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CHAPTER I

INTRODUCTION

1.1 Background

This chapter includes a brief review of some previous work on ant behavior, mainly

related to large-scale organization and navigation. We also present the goals of

our research and introduce the tools and techniques that we have used to try to

accomplish these goals.

1.1.1 Large-scale organization of weaver ants

“Intelligence is the ability to adapt to change.”

– Stephen Hawking

Oecophylla smaragdina, a species commonly known as weaver ants, are native to

Asia and Africa. Weaver ants perform large-scale cooperative efforts (Hölldobler

and Wilson, 1990; Hölldobler and Wilson, 1994) that are impressive, even com-

pared to those of other ant species. As anyone living in Thailand can attest,

thousands of weaver ant individuals work together to weave nests in trees, by

folding and gluing broad leaves. They also form bridges from their own bodies.

Whenever individuals work together successfully, communication is required. For

such large projects, constructed by many ants working in different places at the

same time, communication has to occur on long length scales (Mlot et al., 2011;

Sakiyama, 2017; Vernerey et al., 2018).

The mechanisms of communication that weaver ants use include
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pheromones, gestures and direct contact. They are complex and sophisticated. For

decades, biologists have been interested in the mechanisms and effects of weaver

ant communication (Cole Jr and Jones Jr, 1948; Hölldobler, 1983; Kamhi et al.,

2015; Golden and Hill, 2016). For physicists like us, they make weaver ants inter-

esting for their demonstration of collective phenomena in complex systems (Czirók

et al., 1999; Vicsek et al., 1999; Vicsek and Zafeiris, 2012; DeLellis et al., 2014).

Biological systems, particularly groups of animals, provide many other ex-

amples of complex interacting systems. While different species have their own

specific features, some universal properties are expected. This is analogous to the

universality predicted by statistical physics for condensed matter systems, espe-

cially near a phase transition (Landau and Lifshitz, 1980; Pathria and Beale, 1996;

Tong, 2012).

Two different condensed matter systems will have very different microscopic

physics but, near a phase transition, behave similarly. When water changes to ice,

molecules that are far apart participate together in this transition. Since the mo-

tion of distant molecules is correlated, one doesn’t have to follow the microscopic

details to understand this transition. This is what makes it possible for two sys-

tems, with different microscopic details, to have similar long-distance correlations

during their respective phase transitions.

So it is not too surprising that the motion of fish schools, flocking birds,

swarms of insects and other systems display very similar large scale patterns. All

these groups of animals produce collective motion ranging from orderly through

turbulent to random (Becco et al., 2006). Similar mathematical approaches, even

the same governing equations, can be used to describe all of them. When we

observe the motion of weaver ants, we are hoping to use these ants as a laboratory

for studying more general properties of complex systems.
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Figure 1.1 A gallery of images related to the collective behavior and large-scale

organization in different species. (A) Living bridge by the Asian weaver ants

Oecophylla smaragdina. Groups of workers arrange themselves into multiple chains

of their own bodies and pull together to close the gap. The figure was obtained

from the website, https://en.wikipedia.org/wiki/Ant. (B) The aggregation of fire

ants, Solenopsis invicta. Ants can considerably enhance their water repellency by

linking their bodies together. They build a living raft. The figure was retrieved

from (Mlot et al., 2011). (C) Shoaling behavior in fish derive many benefits

including defense against predators (by diluting the chance of capture), enhanced

foraging success and higher success in finding a mate. (D) Thousands of starlings

produce a fascinating aerial display. They are also trying to avoid a predator bird

close to the central. The figure was retrieved from (Pokhrel and Kayastha, 2018).

1.1.2 Navigation and Brownian motion of ants

Weaver ants modify their foraging motion in response to communications in ob-

vious ways (Hölldobler and Wilson, 1978; Franks and Richardson, 2006; Gordon,
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2010; Golden and Hill, 2016). One individual will recruit others for foraging mis-

sions, or two partners will move together in tandem runs. The long-term goal of

our work is to look for more subtle effects of communication. Can we detect, by an-

alyzing the statistics of ant motion, how one ant modifies its navigation algorithm

in response to information passed from another? We are hoping to determine how

ants organize their motion in response to communication taking place between

them.

Before we can reach this long-term goal, we must complete a crucial first

step: understanding the navigation algorithm of a single ant in the absence of

communicated information. We have to establish a baseline navigation algorithm

for the individual ant. Once we know how a single ant navigates, we can look for

modifications it makes in response to communication from its fellows.

So, while communication between ants and the resulting behavior of the

complex system is the motivation for our work, this report will not touch on ant-

to-ant communication directly. Here, we study individual ants, who have no one

to communicate with. It is meant as the preliminary stage of a larger project.

Surprisingly, the subject of the navigation of an individual ant turns out to be

interesting in its own right. There is enough here, in the motion of a weaver ant

individual, to provide for a decent thesis.

There is an apparent similarity between the erratic motion of a foraging

ant and Brownian motion. A Brownian motion picture is often taken as a basis

for more elaborate theories of navigation by ants and many other animals (Vicsek

et al., 1995; Schweitzer et al., 1998; Viswanathan et al., 1999; West and Non-

nenmacher, 2001; Wehner, 2003; Kohler and Wehner, 2005; Sims et al., 2008;

Reynolds and Rhodes, 2009; Humphries et al., 2010; Bazazi et al., 2012; Bialek,

2012; Romanczuk et al., 2012; Reynolds, 2012; Sims et al., 2012; Raichlen et al.,
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2014; Schultheiss et al., 2015; Gire et al., 2016). Much current research along

these lines is motivated by the idea of using ant motion as an example of general

collective motion of communicating individuals: as macroscopic versions of bacte-

rial processes relevant to medicine, as models for human crowds or for designs of

swarming robots (Krieger et al., 2000; Kube and Bonabeau, 2000; Deisboeck and

Couzin, 2009; Esponda and Gordon, 2015; Chung and Lin, 2017).

A Brownian particle, like a grain of pollen in water, undergoes dispersive

motion because of its collisions with surrounding water molecules. Einstein ex-

plained the motion using a statistical description of these collisions, and Langevin

further developed this theory a few year later (Pathria and Beale, 1996). In

Langevin’s theory of Brownian motion, the particle is subject to random impulses,

forces applied over a short duration, that have random direction and zero time av-

erage, as well as deterministic forces like the average drag force and interaction

with external fields.

Below we will develop a version of Langevin theory and apply it to ant

motion in a non-descript arena. Since the dominant forces on the ant are reaction

forces of the ground on its moving body parts, the parameters in the Langevin

theory can be interpreted as values that the ant chooses to use for its purpose

of navigating within the arena. So, if we are able to explain ant movement with

a Langevin model then we will have a picture of the ant individual’s navigation

algorithm.

1.1.3 Images of an ecosystem

The history of animal behavior science has been dominated by qualitative studies:

scientists observe animals in laboratories or in nature and try to understand their

complex motivations and strategies as they perform various tasks (Tinbergen,
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1963; Altmann, 1974). In this thesis, we are studying a very simple aspect of

animal behavior, the motion of single ant, which affords us the opportunity to

take a more quantitative approach.

A major theme of this work is our effort to avoid, whenever possible, any

subjective characterization of ant behavior and any speculation about the intention

of the ant. We do not define, as many researchers do, different qualitative phases of

animal behavior–such as pausing, resting, grooming or whatever (Camargo et al.,

2017; Palavalli-Nettimi and Narendra, 2018). We think defining ant motion in this

way would introduce our own subjective judgement to the analysis and, since we

are new to this field, are wary of doing it. Similarly, we are not going to guess

why an ant decides to move as it does. Instead, we will gather strictly quantitative

information about the ant motion and then try to analyze this data.

The data will be obtained via image-based tracking techniques. Such tech-

niques are now in common usage in studies of fish and birds, particularly (Dankert

et al., 2009; Ballerini et al., 2008; Lukeman et al., 2010; Audira et al., 2018) or

school fish (Audira et al., 2018). These studies use three-dimensional reconstruc-

tion technique to obtain the spatial positions of an individual within a group.

The tracking technique provides highly precise and accurate behavioral data (Dell

et al., 2014). Of course, our project is much less technologically demanding: we

are only tracking an individual ant and two-dimensional tracking is sufficient.

Image-based tracking involves three main steps as shown in Figure 1.2, (i)

data saved from a video file as image sequences; (ii) detection of the individual

position in each image that are linked over multiple frames to form trajectories

through time; (iii) analysis of trajectories and other behavioral data. (Strictly

speaking, it is the optical center of mass of the 2D-projection of the ant’s body.)

All of our analysis will be based on the position-time data of each ant individually.
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Figure 1.2 The three general steps of image-based tracking of animal behavior

are (i) Imaging, obtaining a sequence of images. (ii) Tracking and (iii) analysis of

trajectories or other behavioral data. The figure retrieved from (Dell et al., 2014).

1.2 Project summary

In this research, we take a quantitative approach to a simple aspect of the behavior

of an individual weaver ant, its motion within a small featureless arena. We track

each ant’s position versus time. Based on the results, we develop a model of

individual ant movement that is analogous to the Langevin theory of Brownian

motion. The algorithm, employed by the ant for navigation, is represented by the

parameters of this model.



CHAPTER II

METHODOLOGY

2.1 Experimental design

The motion of weaver ant, Oecophylla smaragdina, individuals was observed and

recorded. Below, we describe the preparation and experimental techniques, in-

cluding insect collection, video recordings and image processing methods that we

used for the experiments.

2.1.1 Ethics statement

Individual ants that were captured in the wild were studied in the laboratory and

released at the same location they were found within hours. All efforts were made

to minimize suffering of ants.

2.1.2 Insect collection

Individual major-workers from Oecophylla smaragdina, belonging to one of several

colonies, were captured in the wild from wooded areas. We used a clean plastic

box to capture each individual ant and transport it to the laboratory without

otherwise touching the ant.

2.1.3 Experimental setup

The motion of ants was studied in two similar configurations. In both cases, the

ant was free to move on the surface of a square plate, ceramic floor tile, with a
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Figure 2.1 Asian weaver ants, Oecophylla smaragdina, from a wild near the lab-

oratory.

side length L = 30 cm and a thickness of 0.6 cm. The plate was in a larger tray

containing water, not deep enough to reach the plate surface, so individual ant at

the plate edges encountered a water barrier that they rarely attempted to cross.

In the first configuration, the plate is clean, so the square arena was approx-

imately homogeneous. In the second, a central rectangular band was coated evenly

with 1% w/w citronella oil, a natural repellent that is harmful but non-lethal to

ants (Wang et al., 2015; Wang et al., 2016). This band, of width `, is referred

to as zone R in Figure 2.2B. Values, ` = 2.5 and 10 cm, were used in different

experiments. We use x, y position coordinates with the origin at the plate center.

The arena is defined by −L/2 ≤ x ≤ L/2 and −L/2 ≤ y ≤ L/2 or |x| ≤ 15

cm, |y| ≤ 15 cm. The repellent, when present, is coated evenly over the region

|x| < `/2.

For each trial, a single ant, having been captured using a clean plastic

container, was transferred into the arena by inverting this container. Within a

few minutes of each ant being introduced, we started recording its motion with
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a video camera and did so for time T = 300 seconds before similarly removing it

from the arena. A typical ant continued moving throughout each trial.

The high-speed camera was fixed to a tripod and positioned directly above

the arena. In-house image processing scripts coded in MATLAB extracted the po-

sition of the ant from the images. (Details about the image processing are included

in the next section.) Two-dimensional spatial coordinates r(t) = (x(t), y(t)) were

obtained at discrete time steps t = j∆t with j = 0, 1, 2, ..., 4500 and ∆t = 1/15 s.

L = 30 cm

Water

Ceramic Tile

Citronella Oil - coated

Extended Region Tracking Region

ℓ

A

x

y

-15

-10

-5

0

5

10

15

-15 -10 -5 10 1550

x (cm)

y
 (
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)

B

zone ℛ

InteriorBoundary

2 cm

Figure 2.2 (A) An illustration of an experimental setup for observing ant move-

ment with a camera mounted above the arena, a square floor tile of length L = 30

cm. The position of an ant can be detected slightly beyond the boundary of the

arena, in the extended region about 0.5 cm. (B) The green path is an actual

single ant trajectory, with one point per time step ∆t, in a clean arena. The gray

band divides the arena into zones, which have no significance for the clean arena

but indicate where (zone R) citronella oil is to be added.
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2.2 Image-based tracking method

In the video recording process, we placed the ant gently in the arena and main-

tained a temperature of 25± 2oC in the laboratory. Each ant underwent a single

trial, lasting five minutes. Its motion was recorded using a digital HD video cam-

era (digital sampling rate of thirty frames per second). To process the image, we

tracked the ant position using a MATLAB program and image tracking process

was done as follows:

1. Import an RGB image of each frame of the video and change the image

size by selecting an image that includes the centered square plate and a rim, of

width roughly 0.5 cm, of surrounding water (Note that the position of the ant,

determined by its optical center of mass, can move slightly outside the arena even

if the ant does not walk into the water).

2. Each RGB image is converted to a gray scale and a background image

obtained by averaging over all frames.

3. From each RGB image, converted to gray scale, we subtract the back-

ground image. This gives us a picture of ant.

4. We adjust the intensity (contrast and saturation) of the resulting image

to see the ant more clearly and then convert each gray scale image to a binary

image (black-white scale) by intensity threshold.

5. To reduce noise, we remove all points that are significantly bigger or

smaller than average ant size.

6. We identify a spatial coordinate r(t) = (x(t), y(t)) at each time step

using the mean of the binary function.

Note that, we extract a spatial position of an ant using two consecutive

frames. So, the fraction of time ∆t = 2/30 s is the smallest time step we can use.

According to the camera’s spatial resolution, x = 30 cm/1010 pixels = 0.03 cm
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per pixel, this is the smallest distance we can resolve.

Temporal resolution

Spatial resolution

A B

(x
cm

,y
cm

)

Figure 2.3 The image processing steps used for tracking weaver ant motion. (A)

An illustration for the experimental setup. Imaging: data saved as a digital image

sequences with a certain spatial resolution (limited by square pixel length, ∆x)

and temporal resolution (limited by frames per second, 1/∆t) over a total duration

of T = 300 s. (B) Tracking: software uses in-house computer vision algorithms

for isolate and identify the ant position, then assign it spatial coordinates (the

position of the optical center of mass) by subtracting it from of an individual ant

from the background image.

2.3 Preliminary results

Sample data showing an ant trajectory is shown in Figure 2.2B. Because of the

ant’s finite body size, its position is occasionally found in the extended region,

about 0.5 cm beyond the arena. Position histograms are shown in Figure 2.4.

For these, we amassed data (x(t), y(t)) (without distinguishing individuals) and

counted the number of events where x, y landed in each square bin ∆x = 0.6 cm in

length, at time t. Dividing by the total number of events, this gives a probability

density Π(x, y, t) for finding an ant near r = (x, y) at time t. Averaging over
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time gives the normalized histogram Π(x, y) = 1/T
∫
dtΠ(x, y, t) that tells us the

fraction of time that the average ant spends near a given position.

From the results, Figure 2.2B and Figure 2.4, ants are often found near the

arena boundary. They have a slightly reduced probability to be found within the

repellent–the average probability for ants to be in zone R with and without the

repellent is 0.20± 0.01 and 0.23± 0.01, respectively. The repellent does not have

a pronounced effect on probability density overall. This is noteworthy, and may

be contrasted with the clear effect of repellent on specific properties of motion

discussed in detail below.

To model and analyze ant motion, we exploit the square symmetry of the

arena that results in approximate square symmetry for the data in the clean arena.

This symmetry is only approximate–the position of the tripod, room lighting,

etc., were not arranged carefully to maintain it. Non-zero average deviations from

square symmetry can likely be attributed to ants using long-range perception. We

observe such a deviation below, but it is a small effect. The raw data consists of

the position and time measurements. Other experimental properties, like the time-

dependent squared velocity of ensembles of ants and the probability of crossing

through zone R when repellent is present, are discussed in the next section. These

are all obtained by re-organizing and analyzing x(t), y(t).
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Figure 2.4 Time-averaged position histograms. Left: (A) A normalized his-

togram of ant position for 59 ants in a clean arena, indicating the fraction of time

ants spent near a given position (x, y). (B) Normalized histogram of ant position

for 68 ants with the repellent, citronella oil, painted in zone R (gray band) when

` = 10 cm. Ants have a strong tendency to remain near the arena boundaries

and have a lower probability overall to be found within zone R when repellent is

present (though this effect is not immediately obvious from the histograms shown).

Right: The normalized histogram of ant position in the central region or “interior”

(defined in Figure 2.2B), for removing the edge dominant. Significantly different

in (A) homogeneous and (B) heterogeneous domains, has a repelling strip.



CHAPTER III

THEORETICAL MODEL OF ANT MOTION

Most statistical properties of the data can be captured by a simple theoretical

model in which the ant is treated as particle undergoing Brownian motion. In

the first section, we use a broad overview of the data to motivate this model then

apply it to make non-trivial predictions of its more specific properties. More detail

will be discussed in the model calculation section.

3.1 Velocity and velocity-change distributions

The position ri(t) = (xi(t), yi(t)) of i = 1, 2, 3, ..., 59 ant individuals in the clean

arena with the time evolution t in steps ∆t = 1/15 s from t = 0 to t = 300 s was

measured. From it, we derive the velocity vi(t) = ∆ri/∆t with ∆ri = ri(t+ ∆t)−

ri(t) and change in velocity ∆vi = vi(t+ ∆t)−vi(t) at each time step (except the

last two). All points are included in a single full dataset (i, t, x, y, vx, vy,∆vx,∆vy).

To unclutter notation, the label i of the ant will no longer be written explicitly.

Figures 3.1A, 3.2A present normalized histograms and maps in phase space,

respectively. We defined a probability distribution of velocity, Π(vx, vy, t), the

probability of finding an ant with a velocity in a bin centered on vx, vy at time t.

Averaging this over time yields Π(vx, vy) = 1/T
∫
dtΠ(vx, vy, t). To obtain a one-

dimensional histogram, we can further integrate Π(vx, vy) over all vy. The resulting

distribution, giving the average probability of finding an ant with a given vx, is

shown in Figure 3.1A. Curves are shown for both vx and vy for the ‘Clean’ arena

and for an arena with the ‘Repellent’ citronella oil present for |x| < `/2 = 5 cm.



16

This distribution is peaked at zero with shoulder features at v ≈ 5 − 6 cm/s. A

typical ant does not remain still for long but, since it passes through zero velocity

each time it turns around, has a high probability to have a small velocity. The

shoulder features are notably missing from the vx distribution when citronella oil

is present.

Figures 3.2A show maps in (vx, vy) space, with one data point per time step

per ant. These date were divided according to position: data for the ‘Interior’ have

positions at least d = 2 cm away from any boundary, |x| < L/2− d, |y| < L/2− d,

while data for the ‘Boundary’ were obtained within the boundary strip of width

d. The latter looks like a plus sign because ants move along the boundaries.
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Figure 3.1 Ant velocity and change in velocity derived from the position data of

Figure 2.4. (A) Normalized histograms of velocity vx (Left) and vy (Right) for all

ants at all times in a clean arena (blue) and in an arena with repellent present in

zone R, ` = 10 cm (red). (B) The light green is normalized histogram for velocity

changes ∆vx and ∆vy occurring with each time step. The dark-green line is the

one-parameter fit to Eq.3.2 with m = 1.

We also constructed histograms and phase space maps for the change in
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velocity (∆vx,∆vy), shown in Figures 3.1B, 3.2B. The phase space maps are ap-

proximately isotropic. The probability distributions for ∆vx and ∆vy are symmet-

ric, peaked at zero, and do not change noticeably when repellent is added. These

simple distributions motivate the application of Langevin theory: velocity changes

can be attributed to random local impulses with a robust probability distribution.

Distributions over velocity and position are more complicated because they result

from an accumulation of many successive impulses and are strongly affected by

the arena boundaries.
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Figure 3.2 (A) Maps in velocity space, broken up by the ant position of Figure

2.4: the ‘interior’ data is more than 2 cm from arena boundary, while ‘boundary’

data is within this 2 cm strip. Left (right) plot is a clean (repellent of width ` = 10

cm) experiment. (B) Ant velocity change maps in (∆vx,∆vy) space for interior

and boundary region.
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3.2 Ants as Brownian particle

An analogy to Langevin theory of Brownian motion is used to model ant move-

ment. The model ant experiences a total force F(t) that results in a change in

velocity ∆v = F(t)∆t = (Fx(t), Fy(t))∆t with each time step. The velocity is

taken to obey Newton’s second law, for a unit mass, which is

∆v

∆t
≈ dv

dt
= F(t) =

η(t)

∆t
− v

τ
+ E. (3.1)

The interaction of a Brownian particle with molecules in the ambient fluid

results in a random impulse η(t), with zero time average {η(t)} = {η} = 0, and a

linear drag force with time-constant τ . We include these terms in the equation of

motion for the ant: the random impulse because its precise motion is unpredictable

and the drag force to keep the model stable.

The field E = E(x, y) in Eq.3.1 accounts for an ant’s interaction with any

spatially dependent feature, such as the arena boundaries or chemical repellent.

An appropriate model for the field must be chosen in each case. Since ants stop at

arena boundaries, the boundary field can be described by a short-range repulsive

force with a damping effect (like a normal force of a crash pad). For the chemical

repellent, we define a potential energy V (x, y) related to the field E = −∇V

that indicates the desirability of a given position (the higher the potential the less

desirable the position) and assign a positive potential to a position coated with

repellent.

While ∆vx is proportional to the total force Fx, the normalized histogram in

Figure 3.1B should be approximately proportional to the probability distribution

function for ηx. This is mainly because the magnitude of ηx is larger than the

impulse due to the other forces in Eq.3.1. The effect of the latter is further

reduced by the square symmetry. A histogram bin contains position and velocity
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components with both signs and the field is odd in x and y while the drag force is

odd in vx and vy. In this way we can approximately disentangle the random and

deterministic forces.

The histogram for either component of force, assumed equal to the proba-

bility density function (PDF) for the random local impulse η = ηx or η = ηy, is fit

to the following generalized Gaussian

p(η) = Nexp

(
−
[
|η|
cmσ

]m)
(3.2)

with the dimensionless number cm = Γ1/2(1/m)Γ−1/2(3/m) and the normalization

factor N−1 = 2cmσΓ(1 + 1/m) where Γ(z) is the gamma function. Since, p(η) is

an even function, the mean {η} = 0 while the mean square is

{η2} =

∫ ∞
−∞

dηη2p(η) = σ2. (3.3)

So, σ is the standard deviation of the model distribution. A similar χ2

goodness-of-fit is found over a range of values for σ and m (see Appendix A),

so we fix m = 1, leaving σ as the only parameter. A Gaussian, with m = 2,

does not give a good fit for any σ. The fits shown in Figure 3.2B have m = 1

and best-fit values of σ2
x = 0.75 ± 0.01 (cm/s)2 and σ2

y = 0.70 ± 0.01 (cm/s)2.

(We denote by σx and σy the values of σ that give the best fit to the p(∆vx)

distribution and p(∆vy) distribution, respectively.) It is the fact that Eq.3.2, with

a single parameter σ, always provides an excellent fit to the measured distribution

of velocity changes that makes it possible to model ant motion in a quantitative

way using the Langevin approach.

In the model η(t) is independently drawn at each time step. This ignores

correlations between the random impulses at nearby times: an assumption, tested

later, that is made here for simplicity. Also, with ηx and ηy drawn independently
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and the field vector Ex, Ey assumed to respect square symmetry, the Cartesian

components of Eq.3.1 are independent.

3.3 Measurable model properties

Using the general picture given above, we can calculate specific properties of model

ant behavior that may be compared to measurements. Here, we sketch derivations

of various ensemble averages of the model that can be compared to corresponding

experimental values. More detailed derivations are given in the model calculation

section.

3.3.1 Time-dependent squared velocity in the interior of a

clean arena

First, we consider the mean-squared velocity of an ensemble of model ants. Write

one component of the velocity as vx(t + ∆t) = vx(t) + ∆vx(t) and square this

expression to obtain

v2x(t+ ∆t)− v2x(t) = 2vx(t)∆vx(t) + (∆vx(t))
2. (3.4)

The left side is ∆t multiplied by d/dt(v2x(t)) while on the right side we use

∆vx = ∆t(dvx/dt) and substitute Eq.3.1. Take an ensemble average of Eq.3.4 by

averaging over many identical model ants with the same position and velocity at

time t. An ensemble average is indicated by curly brackets. Different members of

the ensemble experience different random impulses so {η} = 0. Random impulses

affect {v2x} via the term proportional to {η2x} = σ2 that appears on the right side

of Eq.3.4. This is larger than the deterministic terms, proportional to (∆t)2, that
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also appear. The ensemble-average is given by

d

dt
{v2x} =

σ2

∆t
− 2
{v2x}
τ

+ 2{vxEx} (3.5)

where we dropped (∆t)2 terms.

Eq.3.5 can be easily solved in the case of an infinite clean arena with E = 0

everywhere. The result is

{v2x(t)} = v2∞ + ({v2x(0)} − v2∞)e−2t/τ (3.6)

where v2∞ = σ2τ/(2∆t). At large times, the system is in a stable state with a

root-mean-square velocity component equal to v∞ in an infinite arena.

In a finite arena, ants may not have enough space to achieve a speed v∞

but, based on results in chapter IV, it appears that our arena is sufficiently large

to do so. In fact, the shoulder features of the velocity distribution, Figure 3.1A,

likely result from the fraction of the ant population that has achieved equilibrium.

We use a rough estimate v∞ = 5.3 cm/s, the center of the shoulder. A model

ant disturbed by an arena boundary or other feature will wander away and forget

its effects in time τ and distance τv∞. It thereafter behaves like a member of an

equilibrium ensemble in the infinite clean arena.

To obtain model predictions for Eq.3.6 in a finite arena, we must model the

ant-boundary interaction. Perhaps the simplest plausible interaction is to have

an ant stop abruptly at a boundary, with vx going to zero at x = −L/2 while vy

is unaffected. Using such a crude model∗ we cannot accurately describe motion

∗More serious modelling of the ant-boundary interaction is made difficult, in part, by the

inhomogeneity of our boundary. Data indicate the interaction has a complex position, velocity

dependence. The ant’s interaction with our laboratory boundary is of no general interest, so we

use the crude model and avoid quantitative discussion of near-boundary regions.
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of ants near boundaries, but may be able to predict the ensemble average in the

interior. So we define an interior region |x| < L/2−d, |y| < L/2−d, that excludes

a boundary strip of width d = 2 cm.

Model ants stop at the boundary then move the short distance d to re-

enter the interior, so an ant entering at t = 0 and x = −L/2 +d has a small initial

velocity vx(0). Its velocity vy(0) is not small because the x = −L/2 boundary

does not affect it. The average squared-velocity {v2x(t)} = {v2⊥(t)} perpendicular

to the boundary and {v2y(t)} = {v2||(t)} can then be calculated using Eq.3.6.

These time-dependent squared velocities can be readily compared to exper-

iment. We compile data segments with an ant entering the interior at time t1 and

exiting with time t2. Substituting t1 from t, we have an experimental ensemble of

ants entering the interior at t = 0. It is a large ensemble because each ant will

enter and exit the interior region many times.

3.3.2 Position dependence of squared velocities with and

without repellent

The model predicts that an ensemble-averaged squared velocity depends on posi-

tion. Ants that move away from a disturbance approach the equilibrium state of

an infinite arena, so {v2x} and {v2y} approach v2∞. For the clean arena, {v2x} is small

near x = ±L/2 and approaches v2∞ deep in the interior. With repellent present,

ant velocity receives a negative (positive) impulse as they enter (leave) zone R.

Away from these disturbance at the borders of zone R, the squared velocity again

approaches v2∞.

To test the predicted position-dependence against the data, we take the full

dataset and arrange it in order of increasing x before taking a running average of

v2x and v2y. In this way, we get x-dependent squared-velocities.
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3.3.3 Field and potential

The field E in Eq.3.1 comes from the arena boundaries and chemical repellent.

The arena boundary has the effect of keeping ants in the arena, so the associated

field is a strong, short-range field acting inward and normal to the boundary. It

could be modelled by an infinite potential barrier, with a damping effect used to

avoid billiard-ball reflections.

The potential associated with the repellent V (x, y) has a corresponding field

E(x, y) = −∇V (x, y). The model potential V (x) is a square barrier, with height

V0 and width `. The resulting field has an x component

E(x) = V0[−δ(x+ `/2) + δ(x− `/2)]. (3.7)

and no y-component. An ant that moves into zone R has to overcome a potential

barrier. If it exits a clean zone with velocity vx = v1 then it has a reduced velocity

vx =
√
v21 − 2V0 in zone R. Model ants with a velocity less than vmin =

√
2V0

cannot enter zone R.

Experimental values for the field E(x) and potential V (x) can be measured

in the following way. When we arrange the data in order of increasing x and take a

running average of ∆vx, we have ∆vx as a function of position x, known to within

bin width ∆x. The values of (t, y, vx, vy) vary within each bin and the bin-average

of ηx is zero. The drag force is not required by symmetry to average to zero but

it turns out to be negligible. Thus, the running average of ∆vx is equal to Ex(x).

This is the field measurement. The integral V (x) = −
∫
dxE(x) with V (x) = 0

outside zone R gives the potential.
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3.3.4 Crossing probability and residence time

A model ant, after having entered zone R, has a probability PC to proceed

through it, rather than turn back to the zone from which it came. The average

time it resides in zone R before leaving to either side is TR. In model calculation

section-section 3.4.2, we calculate these quantities for the model, assuming the

ensemble arriving at the border is in equilibrium. When we do the calculation for

a clean arena, we take the potential V0 = 0. Both quantities can be measured by

selecting the relevant data subset, i.e. finding all instances where the ant enters

zone R at time t1 and then determining the time t2 when it exits that zone and

noting to which side.

3.4 Model calculation

Here, we more fully develop the model sketched in the previous section and use it

to calculate several measurable properties of ant motion. These are all ensemble

averages, which can be approximated without using simulations of the random

motion. Because of the square symmetry of the arena, the motion along x and

y are independent. So, most quantities can be obtained with a one-dimensional

picture. The generalization to two-dimensions, where needed, is straightforward.

3.4.1 Ants in a clean arena

Consider a large ensemble of ants moving in one dimension with their velocity de-

termined by one component of Eq.3.1. The ensemble has a probability distribution

function Π(x, v, t) over position x, velocity v, at time t. A normalized probability

distribution over position (velocity) alone is obtained by integrating Π(x, v, t) over
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Figure 3.3 Model predictions. (A) plot of {v2x} (red solid curve) and {v2y} (blue

dashed curve) for ants in the interior region versus time. Ants entered the interior

near arena boundary at x = −L/2 so the x direction is perpendicular, and y

parallel to this boundary. Time is in units of τ , velocity is in units v∞. (B)

The probability PC that the ant crosses zone R (width l = 10 cm) and time TR

spent continuously in zone R, normalized to its maximum Tmax
R , are plotted versus

vmin/v∞. The parameter v2min = 2V0 where V0 is the height of the potential barrier

presented by the chemical repellent in zone R. (C) The potential V (x) versus

position, showing V0 in zone R and the resulting field Ex(x) = −dV/dx and the

effect on squared velocity. The vertical scale is arbitrary.

all velocity (position). The average of a function f(x, v, t) at time t is

{f(t)} =

∫ ∞
−∞

dx

∫ ∞
−∞

dvΠ(x, v, t)f(x, v, t). (3.8)



26

Of particular interest are mean values {x(t)}, {v(t)} and variances

σ2
x(t) = {x2(t)} − {x(t)}2, σ2

v(t) = {v2(t)} − {v(t)}2. (3.9)

Suppose that each member of an ensemble begins with x(0) = x0, and

v(0) = v0 in an infinite, clean arena. The velocity and position change as

v(t+ ∆t) = v(t)− v(t)∆t

τ
+ η(t) (3.10)

x(t+ ∆t) = x(t) + v(t)∆t, (3.11)

where η(t) is a random variable, with the probability distribution p(η) = p(−η).

Thus {η} = 0 and {η2} ≡ σ2 where σ is the standard derivation of random

impulses. In an ensemble average, terms odd in η vanish, so

{v(t+ ∆t)} − {v(t)} = −{v(t)}∆t
τ

. (3.12)

In the ∆t→ 0 limit, this becomes

d

dt
{v} = −{v}

τ
. (3.13)

In the same way, we find

d

dt
{v2} = −2{v2}

τ
+
σ2

∆t
, (3.14)

d

dt
{xv} = −xv

τ
+ {v2}, (3.15)

d

dt
{x} = {v}, (3.16)

d

dt
{x2} = 2{xv} (3.17)
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that can all be integrated. The solutions are

{v(t)} = v0e
−t/τ , (3.18)

{v2(t)} = v2∞ + (v20 − v2∞)e−2t/τ , (3.19)

{x(t)v(t)} = τv2∞ + (x0v0 + τv20 − 2τv2∞)e−t/τ − τ(v20 − v2∞)e−2t/τ , (3.20)

{x(t)} = x0 + v0τ(1− e−t/τ ), (3.21)

{x2(t)} = x20 + 2τv2∞t+ 2τ(x0v0 + τv20 − 2τv2∞)(1− e−t/τ )

−τ 2(v20 − v2∞)(1− e−2t/τ ). (3.22)

We introduce a terminal velocity v(t → ∞) ≡ v∞ defined by v∞ =

σ2τ/(2∆t). Velocity will be written in units of v∞, time in units of τ , and distance

in units of τv∞. So, all three variables are dimensionless and the solution becomes

{v2(t)} = 1 + (v20 − 1)e−2t, (3.23)

{x(t)v(t)} = 1 + (x0v0 + v20 − 2)e−t − (v20 − 1)e−2t, (3.24)

{x2(t)} = x20 + 2t+ (2x0v0 + 2v20 − 4)(1− e−t)

−(v20 − 1)(1− e−2t). (3.25)

The mean values are

v̄(t, v0) = {v(t)} = v0e
−t, (3.26)

x̄(t, x0, v0) = {x(t)} = x0 + v0(1− e−t) (3.27)
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where variances given by

σ2
v(t) = 1− e−2t, σ2

x(t) = −3 + 2t+ 4e−t − e−2t. (3.28)

At large t, the spread in velocity σv(t) → 1 while σx increases without

bound in an infinite arena. Note that, after a time t ≈ τ , an ant forgets its initial

state and approaches its equilibrium velocity. After moving a distance d ≈ τv∞

away from a disturbance, it similarly approaches equilibrium.

We will write G(x; x̄, σ) for a normalized Gaussian in the variable x, with

the mean x̄ and standard deviation σ. The initial distribution can then be written

Π0(x, v) = Π(x, v, 0) = δ(x − x0)δ(v − v0) = G(x;x0, ε)G(v; v0, ε) using a par-

ticular representation of a delta function with an infinitesimal quantity ε. The

equilibrium distribution for the infinite arena is Π(x, v,∞) = Π∞(v) = G(v; 0, 1).

To approximate time-evolution of an ensemble, replace Gaussian parameters with

time-dependent values that give the mean and standard deviation found above.

Thus, the time-dependent distribution is

Π(x, v, t) = G(x; x̄(t, x0, v0), σx(t))G(v; v̄(t, v0), σv(t)) (3.29)

when Π0(x, v) = δ(x−x0)δ(v−v0). An arbitrary initial distribution is first written

as

Π0(x, v) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dv′Π0(x
′, v′)G(x;x′, ε)G(v; v′, ε) (3.30)

and primed variables treated as initial values, to get

Π(x, v, t) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dv′Π0(x
′, v′)

G(x; x̄(t, x′, v′), σx(t))G(v; v̄(t, v′), σv(t)).

(3.31)

In two dimensions, the distribution functions is Π(x, vx, t)Π(y, vy, t) and Eq.3.31
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generalized to include integrals over y′, v′y with two more Gaussians of the same

form.

The results above apply to a clean, infinite arena. The effect of the field,

which is important at arena boundaries and at the borders to zone R when the

chemical repellent is present, will be treated as initial values of these equations.

The simplest model of the interaction at arena boundaries is to have ants stop

abruptly at the boundary and forget their previous motion. When the ant reaches

the boundary at x = ±L/2, its velocity vx drops to zero while its motion in the y

direction is unaffected. For a clean arena that is sufficiently large, i.e. L >> 1 (in

units of τv∞), ants far from boundaries are in equilibrium.

First consider the time-dependence of the squared velocity of ants in the

clean arena that have entered the interior region, which is a square of length

L′ = L − 2d centered in the arena of length L where d << L. An ant starting

at the boundary x = −L/2 with vx = 0 needs a typical time t = t1 to reach the

interior region, which is found by inverting {x2(t1)} = d2. The standard deviation

of velocity at this time is σ1 = σv(t1) << 1. Only ants with vx > 0 enter the

central region from the side, so, we use G+(x; , x̄, σ) = 2θ(x)G(x; x̄, σ) with

θ(x) =


1 where x > 0,

0 where x < 0
(3.32)

to write the distribution for members entering at t = 0 as Π(x, vx, 0) = δ(x +

L′/2)G+(vx; 0, σ1). For motion along y we assume that most ants, being far

from boundaries y = ±L/2, are in equilibrium, so, Π(y, vy, 0) = (1/L′)θ(L′/2 −
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|y|)G(vy; 0, 1). The time-evolution is introduced via Eq.3.31 and

{v2α(t)} =

∫ L′/2

−L′/2

dx

∫ L′/2

−L′/2

dy

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

v2αΠ(x, vx, t)Π(y, vy, t)

(3.33)

where α = x, y. The results of Eq.3.33 were shown in Figure 3.3C. At small times,

{v2x(t)} increases because ants accelerate as they move away from the boundary.

After a time of order τ , it reaches a peak, some fraction of v2∞, then starts to

decrease. Members that leave the central region are removed from the ensemble

and, since fast ones leave first, {v2x(t)} decreases. In contrast, the initial value

{v2y(0)} = v2∞ is maximal, so, {v2y(t)} decreases monotonically.

3.4.2 Ants with the potential barrier

Next, we introduce the chemical repellent to the central zone R, defined by |x| <

`/2 where ` < L, which adds a field Ex(x) = −dV/dx to Eq.3.1. The effective

potential

V (x) =


V0 in zone R,

0 elsewhere.
(3.34)

After encountering the step potential, an ant crosses into zone R, every

member receives a negative impulse ∆vx = −vmin = −2
√
V0 opposite to the

direction of its velocity. The potential results in a reduced density of ants in zone

R, since some are prevented from entering the zone.

Consider an ensemble approaching the border to zone R. Since this border

is far from the arena boundaries, we assume the distribution is in equilibrium upon

arrival at the border. While crossing into zone R, some members are repelled

by the barrier and the rest have their velocity reduced by vmin. The resulting

distribution, just after arriving into zone R at x = −`/2 is Π0(x, vx) = δ(x +
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`/2)θ(vx)G(vx+vmin; 0, 1). This ensemble, which lost some members at the border,

has to be normalized.

To calculate the crossing probability PC and residence time TR, we first find

these quantities PC(x, vx) and TR(x, vx) for an ant with a certain initial position x

and certain velocity vx. These functions can be weighted with the initial distribu-

tion to estimate their measurable values. Thus, the expected crossing probability

is

PC =

∫
dvxΠ0(−

`

2
, vx)PC(− `

2
, vx) (3.35)

and residence time is

TR =

∫
Π0(−

`

2
, vx)TR(− `

2
, vx) (3.36)

where we are using a one-dimensional picture for simplicity.

A function F (x, vx) that depends on the initial values x(0) = x and vx(0) =

vx can be set equal to its ensemble average one time step later, so

PC(x, vx) = {PC(x(∆t), vx(∆t))} (3.37)

TR(x, vx) = ∆t+ {TR(x(∆t), vx(∆t))
t

τ
+ η} (3.38)

and then either function written as

F (x(∆t), vx(∆t)) = F (x+ vx∆t, vx − vx
∆t

τ
+ η). (3.39)

We Taylor-expand in ∆t

F (x(∆t), vx(∆t)) = vx∆t(
∂F

∂x
− 1

τ

∂F

∂vx
) (3.40)

and drop terms odd in η from the ensemble average. The first order terms

vx∆t(∂F/∂x − τ−1(∂F/∂vx)) vanish if the function depends on a single variable,
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F (x, vx) = F (r) with r = x+vxτ . Most of the second order terms similarly cancel.

The surviving term up to second order results in

∂2PC
∂r2

= 0, (3.41)

∂2TR
∂r2

= −1 (3.42)

in dimensionless variables. In writing the solution,

PC(r) = α1r + α2, (3.43)

TR(r) = −1

2
r2 − β1r + β2. (3.44)

With boundary conditions P (−`/2, 0) = T (−`/2, 0) = T (`/2, 0) = 0 and

P (`/2, 0) = 1. Then, the coefficients are α1 = 1/`, α2 = 1/2, β1 = 0, β2 = `2/8.

We find

PC(− `
2
, vx) = PC(vx) =

vxτ

`
, (3.45)

TR(− `
2
, vx) = TR(vx) =

vxτ

2
(`− vxτ). (3.46)

These expressions are small-velocity approximations, because of the Taylor expan-

sion, and evidently meaningless for v > `. To crudely treat large velocities, we can

set the crossing probability to one and residence time to zero for vx > `.

Since PC(vx) is a monotonically increasing function of vx, with the slowest

ants having no chance to successfully crossing zone R. The effect of the potential

barrier is to reduce the typical initial velocity vx and thus decrease PC . The

function TR(vx) is non-monotonic. It increases with velocity at small vx, because

slightly-faster ants penetrate further into zone R, so, it takes them longer to

retreat back. It decreases at large vx because the fastest ants race through zone

R in less time. There is a corresponding non-monotonic dependence of TR on the
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potential barrier height. Consequently, a weak barrier potential V0 will result in

ants spending more time in zone R, then, they would if V0 = 0. That is, according

to this model, ants will spend more time in a region with a mild repellent present

than they would in a clean region of the same size.

Note that, the quantitative value of PC , obtained from this model, is con-

siderably lower than the measured value-likely because of the significant effect that

the boundaries at y = ±L/2 have on the latter. The qualitative effect, illustrated

in Figure 3.3, is indicated by a plot of TR normalized to its maximum value versus

vmin.

Finally, consider the dependence of the average velocity squared {v2x} on

position x in equilibrium (i.e. the time average of this quantity). It is obtained

using Eq.3.8 with Π(x, vx, t) set equal to the equilibrium distribution. Again, we

seek only a qualitative result. Since the equilibrium distribution does not change

with time, it satisfies

vx
∂Π

∂x
+
∂vx
∂t

∂Π

∂vx
= 0. (3.47)

To simplify the problem, we use a weak-field limit and assume the distribu-

tion is close to the zeros-field equilibrium, Π∞(vx) so Π(x, vx) = Π∞(vx)+Π1(x, vx)

where the second term, absent were it not for the field, is small. Equation 3.47

becomes

∂Π1

∂x
− E(x)Π∞(vx)−

∂Π1

∂vx
= 0. (3.48)

where we dropped terms odd in η, used v2x = 1 in the long time limit, and ignored

terms E(x)Π1(x, vx) second order in the weak field. The field due to the repellent

is

E(x) = V0[−δ(x+ `/2) + δ(x− `/2)]. (3.49)

It cause step-like jumps in the distribution Π1(`/2, vx) at the borders to zone R.

Integrating Eq.3.48 over a small region at the border between the clean and the
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repellent zone (zone R) gives

∫ −`/2+ε
−`/2−ε

dx
∂Π1

∂x
= ∆Π1(−

`

2
, vx) = −V0Π∞(vx). (3.50)

This is a localized disturbance caused by the field. As we move into the

zero-field region Π1(x, vx) decays to zero and {v2x(x)} approaches one.

The zero-field version of Eq.3.48 is satisfied by any function Π1(x, vx) =

Π1(x+ vx), so a possible form

Π1(x, vx) = exp(−κ[x+ vx − x0])Π1(x0) (3.51)

decays as we move away from a disturbance at x0. Ants moving out of zone R re-

ceive an initial burst due to the force from the repellent and have a correspondingly

larger slope κ. The distribution at the boundaries is Π(−L/2, vx) = Π(L/2, vx) =

δ(vx). We treat this as another localized disturbance that decays. This qualitative

behavior was sketched in Figure 3.3.



CHAPTER IV

ANT’S BEHAVIOR

In this chapter, we discuss our application of Langevin theory to the motion of

individual weaver ants. It turns out that both the random and deterministic

components of the forces assumed in Langevin theory can be seen in the data. The

probability distribution function of random impulses is robust and characterized

by a single parameter. The deterministic response to chemical repellent can be

adequately modelled by a potential energy that indicates the desirability of a

given position. The theory explains most qualitative properties of the statistical

data. Semi-quantitative agreement between theory and data is also achieved.

The mathematical simplicity of the model, which allows a full characterization of

navigation with a small number of parameters, suggests that it is an appropriate

starting-point for further quantitative studies, including those aimed to better

understand the ant’s communication.

4.1 Experimental Results

4.1.1 The distribution of random impulses

The most basic quantity to measure and analyze is the probability distribution

function of velocity changes ∆vx and ∆vy. According to Langevin-based model,

Eq.3.1 describes the distribution of random local impulses ηx that have a dominant

influence on probability distribution for ∆vx. In this section, we will try to fit the

measured p(∆vx) to Eq.3.1 with a single parameter σ.
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Figure 4.1 The measured probability distribution function p(∆v) obtained for

various data subsets are compared, including (A) average overall data in a clean

arena. (B) Comparing ∆vx measured for “Early” and “Late” time. (C) “Interior”,

∆vx and ∆vy for ants at least d = 2 cm from any boundary. (D) ∆vx measured

for |x| > L/2 − d (∆v||) and |y| > L/2 − d (∆v⊥) to the arena for ants within

2 cm. (E) Comparing ∆vx for “In” and “Out” of the repellent when the width

` = 10 cm. (F) The probability distribution p(∆vx) in a clean arena compared to

the probability distribution function indicated in Eq.3.2 with m = 1 (blue) and

the Gaussian m = 2 (red).
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In doing these fits, we are attributing p(∆vx) wholly to random impulses.

This gives a good fit in most cases but it is not consistent with the model. The

model says that p(∆vx) is affected by deterministic forces (the field and drag

force) as well as random impulses. When we fit p(∆vx) to Eq.3.2 we are burying

deterministic effects into changes in σ. Still, this is a reasonable approach because

i/ random and deterministic force components are entangled and ii/ the random

impulses are bigger.

Recall that, if p(∆vx) was determined entirely by the random impulses,

the size of σ would indicate how erratic ant motion is. So a larger value of σ

means, according to our theoretical model, either that random impulses are getting

stronger or deterministic effects are significant. We will return to do a better job

of isolating deterministic forces in later sections.

Eq.3.1 was used in fits to distributions p(∆vx), p(∆vy) for several subsets

of the data, with results shown in Figure 4.1 and Table 4.1. The subsets are:

“Overall” (data for all ants at all times and positions in the clean arena), “Early”

and “Late” (all positions in the clean arena at time 0 < t ≤ 30 s and 270 < t ≤ 300

s, respectively), “Interior” (all times in the clean arena with position |x| < L/2−d,

|y| < L/2−d at least d = 2 cm from any boundary) along with the complementary

subsets for positions |x| > L/2−d and |y| > L/2−d within d from the boundaries.

Finally, with the repellent coated over zone R, length ` = 10 cm and ` = 2.5 cm,

we show results for positions “In” and “Out” of this repellent. For “In” we used

the data subset in which the ant entered zone R with position |y| < L/2 − d to

reduce the boundary effects.

The first observation is that the distributions are qualitatively robust.

Quantitatively, these values indicate a good fit and, as evident from Figure 4.1,

describes a fit that appears excellent to the eye. The size of σ2 is also roughly
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Table 4.1 The results of fitting the measured distribution of velocity changes

p(∆vx) and p(∆vy) for various data subsets to Eq.3.1 with m = 1. The labels

“Early/late” refer to times 0 < t ≤ 30 s and 270 < t ≤ 300 s, while “Interior”

means |x| < L/2 − d, |y| < L/2 − d and x ≈ L/2 means L/2 − d ≤ |x| < L/2.

When repellent is present in zone R, with width ` in cm, the “In” label means

|x| < `/2, “Out” means |x| > `/2 and x ≈ 0 means |x| < 1.25 cm. The fitting

parameter σ2 had an uncertainty of about 0.01 (cm/s)2 for most subsets, but was

somewhat higher for others, with a maximum 0.09 (cm/s)2 in the repellent for

` = 2.5 cm. The dimensionless Pearson correlation coefficient was calculated to

the nearest 10−2.

p(∆vx) p(∆vy)

Subset σ2
x(cm/s)2 χ2 102ρ σ2

y(cm/s)2 χ2 102ρ

Overall 0.75 2 -2 0.70 2 -1

Early 0.78 8 0 0.77 10 0

Late 0.68 16 1 0.63 12 2

Interior 0.65 3 -4 0.67 3 -4

|x| ≈ L/2 0.69 3 0 1.04 2 2

|y| ≈ L/2 0.92 1 1 0.56 2 -1

` = 10, In 0.93 4 1 0.74 18 -2

` = 10, x ≈ 0 0.97 2 -1 0.73 2 1

` = 10, Out 0.58 2 -1 0.62 2 -1

` = 2.5, In 1.31 1 4 0.90 3 2

` = 2.5, Out 0.76 22 -2 0.84 19 -1

constant across all data sets. This indicates that the deterministic effects are not

strong enough to completely destroy agreement between Eq.3.2 and the p(∆vx)
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data. Also, the Pearson correlation coefficient, ρ << 1 in all cases. This means

that impulses at different time steps are approximately independent. The dimen-

sionless χ2, indicating goodness-of-fit, was calculated to the nearest 1.

The correlation coefficients, for several data subsets, are ρ =

ρ(∆vx(t),∆vx(t + 3∆t)) and ρ = ρ(∆vy(t),∆vy(t + 3∆t)) in respective columns,

where

ρ(X, Y ) =
{(X − {X})(Y − {Y })}√
{X2} − {X}2

√
{Y 2} − {Y }2

(4.1)

and the curly brackets denote an average over the subset. We considered times

separated by 3∆t because those closer together are constructed using overlap-

ping data point r(t). Since {∆vx(t)} = {∆vx(t + 3∆t)} ≈ 0 and {(∆vx(t))2} =

{(∆vx(t+ 3∆t))2} ≈ σ2, the value of ρ = {∆vx(t)∆vx(t+ 3∆t)}/σ2 indicates the

size of the correlation of impulses at nearby time steps compared to their magni-

tude at each step. The fact that ρ << 1 suggest that it is reasonable to treat the

random impulses as uncorrelated.

Quantitatively, differences are seen in the parameters of Table 4.1. First,

the square symmetry is not perfect, since σy is smaller than σx. The most likely

explanation for this effect is that ants alter their motion according to their vision,

or some other long-range perception. While the effect is much larger than that

predicted by chance (the difference between σ2
x and σ2

y is five times larger than

uncertainty, which is 0.01 (cm/s)2 for both), it is still small enough that it does

not seriously threaten the assumption that the navigation is local. Other sources

of variation in σ2 are discussed next.

4.1.2 Time and position dependence of random motion

According to Table 4.1 and Figure 4.2, σ values decrease modestly with time t. The

deterministic forces are time-independent so this effect can be safely attributed to
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real changes in the random impulses. The effect is further detailed in Table 4.2,

which presents the results of linear fits to σ versus t.
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Figure 4.2 The σx (circle) and σy (square) change over time for all ants in a clean

arena (black) and the repellent experiment, l = 2.5 cm (blue) and l = 10 cm (red).

The σ values decrease slightly with time.

For a clean arena, the downward trend of σ with t is weak: the slope of σy

versus t is zero within uncertainty. In an arena with repellent, σ decrease more

significantly since the slope is several times larger than its uncertainty. This could

be an indication that ants learn to move a bit more cautiously, i.e. less erratically,

over time in the presence of repellent. But the main point here is that σ does not

change substantially over the duration of the experiment.

Also from Table 4.1, there is a sizeable difference in the value σ2 obtained for

positions near boundaries compared to those for the interior. While the difference

is an order of magnitude larger than the uncertainty in σ2, it is certainly affected

by the effect of the ant-boundary interaction on the distributions p(∆vx), p(∆vy)

near the boundary. The interaction is complicated∗ and boundary effects, being

peculiar to our arena design, are of no general interest so we do not attempt
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Table 4.2 A linear regression was done on the data Figure 4.2, in which σ values

are plotted versus time t. The slope m = ∆σ/∆t and its uncertainty are indicated

for σ obtained from ∆vx and ∆vy in the clean arena and that with repellent

present.

Linear curve fitting 103mσ,x (cm/s2) 103mσ,y (cm/s2)

Clean -0.2±0.1 -0.3±0.0

l = 2.5 cm -0.7±0.1 -0.5±0.1

l = 10 cm -0.6±0.1 -0.6±0.1

detailed modelling‡.

Finally, the value of σ is larger in zone R when repellent is present. Again

the difference is far greater than the statistical uncertainty in σ2. If the fit value of

σ could be wholly attributed to random impulses, then an enhancement of σ would

be interesting in light of what is known about chemotaxis by bacteria and other

organisms. Bacteria that move according to the “run and tumble” technique vary

the frequency at which they tumble depending on the local environment (Bialek,

2012; Macnab and Koshland, 1972; Szurmant and Ordal, 2004; Shimizu et al.,

2010; Long et al., 2017). Perhaps ants also modify their random walk behavior,

by adjusting σ, when they find themselves in a hostile region. However, such

behavior is not evident from the data. Rather, it appears that the most significant

response of ants to the repellent is an initial velocity drop, well-described by the

Langevin/Newtonian picture and discussed below.

‡A plausible reason why ants tend to remain near boundaries is that a one-dimensional struc-

ture like this allows an ant to explore a large region without becoming disoriented: humans

would likely use the same strategy, following the river to avoid walking in circles. It is a large

effect, from {v2x} and {v2y} plots in Figure 4.3 appears that ants move at high speed along the

boundary and are subject to large impulses parallel to the boundary as they do so.
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In Figure 4.1E, showing data obtained within the repellent, we see an ap-

parent qualitative difference between the measured probability distribution and

Eq.3.2 with m = 1. Indeed, the experimental curve looks similar to a Gaussian

with m = 2. If we nevertheless fit the data using m = 1, then we obtain a relatively

large σ. We should be cautious in taking the value seriously. Ants in the repellent

have recently encountered the potential step as the entered zone R. So, Figure

4.1E is probably strongly affected by field effects. Because of this complication,

we cannot confidently discuss chemotaxis effects on random motion. We turn now

to deterministic effects, which are clearer.

4.1.3 Deterministic motion

4.1.3.1 Time-dependent squared velocity

The model prediction of the squared velocity {v2x} and {v2y} among an ensemble

of ants that entered the interior of a clean arena, defined by |x| < L/2 − d, |y| <

L/2 − d where d = 2 cm, at time t = 0 s is shown in Figure 4.3. Here v|| is the

velocity component parallel to the boundary strip from which the ant entered and

v⊥ is perpendicular to it. The initial value of {v2⊥} is small, since members recently

stopped at the boundary, but {v2||} is larger because ants move rapidly along the

boundary. While {v2⊥} initially increase because random impulses accelerate ants,

it later decreases because the fastest ants leave the arena interior first, reducing

the average velocity among those that remain. In contrast {v2||}, large initially,

decreases monotonically because of the latter effect.

The velocities {v2‖} and {v2⊥} are expressed in units of v∞ in Figure 4.3B.

We have a rough estimate of v∞ = 5.3 cm/s from the middle of shoulder feature

in Figure 3.1. Using this and σ2
x = 0.75 (cm/s)2, we have a basic time scale

τ = 2.4 s and length scale τv∞ = 12.8 cm for the model. The size of the arena L
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Figure 4.3 (A) Schematic of t-dependent of {v2||} and {v2⊥} for ant entered an

arena interior. The solid line (dashed line) depicts ants that ants entered an interior

near arena boundary at x = ±L/2 (y = ±L/2) so the x-direction is perpendicular

(parallel), and y-direction is parallel (perpendicular) to the boundary. (B) Model

prediction: plot of {v2x} (red solid curve) and {v2y} (blue dashed curve) for ants in

the arena interior versus time. Time is in units of τ , velocity is in units v∞. (C)

Experimental result of ants in a clean arena.

is comparable to v∞τ , which means ants can come close to achieving equilibrium

speed before exiting the arena interior.

The corresponding experimental quantity is also shown in Figure 4.3C, with

{v2x(t)} and {v2y(t)} plotted for ants entering the interior from all four boundary

strips. The velocity components perpendicular to the boundary strip from they

entered behave like the model prediction for v⊥ while parallel components behave

like v‖.

Seeing that the qualitative features of the model and the data are similar,

we attempt a quantitative comparison. From the initial measured value of {v2‖},
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we get v∞ ≈ 6.5 cm/s, which is larger than the value v∞ = 5.3 cm/s obtained

from the peak of the shoulder feature. The time of the peak in {v2⊥(t)} occurs at

time t/τ ≈ 0.5 in the model and closer to t ≈ τ in the experiment. The model

agrees with the data to within a factor of order unity in both cases.

4.1.3.2 Position dependence of squared velocity

The model position dependence of {v2x} and {v2y} is sketched in Figure 4.4A. These

quantities approach v2∞ in the open arena but are depressed at the boundaries and

border to zone R. Notably, they approach the same equilibrium value within zone

R, in the repellent, as in clean regions. Once a model ant overcomes the potential

and arrives in zoneR, it forgets about this experience and random impulses restore

its speed to v∞.

Experimentally, {v2x} and {v2y}, shown in Figure 4.4, are qualitatively consis-

tent with model predictions. For the clean arena {v2x} is small near the boundaries

then rises to a maximum and becomes weakly position-dependent near the middle

of the arena. The maximum of
√
{v2x} ≈ 5.4 cm/s gives another experimental

estimate of v∞ that is consistent with previous values. The x-dependence of {v2y}

is dominated by boundary effects: near x = ±L/2 most ants are moving quickly

along the boundaries and
√
{v2y} ≈ 4.8 cm/s is close to v∞. Near x = 0, a large

fraction of ants move rapidly along y = ±L/2 with a small vy component, so {v2y}

is reduced.

The repellent causes disturbances in {v2x} at the borders to zone R but has

no noticeable effect on {v2y}. When ` = 2.5 cm, we see a depression in {v2x} in zone

R. The expected recovery within zone R is, perhaps, faintly seen as the small

peak occurring right at x = 0. This recovery is more clearly seen when ` = 10 cm,

as {v2x} has minima at the borders to zone R and increases to either side of it.
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Figure 4.4 (A) Model prediction of x-dependent of {v2x} and {v2y} for ant entered

an arena interior. The vertical scale is arbitrary. Experimental results, (B) plot

for a clean arena. (C) The experiment where zone R was painted with ` = 2.5

cm and (D) ` = 10 cm.

We can see, from Figure 4.4, why shoulder features were missing from the

distribution of vx when repellent was present in zone R, width ` = 10 cm. Ants

do not have enough space free from disturbances, between arena boundaries and

the borders to zone R, to achieve equilibrium velocity.
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4.1.3.3 Field and potential

Supposing that the ant cannot leave the arena, the boundaries are associated with

infinitely high potential barriers. For the repellent, we use a square potential

barrier of height V0. The associated field Ex = −dV/dx is a pair of δ-function

spikes, of opposite sign, at the borders to zone R. These are depicted in Figure

4.5A. We gave the spikes finite width so they can be seen.

The experimental field Ex = Ex(x) is obtained by ordering experimental

data according to x and taking a running average over ∆vx. The corresponding

potential is obtained by integrating this quantity. The results are shown in Figure

4.5. For the clean arena is shown in Figure 4.6C, the x-averaged value of ∆vx,

interpreted as the field Ex, showed no position dependence within the arena. At

the boundaries Ex is large over a short range, directed into the arena. These

boundary fields, seen at x = ±L/2 in Figure 4.5, look the same without or with

repellent present.

With repellent in zone R, we see spikes in the measured Ex at the borders

to zone R. The finite width of these spikes can be attributed to several factors.

For one, the border to zone R is not well defined because the oil, even if perfectly

painted, diffuses somewhat on the ceramic tile. For a more interesting one, the ant

has finite spatial resolution in its determination of the field (i.e. its response to

repellent) that varies according to the speed and angle at which it crosses into zone

R. The experimental potential {∆vx} is also plotted. A square barrier, roughly

resembling the ideal model, is seen when the width of zone R is ` = 10 cm. In the

case of ` = 2.5 cm, the square barrier has narrowed to a peak.

The experimental values for the height of the potential barrier V0 fall in

the range of 5 − 10 (cm/s)2. This value, much smaller than v2∞, is likely an

underestimate of the potential barrier height. Determining the field and potential
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running averages of ∆vx (blue) and ∆vy (red) versus position x with repellent

when (B) ` = 2.5 cm and (C) ` = 10 cm.

in this manner is numerically delicate: one has to choose bins for the running-

average that are big enough to ensure random impulses average to zero but small

enough to preserve some spatial resolution.

Note that figure 4.6 plots of {∆vx} and {∆vy} versus time t, velocity vx and

position x for a clean arena. Recall that such plots are constructed by ordering

the data set according to the time range of 3 s, a velocity range ∆vx ≈ 0.4 cm/s,

and a position range ∆x ≤ 1 cm. Then calculating a running average of each

quantity (thus the curly brackets indicates an average over time and ants). The

time-averages are small that is not apparent t-dependence, which as the expected

result from symmetry. The velocity averages for ∆vx and ∆vy are also negligible,

so that is not apparent vx-dependence. While the running average of {∆vx} is
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Figure 4.6 Running averages of ∆vx (black) and ∆vy (red) over time, velocity vx,

position x for all ants in a clean arena. (A) The running average of ∆v over a 3 s

time window ending at time t is small, with not apparent t-dependence. (B) The

average of ∆v between velocity vx−∆vx and vx where ∆vx ≈ 0.4 cm/s is also small,

with an apparent vx-independence. (C) Position averages are approximately zero

at all positions in a clean arena, excepted at the edges because of the boundary

effect.

expected to give the field Ex due to the arena boundaries, it is found to be close

to zero at all positions in the clean arena. The value {∆vx} should vanish due to

symmetry and its measured value is indeed small.
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4.1.3.4 Crossing probability and residence time

The crossing probability PC and residence time TR spent continuously in zone R

were discussed above. According to model calculations, described in Section 3.4,

PC decreases with the size of the potential barrier V0 because ants are slowed as

they enter zone R. So, PC is always reduced by the effect of a repellent. The

same slowing effect results in an initial increase in TR with V0, so a weak repellent

will increase the time ants spend in zone R as compared to a clean region of the

same size. With a sufficiently large V0, TR decreases because ants are immediately

repelled.

Table 4.3 The measured probability PC that an ant crosses zone R, length `, and

measured time TR it remains continuously in zone R. Both depend on whether

zone R has no repellent, i.e. is “Clean” or is coated evenly with the repellent

citronella oil, “Repel”.

PC TR (s)

` = 10 cm

{
Clean 0.91±0.03 1.85±0.08

Repel 0.51±0.04 2.08±0.08

` = 2.5 cm

{
Clean 0.95±0.02 0.52±0.02

Repel 0.79±0.03 0.87±0.04

We measured PC and TR the data subset in which the ant entered zone R

with position |y| < L/2−d, to reduce boundary effects and give the values in Table

4.3. For experiments in a clean arena, zone R has no physical meaning, but is

merely the central strip |x| < `. The results are compared with experiments where

the repellent, citronella oil, coated on zone R. The crossing probability is lower

when repellent is present. But ants reside within zone R for a longer time when

it is infected with the chemical repellent than when clean. This counterintuitive
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behavior agrees with the model prediction. It should be emphasized that the

quantitative values of PC and TR calculated using our model, Section 3.4, do not

agree with the data. For ` = 10 cm and ` = 2.5 cm, the model predictions of

PC = 0.7 and PC = 0.9 are smaller than measured values. The residence times

TR, calculated using the crude but simplifying continuum approximation to the

discrete random walk, were an order of magnitude smaller than measured values.

But the qualitative effect of repellent on PC and TR is notable.

4.2 Summary

The simplistic theoretical model accounts for almost all statistical properties of ant

motion in the experiment. Recall that the model includes a constant probability

distribution function p(η) for random impulses, with zero mean, mean-square σ2

and negligible time correlations. It also includes a field due to interactions with

the boundaries and the chemical repellent, where the latter can be adequately

modelled by a scalar potential that has a positive value V0 if repellent is present

and is zero elsewhere. The navigation algorithm implied by this model is purely

local, i.e. ants modify their path in response to their current position and velocity,

without taking into account distant surroundings.

The theory is characterized by a small number of parameters: say v∞, σ2

and V0, the first two of which are obtained form data for a clean arena. It provides

a scheme for simulating motion in more general conditions.



CHAPTER V

CONCLUSION

The motion of individuals belonging to the species Oecophylla smaragdina, or

weaver ants, was studied in a small arena by measuring the ant position as a

function of time. The arena was a floor tile that was either clean or had a defined

region coated with citronella oil, a substance that repels ants.

The aim of this thesis was to determine a simple model for the algorithm

that governs ant navigation. It was originally intended to be the first stage in a

larger project: a study of how communication between weaver ants affects their

navigation. (Weaver ant communication is an active research area (Hölldobler

and Wilson, 1978; Franks and Richardson, 2006; Gordon, 2010; Golden and Hill,

2016).) But we discovered along the way that the motion of an ant individual, alone

in the arena with no companion to communicate with, has numerous interesting

features. So, we decided to make this the sole subject of this thesis and relegated

communication studies to future work.

We found that a version of Langevin theory of Brownian motion provides

a good description of statistical properties of the data on individual ant motion.

The equation of motion for ants is Newton’s second law with a random force, with

zero time-average and a fixed, robust probability distribution function p(η) ∼

exp
(
−|η|/(c1σ)

)
, where c1 is a known constant of order unity, giving uncorrelated

random impulses that act with each time step. The repellent can be modelled by

an effective potential energy, and associated field, that results in ants receiving a

negative impulse when they entire the region coated with repellent.
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Most aspects of the data can be adequately accounted for with this minimal

model, including counterintuitive properties such as the fact that ants spend more

time continuously within a region with repellent present than they would in a clean

region of the same size. The algorithm may be used to simulate motion, allowing

investigations of more complex properties of motion to be done computationally.

The report above establishes a viable framework for studying weaver ant

navigation. We now see that an ant individual moves according to Langevin theory

and that its motion in a clean arena can be characterized by a single parameter σ.

We know further that the ant responds to a mild chemical repellent in a manner

analogous to the response of a Newtonian particle encountering a step potential: it

suffers an impulse when it passes from a clean region to one infected by a repellent.

The size of the impulse is given by the measurable parameter V0, the height of the

potential.

This work provides a good baseline for planned future studies of communi-

cation. In such studies, one can look for changes in σ and V0 that occur after an

ant individual has communicated with another. It will thus be possible to infer

how ants direct the motion of their companions. Such studies can be done in

a purely quantitative manner: effects of shared information will show up in the

variation of parameters measured from statistical data. There is no need for any

intrusion into the data analysis by researchers making subjective judgments and

characterization. In our opinion, other animal-behavior researchers would benefit

by following this objective methodology.

We hope to have contributed in a significant way to the study of weaver

ant navigation and, in a small way, to the study of complex interacting systems.
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APPENDIX A

CHI-SQUARED TEST

To fit the probability distribution of velocity changes p(∆vx) and p(∆vy), we ini-

tially used both parameters σ and m appearing in Eq.3.2. For given values of σ

and m, the values of χ2 = χ2(σ,m), the average squared difference between the

data and Eq.3.2, was calculated. In Figure A.1, we show χ2 over a range 0 < σ < 3

and 0 < m < 2 for the case where |x| < L/2 − d, |y| < L/2 − d in a clean arena

(this is a subset free from boundary effect). The blue-dot in the figure indicates

the point σ,m where χ2 is minimum.

There is a valley in Figure A.1, surrounding the minimum, in which χ2

remains fairly close to its minimum value. We take advantage of this by fixing

m = 1 and finding the σ that minimized χ2. That is, we approximated the best

two-parameter fit by the best one-parameter fit with m = 1. A Gaussian, σ = 2

lies outside this valley and, moreover, Gaussian fits do not have the appropriate

qualitative shape near the origin.
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Figure A.1 The χ2 value, obtained from fits of the experimental histograms of

(A) p(∆vx) and (B) p(∆vy) to Eq.3.2, is color-plotted as a function of the two

free parameters m and σ of Eq.3.2. Darker color indicates a smaller value of χ2

and thus a better fit. The optimal values (A) m = 1.12 and σx = 0.94 (cm/s),

(B) m = 1.12 and σy = 0.90 (cm/s), are indicated by the small blue dots. Since

χ2 remains comparably small over a broad region in (m,σ), it is convenient to fix

m = 1 and then use σ as the only fitting parameter.
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