the matrix of eigenvectors, T is 

the transposition function, Λ is a diagonal matrix of eigenvalues, in which all non-

diagonal elements are zeros. 

Λ is computed so that its nonzero elements are ordered from highest to 

least, so that 𝜆1 > 𝜆2 > 𝜆3 … > 𝜆𝑛. 

𝑅𝑘𝑝 =
𝑎𝑘𝑝×√𝜆𝑝

√𝑉𝑎𝑟𝑘
 (2.29) 

where Rk,p is a correlation between band k and each principal component, 

ak,p is an eigenvector for band k and component p, p is pth eigenvalue, Vark is a variance 

of band k in the covariance matrix. 

𝑛𝑒𝑤𝐵𝑉𝑖,𝑗,𝑝 = ∑ 𝑅𝑘𝑝𝐵𝑉𝑖,𝑗,𝑘
𝑛
𝑘=1  (2.30) 

where, BVi,j,k is brightness value in band k for the pixel at row i, column 

j, n is the number of bands. 

 

 



 

 

 

CHAPTER III 

RESEARCH METHODOLOGY 

 

The overview research methodology framework, according to the research 

objectives, is presented in Figure 3.1. Brief information with significant tasks of each 

component, including (1) data collection and preprocessing of time-series Landsat 

datasets, (2) spectral features selection for LULC classification, (3) time-series LULC 

classification using unsupervised method, (4) time-series LULC classification using 

supervised method, and (5) impact study of LULC change on LST, is separately 

summarized in the following sections. Meanwhile, details of the research methodology 

of each component and results were described in the following chapters. 
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Figure 3.1 Overview of research methodology framework. 

Available Landsat datasets between 2000 and 2017 

Conversion DNs to time-series spectral reflectance dataset 

Time-series spectral reflectance and spectral indices dataset 
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Harmonic function curve conversion using HA 

Optimum spectral feature selection for LULC classification 
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Optimum spectral features 

LULC change detection using HA and CCDC 

algorithm 

Component 3 

Time-series LULC classification using 

unsupervised method 

(K-Means and ISODATA algorithms) 

Time-series LULC maps and report of accuracy 

assessment 

Optimum spectral features 

Sample points of stable LULC type (2000-2017) 

Harmonic function curve conversion and 

standard harmonic curve construction 

Spectral distance measurement and probability 

calculation 

Component 4 

Time series LULC classification using 

supervised method (HA and a minimum spectral 

distance algorithm) 

Time-series LULC classification maps and 

report of accuracy assessment 

Input Process Output 

Landsat datasets between 2000 and 2017 

Time-series LST retrieve 

Component 5 

Spatial analysis and impact of LULC change on LST 

impact of LULC on LST 

Accuracy assessment 
Accuracy assessment 

LST decomposition analysis and impact study of LULC on LST 

Time-series LST reconstruction 
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3.1 Data collection and preprocessing of time-series Landsat 

datasets 

All available Landsat 5/7/8 images at Level-1 product of path 120 and row 38 

(WRS-2) between 2000 and 2017 were firstly downloaded through USGS online portal. 

Characteristics of Landsat 5/7 and 8 data were summarized in Table 3.1. Then, the 

images were selected according to the metadata of the Landsat image, if cloud coverage 

in the study area is less than 90%. This percentage criterion is set to remove images 

since they are severely contaminated by clouds. 
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Table 3.1 Characteristics of Landsat 5/7/8 data. 

Landsat – 5 Landsat – 7 Landsat – 8 

Sensor Band 

Spectral 

Resolution 

(mm) 

Spatial 

Resolution 

(m) 

Sensor Band 

Spectral 

Resolution 

(mm) 

Spatial 

Resolution 

(m) 

Sensor Band 

Spectral 

Resolution 

(mm) 

Spatial 

Resolution 

(m) 

TM 

1 0.45 – 0.52 30 

ETM 

1 0.450–0.515 30 

OLI 

1 0.42 – 0.45 30 

2 0.52 – 0.60 30 2 0.525–0.605 30 2 0.45 – 0.51 30 

3 0.63 – 0.69 30 3 0.63 – 0.69 30 3 0.53 – 0.59 30 

4 0.76 – 0.90 30 4 0.75 – 0.90 30 4 0.64 – 0.67 30 

5 1.55 – 1.75 30 5 1.55 – 1.75 30 5 0.85 – 0.88 30 

6 10.4 – 12.5 120 6 10.4 – 12.5 60 6 1.57 – 1.65 30 

7 2.08 – 2.35 30 7 2.08 – 2.35 30 7 2.11 – 2.29 30 

 

   
8 0.52 – 0.90 15 8 0.50 – 0.68 15 

 

   
    9 1.36 – 1.38 30 

        TIRS 
10 10.6–11.19 100 

        
11 11.5–12.51 100 
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In this component, four essential tasks of data preprocessing of time-series 

Landsat datasets include (1) cloud cover assessment, (2) cloud/shadow pixel 

recognition based on quality assessment (QA) band and HA model, (3) conversion of 

digital number to spectral reflectance data, and (4) time-series spectral reflectance 

construction.  

The main output of this component is time-series spectral reflectance and 

spectral indices datasets. 

 

3.2 Optimum spectral features selection for LULC classification 

Under this component, LULC data in 2000, 2006, 2011, and 2017 were first 

classified using the Maximum Likelihood Classifier under ERDAS Imagine software. 

Then the historical stable pixels of LULC types between 2000 and 2017 were extracted 

based on the classified LULC maps in 2000, 2006, 2011, and 2017 using overlay 

analysis under ESRI ArcGIS software. After that, sample points from each stable LULC 

type were randomly selected by using the create random points function of the ESRI 

ArcMap software. The sample points of each LULC type were further used to transform 

into harmonic function curves for six original spectral bands and twelve spectral indices. 

After that, two criteria based on the fitting effect of the harmonic wave function using 

R2 and the ability of features to distinguish a specific LULC type using probability were 

applied to select optimum spectral featured by multiplication operation. 

The main output of this component is the optimum spectral feature selection for 

LULC classification. 
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3.3 Time-series LULC classification using unsupervised method 

Under this component, three essential tasks of time-series LULC classification 

using the unsupervised method included (1) LULC change detection using HA and 

CCDC, (2) unsupervised LULC classification using K-Means and ISODATA algorithm 

and (3) accuracy assessment. In brief, the harmonic wave coefficient (intercept, slope, 

amplitude, and phase) of the selected spectral features were here applied for 

unsupervised LULC classification using K-Means and ISODATA algorithms. The 

advantage of unsupervised classification is that it does not require the selection of a 

training area, and the result is objective, and there is no artificial influence.  

Two main outputs of this component are time-series LULC maps and reports of 

accuracy assessment of unsupervised classification methods for time-series LULC 

classification. 

 

3.4 Time-series LULC classification using supervised method 

Under this component, four essential tasks of time-series LULC classification 

using supervised method included (1) harmonic function curve conversion and standard 

harmonic curve construction, (2) spectral distance measurement and probability 

calculation, (3) time-series LULC classification and (4) accuracy assessment. In brief, 

time-series LULC maps were classified using the developed supervised classification 

method using HA with a minimum spectral distance algorithm. Herein, the constructed 

harmonic function curve of each LULC type was applied to calculate spectral distance 

measurement and probability calculation for time-series LULC classification. 
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Two main outputs of this component are time-series LULC maps and reports of 

accuracy assessment of supervised classification method for time-series LULC 

classification. 

 

3.5 Impact study of LULC change on LST 

Under this component, four tasks included (1) time-series LST retrieve, (2) 

time-series LST reconstruction, (3) LST decomposition analysis and impact study of 

LULC on LST, and (4) spatial analysis and impact of LULC change on LST were 

implemented. In brief, the time-series LST dataset was extracted for each independent 

scene using the SC algorithm. Then, the time-series LST dataset was reconstructed 

using the HA model due to some incorrect LST values. Later, the reconstructed time-

series LST dataset was further used in decomposition analysis and spatial analysis for 

an impact study of LULC change on LST. In this study, two approaches based on time 

and spatial domains were applied to study the impact of LULC change on LST. 

The main output of this component is reconstructed time-series LST between 

2000 and 2017 and report on the impact of LULC change on LST. 

 

 



 

 

 

CHAPTER IV 

DATA COLLECTION AND PREPROCESSING OF TIME-

SERIES LANDSAT DATASETS 

 

The schematic workflow of data collection and preprocessing of time-series 

Landsat datasets is displayed in Figure 4.1. It consisted of four steps, including (1) cloud 

cover assessment, (2) cloud/shadow pixel recognition based on QA band and HA 

model, (3) conversion of digital number to spectral reflectance data, and (4) time-series 

spectral reflectance construction. The detail of the method and result of each step was 

separately described and discussed in the following sections. 
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Figure 4.1 Workflow of Component 1: Data collection and preprocessing of time-

series Landsat datasets. 
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4.1 Cloud cover assessment 

Under this step, the percent of total images and percent of total clear observed 

pixels by percent of cloud cover were calculated for reducing the number of scenes and 

costs and keeping the highest percent of total clear observed pixels for data analysis. 

In practice, the metadata of cloud cover percent from the USGS web portal of 

available Landsat 5/7/8 images between 2000 and 2017 was observed, recorded, and 

calculated. The percent of total image and percent of total clear observed pixels 

according to 10 interval classes (≤10, ≤20, ≤30, ≤40, ≤50, ≤60, ≤70, ≤80, ≤90, and 

≤100) of cloud cover (%) was calculated using Eq. 4.1 and 4.2. 

𝑃𝑖𝑚𝑎𝑔𝑒,𝑖 =
𝑁𝑖𝑚𝑎𝑔𝑒,𝑖

𝑁𝑖𝑚𝑎𝑔𝑒
∗ 100% (4.1) 

𝑃𝑝𝑖𝑥𝑒𝑙,𝑗 =
∑ 𝑁𝑖𝑚𝑎𝑔𝑒,𝑗∗(1−𝑗)

𝑗
0 ∗𝑀

𝑁𝑖𝑚𝑎𝑔𝑒∗𝑀
∗ 100% (4.2) 

where, i is the cloud cover (%) less than or equal to interval class (10, 20, …, 

100), 𝑃𝑖𝑚𝑎𝑔𝑒,𝑖 is the percent of total images, 𝑁𝑖𝑚𝑎𝑔𝑒,𝑖 is the number of images, 𝑁𝑖𝑚𝑎𝑔𝑒 

is the number of total images. j is the cloud cover (%), 𝑃𝑝𝑖𝑥𝑒𝑙,𝑗 is the percent of total 

clear observed pixels, and 𝑀 is the number of pixels in the image. 

All downloaded Landsat 5/7/8 images at Level-1 product of path 120 and row 

38 (WRS-2) between 2000 and 2017 with a total of 673 images (Figure 4.2) were 

assessed cloud coverage from metadata of Landsat image. According to metadata, all 

images with cloud coverage was less than 90% are here selected for preprocessing. 

Figure 4.3 shows a cumulative histogram of the percentage of images and clear pixels 

over the Nanjing City scene between 2000 and 2017. Based on this information, if we 

choose an image with cloud cover less than or equal 10%, about 26% of total images 

can be used. These images have about 50% of total clear pixels; therefore, about 50% 
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of clear pixels are ignored. Likewise, we choose an image with cloud cover less than or 

equal 60%, about 56% of total images can be used. These images have about 90% of 

total clear pixels; therefore, about 10% of clear pixels are ignored. 

 

 

Figure 4.2 The distribution of all Landsat images from 2000 to 2017. 

 

 

Figure 4.3 Percent of total images and percent of total clear pixels based on all 

available Landsat 5/7/8 images between 2000 and 2017. 
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After cloud coverage assessment, 168 images of Landsat 5, 251 images of 

Landsat7, and 76 images of Landsat 8 with a total of 495 images were finally selected 

to recognize cloud/shadow using the QA band and HA model. 

 

4.2 Cloud/shadow pixel recognition base on QA band and HA 

model 

4.2.1 Cloud/shadow pixel recognition base on QA band 

The Landsat collection Level-1 quality assessment (QA) band allows 

users to apply per pixel filters to the Landsat 5 TM, Landsat 7 ETM, and Landsat 8 

OLI/TIRS data products. Each pixel in the QA band contains unsigned integers that 

represent bit-packed combinations of surface, atmospheric, and sensor conditions that 

can affect the overall usefulness of a given pixel. Some common pixel values and their 

meanings of the QA band are summarized in Tables 4.1 and 4.2.  

 

Table 4.1 Common pixel values of the QA band of Landsat 5, 7 data. 

Pixel 

Value 

Snow/Ice 

Confidence 

Cloud Shadow 

Confidence 

Cloud 

Confidence 
Cloud 

Radiometric 

Saturation 

Dropped 

Pixel 
Fill 

672 Low Low Low No No No No 

676 Low Low Low No 1-2 bands No No 

680 Low Low Low No 3-4 bands No No 

684 Low Low Low No 5+ bands No No 

704 Low Low Medium No No No No 

752 Low Low High Yes No No No 

756 Low Low High Yes 1-2 bands No No 

760 Low Low High Yes 3-4 bands No No 

928 Low High Low No No No No 

1696 High Low Low No No No No 

1700 High Low Low No 1-2 bands No No 

1704 High Low Low No 3-4 bands No No 

Source: https://landsat.usgs.gov/collectionqualityband 

 

https://landsat.usgs.gov/collectionqualityband
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Table 4.2 Common pixel values of the QA band of Landsat 8 data. 

Pixel 

Value 

Cirrus 

Confidence 

Snow/Ice 

Confidence 

Cloud 

Shadow 

Confidence 

Cloud 

Confidence 
Cloud 

Radiometric 

Saturation 

Terrain 

Occlusion 
Fill 

2720 Low Low Low Low No No No No 

2724 Low Low Low Low No 1-2 bands No No 

2728 Low Low Low Low No 3-4 bands No No 

2752 Low Low Low Medium No No No No 

2800 Low Low Low High Yes No No No 

2804 Low Low Low High Yes 1-2 bands No No 

2808 Low Low Low High Yes 3-4 bands No No 

2976 Low Low High Low No No No No 

3744 Low High Low Low No No No No 

3748 Low High Low Low No 1-2 bands No No 

3752 Low High Low Low No 3-4 bands No No 

6816 High Low Low Low No No No No 

7072 High Low High Low No No No No 

Source: https://landsat.usgs.gov/collectionqualityband 

 

4.2.2 Cloud/shadow pixel recognition base on HA model 

Because cloud and snow make band 2 (Green band) brighter and cloud 

shadow and snow makes band 5 (SWIR1 band) darker, Zhu and Woodcock (2014b) 

estimated time-series models for band 2 and band 5 by comparing the actual Landsat 

observations with the corresponding model predictions. It was comparatively easy to 

identify any remaining clouds, cloud shadow, snow, and other ephemeral changes. If 

any of the conditions in Eq. 4.3 or 4.4 are met; this observation suggests that these 

pixels are clouds. 

ρ(2, 𝑥) − ρ̂(2, 𝑥)𝑅𝐼𝑅𝐿𝑆 > 0.04 (4.3) 

ρ(5, 𝑥) − ρ̂(5, 𝑥)𝑅𝐼𝑅𝐿𝑆 < −0.04 (4.4) 

 

https://landsat.usgs.gov/collectionqualityband
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where x is Julian date, ρ(𝑖, 𝑥) is the observed value for the ith Landsat 

band at Julian date x, ρ̂(𝑖, 𝑥)𝑅𝐼𝑅𝐿𝑆 is the predicted value for the ith Landsat band at Julian 

date x. 

After cloud coverage assessment, images with less than or equal to 90% 

of contaminated pixels in the study area were reselected using the QA band and HA 

model. As a result, 121 images of Landsat 5, 201 images of Landsat 7, 66 images of 

Landsat 8 with a total of 388 images are finally selected and used in this study. 

Additionally, the digital values of clear observed and contaminated pixels of all chosen 

images are 0 and 1, respectively. Examples of clear observed and contaminated pixels 

distribution from Landsat 5 and 7 are displayed in Figure 4.4. In Figure 4.4(a), most of 

the contaminated pixels are cloud and cloud shadow, whereas contaminated pixels in 

Figure 4.4(b) are cloud, cloud shadow, and gaps. 

 

  

(a) (b) 

Figure 4.4 Examples of clearly observed and contaminated pixels in the study area: 

(a) Landsat 5, date 20 January 2000, and (b) Landsat 7, date 4 May 2009. 

 

 



47 

 

4.3 Conversion of digital number to spectral reflectance data 

Radiative correction (including sensor calibration, atmospheric correction, 

terrain correction, relative radiation normalization, etc.) is a crucial step to ensure the 

homogeneity of the change detection from time-series data, and ignoring the results of 

this step is often ineffective (Vicente-Serrano, Pérez-Cabello, and Lasanta, 2008). The 

USGS uses the Landsat Ecosystem Interference Adaptive Processing System (LEDAPS) 

and the Landsat 8 Surface Reflection Code (LaSRC) to convert Landsat TM, ETM, and 

OLI level-1 data to surface reflectance Landsat Surface Reflectance Higher-Level Data 

Products (USGS, 2019a, 2019b). To make consistent Landsat Level 1 data products, 

known-quality archive data for timing analysis is required, USGS re-archives all 

Landsat data to Tier 1, Tier 2, and Real-Time. Among them, Level 1 data have been 

calibrated between sensors, and the accuracy of image geometry registration is within 

0.5 pixels, so this high-quality data product is suitable for Landsat timing change 

detection.  

Herein, the 16-bit integer values in the Level 1 product were converted to 

spectral reflectance using Eq. 4.5. 

𝜌𝜆′ = 𝑀𝜌 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝜌 (4.5) 

where 𝜌𝜆′ is spectral reflectance, without correction for solar angle (Unitless), 

𝑀𝜌 is reflectance multiplicative scaling factor for the band from the metadata, 𝐴𝜌 is 

reflectance additive scaling factor for the band from the metadata, 𝑄𝑐𝑎𝑙 is the L1 pixel 

value in DN. The derived outputs are further applied for Component 2 to Component 

4. 

In this study, the final selection of all Landsat data with a total of 388 scenes 

was converted to spectral reflectance using Eq. 4.5 for data analysis. The digital values 
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of spectral reflectance of six bands of all selected scenes vary between 0 and 1. 

Examples of the spectral reflectance data distribution of NIR band from Landsat 5 and 

7 are displayed in Figure 4.5. As a result, the existing gaps with a value less than 0.0 in 

Landsat 7 data, as shown in Figure 4.5(b), are here considered as contaminated pixels, 

and they are ignored in data analysis. 

 

  

(a) (b) 

Figure 4.5 Spatial distribution of spectral reflectance composite images: (a) 

Landsat 5, date 3 May 2000, and (b) Landsat 7, date 4 May 2009. 

 

4.4 Time-series spectral reflectance reconstruction 

Under this step, the clearly observed and contaminated pixels of Landsat 

imageries using the QA band and HA model (with value 0 or 1) from the step 2, Section 

4.2 were used to create the spatiotemporal cube using reshape function under MATLAB 

software. Likewise, the derived six spectral reflectance bands (with values 0 to 1) from 

step 3, Section 4.3 were also used to create spectral reflectance spatiotemporal cube in 

the same manner. Then the information of clear observed and contaminated pixels and 

spectral reflectance of six bands were converted from spatial dimension to time 
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dimension using reshape function (read the data pixel by pixel from spatiotemporal 

cubes) of MATLAB software. After that, two-time dimension datasets were combined 

to remove contaminated pixels for time-series spectral reflectance reconstruction. (See 

Figure 4.6). 

 

Figure 4.6 Time-series spectral reflectance reconstruction. 
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The derived time-series spectral reflectance data are further applied to calculate 

spectral indices (NDVI, NDBI, NDWI, EVI, MNDBI, MNDWI, TCB, TCG, TCW, 

PC1, PC2, and PC3) for time-series LULC classification. 

By combination between the spatiotemporal cube of the recognized clear 

observed and contaminated pixels (with value 0 or 1) and the spatiotemporal cube of 

the derived spectral reflectance data of six bands (with value 0 to 1) using the reshape 

function of MATLAB software, the contaminated pixels were removed from original 

time-series spectral reflectance data of six bands. 

Figure 4.7(a) on the left shows the original time-series spectral reflectance data 

of six bands (with value 0 to 1) from one pixel of 388 dates. It reveals that some pixel 

values deviate from the normal reflectance range due to contamination, such as 

cloud/cloud shadows. Meanwhile, Figure 4.7(b) on the right shows the time-series 

spectral reflectance data of six bands from the same pixel after the removal of 

contaminated values on some dates. It reveals that the reflectance values oscillate up 

and down with temporal variations. The reconstructed time-series spectral reflectance 

data of 388 images are the primary input data for multitemporal LULC mapping using 

HA with a minimum spectral distance algorithm in this study. 
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Blue band Blue band 

  

Green band Green band 

  

Red band Red band 

  

NIR band NIR band 

(a) (b) 

Figure 4.7 Comparison of (a) original time-series spectral reflectance data of six 

bands from one pixel between 2000 and 2017 and (b) time-series spectral reflectance 

data of six bands from the same pixel after removal of contaminated values. 
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SWIR 1 band SWIR 1 band 

  

SWIR 2 band SWIR 2 band 

(a) (b) 

Figure 4.7 (Continued). 

 

Figure 4.8 displays examples of the derived spectral indices (TCB), which were 

selected as a candidate image for spectral feature selection. Figure 4.8(a) on the top 

shows the one scene of TCB values on 20 January 2000 from a total of 388 scenes, the 

white areas in the study area show the contaminated pixels, and they are ignored in data 

analysis. Figure 4.8(b) on the bottom shows the TCB values of one selected pixel of the 

whole period from 2000 to 2017. 
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(a) 

 

(b) 

Figure 4.8 Examples of the derived spectral indices (TCB): (a) one scene of the 

whole study area, date 20 January 2000, and (b) one pixel from 2000 to 2017. 
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SUMMARY 

The preprocessing of time-series Landsat data was here systematically 

implemented to produce corrected images due to internal and external errors that 

generally exist in remotely sensed data. In general, internal errors are introduced by the 

remote sensing system (e.g., uncalibrated detectors), while external errors are 

introduced by natural phenomena (e.g., atmosphere, terrain elevation, slope, aspect) 

that vary in nature through space and time. As a result, 121 images of Landsat 5, 201 

images of Landsat 7, 66 images of Landsat 8 with a total of 388 images were finally 

selected for data analysis in this study. 

Besides, time-series spectral reflectance dataset was constructed from a clearly 

observed and contaminated pixel indicator cube and six spectral reflectance cubes. 

These cubes were converted from 388 images by reshape function under MATLAB. 

Finally, the derived time-series spectral reflectance dataset was further applied to 

calculate time-series spectral index dataset (NDVI, NDBI, NDWI, EVI, MNDBI, 

MNDWI, TCB, TCG, TCW, PC1, PC2, and PC3). Time-series spectral reflectance and 

spectral indices datasets are further selected as optimum spectral features for time-series 

LULC classification using unsupervised and supervised methods. 

 

 



 

 

 

CHAPTER V 

SPECTRAL FEATURE SELECTION FOR LAND USE 

AND LAND COVER CLASSIFICATION 

 

The workflow of spectral features selection for LULC classification is 

schematically displayed in Figure 5.1. The detail of two major tasks of spectral features 

selection and their result included (1) stable pixel of LULC type extraction and (2) 

selection of spectral features are separately described and discussed in the following 

section. 

 
Figure 5.1 Workflow of Component 2: Spectral features selection for LULC 

classification. 

Fitting effect of the harmonic wave function 

using R2 

Input Process Output 

Landsat images: 2000, 2006, 2011, 2017 

Stable pixel of LULC type extraction using 

MLC and overlay analysis 

Harmonic wave conversion using HA 

Time-series spectral reflectance data and 

spectral indices 

Sample points of different LULC type 

The ability of features to distinguish a 

specific LULC type using probability 

Harmonic wave function curve of spectral feature 

Optimum spectral feature selection for LULC 

classification 

Multiplication 
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5.1 Stable pixel of LULC type extraction 

In the study area, there are hundreds of Landsat images between 2000 and 2017. 

The traditional method of LULC classification using spectral features is time-

consuming and labor-intensive. This research attempts to establish a method for LULC 

classification using temporal features, but it requires to understand the spectral 

characteristics of Brightness Value (BV) of each LULC type throughout times, 

particularly historical stable pixels of four main LULC types (urban and built-up land, 

U; agricultural land, A; forest land, F; and water bodies, W between 2000 and 2017 (18 

years). 

The different LULC types (U, A, F and W) in 2000, 2006, 2011, and 2017 were 

first classified using maximum likelihood classifier (MLC) under the ERDAS Imagine 

software (See example for stable LULC type selection between 2000 and 2017 in Figure 

5.2). Then, four classified LULC maps in 2000, 2006, 2011, and 2017 were 

simultaneously superimposed to identify common areas of each LULC type from four 

different years by overlay analysis under the ESRI ArcMap software. The derived 

output presents the stable pixels of each LULC category between 2000 and 2017 and 

LULC change in this period. 

  

 



57 

 

 

(a) 

 

(b) 

Figure 5.2 Example of stable history pixel selected from Jiangning district in 

different four years: (a) location of different stable LULC types and (b) zoom-in maps. 
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After that, sample points from each stable LULC type were randomly selected 

by using the create random points function of the ESRI ArcMap software, and they then 

were converted to grid format points (30 * 30m).  

Finally, the location of sample points of each LULC type was further used to 

transform standard harmonic function curves of 18 spectral features for four different 

LULC types using three categories of time-series models in the following equations. 

CASE 1: HA models include the 12-month harmonic components. 

 𝑦 = 𝑎0 + 𝑏0𝑡 + 𝐴1 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑡 − 𝜑1) (5.1) 

CASE2: HA models include the 12-month, 6-month harmonic components. 

 𝑦 = 𝑎0 + 𝑏0𝑡 + 𝐴1 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑡 − 𝜑1) + 𝐴2 𝑐𝑜𝑠 (

4𝜋

𝑇
𝑡 − 𝜑2) (5.2) 

CASE3: HA models include the 12-month, 6-month, and 3-month harmonic 

components. 

 𝑦 = 𝑎0 + 𝑏0𝑡 + 𝐴1 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑡 − 𝜑1) + 𝐴2 𝑐𝑜𝑠 (

4𝜋

𝑇
𝑡 − 𝜑2) 

 +𝐴3 𝑐𝑜𝑠 (
8𝜋

𝑇
𝑡 − 𝜑3) (5.3) 

Where, t is the Julian date, T is the number of days per year (T= 365), 𝑎0 is the 

coefficient of intercept value, 𝑏0 is the coefficient of slope value, Ai is the coefficient 

of amplitude value, 𝜑𝑖  is the coefficient of phase value, y is the reconstructed 

reflectance value at Julian date t.  

The result of LULC classification by using MLC for stable LULC extraction is 

presented in Figure 5.3. 

As a result, it can be observed that urban and built-up land has been 

continuously increased while agriculture land has been continuously decreased. In the 

meantime, some forest land and most of the water bodies are stable. 

 



59 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.3 Spatial distribution of LULC classification map in: (a) 2000, (b) 2006, 

(c) 2011, and (d) 2017. 

 

These classified LULC maps were applied to identify common areas of each 

LULC type in four different years (2000, 2006, 2011, and 2017), as results show in 

Figure 5.4 and Table 5.1. The results indicate change and unchanged among LULC 

types in four different years. It was found that stable areas of urban and built-up land, 

agriculture land, forest land, and water bodies are 62.05 km2 (3.91%), 335.40 km2 

(21.14%), 129.59 km2 (8.17%) and 49.82 km2 (3.14%), respectively while area of 

changes in four different years was 1,009.87 km2 (63.64%). This result indicated 
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dramatic LULC change due to urbanization occurs from 2000 to 2017, particularly 

increasing urban and built-up land. This finding is consistent with the statistical report 

of Nanjing Municipal Bureau Statistics (NJMBS, 2017). 

 

Figure 5.4 Stable and change of LULC type between 2000 and 2017. 

 

Table 5.1 Area and percentage of stable LULC type and LULC change between 

2000 and 2017. 

No LULC type Area in km2 Percent (%) 

1 Stable urban and built-up land 62.05 3.91 

2 Stable agriculture land 335.40 21.14 

3 Stable forest land 129.59 8.17 

4 Stable water bodies 49.82 3.14 

5 LULC change during 2000 to 2017 1,009.87 63.64 

Total 1,586.74 100 
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Besides, the random sample points of each stable LULC type spatially display 

in Figure 5.5. As a result, random sample points of U, A, F, and W are 9,395 pixels, 

9,893 pixels, 9,711 pixels, and 9,181 pixels, respectively. These sample points are 

further used to construct the harmonic function curve of each LULC type by time-series 

model for optimum spectral feature selection.  

Then, these vector points were converted to grid format points (30x30m). As a 

result, 9,395 pixels of urban and built-up land, 9,893 pixels of agricultural land, 9,711 

pixels of forest land, and 9,181 pixels of water bodies are further applied to select 

spectral features for LULC classification. 

 

Figure 5.5 Sample points of the historical stable pixel of each LULC type. 
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5.2 Selection of spectral feature 

Standard harmonic curves of four different LULC types from 18 spectral 

features included Blue, Green, Red, NIR, SWIR1, SWIR2, NDVI, NDBI, NDWI, EVI, 

MNDBI, MNDWI, TCB, TCG, TCW, PC1, PC2 and PC3 were here applied for spectral 

feature selection. Selection of spectral feature was operated in two steps: 

Step 1. Fitting effect of the harmonic wave function 

The fitting effect of the harmonic wave function of each LULC type from three 

cases was calculated using the coefficient of determination (R2) for spectral feature 

selection. Besides, the derived R2 values from different cases were compared and 

examined the significant mean difference using the T-test. The spectral features 

obtained in this step indicates that these features work best when fitted with the HA 

model. 

Step 2. The ability of features to distinguish a specific LULC type 

The result of step 1 indicates features that can work best when they fitted with 

the HA model, but it does not mean that these features can effectively distinguish four 

different LULC types. Therefore, the ability of different spectral features to distinguish 

four LULC types is here examined by calculating the overlapping area between two 

LULC types (pair by pair) based on probability density function under the MATLAB 

software. 

Finally, average R2, which represents fitting of the harmonic wave function and 

the average value of ability of features to distinguish a specific LULC type, were 

combined using multiplication operation for LULC classification with optimum 

spectral feature (single and multiple features). 

 



63 

 

The main result of spectral feature selection is firstly described and discussed 

according to two main steps, and optimum spectral feature selection is then reported. 

 

5.2.1 Spectral feature selection by the fitting effect of harmonic wave 

The selected historical stable pixels for each LULC type were firstly 

applied to construct harmonic wave and calculated coefficients for three cases using 

Eq. 5.1, 5.2, and 5.3 and then calculated R2 for measuring the fitting effect of the 

harmonic wave that reflects changes of spectral features over time. 

Figures 5.6 to 5.9 show an example of HA for three cases from one 

selected stable pixel by using Tasseled Cap Brightness (TCB) data for each LULC type, 

namely, urban and built-up land, agricultural land, forest land, and water bodies. 

 

 

Figure 5.6 An example of HA for three cases of urban and built-up land by TCB 

data. 
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Figure 5.7 An example of HA for three cases of agricultural land by TCB data. 

 

Figure 5.8 An example of HA for three cases of forest land by TCB data. 

 

Figure 5.9 An example of HA for three cases of water bodies by TCB data. 
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As a result, it can be observed that the same case of the HA model has 

different fitting effects for different LULC types. A different case of the HA model has 

different fitting effects on the same LULC type. In order to quantitatively understand 

the difference in the fitting effect, coefficient of determination (R2) is introduced here. 

So, each sample pixel of each LULC type, the fitting effect of the harmonic wave 

function were calculated using mean R2 as a summary in Tables 5.2 to 5.5. 

 

Table 5.2 Comparison of mean R2 value of urban and built-up land from various 

selected features. 

Feature 
Urban and built-up land 

HA12 HA12,6 HA12,6,3 

BLUE 0.722  0.728  0.731  

GREEN 0.767  0.778  0.780  

RED 0.739  0.757  0.759  

NIR 0.853  0.865  0.867  

SWIR1 0.800  0.818  0.819  

SWIR2 0.703  0.741  0.743  

NDVI 0.476  0.501  0.509  

EVI 0.681  0.691  0.696  

NDBI 0.225  0.237  0.244  

MNDBI 0.302  0.317  0.323  

NDWI 0.458  0.490  0.498  

MNDWI 0.241  0.264  0.270  

TCB 0.852  0.866  0.867  

TCG 0.194  0.204  0.217  

TCW 0.268  0.277  0.279  

PC1 0.821  0.836  0.837  

PC2 0.314  0.318  0.344  

PC3 0.024  0.066  0.080  
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Table 5.3 Comparison of mean R2 value of agricultural land from various selected 

features. 

Feature 
Agricultural land 

HA12 HA12,6 HA12,6,3 

BLUE 0.528  0.536  0.544  

GREEN 0.599  0.627  0.633  

RED 0.420  0.484  0.497  

NIR 0.781  0.822  0.827  

SWIR1 0.632  0.672  0.678  

SWIR2 0.401  0.480  0.491  

NDVI 0.526  0.614  0.626  

EVI 0.706  0.761  0.770  

NDBI 0.448  0.503  0.516  

MNDBI 0.470  0.521  0.531  

NDWI 0.488  0.579  0.591  

MNDWI 0.152  0.176  0.189  

TCB 0.802  0.834  0.836  

TCG 0.439  0.502  0.521  

TCW 0.220  0.234  0.239  

PC1 0.784  0.811  0.813  

PC2 0.055  0.078  0.096  

PC3 0.048  0.099  0.119  
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Table 5.4 Comparison of mean R2 value of forest land from various selected 

features. 

Feature 
Forest land 

HA12 HA12,6 HA12,6,3 

BLUE 0.495  0.500  0.507  

GREEN 0.566  0.579  0.582  

RED 0.351  0.365  0.376  

NIR 0.877  0.902  0.908  

SWIR1 0.860  0.875  0.877  

SWIR2 0.656  0.707  0.721  

NDVI 0.651  0.680  0.694  

EVI 0.869  0.888  0.895  

NDBI 0.559  0.614  0.635  

MNDBI 0.622  0.661  0.676  

NDWI 0.651  0.680  0.693  

MNDWI 0.260  0.280  0.285  

TCB 0.873  0.891  0.893  

TCG 0.664  0.695  0.714  

TCW 0.216  0.222  0.227  

PC1 0.877  0.891  0.893  

PC2 0.259  0.341  0.351  

PC3 0.049  0.098  0.108  
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Table 5.5 Comparison of mean R2 value of water bodies from various selected 

features. 

Feature 
Water bodies 

HA12 HA12,6 HA12,6,3 

BLUE 0.638  0.641  0.649  

GREEN 0.702  0.710  0.716  

RED 0.650  0.658  0.665  

NIR 0.556  0.564  0.567  

SWIR1 0.358  0.396  0.403  

SWIR2 0.316  0.366  0.374  

NDVI 0.312  0.332  0.337  

EVI 0.382  0.411  0.418  

NDBI 0.220  0.253  0.265  

MNDBI 0.205  0.235  0.246  

NDWI 0.326  0.347  0.351  

MNDWI 0.158  0.196  0.205  

TCB 0.616  0.624  0.629  

TCG 0.483  0.499  0.509  

TCW 0.269  0.286  0.291  

PC1 0.393  0.405  0.412  

PC2 0.247  0.263  0.267  

PC3 0.067  0.112  0.160  

 

Results in Tables 5.2 to 5.5 show that mean R2 values of CASE 3 are 

better than CASE2, and CASE 2 is better than CASE 1 for different spectral bands and 

index of four LULC types. As a consequence, the mean R2 values for different three 

CASEs are similar. 

Meanwhile, Figures 5.10 to 5.12 depict the R2 distribution of PC1 data 

in different three cases of agricultural land sample pixels. 
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Figure 5.10 Distribution of R2 of agricultural land by PC1 data for Case 1. 

 

 

Figure 5.11 Distribution of R2 of agricultural land by PC1 data for Case 2. 
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Figure 5.12 Distribution of R2 of agricultural land by PC1 data for Case 3. 

 

As results in Figures 5.10 to 5.12, R2 distribution of PC1 data in different 

three cases of agricultural land sample pixels indicates that R2 is different in different 

cases. 

Therefore, in order to understand whether the difference in R2 is 

significant in different cases, the R2 from all sample pixels were here used for 

significant different test using T-test and Z-test methods.  

Table 5.6 and Table 5.7 shows a result of the significant test (T-test and 

Z-test) for four LULC types of 18 features at a significance level of 0.05. All values are 

close to 0 and less than 1.96, which means that CASE1 and CASE2 are not significantly 

different. Similarly, CASE1 and CASE3 are also not significantly different. 
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Table 5.6 R2 significant test (T-test) of three CASEs (significance level of 0.05). 

Feature 

Urban and built-

up land 
Agricultural land Forest land Water bodies 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

BLUE 1.68E-13 4.12E-29 1.33E-38 3E-146 3.75E-25 4E-151 2.83E-06 7.62E-52 

GREEN 8.77E-47 5.26E-64 1.2E-206 4.8E-295 3.2E-108 1.2E-166 7.29E-12 5.34E-35 

RED 6.09E-49 1.09E-62 0 0 4.37E-50 1.9E-161 0.00011 2.2E-13 

NIR 3.25E-52 1.09E-64 9.5E-200 3E-250 0 0 1.63E-15 1.4E-30 

SWIR1 2.33E-36 6.66E-42 5.24E-73 7.4E-100 3.62E-63 4.05E-78 8.8E-224 0 

SWIR2 9.7E-102 6.3E-113 0 0 6.4E-233 0 0 0 

NDVI 4.49E-18 3.29E-29 0 0 6.5E-54 2.7E-120 5.41E-23 6.96E-36 

EVI 2.97E-09 1.66E-18 4.5E-269 0 0 0 2.61E-58 5.04E-86 

NDBI 2.19E-07 5.5E-16 1.8E-150 1.1E-222 1.14E-75 4.3E-143 3.7E-143 7.4E-249 

MNDBI 1.47E-08 6.94E-15 2.23E-70 1.3E-99 8.72E-23 2.31E-43 5.98E-86 6.8E-162 

NDWI 3.86E-42 7.76E-65 0 0 2.78E-79 1.7E-161 9.82E-47 1.22E-63 

MNDWI 1.17E-23 2.36E-37 1.49E-58 8.4E-137 2.34E-10 2.79E-15 1.2E-187 1.5E-283 

TCB 1.59E-71 1.3E-81 3.9E-195 4.5E-214 0 0 7.54E-14 4.8E-36 

TCG 1.36E-09 1.93E-45 0 0 0 0 2.6E-10 1.36E-26 

TCW 4.58E-09 5.98E-14 1.84E-38 2.31E-67 1.65E-05 1.36E-19 8.39E-27 1.25E-41 

PC1 1.75E-50 1.22E-58 1.47E-96 1.5E-113 0 0 8.82E-39 1.66E-95 

PC2 0.000335 1.9E-137 2.9E-190 0 0 0 3.1E-181 3.4E-285 

PC3 0 0 0 0 0 0 0 0 
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Table 5.7 R2 significant test (Z-test) of three CASEs (significance level of 0.05). 

Feature 

Urban and built-

up land 
Agricultural land Forest land Water bodies 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

CASE1, 

CASE 2 

CASE1, 

CASE 3 

BLUE 1.61E-13 0 0 0 0 0 2.81E-06 0 

GREEN 0 0 0 0 0 0 7.07E-12 0 

RED 0 0 0 0 0 0 0.000109 2.11E-13 

NIR 0 0 0 0 0 0 1.55E-15 0 

SWIR1 0 0 0 0 0 0 0 0 

SWIR2 0 0 0 0 0 0 0 0 

NDVI 0 0 0 0 0 0 0 0 

EVI 2.91E-09 0 0 0 0 0 0 0 

NDBI 2.16E-07 4.44E-16 0 0 0 0 0 0 

MNDBI 1.45E-08 6.66E-15 0 0 0 0 0 0 

NDWI 0 0 0 0 0 0 0 0 

MNDWI 0 0 0 0 2.29E-10 2.66E-15 0 0 

TCB 0 0 0 0 0 0 7.22E-14 0 

TCG 1.34E-09 0 0 0 0 0 2.54E-10 0 

TCW 4.51E-09 5.71E-14 0 0 1.64E-05 0 0 0 

PC1 0 0 0 0 0 0 0 0 

PC2 0.000334 0 0 0 0 0 0 0 

PC3 0 0 0 0 0 0 0 0 

 

Therefore, CASE 1: HA model with the 12-month harmonic 

components is used in this study due to simple operation. However, the previously 

calculated R2 is the fitting effect of the HA model on a certain LULC for different 

spectral features. In practice, the LULC type of each pixel is unknown before the LULC 

classification. Consequently, the average R2 of four LULC types were applied for 

ranking spectral features for various LULC types classification as a summary in Table 

5.8.  

In summary, the first six spectral features with larger average R2 values 

include TCB, NIR, PC1, GREEN, SWIR1, and EVI. 
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Table 5.8 Average R2 value of four LULC types. 

No Feature 
Urban and 

built-up land 

Agricultural 

land 

Forest 

land 

Water 

bodies 
Average Ranking 

1 BLUE 0.722 0.528 0.495 0.638 0.596 7 

2 GREEN 0.767 0.599 0.566 0.702 0.658 6 

3 RED 0.739 0.420 0.351 0.650 0.540 8 

4 NIR 0.853 0.781 0.877 0.556 0.767 2 

5 SWIR1 0.800 0.632 0.860 0.358 0.662 4 

6 SWIR2 0.703 0.401 0.656 0.316 0.519 9 

7 NDVI 0.476 0.526 0.651 0.312 0.491 10 

8 EVI 0.681 0.706 0.869 0.382 0.660 5 

9 NDBI 0.225 0.448 0.559 0.220 0.363 14 

10 MNDBI 0.302 0.470 0.622 0.205 0.400 13 

11 NDWI 0.458 0.488 0.651 0.326 0.481 11 

12 MNDWI 0.241 0.152 0.260 0.158 0.203 17 

13 TCB 0.852 0.802 0.873 0.616 0.786 1 

14 TCG 0.194 0.439 0.664 0.483 0.445 12 

15 TCW 0.268 0.220 0.216 0.269 0.243 15 

16 PC1 0.821 0.784 0.877 0.393 0.719 3 

17 PC2 0.314 0.055 0.259 0.247 0.219 16 

18 PC3 0.024 0.048 0.049 0.067 0.047 18 

 

5.2.2 Ability of features to distinguish a specific LULC type 

The spectral feature selection obtained in the previous section only 

indicates that those features work best when fitted with the HA model, but it does not 

mean that these features can effectively distinguish four different LULC types. So, the 

ability of spectral features to distinguish four LULC types was here examined by 

calculating the overlapping area between two LULC types (pair by pair) by using 

probability density function.  

In order to understand the histogram distribution of the four LULC types 

in different features, one LULC map that has been classified at a specific time is 
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required. Herein, the LULC classification map dated 18 May 2017 was used to identify 

spectral features that can distinguish four LULC types. 

Figure 5.13 shows an example of the probability distribution of four 

LULC types from a blue band with specific symbols: red for urban and built-up land, 

yellow for agricultural land, green for forest land, and blue for water bodies. This 

histogram shows overlapping areas of spectral values among LULC types when it only 

compares its probability value. In fact, the sum of the probability (height) of each LULC 

type equals 1, but the distributed ranges (width) of the bin from each LULC type are 

different. Therefore, it is difficult to directly understand the size of the overlap of 

different LULC types in the histogram. A more elegant solution is to approximate the 

distribution of the probability density function as a curve. 

 

 

Figure 5.13 Probability of four LULC types on the blue band. 
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Figure 5.14 shows an example of the probability density function curve 

of four LULC types on the blue band. In this figure, the area enclosed by any curve and 

the abscissa is equal to 1. Therefore, it is easy to calculate the overlap area between any 

two curves. The area of the overlap area equals to zero or small means that the blue 

band can distinguish between the two LULC types. Conversely, a large area of overlap 

means that it is difficult to distinguish between the two LULC types by using a blue 

band. Therefore, the method of calculating the area of the overlapping area under 

MATLAB was used to explore the optimal spectral features for distinguishing four 

LULC types. 

 

 

Figure 5.14 Probability density function of four LULC types on the blue band. 
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Table 5.9 Area of overlapping of any two LULC types. 

Feature U_A U_F U_W A_F A_W F_W 

BLUE 0.216  0.012  0.335  0.125  0.394  0.072  

GREEN 0.418  0.029  0.423  0.143  0.444  0.160  

RED 0.392  0.020  0.301  0.094  0.517  0.111  

NIR 0.386  0.102  0.037  0.427  0.022  0.003  

SWIR1 0.778  0.608  0.028  0.623  0.021  0.012  

SWIR2 0.528  0.087  0.028  0.259  0.032  0.030  

NDVI 0.265  0.010  0.062  0.118  0.035  0.003  

EVI 0.304  0.021  0.057  0.223  0.031  0.002  

NDBI 0.400  0.030  0.109  0.217  0.305  0.268  

MNDBI 0.326  0.019  0.162  0.150  0.583  0.541  

NDWI 0.252  0.010  0.041  0.156  0.023  0.002  

MNDWI 0.457  0.158  0.028  0.506  0.017  0.002  

TCB 0.657  0.655  0.039  0.851  0.023  0.012  

TCG 0.253  0.012  0.346  0.230  0.052  0.002  

TCW 0.802  0.402  0.027  0.485  0.022  0.011  

PC1 0.638  0.595  0.031  0.831  0.021  0.009  

PC2 0.284  0.011  0.388  0.168  0.200  0.003  

PC3 0.852  0.478  0.043  0.507  0.025  0.008  

 

Table 5.9 shows the area of overlapping of any two LULC types of 18 

features. Herein, U denotes urban and built-up land, A denotes agricultural land, F 

denotes forest land, and W denotes water bodies. As a result, it is easy to see in this 

table that the area of the overlap of any two curves when using different spectral 

features. This area illustrates the proportion of misclassification when using a feature 

to distinguish between two LULC types. For example, if NIR feature is applied to 

distinguish between water bodies and other LULC types, pair of forest land and water 

bodies show the lowest overlapped area than other pairs, This finding indicates that 

NIR feature can be used to separate water bodies from forest land better than water 

bodies from urban and built-land or agricultural land. 
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However, the goal of this operation is to find spectral features that can 

distinguish between different LULC types. Therefore, the values in Table 5.9 is 

subtracted from the constant 1, and the results obtained, as shown in Table 5.10. This 

Table shows the ability of spectral features to distinguish between any two different 

LULC types. 

 

Table 5.10 Distinguishability of any two LULC types. 

Feature U_A U_F U_W A_F A_W F_W 

BLUE 0.784  0.988  0.665  0.875  0.606  0.928  

GREEN 0.582  0.971  0.577  0.857  0.556  0.840  

RED 0.608  0.980  0.699  0.906  0.483  0.889  

NIR 0.614  0.898  0.963  0.573  0.978  0.997  

SWIR1 0.222  0.392  0.972  0.377  0.979  0.988  

SWIR2 0.472  0.913  0.972  0.741  0.968  0.970  

NDVI 0.735  0.990  0.938  0.882  0.965  0.997  

EVI 0.696  0.979  0.943  0.777  0.969  0.998  

NDBI 0.600  0.970  0.891  0.783  0.695  0.732  

MNDBI 0.674  0.981  0.838  0.850  0.417  0.459  

NDWI 0.748  0.990  0.959  0.844  0.977  0.998  

MNDWI 0.543  0.842  0.972  0.494  0.983  0.998  

TCB 0.343  0.345  0.961  0.149  0.977  0.988  

TCG 0.747  0.988  0.654  0.770  0.948  0.998  

TCW 0.198  0.598  0.973  0.515  0.978  0.989  

PC1 0.362  0.405  0.969  0.169  0.979  0.991  

PC2 0.716  0.989  0.612  0.832  0.800  0.997  

PC3 0.148  0.522  0.957  0.493  0.975  0.992  

 

Table 5.10 only shows the ability of features to distinguish between two 

different LULC types. Therefore, it further requires calculating the ability of spectral 

features to distinguish each specific type of LULC, as shown in Table 5.11. 
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Table 5.11 The ability of the spectral features to distinguish a certain LULC. 

No Feature U A F W Average Ranking 

1 BLUE 0.813  0.755  0.930  0.733  0.808  8 

2 GREEN 0.710  0.665  0.889  0.658  0.730  12 

3 RED 0.763  0.666  0.925  0.690  0.761  11 

4 NIR 0.825  0.722  0.823  0.979  0.837  6 

5 SWIR1 0.529  0.526  0.586  0.980  0.655  16 

6 SWIR2 0.786  0.727  0.875  0.970  0.839  5 

7 NDVI 0.888  0.861  0.956  0.966  0.918  2 

8 EVI 0.873  0.814  0.918  0.970  0.893  3 

9 NDBI 0.820  0.693  0.828  0.773  0.778  10 

10 MNDBI 0.831  0.647  0.763  0.572  0.703  14 

11 NDWI 0.899  0.856  0.944  0.978  0.919  1 

12 MNDWI 0.786  0.673  0.778  0.984  0.805  9 

13 TCB 0.550  0.490  0.494  0.975  0.627  18 

14 TCG 0.796  0.822  0.919  0.866  0.851  4 

15 TCW 0.590  0.564  0.701  0.980  0.708  13 

16 PC1 0.579  0.504  0.522  0.980  0.646  17 

17 PC2 0.773  0.783  0.939  0.803  0.824  7 

18 PC3 0.542  0.538  0.669  0.974  0.681  15 

 

In consequence, it indicates that almost all spectral features make it easy 

to distinguish between water bodies and other types of LULC. However, some spectral 

features are not suitable for distinguishing between agricultural land, forest land, and 

urban and built-up land. Table 5.11 shows an average distinguishing ability of four 

LULC types. Larger values indicate that those spectral features are highly capable of 

distinguishing four LULC types. 

In summary, the first six spectral features with larger values to 

distinguish four LULC types are NDWI, NDVI, EVI, TCG, SWIR2, and NIR.  
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5.2.3 Optimum spectral features selection 

By combining the spectral features that can better fit into the harmonic 

wave function and can better distinguish four LULC types, multiplication operation 

between average R2 of four LULC types from Table 5.8 and average value of the ability 

of spectral features to distinguish a certain LULC from Table 5.11 was applied to 

identify optimum spectral features selection for LULC classification as summarized in 

Table 5.12. 

As a consequence, the suitable spectral features for all LULC type 

classification should include NIR, EVI, TCB, BLUE, GREEN, and PC1. 

These derived optimum spectral features under this chapter are further 

applied for LULC classification with K-Means and ISODATA clustering algorithm in 

Chapter 6: Time-series LULC extraction using unsupervised classification algorithm 

and Chapter 7: Time-series LULC extraction using supervised classification. 
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Table 5.12 Optimal spectral feature for LULC classification. 

No Feature Average R2 Average ability value Multiplication Ranking 

1 BLUE 0.596 0.808 0.482 4 

2 GREEN 0.658 0.73 0.480 5 

3 RED 0.54 0.761 0.411 11 

4 NIR 0.767 0.837 0.642 1 

5 SWIR1 0.662 0.655 0.434 10 

6 SWIR2 0.519 0.839 0.435 9 

7 NDVI 0.491 0.918 0.451 7 

8 EVI 0.66 0.893 0.589 2 

9 NDBI 0.363 0.778 0.282 13 

10 MNDBI 0.4 0.703 0.281 14 

11 NDWI 0.481 0.919 0.442 8 

12 MNDWI 0.203 0.805 0.163 17 

13 TCB 0.786 0.627 0.493 3 

14 TCG 0.445 0.851 0.379 12 

15 TCW 0.243 0.708 0.172 16 

16 PC1 0.719 0.646 0.464 6 

17 PC2 0.219 0.824 0.180 15 

18 PC3 0.047 0.681 0.032 18 

 

SUMMARY 

The spectral features include TCB, NIR, PC1, GREEN, SWIR1, and EVI have 

a high fitting effect of the harmonic wave function. Meanwhile, the spectral features 

include NDWI, NDVI, EVI, TCG, SWIR2, and NIR have a high ability to distinguish 

a specific LULC type. By considering both characteristics from spectral features, the 

optimum spectral features for LULC classification included NIR, EVI, TCB, BLUE, 

GREEN, and PC1 since these spectral features can better fit into the harmonic wave 

function and can better distinguish four LULC types. 

 

 



 

 

 

CHAPTER VI 

TIME-SERIES LAND USE AND LAND COVER 

CLASSIFICATION USING AN UNSUPERVISED 

METHOD 

 

In principle, unsupervised classification is the process whereby numerical 

operations have performed that search for natural groupings of the spectral properties 

of pixels, as examined in multispectral feature space. The clustering process results in 

a classification map consisting of spectral classes (Lo and Yeung, 2007). 

The workflow of time-series LULC classification using an unsupervised 

classification algorithm is schematically displayed in Figure 6.1. The detail of three 

major tasks and their results of this component included (1) LULC change detection 

using HA and CCDC, (2) unsupervised LULC classification using K-Means and 

ISODATA algorithm and (3) accuracy assessment were separately described and 

discussed in the following section. 
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Figure 6.1 Workflow of Component 3: Time-series LULC classification using 

unsupervised classification method. 

 

6.1 LULC change detection using HA and CCDC 

The HA and CCDC were here applied to characterize LULC change detection 

using the single spectral feature and multiple spectral features (Table 5.12), which were 

derived from Chapter 5, Optimum spectral features selection for LULC classification. 

To illustrate the change detection procedure of CCDC algorithm, one pixel 

(Point X in Figure 6.2) that experienced a conversion from one LULC type to another 

Input Process Output 

Optimum spectral features or spectral feature combination 

LULC change detection using HA and CCDC algorithm 

Suitable harmonic coefficient value for 

LULC classification 

Accuracy Assessment 

LULC classification using K-Means LULC classification using ISODATA 

Time-series LULC classification maps Time-series LULC classification maps 

Thematic accuracy assessment Thematic accuracy assessment 

Report of accuracy assessment of unsupervised classification method for 

time-series LULC classification 
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type was here characterized using the optimum spectral feature: single and multiple 

spectral features. In this study, the single feature is NIR band while multiple spectral 

features are TOP3 spectral features (NIR, EVI, and TCB), TOP6 spectral features (NIR, 

EVI, TCB, BLUE, GREEN, and PC1) and ORI6 spectral features of Landsat data 

(BLUE, GREEN, RED, NIR, SWIR1, and SWIR2). 

 

  

(a) (b) 

Figure 6.2 The geographical location of the Jiangning District and the location of 

point X (Row 1443, column 1174): (a) Image from Google Earth in 2000 and (b) Image 

from Google Earth in 2017. 

 

Figure 6.2 demonstrates two images of Jiangning district obtained from Google 

Earth. The acquisition time of the image in Figure 6.2(a) was 2000, and the acquisition 

time of Figure 6.2(b) was 2017. Point X was taken from the new airport runway area 

of Nanjing Lukou International Airport. The LULC type was an undisturbed area in 

2000, and the LULC type had been converted into urban and built-up land in 2017.  
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Details of characteristics of LULC change detection based on the HA and 

CCDC from optimum single and multiple spectral features are described and discussed 

in the following sections. 

 

6.1.1 Single feature: NIR band 

The NIR band is the most suitable spectral feature that can fit the HA 

model and distinguish four LULC types (see detail in Chapter V). Characteristics of 

LULC change detection on point X location based on the NIR band over the study 

period (2000-2017) display in Figure 6.3. 

In principle, if the harmonic of a pixel is a complete wave, it means that 

the LULC type of the pixel does not change. If the harmonic of a pixel is not a complete 

wave and it is divided into multiple sections, the LULC type of the pixel may change. 

On the contrary, if the harmonic function of the pixel has only one group of coefficients, 

the LULC type of the pixel does not change. If the LULC type of the pixel has changed, 

the harmonic function of the pixel shows multiple groups of coefficients. 

 

 

Figure 6.3 Time-series model of NIR band for point X. 
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As shown in Figure 6.3, there are 8 harmonic waves for 18 years; it 

indicates that the LULC type at location X may have changed 7 times, and the NIR 

feature can be applied to detect LULC change. Mainly, it can be observed that the 

harmonic curve of the LULC type on 27 September 2013 at X location shows LULC 

change. In the meantime, Table 6.1 shows the detailed information of the harmonic 

wave coefficient of NIR from point X location.  

As shown in Table 6.1, the LULC type at Point X may be changed in 

seven periods with Julian day (481-665, 705-993, 1001-1505, 1537-4081, 4137-4673, 

4705-5137, and 5169-6521). 

Furthermore, the NIR band can be used to detect all possible LULC 

changes over the eighteen years of the whole study area. Table 6.2 shows the results of 

LULC change detection over specific locations in the study area. As a result, LULC 

changes are taken place at locations (1, 1), (1, 2), (1, 2000), and (2, 1). 

 

Table 6.1 Four coefficients of the NIR band at point X location in different periods. 

Period (Julian day) Intercept Slope (E-04) Amplitude Phase 

121-449 0.126 1.257 -0.086 0.273 

481-665 0.866 -12.487 -0.078 -1.238 

705-993 -0.017 2.112 -0.060 -5.813 

1001-1505 0.120 0.228 -0.060 -6.163 

1537-4081 0.178 -0.029 -0.084 -6.038 

4137-4673 0.170 0.022 -0.050 -6.113 

4705-5137 0.114 -0.006 -0.045 -6.108 

5169-6521 0.183 0.039 -0.063 -5.890 
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Table 6.2 Coefficients of all pixels from the NIR band in the study area. 

Row and Column Period (Julian day) Intercept Slope (E-04) Amplitude Phase 

(1,1) 

89-777 0.098 0.781 -0.157 0.139 

833-1113 0.290 -1.769 -0.056 0.264 

1217-1665 0.106 0.040 -0.069 0.371 

1681-1953 -0.248 2.016 -0.068 -0.023 

2057-2473 -0.265 1.771 -0.074 0.149 

2481-6521 0.129 0.105 -0.105 0.115 

(1,2) 

121-833 0.141 0.252 -0.118 0.192 

881-1113 0.464 -3.304 -0.058 0.372 

1217-4137 0.106 0.161 -0.087 0.227 

4153-4785 0.246 -0.200 -0.064 0.303 

4827-6521 0.225 -0.051 -0.111 0.140 

… … … … … … 

(1,2000) 

1-745 0.219 -0.716 -0.102 0.263 

753-1025 0.002 2.178 -0.086 0.737 

1073-1465 0.199 -0.189 -0.086 0.159 

1481-6521 0.213 -0.065 -0.093 0.322 

(2,1) 

1-833 0.162 0.116 -0.102 0.175 

881-1145 0.075 0.743 -0.095 0.137 

1217-4137 0.130 0.112 -0.087 0.289 

4153-6521 0.100 0.177 -0.105 0.155 

… … … … … … 

 

6.1.2 Multiple features: TOP3 spectral features 

It is relatively simple to use only one feature for LULC change detection. 

However, if this feature is not sensitive to change in a specific type of LULC, it is 

difficult to find a change in LULC type through this feature, or if it is susceptible to 

change in LULC type, it will result in a large number of the unwanted subcategories 

such as turbid and clear water bodies. So, it can lead to an inaccurate result of LULC 

change detection. Three spectral features were, therefore, applied to detect LULC 

change in this study. 
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Similar to the previous section, NIR, EVI, and TCB are the first three 

suitable spectral features that can be applied to distinguish four different LULC types 

(see detail in Chapter V). Figure 6.4 shows the TOP3 spectral features (NIR, EVI, and 

TCB) that are used for change detection using point X as an example. 

 

Figure 6.4 Time-series model of TOP3 spectral features for point X. 

 

Similar to one feature for LULC change detection, if the LULC type of 

a pixel does not change, the harmonic function of each spectral feature of the pixel will 

have only one group of coefficients. If the LULC type of pixel changes, the harmonic 

function of each feature of the pixel will have multiple groups of coefficients. 

As shown in Figure 6.4, there are also eight harmonic waves for 18 years; 

it indicates that LULC type at location X may have changed in seven periods, and TOP3 

spectral features can be applied to detect LULC change. Table 6.3 shows the detail 

information of harmonic wave coefficients of TOP3 spectral features at point X location. 

As it can be seen from Table 6.3, the LULC type at point X may have 

changed in seven periods with the dates of Julian day (977-1113, 1217-1553, 1569-

4801, 4817-5137, 5169-5897, 6033-6245 and 6297-6521). 
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Furthermore, the TOP3 spectral features were used to detect all possible 

LULC changes over the eighteen years of the whole study area. Table 6.4 shows the 

results of LULC change detection over specific locations in the study area. As a result, 

LULC changes are taken place at locations (1, 1), (1, 2), and (2, 1), whereas LULC type 

at the location (1, 2000) does not change. 

 

Table 6.3 Four coefficients of TOP3 spectral features in different periods. 

Period (Julian day) Feature Intercept Slope (E-04) Amplitude Phase 

649-929 

NIR 0.194 -0.485 -0.084 0.414 

EVI 0.044 -0.123 -0.031 0.319 

TCB 0.344 -1.260 -0.090 0.499 

977-1113 

NIR 2.683 -23.938 -0.142 1.761 

EVI 1.099 -10.073 -0.060 1.816 

TCB 2.194 -18.501 -0.111 1.625 

1217-1553 

NIR -0.168 2.341 0.087 3.225 

EVI -0.044 0.546 -0.032 6.277 

TCB -0.117 2.688 -0.085 0.260 

1569-4801 

NIR 0.178 -0.031 0.081 3.361 

EVI 0.063 -0.125 -0.022 6.188 

TCB 0.225 0.213 -0.106 0.385 

4817-5137 

NIR 0.442 -0.667 0.038 3.157 

EVI 0.016 -0.005 -0.015 6.322 

TCB 0.854 -1.284 -0.047 0.045 

5169-5897 

NIR 0.183 0.000 0.044 4.240 

EVI -0.010 0.034 -0.004 7.321 

TCB 0.235 0.241 -0.080 1.233 

6033-6256 

NIR -2.277 4.031 0.098 3.189 

EVI -0.159 0.277 -0.005 6.281 

TCB -3.344 6.129 -0.181 0.122 

6297-6521 

NIR 5.601 -8.428 0.080 2.375 

EVI 0.499 -0.752 -0.010 5.344 

TCB 8.679 -12.908 -0.131 -0.570 
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Table 6.4 Coefficients of all pixels from TOP3 spectral features in the study area. 

Row and Column Period (Julian day) Feature Intercept 
Slope 

(E-04) 
Amplitude Phase 

(1, 1) 

89-833 

NIR 0.106 0.593 -0.154 0.118 

EVI 0.016 0.342 -0.060 0.032 

TCB 0.169 0.619 -0.161 0.196 

881-1113 

NIR 0.363 -2.491 -0.049 0.300 

EVI -0.038 0.633 -0.032 0.223 

TCB 1.011 -8.287 -0.012 1.355 

1217-2313 

NIR 0.098 0.103 -0.067 0.344 

EVI 0.014 0.040 -0.021 0.258 

TCB 0.185 0.062 -0.089 -5.896 

2425-6521 

NIR 0.130 0.103 -0.105 0.114 

EVI 0.026 0.034 -0.039 -0.014 

TCB 0.206 0.139 -0.112 -6.066 

… … … … … … … 

(1, 2) 

121-881 

NIR 0.148 0.087 -0.114 0.190 

EVI 0.033 0.108 -0.043 0.058 

TCB 0.218 0.138 -0.122 0.332 

905-1113 

NIR 0.402 -2.697 -0.062 0.330 

EVI 0.148 -1.146 -0.023 0.491 

TCB 0.359 -1.633 -0.077 0.102 

1217-5257 

NIR 0.107 0.153 -0.090 0.219 

EVI 0.021 0.036 -0.030 0.029 

TCB 0.184 0.216 -0.111 0.342 

5287-5601 

NIR 2.573 -4.356 -0.116 0.613 

EVI 1.142 -2.000 -0.044 0.518 

TCB 3.141 -5.221 -0.130 0.818 

5625-5913 

NIR -0.216 0.741 -0.133 0.188 

EVI -0.187 0.419 -0.051 0.120 

TCB -0.013 0.545 -0.129 0.246 

5945-6265 

NIR -0.306 0.804 -0.095 0.145 

EVI -0.182 0.367 -0.032 0.022 

TCB 0.245 0.060 -0.101 0.349 

6297-6489 

NIR 22.828 -35.397 -0.300 -1.310 

EVI 10.646 -16.571 -0.143 -1.421 

TCB 16.268 -25.007 -0.219 -1.025 
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Table 6.4 (Continued). 

Row and Column Period (Julian day) Feature Intercept 
Slope 

(E-04) 
Amplitude Phase 

(1, 2) 6521-6545 

NIR 22.828 -35.397 -0.300 -1.310 

EVI 10.646 -16.571 -0.143 -1.421 

TCB 16.268 -25.007 -0.219 -1.025 

… … … … … … … 

(1,2000) 41-6521 

NIR 0.199 -0.036 -0.094 0.332 

EVI 0.042 -0.010 -0.031 0.216 

TCB 0.289 -0.001 -0.103 0.394 

… … … … … … … 

(2,1) 

89-833 

NIR 0.159 0.161 -0.103 0.169 

EVI 0.034 0.192 -0.043 -0.013 

TCB 0.238 0.037 -0.100 0.376 

881-1113 

NIR 0.150 -0.017 -0.089 0.132 

EVI -0.066 1.042 -0.043 0.108 

TCB 0.767 -5.459 -0.045 0.244 

1145-4137 

NIR 0.130 0.111 -0.087 0.290 

EVI 0.030 0.011 -0.029 0.062 

TCB 0.210 0.178 -0.106 0.446 

4153-6521 

NIR 0.100 0.177 -0.105 0.155 

EVI -0.001 0.088 -0.037 0.002 

TCB 0.245 0.094 -0.114 0.309 

… … … … … … … 

 

6.1.3 Multiple features: TOP6 and ORI6 spectral features 

Refer to optimum spectral features’ selection based on standard 

multispectral features of Landsat that consists of six bands (BLUE, GREEN, RED, NIR, 

SWIR-1, and SWIR-2) and their derived spectral indices (NDVI, EVI, NDBI, MNDBI, 

NDWI, MNDWI, TCB, TCG, TCW, PC1, PC2, and PC3), TOP6 spectral features 

(NIR, EVI, TCB, BLUE, GREEN, and PC1) as optimum features and ORI6 spectral 

features (BLUE. GREEN, RED, NIR, SWIR-1, and SWIR-2) as original multispectral 
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bands of Landsat data that can better distinguish four LULC types and detect LULC 

change was here described and discussed.  

Figure 6.5 shows TOP6 spectral features (NIR, EVI, TCB, BLUE, 

GREEN, and PC1) that were used to detect LULC change at point X location. As shown 

in Figure 6.5, there are four harmonic waves for 18 years, and it indicates that the LULC 

type at location X may have changed in three periods. Therefore, TOP6 spectral features 

can be applied to detect LULC change. 

Table 6.5 shows the detail information of harmonic wave coefficients of 

TOP6 spectral features at point X location. 

 

 

Figure 6.5 Time-series model of TOP6 spectral features for point X. 

 

As shown in Table 6.5, it was found that the LULC type at point X may 

have changed in three periods with the dates of Julian day (3753-4081, 4137-5137, and 

5169-6521). Furthermore, the TOP6 spectral features were used to detect all possible 

changes over the eighteen years of the whole study area. Table 6.6 shows the results of 

LULC change detection over specific locations in the study area. As a result, it was 
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found that LULC changes are taken place at locations (1, 1) and (1, 2000), whereas 

LULC type at locations (1, 2) and (2, 1) do not change. 

 

Table 6.5 Four coefficients of TOP6 spectral features in different periods. 

Period (Julian day) Feature Intercept Slope (E-04) Amplitude Phase 

649-3729 

NIR 0.165 0.010 -0.082 0.246 

EVI 0.045 -0.058 -0.031 0.002 

TCB 0.241 0.142 -0.089 0.461 

BLUE 0.094 0.062 -0.025 0.495 

GREEN 0.076 0.093 -0.025 0.586 

PC1 0.257 0.154 -0.092 0.489 

3753-4081 

NIR 0.958 -2.009 -0.056 0.285 

EVI 0.068 -0.145 -0.004 -0.034 

TCB 1.698 -3.508 -0.100 0.333 

BLUE 0.507 -0.992 -0.031 0.599 

GREEN 0.630 -1.297 -0.035 0.436 

PC1 2.021 -4.289 -0.095 0.444 

4137-5137 

NIR 0.597 -0.976 -0.043 -0.015 

EVI -0.015 0.057 -0.012 -0.086 

TCB 1.080 -1.725 -0.060 0.079 

BLUE 0.244 -0.263 -0.025 0.321 

GREEN 0.374 -0.564 -0.022 0.248 

PC1 1.209 -1.971 -0.056 0.077 

5169-6521 

NIR 0.183 0.039 -0.063 0.393 

EVI -0.031 0.074 -0.005 0.355 

TCB 0.355 0.113 -0.115 0.418 

BLUE 0.242 -0.137 -0.040 0.379 

GREEN 0.251 -0.153 -0.044 0.367 

PC1 0.254 0.350 -0.113 0.524 
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Table 6.6 Coefficients of all pixels from TOP6 spectral features in the study area. 

Row and 

Column  
Period (Julian day) Feature Intercept 

Slope 

(E-04) 
Amplitude Phase 

(1,1) 

89-833 

NIR 0.106 0.593 -0.154 0.118 

EVI 0.016 0.342 -0.060 0.032 

TCB 0.169 0.619 -0.161 0.196 

BLUE 0.087 0.107 -0.032 0.411 

GREEN 0.077 0.011 -0.032 0.473 

PC1 0.158 0.815 -0.184 0.184 

881-1113 

NIR 0.363 -2.491 -0.049 0.300 

EVI -0.038 0.633 -0.032 0.223 

TCB 1.011 -8.287 -0.012 1.355 

BLUE 0.432 -3.371 0.004 -0.116 

GREEN 0.360 -2.829 0.002 -0.369 

PC1 0.777 -6.048 -0.037 0.390 

1217-6521 

NIR 0.098 0.166 -0.097 0.136 

EVI 0.016 0.055 -0.035 0.009 

TCB 0.172 0.205 -0.108 -6.044 

BLUE 0.105 0.005 -0.028 -5.954 

GREEN 0.089 0.009 -0.027 -12.207 

PC1 0.171 0.235 -0.114 0.227 

  … … … … … … 

(1,2) 145-6521 

NIR 0.128 0.106 -0.099 0.194 

EVI 0.028 0.028 -0.035 0.041 

TCB 0.206 0.150 -0.114 0.316 

BLUE 0.100 0.018 -0.028 0.396 

GREEN 0.084 0.023 -0.028 0.449 

PC1 0.211 0.172 -0.121 0.318 

  … … … … … … 

(1,2000) 41-3353 

NIR 0.192 0.017 -0.097 0.350 

EVI 0.044 -0.004 -0.033 0.212 

TCB 0.276 0.054 -0.099 0.419 

BLUE 0.096 0.026 -0.022 0.573 

GREEN 0.087 0.027 -0.025 0.653 

PC1 0.292 0.074 -0.105 0.391 
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Table 6.6 (Continued). 

Row and 

Column  
Period (Julian day) Feature Intercept 

Slope 

(E-04) 
Amplitude Phase 

(1,2000) 3417-6521 

NIR 0.196 -0.034 -0.093 0.298 

EVI -0.008 0.082 -0.030 0.173 

TCB 0.424 -0.254 -0.106 0.396 

BLUE 0.165 -0.102 -0.027 0.513 

GREEN 0.178 -0.149 -0.027 0.527 

PC1 0.461 -0.287 -0.106 0.430 

  … … … … … … 

(2,1) 145-6521 

NIR 0.144 0.090 -0.097 0.222 

EVI 0.033 0.021 -0.035 0.044 

TCB 0.224 0.132 -0.108 0.378 

BLUE 0.102 0.017 -0.026 0.439 

GREEN 0.085 0.024 -0.027 0.505 

PC1 0.234 0.150 -0.115 0.390 

  … … … … … … 

 

Likewise, Figure 6.6 shows the ORI6 spectral bands (BLUE, GREEN, 

RED, NIR, SWIR1, and SWIR2) that were used to detect LULC change at point X 

location. 

 

Figure 6.6 Time-series model of ORI6 spectral bands for point X. 
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As shown in Figure 6.6, there are four harmonic waves during 18 years 

that indicate LULC change at location X in five periods, and they were applied to detect 

LULC change. Table 6.7 shows the detail information of harmonic wave coefficients 

of ORI6 spectral bands at point X location. 

As shown in Table 6.7, the LULC type at point X location may have 

changed in 5 periods with the dates of Julian day (3753-4081, 4137-5137, 5169-5897, 

6033-6265, and 6297-6521. 

Furthermore, ORI6 spectral bands were used to detect all possible 

LULC changes over the eighteen years of the whole study area. Table 6.8 shows the 

results of LULC change detection over specific locations in the study area. As a result, 

LULC changes are taken place at locations (1, 2000) and (2, 1), whereas LULC type at 

locations (1, 1) and (1, 2) do not change. 
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Table 6.7 Four coefficients of ORI6 spectral bands in different periods. 

Period (Julian day) Feature Intercept Slope (E-04) Amplitude Phase 

561-3729 

BLUE 0.165 0.061 -0.082 0.246 

GREEN 0.045 0.090 -0.031 0.002 

RED 0.241 0.127 -0.089 0.461 

NIR 0.094 0.013 -0.025 0.495 

SWIR1 0.076 0.033 -0.025 0.586 

SWIR2 0.257 0.091 -0.092 0.489 

3753-4081 

BLUE 0.958 -0.992 -0.056 0.285 

GREEN 0.068 -1.297 -0.004 -0.034 

RED 1.698 -1.473 -0.100 0.333 

NIR 0.507 -2.009 -0.031 0.599 

SWIR1 0.630 -1.767 -0.035 0.436 

SWIR2 2.021 -1.989 -0.095 0.444 

4137-5137 

BLUE 0.597 -0.263 -0.043 -0.015 

GREEN -0.015 -0.564 -0.012 -0.086 

RED 1.080 -0.945 -0.060 0.079 

NIR 0.244 -0.976 -0.025 0.321 

SWIR1 0.374 -1.070 -0.022 0.248 

SWIR2 1.209 -0.789 -0.056 0.077 

5169-5897 

BLUE 0.183 0.136 -0.063 0.393 

GREEN -0.031 0.057 -0.005 0.355 

RED 0.355 -0.069 -0.115 0.418 

NIR 0.242 0.000 -0.040 0.379 

SWIR1 0.251 0.401 -0.044 0.367 

SWIR2 0.254 0.654 -0.113 0.524 

6033-6265 

BLUE 0.597 1.852 -0.043 -0.015 

GREEN -0.015 2.449 -0.012 -0.086 

RED 1.080 2.999 -0.060 0.079 

NIR 0.244 4.031 -0.025 0.321 

SWIR1 0.374 0.430 -0.022 0.248 

SWIR2 1.209 2.629 -0.056 0.077 

6297-6521 

BLUE 0.183 -2.189 -0.063 0.393 

GREEN -0.031 -3.784 -0.005 0.355 

RED 0.355 -4.936 -0.115 0.418 

NIR 0.242 -8.428 -0.040 0.379 

SWIR1 0.251 -9.030 -0.044 0.367 

SWIR2 0.254 -4.783 -0.113 0.524 

 

 



97 

 

Table 6.8 Coefficients of all pixels from ORI6 spectral bands in the study area. 

Row and 

Column  

Period  

(Julian day) 
Feature Intercept 

Slope 

(E-04) 
Amplitude Phase 

(1,1) 89-6521 

BLUE 0.098 0.020 -0.027 0.336 

GREEN 0.082 0.023 -0.028 0.376 

RED 0.066 0.032 -0.020 0.608 

NIR 0.117 0.126 -0.103 0.152 

SWIR1 0.060 0.146 -0.053 0.244 

SWIR2 0.030 0.095 -0.022 0.596 

… … … … … … … 

(1,2) 153-6521 

BLUE 0.100 0.018 -0.028 0.396 

GREEN 0.084 0.023 -0.028 0.449 

RED 0.070 0.028 -0.022 0.685 

NIR 0.128 0.106 -0.099 0.193 

SWIR1 0.084 0.113 -0.058 0.352 

SWIR2 0.048 0.074 -0.028 0.718 

… … … … … … … 

(1,2000) 

625-3337 

BLUE 0.096 0.027 -0.023 0.486 

GREEN 0.086 0.032 -0.024 0.534 

RED 0.074 0.056 -0.014 0.672 

NIR 0.188 0.037 -0.096 0.340 

SWIR1 0.133 0.058 -0.041 0.173 

SWIR2 0.072 0.073 -0.013 -6.220 

3353-6521 

BLUE 0.163 -0.099 -0.027 0.503 

GREEN 0.179 -0.151 -0.027 0.533 

RED 0.199 -0.203 -0.022 0.673 

NIR 0.197 -0.036 -0.093 0.300 

SWIR1 0.232 -0.155 -0.044 0.387 

SWIR2 0.196 -0.166 -0.022 -5.466 

… … … … … … … 

(2,1) 193-545 

BLUE 0.098 0.003 -0.017 0.743 

GREEN 0.086 -0.055 -0.018 0.922 

RED 0.079 -0.233 -0.018 1.469 

NIR 0.177 -0.290 -0.106 0.300 

SWIR1 0.124 -0.254 -0.050 0.575 

SWIR2 0.078 -0.333 -0.024 1.205 
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Table 6.8 (Continued). 

Row and 

Column  

Period 

 (Julian day) 
Feature Intercept 

Slope 

(E-04) 
Amplitude Phase 

(2,1) 

561-3321 

BLUE 0.098 0.045 -0.031 0.368 

GREEN 0.081 0.046 -0.029 0.425 

RED 0.068 0.047 -0.021 0.608 

NIR 0.151 0.022 -0.085 0.270 

SWIR1 0.104 0.035 -0.046 0.467 

SWIR2 0.059 0.033 -0.021 0.823 

3353-6521 

BLUE 0.119 -0.019 -0.025 0.492 

GREEN 0.115 -0.035 -0.027 0.539 

RED 0.120 -0.065 -0.022 0.920 

NIR 0.120 0.141 -0.103 0.170 

SWIR1 0.148 0.012 -0.057 0.462 

SWIR2 0.117 -0.045 -0.032 1.004 

… … … … … … … 

 

As a result, spectral feature (i.e., NIR) and the combination of spectral 

features (i.e., TOP3, TOP6, and ORI6) only indicate the possible changes in the LULC 

type of a particular pixel, and it might not be the actual LULC type on the ground that 

represented by the pixel. 

In this study, taking location at point X as an example, NIR band 

indicates that the LULC type of the pixel has changed in seven periods, TOP3 spectral 

features also indicate that the LULC type of the pixel has changed in seven times, TOP6 

spectral features indicate that the LULC type of the pixel has changed in three periods 

and ORI6 spectral bands from Landsat indicate that the LULC type of the pixel has 

changed in five periods. Subsequently, spectral features and the combination of spectral 

features indicate when the possible LULC types change. 
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However, LULC change detection based on these features may be 

affected by many factors include: 

(1) Actual LULC changes among the classes, e.g., the water body to be 

the urban and built-up area.  

(2) Misjudgment of LULC change that is highly vulnerable due to 

temporal change, mainly urban and built-up land, and agricultural land. In the different 

states of urban development and the growing stage of crops, misclassification of LULC 

maybe happened. 

(3) A particular spectral characteristic of a pixel cannot identify the 

difference between forests and crops. 

(4) Even, could detection and remove had been here conducted, some 

cloudy pixels may exist, and they cannot classify the corrected LULC types. 

Therefore, the coefficients of the spectral feature and the combination 

of spectral features were here applied to classify LULC types using unsupervised 

classification methods (K-Means and ISODATA) and to assess accuracy as one of the 

primary research objectives in this study. 

 

6.2 Unsupervised LULC classification using K-Means and 

ISODATA algorithm 

The unsupervised LULC classification (K-Means and ISODATA algorithm) 

was implemented under the MATLAB software environment. Mathematically, there 

are possible 60 combinations (4 spectral feature(s) combinations * 15 coefficient 

feature(s) combinations) that can be applied to classify LULC type. However, the 

number of coefficient feature(s) combinations (15) is rather high, so the reduction of 
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this number is required at the first step before they were applied to classify LULC with 

spectral feature(s) combinations by using K-Means and ISODATA algorithms. Table 

6.9 summarizes the necessary information of the selected spectral feature(s) for 

unsupervised LULC classification by using K-Means and ISODATA algorithm. 

Meanwhile, Table 6.10 displays all possibility of coefficient feature combination for 

the most suitable coefficient identification. 

In order to explore the most suitable coefficient feature, fifteen coefficient 

feature(s) combinations (different harmonic function curves) from the NIR band of 

time-series Landsat data were applied to classify LULC by using K-Means and 

ISODATA algorithms. So, the LULC types represented by different harmonic function 

curves are obtained to identify the most suitable coefficient feature(s) combinations.  

After that, the most suitable coefficient features were chosen for time-series 

LULC classification with four optimum spectral features (NIR, TOP3, TOP6, and 

ORI6) under the unsupervised classification approach in this study. 

 

Table 6.9 Basic information of the selected spectral feature(s). 

NO. Spectral feature and features combination Abbreviation 

1 NIR NIR 

2 NIR, EVI, TCB TOP3 

3 NIR, EVI, TCB, BLUE, GREEN, PC1 TOP6 

4 BLUE, GREEN, RED, NIR, SWIR1, SWIR2 ORI6 
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Table 6.10 Possibility of coefficient feature combination for the most suitable 

coefficient identification. 

No Number of coefficient feature Coefficient Abbreviation 

1 

1 

Intercept I 

2 Slope S 

3 Amplitude A 

4 Phase P 

5 

2 

Intercept and slope IS 

6 Intercept and amplitude IA 

7 Intercept and phase IP 

8 Slope and amplitude SA 

9 Slope and phase SP 

10 Amplitude and phase AP 

11 

3 

Intercept, slope, and amplitude ISA 

12 Intercept, slope, and phase ISP 

13 Intercept, amplitude, and phase IAP 

14 Slope, amplitude, and phase SAP 

15 4 Intercept, slope, amplitude, and phase ISAP 

 

6.2.1 Suitable coefficient feature for LULC classification 

LULC classification based on NIR band from Landsat data acquired on 

18 May 2017 for identifying suitable coefficient feature using K-Means and ISODATA 

algorithms is presented in Figures 6.7 and 6.8, respectively. Herein, the initial number 

of clusters for LULC classification using the K-Means algorithm was ten spectral 

classes, while the initial number of clusters for LULC classification using the 

ISODATA algorithm varied from 1 to 15. The initial number of clusters was assigned 

by observing feature space images. Then, the classified spectral classes of both 

algorithms were reclassified thematic classes based on ground reference data in 2017 

(e. g., central business district, Yangtze river, forest area, paddy field, etc.) and display 

as thematic maps with four LULC types (U, A, F and W). 
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Figure 6.7 LULC classification map by K-Means algorithm with 15 coefficient 

features of NIR band. 
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Figure 6.7 (Continued). 
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Figure 6.7 (Continued). 
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Figure 6.8 LULC classification map by ISODATA algorithm with 15 coefficient 

features of the NIR band. 
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Figure 6.8 (Continued). 
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Figure 6.8 (Continued). 

 

As a result, the amplitude (A) and slope and amplitude (SA) coefficient 

features can classify four different LULC types using the K-Means algorithm, and the 

spatial distribution of LULC type is almost the same due to the value of slope (S) is 

very small. In the meantime, only the amplitude (A) coefficient feature can classify all 

LULC types using the ISODATA algorithm.  

On the contrary, most of the LULC classification maps from other 

coefficients features by using K-Means and ISODATA algorithms are mostly classified 

as water bodies. Additionally, the intercept (I) or amplitude (A) coefficient features can 
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easily separate water bodies from other classes, but the intercept (I) coefficient feature 

cannot separate agricultural land from forest land under the ISODATA algorithm. 

All results above reveal that the amplitude (A) coefficient feature can 

provide the high potential to distinguish four different LULC types by using 

unsupervised K-Means and ISODATA algorithms. So, the amplitude (A) coefficient 

feature was here chosen as the most suitable coefficient feature for time-series LULC 

classification with four optimum spectral features (NIR, TOP3, TOP6, and ORI6) under 

unsupervised classification approach. 

 

6.2.2 LULC classification by K-Means algorithm 

The K-Means algorithm (Macqueen, 1967) is one of the simplest 

unsupervised learning algorithms that solve the well-known clustering problem. The 

procedure follows a simple and easy way to classify a given data set through a certain 

number of clusters (assume k clusters) without fixing a priori probability. 

Figures 6.9 to 6.11 show the LULC classification map in 2000, 2006, 

2011 and 2017 using K-Means algorithm with ten initial clusters based on amplitude 

coefficients of NIR, TOP3 (NIR, EVI, and TCB) and TOP6 (NIR, EVI, TCB, BLUE, 

GREEN, and PC1) spectral feature(s), respectively. 
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Figure 6.9 LULC classification map by K-Means with amplitude coefficient of 

NIR band: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, and (d) 

18 May 2017. 
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(c) (d) 

Figure 6.10 LULC classification map by K-Means with amplitude coefficients of 

TOP3 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 6.11 LULC classification map by K-Means with amplitude coefficients of 

TOP6 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) 18 May 2017. 

 

Besides, the amplitude coefficient feature of ORI6 spectral bands from 

Landsat data (BLUE, GREEN, RED, NIR, SWIR1, and SWIR2) was applied to classify 

LULC using K-Means algorithm and compared the result with TOP6 spectral features. 

Figure 6.12 demonstrates the LULC classification map in 2000, 2006, 2011, and 2017 

using the K-Means algorithm based on the amplitude coefficient of ORI6 spectral 

bands. 
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Area and percentage of LULC classification in 2000, 2006, 2011, and 

2017 using the K-Means algorithm from the various spectral feature(s) are summarized 

in Tables 6.11 to 6.14, respectively. The comparison of the proportional LULC type 

areas that were classified from the various spectral feature(s) in four different years is 

displayed in Figures 6.13 to 6.16, respectively. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.12 LULC classification map by K-Means with amplitude coefficients of 

ORI6 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) 18 May 2017. 
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Table 6.11 Area and percentage of LULC classification in 2000. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 607.50 38.39 393.77 24.88 289.24 18.28 491.08 31.04 

A 455.20 28.77 622.54 39.34 953.13 60.23 619.15 39.13 

F 428.99 27.11 477.53 30.18 208.31 13.16 387.32 24.48 

W 90.66 5.73 88.50 5.59 131.68 8.32 84.80 5.36 

 

Table 6.12 Area and percentage of LULC classification in 2006. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 608.33 38.44 399.4 25.24 290.67 18.37 428.08 27.05 

A 490.53 31.00 538.29 34.02 957.93 60.54 622.30 39.33 

F 386.49 24.43 549.44 34.72 203.26 12.85 446.59 28.22 

W 97.00 6.13 95.22 6.02 130.49 8.25 85.37 5.40 

 

Table 6.13 Area and percentage of LULC classification in 2011. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 691.71 43.71 472.26 29.85 325.78 20.59 472.61 29.87 

A 434.12 27.44 520.48 32.89 944.61 59.70 603.17 38.12 

F 345.98 21.87 491.07 31.03 185.57 11.73 420.75 26.59 

W 110.54 6.99 98.53 6.23 126.39 7.99 85.81 5.42 

 

Table 6.14 Area and percentage of LULC classification in 2017. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 575.64 36.38 467.13 29.52 326.79 20.65 473.01 29.89 

A 406.08 25.66 498.53 31.51 919.52 58.11 585.12 36.98 

F 507.49 32.07 528.31 33.39 220.05 13.91 440.87 27.86 

W 93.13 5.89 88.39 5.59 115.98 7.33 83.36 5.27 
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Figure 6.13 Comparison of the proportional LULC area in 2000 using the K-Means 

algorithm with various spectral features. 

 

 

Figure 6.14 Comparison of the proportional LULC area in 2006 using the K-Means 

algorithm with various spectral features. 
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Figure 6.15 Comparison of the proportional LULC area in 2011 using the K-Means 

algorithm with various spectral features. 

 

 

Figure 6.16 Comparison of the proportional LULC area in 2017 using the K-Means 

algorithm with various spectral features. 
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By comparing area and percentage among LULC types according to 

spectral feature, it reveals that area and percentage of agricultural land which were 

extracted based on the TOP6 spectral features are somewhat high when they are 

compared with other spectral features in every year. The percent of agricultural land 

varies from 58.11% in 2017 to 60.54% in 2006. Similarly, the classified water bodies 

based on TOP6 spectral features are also high when they are compared with other 

spectral features in every year. The percent of water bodies varies from 8.32% in 2000 

to 7.33% in 2017.  

On the contrary, the classified forest land based on TOP6 spectral 

features is rather low when they are compared with other spectral features in every year. 

The percent of forest land varies from 11.73% in 2011 to 13.91% in 2017. Likewise, 

the classified urban and built-up land based on the TOP6 spectral features is also rather 

low when it is compared with other spectral features in every year. The percent of urban 

and built-up land varies from 18.28% in 2000 to 20.65% in 2017. 

These findings show the impact (influence) of the existing number of 

the natural clustering based on values of spectral reflectance and indices among spectral 

feature(s) combination on LULC classification using the K-Means algorithm. The 

derived spectral classes from ten initial clusters (classes) not obviously represent 

specific LULC types (U, A, F, and W). Based on this reason, areas of urban and built-

up land, which include developed land and bareland, was dramatically increased in 

2011, and it was dramatically decreased in 2017. 
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6.2.3 LULC classification by ISODATA algorithm 

The ISODATA unsupervised classification calculates class means evenly 

distributed in the data space then iteratively clusters the remaining pixels using 

minimum distance techniques. Each iteration recalculates means and reclassifies pixels 

for the new means. Iterative class splitting, merging, and deleting is done based on input 

threshold parameters. All pixels are classified to the nearest class unless a standard 

deviation or distance threshold is specified, in which case some pixels may be 

unclassified if they do not meet the selected criteria. This process continues until the 

number of pixels in each class changes by less than the selected pixel change threshold, 

or the maximum number of iterations is reached (Jensen, 2017). 

Similar to K-Means algorithm, Figures 6.17 to 6.19 demonstrate the LULC 

classification map in 2000, 2006, 2011 and 2017 using ISODATA algorithm based on 

amplitude coefficient of NIR TOP3 (NIR, EVI, and TCB), and TOP6 (NIR, EVI, TCB, 

BLUE, GREEN, and PC1) spectral feature(s), respectively. 
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(a) (b) 

  

(c) (d) 

Figure 6.17 LULC classification map by ISODATA with amplitude coefficient of 

NIR band: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, and (d) 

Date 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 6.18 LULC classification map by ISODATA with amplitude coefficients of 

TOP3 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) Date 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 6.19 LULC classification map by ISODATA with amplitude coefficients of 

TOP6 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) Date 18 May 2017. 

 

Like the K-Means algorithm, the amplitude coefficient feature of ORI6 

spectral bands from Landsat data was also applied to classify LULC using the 

ISODATA algorithm and compared the result with TOP6 spectral features. Figure 6.20 

shows the LULC classification maps in 2000, 2006, 2011, and 2017 using the 

ISODATA algorithm based on the amplitude coefficient of ORI6 spectral bands. 
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Area and percentage of LULC classification in 2000, 2006, 2011, and 

2017 using the ISODATA algorithm from various spectral features are summarized in 

Tables 6.15 to 6.18, respectively. The comparison of the proportional LULC type areas 

that were classified using the ISODATA algorithm from various spectral features in 

different four years is displayed in Figures 6.21 to 6.24, respectively. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.20 LULC classification map by ISODATA with amplitude coefficients of 

ORI6 spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 

2011, and (d) Date 18 May 2017. 
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Table 6.15 Area and percentage of LULC classification in 2000. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 436.55 27.59 444.38 28.08 499.27 31.55 413.35 26.12 

A 577.41 36.49 604.55 38.21 803.19 50.76 827.69 52.31 

F 416.62 26.33 292.41 18.48 191.59 12.11 181.39 11.46 

W 151.76 9.59 241.01 15.23 88.30 5.58 159.91 10.11 

 

Table 6.16 Area and percentage of LULC classification in 2006. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 440.20 27.82 443.43 28.02 442.61 27.97 358.44 22.65 

A 626.78 39.61 637.91 40.31 830.28 52.47 877.08 55.43 

F 373.91 23.63 299.99 18.96 213.61 13.50 213.05 13.46 

W 141.46 8.94 201.01 12.70 95.84 6.06 133.78 8.45 

 

Table 6.17 Area and percentage of LULC classification in 2011. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 514.08 32.49 509.91 32.22 480.78 30.38 411.00 25.97 

A 566.63 35.81 582.82 36.83 813.64 51.42 841.67 53.19 

F 335.60 21.21 273.19 17.26 193.48 12.23 195.87 12.38 

W 166.03 10.49 216.44 13.68 94.44 5.97 133.81 8.46 

 

Table 6.18 Area and percentage of LULC classification in 2017. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 426.34 26.94 504.37 31.87 483.89 30.58 414.21 26.18 

A 525.94 33.24 517.59 32.71 792.64 50.09 831.28 52.53 

F 496.72 31.39 373.45 23.60 218.26 13.79 211.47 13.36 

W 133.34 8.43 186.94 11.81 87.56 5.53 125.39 7.92 
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Figure 6.21 Comparison of the proportional LULC area in 2000 using the ISODATA 

algorithm with various spectral features. 

 

 

Figure 6.22 Comparison of the proportional LULC area in 2006 using the ISODATA 

algorithm with various spectral features. 
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Figure 6.23 Comparison of the proportional LULC area in 2011 using the ISODATA 

algorithm with various spectral features. 

 

 

Figure 6.24 Comparison of the proportional LULC area in 2017 using the ISODATA 

algorithm with various spectral features. 
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By comparison of area and percentage among LULC types according to 

spectral feature, it reveals that area and percentage of agricultural land which were 

extracted based on TOP6 and ORI6 spectral features are somewhat high when they are 

compared with other spectral features in every year. The percent of agricultural land 

with TOP6 spectral features varies from 50.09% in 2017 to 52.47% in 2006, and the 

percent of agricultural land with ORI6 spectral features varies from 52.31% in 2000 to 

55.43% in 2006. 

On the contrary, the percent of classified forest land based on NIR or 

TOP3 spectral features is rather high when it is compared with other spectral features 

in every year. The percent of forest land with the NIR band varies from 21.21% in 2011 

to 31.39% in 2017, and the percent of forest land with TOP3 spectral features varies 

from 17.26% in 2011 to 23.60% in 2017. Likewise, the percent of classified water 

bodies based on NIR and TOP3 spectral features is rather high when it is compared 

with other spectral features in every year. The percent of water bodies with the NIR 

band varies from 8.43% in 2017 to 10.49% in 2011, and the percent of water bodies 

with TOP3 spectral features varies from 11.81% in 2017 to 15.23% in 2000. 

In the meantime, area and the percentage of urban and built-up land 

which was extracted based on ORI6 spectral features are rather low when they are 

compared with other spectral features in every year. The percent of urban and built-up 

land with ORI6 spectral features varies from 22.65% in 2006 to 26.18% in 2017. 

Like the K-Means algorithm, these findings also show the impact of the 

existing number of the natural clustering based on values of spectral reflectance and 

indices among spectral feature(s) combination on LULC classification using 

ISODATA algorithm. The derived spectral classes from one to fifteen initial clusters 
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(classes) are not obviously represented for specific LULC types (U, A, F, and W). 

Based on this reason, areas of urban and built-up land, which include developed land 

and bareland, was dramatically increased in 2011, and it was dramatically decreased in 

2017. 

 

6.3 Accuracy assessment 

The accuracy assessment consists of two aspects, one is whether LULC changes 

can be detected, and the other is whether the LULC classification before and after the 

change is correct. In this study, standard thematic accuracy assessment was assessed 

using overall accuracy (OA), producer’s accuracy (PA), users’ accuracy (UA), and 

Kappa hat coefficient based on error matrix between classified LULC data and ground 

reference information data (Congalton and Green, 2009).  

For thematic accuracy assessment, the number of sample size was estimated 

based on the multinomial distribution (Congalton and Green, 2009; Tortora, 1978) 

using Eq. 6.1 and sample points were allocated for thematic accuracy assessment using 

a stratified random sampling technique.  

𝑁 =
𝐵𝛱𝑖(1−𝛱𝑖)

𝑏𝑖
2  (6.1) 

Where, i is the portion of a population in the ith class out of k classes that has 

the proportion closest to 50%, bi is the desired precision (e.g., 5%) for the class, B is 

the upper (α/k) * 100 percentile of the chi-square (2), distribution with 1 degree of 

freedom, k is the number of classes. 
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In this study, 636 sample points based on the multinomial distribution with the 

desired precision of 5%, and a level of confidence of 95% was applied to access 

thematic accuracy assessment.  

In the meantime, pan-sharpened images with Gram-Schmidt pan-sharpening 

algorithm (Figure 6.25) as primary reference data and Google Earth images (Figure 

6.26) as the second reference data were used as ground reference information for 

accuracy assessment of LULC change detection and classification. In general, the 

spatial resolution of Google Earth image is higher Landsat image, but usually, the 

acquisition time of these images is inconsistent with Landsat image. Single-use of 

Google Earth image as an accuracy verification reference image may bring some errors. 

The pan-sharpened image comes from the fusion of Landsat high spatial resolution 

panchromatic image, and a low spatial resolution multispectral image may be required. 

The acquisition time is consistent with the LULC classification map to be verified, but 

the spatial resolution is lower than the Google Earth image. 
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(a) (b) 

  

(c) (d) 

Figure 6.25 Pan-sharpened image from Landsat data in 4 different years: (a) Date 12 

June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, and (d) Date 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 6.26 Images from Google Earth in 4 different years: (a) Date 2000, (b) Date 

2006, (c) Date 2011, and (d) Date 2017. 

 

Besides, the pairwise Z-test was conducted to examine the significant difference 

of thematic accuracy based on kappa hat coefficient values among various methods 

(Congalton and Green, 2009) as: 

Z =  
|𝐾ℎ𝑎𝑡1−𝐾ℎ𝑎𝑡2|

√var̂(𝐾ℎ𝑎𝑡1)+var̂(𝐾ℎ𝑎𝑡2)
 (6.2) 

and variance of KHAT is calculated by: 
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var̂(K̂) = 
1

𝑛
{

𝜃1(1−𝜃1)

(1−𝜃2)2 +
2(1−𝜃1)(2𝜃1𝜃2−𝜃3)

(1−𝜃2)3 +
(1−𝜃1)2(𝜃4−4𝜃2)2

(1−𝜃2)4
} (6.3) 

when: 

𝜃1 =
1

𝑛2
∑ 𝑛𝑖𝑖

𝑘
𝑖=1 ,     𝜃2 =

1

𝑛2
∑ 𝑛𝑖+𝑛+𝑖

𝑘
𝑖=1  

𝜃3 =
1

𝑛2
∑ 𝑛𝑖𝑖(𝑛𝑖+𝑛+𝑖)𝑘

𝑖=1 ,   𝜃4 =
1

𝑛3
∑ ∑ 𝑛𝑖𝑗(𝑛𝑗+𝑛+𝑖)2𝑘

𝑗=1
𝑘
𝑖=1  

Z is standardized and normally distributed. Given the null hypothesis H0: (K1 - 

K2) = 0, and the alternative H1: (K1 - K2) ≠ 0, H0 is rejected if Z ≥ Zα/2. 

Finally, the optimum method among unsupervised and supervised methods will 

be identified using overall accuracy, Kappa hat coefficient, and pairwise Z-test. 

The result of the accuracy assessment in two aspects is described and discussed 

in the following sections. 

 

6.3.1 Accuracy assessment for change detection 

Refer to area and percentage of LULC classification using the K-Means 

and ISODATA (in Tables 6.11 to 6.14 and Tables 6.15 to 6.18) in the previous section; 

they have shown possible variations in LULC for all cells in the entire study area when 

different spectral features are used. Two different classification algorithms determine 

the extent about LULC change (i.e., change and no change), and they provide from-to 

change information (i.e., one LULC type change to another LULC type). The 

combination of the LULC classification map using two different algorithms with 

different spectral features on different dates cannot directly applicable for change 

detection accuracy assessment. Therefore, in order to simplify the calculation, overlay 

analysis was applied here to identify stable and unstable pixels from LULC maps in 

 



131 

 

four different years (2000, 2006, 2011, and 2017). If areas are stable pixels, they are 

unchanged, but if areas are unstable pixels, they are changed. 

Figure 6.27 and Figure 6.28 show the result of LULC change detection 

maps (stable LULC type and LULC change area) with different spectral features by K-

Means and ISODATA algorithms, respectively. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.27 LULC change detection by the K-Means algorithm: (a) Using the NIR 

band, (b) Using TOP3 spectral features, (c) Using TOP6 spectral features, and (d) Using 

ORI6 spectral features. 
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(a) (b) 

  

(c) (d) 

Figure 6.28 LULC change detection by the ISODATA algorithm: (a) Using the NIR 

band, (b) Using TOP3 spectral features, (c) Using TOP6 spectral features, and (d) Using 

ORI6 spectral features. 

 

As the algorithms are capable of detecting change at a high temporal 

frequency, it is difficult to find reference data that can thoroughly assess its accuracy 

both spatially and temporally. There are no independent datasets available that have 

both more excellent spatial resolution and higher temporal frequency than Landsat 

images over the periods of Landsat series. To know where and when land cover change 

occurs, the primary source for reference data is the Landsat images themselves (Cohen, 
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Yang, and Kennedy, 2010). High spatial resolution images from Google Earth can help 

manual interpretation of LULC classes for accuracy assessment; however, the high 

spatial resolution images cannot provide the same temporal frequency as Landsat data, 

but the high spatial resolution images from the Google Earth are conducive to 

determining LULC change at more prolonged periods. 

To detect LULC changes, whether different algorithms with different 

spectral features at a particular location, the four stable LULC and change areas in 

Figures 6.27 to 6.28 were reclassified into two groups: changed and unchanged areas, 

for change detection accuracy assessment. 

A random stratified sampling scheme was here used for assessing the 

accuracy of change detection with four different spectral features using K-Means and 

ISODATA algorithms. Herein, a total of 502 reference pixels based on multinomial 

distribution with the desired precision of 5% and a level of confidence of 95% were 

applied for accuracy assessment. 

Tables 6.19 to 6.22 show the results of the accuracy assessment of 

change detection between 2000 and 2017. Generally, the accuracy evaluation results 

show that for the same spectral feature(s) combinations, the K-Means and ISODATA 

algorithms provide a small difference in producer’s accuracy, user’s accuracy, and 

overall accuracy except for Kappa hat coefficient. 
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Table 6.19 The accuracy assessment of change detection using the NIR feature. 

NIR 

K-Means ISODATA 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed pixels 175 124 299 199 109 308 

Stable pixels 26 177 203 17 177 194 

Column Total 201 301 502 216 286 502 

Producer’s accuracy (%) 87.06 58.80  92.13 61.89  

User’s accuracy (%) 58.53 87.19  64.61 91.24  

Overall accuracy (%) 70.12 74.90 

Kappa hat (%) 42.43 51.34 

 

Table 6.20 The accuracy assessment of change detection using TOP3 spectral 

features. 

TOP3 

K-Means ISODATA 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed pixels 169 68 237 176 73 249 

Stable pixels 32 233 265 30 223 253 

Column Total 201 301 502 206 296 502 

Producer’s accuracy (%) 84.08 77.41  85.44 75.34  

User’s accuracy (%) 71.31 87.92  70.68 88.14  

Overall accuracy (%) 80.08 79.48 

Kappa hat (%) 59.71 58.91 

 

Table 6.21 The accuracy assessment of change detection using TOP6 spectral 

features. 

TOP6 

K-Means ISODATA 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed pixels 111 39 150 111 43 154 

Stable pixels 69 283 352 60 288 348 

Column Total 180 322 502 171 331 502 

Producer’s accuracy (%) 61.67 87.89  64.91 87.01  

User’s accuracy (%) 74.00 80.40  72.08 82.76  

Overall accuracy (%) 78.49 79.48 

Kappa hat (%) 51.45 53.20 
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Table 6.22 The accuracy assessment of change detection using ORI6 spectral 

features. 

ORI6 

K-Means ISODATA 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed 

pixels 

Stable 

pixels 

Row 

Total 

Changed pixels 107 45 152 116 32 148 

Stable pixels 74 276 350 65 289 354 

Column Total 181 321 502 181 321 502 

Producer’s accuracy (%) 59.12 85.98  64.09 90.03  

User’s accuracy (%) 70.39 78.86  78.38 81.64  

Overall accuracy (%) 76.29 80.68 

Kappa hat (%) 46.73 56.36 

 

By comparison of overall accuracy according to spectral feature, LULC 

change detection using the NIR feature provides the least accurate (K-Means is 70.12%, 

and ISODATA is 74.90%). In contrast, the accuracy of TOP3 spectral features by K-

Means is 80.08%, and ISODATA is 79.48%, TOP6 spectral features by K-Means is 

78.49%, and ISODATA is 79.48%, and ORI6 spectral features by K-Means is 76.29%, 

and ISODATA is 80.68%. These multiple spectral features (TOP3, TOP6, and ORI6) 

can provide similar results with high accuracy, and multiple spectral features can 

provide accuracy higher than a single spectral feature (NIR). This finding is an expected 

result because a single spectral feature is hard to discriminate subtle class such as 

healthy and disturbed vegetation, since the average value is similar, while this 

distinction is easily made from multispectral spectral features (Chuvieco, 2016). 

By comparison of accuracy according to the algorithm with different 

feature(s), the ISODATA algorithm with NIR can provide an overall accuracy of 

74.90% and Kappa hat coefficient of 51.34% higher than K-Means algorithm which 

provides overall accuracy of 70.12% and Kappa hat coefficient of 42.43%. Besides, the 
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accuracy assessment for change detection by the ISODATA algorithm with the NIR 

show producer’s accuracy of 92.13% and user’s accuracy of 64.61% for changed pixels, 

and producer’s accuracy of 61.89% and user’s accuracy of 91.24% for stable pixels.  

Likewise, the ISODATA algorithm with TOP6 spectral features can also 

provide overall accuracy (79.48%) and Kappa hat coefficient (53.20%) higher than the 

K-Means algorithm, which provides overall accuracy of 78.49% and Kappa hat 

coefficient of 51.45%. Also, the accuracy assessment for change detection by 

ISODATA algorithm with TOP6 spectral features show producer’s accuracy of 64.91% 

and user’s accuracy of 72.08% for changed pixels, and producer’s accuracy of 87.01% 

and user’s accuracy of 82.76% for stable pixels. 

Similarly, the ISODATA algorithm with ORI6 spectral features can also 

provide an overall accuracy of 80.68% and Kappa hat coefficient of 56.36% higher than 

the K-Means algorithm, which provides overall accuracy of 76.29% and Kappa hat 

coefficient of 46.73%. Besides, the accuracy assessment for change detection by 

ISODATA algorithm with ORI6 spectral features show producer’s accuracy of 64.09% 

and user’s accuracy of 78.38% for changed pixels, and producer’s accuracy of 90.03% 

and user’s accuracy of 81.64% for stable pixels. 

On the contrary, the K-Means algorithm with TOP3 spectral features can 

provide an overall accuracy of 80.08% and Kappa hat coefficient of 59.71% higher than 

the ISODATA algorithm, which provides overall accuracy of 79.48% and Kappa hat 

coefficient of 58.91%. However, both accuracy values from both algorithms are not 

significantly different.  

In addition, the accuracy assessment for change detection by K-Means 

algorithm with TOP3 spectral features show producer’s accuracy of 84.08% and user’s 
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accuracy of 71.31% for changed pixels, and producer’s accuracy of 77.41% and user’s 

accuracy of 87.92% for stable pixels. In the meantime, the accuracy assessment for 

change detection by ISODATA algorithm with TOP3 spectral features show producer’s 

accuracy of 85.44% and user’s accuracy of 70.68% for changed pixels, and producer’s 

accuracy of 75.34% and user’s accuracy of 88.14% for stable pixels. In fact, the overall 

accuracy, producer’s accuracy, user’s accuracy, and Kappa hat coefficient of the 

ISODATA algorithm are slightly lower than the K-Means algorithm. 

The relative lower user’s accuracy indicates more commission errors 

than omission errors in detected changes. A higher threshold (RMSE >2) or using more 

spectral feature combination (TOP3, TOP6, ORI6 spectral features) may better balance 

the commission and omission errors. As it can be seen from Tables 6.19 to 6.22, 

regardless of which algorithm is used, as the number of spectral features for change 

detection increases, the producer’s accuracy of the changed pixels demonstrates a 

downward trend, while the user’s accuracy of the changed pixels shows an upward 

trend. So, it can be concluded that when a single feature is used, the changed pixel has 

a high producer’s accuracy and low user’s accuracy, and when a plurality of features is 

used, the changed pixel has low producer’s accuracy and high user’s accuracy. 

Commission errors are mainly due to overfitting, which means that 

LULC changes that have not occurred are considered to have undergone LULC 

changes. The major causes of this phenomenon are: (1) spectral characteristics are too 

sensitive for LULC changes, (2) clouds missed three or more times consecutively, and 

(3) very small threshold. 

Using point X in Figure 6.2 as an example, this point (in 2017) comes 

from the new runway of Nanjing Lukou International Airport. By comparing with 
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Google Earth images in four different years, this point LULC consists of three stages: 

before the runway’s completion, during construction, and after construction. Figures 

6.3 to 6.6 shows the results of different feature combinations for the detection of this 

LULC change. From time-series HA model plots, it can be seen that these points can 

be divided into three parts, before 2013, around 2013, and after 2013. The NIR feature 

divides the harmonic plots into eight parts, and TOP3 spectral features also divide them 

into eight parts, while TOP6 spectral features and ORI6 spectral bands are only divided 

into four and six parts, respectively. This result means that the fewer the number of 

features is, the more likely the model can overfit. Of course, if the shape of the fitted 

harmonic function curve is similar, when the next step is based on the K-Means and 

ISODATA algorithms, the different parts will be reclassified into one class. However, 

this still increases the possibility of misclassifying stable pixels into changing pixels; 

that is, the fewer the number of features used for change detection is, the higher the 

commission error exists. 

The second reason is the lack of continuous multi-phase data for some 

pixels. For example, in the summer, the continuous multi-period images of the same 

location cover by cloud and the data loss caused by the Landsat7 strip are also 

considered as a cloud pixel. Table 6.23 shows the proportion of all the pixels in the 

study area in 2013. It can be seen that during the period from April 21, 2013, to 

September 4, 2013, the cloud coverage ratio of the multi-stage image is very high. So, 

some pixels can be possibly covered by clouds for a long time, and these pixels might 

be misjudged as having a LULC change during the change detection. 
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Table 6.23 Cloud cover of Landsat in the study area. 

Date Cloud Date Cloud Date Cloud Date Cloud 

20130107 0.82 20130413 0.15 20130726 0.61 20131014 0.00 

20130123 0.67 20130421 0.70 20130811 0.00 20131022 0.50 

20130224 0.09 20130616 0.86 20130819 0.87 20131107 0.06 

20130312 0.09 20130702 0.86 20130827 0.81 20131115 0.03 

20130328 0.31 20130710 0.15 20130904 0.78 20131123 0.71 

20130407 0.00 20130718 0.32 20130920 0.49 20131201 0.10 

 

The last reason for false detection of change is a very small threshold. 

Since the change detection algorithm uses the RMSE value from HA model estimation 

for defining the threshold for land cover change, when the RMSE value is small, a very 

slight change can be caused by the atmosphere or other factors. This problem is 

common in the same type of LULC with different intensity changes, such as change of 

water content over agricultural land, turbidity and clearness in the water, and changes 

in the degree of vegetation density. 

The relative lower producer’s accuracy indicates more omission errors 

than commission errors in detected changes. A low threshold or using a single spectral 

feature may better balance the commission and omission errors. 

The omission errors are mostly due to some reasons: (1) partially 

changed pixels; (2) change occurs too early before the model is initialized; (3) very 

large threshold; and (4) mutual interference of multiple spectral features. 

The partially changed pixels are always difficult to detect, as the 

magnitude of change is mostly dependent on the proportion of change within that pixel. 

As it can be observed from Figures 6.10 to 6.13, a large number of scattered points are 

not fit during the model initialization phase; it means if a change occurs at the beginning 
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of model initialization, the algorithm is unable to detect any change as there are not 

enough observations to initialize the time-series model. 

For threshold, some possible LULC changes may be ignored if the 

threshold is too large. By comparison among Figures 6.3 to 6.6, it can be observed that 

when LULC change detection is performed using more spectral features, some possible 

LULC changes are interfered by multiple spectral features, resulting in these changes 

not being detected. 

In general, in the case of change detection, when using fewer spectral 

features, the producer of the changed pixel has higher accuracy, and the user accuracy 

is lower, and it is easy to misjudge the stable pixel as the changed pixel, and the overall 

accuracy of the change detection is low. When more spectral features are used, the 

producer of the changed pixel has lower accuracy, and the user accuracy is higher, and 

it is easy to misjudge the changed pixel as a stable pixel, and the overall accuracy of 

the change detection is high. The overall accuracy of TOP3, TOP6, and ORI6 spectral 

features is relatively close. When considering the computational efficiency of change 

detection, the time used for TOP3 spectral features is about three times of NIR band, 

and the time used for TOP6 and ORI6 spectral features is about six times of NIR band. 

Therefore, it can be seen from the two aspects of detection accuracy and time efficiency 

that TOP3 spectral features are a better combination of spectral features for change 

detection. 
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6.3.2 Accuracy assessment for LULC classification 

Results of accuracy assessment of LULC classification including 

producer’s accuracy, user’s accuracy, overall accuracy and Kappa hat coefficient by 

different classification algorithms with different spectral features in four different years 

are displayed in Tables 6.24 to 6.27 and Figures 6.29 to 6.31. The derived overall 

accuracy is compared and described in three aspects: algorithm, spectral features, and 

years. 

It is easy to see from Figure 6.29 that when TOP6 spectral features were 

used in 2000 and TOP3 or TOP6 spectral features were used in 2006 for LULC 

classification, the overall accuracy of the K-Means algorithm is slightly higher than the 

ISODATA algorithm. Under other conditions, the accuracy of the ISODATA algorithm 

is higher than the K-Means algorithm. Considering the problems of pan-sharpened 

images and Google Earth images themselves as reference data for accuracy verification, 

and the result by human error from visual interpretation. Nevertheless, it can be 

concluded that the overall accuracy of LULC maps from the ISODATA algorithm is 

slightly higher than the K-Means algorithm. 
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Table 6.24 Error matrix and accuracy assessment of LULC Classification in 2000. 

 
K_MEANS ISODATA 

NIR U A F W Row Total U A F W Row Total 

U 98 110 18 9 235 85 67 12 12 176 

A 11 145 23 1 180 17 185 30 0 232 

F 4 74 92 1 171 4 74 87 2 167 

W 0 3 0 47 50 4 5 0 52 61 

Column Total 113 332 133 58 636 110 331 129 66 636 

Producer’s accuracy (%) 86.73 43.67 69.17 81.03  77.27 55.89 67.44 78.79 
 

User’s accuracy (%) 41.70 80.56 53.80 94.00  48.30 79.74 52.10 85.25 
 

Overall accuracy (%) 60.06 64.31 

Kappa hat (%) 44.78 48.94 

TOP3 U A F W Row Total U A F W Row Total 

U 97 56 2 3 158 107 68 3 1 179 

A 15 194 26 5 240 1 202 40 0 243 

F 4 71 112 1 188 2 34 81 0 117 

W 0 2 0 48 50 4 10 0 83 97 

Column Total 116 323 140 57 636 114 314 124 84 636 

Producer’s accuracy (%) 83.62 60.06 80.00 84.21  93.86 64.33 65.32 98.81 
 

User’s accuracy (%) 61.39 80.83 59.57 96.00  59.78 83.13 69.23 85.57 
 

Overall accuracy (%) 70.91 74.37 

Kappa hat (%) 57.90 63.64 

TOP6 U A F W Row Total U A F W Row Total 

U 76 39 1 0 116 90 86 8 12 196 

A 1 324 57 1 383 10 250 40 3 303 

F 0 24 60 0 84 0 13 74 0 87 

W 1 3 0 49 53 0 1 0 49 50 

Column Total 78 390 118 50 636 100 350 122 64 636 

Producer’s accuracy (%) 97.44 83.08 50.85 98.00  90.00 71.43 60.66 76.56 
 

User’s accuracy (%) 65.52 84.60 71.43 92.45  45.92 82.51 85.06 98.00 
 

Overall accuracy (%) 80.03 72.80 

Kappa hat (%) 65.41 58.49 

ORI6 U A F W Row Total U A F W Row Total 

U 88 89 9 7 193 88 66 11 1 166 

A 0 215 19 3 237 8 278 43 4 333 

F 2 46 108 0 156 0 10 63 0 73 

W 0 1 0 49 50 1 2 0 61 64 

Column Total 90 351 136 59 636 97 356 117 66 636 

Producer’s accuracy (%) 97.78 61.25 79.41 83.05  90.72 78.09 53.85 92.42 
 

User’s accuracy (%) 45.60 90.72 69.23 98.00  53.01 83.48 86.30 95.31 
 

Overall accuracy (%) 72.33 77.04 

Kappa hat (%) 59.99 63.88 
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Table 6.25 Error matrix and accuracy assessment of LULC Classification in 2006. 

 
K_MEANS ISODATA 

NIR U A F W Row Total U A F W Row Total 

U 110 93 14 20 237 104 53 11 9 177 

A 15 165 12 1 193 20 203 27 2 252 

F 3 48 103 2 156 0 53 97 0 150 

W 2 1 0 47 50 4 2 0 51 57 

Column Total 130 307 129 70 636 128 311 135 62 636 

Producer’s accuracy (%) 84.62 53.75 79.84 67.14  81.25 65.27 71.85 82.26 
 

User’s accuracy (%) 46.41 85.49 66.03 94.00  58.76 80.56 64.67 89.47 
 

Overall accuracy (%) 66.82 71.54 

Kappa hat (%) 53.85 58.84 

TOP3 U A F W Row Total U A F W Row Total 

U 117 35 3 5 160 141 30 5 2 178 

A 7 172 25 7 211 4 215 37 0 256 

F 5 70 139 1 215 2 30 89 0 121 

W 1 3 0 46 50 5 3 1 72 81 

Column Total 130 280 167 59 636 152 278 132 74 636 

Producer’s accuracy (%) 90.00 61.43 83.23 77.97  92.76 77.34 67.42 97.30 
 

User’s accuracy (%) 73.13 81.52 64.65 92.00  79.21 83.98 73.55 88.89 
 

Overall accuracy (%) 74.53 81.29 

Kappa hat (%) 63.94 73.38 

TOP6 U A F W Row Total U A F W Row Total 

U 102 10 4 1 117 117 42 13 4 176 

A 19 317 45 4 385 8 268 37 4 317 

F 1 15 66 0 82 1 13 79 0 93 

W 0 3 0 49 52 0 0 0 50 50 

Column Total 122 345 115 54 636 126 323 129 58 636 

Producer’s accuracy (%) 83.61 91.88 57.39 90.74  92.86 82.97 61.24 86.21 
 

User’s accuracy (%) 87.18 82.34 80.49 94.23  66.48 84.54 84.95 100 
 

Overall accuracy (%) 83.96 80.82 

Kappa hat (%) 73.54 70.72 

ORI6 U A F W Row Total U A F W Row Total 

U 133 31 1 5 170 124 19 0 1 144 

A 8 199 24 8 239 8 302 40 2 352 

F 1 61 115 0 177 0 13 72 1 86 

W 0 0 0 50 50 1 1 0 52 54 

Column Total 142 291 140 63 636 133 335 112 56 636 

Producer’s accuracy (%) 93.66 68.38 82.14 79.37  93.23 90.15 64.29 92.86 
 

User’s accuracy (%) 78.24 83.26 64.97 100  86.11 85.80 83.72 96.30 
 

Overall accuracy (%) 78.14 86.48 

Kappa hat (%) 68.75 78.53 
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Table 6.26 Error matrix and accuracy assessment of LULC Classification in 2011. 

 
K_MEANS ISODATA 

NIR U A F W Row Total U A F W Row Total 

U 142 94 13 23 272 117 64 12 13 206 

A 29 113 31 1 174 25 169 30 4 228 

F 1 45 94 0 140 2 25 107 1 135 

W 1 2 0 47 50 2 5 1 59 67 

Column Total 173 254 138 71 636 146 263 150 77 636 

Producer’s accuracy (%) 82.08 44.49 68.12 66.20  80.14 64.26 71.33 76.62 
 

User’s accuracy (%) 52.21 64.94 67.14 94.00  56.80 74.12 79.26 88.06 
 

Overall accuracy (%) 62.26 71.07 

Kappa hat (%) 47.43 59.51 

TOP3 U A F W Row Total U A F W Row Total 

U 155 23 3 6 187 165 36 4 0 205 

A 5 169 21 10 205 4 200 30 0 234 

F 3 61 129 1 194 1 19 90 0 110 

W 0 1 0 49 50 2 7 0 78 87 

Column Total 163 254 153 66 636 172 262 124 78 636 

Producer’s accuracy (%) 95.09 66.54 84.31 74.24  95.93 76.34 72.58 100 
 

User’s accuracy (%) 82.89 82.44 66.49 98.00  80.49 85.47 81.82 89.66 
 

Overall accuracy (%) 78.93 83.81 

Kappa hat (%) 70.51 77.21 

TOP6 U A F W Row Total U A F W Row Total 

U 114 16 1 0 131 140 35 9 6 190 

A 38 291 44 7 380 11 255 42 2 310 

F 1 13 60 0 74 2 15 69 0 86 

W 0 4 1 46 51 0 0 0 50 50 

Column Total 153 324 106 53 636 153 305 120 58 636 

Producer’s accuracy (%) 74.51 89.81 56.60 86.79  91.50 83.61 57.50 86.21 
 

User’s accuracy (%) 87.02 76.58 81.08 90.20  73.68 82.26 80.23 100 
 

Overall accuracy (%) 80.35 80.82 

Kappa hat (%) 68.30 71.01 

ORI6 U A F W Row Total U A F W Row Total 

U 141 38 5 2 186 140 23 1 1 165 

A 9 185 20 18 232 14 273 44 7 338 

F 3 42 123 0 168 0 14 65 0 79 

W 0 0 0 50 50 0 2 1 51 54 

Column Total 153 265 148 70 636 154 312 111 59 636 

Producer’s accuracy (%) 92.16 69.81 83.11 71.43  90.91 87.50 58.56 86.44 
 

User’s accuracy (%) 75.81 79.74 73.21 100  84.85 80.77 82.28 94.44 
 

Overall accuracy (%) 78.46 83.18 

Kappa hat (%) 69.55 73.99 
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Table 6.27 Error matrix and accuracy assessment of LULC Classification in 2017. 

 
K_MEANS ISODATA 

NIR U A F W Row Total U A F W Row Total 

U 148 59 4 13 224 126 33 5 7 171 

A 20 128 14 1 163 39 149 21 2 211 

F 9 65 123 2 199 6 56 136 2 200 

W 1 5 0 44 50 3 5 0 46 54 

Column Total 178 257 141 60 636 174 243 162 57 636 

Producer’s accuracy (%) 83.15 49.81 87.23 73.33  72.41 61.32 83.95 80.70 
 

User’s accuracy (%) 66.07 78.53 61.81 88.00  73.68 70.62 68.00 85.19 
 

Overall accuracy (%) 69.65 71.86 

Kappa hat (%) 57.92 60.47 

TOP3 U A F W Row Total U A F W Row Total 

U 157 19 6 2 184 174 23 3 3 203 

A 10 162 13 11 196 12 168 24 4 208 

F 3 69 131 3 206 5 41 104 0 150 

W 0 3 0 47 50 6 4 2 63 75 

Column Total 170 253 150 63 636 197 236 133 70 636 

Producer’s accuracy (%) 92.35 64.03 87.33 74.60  88.32 71.19 78.20 90.00 
 

User’s accuracy (%) 85.33 82.65 63.59 94.00  85.71 80.77 69.33 84.00 
 

Overall accuracy (%) 78.14 80.03 

Kappa hat (%) 69.47 72.17 

TOP6 U A F W Row Total U A F W Row Total 

U 112 18 2 0 132 143 28 16 3 190 

A 41 267 41 14 363 20 242 32 6 300 

F 5 12 74 0 91 2 15 77 2 96 

W 0 6 0 44 50 0 2 0 48 50 

Column Total 158 303 117 58 636 165 287 125 59 636 

Producer’s accuracy (%) 70.89 88.12 63.25 75.86  86.67 84.32 61.60 81.36 
 

User’s accuracy (%) 84.85 73.55 81.32 88.00  75.26 80.67 80.21 96.00 
 

Overall accuracy (%) 78.14 80.19 

Kappa hat (%) 66.01 70.55 

ORI6 U A F W Row Total U A F W Row Total 

U 157 24 4 1 186 141 24 2 0 167 

A 24 170 19 12 225 30 246 44 14 334 

F 5 44 125 1 175 2 9 74 0 85 

W 2 6 0 42 50 2 2 0 46 50 

Column Total 188 244 148 56 636 175 281 120 60 636 

Producer’s accuracy (%) 83.51 69.67 84.46 75.00  80.57 87.54 61.67 76.67 
 

User’s accuracy (%) 84.41 75.56 71.43 84.00  84.43 73.65 87.06 92.00 
 

Overall accuracy (%) 77.67 79.72 

Kappa hat (%) 68.41 69.41 
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Figure 6.29 Comparison of the overall accuracy of the two algorithms. 

 

Besides, it can also be observed from Figure 6.30 that the overall 

accuracy is lower at approximately 70% when using a single spectral feature under 

different years and different algorithms conditions, while the overall accuracy is higher 

when using multiple spectral features, approximately 80%. This finding is consistent 

with accuracy assessment for change detection as mentioned above that the multiple 

spectral features can provide higher accuracy than a single spectral feature. 

Furthermore, when using different numbers of spectral features for 

LULC classification, the minimum memory required for TOP3 spectral features is 

about three times of NIR band, and the minimum memory required for TOP6 and ORI6 

spectral features is about six times of NIR band. In the same computer configuration, 

TOP3 spectral features take about three times of NIR, and TOP6 and ORI6 spectral 

features take about six times of NIR band.  
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By considering accuracy, minimum memory requirement, and 

processing time for LULC classification, TOP3 spectral features can be selected as a 

suitable spectral feature for LULC change detection and classification. 

 

 

Figure 6.30 Comparison of the overall accuracy of four spectral features. 

 

Figure 6.31 displays a comparison of the overall accuracy in four 

different years. The overall accuracy of the LULC classification map in 2000 by K-

Means and ISODATA algorithms with different spectral features is rather low, while 

the overall accuracy of 2006, 2011, and 2017 is high. The lower accuracy of the LULC 

classification map in 2000 may be related to more errors accumulated during the 

initialization phase of the model during the change detection (see Figures 6.3 to 6.6), 

where a large number of points are not fitted during the model initialization phase. 

Since the model initialization phase requires 12 clean pixels, and the 

Landsat image acquisition period is eight days (combined with Landsat 7 and Landsat 
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8), considering the possible effects of clouds and stripes (Landsat 7), it is recommended 

that when studying the change of LULC in a certain period based on time-series data, 

the Landsat data time range used needs to be one year earlier than the research period. 

 

 

Figure 6.31 Comparison of the overall accuracy of four years. 

 

For analyzing the producer’s and user’s accuracies of LULC 

classification maps obtained in different spectral features combinations, different 

algorithms, and different years, it is difficult and unnecessary to calculate the 

producer’s and user’s accuracies of the LULC classification map for each specific date. 

Because the interpretation of both accuracies results from the time-series of LULC 

classification maps (every eight days or 16 days) of both methods are time-consuming. 

What is important is the average producer’s accuracy and user’s accuracy of the LULC 

classification maps obtained by different spectral features and different algorithms. 

Therefore, the producer’s accuracy and user’s accuracy of the entire study period (2000-
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2017) are represented by an average value of producer’s accuracy and user’s accuracy 

of the LULC classification map from one selected date of four years. According to the 

previous analysis, due to the initialization of the model, the accuracy of the LULC 

classification map in 2000 is reduced. The average producer’s accuracy and user’s 

accuracy of each LULC type are firstly separately calculated from the LULC 

classification maps of 2006, 2011 and 2017 and the derived average producer’s 

accuracy and user’s accuracy from four different LULC types are further applied to 

calculate average producer’s accuracy and user’s accuracy again. 

Tables 6.28 to 6.29 demonstrate an average producer’s accuracy and 

user’s accuracy of each LULC type and four different LULC types based on the 

different spectral feature(s) of K-Means and ISODATA algorithms, respectively. 

 

Table 6.28 Average producer’s accuracy and user’s accuracy using K-Means 

algorithms. 

Spectral 

feature(s) 
Accuracy 

The average value of each LULC type Average of 4 

LULC type U A F W 

NIR 
Producer’s (%) 83.28 49.35 78.40 68.89 69.98 

User’s (%) 54.90 76.32 64.99 92.00 72.05 

TOP3 
Producer’s (%) 92.48 64.00 84.96 75.60 79.26 

User’s (%) 80.45 82.20 64.91 94.67 80.56 

TOP6 
Producer’s (%) 76.34 89.94 59.08 84.46 77.45 

User’s (%) 86.35 77.49 80.96 90.81 83.90 

ORI6 
Producer’s (%) 89.78 69.29 83.24 75.27 79.39 

User’s (%) 79.49 79.52 69.87 94.67 80.89 
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Table 6.29 Average producer’s accuracy and average’s user accuracy using 

ISODATA algorithms. 

Spectral 

feature(s) 
Accuracy 

The average value of each LULC type Average of 4 

LULC type U A F W 

NIR 
Producer’s (%) 77.93 63.62 75.71 79.86 74.28 

User’s (%) 63.08 75.10 70.64 87.57 74.10 

TOP3 
Producer’s (%) 92.34 74.96 72.73 95.77 83.95 

User’s (%) 81.80 83.41 74.90 87.52 81.91 

TOP6 
Producer’s (%) 90.34 83.63 60.11 84.59 79.67 

User’s (%) 71.81 82.49 81.80 98.67 83.69 

ORI6 
Producer’s (%) 88.24 88.40 61.51 85.32 80.87 

User’s (%) 85.13 80.07 84.35 94.25 85.95 

 

Figures 6.32 to 6.33 show the producer’s accuracy and user’s accuracy 

based on Tables 6.28 to 6.29. It can be seen from the figures, in terms of the algorithm, 

the average producer’s accuracy and user’s accuracy of the four LULC types obtained 

by the ISODATA algorithm are superior to the K-Means algorithm. In terms of spectral 

feature combinations, the results obtained using TOP3, TOP6, and ORI6 spectral 

features are superior to the NIR band. 

Besides, the average producer’s accuracy and user’s accuracy obtained 

from each LULC type using K-Means and ISODATA algorithm displays that TOP3, 

TOP6, and ORI6 spectral features can be applied to classify each LULC type superior 

to NIR spectral feature. 
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Figure 6.32 Producer’s accuracy and user’s accuracy based on the K-Means 

algorithm. 

 

 

Figure 6.33 Producer’s accuracy and user’s accuracy based on the ISODATA. 
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Furthermore, the pairwise Z-test is conducted to examine the significant 

difference of accuracy from two algorithms using four spectral feature(s) combination 

based on Kappa analysis using Eq 6.2 and Eq 6.3 as results shown in Tables 6.30 to 

6.32. 

Table 6.30 shows the result of the pairwise Z-test of accuracy for LULC 

classification between the K-Means and the ISODATA algorithm from a variety 

spectral feature(s). It can be seen that most of the Z-values are less than 1.96 (except 

for a few cases). These results indicate that most of the accuracies for LULC 

classification using both algorithms from a variety spectral feature(s) are not 

significantly different. However, the accuracy of the LULC classification in 2011 based 

on NIR using the K-Means algorithm is a significant difference from the ISODATA 

algorithm (See Table 6.26). Likewise, the accuracy of LULC classification in 2006 and 

20011 based on TOP3 using the K-Means algorithm is a significant difference from the 

ISODATA algorithm (See Tables 6.25 and 6.26), and the accuracy of LULC 

classification in 2011 based on ORI6 using K-Means algorithm is a significant 

difference from ISODATA algorithm (See Tables 6.25). 

From Tables 6.31 and 6.32, all Z-values of the pairwise test of accuracy 

between NIR and TOP3, NIR and TOP6, and NIR and ORI6 using a different algorithm 

(K-Means or ISODATA) are higher than 1.96. These results indicate that the accuracies 

of LULC classification using K-Means or ISODATA algorithm based on the NIR 

spectral feature is a significant difference from the accuracies of LULC classification 

with TOP3, TOP6, and ORI6 spectral features. 

In contrast, whether using the K-Means algorithm or ISODATA 

algorithm, the values of pairwise Z-test of accuracy among TOP3, TOP6, and ORI6 
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spectral features are almost less than 1.96. These results indicate that the accuracies of 

LULC classification with TOP3, TOP6, and ORI6 spectral features are insignificantly 

different, except for accuracy between TOP3 and TOP6 in 2011 and between TOP6 

and ORI6 in 2006. 

 

Table 6.30 Pairwise Z-test between the K-Means and ISODATA algorithm. 

YEAR 
Z-values 

NIR TOP3 TOP6 ORI6 

2000 1.0419 1.5585 1.7661 1.0434 

2006 1.3298 2.8203 * 0.8250 3.0258 * 

2011 3.1927 * 2.1722 * 0.7728 1.3479 

2017 0.7066 0.8418 1.2944 0.2938 

Note * It is a significant difference of accuracy based on the Kappa hat coefficient. 

 

Table 6.31 Pairwise Z-test between different spectral features using the K-Means 

algorithm. 

YEAR 
Z-values 

NIR_TOP3 NIR_TOP6 NIR_ORI6 TOP3_TOP6 TOP3_ORI6 TOP6_ORI6 

2000 3.3456 * 5.1618 * 3.9365 * 1.9318 * 0.5572 1.4153 

2006 2.7681 * 5.4728 * 4.1683 * 2.7572 * 1.3903 1.4073 

2011 6.4156 * 5.5043 * 6.0944 * 0.6404 0.2913 0.3605 

2017 3.3550 * 2.2247 * 3.0156 * 0.9978 0.3202 0.6856 

Note * It is a significant difference of accuracy based on the Kappa hat coefficient. 
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Table 6.32 Pairwise Z-test between different spectral features using the ISODATA 

algorithm. 

YEAR 
Z-values 

NIR_TOP3 NIR_TOP6 NIR_ORI6 TOP3_TOP6 TOP3_ORI6 TOP6_ORI6 

2000 3.9029 * 2.4318 * 3.8618 * 1.3864 0.0652 1.4114 

2006 4.2033 * 3.3254 * 5.7451 * 0.8108 1.6536 2.4082 * 

2011 5.3569 * 3.2845 * 4.1824 * 1.9657 * 1.0345 0.8983 

2017 3.4552 * 2.8973 * 2.5337 * 0.4992 0.8359 0.3351 

Note * It is a significant difference of accuracy based on the Kappa hat coefficient. 

 

SUMMARY 

By comparison of overall accuracy according to spectral features, LULC change 

detection using the NIR feature provided the least accurate. In contrast，the multiple 

spectral features (TOP3, TOP6, and ORI6) could provide similar results with high 

accuracy, and the multiple spectral features provided accuracy higher than a single 

spectral feature (NIR). It is an expected result because a single spectral feature is hard 

to discriminate subtle class such as healthy and disturbed vegetation, since the average 

value is similar, while this distinction is easily made from multispectral spectral features. 

According to the performance of the clustering algorithm for LULC 

classification, it can be observed that the accuracy of thematic maps derived by the 

ISODATA algorithm was slightly higher than the K-Means algorithm. Overall 

accuracy and Kappa hat coefficient of the classified LULC maps in four years with 

ORI6 spectral features varied from 77.04% to 86.48% and 63.88% to 78.53%, 

respectively. 

Besides, by considering spectral feature application to LULC classification, 

when a single spectral feature was applied to classify LULC maps in different years 
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with two algorithms, the overall accuracy of LULC maps was approximately 70%. On 

the contrary, when multiple spectral features were applied to classify LULC maps in 

different years with two algorithms, the overall accuracy of LULC maps was 

approximately 80%. As a result, it was confirmed that the multiple spectral features 

could provide higher accuracy than a single spectral feature. Additionally, by 

considering minimum memory requirement for LULC classification, the required 

minimum memory for LULC classification with TOP3 spectral features was about three 

times of NIR band, and the required minimum memory for LULC classification with 

TOP6 and ORI6 spectral features was about six times of NIR band. Likewise, with the 

same standard of computer configuration, the processing time for LULC classification 

with TOP3 spectral features was about three times of NIR while the processing time for 

LULC classification with TOP6 and ORI6 spectral features was about six times of NIR 

band. Subsequently, by considering accuracy, minimum memory requirement, and 

processing time for LULC classification, TOP3 spectral features can be selected as a 

suitable spectral feature for LULC change detection and classification. 

Furthermore, the overall accuracy of the LULC classification map in 2000 by 

K-Means and ISODATA algorithms with different spectral features is rather low, while 

the overall accuracy of 2006, 2011, and 2017 is high. The lower accuracy of the LULC 

classification map in 2000 may be related to more errors accumulated during the 

initialization phase of the model during the change detection, where a large number of 

points are not fitted during the model initialization phase. Since the model initialization 

phase requires 12 clean pixels, and the Landsat image acquisition period is eight days 

(combined with Landsat 7 and Landsat 8), considering the possible effects of clouds 

and stripes (Landsat 7), it is recommended that when studying the change of LULC in 
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a certain period based on time-series data, the Landsat data time range used needs to be 

one year earlier than the research period. 

In addition, the pairwise Z-test indicates that the accuracy of the LULC 

classification from both algorithms is not significantly different. The pairwise Z-test 

indicating that the accuracy of LULC classification using the NIR spectral feature is 

different from the accuracy of LULC classification using TOP3, TOP6, and ORI6 

spectral features. Additionally, whether using the K-Means algorithm or ISODATA 

algorithm, the values of pairwise Z-test between TOP3, TOP6, and ORI6 spectral 

features are almost less than 1.96, these findings indicate that the accuracy of LULC 

classification using TOP3, TOP6, and ORI6 spectral features are insignificantly 

different. 

 

 



 

 

 

CHAPTER VII 

TIME-SERIES LAND USE AND LAND COVER 

CLASSIFICATION USING A SUPERVISED METHOD 

 

In order to increase the speed of change monitoring and classification, a nearly-

real-time LULC classification method using HA with a minimum spectral distance 

algorithm was developed in this study. The workflow of time-series LULC 

classification using HA with a minimum spectral distance algorithm is schematically 

displayed in Figure 7.1. The detail of three major tasks and their result of this 

component included (1) harmonic function curve conversion and standard harmonic 

curve construction, (2) spectral distance measurement and probability calculation, (3) 

time-series LULC classification and (4) accuracy assessment were separately described 

and discussed in the following section. 
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Figure 7.1 Workflow of Component 4: Time-series LULC classification using 

supervised method. 

 

7.1 Harmonic function curve transformation and standard 

harmonic curve construction 

The time-series curve of each data point is expressed as the sum of a series of 

cosine or sine waves; each wave determines by a different amplitude and phase (Leica, 

2005). These continuous amplitude and phase are summed to produce a compound 

curve (Jakubauskas et al., 2002). Since the cosine of the sine wave is a typical periodic 

change curve, therefore, HA can be used to simulate the periodic change of spectral 

reflectivity. 

To obtain the harmonic curve characteristic of different LULC types, the 

selected stable pixels for each LULC type between 2000 and 2017 were first 

Input Process Output 

Optimum spectral features or spectral feature 

combination 

Harmonic function curve conversion and 

standard harmonic curve construction 

Sample points of stable LULC type between 

2000 and 2017 

Spectral distance measurement and 

probability calculation 

Time series LULC classification 

Time-series LULC maps 

Accuracy assessment report 
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transformed into a spectral harmonic curve using Eq. 7.1 modified from Zhu and 

Woodcock (2014b). 

𝑦𝑖 = 𝑎𝑖 + 𝑏𝑖𝑡 + 𝐴𝑖 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑡 − 𝜑𝑖) (7.1) 

where, t is the Julian date, i is the ith Landsat band, T is the number of days per 

year (T= 365), ai is the coefficient of intercept value, bi is the coefficient of slope value, 

Ai is the coefficient of amplitude value, 𝜑𝑖 is the coefficient of phase value, y is the 

reconstructed reflectance value at Julian date t. In this study, four spectral features 

combinations: NIR, TOP3, TOP6, and ORI6, which contain nine spectral features, 

namely blue, green, red, NIR, SWIR1, SWIR2, EVI, TCB, and PC1 were further 

applied to transform harmonic function curve for time-series LULC classification. 

After that, the median values of six spectral feature coefficients from all sample 

points were extracted, and the standard harmonic function curve of each LULC type 

from six bands was constructed using Eq. 7.1 to simplify the character of each LULC 

type for spectral distance measurement with any unclassified pixel. 

 

7.1.1 Spectral harmonic function curve of LULC types 

The spectral harmonic function curves of four LULC types were 

transformed from sample points of stable pixels between 2000 and 2017 by using 

different spectral features display in Figure 7.2. Since the harmonic function curves of 

each LULC type come from nearly 10,000 sample points, the harmonic function curves 

of each LULC type from each spectral band appear like a ribbon form, and the harmonic 

function curves of different LULC types overlap among LULC types. For example, 

under the TCB feature, the harmonic curve of the water body overlaps with forest land, 

while the harmonic curve of the water body overlaps with another LULC type under 
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the GREEN feature. So, it is not easy to justify the similarity among LULC types of the 

unclassified pixel using spectral polyline and the reference harmonic function curve. 

Therefore, it is necessary to find a standard harmonic function curve that can represent 

different LULC types in various bands. 
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Harmonic function curves using BLUE feature 

 

Harmonic function curves using GREEN feature 

 

Harmonic function curves using the RED feature 

Figure 7.2 Harmonic function curves of four LULC types. 
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Harmonic function curves using NIR feature 

 

Harmonic function curves using SWIR1 feature 

 

Harmonic function curves using SWIR2 feature 

Figure 7.2 (Continued). 
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Harmonic function curves using EVI feature 

 

Harmonic function curves using TCB feature 

 

Harmonic function curves using PC1 feature 

Figure 7.2 (Continued). 
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7.1.2 Standard harmonic function curve of each LULC type 

Table 7.1 shows the median value of nine spectral feature coefficients 

for four LULC types, while Figure 7.3 presents the harmonic function curve of nine 

spectral features for four LULC types based on Table 7.1. As a result, it revealed that 

there is no overlapped strip among LULC types, and it is easy to differentiate the 

harmonic function curve of LULC types. Importantly, these standard harmonic function 

curves will be applied to measure the spectral distance between each LULC type and 

an unclassified pixel and to calculate a probability of an unclassified pixel of being 

specific LULC type (U, A, F, and W) at a particular point of time. 
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Table 7.1 Median of coefficients for four LULC types. 

Spectral features LULC I S (E-04) A P 

BLUE 

U 0.1143 0.0114 -0.0321 0.4298 

A 0.0996 0.0092 -0.0225 0.5379 

F 0.0916 0.0063 -0.0210 0.4925 

W 0.1103 0.0136 -0.0287 0.3571 

GREEN 

U 0.1039 0.0020 -0.0325 0.4572 

A 0.0881 0.0045 -0.0228 0.6110 

F 0.0753 0.0027 -0.0206 0.5527 

W 0.1028 0.0105 -0.0293 0.3148 

RED 

U 0.1020 -0.0014 -0.0314 0.5205 

A 0.0777 0.0024 -0.0163 0.9323 

F 0.0597 -0.0014 -0.0126 0.8894 

W 0.1001 -0.0019 -0.0305 0.1774 

NIR 

U 0.1368 0.0161 -0.0626 0.3530 

A 0.1613 0.0515 -0.0836 0.2996 

F 0.1548 0.0619 -0.1045 0.3088 

W 0.0685 -0.0214 -0.0250 0.2702 

SWIR1 

U 0.1250 0.0102 -0.0512 0.4175 

A 0.1103 0.0387 -0.0360 0.4323 

F 0.1032 0.0230 -0.0426 0.4420 

W 0.0198 0.0003 -0.0089 0.7526 

SWIR2 

U 0.0947 0.0083 -0.0364 0.5518 

A 0.0641 0.0200 -0.0166 0.9975 

F 0.0500 0.0088 -0.0151 1.0717 

W 0.0122 0.0002 -0.0059 0.8611 

EVI 

U 0.0140 0.0081 -0.0133 0.1604 

A 0.0355 0.0213 -0.0304 0.1211 

F 0.0423 0.0264 -0.0418 0.1953 

W -0.0140 -0.0117 0.0027 0.0725 

TCB 

U 0.2587 0.0246 -0.0971 0.4188 

A 0.2425 0.0633 -0.0884 0.4245 

F 0.2195 0.0612 -0.1010 0.4022 

W 0.1614 0.0092 -0.0515 0.3117 

PC1 

U 0.2710 0.0267 -0.1002 0.4375 

A 0.2543 0.0666 -0.0919 0.4213 

F 0.2314 0.0598 -0.1068 0.4022 

W 0.1452 -0.0039 -0.0430 0.3665 
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Standard reference harmonic waves with BLUE feature 

 

Standard reference harmonic waves with GREEN feature 

 

Standard reference harmonic waves with RED feature 

Figure 7.3 Standard reference harmonic waves of four LULC types. 
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Standard reference harmonic waves with NIR feature 

 

Standard reference harmonic waves with SWIR1 feature 

 

Standard reference harmonic waves with SWIR2 feature 

Figure 7.3 (Continued). 
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Standard reference harmonic waves with EVI feature 

 

Standard reference harmonic waves with TCB feature 

 

Standard reference harmonic waves with PC1 feature 

Figure 7.3 (Continued). 
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7.2 Spectral distance measurement and probability calculation 

In principle, the spectral distance can be measured by simple subtraction of 

spectral reflectance value between the standard harmonic function curves of each 

LULC type (U, A, F, and W) and an unclassified pixel at a specific time point. However, 

spectral distance values of four LULC types to an unclassified pixel have different 

range values from time to time, and they cannot be directly applied to compare among 

different LULC categories for a specific time point due to a different scale. 

Consequently, it is necessary to normalize spectral distance values. With this step, the 

spectral distance value of each LULC type will rescale into a range of [0,1]. 

In this study, Eq. 7.2 and Eq. 7.3 were first applied to calculate the maximum 

and minimum spectral distance between the standard harmonic function curve of each 

LULC type (U, A, F, and W) and an unclassified pixel at a specific time point. Then, 

maximum and minimum values from any LULC type at the same specific time point 

were further used to calculate the normalized spectral distance between the standard 

harmonic function curve of each LULC type (U, A, F, and W) and an unclassified pixel 

at the same specific time point using Eq. 7.4 to Eq. 7.7, respectively. 

𝑀𝐴𝑋𝑖𝑗 = 𝑚𝑎𝑥(|𝑅𝑈𝑖𝑗 − 𝑅𝑋𝑖𝑗
|, |𝑅𝐴𝑖𝑗 − 𝑅𝑋𝑖𝑗

|, |𝑅𝐹𝑖𝑗 − 𝑅𝑋𝑖𝑗
|, |𝑅𝑊𝑖𝑗 − 𝑅𝑋𝑖𝑗

|) 

  (7.2) 

𝑀𝐼𝑁𝑖𝑗 = 𝑚𝑖𝑛(|𝑅𝑈𝑖𝑗 − 𝑅𝑋𝑖𝑗
|, |𝑅𝐴𝑖𝑗 − 𝑅𝑋𝑖𝑗

|, |𝑅𝐹𝑖𝑗 − 𝑅𝑋𝑖𝑗
|, |𝑅𝑊𝑖𝑗 − 𝑅𝑋𝑖𝑗

|) (7.3) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝑖𝑗 =
|𝑅𝑈𝑖𝑗−𝑅𝑋𝑖𝑗

|−𝑀𝐼𝑁𝑖𝑗

𝑀𝐴𝑋𝑖𝑗−𝑀𝐼𝑁𝑖𝑗
 (7.4) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑖𝑗 =
|𝑅𝐴𝑖𝑗−𝑅𝑋𝑖𝑗

|−𝑀𝐼𝑁𝑖𝑗

𝑀𝐴𝑋𝑖𝑗−𝑀𝐼𝑁𝑖𝑗
 (7.5) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑖𝑗 =
|𝑅𝐹𝑖𝑗−𝑅𝑋𝑖𝑗

|−𝑀𝐼𝑁𝑖𝑗

𝑀𝐴𝑋𝑖𝑗−𝑀𝐼𝑁𝑖𝑗
 (7.6) 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑗 =
|𝑅𝑊𝑖𝑗−𝑅𝑋𝑖𝑗

|−𝑀𝐼𝑁𝑖𝑗

𝑀𝐴𝑋𝑖𝑗−𝑀𝐼𝑁𝑖𝑗
 (7.7) 

where, 𝑅𝑈𝑖𝑗 , 𝑅𝐴𝑖𝑗 , 𝑅𝐹𝑖𝑗 , 𝑅𝑊𝑖𝑗  are the spectral reflectance from standard 

harmonic function curve of U, A, F, and W, respectively, at the time point i using band 

j. 𝑅𝑋𝑖𝑗
 is the spectral reflectance of an unclassified pixel at the time point i using band 

j. 

As mentioned earlier, the domain value of the normalized spectral distance is 0 

to 1. The closer the spectral distance is, the higher the probability is. The lowest 

normalized spectral distance between any LULC type and an unclassified pixel (i.e., a 

spectral distance equals 0) will provide the highest likelihood of being a specific LULC 

type (i.e., probability equals 1). Therefore, the normalized spectral distance of an 

unclassified pixel to any LULC type was applied to calculate a probability of an 

unclassified pixel of being specific LULC type (U, A, F, and W) using Eq. 7.8 to Eq. 

7.11, respectively. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝑖𝑗 = 1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝑖𝑗 (7.8) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑖𝑗 = 1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑖𝑗 (7.9) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖𝑗 = 1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑖𝑗 (7.10) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊𝑖𝑗 = 1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑗 (7.11) 

where, 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝑖𝑗 , 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑖𝑗 , 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖𝑗 , and 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊𝑖𝑗 

are the probability of an unclassified pixel of being the U, A, F, and W, respectively, at 

the time point i using band j. 
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7.2.1 Spectral distance measurement 

Figure 7.4 shows an example of the four reference harmonic waves and 

polyline of unclassified point X with different features from spectral similarity 

observation. In this figure, red, yellow, green, and blue curves are reference harmonic 

waves of urban and built-up land, agricultural land, forest land, and water bodies, 

respectively, while black polyline was connected to reflectance value of pixel X 

location (See Chapter V). 

As a result, it is easy to observe that the spectral polyline (black color) 

of this pixel was similar to the yellow curve of the agricultural land before 2008, and it 

was similar to the red curve of urban and built-up land after 2008. 
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(a) BLUE 

 

(b) GREEN 

 

(c) RED 

Figure 7.4 Spectral distance between the standard harmonic function curves and 

polyline of the unclassified pixels between 2000 and 2017. 
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(d) NIR 

 

(e) SWIR1 

 

(f) SWIR2 

Figure 7.4 (Continued). 
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(g) EVI 

 

(h) TCB 

 

(i) PC1 

Figure 7.4 (Continued). 
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7.2.2 Probability of an unclassified pixel of being specific LULC type 

The probability of an unclassified pixel being a specific LULC type (U, 

A, F, and W) between 2000 and 2017, based on the nine spectral features, is displayed 

in Figure 7.5. This figure shows the variation in the probability of an unclassified pixel 

being a specific LULC type between 2000 and 2017 and indicates the probability of an 

unclassified pixel being a specific LULC type at a particular time point. For example, 

if we select the blue band to classify multitemporal LULC data, most of the LULC 

types before 2000 were forest land or agricultural land, but most of the LULC types 

after 2008 were urban and built-up land. 
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(a) BLUE 

 

(b) GREEN 

 

(c) RED 

Figure 7.5 Probability of an unclassified pixel for each LULC type between 2000 

and 2017 in each spectral feature. 
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(d) NIR 

 

(e) SWIR1 

 

(f) SWIR2 

Figure 7.5 (Continued). 
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(g) EVI 

 

(h) TCB 

 

(i) PC1 

Figure 7.5 (Continued). 
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7.3 Time-series LULC classification 

In principle, the calculated probability of an unclassified pixel of being specific 

LULC type from Eq. 7.8 to Eq. 7.11 at a specific time point from one spectral band can 

be separately applied for multitemporal LULC classification.  

In this study, four spectral features combinations: NIR, TOP3, TOP6, and ORI6, 

which contain 1, 3, 6, and 6 spectral bands, respectively, were applied for multitemporal 

LULC classification. So, average probabilities of an unclassified pixel of being specific 

LULC type (U, A, F, and W) by a number of the band (n) were first separately 

calculated using Eq. 7.8 to Eq. 7.11. Then, average probabilities of an unclassified pixel 

of being specific LULC type (U, A, F, and W) from four LULC types were compared 

to identify the highest value and a corresponding LULC type that provides the highest 

probability was then assigned to an unclassified pixel at a specific time point using Eq. 

7.12 to Eq. 7.15. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝑖 = ∑ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑈𝑖𝑗

𝑛

𝑗=1

𝑛⁄  (7.12) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑖 = ∑ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑖𝑗

𝑛

𝑗=1

𝑛⁄  (7.13) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖 = ∑ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖𝑗

𝑛

𝑗=1

𝑛⁄  (7.14) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊𝑖 = ∑ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑊𝑖𝑗

𝑛

𝑗=1

𝑛⁄  (7.15) 

where, Average probabilityUi, Average probabilityAi, Average probabilityFi, 

Average probabilityWi are the probability of an unclassified pixel of being the U, A, F, 

and W, respectively, at the time point i using n bands. 
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After multitemporal LULC classification based on average probability, post-

classification processing was applied to remove the unexpected errors since the 

differences in acquisition and atmospheric conditions of time-series datasets that can 

create spectral shift (Tuia, Persello, and Bruzzone, 2016), so, the LULC type may be 

misclassified at a specific time point. In this study, mode function with a moving 

window with 1 * 9 size of the spatio-temporal filtering under the MATLAB software 

was operated to eliminate the unexpected errors. Herein, the center pixel was replaced 

by the value that occurs most frequently in the window. 

 

7.3.1 Average probability of an unclassified pixel being a specific LULC 

type 

The average probability of an unclassified pixel being a specific LULC 

type (U, A, F, and W) between 2000 and 2017, based on the nine spectral bands, is 

presented in Figure 7.6.  

Figure 7.6(a) shows the variation of the average probability of an 

unclassified pixel for each LULC type from the three spectral bands (TOP3) between 

2000 and 2017 at a specific time point.  

Figure 7.6(b) shows the variation of the average probability of an 

unclassified pixel for each LULC type from the six spectral bands (TOP6) between 

2000 and 2017 at a specific time point.  

Figure 7.6(c) shows the variation of the average probability of an 

unclassified pixel for each LULC type from the six spectral bands (ORI6) between 2000 

and 2017 at a specific time point.  
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As a result, the unclassified pixel belongs to different LULC types at 

different time points. Before 2008, this pixel alternatively shows a high average 

probability to appear in forest land and agricultural land, but after 2008, this pixel 

displays a high average probability to appear in urban and built-up land. This finding 

indicates that the LULC type of this pixel can be classified at a specific time point 

according to the highest average probability value of the corresponding LULC type. 
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(a) TOP3 features 

 

(b) TOP6 features 

 

(c) ORI6 features 

Figure 7.6 Average probability of the unclassified pixel for each LULC type 

between 2000 and 2017 from TOP3, TOP6, and ORI6 features.  
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7.3.2 Supervised LULC classification after post-classification processing 

Figure 7.7 shows an example of a multitemporal LULC classification of 

one unclassified pixel between 2000 and 2017. 

Figure 7.7(a) shows the LULC type of the unclassified pixel between 

2000 and 2017 at specific dates of the 388 Landsat data before post-classification 

processing. As a result, the LULC type of the pixel alternately belongs to forest land, 

agricultural land, and urban and built-up land between 2000 and 2008. It also frequently 

belongs to agricultural land during this period. In contrast, this pixel belongs to urban 

and built-up land after 2008. However, this pixel belongs to water bodies at three dates 

(as shown by the red oval). Based on our prior knowledge, it is difficult for the LULC 

type to undergo two sharp changes in a short period. The LULC type of this pixel at the 

three-time points indicates unexpected errors like salt and pepper noise (Jensen, 2015). 

On the contrary, Figure 7.7(b) shows the final results after post-

classification processing for the unclassified pixel; this figure reveals that the 

unexpected errors from water bodies in Figure 7.7(a) have been removed. Accordingly, 

the classified LULC type of the unclassified pixel was agricultural land before 2008 

and was urban and built-up land after 2008. 
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(a) 

 

(b) 

Figure 7.7 Multitemporal LULC classification of one unclassified pixel between 

2000 and 2017: (a) before post-classification and (b) after post-classification. 
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7.3.3 Result of supervised LULC classification 

Results of time-series LULC classification using HA and a minimum 

spectral distance algorithm based on single and multiple spectral features from a 

selected date in 2000, 2006, 2011, and 2017 are presented in Figures 7.8 to 7.11. 

 

  

(a) (b) 

  

(c) (d) 

Figure 7.8 LULC classification map by the supervised algorithm with NIR band: 

(a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, and (d) Date 18 

May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 7.9 LULC classification map by the supervised algorithm with TOP3 

spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, 

and (d) Date 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 7.10 LULC classification map by the supervised algorithm with TOP6 

spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, 

and (d) Date 18 May 2017. 
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(a) (b) 

  

(c) (d) 

Figure 7.11 LULC classification map by the supervised algorithm with ORI6 

spectral features: (a) Date 12 June 2000, (b) Date 31 July 2006, (c) Date 29 July 2011, 

and (d) Date 18 May 2017. 

 

In detail, Figure 7.8 shows the supervised LULC classification maps in 

2000, 2006, 2011, and 2017 using the NIR band. Meanwhile, Figure 7.9 shows the 

supervised LULC classification maps in 2000, 2006, 2011, and 2017 using the TOP3 

spectral features (NIR, EVI, and TCB). In the meantime, Figure 7.10 and Figure 7.11 

presents the supervised LULC classification maps in 2000, 2006, 2011and 2017 using 

the TOP6 spectral features (NIR, EVI, TCB, BLUE, GREEN, and PC1) and ORI6 
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spectral bands from Landsat data (BLUE, GREEN, RED, NIR, SWIR1, and SWIR2), 

respectively. 

Meanwhile, area and percentage of supervised LULC classification in 

2000, 2006, 2011, and 2017 according to single and multiple spectral features were 

summarized in Tables 7.2 to 7.5. In the meantime, the proportional LULC areas using 

supervised classification with single and multiple spectral features in 2000, 2006, 2011, 

and 2017 are comparatively displayed in Figures 7.12 to 7.15, respectively. 

By comparing area and percentage according to spectral feature, it 

reveals that areas and percentages of urban and built-up land, which was extracted 

based on the NIR band are somewhat high when they are compared with other spectral 

features in every year except 2017. The percent of urban and built-up land using NIR 

band decreased from 41.14% in 2000 to 36.89% in 2017. This finding showed an 

unexpected result when it was compared with the report of MOHURD in 2017. On the 

contrary, areas and percentages of urban and built-up land between 2000 and 2017 

using multi-spectral features (TOP3, TOP6, and ORI6) have been continuously 

increased, and they are consistent with the report of MOHURD in 2017. Additionally, 

areas and percentages of agricultural land based on NIR are rather low when it is 

compared with other spectral features in every year. In the meantime, areas and 

percentages of forest land and water bodies using the NIR band are similar to other 

spectral features in every year.  
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Table 7.2 Area and percentage of supervised LULC classification in 2000. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 650.95 41.14 245.72 15.53 149.78 9.47 147.02 9.29 

A 478.49 30.24 944.82 59.71 1116.99 70.59 1141.86 72.17 

F 346.21 21.88 282.03 17.82 214.13 13.53 225.51 14.25 

W 106.62 6.74 109.72 6.93 101.38 6.41 67.89 4.29 

 

Table 7.3 Area and percentage of supervised LULC classification in 2006. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 558.79 35.32 362.27 22.90 271.40 17.15 258.45 16.33 

A 620.02 39.19 719.82 45.49 841.49 53.18 909.45 57.48 

F 298.72 18.88 389.07 24.59 350.04 22.12 349.66 22.10 

W 104.81 6.62 111.19 7.03 119.42 7.55 64.79 4.09 

 

Table 7.4 Area and percentage of supervised LULC classification in 2011. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 574.50 36.31 430.17 27.19 371.79 23.50 353.24 22.32 

A 617.10 39.00 757.23 47.86 812.66 51.36 864.94 54.66 

F 293.90 18.57 293.37 18.54 292.43 18.48 308.56 19.50 

W 96.85 6.12 101.57 6.42 105.47 6.67 55.62 3.51 

 

Table 7.5 Area and percentage of supervised LULC classification in 2017. 

LULC type 
NIR TOP3 TOP6 ORI6 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

U 583.62 36.89 594.83 37.59 468.26 29.59 443.62 28.04 

A 596.67 37.71 590.11 37.30 698.59 44.15 689.74 43.59 

F 299.15 18.91 286.91 18.13 288.29 18.22 337.84 21.35 

W 102.90 6.50 110.49 6.98 127.21 8.04 111.14 7.02 
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Figure 7.12 Comparison of the proportional LULC area in 2000 using supervised 

classification with various spectral features. 

 

 

Figure 7.13 Comparison of the proportional LULC area in 2006 using supervised 

classification with various spectral features. 
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Figure 7.14 Comparison of the proportional LULC area in 2011 using supervised 

classification with various spectral features. 

 

 

Figure 7.15 Comparison of the proportional LULC area in 2017 using supervised 

classification with various spectral features. 
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7.4 Accuracy assessment 

Similar to the unsupervised classification approach, accuracy assessment of the 

supervised classification approach consists of two aspects, one is whether LULC 

changes can be detected, and the other is whether the LULC classification before and 

after the change is correct. Likewise, standard thematic accuracy assessment was 

assessed using overall accuracy (OA), producer’s accuracy (PA), users’ accuracy (UA), 

and Kappa hat coefficient based on error matrix between classified LULC data and 

ground reference information data (Congalton and Green, 2009). 

7.4.1 Accuracy assessment for change detection 

To detect LULC changes, whether different algorithms with different 

spectral features a particular location, the four stable LULC types and LULC change 

areas were reclassified into two groups: changed and unchanged areas, for change 

detection accuracy assessment. Figure 7.16 shows the result of LULC change detection 

maps (stable LULC type and LULC change area) with different spectral features by 

supervised classification algorithms. 

Same as Chapter VI, a stratified random sampling scheme was here used 

for assessing the accuracy of change detection with four different spectral features using 

supervised classification algorithms. Herein, 502 reference pixels are based on 

multinomial distribution with the desired precision of 5% and a level of confidence of 

95%. Additionally, high spatial resolution images from the Google Earth in 2000, 2006, 

2011, and 2017 as ground reference were used to determine if the LULC type at a 

particular location has changed. 
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(a) (b) 

  

(c) (d) 

Figure 7.16 LULC change detection by the supervised algorithm: (a) Using NIR 

band, (b) Using TOP3 spectral features, (c) Using TOP6 spectral features, and (d) Using 

ORI6 spectral features. 

 

Tables 7.6 to 7.9 show the results of the accuracy assessment of change 

detection. 
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Table 7.6 The accuracy assessment of change detection using the NIR feature. 

NIR Changed pixels Stable pixels Row Total 

Changed pixels 256 115 371 

Stable pixels 12 119 131 

Column Total 268 234 502 

Producer’s accuracy (%) 95.52 50.85 
 

User’s accuracy (%) 69.00 90.84 
 

Overall accuracy (%) 74.70 

Kappa hat (%) 47.71 

 

Table 7.7 The accuracy assessment of change detection using TOP3 spectral 

features. 

TOP3 Changed pixels Stable pixels Row Total 

Changed pixels 269 84 353 

Stable pixels 8 141 149 

Column Total 277 225 502 

Producer’s accuracy (%) 97.11 62.67 
 

User’s accuracy (%) 76.20 94.63 
 

Overall accuracy (%) 81.67 

Kappa hat (%) 61.74 

 

Table 7.8 The accuracy assessment of change detection using TOP6 spectral 

features. 

TOP6 Changed pixels Stable pixels Row Total 

Changed pixels 247 55 302 

Stable pixels 10 190 200 

Column Total 257 245 502 

Producer’s accuracy (%) 96.11 77.55 
 

User’s accuracy (%) 81.79 95.00 
 

Overall accuracy (%) 87.05 

Kappa hat (%) 73.98 
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Table 7.9 The accuracy assessment of change detection using ORI6 spectral 

features. 

ORI6 Changed pixels Stable pixels Row Total 

Changed pixels 247 53 300 

Stable pixels 6 196 202 

Column Total 253 249 502 

Producer’s accuracy (%) 97.63 78.71 
 

User’s accuracy (%) 82.33 97.03 
 

Overall accuracy (%) 88.25 

Kappa hat (%) 76.46 

 

By comparing overall accuracy according to spectral feature, LULC 

change detection using NIR provides the least accuracy (74.70%). In contrast, the 

accuracy of TOP3, TOP6, and ORI6 spectral features for change detection are 81.67%, 

87.05%, and 88.25%, respectively. These combinations of spectral features can provide 

similar results with high accuracy.  

Similar to the overall accuracy, the Kappa hat coefficient of NIR is quite 

low (47.71%), it is slightly higher when using TOP3 spectral features, and it is higher 

when using TOP6 and ORI6 spectral features with values of 73.98%, 76.46%, 

respectively. In other words, when applying more spectral features, the Kappa hat 

coefficient is higher. 

Interestingly, for the detection of changed pixels, all spectral feature 

combinations can achieve higher producer’s accuracy, 95.52%, 97.11%, 96.11%, and 

97.63%, respectively. For the detection of stable pixels, all spectral feature 

combinations can achieve higher user’s accuracy, 90.84%, 94.63%, 95.00%, 97.03%, 

respectively. For the changed pixels, the user’s accuracy is lower than the producer’s 

accuracy, and the user’s accuracy of the different spectral feature combinations are 
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69.00%, 76.20%, 81.79%, and 82.33%, respectively. For stable pixels, the producer’s 

accuracy is lower than the user’s accuracy, and the producer’s accuracy of different 

spectral feature combinations is 69.00%, 76.20%, 81.79%, and 82.33%, respectively. 

In consequence, it can be concluded that more spectral features can provide higher 

user’s accuracy for changed pixels and the producer’s accuracy for stable pixels. 

In general, the relative lower user’s accuracy indicates more commission 

errors than omission errors in change detection. The significant causes of commission 

errors are: (1) spectral characteristics are too sensitive for LULC changes, and (2) the 

existing clouds occur three or more times consecutively. 

Likewise, the relative lower producer’s accuracy indicates more 

omission errors than commission errors in change detection. The omission errors 

mostly result from some reasons: (1) partially changed pixels and (2) mutual 

interference of multiple spectral features. 

In general, in the case of change detection, when using fewer spectral 

features, the producer’s accuracy of the changed pixel has higher accuracy, and the 

user’s accuracy is lower, and it is easy to misjudge the stable pixel as the changed pixel, 

and the overall accuracy and Kappa hat coefficient of the change detection is low. When 

more spectral features are used, the producer’s accuracy of the changed pixel also has 

higher accuracy, and the user’s accuracy is higher, and the overall accuracy and Kappa 

hat coefficient of the change detection is high.  

The overall accuracy of TOP3, TOP6, and ORI6 spectral features is 

relatively close. When considering the computational efficiency of change detection, 

the time used for TOP3 spectral features is about three times of NIR band, and the time 

used for TOP6 and ORI6 spectral features is about six times of NIR band. Therefore, it 
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can be seen from the two aspects of change detection accuracy and time efficiency that 

TOP3 (NIR, EVI, and TCB) is the best combination of spectral features for change 

detection. 

Although the TOP6 and ORI6 spectral features take twice as long as 

TOP3 spectral features since the supervised classification algorithm is very fast 

compared to the unsupervised classification algorithm, then the difference in efficiency 

can be ignored, and the accuracy of TOP6 and ORI6 spectral features are higher than 

TOP3 spectral features. Therefore, TOP6 and ORI6 spectral features are suitable to 

apply for LULC classification in the actual use. 

 

7.4.2 Accuracy assessment for LULC classification 

The classified LULC maps in four different years (2000, 2006, 2011, 

and 2017) were further assessed their accuracies using 636 sample points based on the 

multinomial distribution with the desired precision of 5% and a level of confidence of 

95% using the stratified random sampling technique. Therefore, pan-sharpened images 

(Figure 6.25) as primary reference data and very high resolution satellite images from 

Google Earth (Figure 6.26) as the second reference data were again used for accuracy 

assessment of LULC classification in this study.  

Results of accuracy assessment of LULC classification with different 

spectral features in four different years, which include producer’s accuracy, user’s 

accuracy, overall accuracy, and Kappa hat coefficient are reported in Tables 7.10 to 

7.13 and displayed in Figures 7.17 to 7.18. The derived overall accuracy was compared 

and described in two aspects: spectral features and years. 
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Table 7.10 Accuracy assessment of LULC classification in 2000. 

NIR U A F W Row Total 

U 80 155 17 3 255 

A 5 174 11 0 190 

F 1 38 102 0 141 

W 0 0 0 50 50 

Column Total 86 367 130 53 636 

Producer’s accuracy (%) 93.02 47.41 78.46 94.34 
 

User’s accuracy (%) 31.37 91.58 72.34 100.00 
 

Overall accuracy (%) 63.84 

Kappa hat (%) 49.88 

TOP3 U A F W Row Total 

U 74 25 2 1 102 

A 11 344 13 0 368 

F 0 16 100 0 116 

W 1 1 0 48 50 

Column Total 86 386 115 49 636 

Producer’s accuracy (%) 86.05 89.12 86.96 97.96 
 

User’s accuracy (%) 72.55 93.48 86.21 96.00 
 

Overall accuracy (%) 88.99 

Kappa hat (%) 81.29 

TOP6 U A F W Row Total 

U 59 8 1 0 68 

A 4 411 11 0 426 

F 0 1 91 0 92 

W 0 0 0 50 50 

Column Total 63 420 103 50 636 

Producer’s accuracy (%) 93.65 97.86 88.35 100.00 
 

User’s accuracy (%) 86.76 96.48 98.91 100.00 
 

Overall accuracy (%) 96.07 

Kappa hat (%) 92.40 

ORI6 U A F W Row Total 

U 69 6 0 1 76 

A 2 403 2 0 407 

F 0 2 98 3 103 

W 0 0 0 50 50 

Column Total 71 411 100 54 636 

Producer’s accuracy (%) 97.18 98.05 98.00 92.59 
 

User’s accuracy (%) 90.79 99.02 95.15 100.00 
 

Overall accuracy (%) 97.48 

Kappa hat (%) 95.35 
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Table 7.11 Accuracy assessment of LULC Classification in 2006. 

NIR U A F W Row Total 

U 102 97 17 4 220 

A 14 204 25 0 243 

F 4 48 71 0 123 

W 0 0 0 50 50 

Column Total 120 349 113 54 636 

Producer’s accuracy (%) 85.00 58.45 62.83 92.59 
 

User’s accuracy (%) 46.36 83.95 57.72 100.00 
 

Overall accuracy (%) 67.14 

Kappa hat (%) 51.96 

TOP3 U A F W Row Total 

U 113 23 2 8 146 

A 9 267 6 1 283 

F 0 74 82 1 157 

W 1 0 0 49 50 

Column Total 123 364 90 59 636 

Producer’s accuracy (%) 91.87 73.35 91.11 83.05 
 

User’s accuracy (%) 77.40 94.35 52.23 98.00 
 

Overall accuracy (%) 80.35 

Kappa hat (%) 70.16 

TOP6 U A F W Row Total 

U 99 8 0 3 110 

A 3 324 8 0 335 

F 0 52 89 0 141 

W 0 0 0 50 50 

Column Total 102 384 97 53 636 

Producer’s accuracy (%) 97.06 84.38 91.75 94.34 
 

User’s accuracy (%) 90.00 96.72 63.12 100.00 
 

Overall accuracy (%) 88.36 

Kappa hat (%) 81.05 

ORI6 U A F W Row Total 

U 109 3 2 0 114 

A 1 319 4 4 328 

F 0 45 96 3 144 

W 0 0 0 50 50 

Column Total 110 367 102 57 636 

Producer’s accuracy (%) 99.09 86.92 94.12 87.72 
 

User’s accuracy (%) 95.61 97.26 66.67 100.00 
 

Overall accuracy (%) 90.25 

Kappa hat (%) 84.48 
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Table 7.12 Accuracy assessment of LULC classification in 2011. 

NIR U A F W Row Total 

U 112 88 19 5 224 

A 20 202 18 0 240 

F 27 17 78 0 122 

W 2 1 0 47 50 

Column Total 161 308 115 52 636 

Producer’s accuracy (%) 69.57 65.58 67.83 90.38 
 

User’s accuracy (%) 50.00 84.17 63.93 94.00 
 

Overall accuracy (%) 69.03 

Kappa hat (%) 54.91 

TOP3 U A F W Row Total 

U 139 30 2 1 172 

A 7 274 12 0 293 

F 0 22 99 0 121 

W 0 0 0 50 50 

Column Total 146 326 113 51 636 

Producer’s accuracy (%) 95.21 84.05 87.61 98.04 
 

User’s accuracy (%) 80.81 93.52 81.82 100.00 
 

Overall accuracy (%) 88.36 

Kappa hat (%) 82.42 

TOP6 U A F W Row Total 

U 140 9 0 1 150 

A 6 288 22 0 316 

F 0 27 93 0 120 

W 0 1 0 49 50 

Column Total 146 325 115 50 636 

Producer’s accuracy (%) 95.89 88.62 80.87 98.00 
 

User’s accuracy (%) 93.33 91.14 77.50 98.00 
 

Overall accuracy (%) 89.62 

Kappa hat (%) 84.08 

ORI6 U A F W Row Total 

U 137 6 1 1 145 

A 13 287 8 2 310 

F 0 17 106 8 131 

W 0 0 0 50 50 

Column Total 150 310 115 61 636 

Producer’s accuracy (%) 91.33 92.58 92.17 81.97 
 

User’s accuracy (%) 94.48 92.58 80.92 100.00 
 

Overall accuracy (%) 91.19 

Kappa hat (%) 86.74 
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Table 7.13 Accuracy assessment of LULC classification in 2017. 

NIR U A F W Row Total 

U 139 70 8 12 229 

A 50 163 20 1 234 

F 4 17 102 0 123 

W 0 2 0 48 50 

Column Total 193 252 130 61 636 

Producer’s accuracy (%) 72.02 64.68 78.46 78.69 
 

User’s accuracy (%) 60.70 69.66 82.93 96.00 
 

Overall accuracy (%) 71.07 

Kappa hat (%) 58.54 

TOP3 U A F W Row Total 

U 173 50 3 9 235 

A 27 181 25 0 233 

F 0 8 109 1 118 

W 0 0 0 50 50 

Column Total 200 239 137 60 636 

Producer’s accuracy (%) 86.50 75.73 79.56 83.33 
 

User’s accuracy (%) 73.62 77.68 92.37 100.00 
 

Overall accuracy (%) 80.66 

Kappa hat (%) 72.32 

TOP6 U A F W Row Total 

U 163 18 0 7 188 

A 23 245 10 3 281 

F 1 6 109 0 116 

W 0 1 0 50 51 

Column Total 187 270 119 60 636 

Producer’s accuracy (%) 87.17 90.74 91.60 83.33 
 

User’s accuracy (%) 86.70 87.19 93.97 98.04 
 

Overall accuracy (%) 89.15 

Kappa hat (%) 84.13 

ORI6 U A F W Row Total 

U 142 31 0 4 177 

A 31 228 7 6 272 

F 1 4 130 2 137 

W 0 1 0 49 50 

Column Total 174 264 137 61 636 

Producer’s accuracy (%) 81.61 86.36 94.89 80.33 
 

User’s accuracy (%) 80.23 83.82 94.89 98.00 
 

Overall accuracy (%) 86.32 

Kappa hat (%) 80.24 
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Figure 7.17 Comparison of the overall accuracy of four spectral features. 

 

 

Figure 7.18 Comparison of the overall accuracy of four years. 
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As shown in Figure 7.17, an average overall accuracy of LULC 

classification from different spectral features (NIR, TOP3, TOP6, and ORI6) in 2000, 

2006, 2011 and 2017 are approximately the same with the value of 86.60%, 81.53%, 

84.55%, 81.80%, respectively. Regardless of the impact of the year, the result of LULC 

classification with TOP6 and ORI6 spectral features can provide very high accuracy, 

followed by TOP3 spectral features. In contrast, the result of LULC classification with 

the NIR spectral feature provides the lowest overall accuracy. So, it can be concluded 

that as the number of spectral features applied to LULC classification increases, the 

overall accuracy of the LULC classification result also increases. 

Besides, an average overall accuracy of four different years from NIR, 

TOP3, TOP6 and ORI6 spectral feature in the Figure 7.18 is 67.77%, 84.59%, 90.80%, 

and 91.31%, respectively. As a result, it infers that when the number of spectral features 

increases, the overall accuracy increases.  

Furthermore, when we apply the same spectral feature(s) for different 

years, the overall accuracies are roughly the same. For NIR spectral feature, overall 

accuracy slightly increases over time. One possible reason for this observation might 

be the rapid urban development in the study area by converting agricultural land to 

urban and built-up land, and some agricultural land without crops are misclassified to 

urban and built-up land, so the overall accuracy slowly increases. 

For TOP3, TOP6, and ORI6, spectral features the overall accuracy is 

slightly reduced. The possible reason may be that in the early stage of urban 

development (2000), urban and built-up land is relatively concentrated, and most of the 

construction locates in the core area of the city. The pixels are mostly pure, and the 

LULC type is easy to be identified. However, in the later stage of urban development 
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(2017), other LULC types are converted into urban and built-up land, and the developed 

areas are more disperse, resulting in a large number of mixed pixels so, the LULC types 

are challenging to be identified. 

Moreover, Table 7.14 reports the average producer’s accuracy and 

user’s accuracy of LULC classification maps with different spectral features, and 

Figure 7.19 shows the average producer’s accuracy and user’s accuracy based on Table 

7.14. 

 

Table 7.14 Average producer’s accuracy and average user’s accuracy using 

supervised classification. 

Spectral  

feature(s) 
Accuracy 

The average value of each LULC type 
Average of 4 LULC type 

U A F W 

NIR 
Producer’s (%) 79.90 59.03 71.90 89.00 74.96 

User’s (%) 47.11 82.34 69.23 97.50 74.04 

TOP3 
Producer’s (%) 89.91 80.56 86.31 90.60 86.84 

User’s (%) 76.10 89.76 78.16 98.50 85.63 

TOP6 
Producer’s (%) 93.44 90.40 88.14 93.92 91.48 

User’s (%) 89.20 92.88 83.38 99.01 91.12 

ORI6 
Producer’s (%) 92.30 90.98 94.80 85.65 90.93 

User’s (%) 90.28 93.17 84.41 99.50 91.84 
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Figure 7.19 Producer’s accuracy and user’s accuracy. 
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confusion arises when classifying the three LULC types (urban and built-up land, 

agricultural land, and forest land) with the NIR band. 

Furthermore, the overall derived accuracy for multitemporal LULC 

classification with TOP6 and ORI6 in this study is comparable with that of other studies 

that applied time-series Landsat datasets to classify multitemporal LULC maps with a 

specific algorithm. For example, Gebhardt et al. (2014) applied 135 Landsat scenes to 

classify a series of seven maps of Mexico between 1993 and 2008 by using a decision 

tree algorithm, which provided an overall accuracy of about 76%. Zhu and Woodcock 

(2014b) applied their developed CCDC algorithm with random forests (RF) classifier 

to classify multitemporal land cover maps from time-series Landsat datasets (1982-

2011) in coastal New England, United States, achieving an overall accuracy of about 

90%. Gounaridis, Symeonakis, Chorianopoulos, and Koukoulas (2018) applied an RF 

classifier with time-series Landsat datasets (1991-2016) to classify LULC maps in 

Attica, Greece and attained an overall accuracy varying from 90.5% to 93.5%. Lu et al. 

(2018) applied Landsat images from 1990 to 2015 at five‐year intervals to classify 

impervious surface and non-impervious surface areas using a linear spectral mixture 

analysis of the six selected metropoles in the coastal and inland metropoles in 2015, 

achieving an overall accuracy varying from 94% to 95%. Mi et al. (2019) applied an 

RF classifier with time-series Landsat datasets (1987-2017) to detect the LULC 

changes in a mining area, achieving an average overall accuracy of about 84%. Buitre, 

Zhang, and Lin (2019) applied a support vector machine with time-series Landsat 

datasets (1987-2016) to classify mangroves, non-mangroves, seawater, and clouds in 

the Philippines and attained an average overall accuracy of about 84%. 
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Similar to unsupervised classification, pairwise Z-test is conducted to 

examine the significant difference of accuracy from four spectral feature(s) 

combination based on Kappa analysis using Eq 6.2 and Eq 6.3 as results shown in Table 

7.15. 

As a result, it can be seen that the values of the pairwise Z-test between 

the NIR spectral feature and the other three spectral features (TOP3, TOP6, ORI6) are 

higher than 1.96, which indicates that the classification accuracy of NIR is significantly 

different from the others. Also, the values of pairwise Z-test between TOP3 and the 

other two spectral features (TOP6 and ORI6) are almost higher than 1.96. This finding 

shows that the classification accuracy of TOP3 is also significantly different from the 

other two spectral features. Conversely, all of the pairwise Z-test values between TOP6 

and ORI6 spectral features are less than 1.96, indicating that the classification accuracy 

of TOP6 and ORI6 is insignificantly different. 

 

Table 7.15 Pairwise Z-test between different spectral features. 

 
NIR_TOP3 NIR_TOP6 NIR_ORI6 TOP3_TOP6 TOP3_ORI6 TOP6_ORI6 

2000 8.8971 * 13.3437 * 14.9653 * 4.2725 * 5.8159 * 1.5648 

2006 4.9034 * 8.2716 * 9.5748 * 3.4145 * 4.6869 * 1.2201 

2011 8.1973 * 8.7941 * 9.8944 * 0.6141 1.6748 1.0521 

2017 3.9157 * 7.9089 * 6.5023 * 4.0413 * 2.6100 * 1.4404 

Note * It is a significant difference of accuracy based on the Kappa hat coefficient. 

 

SUMMARY 

In this study, a new supervised classification method for multitemporal land use 

and land cover classification was successfully developed using harmonic analysis with 

a minimum spectral distance algorithm under the MATLAB environment through 

 



209 

 

systematic Landsat selection and time-series spectral reflectance reconstruction by 

converting the space domain to the time domain.  

By comparing the overall accuracy of change detection according to spectral 

feature, LULC change detection using NIR provided the least accuracy (74.70%). In 

contrast, the accuracy of TOP3, TOP6, and ORI6 spectral features were 81.67%, 

87.05%, and 88.25%, respectively. The combination of spectral features (TOP3, TOP6, 

and ORI6) provided similar and high accuracy. The overall accuracy of TOP3, TOP6, 

and ORI6 spectral features was relatively close. When considering the computational 

efficiency of change detection, the required processing time with TOP3 spectral 

features was about three times of NIR band, and the required processing time with 

TOP6 and ORI6 spectral features was about six times of NIR band. Therefore, it can be 

seen from the two aspects of change detection accuracy and time efficiency that TOP3 

(NIR, EVI, and TCB) is the best combination of spectral features for change detection. 

Of course, although the TOP6 and ORI6 spectral features take twice as long as TOP3 

spectral features since the supervised classification algorithm is very fast compared to 

the unsupervised classification algorithm, then the difference in efficiency can be 

ignored, and the accuracy of TOP6 and ORI6 spectral features are higher than TOP3 

spectral features. Consequently, TOP6 and ORI6 spectral features are suitable to apply 

for LULC change detection in the actual use. 

The average overall accuracy of LULC classification from different spectral 

features (NIR, TOP3, TOP6, and ORI6) in 2000, 2006, 2011, and 2017 were 

approximately the same with the value of 86.60%, 81.53%, 84.55%, 81.80%, 

respectively. Regardless of the impact of the year, the result of LULC classification 

with TOP6 and ORI6 spectral features provided very high accuracy, followed by TOP3 
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spectral features. In contrast, the result of LULC classification with the NIR spectral 

feature provided the lowest overall accuracy. So, it can be concluded that as the number 

of spectral features applied to LULC classification increases, the overall accuracy of 

the LULC classification result also increases. Besides, an average overall accuracy of 

four different years from NIR, TOP3, TOP6, and ORI6 spectral feature was 67.77%, 

84.59%, 90.80%, and 91.31%, respectively. As a result, it infers that when the number 

of spectral features increases, the overall accuracy increases.  

The values of the pairwise Z-test between the NIR spectral feature and the other 

three spectral features (TOP3, TOP6, ORI6) were higher than 1.96, which indicates that 

the classification accuracy of NIR is significantly different from the others. Also, the 

values of pairwise Z-test between TOP3 and the other two spectral features (TOP6 and 

ORI6) were almost higher than 1.96. This finding shows that the classification accuracy 

of TOP3 is also significantly different from the other two spectral features. Conversely, 

all of the pairwise Z-test values between TOP6 and ORI6 spectral features were less 

than 1.96, indicating that the classification accuracy of TOP6 and ORI6 is 

insignificantly different. 

Therefore, it can be concluded that the newly developed supervised 

classification method using harmonic analysis with a minimum spectral distance 

algorithm can be efficiently used to classify and map multitemporal land use and land 

cover and to detect its changes from time-series Landsat datasets with high reliability 

for the information. However, this developed classification method should be examined 

in other areas to determine its spatial and temporal transferability. Nevertheless, the 

presented workflow of the research methodology can be used as a guideline for software 

developers for (semi) automatic land use and land cover classification and mapping. 
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Furthermore, it can be stated that the derived overall accuracy and Kappa hat 

coefficient of classified LULC maps in 2000, 2006, 2011, and 2017 based on the 

developed supervised classification method (harmonic analysis with a minimum 

spectral distance algorithm) are obviously higher than the derived thematic accuracies 

using a traditional unsupervised method (ISODATA algorithm) (Table 7.16). 

Subsequently, it can be concluded that the newly developed supervised classification 

method with multi-spectral features can be efficiently applied to classify multitemporal 

LULC maps from time-series Landsat datasets with high reliability for the information. 

 

Table 7.16 Comparison of accuracy between unsupervised (ISODATA) and 

developed supervised classification methods. 

Spectral features Classification Method Accuracy 
LULC map in 

2000 2006 2011 2017 

NIR 

ISODATA algorithm 
OA 64.31 71.54 71.07 71.86 

Kappa 48.94 58.84 59.51 60.47 

Developed algorithm 
OA 63.84 67.14 69.03 71.07 

Kappa 49.88 51.96 54.91 58.54 

TOP3 

ISODATA algorithm 
OA 74.37 81.29 83.81 80.03 

Kappa 63.64 73.38 77.21 72.17 

Developed algorithm 
OA 88.99 80.35 88.36 80.66 

Kappa 81.29 70.16 82.42 72.32 

TOP6 

ISODATA algorithm 
OA 72.8 80.82 80.82 80.19 

Kappa 58.49 70.72 71.01 70.55 

Developed algorithm 
OA 96.07 88.36 89.62 89.15 

Kappa 92.4 81.05 84.08 84.13 

ORI6 

ISODATA algorithm 
OA 77.04 86.48 83.18 79.72 

Kappa 63.88 78.53 73.99 69.41 

Developed algorithm 
OA 97.48 90.25 91.19 86.32 

Kappa 95.35 84.48 86.74 80.24 

 

 

 



 

 

 

CHAPTER VIII  

IMPACT STUDY OF LAND USE AND LAND COVER 

CHANGE ON LAND SURFACE TEMPERATURE 

 

Land surface temperature (LST) is an essential parameter in the climate system. 

The dynamics of LST can furthermore be used as an indicator of climate variability and 

change (Arnfield, 2003; Bastiaanssen et al., 1998; Hansen et al., 2010; Kogan, 2001; 

Su, 2002; Voogt and Oke, 2003; Weng, 2009; Weng et al., 2004). LST is regularly 

measured from satellite sensors on-broad with moderately spatial scale and high 

temporal resolution, such as Landsat. In general, the derived LST data from thermal 

infrared (TIR) bands of a satellite is a crucial variable to understand the impacts of 

urbanization induced LULC change (Zhu and Woodcock, 2014b). A temporal analysis 

of thermal landscapes, therefore, requires the consideration of time-varying thermal 

characteristics. One way to avoid non-stationarity in modeling the temporal thermal 

landscape patterns is to divide time-series observations into individual segments that 

correspond to different land covers (Zhu and Woodcock, 2014b). As such, consistent 

time-series land surface temperature (TSLST) datasets are called for in revealing the 

urban thermal dynamics caused by land cover conversions (Weng et al., 2014). 

Nonetheless, at present, TSLST datasets at medium spatial resolution with regular 

temporal frequency are not available. 

Under this chapter, the Landsat data and MODIS product were first used to 

extract LST for each independent scene using the SC algorithm. Later, a corrected and 
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uncorrected LST cubes were constructed to indicate which pixel's LST values need to 

be recalculated. Finally, the incorrect LST data were replaced by the newly calculated 

LST data by the HA model, while the corrected LST data remain, thereby a time-series 

LST dataset was retrieval. 

Figure 8.1 shows the overview workflow and linkage of the impact study of 

LULC on LST, which consisted of four components. Details of the workflow of each 

component include input, process, and output are described separately in each section. 

 

Figure 8.1 Workflow of Component 5: Time-series LST retrieves and time-series 

LST reconstruction.  
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Single channel algorithm 

Original time series LST  

 Input  Process  Output 

Component 1 

Component 2 

Original time series LST  

Time series LULC 

Correct and incorrect LST 

indicator cube  

HA model 

Time series simulated LST 

Original time series LST  

Time series water vapor content 

Clearly observed and 

contaminated pixels 

Reclassify and multiplication 

operation 

Correct and incorrect LST 

indicator cube  

Original time series LST  

Time series simulated LST 

Correct and incorrect LST 

indicator cube  

Incorrect original LST identify and 

replace with simulated LST 

Reconstructed time series LST 

Reconstructed time series LST  

Time-series LULC 

LST decomposition analysis  

Impact of LULC on LST 

Component 3 

Reconstructed time series LST  

Time-series LULC 

Spatial analysis  

Impact of LULC change on LST 

Component 4 

 



214 

 

8.1 Time-series LST retrieve using Single Channel algorithm 

The LST is a highly variable quantity of the Earth’s surface, in both space and 

time. Its temporal variability mainly results from the annual and daily cycles of solar 

irradiation, which are further influenced by cloud cover and general weather situations. 

Spatial variability is governed by surface characteristics like albedo, emissivity, soil 

moisture, the heat capacity of the surface soil layers, and topography (Bonan et al., 1992; 

Foley et al., 2005; Lee et al., 2015; Mahmood et al., 2014; McPherson, 2007; Pielke, 

2005). 

The USGS (2017) pointed out that band 11 of Landsat 8 provides the more 

considerable uncertainty data, users should work with band 10 data of Landsat 8 as a 

single spectral band (like TM of Landsat 5, ETM of Landsat 7) and should not attempt 

a split-window correction using both TIRs bands 10 and 11 of Landsat 8. Consequently, 

the SC algorithm was applied to retrieve LST in this study (Figure 8.2). 
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Figure 8.2 Workflow of time-series LST retrieves using a single channel algorithm. 

 

The SC algorithm based on Jiménez-Muñoz and Sobrino (2003) was chosen for 

LST retrieve from Landsat series data using the following equation: 

𝑇𝑠 = 𝛾 [
1

𝜀
(𝜑1𝐿𝑠𝑒𝑛 + 𝜑2) + 𝜑3] + 𝛿  (8.1) 

where, Ts is land surface temperature, 𝐿𝑠𝑒𝑛 is the at-sensor radiance, ε is the 

surface emissivity, and (γ, δ) are two parameters given by: 

γ ≈
𝑇𝑠𝑒𝑛

2

𝑏𝛾𝐿𝑠𝑒𝑛
,  δ ≈ 𝑇𝑠𝑒𝑛 −

𝑇𝑠𝑒𝑛
2

𝑏𝛾
  (8.2) 

where, Tsen is the at-sensor Brightness Temperature (BT); bγ = c2/λ; and φ1, φ2, 

and φ3 are so-called atmospheric functions, given by: 

φ1 =1/τ; φ2 = -Ld - Lu/τ; φ3 = Ld  (8.3) 

where τ is the total atmospheric transmissivity, Ld is the down-welling radiance, 
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Lu is the up-welling atmospheric radiance. 

The practical approach proposed in the SC algorithm consists of the 

approximation of the atmospheric functions defined in Eq. 8.4 versus the atmospheric 

water vapor content 𝑤 from a second-order polynomial fit, expressed in matrix notation 

as follows (φ = 𝑐 𝑤): 

[

𝜑1

𝜑2

𝜑3

] = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] [
𝑤2

𝑤
w

]  (8.4) 

where coefficients cij are obtained by simulation.  

Alternatively, if atmospheric parameters τ, Lu, and Ld are known, the 

atmospheric functions can be calculated from Eq. 8.3, thus avoiding the empirical 

relationship versus 𝑤. 

The atmospheric functions φ1, φ2, and φ3 for Landsat series data can be obtained 

as a function of the total atmospheric water vapor content (w) using the following 

equations. 

For band 6 of Landsat 5 and Landsat 7 data: 

[

𝜑1

𝜑2

𝜑3

] = [
0.14714 −0.15583 1.1234
−1.1836 −0.37607 −0.52894
0.04554 1.8719 −0.39071

] [
𝑤2

𝑤
1

]  (8.5) 

(Jiménez-Muñoz et al., 2009; Sobrino et al., 2004) 

For band 10 of Landsat 8 data: 

[

𝜑1

𝜑2

𝜑3

] = [
0.04019 0.02916 1.01523

−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514

] [
𝑤2

𝑤
1

]  (8.6) 

(Jiménez-Muñoz et al., 2014). 

The required three parameters, including brightness temperature, emissivity, 

and water vapor content, were calculated as follows. 
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8.1.1 Brightness temperature 

The brightness temperature was calculated in two steps: (1) DNs to 

radiance, and (2) radiance to brightness temperature. 

Step 1. DNs to Radiance 

DNs of the thermal infrared band (band 6 of Landsat 5 and Landsat 7, 

and band 10 of Landsat 8) of all selected 388 Landsat images were processed in units 

of absolute radiance using 32-bit floating-point calculations. These values were then 

converted to 16-bit integer values in the finished Level-1 product. These values can 

then be converted to spectral radiance using the radiance scaling factors provided in the 

metadata file: 

𝐿𝜆 = 𝑀𝜆 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝜆 (8.7) 

where, 𝐿𝜆  is spectral radiance (W/(m2·sr·μm)), 𝑀𝜆  is radiance 

multiplicative scaling factor for the band from the metadata, 𝐴𝜆 is radiance additive 

scaling factor for the band from the metadata, 𝑄𝑐𝑎𝑙 is the L1 pixel value in DN. 

Step2. Radiance to brightness temperature 

The TIRs data were converted from spectral radiance to brightness 

temperature, which is the effective temperature viewed by the satellite under an 

assumption of unity emissivity. The conversion formula is as follows: 

𝑇 = 𝐾2 ln (
𝐾1

𝐿𝜆
+ 1)⁄  (8.8) 

where 𝑇 is brightness temperature in Kelvin (K), 𝐿𝜆 is spectral radiance 

(W/(m2·sr·μm)), K1, and K2 is thermal conversion constant for the band from the 

metadata. The derived outputs are further applied for LST retrieve.  
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An example of radiance and brightness temperature images from 

Landsat 5 and Landsat 7 is displayed in Figures 8.3 and 8.4, respectively. 

 

  

(a) (b) 

Figure 8.3 Spatial distribution of spectral radiance data: (a) Landsat 5, date 3 May 

2000, and (b) Landsat 7, date 4 May 2009. 

 

  

(a) (b) 

Figure 8.4 Spatial distribution of brightness temperature data: (a) Landsat 5, date 3 

May 2000, and (b) Landsat 7, date 4 May 2009. 

 



219 

 

8.1.2 Emissivity extraction 

In principle, the emissivity of an object is mainly determined by its 

thermo-physical characteristics. For the ground surface, the components composing the 

surface are the main factors determining the ground emissivity. At present, many 

effective methods have been approved to estimate the emissivity for LST retrieval. 

Since the emissivity is variable with the wavelength, the normalized difference 

vegetation index (NDVI) threshold method (Sobrino et al., 2008) can be used to 

estimate the emissivity of different land surfaces in the 10-12 μm range. Additionally, 

the spectral range of band 6 of Landsat 5/7 and band 10 of Landsat 8 is suitable in this 

range. At this wavelength range, the emissivity could be modeled as follows: 

휀𝜆 = {

휀𝑤

휀𝑠𝜆

휀𝑣𝜆 ∙ 𝑃𝑣 + 휀𝑠𝜆 ∙ (1 − 𝑃𝑣) + 𝐶𝜆

휀𝑣𝜆 ∙ 𝑃𝑣 + 𝐶𝜆

     

𝑁𝐷𝑉𝐼 ≤ 0
0 < 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣

  

 (8.9) 

subject to: 

𝐶𝜆 = (1 − 휀𝑠𝜆) ∙ 휀𝑣𝜆 ∙ 𝐹′ ∙ (1 − 𝑃𝑣) (8.10) 

where, ελ is the band emissivity, εvλ and εsλ are respectively the 

vegetation and soil emissivity, Pv is the proportion of vegetation, C is a term due to 

surface roughness (C = 0 for a flat surface), NDVIv and NDVIs are the NDVI for a fully 

vegetated pixel and a soil one, respectively, and F' is a geometrical factor ranging 

between zero and one. 

Generally, the vegetation cover fraction at the pixel scale can be 

computed from its NDVI as follows (Sobrino et al., 2004): 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
)

2

 (8.11) 
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Over particular areas, NDVIv and NDVIs values can be extracted from 

the NDVI histogram. Values of NDVIv = 0.5 and NDVIs = 0.2 were proposed to apply 

in global conditions (Sobrino et al., 2008). 

Meanwhile, the TIR band 10 of Landsat 8 is different from band 6 of 

Landsat 5 and 7. It is worth noting that most satellite sensors measure the outgoing 

radiation with a finite spectral-bandwidth, and the channel-effective quantities of 

interest, therefore a weighted average are expressed by Li et al. (2013) as: 

𝑋 =
∫ 𝑓(𝜆)𝑋(𝜆)𝑑𝜆

𝜆2
𝜆1

∫ 𝑓(𝜆)𝑑𝜆
𝜆2

𝜆1

 (8.12) 

where, X is a weighted average value of emissivity in the thermal 

infrared band, X(λ) is various spectral quantity considered as emissivity, λ1 and λ2 are 

the lower and upper boundaries of the wavelength in TIR channel, and f(λ) is the 

spectral response function. 

An example of the NDVI images is presented in Figures 8.5, while an 

example of emissivity data is shown in Figure 8.6. 

  

(a) (b) 

Figure 8.5 Spatial distribution of NDVI data: (a) Landsat 5, date 3 May 2000, and 

(b) Landsat 7, date 4 May 2009. 
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(a) (b) 

Figure 8.6 Spatial distribution of emissivity data: (a) 3 May 2000 and (b) 4 May 

2009. 

 

8.1.3 Water vapor content 

Since Landsat itself does not have a band that can be used to detect water 

vapor content. So, in this study, the MOD05_L2 product on the same day as Landsat 

was used to calculate water vapor content. The MOD05_L2 product of MODIS/Terra 

on the same day with the final selection of Landsat (5, 7, and 8) data were first 

downloaded from LAADS DAAC (https://ladsweb.modaps.eosdis.nasa.gov/). 

MODIS Reprojection Tool (MRT) and MRTSwath tool were used for 

reprojection and conversion of MODIS product to DN values of water vapor content. 

To retrieve the real value of water vapor content, the DN values were 

divided by the scaling factor (Scaling factor = 1000). 

𝑤 = DN/1000 (8.13) 

where 𝑤 is water vapor content in vertical column water vapor amounts 

(cm), DN is the pixel value. 

 

https://ladsweb.modaps.eosdis.nasa.gov/
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The MOD05_L2 of MODIS/Terra at the same with the final selection of 

Landsat data with a total of 388 images was downloaded reprojection and conversion. 

An Example of water vapor content is presented in Figures 8.7. 

  

(a) (b) 

Figure 8.7 Spatial distribution of water vapor content from the MODIS product: (a) 

Date 3 May 2000 and (b) Date 4 May 2009. 

 

Finally, the brightness temperature, the emissivity, and the water vapor content 

were used to invert the LST using Eq 8.1 as a result shown in Figures 8.8. 

  

(a) (b) 

Figure 8.8 Spatial distribution of land surface temperature data: (a) Landsat 5, date 

3 May 2000, and (b) Landsat 7, date 4 May 2009. 
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8.2 Time-series LST reconstruction 

LST related research of the past decades often focused on the analysis of a single 

scene. Due to the complexity of land surface and radiative transmission, LST inversion 

is a very complicated process, and various factors (data, algorithms, processing, etc.) 

introduce errors into single scene LST (Weng et al., 2014). 

So, the original time-series LST constructed from these single scene LSTs 

contains two kinds of values: correct and incorrect LST values. These incorrect LST 

values can be corrected based on correct LST values. Furthermore, the corrected 

incorrect LST values and correct LST values were used to reconstruct the new time-

series LST. 

In practice, new time-series LST reconstruction consisted of the essential four 

steps: (1) identification of correct and incorrect LST values from original time-series 

LST, (2) simulated LST recalculation using HA model, (3) time-series LST 

reconstruction combination from original and simulated time-series LST, and (4) LST 

reconstruction accuracy verification. 

 

8.2.1 Construction of spatiotemporal cube for correct and incorrect LST 

value 

The contaminated pixels (e.g., cloud, cloud shadow, Landsat 7 gap, etc.) 

of Landsat time-series data not only affect the classification of LULC but also lead to 

incorrect LST values. Therefore, the cube of the clearly observed and contaminated 

pixel, which calculated in the previous chapter, was used here to indicate the correct 

and incorrect LST values. 
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Radiative transfer equation (RTE) is the best option for LST retrieval 

from one thermal band since it does not involve additional approximations. However, 

this technique requires an accurate knowledge of atmospheric parameters such as 

transmissivity and atmospheric upwelling and downwelling radiances, which is not 

always possible. The SC algorithm has solved this problem by fitted atmospheric 

parameters versus more accessible parameters, but these relationships involve a strong 

approximation. Meanwhile, these relationships are not valid for a full range of water 

vapor content (𝑤) values but only for low/moderate 𝑤 values (𝑤 < 3 𝑐𝑚). When 𝑤 

values lower than 3 cm are selected, the SC algorithm provides RMSEs less than 2 K, 

while 𝑤 values higher than 3 cm are considered, the SC algorithm provides RMSEs 

higher than 5 K (Jiménez-Muñoz et al., 2009; Jiménez-Muñoz and Sobrino, 2003; 

Jiménez-Muñoz et al., 2014). The poor (incorrect) LST values retrieve by SC algorithm 

can identify base on 𝑤 (𝑤 higher or lower than 3 cm) values obtain from the MOD05 

product. 

Besides the above two main reasons for produce incorrect LST, some 

other occasional errors (e.g., data processing errors) can also cause the LST values to 

be outliers (very high or very low). In this study, the LST outlier was detected base on 

the mean ±3 standard deviation (SD). Any LST values higher than mean plus 3SD or 

less than mean minus 3SD are identified as an outlier (Shiffler, 1988).  

So, a spatiotemporal cube of correct and incorrect LST values was 

constructed based on three types of error sources as a summary in the following sections. 

(1) Spatiotemporal data error cube. The spatiotemporal data error 

cube of clearly observed and contaminated pixels, which was applied for unsupervised 

and supervised LULC classification, was directly used to indicate incorrect LST values 
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due to contaminated pixels in Landsat data. Herein. LST values that were calculated 

from clearly observed pixels are considered as corrected LST with a value of zero (0), 

while LST values that were calculated from contaminated pixels are considered as 

incorrect LST with a value of one (1). The value of spatiotemporal data error cube 

consists of 0 or 1.  

(2) Spatiotemporal algorithm cube. The time-series water vapor 

content with a total of 388 scenes (2D array) was converted from space to time using 

reshape function of MATLAB as “spatiotemporal water vapor content cube”, and then 

this cube was reclassified using threshold value by water vapor content depth of 3 cm 

as “spatiotemporal algorithm cube”. Herein, LST values that were calculated from 

pixels with water vapor content less than or equal three centimeters are considered as 

correct LST with value of zero (0), while LST values that were calculated from pixels 

with water vapor content higher than three centimeters are considered as incorrect LST 

with value of one (1). The value of spatiotemporal algorithm cube consists of 0 or 1. 

(3) Spatiotemporal LST outlier cube. Only the correct LST values of 

the original LST cube that indicates by data error and algorithm cubes were used to 

calculate the mean and standard deviation. Then, the combined cube was applied to 

reclassify and construct a “spatiotemporal LST outlier cube”. In this study, LST values 

within mean ±3 SD are here considered as corrected LST with a value of zero (0); others 

are considered as an outlier with a value of one (1). The value of spatiotemporal LST 

outlier cube consists of 0 or 1. 

Figure 8.9 shows a detailed flowchart of the construction of the 

spatiotemporal cube for correct and incorrect LST values in this study. 
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Figure 8.9 Workflow of Section 8.2.1: Identification of correct and incorrect LST 

values. 
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Figure 8.10 shows the histogram distribution of LST data from different 

sources. 

Figure 8.10(a) displays the histogram distribution of original LST values 

after retrieval by SC algorithm, LST values of clearly observed pixels are around 300 

K. On the contrary, the LST values of contaminated pixels are 0, these LST values (0 

K) are identified as incorrect LST values and are ignored under data error cube. 

Figure 8.10(b) shows the histogram distribution of LST values after 

correcting by spatiotemporal data error cube. Most of the LST values are around 300 

K. However, some LST values are around 350 K, and they are inconsistent with the 

actual temperature of Nanjing. Later, these higher LST values, which are caused by 

high water vapor content under the SC algorithm, were corrected using spatiotemporal 

algorithm cube based on threshold setting of water vapor content depth, as mentioned 

earlier.  

Figure 8.10(c) displays the histogram distribution of LST values after 

correcting by algorithm cubes. Most of the LST values are around 300 K, but there are 

still some outliers around 180 K and 350 K, these outliers are identified by 

spatiotemporal LST outlier cube. In this study, LST values that are higher than 

294.12+3*13.3 or less than 294.12-3*13.3 are considered here as an outlier. 

Figure 8.10(d) shows the distribution of LST values after correcting by 

LST outlier cubes. All of the remaining LST values are around 300 K. Basic statistic 

data of LST values in different stages of processing, as displayed in Figure 8.10, is 

summarized in Table 8.1. 
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(a) (b) 

  

(c)  (d) 

Figure 8.10 Histogram distribution of LST values in different stages of processing: 

(a) original LST values by SC algorithm, (b) after applying data error cube, (c) after 

applying algorithm cube, and (d) after applying LST outlier cube. 

 

Table 8.1 The mean and standard deviation of LST data in different processing 

steps. 

Processing stage Mean SD 

Original LST values by SC algorithm (Figure 8.10(a)) 302.0 25.6 

LST values after applying data error cube (Figure 8.10(b)) 303.6 24.8 

LST values after applying algorithm cube (Figure 8.10(c)) 294.1 13.3 

LST values after applying the LST outlier cube (Figure 8.10(d)) 294.2 10.7 

 

In order to ensure the integrity of the original LST cube (1844 * 2000 * 

388) for data analysis in MATLAB, no LST values were deleted from this cube, and 

only three spatiotemporal cubes (data error cube, algorithm cube, and LST outlier cube) 

were applied to construct time-series corrected LST data.   
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8.2.2 Simulated LST recalculation using the HA model 

Refer to the previous section, incorrect LST values need to be identified 

and recalculated. Here, the original time-series LST cube (value in the cube is LST), 

spatiotemporal cube for correct and incorrect LST (multiplication of data error cube, 

algorithm cube, and LST outlier cube) with value of 0 or 1, and LULC cube (value in 

the cube is 1 to 4; U = 1, A = 2, F = 3, and W = 4) were used to recalculate simulated 

LST using HA model. 

The original time-series LST of each location is divided into a LULC 

time-series homogeneous segment (period), in which the harmonic terms of LST were 

constant in each segment. Then the selected correct LST values according to 

spatiotemporal cube for correct and incorrect LST were used to fit the harmonic 

function curve (calculate harmonic parameters), and the simulated LST values can be 

recalculated at any time according to the harmonic parameters.  

Figure 8.11 shows a detailed flowchart for simulated LST recalculation 

using the HA model. Brief information for time-series recalculation of essential five 

steps is described in the following sections. 
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Figure 8.11 Workflow of Section 8.2.2: Simulated LST recalculation using the HA 

model. 
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Step 1. The original LST cube (3D array, 1844 * 2000 * 388) was 

reshaped to a matrix (2D array, 3680000 * 388) under MATLAB. Likewise, correct 

and incorrect (indicator) LST cube and LULC cube were also reshaped to a matrix. The 

values from these three matrices were read row by row as vector (1D array, 1*388). 

Step 2. The original LST vector was here divided into the LST segment 

based on the homogeneity of the LULC type in the LULC vector. Then the correct LST 

values were identified and selected from the correct and incorrect LST (indicator) 

vector. 

Step 3. The selected correct segment of LST values was then used to fit 

the harmonic curve and calculate harmonic parameters (4 harmonic parameters per LST 

segment). 

Step 4. The harmonic parameters were used to recalculate the simulated 

LST by the HA model. 

Step 5. Steps 2 to 4 were here repeated 3,680,000 times. These results 

were recorded and saved as a matrix of 3680000 * 388, which was then be converted 

into a simulated LST cube (1844 * 2000 * 388) using MATLAB. 

Figure 8.12 shows the primary calculation process and the results of one 

row of data from the three matrices (original LST, correct and incorrect LST, and LULC 

vectors). 
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Scene 1 2 … 232 233 234 235 … 387 388 

LULC 2 2 … 2 2 1 1 … 1 1 

LST 273.46 284.94 … 278.86 279.83 287.85 288.86 … 283.22 283.60 

Indicator 1 0 … 1 1 0 0 … 0 0 
 

(a) Original LST values (388 scenes) 

 

 Period 1 Period 2 

Scene 2 4 … 229 230 234 235 … 387 388 

LULC 2 2 … 2 2 1 1 … 1 1 

LST 284.94 291.21 … 278.03 275.89 287.85 288.86 … 283.22 283.60 
 

(b) Segmented and correct LST base on LULC and Indicator (174 scenes) 

 

 LULC Intercept Slope Amplitude Phase 

Period 1 2 297.99 3.88 -17.32 -18.80 

Period 2 1 300.20 1.64 -18.36 0.01 

 

 Period 1 Period 2 

Scene 1 2 … 232 233 234 235 … 387 388 

LST 280.70 285.41 … 283.34 284.34 289.04 293.31 … 285.70 284.51 
 

(c) Simulated LST recalculate using HA for each period based on harmonic terms (388 scenes) 

Figure 8.12 Main calculation process and results of one row of data. 
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Figure 8.12(a) shows input vector data of one pixel of 388 scenes read 

from the original LST matrix, correct and incorrect LST (indicator) matrix, and LULC 

matrix. As a result, the LULC vector indicates about spatiotemporal LULC change for 

the whole study period (388 dates) implies how LULC change, and when LULC take 

place. The LST vector shows a variation of LST values in one location for the whole 

study period (388 dates). The indicator of the correct and incorrect LST with a value of 

0 (correct) and 1 (incorrect) shows which values of the LULC vector and LST vector 

were used for further data analysis. Meanwhile, the LST vector (388 scenes) are plotted 

and shown in the figure. It can be seen that most of the LST values oscillate above and 

below 300 K, but some of the values are very high or very low. 

Figure 8.12(b) shows that the original LST vector is divided into two 

segments (periods) based on the LULC vector, and only correct LST values are selected 

base on correct and incorrect LST values indicator vector. Moreover, only 174 scenes 

remain, as shown in the figure. As a result, the LST value fluctuates 18 times with the 

season (corresponding to the Landsat data used from 2000 to 2017). 

Figure 8.12(c) shows the harmonic function parameters of two periods, 

which represent the stability of the LULC type. Meanwhile, the simulated LST of 388 

scenes, which were recalculated from parameters, is plotted as a harmonic function 

curve, as shown in the figure. 
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8.2.3 Time-series LST reconstruction 

In this section, the original LST cube and simulated LST cube were 

combined according to the correct and incorrect LST indicator cube. The values of the 

reconstructed LST cube were recalculated using the equation as follow: 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑐𝑢𝑡𝑒𝑑 𝐿𝑆𝑇 = {
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑆𝑇, LST indicator = 0

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐿𝑆𝑇, LST indicator = 1
 (8.14) 

Figure 8.13 shows the detailed flowchart for the time-series LST 

reconstruction, while Figure 8.14 presents a schematic diagram of LST reconstruction 

based on the correct and incorrect LST indicator, the original LST, and the simulated 

LST with a 2D matrix. 

 

 

Figure 8.13 Workflow of Section 8.2.3: Time-series LST reconstruction. 
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Figure 8.14 Schematic diagram of LST reconstruction based on the LST indicator, 

the original LST, and the simulated LST. 

 

As shown in Figure 8.14, if the LST indicator shows the original LST 

values are correct (gray color in the left side of LST indicator matrix), the reconstructed 

LST values are taken from original LST (blue color in the left side of original LST 

matrix); while the LST indicator shows the original LST values are incorrect (black 

color in the right side of LST indicator matrix), the reconstructed LST values are taken 

from simulated LST (green color in the right side of simulated LST matrix). Based on 

this method, a new LST cube with a dimension of 1844 * 2000 * 388 was first 

reconstructed and then reshaped from time to space to create a time-series LST dataset 

of 388 dates. 

Figure 8.15 shows the results of reconstructed LST of one pixel of 388 

LST data, as applied in Figure 8.12. This figure is here only used to illustrate the result 

of LST reconstruction for a single row (a vector) in the matrix of 3680000 * 388. 
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Figure 8.15 Reconstructed LST data. 

 

In actual operation, the reconstruction of LST was directly based on 

these three cubes (original LST cube, simulated LST cube, and correct and incorrect 

LST indication cube). In this way, the time-series LST dataset was automatically 

reconstructed under MATLAB. Figure 16 shows one scene from the time-series LST 

dataset (388 scenes), date 30 October 2010, in different processing steps. Meanwhile, 

basic statistical data of LST from different processing steps are reported in Table 8.2. 

Figure 16(a) shows one scene from the original LST data. The LST 

values range from Mean – 3 SD (288.0 K, 14.8 °C) to Mean + 3 SD (301.6 K, 28.5 °C). 

On the left side of this figure (white stripe), some LST values are missing due to the 

Landsat 7 gap. At the upper right of this figure (blue patch), due to the influence of the 

atmosphere, the LST values are significantly lower than the surrounding area. 

Figure 16(b) shows one scene from the simulated LST, the LST values 

range from Mean – 3 SD (290.4 K, 17.2 °C) to Mean + 3 SD (299.1 K, 25.9 °C). The 

LST values in this figure are calculated from four harmonic terms (intercept, slope, 

amplitude, and phase). 
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Figure 16(c) shows one scene from the reconstructed LST. The LST 

values range from Mean – 3 SD (289.1 K, 15.9 °C) to Mean + 3 SD (300.7 K, 27.6 °C). 

The LST values of the white stripe and blue patch are replaced with simulated LST. 

  

(a) (b) 

 

(c) 

Figure 8.16 Reconstruction of LST data of Landsat 7, date 30 October 2010: (a) LST 

from original LST, (b) LST from simulated LST, and (c) LST from reconstructed LST. 

 

Table 8.2 The mean and SD of LST data. 

 Mean SD Mean - 3SD Mean + 3SD 

Original LST (K) 294.8 2.3  288.0  301.6  

Simulated LST (K) 294.7 1.5  290.4  299.1  

Reconstructed LST (K) 294.9 1.9  289.1  300.7  
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8.2.4 Verification of simulated LST data 

The reconstructed LST value comes from two parts, one from the 

original real LST inversion value (when the indicator shows that the original LST value 

is correct), and the other comes from the simulated LST value based on HA 

recalculation (when the indicator shows that the original LST value is incorrect). In this 

study, the calculated LST values using the SC algorithm with depth of water vapor 

content less or equal three centimeters are acceptance as suggested by Jiménez-Muñoz 

et al. (2009). Meanwhile, the simulated LST values with the depth of water vapor 

content higher three centimeters or contaminated pixels or outliers are required to verify 

whether the calculated values are consistent with the actual ground temperature values. 

However, in actual operation, it is difficult to obtain the precise ground temperature of 

this part because of the atmospheric influence (cloud, water vapor) and other conditions, 

which makes it difficult to verify the accuracy of this simulated value directly.  

In this study, mean error (ME) and mean absolute error (MAE), which 

frequently used to measure the difference between two continuous variables (Cort and 

Kenji, 2005; Nijbroek et al., 2018), was applied to verify the accuracy of simulated LST. 

In practice, the simulated LST data were compared with estimated LST using the SC 

algorithm. Figure 8.17 shows a schematic diagram of simulated LST data verification 

with a 2D matrix. 
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Figure 8.17 Schematic diagram of LST reconstruction accuracy verification. 

 

As shown in Figure 8.17, the left box of the LST indicator indicates 

correct data from the original LST, while the right box LST indicator represents 

incorrect data from the original LST. In theory, it is necessary to verify the reliability 

of replacing the original LST values (blue color on the right box of the original LST) 

with incorrect values by the simulated LST values (green color on the right box of 

simulated LST by HA). However, the verification of the simulated LST values (right 

box of simulated LST by HA) that are replaced on the incorrect original LST (blue color 

on the right box of the original LST) is impossible, as mentioned earlier. Therefore, the 

simulated LST values on the left box of the simulated LST by HA were verified with 

the correct original LST on the left box by using the following equations (Cort and 

Kenji, 2005; Nijbroek et al., 2018). 

𝑀𝐸 =
∑ (𝑦𝑖−𝑥𝑖)𝑛

𝑖=1

𝑛
 (8.15) 
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𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
 (8.16) 

where 𝑥𝑖  is the correct original LST values, 𝑦𝑖  is the corresponded 

simulated LST values, and n is the total number of correct LST pixels of all 388 dates. 

In this study, the mean error (ME) value between the simulated LST 

recalculated from the HA model, and the original LST is 0.015 K while mean absolute 

error which ignores positive and negative offset is 3.520 K. As a result, the replacement 

of simulated LST value on the incorrect original LST value can be accepted since ME 

value is less than 1 K as suggested by Jiménez-Muñoz et al. (2009). 

 

8.3 LST decomposition analysis and impact of LULC on LST 

In this section, the reconstructed LST was decomposed into three parts: trend 

component (intercept and slope), seasonality component (amplitude and phase), and 

residual component according to LULC type of each pixel. 

Firstly, the harmonic parameters (intercept, slope, amplitude, and phase) were 

reclassified and grouped into four groups accord to LULC types (U, A, F, and W). 

Secondly, the harmonic parameters were also reclassified into 18 subgroups of 

the previous four LULC groups according to the persistent years (1 year to 18 years). 

Finally, the harmonic parameters that relate to the conversion of agricultural 

land, forest land and water bodies into urban and built land were selected and 

categorized into three groups (from A to U, from F to U, and from W to U). 

Figure 8.18 shows the detailed flowchart of LST decomposition analysis and 

the impact of LULC on LST. Brief information on LST decomposition and impact of 

LULC on LST is described and discussed in the following sections. 
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Figure 8.18 Workflow of Section 8.3: LST decomposition analysis and impact 

study of LULC on LST. 
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8.3.1 LST decomposition 

The occurrence of LULC changes may induce non‐stationarity in a 

TSLST dataset since surface thermal responses are different before and after land‐cover 

conversions (Weng et al., 2014). To analyze the time‐varying surface thermal 

characteristics, the time-series LST were first divided into temporally homogeneous 

segments (periods) in which the trend component value and the seasonality component 

value were constant. Then, a decomposition scheme of a time-series additive model 

comprising the seasonality component and the trend component (Eq. 8.17) was applied 

to both stable and unstable pixels. The LOcally wEighted regreSsion Smoother 

(LOESS) scheme was utilized for decomposition due to its ability to reduce the outlier 

effects (Cleveland, Cleveland, McRae, and Terpenning, 1990). The equations that were 

modified from (Fu and Weng, 2016) were applied to calculate these components as 

follows: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 휀 (8.17) 

𝑇𝑡 = 𝑎 + 𝑏𝑡 (8.18) 

𝑆𝑡 = 𝐴 𝑐𝑜𝑠 (
2𝜋

𝑇
𝑡 − 𝜑) (8.19) 

where, Yt is the time-series observations, Tt is the trend component, St is 

the seasonality component, and ε is the noise. a and b are the coefficients for the fitted 

linear trend, t is the Julian day, A and 𝜑 are the coefficient and periodic frequency for 

the harmonic item, T=365. 

Meanwhile, a linear change was assumed to characterize the gradual 

change over the years. Eventually, the number of the harmonic terms (variable N) was 

adopted due to its ability to deal with the irregular spaced remote sensing time-series 

and to characterize the complex periodic patterns (Verbesselt, Hyndman, Newnham, et 
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al., 2010; Verbesselt, Hyndman, Zeileis, and Culvenor, 2010). The decomposition 

procedure was here applied to each pixel in the study area. 

Figure 8.19 shows a result of the LST decomposition procedure using 

time‐series LST at one point where land cover changed from agricultural land to urban 

and built-up land. Figure 8.19(a) compares a result of the original LST and 

reconstructive LST. Meanwhile, Figure 8.19(b-d) shows the trend component, 

seasonality component, and modeling residues (differences between reconstructed LST 

and trend component + seasonality component), respectively. As a result, the absolute 

mean residue for this point from all 388 scenes is only 2.4 K. The lower residue means 

that the error is smaller when reconstructed LST is only represented by the trend 

component (intercept and slope) and seasonality component (amplitude and phase). In 

other words, the error of representing reconstructed LST values on 388 dates of this 

pixel by eight harmonic terms (4 harmonic terms per period) is only 2.4K. In this study, 

it is possible to analyze the effect of LULC on LST (all pixels of all dates) with a small 

error by using the trend and seasonal components comprehensively instead of the 

reconstructed LST of all the pixels. 
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(a) 

 

(b) 

Figure 8.19 LST decomposition procedure using time‐series LST at one point: (a) 

Original and reconstructed LST, (b) Trend component, (c) Seasonality component, and 

(d) Residue. 
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(c) 

 

(d) 

Figure 8.19 (Continued). 
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Table 8.3 shows an example of a final result of the harmonic parameters 

of each pixel of each period. 

 

Table 8.3 Final result of harmonic parameters of some pixels from all periods. 

Pixel No. Period (Julian day) 
Harmonic terms of LST 

LULC type 
Intercept Slope(E-4) Amplitude Phase 

(1, 2000) 1-6545 294.89 -0.99 -13.76 -0.21 4 

… … … … … … … 

(24,1211) 
1-3976 299.26 -1.05 -17.05 6.29 2 

3977-6545 293.72 5.45 -14.25 0.02 3 

… … … … … … … 

(1844, 2000) 1-6545 298.95 -2.09 -17.12 -17.69 2 

 

8.3.2 Impact of LULC on LST 

The impact of LULC on LST was assessed based on the derived 

harmonic term of LST from 18 years, In this study, three aspects include (1) average 

value of harmonic terms of LST of different LULC types; (2) relationship between 

harmonic terms of LST and persistent year of LULC type; and (3) impact of LULC 

change on harmonic terms of LST were here investigated. Brief information on the 

method and results are separately describe and discussed in the following sections. 

(1) Average value of harmonic terms of LST of different LULC types 

In this study, the value of the harmonic term (intercept, slope, amplitude, 

and phase) of LST of each LULC type (U, A, F, W) were first counted based on the 

classified LULC data from 388 dates. Then, the number of each harmonic term of each 

LULC type were plotted as histogram distribution for comparison of each harmonic 

term value. Since the sample size and bin width of the histogram from different LULC 

types are different, it is difficult to compare them. Herein, standard histogram and 
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normalized histogram were presented. Besides, the average value of the harmonic term 

(intercept, slope, amplitude, and phase) of the LST of each LULC type (U, A, F, W) 

was also extracted and compared to their values. 

The result of standard and normalized histogram distribution of intercept, 

slope, amplitude, and phase of LST for four different LULC types is displayed in Figure 

8.20. Meanwhile, the average value of four harmonic terms of LST of four LULC types 

is presented in Figure 8.21.  
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Intercept Intercept 

  

Slope Slope 

  

Amplitude Amplitude 

  

Phase Phase 

(a) (b) 

Figure 8.20 Distribution of frequency and probability of intercept, slope, amplitude, 

phase for four different LULC types: (a) original histogram distribution of harmonic 

term and (b) normalization of histogram distribution of harmonic term. 
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(a) Intercept (b) Slope 

  

(c) Amplitude (d) Phase 

Figure 8.21 Comparison of four harmonic terms between four different LULC types. 

 

As a result, in Figure 8.20 and Figure 8.21, intercept, slope and 

amplitude of urban and built-up land (U) have the highest value, followed by 

agricultural land (A), forest land (F), and water bodies (W) has the lowest value. 

When we pay attention to the phase value, it was found that the phase 

value of the water body is only 1.4 days. This finding indicates that the temporal change 

of water bodies’ temperature is very low; in other words, temperatures of water bodies 

in different periods are the same or similar. That is, extreme values (the maximum and 

minimum values per year) of LST values are reached at a similar time of each year, and 

the difference does not exceed two days. On the contrary, for non-water body areas, the 

time at which the LST values reaches the extreme value varies more than twelve days. 
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(2) Relationship between harmonic terms of LST and persistent year of 

LULC type 

In this study, the relationship between harmonic terms of LST and 

persistent year of LULC type were examined by two approaches: simple chart and 

simple linear regression based on the extracted value of a persistent year of four 

harmonic terms of LST of LULC types. In detail, the simple linear regression analysis 

between the harmonic term of LST of each LULC type and persistent year in 18 years 

was here examined to identify the suitable harmonic term of LST for describing its 

relationship with the persistent year of each LULC type using correlation coefficient as 

suggested by Cohen (1988). In statistics, the correlation coefficient (r) measures the 

strength and direction of a linear relationship between two variables on a scatterplot 

(Table 8.4). 

Table 8.4 Scale of the correlation coefficient. 

Value of r Meaning of r 

-1 A perfect negative linear relationship 

-1< r < -0.5 A strong negative linear relationship 

-0.5< r < -0.3 A moderate negative relationship 

-0.3< r < -0.1 A weak negative linear relationship 

0 No linear relationship 

0.1< r < 0.3 A weak positive linear relationship 

0.3 < r < 0.5 A moderate positive relationship 

0.5 < 1 A strong positive linear relationship 

1 A perfect positive linear relationship 

Source: Modified from Cohen (1988). 

 

The result of the extracted value of a persistent year of four harmonic 

terms of LST of LULC types is reported in Table 8.5 and displayed in Figure 8.22. 

 

 



 

 

 

2
5
1

 

Table 8.5 The time-weighted average of different persistent time of four harmonic terms of four different LULC types. 

LULC Persistent time (years) 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  

U 

Intercept 302.5  299.4  295.9  293.4  298.5  299.2  300.6  299.6  299.4  300.2  301.6  302.0  302.0  301.9  302.2  302.0  301.9  301.7  

Slope -11.9  5.4  11.1  12.0  4.3  3.2  1.0  2.5  3.4  1.9  -0.4  -1.0  -1.0  -0.4  -0.7  0.1  0.0  0.8  

Amplitude 18.7  18.2  18.2  17.7  17.8  17.9  18.0  18.3  18.6  18.6  18.8  18.7  18.7  19.2  19.4  19.8  19.8  20.0  

Phase -1.9  -2.2  -2.3  -2.9  -4.0  -5.4  -7.4  -8.4  -9.1  -9.7  -11.2  -13.0  -14.0  -15.5  -17.6  -19.0  -19.0  -22.0  

A 

Intercept 305.3  299.2  296.6  296.4  298.4  299.4  299.6  299.1  298.9  299.1  299.5  299.9  299.9  299.6  299.5  299.5  299.4  299.2  

Slope -24.3  6.5  14.0  7.4  6.9  3.9  3.1  4.2  6.4  3.9  1.4  0.4  0.1  0.7  0.1  -0.9  -1.1  -0.1  

Amplitude 18.1  17.9  17.7  17.7  17.5  17.6  17.2  17.4  17.9  17.6  17.6  17.8  17.8  17.8  17.4  17.0  16.8  16.9  

Phase -1.9  -1.6  -1.7  -1.6  -2.5  -3.7  -4.3  -4.9  -3.9  -6.8  -11.3  -16.1  -16.0  -17.3  -18.1  -18.8  -19.1  -17.4  

F 

Intercept 307.0  297.5  294.7  291.9  296.0  297.3  298.8  297.8  297.7  298.4  299.0  299.3  299.4  298.9  298.9  298.4  298.4  297.5  

Slope -15.4  9.6  11.3  10.5  4.0  1.4  -1.1  1.0  1.1  -0.1  -1.9  -2.8  -3.3  -2.4  -2.5  -2.0  -2.1  -1.2  

Amplitude 16.9  16.7  16.5  15.7  15.5  15.5  15.6  16.1  16.0  16.2  16.0  16.2  16.0  16.1  16.2  16.5  16.3  15.8  

Phase -2.1  -1.5  -1.7  -2.5  -3.2  -4.1  -5.2  -6.5  -6.6  -8.1  -10.1  -11.0  -10.1  -11.6  -12.3  -13.5  -14.8  -16.6  

W 

Intercept 299.4  297.6  294.3  297.2  297.0  297.3  297.3  297.6  297.4  297.4  297.2  297.7  297.7  297.1  297.0  297.2  297.4  295.1  

Slope -2.2  7.9  10.2  2.4  3.6  1.9  1.6  0.7  0.9  0.3  -0.2  -0.6  -1.6  -0.9  -0.6  -1.5  -1.6  -1.2  

Amplitude 17.4  17.3  17.2  17.5  17.3  17.1  16.8  17.3  17.0  17.3  16.7  17.5  16.6  16.8  16.6  16.7  16.8  13.8  

Phase -1.2  -0.5  -0.4  0.0  -0.6  -0.7  -0.6  -0.6  -1.4  -2.5  -0.3  -1.9  -2.9  -2.4  -2.8  -4.3  -7.5  3.7  
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(a) (b) 

  

(c) (d) 

Figure 8.22 The relationship between persistent time and the value of four harmonic 

terms for four different LULC types: (a) intercept, (b) slope, (c) amplitude, and (d) 

phase. 

 

As results in Table 8.5 and Figure 8.22, if we observed the relationship 

between intercept of LST and LULC type, the persistent time for stability of each LULC 

is different. In this study, the persistent years for a stability of intercept of LST of water 

bodies start after four years while the persistent years for a stability of intercept of LST 

of agricultural land start after seven years but the persistent years for a stability of 

intercept of LST of urban and built-up land and forest land start after 11 years. These 

findings indicate the development stages of each LULC type. For example, urban and 

built-up land require some years to complete the development stage with full complete 

landscaping. 
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Meanwhile, if we observed the relationship between the slope of LST 

and LULC type, the persistent time for stability of each LULC is different. Herein, the 

persistent year for the stability of slope of LST of water bodies starts after eight years, 

but the persistent years for the stability of slope of LST of urban and built-up land, 

agricultural land, and forest land start after 11 years. 

Furthermore, if we observed the relationship between the amplitude of 

LST and LULC type, the persistent time for stability of each LULC is different. Herein, 

the persistent years for a stability of amplitude of LST of water bodies start after six 

years while the persistent years for a stability of amplitude of LST of forest land start 

after eight years but the persistent years for a stability of amplitude of LST of urban 

and built-up land and agricultural land cannot be observed here. 

Additionally, if we observed the relationship between the phase of LST 

and LULC type, the value of the phase of LST is not stable as the persistent time 

increases. Herein, the phase of LST of urban and built-up land, agricultural land, forest 

land, and water bodies decrease while the persistent time increase. 

Meanwhile, linear regression equations with r and R2 values for the 

relationship between harmonic terms of LST of each LULC type and its persistent year 

of each LULC type are reported in Table 8.6.  
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Table 8.6 Linear regression of persistent years and values of four harmonic terms. 

LULC type Harmonic terms Linear regression 

U 

Intercept y = 0.2739x + 297.61 R² = 0.3647, r = 0.6039 

Slope y = -0.2479x + 4.0348 R² = 0.0676, r =-0.2601 

Amplitude y = 0.1111x + 17.635 R² = 0.7116, r = 0.8436 

Phase y = -1.2102x + 1.2446 R² = 0.9826, r = -0.9913 

A 

Intercept y = -0.0098x + 299.46 R² = 0.0009, r = -0.0296 

Slope y = -0.0846x + 2.6104 R² = 0.0036, r = -0.0596 

Amplitude y = -0.0436x + 17.954 R² = 0.4049, r = -0.6363 

Phase y = -1.2678x + 2.7754 R² = 0.8890, r = -0.9429 

F 

Intercept y = 0.0273x + 297.9 R² = 0.0025, r = 0.0505 

Slope y = -0.3722x + 3.7583 R² = 0.1060, r = -0.3255 

Amplitude y = -0.0092x + 16.194 R² = 0.0170, r = -0.1305 

Phase y = -0.8956x + 0.6382 R² = 0.9762, r = -0.9880 

W 

Intercept y = -0.0379x + 297.53 R² = 0.0374, r = -0.1935 

Slope y = -0.4007x + 4.8657 R² = 0.4150, r = -0.6442 

Amplitude y = -0.0924x + 17.751 R² = 0.3581, r = -0.5985 

Phase y = -0.1469x - 0.1076 R² = 0.1212, r = -0.3481 

 

As a result, the relationship between four harmonic terms of LST for 

urban and built-up land and persistent year provide different strength and direction of a 

linear relationship. The amplitude and intercept of LST have a strong positive linear 

relationship with persistent year, the r value of 0.8436, and 0.6039, respectively, while 

the phase of LST shows a strong negative linear relationship with persistent year, r 

value of -0.9913. In contrast, the slope of LST shows a weak negative linear relationship 

with persistent year, r value of -0.2601. This finding implies that when a persistent year 

of urban and built-up land increases, the value of the intercept and amplitude of LST in 

urban and built-up land increases. 

Meanwhile, the relationship between four harmonic terms of LST for 

agricultural land and persistent year also provide different strength and direction of a 
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linear relationship. The amplitude and phase of LST have a strong negative linear 

relationship with persistent years of agricultural land, r value of -0.6363, and -0.9429, 

respectively. This finding implies that when a persistent year of agricultural land 

increases, the value of the amplitude and phase of LST in agricultural land decreases. 

On the contrary, there is no linear relationship between intercept and slope of LST with 

a persistent year in agricultural land. The derived equations only provide the r value of 

-0.0296 and -0.0596, respectively. 

For the meantime, the relationship between four harmonic terms of LST 

for forest land and persistent year also provide different strength and direction of a 

linear relationship. The phase of LST has a strong negative linear relationship with 

persistent years of forest land, r value of -0.9880. This finding implies that when a 

persistent year of forest land increases, the value of the phase of LST in forest land 

decrease. On the contrary, there is a moderate negative relationship between the slope 

of LST with a persistent year in forest land, a weak negative relationship between the 

amplitude of LST with a persistent year in forest land, and no linear relationship 

between intercept of LST with a persistent year in forest land. The derived equations 

only provide the r value of -0.3255, -0.1305, and 0.0505, respectively. 

In the meantime, the relationship between four harmonic terms of LST 

for water bodies and persistent year also provide different strength and direction of a 

linear relationship. The slope and amplitude of LST have a strong negative linear 

relationship with persistent years of water bodies, r value of -0.6442, and -0.5985, 

respectively. This finding implies that when a persistent year of water bodies increases, 

the value of the slope and amplitude of LST in water bodies decreases. On the contrary, 

there is a moderate negative relationship between the phase of LST with a persistent 
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year in water bodies and a weak negative relationship between the intercept of LST 

with a persistent year in water bodies. The derived equations only provide the r value 

of -0.3481, -0.1935, respectively. 

(3) Impact of LULC change on harmonic terms of LST 

In this study, the pixels with the LULC change from A to U, F to U, and 

W to U were firstly selected under HA. Then the average value of harmonic terms 

(intercept, slope, amplitude, and phase) of LST of those selected pixels before and after 

LULC change were extracted and calculated the change. The measurement unit of 

change based on intercept, slope (speed of change), amplitude, and phase of LST are 

Kelvin, Kelvin/10,000 days, Kelvin, days, respectively. 

Table 8.7 shows the result of the average value of harmonic terms of 

LST and its change of “from-to” change class (A to U, F to U, and W to U). 

 

Table 8.7 Thermal signatures and thermal signatures change of the LULC change 

area. 

Change types 
Intercept (K) Slope (K/1E4 days) Amplitude (K) Phase (days) 

Before After change Before After change Before After change Before After change 

A to U 299.3 301.1 1.8 4.5 1.5 -3.0 17.5 19.6 2.1 -8.2 -11.7 -3.4(4) 

F to U 298.1 299.4 1.2 3.4 2.2 -1.2 16.6 18.9 2.4 -4.7 -8.2 -3.4(4) 

W to U 297.3 300.0 2.7 5.5 2.5 -3.0 16.2 18.7 2.5 0.9 -8.7 -9.6(8) 

 

As a result, in Table 8.7, it suggests that the most significant LST change 

was observed in the conversion type of water bodies to urban and built-up land. The 

differences are 2.7 K, -3 K/1E4 days, 2.5 K, and -9.6 days in terms of intercept, slope, 

amplitude, and phase, respectively. In contrast, in terms of intercept and phase, the 

conversion of forest land to urban and built-up land provides the smallest difference, 
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but in terms of amplitude, the conversion of agricultural land to urban and built-up land 

provides the smallest difference. 

In general, when other types of LULC are converted to urban and built 

land, their intercept and amplitude values will increase. This finding is similar to the 

values of the harmonic parameters shown in Figure 8.21; that is, the intercept and 

amplitude values of urban and built-up land are higher than agricultural land, forest 

land, and water bodies. This finding implies that the average temperature and annual 

temperature change in urban areas are higher than in other non-urban areas. 

On the contrary, the slope value in Table 8.7 is calculated using only the 

pixels converted from other non-urban lands to urban land. The intercept and amplitude 

values of these pixels will suddenly increase with the conversion. However, vegetation 

is usually planted around these new urban and built-up land. Over time, although the 

LULC type of these areas has not changed (still urban and built-up land), the vegetation 

coverage will increase, which will slow down the increasing speed of LST. 

 

8.4 Spatial analysis and impact of LULC change on LST 

The impact of LULC change on LST was assessed using zonal statistics analysis 

based on the derived multitemporal LULC data and LST in 2000, 2006, 2011, and 2017 

(Figure 8.23 and Figure 8.24). In this study, LULC change from three different periods 

(2000-2006, 2006-2011, and 2011-2017) were first conducted using a post-

classification comparison change detection algorithm for extraction “from-to” change 

classes (e.g., A2000 to U2006, F2000 to U2006, and W2000 to U2006, and so on). After that, the 

mean LST value of “from-to” change classes (e.g., A2000 to U2006, F2000 to U2006, and 

W2000 to U2006, and so on) were extracted and calculated its change. 
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Table 8.8 shows the results of the LST change in three periods (2000-2006, 

2006-2011, and 2011-2017), which relate to the conversion of other LULC types into 

urban and built-up land (A to U, F to U, and W to U). 

 

  

(a) (b) 

  

(c) (d) 

Figure 8.23 LULC map of four years: (a) date 30 July 2000, (b) date 31 July 2006, 

(c) date 29 July 2011, (d) date 29 July 2017. 
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(a) (b) 

  

(c) (d) 

Figure 8.24 LST map of four years: (a) date 30 July 2000, (b) date 31 July 2006, (c) 

date 29 July 2011, (d) date 29 July 2017. 

 

Table 8.8 LST change of the LULC change area. 

Change types 

LST (K) 

2000 - 2006 2006 - 2011 2011 - 2017 

Before After change Before After change Before After change 

A to U 317.79 320.35 2.56 317.53 318.76 1.23 315.95 316.75 0.8 

F to U 315.67 318.38 2.71 316.19 317.74 1.55 n. a n. a n. a 

W to U 314.11 317.46 3.35 314.56 316.27 1.71 n. a n. a n. a 

Note: n. a is not applied since forest land and water bodies in 2011 were not converted into urban and 

built-up land in 2017. 
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As a result, in Table 8.8, during 2000 and 2006, when agricultural land, forest 

land, and water bodies in 2000 were converted into urban and built-up land in 2006, the 

LST values increased by 2.56 K, 2.71 K, and 3.35 K, respectively. Likewise, during 

2006 and 2011, when agricultural land, forest land, and water bodies in 2006 were 

converted into urban and built-up land in 2011, the LST values increased by 1.23 K, 

1.55 K, and 1.71 K, respectively. 

In the meantime, during 2011 and 2017, the LST value increased by 0.8 K when 

agricultural land in 2011 was converted into urban and built-up land in 2017. 

Additionally, forest land and water bodies in 2011 were not converted into urban and 

built-up land in 2017. 

This finding is an expected result because when agricultural land, forest land, 

and water bodies are converted into urban and built-up land, LST will be increased. 

These phenomena indicate the impact of LULC change on LST when the green area, 

such as agricultural land or forest land, are changed to be urban and built-up land. 

 

SUMMARY 

Based on the harmonic term from the time domain perspective, intercept and 

amplitude value of LST suddenly increased, when other types of LULC were converted 

to urban and built land, it indicates that the average temperature and annual temperature 

change in urban areas are higher than in other non-urban areas. The slope value of LST 

decreased when other types of LULC were converted to urban and built land; it 

indicates that the increasing speed of LST in the LULC change area (from A to U, from 

F to U, from W to U,) will be reduced. 
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From the perspective of the spatial domain, the LST value increased, when 

agricultural land, forest land, and water bodies in 2000 were converted into urban and 

built-up land in 2006, agricultural land, forest land, and water bodies in 2006 were 

converted into urban and built-up land in 2011, agricultural land in 2011 was converted 

into urban and built-up land in 2017. These phenomena indicate the impact of LULC 

change on LST when the green area, such as agricultural land or forest land, are changed 

to be urban and built-up land. 

 

 



 

 

 

CHAPTER IX 

CONCLUSION AND RECOMMENDATION  

 

The economic and population growth continued during the last two decades in 

Nanjing City, China. These phenomena induce land use and land cover change in the 

city. In particular, the area of urban and built-up land has continually increased over the 

years. As a result, it impacts the land surface temperature of this city. The ultimate goal 

of the study is to develop a new supervised classification method using harmonic 

analysis with a minimum spectral distance algorithm for multitemporal LULC mapping. 

Meanwhile, the specific research objectives are consisting of (1) to apply unsupervised 

classification algorithms for multitemporal LULC classification based on time-series 

Landsat datasets, (2) to develop a nearly real-time supervised LULC classification and 

change detection method using a time-series model and a minimum spectral distance 

algorithm, and (3) to reconstruct time-series LST and investigate the impact of LULC 

on LST between 2000 and 2017. To achieve goals and objectives, two generic 

unsupervised classification algorithms, namely K-Means and ISODATA, were first 

applied to classify multitemporal LULC maps based on the derived coefficient of 

harmonic analysis of time-series Landsat datasets under the MATLAB environment. 

Then, a new supervised classification method using harmonic analysis with a minimum 

spectral distance algorithm was developed and applied to classify a multitemporal 

LULC map under the MATLAB environment. Finally, the time-series LST was 

reconstructed using a harmonic analysis model and applied with the detailed LULC 
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data by a supervised method to examine the impact of LULC change on LST. The 

conclusion and recommendations of the study are presented in this chapter. 

 

9.1 Conclusions 

9.1.1 Time-series land use and land cover classification using an 

unsupervised method 

The classification of multitemporal LULC data in 2000, 2006, 2011, and 

2017 from time-series Landsat datasets with different spectral features (NIR, TOP3, 

TOP6, ORI6) were successfully implemented using K-Means and ISODATA algorithm. 

By considering the performance of the clustering algorithm for multitemporal 

supervised classification, it can be concluded that the accuracy of thematic maps 

derived by the ISODATA algorithm was slightly higher than the K-Means algorithm. 

Overall accuracy and Kappa hat coefficient of the classified LULC maps in four years 

with ORI6 spectral features varied from 77.04% to 86.48% and 63.88% to 78.53%, 

respectively. 

Besides, the overall accuracy of the classified maps using the single 

spectral feature (NIR) in four different years from both algorithms was approximately 

70% while the overall accuracy of the classified maps using the multi-spectral feature 

(TOP3, TOP6, ORI6) in four different years from both algorithms was approximately 

80%. This finding indicates that the multiple spectral features could provide higher 

accuracy than a single spectral feature. 

Furthermore, the pairwise Z-test indicates that the accuracy of the LULC 

classification from both algorithms was not significantly different, and the accuracy of 

the LULC classification using the NIR spectral feature was different from the accuracy 
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of LULC classification using TOP3, TOP6, and ORI6 spectral features. Additionally, 

whether using the K-Means algorithm or ISODATA algorithm, the accuracy of LULC 

classification using TOP3, TOP6, and ORI6 spectral features were insignificantly 

different. 

 

9.1.2 Time-series land use and land cover classification using a 

supervised method 

By comparing the overall accuracy of change detection according to 

spectral feature, LULC change detection using NIR provided the least overall accuracy 

(74.70%). In contrast, the combination of multispectral features provided higher 

accuracy, the overall accuracy of TOP3, TOP6, and ORI6 were 81.67%, 87.05%, and 

88.25%, respectively. 

The average overall accuracy of LULC classification in 2000, 2006, 

2011, and 2017 were 86.60%, 81.53%, 84.55%, and 81.80%, respectively. Besides, the 

average overall accuracy with NIR, TOP3, TOP6, and ORI6 spectral features were 

67.77%, 84.59%, 90.80%, and 91.31%, respectively. As a result, it infers that when the 

number of spectral features increases, the overall accuracy increases. 

The values of the pairwise Z-test indicate that the classification accuracy 

of NIR was significantly different from the other spectral features. Also, the values of 

the pairwise Z-test shows that the classification accuracy of TOP3 was also 

significantly different from the other two spectral features (TOP6 and ORI6). 

Conversely, the pairwise Z-test indicates that the classification accuracy of TOP6 and 

ORI6 was insignificantly different. 
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9.1.3 Impact study of land use and land cover change on land surface 

temperature 

Based on the harmonic term from the time domain perspective, intercept, 

and amplitude value of LST suddenly increased, when other types of LULC were 

converted to urban and built land. It indicates that the average temperature and annual 

temperature change in urban areas are higher than in other non-urban areas. The small 

value of the slope of LST indicates that increasing the speed of LST in the LULC 

change area (from A to U, from F to U, from W to U) is reduced. 

From the perspective of the spatial domain, the LST value increased, 

when agricultural land, forest land, and water bodies were converted into urban and 

built-up land. These phenomena indicate the impact of LULC change on LST when the 

green area, such as agricultural land or forest land, are changed to be urban and built-

up land. 

 

9.2 Recommendations 

The newly developed supervised classification method for multitemporal LULC 

mapping using harmonic analysis with a minimum spectral distance algorithm is a 

semi-automatic process under the MATLAB software environment, and it requires little 

human interference. This approach can efficiently classify multitemporal LULC maps, 

offering with highly accurate results based on the standard harmonic function curve for 

each LULC type obtained from the stable areas of each LULC type from multiple years. 

Moreover, this approach overcomes the limitations of image selection by considering 

individual pixels from the available Landsat data. For example, the scan line gaps of 

Landsat 7 are regarded as contaminated pixels, but available clearly observed pixels 
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could also be used. Also, this approach does not require the relative normalization of 

each image for multitemporal LULC classification and change detection because 

phenological and solar angle differences do not affect classification under the time-

series model. Furthermore, this approach applies spatiotemporal filtering with a mode 

function under post-classification processing to remove unexpected errors caused by 

contaminated pixels (e.g., clouds and cloud shadows) or meteorological conditions (e.g., 

flooding and drought). More specifically, this approach can quickly generate a LULC 

change map for any period and can provide “from-to” change information as a post-

classification comparison change detection algorithm, which is frequently applied for 

change detection. Multitemporal LULC data and change information can also 

efficiently used for exploring the impact of LULC change on land surface temperature. 

However, for improving the usability of the algorithm, the recommendations are here 

suggested as follows.  

1. This developed classification method should be examined in other areas to 

determine its spatial and temporal transferability.  

2. In this study, the efficiency of the developed algorithm is more focused 

instead of the number of LULC types. Therefore, four LULC types that are persistent 

for an extended period are here selected to examine the capacity and efficiency of the 

algorithm. Future researchers who want to increase the number of LULC types are here 

recommended by increasing the size of the study area, such as a city or province. 

3. In this study, stable areas for each LULC type between 2000 and 2017 were 

extracted by overlay analysis based on the classified LULC maps in 2000, 2006, 2011, 

and 2017 by using MLC. The error of the stable area for each LULC type is minimal 

since the stable areas of each LULC category are extracted from the multitemporal 
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LULC maps. However, LULC classification with MLC requires a great deal of time to 

select suitable training areas with a normal distribution. In the future, the selection of a 

training area of each LULC type should be implemented by using an automatic or semi-

automatic process. For example, Huang et al. (2002) applied a dark object concept to 

automatically generate a training area for mapping forest cover changes with the 

advanced support vector machines algorithm. 

4. To build standard reference harmonic curves for multitemporal LULC 

classification, almost 10,000 sample pixels were selected from stable areas of each 

LULC type. A large number of sample pixels can ensure the accuracy of standard 

reference harmonic curves, but it takes much time. In the future, it is necessary to find 

a suitable sample size to reduce the time for standard reference harmonic curve 

construction. 

5. The multitemporal LULC classification is performed on the spectral values 

and its change of each pixel from 388 dates in this study. Conceptually, if six spectral 

reflectance bands of the time-series of Landsat dataset cubes (with 388 dates) are 

considered as six hyperspectral data cubes, spectral angle mapper (SAM) method can 

be examined to classify multitemporal LULC map from any single or multiple data 

cubes in the future. 

6. Multitemporal LULC classification based on time-series Landsat data 

generally requires a large amount of space and time for processing and analysis. This 

phenomenon leads to extremely time-consuming data processing. So, cloud computing 

technologies can provide an alternative solution for increasing space and decreasing 

processing time. 
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7. The conceptual framework and relevant workflows of the newly developed 

supervised classification method using harmonic analysis with a minimum spectral 

distance algorithm can be used as a guideline for software developers for (semi) 

automatic LULC classification and mapping in the future. 

 

 



 

 

 

REFERENCES 

 

Alfieri, S. M., Lorenzi, F. D., and Menenti, M. (2013). Mapping air temperature using 

time series analysis of LST: the SINTESI approach. Nonlinear Processes in 

Geophysics. 20(4): 513-527. 

Andrew, M. E., Wulder, M. A., and Nelson, T. A. (2014). Potential contributions of 

remote sensing to ecosystem service assessments. Progress in Physical 

Geography. 38(3): 328-353. 

Anyamba, A., and Eastman, J. R. (1996). Interannual variability of NDVI over Africa 

and its relation to El Niño/Southern Oscillation. International Journal of 

Remote Sensing. 17(13): 2533-2548. 

Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, 

exchanges of energy and water, and the urban heat island. International 

Journal of Climatology. 23(1): 1-26. 

Azzali, S., and Menenti, M. (2000). Mapping vegetation-soil-climate complexes in 

southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. 

International Journal of Remote Sensing. 21(5): 973-996. 

Baig, M. H. A., Zhang, L., Shuai, T., and Tong, Q. (2014). Derivation of a tasselled cap 

transformation based on Landsat 8 at-satellite reflectance. Remote Sensing 

Letters. 5(5): 423-431. 

 



270 

 

 

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M. (1998). A 

remote sensing surface energy balance algorithm for land (SEBAL). 1. 

Formulation. Journal of Hydrology. 212-213: 198-212. 

Benedetti, R., Rossini, P., and Taddei, R. (1994). Vegetation classification in the 

Middle Mediterranean area by satellite data. International Journal of Remote 

Sensing. 15(3): 583-596. 

Bonan, G. B., Pollard, D., and Thompson, S. L. (1992). Effects of boreal forest 

vegetation on global climate. Nature. 359: 716. 

Brown, L., Chen, J. M., Leblanc, S. G., and Cihlar, J. (2000). A Shortwave Infrared 

Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image 

and Model Analysis. Remote Sensing of Environment. 71(1): 16-25. 

Buitre, M. J. C., Zhang, H., and Lin, H. (2019). The Mangrove Forests Change and 

Impacts from Tropical Cyclones in the Philippines Using Time Series Satellite 

Imagery. Remote Sensing. 11(6): 688. 

Carlson, T. N., and Ripley, D. A. (1997). On the relation between NDVI, fractional 

vegetation cover, and leaf area index. Remote Sensing of Environment. 62(3): 

241-252. 

Chuvieco, E. (2016). Fundamentals of Satellite Remote sensing: An Environmental 

Approach Second edition. Boca Raton, Florida, USA: CRC Press/Taylor & 

Francis. 

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). STL: A 

Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official 

Statistics. 6: 3-73. 

 



271 

 

 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ, USA: Lawrence Erlbaum Associates. 

Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance 

and recovery using yearly Landsat time series: 2. TimeSync — Tools for 

calibration and validation. Remote Sensing of Environment. 114(12): 2911-

2924. 

Congalton, R. G., and Green, K. (2009). Assessing the Accuracy of Remotely Sensed 

Data - Principles and Practices Second edition. Boca Raton, NW, USA: CRC 

Press, Taylor & Francis Group. 

Cort, J. W., and Kenji, M. (2005). Advantages of the mean absolute error (MAE) over 

the root mean square error (RMSE) in assessing average model performance. 

Climate Research. 30(1): 79-82. 

Crist, E. P., and Cicone, R. C. (1984). A Physically-Based Transformation of Thematic 

Mapper Data---The TM Tasseled Cap. IEEE Transactions on Geoscience and 

Remote Sensing. GE-22(3): 256-263. 

Cristóbal, J., Jiménez-Muñoz, J. C., Sobrino, J. A., Ninyerola, M., and Pons, X. (2009). 

Improvements in land surface temperature retrieval from the Landsat series 

thermal band using water vapor and air temperature. Journal of Geophysical 

Research: Atmospheres. 114(D8): D08103. 

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., and Dent, D. L. (2011). 

Analysis of monotonic greening and browning trends from global NDVI time-

series. Remote Sensing of Environment. 115(2): 692-702. 

DeVries, B. (2015). Monitoring tropical forest dynamics using Landsat time series 

and community-based data. Wageningen, Netherlands, USA: Wageningen 

 



272 

 

 

University & Research, Laboratory of Geo-information Science and Remote 

Sensing. 

Douglas, E., Niyogi, D., Frolking, S., Yeluripati, J., Pielke Sr, R., Niyogi, N., J. 

Vörösmarty, C., and Mohanty, U. C. (2006). Changes in moisture and energy 

fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. 

Geophysical Research Letters. 33: L14403. 

Eastman, R., and Fulk, M. (1993). Long Sequence Time Series Evaluation Using 

Standard Principal Components. Photogrammetric Engineering and Remote 

Sensing. 59(6): 991-996. 

Feddema, J. J. (2005). The Importance of Land-Cover Change in Simulating Future 

Climates. Science. 310(5754): 1674-1678. 

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, 

F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., 

Howard, E. A., Kucharik, C. J., Monfreda, C., et al. (2005). Global 

Consequences of Land Use. Science. 309(5734): 570-574. 

Fu, P., and Weng, Q. (2016). A time series analysis of urbanization induced land use 

and land cover change and its impact on land surface temperature with Landsat 

imagery. Remote Sensing of Environment. 175: 205-214. 

Gebhardt, S., Wehrmann, T., Ruiz, M. A. M., Maeda, P., Bishop, J., Schramm, M., 

Kopeinig, R., Cartus, O., Kellndorfer, J., Ressl, R., Santos, L. A., and Schmidt, 

M. (2014). MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for 

the Mexican REDD-MRV Program Using All Landsat Data. Remote Sensing. 

6(5): 3923-3943. 

 



273 

 

 

Geerken, R., Zaitchik, B., and Evans, J. P. (2005). Classifying rangeland vegetation 

type and coverage from NDVI time series using Fourier Filtered Cycle 

Similarity. International Journal of Remote Sensing. 26(24): 5535-5554. 

Geerken, R. A. (2009). An algorithm to classify and monitor seasonal variations in 

vegetation phenologies and their inter-annual change. ISPRS Journal of 

Photogrammetry and Remote Sensing. 64(4): 422-431. 

Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E., and Nelson, T. (2008). 

Multitemporal remote sensing of landscape dynamics and pattern change: 

describing natural and anthropogenic trends. Progress in Physical Geography: 

Earth and Environment. 32(5): 503-528. 

Gounaridis, D., Symeonakis, E., Chorianopoulos, I., and Koukoulas, S. (2018). 

Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The 

Case of Attica, Greece. Remote Sensing. 10(7): 1034. 

Gurgel, H. C., and Ferreira, N. J. (2003). Annual and interannual variability of NDVI 

in Brazil and its connections with climate. International Journal of Remote 

Sensing. 24(18): 3595-3609. 

Hall-Beyer, M. (2003). Comparison of single-year and multiyear NDVI time series 

principal components in cold temperate biomes. IEEE Transactions on 

Geoscience and Remote Sensing. 41(11): 2568-2574. 

Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global surface temperature change. 

Reviews of Geophysics. 48(4): RG4004. 

Healey, S. P., Yang, Z., Cohen, W. B., and Pierce, D. J. (2006). Application of two 

regression-based methods to estimate the effects of partial harvest on forest 

 



274 

 

 

structure using Landsat data. Remote Sensing of Environment. 101(1): 115-

126. 

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., and Hobart, G. W. (2015). 

An integrated Landsat time series protocol for change detection and generation 

of annual gap-free surface reflectance composites. Remote Sensing of 

Environment. 158: 220-234. 

Herold, M., Latham, J. S., Di Gregorio, A., and Schmullius, C. C. (2006). Evolving 

standards in land cover characterization. Journal of Land Use Science. 1(2-4): 

157-168. 

Hirosawa, Y., Marsh, S. E., and Kliman, D. H. (1996). Application of standardized 

principal component analysis to land-cover characterization using 

multitemporal AVHRR data. Remote Sensing of Environment. 58(3): 267-

281. 

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, 

M. C., Le Quéré, C., and Ramankutty, N. (2012). Carbon emissions from land 

use and land-cover change. Biogeosciences. 9(12): 5125-5142. 

Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., and Vogelmann, J. E. 

(2010). An automated approach for reconstructing recent forest disturbance 

history using dense Landsat time series stacks. Remote Sensing of 

Environment. 114(1): 183-198. 

Huang, C., Wylie, B. K., Yang, L., Homer, C. G., and Zylstra, G. (2002). Derivation of 

a tasselled cap transformation based on Landsat 7 at-satellite reflectance. 

International Journal of Remote Sensing. 23(8): 1741-1748. 

 



275 

 

 

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002). 

Overview of the radiometric and biophysical performance of the MODIS 

vegetation indices. Remote Sensing of Environment. 83(1): 195-213. 

Huete, A., Justice, C., and Leeuwen, W. (1999). MODIS vegetation index (MOD 13) 

Algorithm theoretical basis document.   http://modis.gsfc.nasa.gov/data/atbd. 

Immerzeel, W. W., Quiroz, R. A., and de Jong, S. M. (2005). Understanding 

precipitation patterns and land use interaction in Tibet using harmonic analysis 

of SPOT VGT‐S10 NDVI time series. International Journal of Remote 

Sensing. 26(11): 2281-2296. 

J. Kauth, R., and S. Thomas, G. (1976). The Tasselled Cap -- A Graphic Description of 

the Spectral-Temporal Development of Agricultural Crops as Seen by 

LANDSAT. LARS Symposia. 159: 41-51. 

Jakubauskas, M. E., Legates, D. R., and Kastens, J. H. (2002). Crop identification using 

harmonic analysis of time-series AVHRR NDVI data. Computers and 

Electronics in Agriculture. 37(1): 127-139. 

Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing 

Perspective. NJ, USA: Prentice Hall Press. 

Jia, L., Shang, H., Hu, G., and Menenti, M. (2011). Phenological response of vegetation 

to upstream river flow in the Heihe River basin by time series analysis of 

MODIS data. Hydrology and Earth System Sciences. 15: 1047-1064. 

Jiménez-Muñoz, J. C., Cristobal, J., Sobrino, J. A., Soria, G., Ninyerola, M., and Pons, 

X. (2009). Revision of the Single-Channel Algorithm for Land Surface 

Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE 

Transactions on Geoscience and Remote Sensing. 47(1): 339-349. 

 



276 

 

 

Jiménez-Muñoz, J. C., and Sobrino, J. A. (2003). A generalized single-channel method 

for retrieving land surface temperature from remote sensing data. Journal of 

Geophysical Research. 108(D22): ACL 2-1. 

Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., and Cristóbal, J. (2014). 

Land Surface Temperature Retrieval Methods From Landsat-8 Thermal 

Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters. 11(10): 

1840-1843. 

Julien, Y., Sobrino, J. A., and Verhoef, W. (2006). Changes in land surface 

temperatures and NDVI values over Europe between 1982 and 1999. Remote 

Sensing of Environment. 103(1): 43-55. 

Kaufmann, R. K., and Stern, D. I. (1997). Evidence for human influence on climate 

from hemispheric temperature relations. Nature. 388: 39. 

Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., 

Munger, J. W., O’Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and 

Richardson, A. D. (2014). Net carbon uptake has increased through warming-

induced changes in temperate forest phenology. Nature Climate Change. 4: 

598. 

Kennedy, R. E., Cohen, W. B., and Schroeder, T. A. (2007). Trajectory-based change 

detection for automated characterization of forest disturbance dynamics. 

Remote Sensing of Environment. 110(3): 370-386. 

Kogan, F. N. (2001). Operational space technology for global vegetation assessment. 

Bulletin of the American Meteorological Society. 82: 1949-1964. 

 



277 

 

 

Lambin, E. F., Geist, H. J., and Lepers, E. (2003). Dynamics of Land-Use and Land-

Cover Change in Tropical Regions. Annual Review of Environment and 

Resources. 28(1): 205-241. 

Lawrence, P. J., and Chase, T. N. (2010). Investigating the climate impacts of global 

land cover change in the community climate system model. International 

Journal of Climatology. 30(13): 2066-2087. 

Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O'Neill, B. C., Levis, S., 

Lawrence, D. M., Oleson, K. W., Kluzek, E., Lindsay, K., and Thornton, P. E. 

(2012). Simulating the biogeochemical and biogeophysical impacts of transient 

land cover change and wood harvest in the Community Climate System Model 

(CCSM4) from 1850 to 2100. Journal of Climate. 25(9): 3071-3095. 

Lee, E., Chase, T. N., Rajagopalan, B., Barry, R. G., Biggs, T. W., and Lawrence, P. J. 

(2009). Effects of irrigation and vegetation activity on early Indian summer 

monsoon variability. International Journal of Climatology. 29(4): 573-581. 

Lee, E., He, Y., Zhou, M., and Liang, J. (2015). Potential feedback of recent vegetation 

changes on summer rainfall in the Sahel. Physical Geography. 36(6): 449-470. 

Lee, E., Sacks, W. J., Chase, T. N., and Foley, J. A. (2011). Simulated impacts of 

irrigation on the atmospheric circulation over Asia. Journal of Geophysical 

Research: Atmospheres. 116(D8): D08114. 

Leica. (2005). ERDAS Field Guide. Norcross, GA, USA: Leica Geosystems 

Geospatial Imaging, LLC. 

Li, Z., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A. 

(2013). Satellite-derived land surface temperature: Current status and 

perspectives. Remote Sensing of Environment. 131: 14-37. 

 



278 

 

 

Liu, D., and Cai, S. (2012). A Spatial-Temporal Modeling Approach to Reconstructing 

Land-Cover Change Trajectories from Multi-temporal Satellite Imagery. 

Annals of the Association of American Geographers. 102(6): 1329-1347. 

Lo, C. P., and Quattrochi, D. A. (2003). Land Use and Land Cover Change, Urban Heat 

Island Phenomenon, and Health Implications: A Remote Sensing Approach. 

Photogrammetric Engineering and Remote Sensing. 69(9): 1053-1063. 

Lobo, A., and Maisongrande, P. (2008). Searching for trends of change through 

exploratory data analysis of time series of remotely sensed images of SW 

Europe and NW Africa. International Journal of Remote Sensing. 29(17-18): 

5237-5245. 

Loveland, T. R., and Defries, R. S. (2004). Observing and Monitoring Land Use and 

Land Cover Change. Washington, D.C., USA: American Geophysical Union. 

Lu, D., Li, L., Li, G., Fan, P., Ouyang, Z., and Moran, E. (2018). Examining Spatial 

Patterns of Urban Distribution and Impacts of Physical Conditions on 

Urbanization in Coastal and Inland Metropoles. Remote Sensing. 10(7): 1101. 

Macqueen, J. (1967). Some methods for classification and analysis of multivariate 

observations. Paper presented at the 5th Berkeley Symposium on 

Mathematical Statistics and Probability, California. 

Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, 

C., Carleton, A. M., Hale, R., Gameda, S., Beltrán‐Przekurat, A., Baker, B., 

McNider, R., Legates, D. R., Shepherd, M., Du, J., et al. (2014). Land cover 

changes and their biogeophysical effects on climate. International Journal of 

Climatology. 34(4): 929-953. 

 



279 

 

 

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) 

in the delineation of open water features. International Journal of Remote 

Sensing. 17(7): 1425-1432. 

McPherson, R. A. (2007). A review of vegetation--atmosphere interactions and their 

influences on mesoscale phenomena. Progress in Physical Geography. 31(3): 

261-285. 

Menenti, M., Azzali, S., Verhoef, W., and van Swol, R. (1993). Mapping 

agroecological zones and time lag in vegetation growth by means of fourier 

analysis of time series of NDVI images. Advances in Space Research. 13(5): 

233-237. 

Menenti, M., Jia, L., Azzali, S., Roerink, G., Gonzalez-Loyarte, M., and Leguizamon, 

S. (2010). Analysis of vegetation response to climate variability using 

extended time series of multispectral satellite images. Trivandrum, India: 

Research Signpost. 

Menenti, M., Malamiri, H. R. G., Shang, H., Alfieri, S. M., Maffei, C., and Jia, L. 

(2016). Observing the response of terrestrial vegetation to climate 

variability across a range of time scales by time series analysis of land 

surface temperature. Heidelberg, Germany: Springer Verlag. 

Mi, J., Yang, Y., Zhang, S., An, S., Hou, H., Hua, Y., and Chen, F. (2019). Tracking 

the Land Use/Land Cover Change in an Area with Underground Mining and 

Reforestation via Continuous Landsat Classification. Remote Sensing. 11(14): 

1719. 

MOHURD. (2017). China Urban-Rural Construction Statistical Yearbook. 

Beijing, China: China Planning Press. 

 



280 

 

 

Myneni, R. B. (1995). The interpretation of spectral vegetation indexes. IEEE 

Transaction on Geoscience and Remote Sensing. 33: 481-486. 

Nijbroek, R., Piikki, K., Söderström, M., Kempen, B., Turner, K. G., Hengari, S., and 

Mutua, J. (2018). Soil Organic Carbon Baselines for Land Degradation 

Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in 

Otjozondjupa, Namibia. Sustainability. 10(5): 1610. 

NJMBS. (2017). Statistical Yearbook of Nanjing. Nanjing, China: Nanjing Municipal 

Bureau of Statistics. 

Pielke, R. A. (2005). Land Use and Climate Change. Science. 310(5754): 1625-1626. 

Qin, Z., Karnieli, A., and Berliner, P. (2001). A mono-window algorithm for retrieving 

land surface temperature from Landsat TM data and its application to the Israel-

Egypt border region. International Journal of Remote Sensing. 22(18): 3719-

3746. 

Ready, P., and Wintz, P. (1973). Information Extraction, SNR Improvement, and Data 

Compression in Multispectral Imagery. IEEE Transactions on 

Communications. 21(10): 1123-1131. 

Roerink, G. J., Menenti, M., and Verhoef, W. (2000). Reconstructing cloudfree NDVI 

composites using Fourier analysis of time series. International Journal of 

Remote Sensing. 21(9): 1911-1917. 

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1973). Monitoring 

vegetation systems in the Great Plains with ERTS. Paper presented at the 

Proceedings of the Third ERTS Symposium, Washington DC.  

Roy, D. P., Wulder, M. A., Loveland, T. R., C.E, W., Allen, R. G., Anderson, M. C., 

Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, 

 



281 

 

 

C. B., Schott, J. R., Sheng, Y., Vermote, E. F., et al. (2014). Landsat-8: Science 

and product vision for terrestrial global change research. Remote Sensing of 

Environment. 145: 154-172. 

Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., and 

Hibbard, K. A. (1999). A Global Terrestrial Monitoring Network Integrating 

Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. 

Remote Sensing of Environment. 70(1): 108-127. 

Running, S. W., Loveland, T. R., and Pierce, L. L. (1994). A vegetation classification 

logic-based on remote-sensing for use in global biogeochemical models. 

Ambio. 23(1): 77-81. 

Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and 

Randall, D. A. (1996). A Revised Land Surface Parameterization (SiB2) for 

Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial 

Biophysical Parameters from Satellite Data. Journal of Climate. 9(4): 706-737. 

Sexton, J. O., Urban, D. L., Donohue, M. J., and Song, C. (2013). Long-term land cover 

dynamics by multi-temporal classification across the Landsat-5 record. Remote 

Sensing of Environment. 128: 246-258. 

Shang, H., Jia, L., and Menenti, M. (2015). Analyzing the Inundation Pattern of the 

Poyang Lake Floodplain by Passive Microwave Data. Journal of 

Hydrometeorology. 16(2): 652-667. 

Shiffler, R. E. (1988). Maximum Z Scores and Outliers. The American Statistician. 

42(1): 79-80. 

Shingare, P. P., Hemane, P. M., and Dandekar, D. S. (2014). Fusion classification of 

multispectral and panchromatic image using improved decision tree algorithm. 

 



282 

 

 

Paper presented at the 2014 International Conference on Signal Propagation 

and Computer Technology (ICSPCT 2014), Rajasthan.  

Sobrino, J. A., Jiménez-Muñoz, J. C., and Paolini, L. (2004). Land surface temperature 

retrieval from LANDSAT TM 5. Remote Sensing of Environment. 90(4): 

434-440. 

Sobrino, J. A., Jiménez-Muñoz, J. C., Soria, G., Romaguera, M., Moreno, L. G. A.-J., 

Plaza, A., and Martinez, P. (2008). Land Surface Emissivity Retrieval From 

Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and 

Remote Sensing. 46(2): 316-327. 

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent 

heat fluxes. Hydrology and Earth System Sciences. 6(1): 85-99. 

Tang, D., Fan, H., and Zhang, Y. (2017). Review on Landsat Time Series Change 

Detection Methods. Journal of Geo-information Science. 19(8): 1069-1079. 

Tortora, R. D. (1978). A Note on Sample Size Estimation for Multinomial Populations. 

American Statistician. 32: 100-102. 

Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., 

Sadowski, F., and Ruttenberg, S. (1994). The 1 km resolution global data set: 

needs of the International Geosphere Biosphere Programme. International 

Journal of Remote Sensing. 15(17): 3417-3441. 

Tuia, D., Persello, C., and Bruzzone, L. (2016). Domain Adaptation for the 

Classification of Remote Sensing Data: An Overview of Recent Advances. 

IEEE Geoscience and Remote Sensing Magazine. 4(2): 41-57. 

 



283 

 

 

USGS. (2017). Landsat 8 OLI and TIRS Calibration Notices.   

https://landsat.usgs.gov/landsat-8-l8-operational-land-imager-oli-and-thermal-

infrared-sensor-tirs. 

USGS. (2019a). Landsat 4-7 Surface Reflectance (LEDAPS) Product Guide. USA: 

Department of the Interior, U.S. Geological Survey. 

USGS. (2019b). Landsat 8 Surface Reflectance Code(LaSRC) Product Guide. 

USA: Department of the Interior, U.S. Geological Survey. 

Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D. (2010). Detecting trend 

and seasonal changes in satellite image time series. Remote Sensing of 

Environment. 114(1): 106-115. 

Verbesselt, J., Hyndman, R., Zeileis, A., and Culvenor, D. (2010). Phenological change 

detection while accounting for abrupt and gradual trends in satellite image time 

series. Remote Sensing of Environment. 114(12): 2970-2980. 

Verhoef, W., Menenti, M., and Azzali, S. (1996). Cover A colour composite of NOAA-

AVHRR-NDVI based on time series analysis (1981-1992). International 

Journal of Remote Sensing. 17(2): 231-235. 

Vicente-Serrano, S. M., Pérez-Cabello, F., and Lasanta, T. (2008). Assessment of 

radiometric correction techniques in analyzing vegetation variability and 

change using time series of Landsat images. Remote Sensing of Environment. 

112(10): 3916-3934. 

Vogelmann, J. E., Gallant, A. L., Shi, H., and Zhu, Z. (2016). Perspectives on 

monitoring gradual change across the continuity of Landsat sensors using time-

series data. Remote Sensing of Environment. 185: 258-270. 

 

https://landsat.usgs.gov/landsat-8-l8-operational-land-imager-oli-and-thermal-infrared-sensor-tirs
https://landsat.usgs.gov/landsat-8-l8-operational-land-imager-oli-and-thermal-infrared-sensor-tirs


284 

 

 

Voogt, J. A., and Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote 

Sensing of Environment. 86(3): 370-384. 

Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., and Zhao, S. (2015). An Improved 

Mono-Window Algorithm for Land Surface Temperature Retrieval from 

Landsat 8 Thermal Infrared Sensor Data. Remote Sensing. 7(4): 4268-4289. 

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental 

studies: Methods, applications, and trends. ISPRS Journal of 

Photogrammetry and Remote Sensing. 64(4): 335-344. 

Weng, Q., Fu, P., and Gao, F. (2014). Generating daily land surface temperature at 

Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of 

Environment. 145: 55-67. 

Weng, Q., Lu, D., and Schubring, J. (2004). Estimation of land surface temperature–

vegetation abundance relationship for urban heat island studies. Remote 

Sensing of Environment. 89(4): 467-483. 

White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, 

O. P., O'Keefe, J., Zhang, G., Nemani, R. R., van W.J.D, L., Brown, J. F., de 

Wit, A., Schaepman, M., Lin, X., Dettinger, M., et al. (2009). Intercomparison, 

interpretation, and assessment of spring phenology in North America estimated 

from remote sensing for 1982-2006. Global Change Biology. 15(10): 2335-

2359. 

Wit, A., and Su, B. (2005). Deriving phenological indicators from SPOT-VGT data 

using the HANTS algorithm. Paper presented at the 2nd International 

VEGETATION User Conference, Luxembourg.  

 



285 

 

 

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., 

Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., 

Schott, J., Thenkabail, P. S., Vermote, E. F., et al. (2008). Free access to Landsat 

imagery. Science. 320(5879): 1011. 

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance 

open water features in remotely sensed imagery. International Journal of 

Remote Sensing. 27(14): 3025-3033. 

Yang, X., and Lo, C. P. (2002). Using a time series of satellite imagery to detect land 

use and land cover changes in the Atlanta, Georgia metropolitan area. 

International Journal of Remote Sensing. 23(9): 1775-1798. 

Zha, Y., Gao, J., and Ni, S. (2003). Use of normalized difference built-up index in 

automatically mapping urban areas from TM imagery. International Journal 

of Remote Sensing. 24(3): 583-594. 

Zhou, J., Jia, L., and Menenti, M. (2015). Reconstruction of global MODIS NDVI time 

series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote 

Sensing of Environment. 163: 217-228. 

Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., Wang, 

M., Dai, S., and Yu, Y. (2016). Including land cover change in analysis of 

greenness trends using all available Landsat 5, 7, and 8 images: A case study 

from Guangzhou, China (2000–2014). Remote Sensing of Environment. 185: 

243-257. 

Zhu, Z., and Woodcock, C. E. (2014a). Automated cloud, cloud shadow, and snow 

detection in multitemporal Landsat data: An algorithm designed specifically for 

 



286 

 

 

monitoring land cover change. Remote Sensing of Environment. 152: 217-

234. 

Zhu, Z., and Woodcock, C. E. (2014b). Continuous change detection and classification 

of land cover using all available Landsat data. Remote Sensing of 

Environment. 144(Supplement C): 152-171. 

Zhu, Z., Woodcock, C. E., Holden, C., and Yang, Z. (2015). Generating synthetic 

Landsat images based on all available Landsat data: Predicting Landsat surface 

reflectance at any given time. Remote Sensing of Environment. 162: 67-83. 

Zhu, Z., Woodcock, C. E., and Olofsson, P. (2012). Continuous monitoring of forest 

disturbance using all available Landsat imagery. Remote Sensing of 

Environment. 122(Supplement C): 75-91. 

 

 

 



 

 

 

CURRICULUM VITAE 

 

Name: Mr. Jing Sun 

Date of Birth: 11th June 1985 

Place of Birth: Nanjing, Jiangsu Province, China 

 

Education: 

2007: Bachelor of Science in Geographic Information System, Nanjing University of 

Information Science & Technology, Nanjing, Jiangsu Province, China 

2012: Master of Science in Cartography and Geographic Information System, Anhui 

Normal University, Wuhu, Anhui Province, China 

 

Grant and Fellowships: SUT-Ph.D. Scholarship, Suranaree University of Technology 

 

Position and Place of Work: 

Lecturer, Department of Geographic Information Science, School of Architectural 

Engineering, Tongling University, Tongling, Anhui Province, China 

 

Research Projects: 

Natural Science Research Project of Colleges and Universities in Anhui Province: 

Spatio-temporal Land Use and Land Cover Change Study in Hefei City Based on 

Landsat Time Series Data, 2019. (in Chinese). 

 


	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Chapter9
	Reference
	Biography



