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CHAPER I

INTRODUCTION

1.1 Rationale for the research

1.1.1 Excursion

In 2014, from more than 180 countries worldwide, the number of

deceases caused by road accidents was about 1.25 million people in each year. The

group of deprived countries broke a record of highest deceases (WHO, 2015). In

Thailand, the death rate from road accidents was 36.2 over 100,000 people ranking as

the fourteenth of the world (WHO, 2015) and the deceases from crashed car accidents

over 100,000 people as the second of the world ranked lower than Libya.

Thailand is in the phase of agricultural, commercial, and industrial expansion.

The government has supported road transportation to be more comfortable, faster, and

safer. This leads to people’s increasing uses of personal cars which are one of the

factors causing more road accidents affecting a great deal of loss to both government

and private sectors (Office of transport and traffic policy and planing, 2014).

The tendency of the number of accidents reported by royal polices. In 2006,

the number of accidents was 110, 685 cases causing 12,691 deceases. It had a

tendency to decrease until 2013 and continuously increased until 2016 (DOH, 2014).

According to all accidents reported from Royal Police in 2015, the responsibilities of

Department of Highways for accidents were 20 percent, the proportion of casualty

was 66 percent, the proportion of deceases was 34 percent. Accident cost reported

from Royal Police
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in 2015, approximated 219, 233 million baht while the responsibility of Department

of Highways was 42,899 million baht as 20 percent estimated from expenditure

classified by the aspect of passengers and drivers’ injury including deceases,

disabilities, serious injuries, and slight injuries (DOH, 2016). Thus, highway road (In

control of DOH) has to provide the ways for reducing rate of severity.

According to the number of accidents on Highways classified by types of

crashed cars in 2015, from the total amount of 13,575 cases, 4,041 accidents

distinguished as rear-end crashes were “crashes on the road in the same direction”

about 30 percent inferior to “accidents outside the street on the straight road”. When

considering the number of deceases of “crashes on the road in the same direction”, the

highest number was 484 fatal accident cases and the number of casualty ranking

second on the list was 2,430 cases (DOH, 2016). The rear-end crash accident is a type

of road accidents which occur most often and it has higher proportion than other types

of accidents. The type of rear-end crash occurrence is the aspect that the following

vehicle crashing into the back of the leading vehicle. The disputants may be one or

more. The aspect of traffic when the accidents often occur is heavy and the vehicles

continuously run at high speed and in constricted space. Most of the rear-end crashes

are not too grave. The severity of accidents, caused by the crashing vehicles’ high

speed as well as their size and weight, may lead to the fatality. The causes of rear-end

crash accidents include abrupt change in front of other cars and too close tracking

behind, immediate change of traffic lanes or overtaking, the readiness and driver’s

skill in driving. Factors causing rear-end crashed cars were1) ducking, the way small

vehicles crash the rear-end of big and huge vehicles, which may cause drivers’

fatality2) carrying things protruding out of the rear of vehicles which may cause the
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rear-end crash accidents if the chauffeur driving behind cannot notice them, 3) broken

cars parking and obstructing traffic lanes without signaling co-road users 4) other

factors such as driving on right lane at low speed, driving at night time (Ministry of

Interior Department of Disaster Prevention and Mitigation, 2014). Lerdworawinich

(2000) has studied the ways for reduced risk and severity of rear-end collision on Thai

highway. He experimented installation of Tailgating Treatment on the pavement for

providing drivers know the distance between their vehicle and leading vehicle. After

experiments, He found Tailgating Treatment can reduce the risk of rear-end crashes.

Pawinee Iamtrakul et. al. (2008) Iamtrakul (2008) have studied risk factors, causing

the rear-end crash accidents in Phra Nakhon Si Ayutthaya Province, analyzed by

building questionnaire and collecting data from the case studies of the factual rear-end

crash accidents which were classified into serious and unserious cases.

1.1.2 Factor affecting to rear-end crash size

Chen et al. (2015) studied levels of driver injuries resulting from rear-

end collisions, Contribution factors included driver behavior factors (e.g., age,

gender), vehicle factors (e.g., vehicle type); road physical features (e.g., road function,

pavement); and environmental factors (e.g., light conditions, weather conditions)

(Chen et al., 2016) .Das and Abdel-Aty (2011) studied frequency of rear-end

collisions and levels of injuries on main roads in urban cities. In the injury levels

model, they found that high vehicle speeds resulted in greater severity of injuries. For

road surfaces with a high friction coefficient, traffic islands could decrease severity of

injuries. Sullivan and Flannagan (2003) studied fatalities resulting from rear-end

collisions by comparing crashes that occurred both in lighted and unlighted

conditions, finding that collisions that occurred without light had two times more
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fatalities than those in lighted conditions (Abdel Aty & Abdelwahab, 2004). Qi et al.

(2013) studied injury levels in rear-end collisions at work zones; finding that

nighttime rear-end collisions increased the level of injuries. (Piccinini et al., 2017);

Wiacek et al. (2015) found that rear-end collisions by heavy vehicles increased

chances of fatalities. Mohamed et al. (2017) found that rural roads and violation of

determined speed limits resulted in more severe rear-end collisions.

1.1.3 Quasi-Induced Exposure Method

Quasi-Induced Exposure Methods (Carr B.R., 1970) have been widely

used in the field of traffic accident research. The principle of these methods is to

predict the at-fault driver based on the accident report (Chandraratna & Stamatiadis,

2009; Taha & Vinayak, 2013) by supposing that the distribution of not-at-fault drivers

closely represents the distribution of exposure to accident hazards (X. Yan & Radwan,

2006; X. Yan et al., 2005).

1.1.4 Differential between urban and rural roads

Several differences can be noted when considering the severity of rear-

end crashes between urban and rural areas from various perspectives. For example,

the number of intersections results in a decrease in a front car‘s speed upon reaching

signalized and unsignalized intersections. This scenario increases the chance of rear-

end crashes, but severity may differ from that on rural roads (Islam, 2016). Chatterjee

and Davis (2016) aimed to prevent shock waves from forming on freeways where

rear-end collisions tend to occur. The speed of urban vehicles is typically low due to

the relatively dense traffic, whereas rear crashes occurring in rural zones or on roads

that connect the districts and provinces may be more severe because most vehicles on

rural roads use high speed (David&Santosh, 2015). In terms of vehicle types that
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potentially access roads on rural and urban zones as well. For example, large trucks

are allotted a limited time for road accessibility in urban areas. Vehicle types as

classified by size also affect the severity of rear crashes in these areas. In term of

attitude of driver, Zabihi et al. (2019) studied seat belt usage among adult drivers on

urban and rural roads.

1.1.5 Modeling the hierarchical structure of road crash data

This section describes the application of the logistic model to the

predictive analysis of fatal rear-end crashes caused by the effect of relevant variables.

An additional concept for the selection of variables to be incorporated into the model

pertains to road accidents classified into more than one level. In other words,

explanation variables that affect injury levels should have hierarchical structures. For

instance, based on researchers’ viewpoints, accident cases should be assigned

personal factors that affect the first injury level along with the second level of the

physical features of the road where the accident occurred: straight or curved roads,

intersection characteristics, (Dupont et al., 2013) or area characteristics such as sub-

districts, districts, provinces, etc.

1.1.6 Study of rear-end crash frequency model

A study of Xuedong  Yan and Radwan (2009) who studied rear-end

collisions with trucks’ presence. Meng and Weng (2011) have examined risks of rear-

end collisions in work zones, Apart from risks of accidents in work zones, studies of

rear-end collisions at crossroads were also conducted (Chu et al., 2015; Cunto

&Saccomanno, 2009; Shahi et al., 2009; Wang et al., 2003). Meng and Qu (2012)

compared crossroads with and without countdown traffic lights (Ni&Li, 2014).

Burdett et al. (2016) analyzed rear-end crash at roundabout approach. Wan et al.
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(2013) studied rear -end and lane -changing collisions through car -following behavior,

Studies of other types of rear-end collisions included effectiveness of low-speed

autonomous emergency braking in rear-end collisions (Fildes et al., 2015) and the

proportion of low-speed leading cars affecting rear -end collisions (Nishimura et al.,

2015).

1.2 Purpose of the research

 To study the factors affecting the rear-end crash severity

 To study the characteristics of rear-end crash on the intersections

 To study the factors potentially affecting the chance of becoming at fault-

driver in the rear- end accidents and the complicated relationships of the

independent variables resulting in the likelihood of fatality caused by rear-

end collisions

 To study the characteristics affecting the accident severity when the

accident areas are different (Urban areas and rural areas)

 To study the factors affecting the difference of rear-end injury levels

(Accident and road levels)

 To select an advanced statistical model suitable for predicting the

frequency of about-to-happen rear-end accidents and find appropriate ways

to reduce the number of rear-end accidents
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1.3 Scope of the research

 Study only the rear-end accidents occurring under the responsibility of

Department of Highways

 Study the rear-end crash severity

 Study Rear-end crash on intersections

 Study spatial rear-end crash

 Study the appropriate statistical model for predicting the accident number

1.4 Research questions

 What factors affect the severity of rear-end accidents occurring on the

highways?

 According to the data of rear-end collisions on the intersections, what are

factors causing the rear-end crashes?

 What are the driver characteristics or environmental factors resulting in at-

fault-driving in rear-end crash accident?

 For the severity of the rear-end accidents occurring on urban roads and

rural roads, are there any differences? Which factor causes the rear end

crash to be more or less severe? and is there any difference between the

characteristics of both models?

 When considering the two factors including accident level factor and the

road level factor, which factor causes higher injury severity level?

 Which count data model is the most appropriate for predicting the number

of rear-end collisions occurring on the road segment?
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1.5 Contribution of the research

 The model results can be taken to apply to be guidelines for reducing the

rear-end crash severity.

 The discovery of factors, affecting the rear-end crashes on the intersection

leads to the ways to reduce the accident number at the intersection

 The concepts can be taken to conduct a specific campaign for risk groups

causing rear-end accidents, and reduce the death chance caused by them.

 The policy is created to reduce the rear-end accident severity for urban and

rural roads.

 The policies are established and road physical characteristics are improved

to reduce rear-end severity both at personal level and spatial levels.

 The newly suitable models are acquired for predicting the rear-end

accident number.

1.6 Organization of the research

This research has studied the rear-end crash accidents occurring on Thai

highways by analyzing the accident data in a hierarchical structure of which the first

level is the study of accident level and the road level or spatial level. The components

totally comprise 8 chapters including the following details;

Chapter I: Research principles and rationale. This part mentions the

background, the importance of each research section, research objectives, scope of

research, research questions, and contribution to this research.

Chapter II: The analysis of factors that affect the driver injury level caused by

rear-end accidents on the highways by using the structural equation model to find



9

various factors in the structural model with the concept that the rear-end crash

severity can be a group factor, considered as Latent variables.

Chapter III: for the chance analysis of rear-end rashes on intersection, this part

uses Decision tree for analysis because of the large database

Chapter IV: the decision tree model is applied to find the complicated

relationship of the independent variables resulting in the chances of being at-fault

driver in the rear end crashes. In addition, the analysis was conducted to find the

factors affecting the likelihood of rear-end crash fatality

Chapter V: the rear-end crash severity was analyzed using Structural equation

modeling by comparing the different types of factors affecting the crash severity

between urban and rural roads.

Chapter VI: The analysis of factors affecting injury levels by using

Hierarchical structure or Multi-level modeling Which is a logit model in order to get

the probability resulting from various factors affecting the fatal rear-end accidents by

considering the accident details as the first level analysis and spatial data as the

second level.

Chapter VII: Appropriate statistical methods for predicting the accident

number are studied by establishing the model consisting of Poison regression,

Negative binomial regression, Zero-Inflated Negative binomial regression and Spatial

Zero-Inflated Negative binomial regression (SZINB). SZINB is the application based

on random effect to find the relationship of rear-end crashes within the same area.

Chapter VIII: A summary of the analysis of all 6 studies (sections 2 - 7)
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CHAPTER II

ANALYSIS OF FACTORS AFFECTING REAR-END

CRASH SEVERITYUSING STRUCTURAL EQUATION

MODELING

2.1 Abstract

Road accidents regularly cause a high number of fatalities. Thailand’s road

accident fatality rate of 36.2 of every 100,000 people ranks the second highest in the

world. Surprisingly, same-direction collisions comprise the highest proportion of

crashes leading to fatality. To determine how best to minimize the number of fatalities

and injuries, this research uses structural equation modeling (SEM) to examine factors

affecting rear-end collisions’ severity. According to SEM results, the driver factor had

the greatest effect on collision severity, followed respectively by road and

environmental factors. After assessing relevant factors, this study suggested that

stakeholder organizations should play an important role in road design and

maintenance and in driver training. The study also discussed driving and road policies

in Thailand and other developed countries.

2.2 Introduction

In 2014, road accidents caused about 1.25 million deaths in over 180 countries

worldwide, and developing countries broke a record for the highest number of deaths



16

(WHO, 2015). Thailand ranked second in the world, behind Libya, in the number of

deaths caused by car crashes per 100,000 people.

At this writing, Thailand is undergoing agricultural, commercial, and

industrial expansion, with the Thai government supporting improvements to make

road transportation faster, safer, and more comfortable. Expansion has led to

increased use of personal vehicles, which is one factor causing both road accidents

and significant losses to the government and the private sector (Office of transport

and traffic policy and planing, 2014).

Of 13,575 highway crash in 2015, as classified by types of crashed cars, 4,041

were distinguished as rear-end collisions, that is, “crashes on the road in the same

direction,” about30 percent less than “accidents off the street on a straight road.”

When considering the number of deaths due to “crashes on the road in the same

direction,” the highest number was 484 cases, with the number of casualties ranking

second at 2,430 cases (Department of Highway Thailand, 2016). Area  - end collision,

in which a following vehicle crashes into the back of a leading vehicle, is the most

frequent type of road accident. There may be one or more vehicles involved because

when these accidents occur, traffic levels are often heavy, and vehicles move at high

speeds in constricted spaces. Even so, most rear -end collisions are not serious. Their

severity, as affected by speed and vehicles size and weight, affects resulting fatalities.

Causes of rear -end collisions include abrupt changes in front of other cars following

too closely behind, rapid changing between traffic lanes or passing, and drivers’

awareness and skills. Lerdworawinich (2000) has studied ways of reducing risks and

severity of rear-end collisions on Thai highways. He has experimented with

installation of a tailgating treatment on roads to help drivers increase their awareness
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of the distance between their vehicle and the vehicle in front of them. Lerdworawinich

(2000) found that the tailgating treatment can reduce the risk of rear-end collisions.

Iamtrakul (2008) Studied risk factors causing rear -end collisions in Phra Nakhon

Si Ayutthaya Province, using and analyzing questionnaires and collecting data from

case studies of rear-end collisions classified into serious and non-serious cases.

In Thailand, aside from two studies on rear-end collisions, no studies have

used historical statistics to build a model for analyzing factors affecting the number

and severity of injuries. Because these factors cannot be directly measured, the

severity of injuries was divided into three levels :minor injury, serious injury, and

fatality. The structural equation model’s (SEM’s) ability to determine the relationship

between latent variables that cannot be directly measured, such as “severity of

accidents” is the “structural model (path analysis),” and latent variables measured by

observed variables are “measurement models.”

SEM has been applied to analyze a variety of accidents in other countries. The

model was not designed, however, to find and predict factors on Thai highways

affecting rear-end crash severity as indicated by numbers of deaths and serious and

slight injuries. When these factors are determined, they can be used for road

engineering design and driver training. According to model results in this research,

a variety of variables have never been studied in any other research, for example,

crash types, traffic quantity, truck percentage, and personal factors such as alcohol

use, safety equipment use, and so on. This study contributes by using the model’s

results to propose policy that can reduce rear-end crash severity.
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2.3 Literature review

This research follows global research trends that attend to road accidents as

the most frequently occurring type of transportation accident. The rear -end collision is

the type most frequently studied, with many studies having discussed factors that

affect the probability of rear-end collisions, such as driver age. The study analysis is

based on rear -end collisions’ pre-crash conditions, which consider leading vehicles’

speed. Types of rear-end collisions include “stopped in road,” “decelerating speed,”

and “normal speed” (Ma&Yan, 2014). Comparisons between teen and adult rear-end

collisions have also been undertaken (Seacrist et al., 2016). Rear-end crash potential

has been assessed in roads’ work zone merging areas (Weng et al., 2014). Joon-Ki et

al. (2007) established a model for predicting the possibility of rear -end collisions on

freeways (Pande&Abdel-Aty, 2008). Liang et al. (2010) Studied multi -agent and

driver behavior in rear -end collision notices. Among four warning factors, they

included driver repository (e.g., vehicle type), rear-end collision cases, an

environment model, and a driving behavior model. These factors resemble those in a

study by Xuedong  Yan and Radwan (2009) who studied rear-end collisions with

trucks’ presence. Meng and Weng (2011) have examined risks of rear-end collisions

in work zones, Apart from risks of accidents in work zones, studies of rear -end

collisions at crossroads were also conducted (Chu et al., 2015; Cunto&Saccomanno,

2009; Shahi et al., 2009; Wang et al., 2003). Meng and Qu (2012) compared

crossroads with and without countdown traffic lights (Ni&Li, 2014). Burdett et al.

(2016) analyzed rear-end crash at roundabout approach. Wan et al. (2013) studied

rear-end and lane-changing collisions through car -following behavior, Studies of

other types of rear -end collisions included effectiveness of low-speed autonomous
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emergency braking in rear-end collisions (Fildes et al., 2015) and the proportion of

low-speed leading cars affecting rear -end collisions (Nishimura et al., 2015).

Chen et al. (2015) studied levels of driver injuries resulting from rear-end

collisions, Contribution factors included driver behavior factors (e.g., age, gender),

vehicle factors (e.g., vehicle type); road physical features (e.g., road function,

pavement); and environmental factors (e.g., light conditions, weather conditions)

(Chen, Zhang, Yang, et al., 2016). Das and Abdel-Aty (2011) studied frequency of

rear-end collisions and levels of injuries on main roads in urban cities. In the injury

levels model, they found that high vehicle speeds resulted in greater severity of

injuries. For road surfaces with a high friction coefficient, traffic islands could

decrease severity of injuries. Sullivan and Flannagan (2003) studied fatalities

resulting from rear-end collisions by comparing crashes that occurred both in lighted

and unlighted conditions, finding that collisions that occurred without light had two

times more fatalities than those in lighted conditions (Abdel Aty & Abdelwahab,

2004). Qi et al. (2013) studied injury levels in rear-end collisions at work zones,

finding that nighttime rear-end collisions increased the level of injuries. (Piccinini et

al., 2017); Wiacek et al. (2015) found that rear-end collisions by heavy vehicles

increased chances of fatalities. Mohamed et al. (2017) found that rural roads and

violation of determined speed limits resulted in more severe rear-end collisions.

Variables found and used in previous studies are illustrated in Table 2.1. New

variables in this research consisted of two groups (Table 2.2) as follows:

Group1. Using SEM, as used in previous research collecting all crash types to

study accident severity, this study focused only on rear-end collisions. Added

variables were crash types, safety equipment use, and large truck proportion.
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(Hamdar & Schorr, 2013; Hassan & Al-Faleh, 2013; Kim et al., 2011; Lee et al.,

2008; Schorr & Hamdar, 2014)

Group2.The study of only rear-end collisions, especially injury severity levels

they caused (e.g., (Georgi et al., 2009; Yuan et al., 2017)) found that no research has

investigated rear-end crash severity by measuring it as a latent variable. New

variables in this research included road maintenance, consideration of rear-end crash

types affecting severity, and other variables, including rear-end crashes on straight

roads with drivers’ sight distance affected, higher speed on main roads than on

parallel roads, sudden stops in intersections, and traffic quantity potentially affecting

driving speed that reduced crash severity.

2.4 Discussing variables

For measuring rear-end collisions on Thai highways, the following indicators

are used. Indicators of rear-end crash severity can be measured by injury at three

levels: (i) number of deaths, referring to casualties who die on the road or in the

hospital; (ii) serious injuries, meaning an injury that cannot heal in less than 3 weeks;

(iii) slight injuries, meaning an injury that can heal in less than 3 weeks. For

considering the effect of contributing factors for all injury levels, rear-end crash

severity is set as a latent variable.

1) Driver factor indicators are as follow: (i) vehicle types and truck sizes

that might increase collisions’ numbers and injury levels and truck sizes related to

speeding; (ii) drivers’ ages divided into three groups (26–35, 36–45, and 46–55 years)

(Ma & Yan, 2014) affecting drivers’ healing, with younger drivers healing more

quickly than older drivers; and (iii) driver genders when female drivers have lower
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perception time than male drivers. Other factors included safety equipment use,

exceeding speed limits, and order of vehicle involvement (Lee et al., 2008).

2) The road factor is divided into three categories: (i) divided highways

with directions separated by a median to reduce accidents and make drivers pay more

attention; (ii) work zone safety signs to make drivers reduce their vehicles’ speed; (iii)

road surfaces, for example, the variety of asphalt and concrete that could affect

vehicles’ speed (Das & Abdel-Aty, 2011). Other variables included rear-end crashes

on straight roads, but with driver sight distance affected, higher speed on main roads

than on parallel roads, sudden stops in intersection areas (Dong et al., 2016; Islam,

2016), and traffic quantity potentially affecting speeds that reduced accident severity.

3) Environmental factors were divided into three categories: (i) lighting

conditions on road, which could affect the number of accidents (Qi et al., 2013); (ii)

accident time, with drivers often increasing their speed in daylight because of the

clear vision; (iii) weather affecting driving speed, and (iv) road surface conditions that

might affect braking distance (X. Yan&Radwan, 2006).

4) In a rear-end collision case involving two vehicles, vehicular speed

could be the important factor. Indicators of rear-end collision are as follow: (i) leading

vehicle speed when struck from behind by other vehicles even though the leading

vehicle is traveling at normal speed; and (ii) stopped vehicles hit from behind by other

vehicles (Ma&Yan, 2014).
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Table 2.1 Variables codes and descriptions

Code Description Value

Driver factors

V1
Large vehicle size involvement (6 wheeled truck and

larger)
1  =Yes, 0  =other

V2 Gender of driver 1  =Male, 0  =Female

V3 Age of driver from 26–35 Years 1  =Yes, 0  =other

V4 Age of driver from 36–45 Years 1  =Yes, 0  =other

V5 Age of driver from 46–55 Years 1  =Yes, 0  =other

V6 Driver used safety equipment (seat belt, helmet) 1  =Yes, 0  =other

V7 Drunk driver involved 1  =Yes, 0  =other

V8 Exceeding the speed limit 1  =Yes, 0  =other

V9 Order of vehicle involvement Counts

Road factors

V10 Per cent trucks Continuous

V11 Traffic direction separated by road median (barrier, etc.) 1  =Yes, 0  =other

V12 The road was not being repaired 1  =Yes, 0  =other

V13 The road was asphalt or concrete pavement 1  =Yes, 0  =other

V14 Road horizontal alignment

1  =Straight,

0  =Curve

V15 Road graded 1  =slope, 0  =other

V16 Rear-end collision happened in interior lane 1  =Yes, 0  =other

V17 Rear-end collision happened at intersection 1  =Yes, 0  =other

V18 Log of AATD Continuous

V19 Number of lanes
0  =Rather than 4 lanes, 1  =

other
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Table 2.1 Variables codes and descriptions (Continued)

Code Description Value

Environmental factors

V20 Collision happened at night in low-light conditions 1  =Yes, 0  =other

V21 Visualization of drivers as accident 1  =Clean, 0  =other

V22 Time of collision 1 =Day, 0  =Night

V23 Status of road surface 1  =Wet, 0 = Dry

Rear-end factors

V24 Leading vehicle was using normal and stable speed 1  =Yes, 0  =other

V25 Leading vehicle has stopped 1  =Yes, 0  =other

Crash size severity factors

V26 Numbers of fatalities Counts

V27 Number of persons seriously injured Counts

V28 Number of persons slightly injured Counts



Table 2.2 Gaps of Literatures

Work/variables V1 V2 V3-V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25

This Study
                      

(Lee et al.,

2008)*
   - - - - - -      - - -      

(Kim et al.,

2011)*
- -  - - - - - - - - - - - - - - - - - - - -

(Hamdar&Sch

orr, 2013)*
-   - - - - - - -     - - -    - - -

(Hassan&Al-

Faleh, 2013)*
 -  -  - -  - - -    - - - -   - - -

(Schorr&Ham

dar, 2014)*
-   - -  -  -  -  - - -  - - -  - - -

(Ma&Yan,

2014)**
-   -  - - - - - - - - - - - - - - - -  

(Chen et al.,

2015)**
      - - - -    - - - -     - -

(Chen, Zhang,

Yang, et al.,

2016)**

       - - -    - - - -     - -

(Das&Abdel-

Aty, 2011)**
- - - - -  - -  -   - -   -     -

-

24



Table 2.2 Gaps of Literatures (Continued)

Work/variables V1 V2 V3-V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25

(Xuedong

Yan&Radwan,

2009)**

   -  - - -  - - - - - - - -    - - -

(Andreas

Georgi et al.,

2009)**

- - - - - - - - - - - - - - - - -  -   - -

(Abdel

Aty&Abdelwah

ab, 2004)**

      - - - - -   -  - -     - -

(Qi et al.,

2013)**
   - - - - - - - - - - - - - -      -

(Christopher et

al., 2014)**
 - - -   - - - - - - - - - - - - - - - - -

(Mohamed et

al., 2017)**
   -   - - - - - - - -  -      - -

(Yuan et al.,

2017)**
 -  - - - - - - - - - - - - -      - -

Remark : * denotes literature in SEM analyses of accident size. ** denotes studies in analysis of rear-end crash severity.

25
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2.5 Method

2.5.1 Data collection

This study’s data collection included gathering original data and

collecting data about rear-end collisions from the DOH: For this research, data for

analysis of highways in Thailand were drawn from2011 to 2015 (B.E.2554–2558).

Data were originally surveyed by area permanent officers who collected details of

highways accidents: date, highway data, accident characteristics, crash type, number

of accidents, and injury severity levels. Data were subsequently collected in the

Highway Accident Information Management System (HAIMS). Consequently, data

selected for this study involved only rear-end collisions with consideration of crash

types, and data of drivers in accidents were used to establish the model. Selection of

rear-end crash data produced 1,902 cases and 4,134 accident cars and drivers.

2.5.2 Analysis methods

Exploratory Factor Analysis (EFA) was developed in the early 20th

century by Karl Pearson and Charles Spearman. The aims of EFA are to indicate

variable that are unobserved or cannot be estimated directly, and to reduce the number

of observed variables. The EFA describes the covariance among many variables in

terms of a few unobserved variables (Washington et al., 2011). Factor analysis is

calculated by expressing the ′ whichin alinear function form, such that,

− = ℓ + ℓ +⋯+ ℓ + ℰ− = ℓ + ℓ +⋯+ ℓ + ℰ⋮⋮ ⋱ ⋮− = ℓ + ℓ +⋯+ ℓ + ℰ (2.1)

24
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In a matrix notation, the factor analysis model will become:

(X − ) × = L × × + ℰ × (2.2)

Where F’s are factors or variables, and ℓ’s are the factor loadings. The ℰ is

associated only with ′ and, the are random errors and m factor loading are

unobserved or latent variables. The factor rotation method used determines the

loading factor. If the loading factor is close to one, this means variable is largely

influenced by (Washington et al., 2011).

The results of EFA are ℓ’s (loading factor) from equation (1), shown in Table

2.3, consisted of 5 components beginning from the consideration of the variables

indicating rear-end crash size which was found in the second component with a

loading factor of fatality, serious injury and slight injury at 0.369, 0.168 and 0.302

respectively. In first component was call driver factor, including V1 – V9 with a

loading factor of –0.323 to 0.881. In third component, it was called road factor

consisted of ten variables including V10-V19 with loading factors of –0.744 to 0.774,

respectively. Regarding the forth component, it was called environmental factor

which consisted of four variables with loading factor –0.869 to 0.981. The rear-end

collision factors was in the fifth component and consisted of V24 – V25 with loading

factor of 0.935 and –0.633, respectively.

Data were used to create a correlation matrix examine to what extent a mutual

relationship exists between observed variables. Then SEM was run using the MPlus

7.2 program.
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Table 2.3 Loading factor of EFA

Components

Variable 1 2 3 4 5

V1 0.337 0.173 0.303 0.207 -0.226

V2 -0.207 -0.129 -0.190 -0.176 0.128

V3 0.503

V4 0.881

V5 0.769

V6 0.220 -0.169 -0.113

V7 -0.323 -0.110 0.210

V8 0.394 0.139 0.266

V9 0.174 0.110

V10 0.277 0.525

V11 -0.114 0.725

V12 0.102

V13 -0.168 0.467 -0.106

V14 0.194 -0.744

V15 -0.195 0.920

V16 -0.109 0.607 0.126

V17 -0.167 -0.207 -0.178

V18 0.774

V19 0.641

V20 -0.271 0.981

V21 0.104 0.273

V22 -0.112 -0.869

V23 0.432

V24 0.262 0.283 0.209 0.935

V25 0.132 -0.633
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Table 2.3 Loading factor of EFA (Continued)

Components

V26 0.369 0.159 -0.138

V27 0.168

V28 0.302

Note: Calling: component 1 = Driver factor, component 2 = crash size, component 3 = Road factors,

component 4 = Environmental factor and component 5 = Crash type factor. The rotation = ‘Varimax’.

2.5.3 Structural equation modeling (SEM)

SEM requires specification of the relationship between observed

variables and latent variables. SEMs rely on information contained in the variance-

covariance matrix, but latent variables’ measurement must distinguish between fixed

and free parameters. Fixed parameters are set to a reference variable, which is the

base of estimation and comparison with the free parameter, for the structural model is

a relationship between independent latent variables and dependent latent variables that

have similar linear regression loading factors.

The SEM estimation parameter is similar to that of other statistical

models. SEMs are used to evaluate theories or hypotheses using empirical data, which

are contained in a P x P variance-covariance matrix S, an unstructured estimator of

the population variance-covariance matrix Σ (Washington et al., 2011). ∑( ) is a

variance-covariance matrix which turns from a generated model-implied and uses an

estimated parameter vector . A dependent variable (exogenous variable) in SEM is a

variable that has a one-way arrow pointing to it. The set of dependent variables is

collected into a vector , For independent variables (endogenous variables) are

collected in the vector . The relationship between them is the following:
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= + + (2.3)

Where is the estimated vector of coefficients that contains regression

coefficients for the dependent variable and for the independent variable. is the

vector of regression error terms. The estimator in SEM depends on the distribution

assumption of variables and the scale of a variable. This study’s scale variables are

only discrete data not abnormally distributed. Lee et al. (2008) Suggested that

weighted least squares (WLS) methods estimate rather than assume the multivariate

normality of variables.

For model goodness-of-fit Measure (GOF), the first part was basic

GOF consisting of Chi-square statistic ( ) that presented the difference of covariance

matrices among empirical data. Degree of freedom (DF) is the amount of

mathematical information available to estimate model parameters. The root mean

squared error of approximation (RMSEA) was a fairly correct calculation and showed

more accurate statistical examples of . The value of RMSEA must be less than 0.05

(Hair et al., 2010; Kline, 2015; Shi et al., 2011). The Tucker-Lewis Index (TLI) and

the comparative fit index (CFI) illustrate the proportion of difference of . TLI and

CFI varied in that it is actually a comparison of the nor med chi-square values for the

null and specified model. The value of TLI and CFI ranges from0 and 1and

appropriate values must be greater than 0.90 (Hamdar & Schorr, 2013; Hassan &

Abdel-Aty, 2013; Yu, 2002). To assess GOF, the error of WLS prediction must be

considered. Appropriate values of weighted root mean square residual (WRMR)

suggested by Yu (2002) must be less than 1.
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2.6 Results and Discussion

2.6.1 Descriptive data

The overall view of data, as shown in Table 2.4, shows the group of

variables, the names of variables, the types of variable explanations and percentage of

categories, and the mean of slight injuries, serious injuries, and fatalities (dependent

variables or endogenous variables). There wer 25 independent (four groups)

variables. Disguise variables of injuries consisted of the number of fatalities, serious

injuries, and slight injuries.

The highest mean for fatalities was found to have been caused by the

driver factor, with (V7) drunk drivers involved in the most fatalities, a mean of 0.69

(1.19. Rear -end collisions with large trucks (V1) showed a mean of 0.58 (85.56%),

and drivers aged 36–45 years old (V4) at 0.35 (37.65. %(. Considering drivers’

gender (V2), women had greater risk of fatalities than men, with a mean of 0.36

(17.66. %(. Road factors revealed that non-sloped roads (V15) had the highest mean of

fatalities at 0.99 (96.54%), followed by curved roads at a mean of 0.71 (93.53%).

Environmental factors showed rear-end collisions with normal

visibility conditions (V21) at 0.4 (92.33%); road with wet surface (V23) at 0.37

(6.94%); accidents occurring during the day (V22) at 0.29 (67%); and accidents

occurring without light at night (V20) at 0.58 (10.09%).

Regarding types of rear -end collisions, in which crashes were divided

into type of car movement before the crash, the maximum mean of fatalities was with

a parked car in front (V25) at 0.4 (5.49%), followed by a leading car slowing down

(V24) at 0.34 (65.61%).
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For factors affecting serious injuries, road and environmental factors

had the highest means at 0.54 and 0.47, respectively, followed by driver factors at a

mean of 0.45. Collision factors affecting severity of injuries were in last place with a

mean value of 0.44. The highest mean of slight injuries was due to driver factors.

Table 2.4 Descriptive Statistics

Descriptive Statistics Average (person)

Group Code Categories Frequency Percentage Slight injury Serious injury Fatality

D
ri

ve
r 

Fa
ct

or
s

V1 1 3,536 85.56 1.63 0.47 0.58

0 597 14.44 1.29 0.43 0.30

V2 1 3,403 82.34 1.20 0.39 0.23

0 730 17.66 1.37 0.45 0.36

V3 1 1,055 25.53 1.45 0.41 0.31

0 3,078 74.47 1.31 0.45 0.35

V4 1 1,556 37.65 1.35 0.39 0.35

0 2,577 62.35 1.33 0.46 0.33

V5 1 707 17.11 1.32 0.44 0.33

0 3,426 82.89 1.35 0.44 0.36

V6 1 1,525 36.90 1.34 0.49 0.21

0 2,608 63.10 1.35 0.41 0.41

V7 1 49 1.19 0.73 0.73 0.69

0 4,084 98.81 1.35 0.43 0.33

V8 1 2,928 70.84 1.38 0.41 0.32

0 1,205 29.16 1.24 0.50 0.38

V9 1 1,901 46.00 1.33 0.43 0.33
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Table 2.4 Descriptive Statistics (Continued)

Descriptive Statistics Average (person)

Group Code Categories Frequency Percentage Slight injury Serious injury Fatality

D
ri

ve
r 

Fa
ct

or
s

2 1,899 45.95 1.29 0.44 0.33

3 245 5.93 1.61 0.44 0.35

4 51 1.23 1.19 0.33 0.53

5 17 0.41 1.94 0.47 0.54

6 10 0.24 1.74 0.20 0.20

7 5 0.12 2.80 0.40 0.20

8 3 0.07 2.00 0.67 -

9 2 0.05 4.00 - -

R
oa

d 
Fa

ct
or

s

V11 1 2,638 63.83 1.34 0.37 0.33

0 1,495 36.17 1.35 0.55 0.35

V12 1 4,027 97.44 1.35 0.44 0.34

0 106 2.56 1.18 0.46 0.27

V13 1 3,646 88.22 1.36 0.45 0.35

0 487 11.78 1.20 0.35 0.26

V14 1 265 6.41 1.29 0.38 0.31

0 3,868 93.59 2.07 1.28 0.71

V15 1 143 3.46 2.08 1.96 0.31

0 3,990 96.54 1.32 0.38 0.99

V16 1 399 9.65 1.51 0.31 0.20

0 3,734 90.35 1.32 0.45 0.35

V17 1 753 18.22 1.47 0.43 0.27

0 3,380 81.78 1.31 0.44 0.35

V19 1 896 21.68 1.33 0.27 0.22

0 3,237 78.32 1.34 0.48 0.37
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Table 2.4 Descriptive Statistics (Continued)

Descriptive Statistics Average (person)

Group Code Categories Frequency Percentage Slight injury Serious injury Fatality

E
nv

ir
on

m
en

ta
lF

ac
to

rs

V20 1 417 10.09 1.09 0.40 0.58

0 3,716 89.91 1.37 0.44 0.31

V21 1 3,816 92.33 1.44 0.60 0.40

0 317 7.67 1.33 0.42 0.33

V22 1 2,769 67.00 1.39 0.46 0.29

0 1,364 33.00 1.25 0.38 0.42

V23 1 287 6.94 1.48 0.64 0.37

0 3,846 93.06 1.33 0.42 0.33

R
ea

r-
en

d 
cr

as
h 

ty
pe

Fa
ct

or
s

V24 1 2,693 65.16 1.46 0.44 0.34

0 1,440 34.84 1.13 0.42 0.33

V25 1 227 5.49 0.98 0.31 0.40

0 3,906 94.51 1.36 0.44 0.33

Remark: average of percentage truck(V10) =16.7, average of Log AADT (V18) = 10.42.

2.6.2 Results of SEM and Discussion

In analysis of data on rear-end highway collisions, acquired from the

DOH, to determine factors affecting levels of driver and passenger injuries,

determined factors were classified into four groups of latent variables including

individual, road, environmental, and collision factors. The model was compared with

empirical data by considering model fit information values as shown in the note to

Figure 2.1, with achi-square statistic value = 1232.160, dff= 302 (p-value <0.000),

RMSEA = 0.027, CFI=0.928, TLI  = 0.910 and WRMSR = 1.880. Although WRMSR

value was greater than the cutoff value, it could be accepted (Baggio et al., 2013;

Machado et al., 2016 ; Schnabel et al., 2015). Comparison of this model’s goodness of
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fit with cutoff criteria of other research showed it within acceptance criteria; thus, it

can be used to interpret research results.

Note: Model fit information: Chi-square value (χ2) = 1232.160, degree of freedom (df) = 302(p-value =

0.000), Root mean square error of approximation (RMSEA) = 0.027, CFI = 0.928, TLI = 0.910;

Weighted root mean square residual (WRMSR) = 1.880.

Figure 2.1 SEM result model
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Consideration of the measurement model of rear-end crash severity

using three variables including the number of fatalities (reference variable), the

number of serious injuries, and slight injuries, found that the number of fatalities from

each accident could evidently indicate severity levels of injuries ( = 1.295, S.E. =

0.004) followed by the number of serious injuries ( = 0.2, S.E. = 0.008) and the

number of minor injuries ( = 0.099, S.E. = 0.017). Additionally, operational

definitions of injury levels were differently distinguished in Thailand and North

America. In Thailand, injuries were classified into three levels including death,

serious injury, and slight injury, as distributed by levels of hospital treatment. Injury

levels in North America were individually divided into the Abbreviated Injury Scale

(AIS) by sorting according to body different parts: head, face, neck, thorax, abdomen,

spine, upper extremities, lower extremities, and external. Each injury level is assigned

an AIS score on an ordinal scale ranging from 1 (minor injury, probability of death

=0%) to 6 (maximum injury, probability of death = 100%) (Stevenson et al., 2001).

After some consideration, researchers decided that the AIS system’s criteria of injury

score and duration of treatment in the hospital could not be directly compared. In

addition, treatment systems differ to some extent between the two countries.

The structural model revealed that among the four independent latent

variables, rear -end collisions’ severity was significantly and respectively affected by

three factors: driver, road, and environmental. While collision types did not

significantly affect severity of injuries, the driver factor most affected injuries’

severity ( = 0.122, S.E. = 0.013). In consideration of the measurement model for

the driver factor providing the reference variable, large vehicle(V1), which is

interpreted as the presence of trucks, and the accident would affect the increase of
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injury severities in accord with studies conducted by Piccinini et al. (2017); Qi et al.

(2013); Wiacek et al. (2015). This violent effect may originate from the massive size

of trucks causing strike force resulting in more severe injuries. Driver gender was the

second variable most affecting levels of injuries, with women receiving more serious

injuries possibly because female drivers are hurt more easily than male drivers,

conforming to Chen et al. (2015); Mafi et al. (2018) findings that male drivers tended

to suffer lower levels of injuries. Another cause may be women‘s longer stop-car

decision time compared to men‘s (Warshawsky-Livne&Shinar, 2002). For the age

factor, drivers were compared by age ranges, including 26–35, 36–45, and 46–

55.Drivers 36–55 years old were in more severe accidents, a finding similar to Lee et

al. (2008), which found that the drivers 40–50 years old affected increasing severity

of injuries. Along with safety equipment nonuse, drivers’ injury levels increase,

following studies of Chen et al. (Chen et al., 2015; Chen, Zhang, Yang, et al., 2016).

Other significant factors in causing greater accident severity were the sequential order

of involved vehicles and driving over the speed limit.

When considering the road factors significantly affecting the levels of

injuries ( = −0.09, S.E. = 0.013), overall, every indicator attained statistical

significance. The variable with the highest loading factor (reference variable) was the

number of traffic lanes (V19). More than four lanes lessened rear-end crashes’

severity. This is relevant to a study finding that more traffic lanes potentially

decreased fatalities because more lanes caused drivers to be more careful (Chen,

Zhang, Yang, et al., 2016; Mohamed et al., 2017). The divided road variable was

determined to compare (V11) rear-end collisions on roads with and without traffic

islands. Roads without traffic islands affected levels of injury severity, in accordance
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with Das and Abdel-Aty (2011) study. According to the main road variable (V16),

rear-end collisions occurring on main roads resulted in higher severity. This is

relevant to the study of Khorashadi et al. (2005) who found that innermost lanes

potentially increased injury levels, probably resulting from higher speed on main

roads than on parallel roads. Huang, Chin, and Haque (2008), followed by log AADT

(V18), found that higher traffic quantity resulted in decreased rear-end crashes,

consistent with a study discovering that increased AADT decreased safety (Abdel-Aty

& Haleem, 2011; Schorr & Hamdar, 2014; Stylianou & Dimitriou, 2018). In road

surface types (V13), surfaces other than asphalt increased serious injuries in

accordance withLee et al. (2008) finding that concrete surfaces affected increasing

severity of injuries. For normal roads or work zones (V12), which also affected

serious injuries, collisions were caused by drivers exceeding speeds for roads being

repaired or maintained (Mohamed et al., 2017). Another variable indicated

significantly in the measurement model was collisions at intersections. A leading

vehicle’s need to brake increased the risk of crash by a following vehicle (Das &

Abdel-Aty, 2011). Additionally, a road’s grade or slope (V15) created greater severity

in rear-end collisions, following Chen, Zhang, Yang, et al. (2016). Lower percentages

of trucks (V10) affected greater rear-end crash severity. In Thailand, the trucks

usually used the arterial roads, there are many traffic lanes. This related to the results

of V19, if the number of lanes increased it will be small of rear-end crash size.

As for the environmental factor and significant effects on levels of

injuries ( = 0.083, S.E. = 0.009), the measurement model determined darkness (V20)

as a reference variable. If an accident occurred at night with no available light, injury

levels increased, confirming much research on low visibility leading to more serious
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injuries (Chen, Zhang, Huang, et al., 2016; Chen et al., 2015; Sullivan & Flannagan,

2003; Xuedong  Yan & Radwan, 2009). Due to reduced traffic at night, drivers who

drove at high speed could not stop their cars and crashed in to leading cars at low

speeds. This was the cause of serious injuries conforming to the variable that

compared nighttime and daytime crashes (V22) - nighttime crashes caused greater

severity of injury than daytime crashes (Chen et al., 2015). For the driver visibility

factor, the condition of visibility including clear skies, without dust, fog, or smoke to

hinder vision, affected greater severity of injuries (Abdel Aty & Abdelwahab, 2004).

The road surface variable was not significant in this measurement model (Chen et al.,

2015).

2.7 Conclusion

This research studied factors affecting rear-end crash severity on Thailand’s

highways, as indicated by numbers of fatalities and serious and slight injuries as

analyzed with SEM. From analysis of data obtained from the DOH, these research

results can assist organizations involved in law enforcement, including inspectors’

offices and organizations involved in road design and maintenance, for instance, the

Department of Highways or the Department of Rural Roads, in reducing grear-end

crash severity.

The first group of factors increasing rear-end crashes’ severity the most is the

driver factor: trucks involved, female drivers, drivers from 36–55 years old (at which

ages Thai drivers often drive at high speed), not using safety equipment, rear-end

crashes caused by driving over the speed limit, the high number of traffic violators in

Thailand, and the sequential order of involvement in rear-end crashes. Thus, involved
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organizations should implement policy to reduce injury severity in rear-end collisions

by establishing “Truck Only Lanes” (Chrysler, 2016) that can reduce conflicts

between trucks and other drivers. Another policy for female drivers’ safety is using

the “two dots” or “tailgating” indicator, now available only on Thai motorways, to

warn drivers about leaving space behind lead vehicles. This installation would benefit

both males and females, of course (Hutchinson, 2008).

The second group of factors concerns roads, which affect rear-end crash

severity due to the number of traffic lanes, traffic islands, main roads, road surface

types, intersections, road steepness, road bends, and roads in maintenance. Policy

from this variable group involves Road Safety Audits, especially, four- or fewer than

four-lane roads and roads without traffic islands that decrease rear-end crash severity.

The last group of factors affecting rear-end accident severity is environmental.

Indicators causing rear-end crash severity are roads without light at night and clear

visibility, which seems to encourage speeding. For potential policy, light installations

in risky areas, for instance, truck-parking areas, should be considered. Another

potentially useful policy measure is effective speed-limit enforcement. Technology

might assist here, with installation of speed-censoring cameras.

Applications of this research in other developed countries might involve

differences among the three main factors of driver, road, and environment. The road

factor can be directly applied, for instance, by performing Road Safety Audits. The

environmental factor can be instantly applied, for instance, light improvement to

reduce rear-end collision severity, and “Truck Only Lanes” can be considered for

immediate installation. However, some conditions, for example, AADT, and truck

percentage, may differ from those in Thailand. As for speed limits and safety
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equipment use, compulsory enforcement was potentially more successful in more

highly developed countries.

This study found factors affecting rear-end collision severity and introduced

guidelines for its reduction. However, the study contains model limitations due to

unanalyzed passenger characteristics. Those variables potentially result in increasing

severity of rear-end collisions, which might result from data collection limitations,

that is, not including passenger characteristics: the number in each vehicle, their use

of safety equipment, and their gender. Thus, these factors are proposed for additional,

future study.
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CHAPTER III

ANALYSIS OF REAR-END CRASH AT INTERSECTION

ON THAI HIGHWAY: DECISION TREE APPROACH

3.1 Abstract

The rear-end crash on highways tends to continuously increase. This is in

accordance with many researches pointing out that the collisions are likely to highly

occur at the intersection as vehicles have to reduce the velocity to approach into the

intersection. Therefore, this research focuses on seeking for the ways decreasing the

number of rear-end collisions at the intersection through the guidelines for relevant

organizations to improve such as physical features of roads as well as the promotion

methods. The accident cases occurring on highways from 2011 to 2015 were the data

used to be analyzed by classification and regression tree (CRT). The target variables

were rear-end crashes at the intersection/and those outside the intersection. The results

from tree model found that the significant variables to be further recommended were:

average traffic volume, road surface type and lighting condition factor. In addition,

this research has provided the guidelines for reducing the number of crashes at the

intersection. It also guides the study of rear-end crashes at the intersections in the

future.
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3.2 Introduction

In Thailand, It was found that rear-end crashes on Thai highways tend to

incessantly increase (Department of Highway, 2016, 2017, 2018). When considering

the statistics distributed by the crash type, it was found that the number of crashes

from one direction occurred as high as the second largest number. The crash statistics

in Figure 3.1 shows only accident cases collected by the officers of the Department of

Highways but the actual rear-end crashes on the highways are further (Iamtrakul,

2008). That is, minor rear-end crashes were not recorded in these statistics.

(Iamtrakul, 2008). This is in accordance with Chanbunditayanun (2017) identifying

that the rear-end crashes occur most frequently in Thailand. Therefore, the need to

reduce the number of rear-end collisions is very imperative. Finding of this study

would provide such guidelines must be considered based on the road physical

characteristics where the accidents always occur. As the rear-end collision, the back

car crashes against the rear of the front car, is caused at the point where the speed of

the front vehicle is reduced. This is relevant to previous research which often found

that the point of rear-end crash occurrence is the tunnel area (Meng & Qu, 2012),

work zone, (Weng et al., 2014; Weng et al., 2015) intersections (Yan & Radwan,

2006; Yan et al., 2005; Yinhai Wang et al., 2002). When simultaneously considering

with characteristics of Thai highway, the highest risk of rear-end crashes was

identified at the intersections where there are many traffic lights, especially in the

urban area where the rear-end crashes are highly potential to occur. (Iamtrakul, 2008).
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Figure 3.1 Crash on Thai highway by crash type

Factors potentially causing rear-end crashes at the intersection depend on

driver’s individual differences including breaking distance (considered from the

decision period), sight distance etc. consisting of gender, age, alcohol use (Anvari et

al., 2017; X. Li et al., 2016; Nikiforos & John, 1997), environment (time period,

weather condition), roads including road surface conditions, physical characteristics

(Z. Li et al., 2014; Mendez & Izquierdo, 2010), vehicle type which affects the aspect

of parking along the road, and breaking distance resulting from load and vehicle

weight (Abdel Aty & Abdelwahab, 2004; Harb et al., 2007; Nikiforos, 2008), road

physical characteristics before the intersection such as the number of traffic lanes

affecting road characteristics afore the intersection, such as the number of lanes

affecting driver’s behavior as well as speed used for driving. (Kim et al., 2016; X. Li

et al., 2016; Meng & Qu, 2012). Other factors that possibly contribute to the notion
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promoting traffic collision avoidance at the intersection are rear- end crash types that

are classified by the movement of the front vehicle before the rear-end crash

(Ma&Yan, 2014). Visibility factor, which affects the speed the driver uses, and visual

range before deciding to make a brake to enter into the intersection. (Chen et al.,

2015)

The statistical theories used for analysis are based on the dependent variable

data characteristics, which categorical data consisting of two variables are including

the rear- end crashes occurring at the intersection, and those occurring outside the

intersection. The method widely used for this variable type is the analysis of whether

the parameter is estimated or not. (If it is a parameter type, the relationship between

the independent variables and the dependent variables is considered. If not, the data

will be sorted to see the data proportion, called data mining). It was found that binary

logistic regression is an alternative for parametric analysis. Yan and Radwan (2006)

indicated its limitation of the difficulty of investigating the relationship between the

two variables. Consequently, the suitable alternative is nonparametric analysis (that is,

Decision tree of Classification tree; DT) which is arranged through an algorithm to

perceive the data proportion according to the determined dependent variables. (Agouti

et al., 2017). So if an appropriate amount of data is available, the characteristics of

complex independent variables could be analyzed. (Yan & Radwan, 2006; Zheng et

al., 2016). The characteristics of a decision tree is a structure that includes a root

node, branches, and leaf nodes (Muhammad et al., 2017). Yan and Radwan (2006)

have used DT for the rear-end collision data analysis which is divided into two

models: the first model is to analyze which accident characteristics would be

classified as a rear-end collision, and the second is to analyze what rider’s
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characteristics would be likely to become at-fault-driver. The area of study is Florida,

USA. This study found that rear-end crashes are over-presented at signalized

intersections due to higher speed-limits; therefore, the recommendation is to reduce

the speed-limits to 40 mph which efficiently contribute to lower rear-end crash rate.

However, in Thailand there has never been study of rear-end crashes occurring

at intersections of highways nationwide, especially, the application of decision tree

model for rear-end crashes reduction. Therefore, this study aims to fulfill the direction

of reducing the number of rear-end crashes at the intersection by proposing the

policies to relevant agencies whose role in driver training or organization or

organization or road design and maintenances such as Department of Highways, and

Department of Land Transport for implementation across the country.

3.3 Highway crash reporting

The data used in this study were accident cases occurring on highways

obtained from Department of Highways (DOH) from 2011 to 2015, the characteristics

of data considerably collected included date, road segment, physical characteristics at

the traffic accident scene (e. g straight, curved, median, intersection), environment

(e.g, rain, lighting conditions, time of accident), presumed causal information (such as

excessive speeding) and the number of accident injuries (including fatalities, serious

injuries, and slight injuries). The data provided by this department may not cover

every accident occurrence. In case that a minor collision and the victims could agree

with each other, that accident was not recorded.

After selecting the rear-end crash types which comply with the movement of

the front vehicle before collision. (Ma & Yan, 2014), they were classified into 3 main
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types including 1) going straight (the front  car using the normal speed) 2)

decelerating speed (the car is slowing down, such as turning a car or U-Turn using),

and 3) Stopped (the front car is parking on the roadside/ road edge or is parking at

traffic lights). After screening, there were 2,115 cases which were used for analysis.

As this analysis took the vehicle data into account to add driver and vehicle factors

into the model, the data set comprised 5,445 vehicles involved in rear-end crashes.

The traffic volume was obtained from the report of the DOH, 2017. It also matched

the road segment where the accidents occurred.

According to Descriptive statistics shown in Table 3.1, for vehicle type factor

(Veh_Type), it was found that medium small cars (personal cars, pick-up trucks) are

the vehicles having the highest accident rate (18.9%), followed by large trucks (18%).

For the rear-end crash types, decelerating speed crash is the highest proportion

(35.5%). For traffic volume, it was found that the rear-end crashes at the intersection

are average 20,605 per day, less than those outside the intersection with the average

truck proportion 15.49%.

3.4 Method

3.4.1 Variable setting

For variable management to enter into the model according to Table

3.1, there were two types of variables including 1) categorical variable: The values of

the independent variables were divided according to the characteristics of the

variables in numerical data, for example, Gender (0 = male, 1 = female), Vehicle type

(1 = a small car such as a motorcycle, 2 = medium-sized vehicles  such cars and pick-

up trucks, 3 = large vehicles or over six- wheeled trucks), Crash Type (1=Going
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straight, 2=Decelerating, 3=Stopped), and 2) Continuous such as Traffic volume

(AADT), Per Ctruck which is the proportion of trucks.

3.4.2 Classification tree and Building Model

The elements of DT model consist of 3 main parts which included

decision nodes, branches, and leaf nodes. Within DT structure of each decision node,

the variables were displayed and each branch exposed one variable value based on

decision rules. In addition, leaf node was the expected value of the target variables

(Song & Lu, 2015). This study used a Decision tree model (Decision Tree or

Classification Tree; DT) for the rear end crash analysis starting from the target

variable (dependent variables) by setting value 1 for the rear-end crashes occurring at

the intersection, and value 0 for the rear-end crash not occurring at the intersection.

This study used SPSS Program and chose classification and regression tree

(CRT) by which influence variables were analyzed. As this research aims to find the

relationship between the target variables and other variables, each independent

(predictor) variable will be shown in the form of ranks according to its importance to

the model (IBM, 2012). Previously, many researches have used CRT to analyze

accident data. (Kashani & Mohaymany, 2011; Pakgohar et al., 2011; Pande et al.,

2010). CRT functions to seek for maximizing within-node homogenous. The extent to

which a node does not represent a homogenous subset of cases is an indication of

impurity. (IBM, 2012).
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Table 3.1 Variables’ characteristics and descriptive statistics

Intersection
Non-intersection Intersection
Count Row N

%
Mean Count Row N

%
Mean

SpeedExc Other wise 1044 76.1% 327 23.9%
Yes 2694 84.6% 489 15.4%

Veh_Type Small 1259 81.1% 294 18.9%
Middle 1923 82.0% 421 18.0%
Large 556 84.6% 101 15.4%

Driver non-at-fault 1733 81.9% 382 18.1%
at-fault 2005 82.2% 434 17.8%

CrashType Stopped 2628 88.9% 327 11.1%
Decelerating 871 64.5% 479 35.5%
Go Straight 239 96.0% 10 4.0%

Gender Female 2967 82.3% 636 17.7%
Male 615 79.6% 158 20.4%

Slight_In 1.3 1.5
Serious_In 0.5 0.4
Veh_Involve 2.3 2.2
Normal Other wise 94 83.2% 19 16.8%

Yes 3644 82.1% 797 17.9%
Slope Other wise 3593 81.7% 804 18.3%

Yes 145 92.4% 12 7.6%
env_light Day 2478 81.5% 564 18.5%

Night without light 414 90.0% 46 10.0%
Night with light 846 80.4% 206 19.6%

Weather Otherwise 3431 81.4% 782 18.6%
Clean 307 90.0% 34 10.0%

No.ofLane 4 and less 2867 80.5% 695 19.5%
Otherwise 871 87.8% 121 12.2%

SafetyEqui Other wise 2319 80.6% 557 19.4%
Use 1419 84.6% 259 15.4%

Alcohol Other wise 3695 82.1% 805 17.9%
Yes 43 79.6% 11 20.4%

PerCTruck 16.97 15.49
AADT60 36,397 20,605
env_surfaces Dry 3446 81.4% 789 18.6%

Wet 292 91.5% 27 8.5%
Concrete Other wise 3320 82.9% 683 17.1%

Yes 418 75.9% 133 24.1%
Note: SpeedExc = Exceeding speed limit; Veh_type = vehicle type; Slight_In = slight

injury; Serious_In = serious injury; Normal =  Veh_involve = number of vehicle involvement;
env_light = lighting condition; SafetyEqui = using safety equipment; PerCTruck = Percentage of
trucks; env_surfaces= road surface condition.
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The following thing for consideration was the choice of algorithms in splitting.

In SPSS, there are two types of CRT including Gini and Twoing, but Gini splits are

widely used. For Gini’s principle, splits are found that maximize the homogeneity of

child nodes with respect to the value of the dependent variables. It is based on squared

probabilities of membership for each category of the dependent variable (L.-Y.

Chang&Chien, 2013; IBM, 2012; Kashani & Mohaymany, 2011). For further details,

readers are offered to read supplementary articles (L.-Y. Chang & Chien, 2013; IBM,

2012; Kashani & Mohaymany, 2011). Regarding the consideration on realism of

CRT, it was conducted by using unit misclassification costs which are the proportion

of observed and predicted data comparisons (Khan et al., 2015).

For determining optimal tree model, validation equaled cross validation 70:30

(Yan & Radwan, 2006). The samples were divided into two sets called training. The

large data set which was 70% of the total number of rear-end crashes was used for

being main interpretation, and testing (30%) was used to measure the data consistency

whether it was in the same direction or not. For avoidance of over-fitting model,

maximum was determined as: tree depth=5 nodes, minimum cases in parent node =

150,  and minimum cases in child node=75 (Khan et al., 2015).

3.5 Results and Discussion

The misclassification costs of the classification and regression tree (CRT)

indicating predictive accuracy are shown in Table 2. It was found that the overall

percent correct is 68.4% which is considered acceptable. (L. Y. Chang & Chen, 2005;

Khan et al., 2015).
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Table 3.2 Misclassification costs

Observed

Predicted

Non-intersection Intersection Percent
Correct

Non-intersection 2564 1174 68.6%
Intersection 264 552 67.6%
Overall Percentage 62.1% 37.9% 68.4%

According to the results from tree model as shown in Figure 3.2, it was found

that the number of nodes = 13, terminal = 7, and Depth = 5 starting from the root node

which is intersection where the rear-end collisions occur at 17.9%. The most

significant variable is crash type which is decelerating speed (35.5%). This makes

sense because at the intersection where rear-end crashes occur, most cars often have

to slow down to approach the intersection (Wiacek et al., 2015), followed by traffic

volume which is less than 153,624 vehicles per day. The number of this traffic

volume is often obtained on the main roads or inter-city highways which sometimes

cross into downtown with plenty of intersections.

The secondly consequential variable is road pavement of which concrete type

is more likely to cause rear-end crashes than other types (19.4%). This result is not

consistent with the studies of Flask et al. (2014); Zhan et al. (2015) indicating that the

concrete road surface could reduce the number of accidents due to its greater friction

coefficient. When considering the coefficients of adhesion for different pavement

surfaces in the study of Wang et al. (2012), it found that in the dry condition the peak

friction coefficient of concrete pavement and asphalt pavement were equaled (0.7-

0.8). So friction coefficient may actually not affect. Moreover, according to the parent
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node was the crash type which is stopped in a road, and going straight. It was not

related to breaking factors.

The subsequent variable is ‘envi light’ which found that the rear-end crashes

much potentially occur at daytime and nighttime with illuminated light or having

lighting poles (10.9%) as the clear visibility making drivers drive the cars with speed

so great that the drivers of back car cannot manage to stop them when arriving at the

intersection. This causes high chances of rear-end crashes at the intersections.

Leaf node is traffic volume for adequate vision. Traffic volume which is in the

range of 8,949 -29,218 vehicles per day has high chances to cause rear-end crashes at

the intersection. The highways having the mentioned traffic volume are often major

highways connecting between provinces and districts. This result is consistent with

the study of L. Y. Chang and Chen (2005) that ADT 20,000 vehicles per day resulted

in Highway accident frequency. Yan et al. (2005) have described the relationship

between ADT and rear-end crashes at the intersection that if ADT increases every

2,000 vehicles per day, the chances of rear-end crashes will increase by 12%. The

reason is that the decrease in headway of vehicles certainly affects the likelihood of

rear-end collisions.

The measurement of importance variables of CART which is a prediction

variable X in relation of the final tree. It was defined as the weighted sum across all

splits in the tree of the improvement. In other word it was measurement of attributable

to each variable in its role as a surrogate to the primary split (Banerjee et al., 2008).

The highest score is 100 which means that variable was the best performing variable.

The other significant variables but not shown in tree model due to their small

proportions as shown in Fig.3 (Variable importance), consists of using excessive
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speed, truck volume, age of driver, and the using of safety equipment, etc. These

variable might effect to the occurrence of rear-end crash on intersection.

Figure 3.2 Tree model
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3.6 Conclusion and implementation

This study aims to find a way to reduce the number of rear-end crashes at the

intersection, by analyzing the factors likely to cause them by using the Classification

and regression tree due to its ability to analyze the relationship between complicated

variables. In addition, the misclassification costs of the model are considered

acceptable.

The most significant variable of rear-end crash at intersections model is speed

deceleration. The secondly significant variable is concrete pavement road which

increase the likelihood of rear-end crashes. Lastly, rear-end crash is likely occur at

nighttime with present of lighting poles.

Related agencies such as Department of Highways, Department of Land

Transport (driver training license) potentially apply the study results to reduce the

number of rear-end crashes at the intersection. The mostly important factor was rear-

end crash type, which was decelerating speed. It can be emphatically concluded that

during the rear-end crash, the front vehicle driver is decelerating the speed to enter the

intersection. Highway authorities may consider warning signs recommending the

drivers to slow down before reaching the intersection. According to the light

condition factors, it found that the rear-end crash on day or night time with light. The

driver training should be emphasized that might be ‘don’t use high speed when

entering the intersection’.

This is in line with the results which acquire ADT in the range of 9,000 -

30,000 vehicles per day. This policy should be urgently considered. Additionally,

Official departments of highway should review about number of rear-end crash at
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intersection of road with 9,000 – 30,000 vehicle per day and concrete pavement.

Then, they could consider improving some intersections with high rear-end crash rate.

In addition, speeding before entering the intersection will cause rear-end

crashes in the case of pavement type, because there has been no evident research that

concrete road surface results in higher rear-end collisions at the intersection. In the

future, this issue can be taken to further investigation.

Regarding to the other countries where is developing country, this result could

be applied to reduce the rear-end crash at intersection.

The limitation of this research is that the number of variables resulting from the tree

model is small; the trend of those variable’s effects cannot be indicated. In the future,

the parametric analysis method, such as binary logistic regression, can be used for the

mentioned trend analysis. Additionally, other variables to be potentially analyzed are

specified their importance as shown in Fig. 3.3.

Figure 3.3 Variable importance
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CHAPTER IV

ANALYSIS OF REAR-END CRASH ON THAI

HIGHWAY: DECISION TREE APPROACH

4.1 Abstract

Objective: Among crash types on Thai highways, rear-end crashes have been

found to cause the largest number of fatalities. This study aims to find ways to

decrease rear-end crashes and fatal rear-end crashes. Methods: Classification and

regression tree (CART) was used to analyze the complicated relationship of variables

of big data. The analysis was conducted by creating two models: 1) a model which

indicates the causes of rear-end crashes by applying Quasi-Induced Exposure to at-

fault driver characteristics; 2) a determined model which studies fatal crashes.

Results: Predictor variables in the model of at-fault and not-at-fault drivers found that

driver age is most significant, followed by number of lanes and median opening area.

For the mode of fatality, the use of safety equipment was found to be most

importance. Conclusion: The model results can be used to develop guidelines for

public awareness programs for motorists and to propose policy changes to the

Department of Highway in order to reduce the severity of rear-end crashes. Moreover,

this paper discusses the variables that may result in both the perspective of rear-end

crash number and the fatality rate of rear-end crashes as strategies in future research.
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4.2 Introduction

Crash trends on Thailand highways are continuously on the increase

(Department of Highway, 2016, 2017, 2018). Crash type statistics reveal that rear-end

collision is the second most common type of collision. However, the highest number

of fatalities occur as a result of rear-end collisions (Figure 4.1). Therefore, finding

strategies to decrease the number and severity of rear-end crashes is urgently needed.

Figure 4.1 Crash on Thai highways by crash type

There are two important issues in the study of rear-end crashes at

intersections. First, a study of the causes of rear-end crashes, focusing on at-fault and

not-at-fault drivers, has found that most crashes are caused by drivers not leaving

enough space between their own car and cars in front (Department of Disaster
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Prevention and Mitigation, 2014). Therefore, the cause of rear-end collisions is the car

behind (L. Ma&Yan, 2014). This study focuses on the driver characteristics of the at-

fault driver, that is, the driver of the car behind that crashes into the car in front, by

applying Quasi-Induced Exposure Methods (Carr B.R., 1970). These methods have

been widely used in the field of traffic accident research. The principle of these

methods is to predict the at-fault driver based on the accident report

(Chandraratna&Stamatiadis, 2009; Taha&Vinayak, 2013) by supposing that the

distribution of not-at-fault drivers closely represents the distribution of exposure to

accident hazards (X. Yan&Radwan, 2006; X. Yan et al., 2005). Second, this research

explores the relevance of the high fatality rate caused by rear-end crashes. Fatal

crashes must be considered from a characteristic study of rear-end crashes by focusing

on ways to reduce fatalities. Sullivan and Flannagan (2003) studied fatal crash risks

and found that darkness is the risk factor causing the greatest number of fatalities, due

to the invisibility of vehicles parked along the roadside. Wiacek et al. (2015) found

that the greater the difference in velocity of the struck car and the striking car the

higher the number of rear-end crash fatalities. However, if a truck is involved in a

rear-end crash, the chances of fatality are further increased.

There are numerous factors affecting the causes of rear-end crashes. These

include driver characteristics that affect driving decision making, such as driver

characteristics (gender, age, alcohol use) (Anvari et al., 2017; X. Li et al., 2016;

Nikiforos&John, 1997), environment (time, weather conditions), roads (surface

condition, physical characteristics) (Z. Li et al., 2014; Mendez&Izquierdo, 2010),

vehicle type (Nikiforos, 2008), and number of traffic lanes (Kim et al., 2016; X. Li et

al., 2016; Meng&Qu, 2012).
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Previous research has found that factors causing death in rear-end crashes

included driver characteristics affecting braking, such as gender, age, and alcohol or

substance abuse (Chen et al., 2015). Use of a seatbelt has been found to be another

important contributing factor to rear-end fatalities (Chen et al., 2016). Vehicle type is

an important factor in all accident types (Weng et al., 2014), but especially in rear-end

crashes. If the types of vehicle involved in a crash are very different, the chances of

severity are higher (Xuedong  Yan&Radwan, 2009). Speed limit factors also affect

the severity of the crash (Wiacek et al., 2015). Other important characteristics of fatal

crashes are physical road characteristics and visibility (Chen et al., 2015).

A statistical analysis of rear-end crashes involves independent variables, such

as weather conditions, vehicle type, seat belt use, and dependent variables, such as at-

fault driver and not-at-fault driver, and fatal and non-fatal rear-end crash. The

distribution analysis method has been widely used to generalize whether an estimated

parameter exists. If there is an estimated parameter, the relationship between

independent and dependent variables is considered. If there is no estimated parameter,

data are investigated proportionally. X. Yan and Radwan (2006) have stated that there

are limitations to the use of parametric analysis (binary logistic regression) due to the

difficulty in using it to investigate the relationship between two variables. Thus, an

appropriate alternative is non-parametric analysis, or Decision tree or classification

tree (DT). This is an algorithmic arrangement to perceive proportions of data

according to determined dependent variables (also known as data mining) (Agouti et

al., 2017). Thus, appropriate data can be used to analyze complex independent data

(X. Yan & Radwan, 2006; Zheng et al., 2016). A decision tree is a structure that

includes a root node, branches, and leaf nodes (Muhammad et al., 2017). X. Yan and
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Radwan (2006) have used DT to study rear-end crash data in Florida, USA, by

analyzing two models. The first was an analysis of which accidents involved rear-end

crashes, and the second was an analysis of driver characteristics of individuals who

could potentially become at-fault-drivers.

In choosing a model for this study, other models that can analyze the

relationship between independent variables and target or categorical variables were

considered. A traditional model using multiple logistic regression which has been

widely used (Xuedong  Yan & Radwan, 2009). Another common model is the

multinomial log it model which theoretically analyzes data using the nested log it

model (NLM), which can examine hierarchical dependent variables (Abdel Aty

&Abdelwahab, 2004). Odds ratio is used to interpret probability. The advantage of

this method is the ability to compare the effects of explanatory variables on dependent

variables, especially when independent variables result in statistical significance.

However, the limitation of each of these models is their inability to find relationships

between explanatory variables. The Decision Tree Model (DT), however, potentially

solves this problem. As mentioned earlier, rear-end crashes are the cause of high

fatalities. Therefore, the presentation of this model simultaneously identifies

relationships between independent variables, which may allow for the application of

findings to policy development. For example, an examination of whether the different

ages of drivers in different traffic lanes affects the role of the driver (at-fault / not-at-

fault) in a crash can influence the development of effective policy. Research by Khan

et al. (2015), which compared DT and ordinal discrete choice model, confirmed that

DT can help to address issues of multicollinearity and variable redundancy.
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Among studies that have analyzed rear-end crashes (Table 4.1), most have

analyzed crash frequency, followed by crash severity (fatal/non-fatal). One study has

analyzed both crash frequency and severity outcome (Das & Abdel-Aty, 2011).

However, the crash data used in that study came from a country with different roads,

conditions, driver behaviors to Thailand, leading to the development of a very

different model. No concentrated road crash study of highways in Thailand has been

conducted which applies the DT model to the reduction of the number of rear-end

crash fatalities and fatal rear-end crashes. This research will discuss model

consistency with the number of fatalities, by comparing the two with previous studies

as a guideline for conducting future research.

Table 4.1 Comparison with others studies in analysis of rear-end crash field

Studies/Model
At-fault /

not-at-fault
Fatal
Injury

Compariso
n of two
models

Raised issues

This study    Case accidents in Thailand; Comparison
of the result of two model.

Yan, et al. [10]   Rear-end crash at signalized
intersections.

Yan and Radwan
[9]

  Model#1: Rear-end vs Non-Rear-end,
Model#2:  At-fault / not-at-fault.

Chandraratna and
Stamatiadis [7]

  Evaluation of not-at-fault assumption.

Meng and Qu [20]   At Urban road tunnels.
Ma and Yan [5]   Focused on age of driver.
Weng, et al. [23]   On work zone.
Chen, et al. [21]   Hybrid approach.
Chen, et al. [22]   Hybrid classifier.

Sullivan and
Flannagan [11]

  Lighting conditions.

Joon-Ki, et al. [40]   Probability of Freeway Rear-End Crash
Occurrence.

Das and Abdel-Aty
[30]

   Genetic programing approach, Rear-end
crash in Florida.

Note: At-fault or not-at-fault driver are assumed related to the rear-end crash frequency
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4.3 Highway Crash Reporting

This study used Department of Highway (DOH) road accident data from 2011

to 2015. These data included dates, road segments, physical characteristics of accident

scenes (e.g. straight road, curved road, work zone, median, intersection),

environmental conditions (e.g. rain, lighting conditions, time of accident), cause-and-

effect data (e.g. driving over the speed limit) and injury data (including fatalities,

serious injuries and minor injuries). The information provided by the DOH may not

cover all accidents. In cases of minor collisions, where victims came to an agreement,

accidents were not recorded.

Rear-end type collisions were selected from these data, and divided into three

main types according to the movement of the front car prior to the collision (L. Ma &

Yan, 2014). These three are 1) going straight, with the front car traveling at normal

speed, 2) decelerating speed, with the front car decelerating, such as when turning the

car or executing a u-turn, and 3) stopping, with the front car parked on the roadside or

on the hard shoulder or stopped at traffic lights. After screening, there were 2,096

cases of rear-end collision. As vehicle data had to be considered in this analysis,

driver and vehicle factors were added to the model. The dataset comprised 5,445

vehicles involved in accidents.
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Table 4.2 Categorical Variables’ characteristics and descriptive statistics

Driver Exposure Fatal Injury
not-at-fault at-fault Fatal Crash Non-Fatal

Count % Count % Count % Count %
Veh_Type Small 718 15.8% 833 18.3% 387 8.5% 1164 25.6%

Middle 1078 23.7% 1274 28.0% 533 11.7% 1819 39.9%
Large 300 6.6% 351 7.7% 236 5.2% 415 9.1%

CrashType Stopped 1344 29.5% 1611 35.4% 721 15.8% 2234 49.1%
Decelerating 645 14.2% 705 15.5% 347 7.6% 1003 22.0%
Go Straight 107 2.3% 142 3.1% 88 1.9% 161 3.5%

Gender Female 1731 38.0% 2037 44.7% 1000 22.0% 2768 60.8%
Male 365 8.0% 421 9.2% 156 3.4% 630 13.8%

Main_Road Other wise 1895 41.6% 2193 48.2% 1070 23.5% 3018 66.3%
Yes 201 4.4% 265 5.8% 86 1.9% 380 8.3%

Entran_Exit Other wise 2084 45.8% 2448 53.8% 1154 25.3% 3378 74.2%
Yes 12 0.3% 10 0.2% 2 0.0% 20 0.4%

Non-Repairing
road

Other wise 54 1.2% 59 1.3% 28 0.6% 85 1.9%
Yes 2042 44.8% 2399 52.7% 1128 24.8% 3313 72.7%

road_lane 2 710 15.6% 792 17.4% 385 8.5% 1117 24.5%
3 10 0.2% 11 0.2% 4 0.1% 17 0.4%
4 926 20.3% 1083 23.8% 573 12.6% 1436 31.5%
5 9 0.2% 8 0.2% 5 0.1% 12 0.3%
6 155 3.4% 202 4.4% 63 1.4% 294 6.5%
7 0 0.0% 2 0.0% 0 0.0% 2 0.0%
8 160 3.5% 205 4.5% 92 2.0% 273 6.0%
9 3 0.1% 4 0.1% 5 0.1% 2 0.0%
10 33 0.7% 59 1.3% 21 0.5% 71 1.6%
12 60 1.3% 65 1.4% 8 0.2% 117 2.6%
14 30 0.7% 27 0.6% 0 0.0% 57 1.3%

road_isle No median 779 17.1% 861 18.9% 399 8.8% 1241 27.3%
Flush 115 2.5% 133 2.9% 96 2.1% 152 3.3%
Raised 452 9.9% 561 12.3% 298 6.5% 715 15.7%
Depressed 513 11.3% 612 13.4% 264 5.8% 861 18.9%
Barrier 237 5.2% 291 6.4% 99 2.2% 429 9.4%

Asphalt Other wise 242 5.3% 309 6.8% 124 2.7% 427 9.4%
Yes 1854 40.7% 2149 47.2% 1032 22.7% 2971 65.2%

Straight Other wise 125 2.7% 172 3.8% 96 2.1% 201 4.4%
Yes 1971 43.3% 2286 50.2% 1060 23.3% 3197 70.2%

Slope Other wise 2039 44.8% 2358 51.8% 1090 23.9% 3307 72.6%
Yes 57 1.3% 100 2.2% 66 1.4% 91 2.0%

Intersection Non-
intersection

1725 37.9% 2013 44.2% 985 21.6% 2753 60.5%

Intersection 371 8.1% 445 9.8% 171 3.8% 645 14.2%
Median_openin
g

Other wise 1853 40.7% 2129 46.8% 985 21.6% 2997 65.8%
Yes 243 5.3% 329 7.2% 171 3.8% 401 8.8%

env_surfaces Dry 1951 42.8% 2284 50.2% 1073 23.6% 3162 69.4%
Wet 145 3.2% 174 3.8% 83 1.8% 236 5.2%

Weather Otherwise 1947 42.8% 2266 49.8% 1063 23.3% 3150 69.2%
Clean 149 3.3% 192 4.2% 93 2.0% 248 5.4%

env_light Day 1413 31.0% 1629 35.8% 669 14.7% 2373 52.1%
Nigh without
light

217 4.8% 243 5.3% 194 4.3% 266 5.8%

Night with
light

466 10.2% 586 12.9% 293 6.4% 759 16.7%

SafetyEqui Other wise 1312 28.8% 1585 34.8% 856 18.8% 2041 44.8%
Use 784 17.2% 873 19.2% 300 6.6% 1357 29.8%

Alcohol Other wise 2070 45.5% 2433 53.4% 1131 24.8% 3372 74.0%
Yes 26 0.6% 25 0.5% 25 0.5% 26 0.6%

SpeedExc Other wise 651 14.3% 734 16.1% 387 8.5% 998 21.9%
Yes 1445 31.7% 1724 37.9% 769 16.9% 2400 52.7%
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Table 4.3 Descriptive statistics of continuous variables

Driver Exposure
not-at-fault at-fault

Mean
Std.
Dev. Min. Max. Mean

Std.
Dev. Min. Max.

Person_age 38.6 14.0 9.0 86.0 38.0 13.9 11.0 85.0
Veh_Involve 2.2 0.5 2.0 8.0 2.4 0.8 2.0 8.0
AADT60 33,318 53,089 183 270,050 33,779 52,363 163 270,050
PerCTruck 16.4 10.6 0.0 68.0 17.0 10.8 0.0 68.0

Fatal Injury
Fatal Crash Non-Fatal Crash

Mean
Std.
Dev. Min. Max. Mean

Std.
Dev. Min. Max.

Person_age 39.8 14.3 12.0 86.0 37.8 13.8 9.0 85.0
Veh_Involve 2.3 0.7 2.0 7.0 2.3 0.7 2.0 8.0
AADT60 26,583 39,286 483 270,050 35,943 56,342 163 270,050
PerCTruck 18.2 11.9 1.1 68.0 16.2 10.2 0.0 59.4

Note: Person_age = age of deriver; Veh_Involve = number of vehicle involvement; AADT60 =
Average annual traffic volume on 2017; PerCTruck = Average truck volume (%).

Descriptive statistics, shown in Table 4.2, define the dependent variables: 1)

The at-fault driver is the driver of the striking car, while the not-at-fault driver is the

driver of the struck vehicle, 2) Fatal rear-end crash refers to a collision with at least

one fatality either at the accident scene or at the hospital, while non-fatal rear-end

crash denotes rear-end crash without fatality. For all 22 independent variables of the

two models, they exhibited with the values of the two dependent variables. Data

description was displayed to help illustrate the overall picture created by the data (L.

Ma et al., 2016; Lu Ma et al., 2015). After cleaning the data for driver exposure, there

were 2,458 at-fault drivers and 2,096 not-at-fault drivers. With regard to crash

fatalities, 1,156 vehicles were involved in fatal rear-end crashes, and 3,396 vehicles

were involved in non-fatal rear-end crashes. According to vehicle type (Veh_Type),

medium cars, such as private cars and pickup trucks had a 28.0% chance of being at-

fault. According to fatal rear-end collisions, larger vehicles were the cause of 11.7%

of collisions, and small vehicles, such as motorcycles, were the cause of 8.5% of
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accidents (Figure 4.2 (a)). Light condition (env_light) was the dominant

environmental factor affecting fatalities, with 42.2% of rear-end collision fatalities

occurring at night in the absence of light, 27.9% occurring at night with light, and

22% occurring in the daytime (Figure 4.2 (b)).

(a) (b)

Figure 4.2 Relationship between dependent variables and some independent variables

The distribution of continuous variables is shown in Table 4.3. With regard to

driver age distribution, there was little difference between the ages of at-fault drivers

and not-at-fault drivers. The average age of at-fault drivers was 38.04 years and of

not-at-fault driver was 38.58 years. The mean value of trucks involved in fatal rear-

end crashes was 18.2% and in non-fatal rear-end crashes was 16.2%. The DT model

was then used for further analysis. Predictions could then be presented as logical if-

then conditions at the terminal node. Thus, data did not require normal distribution. In

other words, the relationships between independent and dependent variables was not

obligatory for the existence of linear relationships (Akanbi et al., 2015).
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Relationships between the independent variables are shown in the pair wise

coefficient correlation model (Table 4.4). Two highly correlated pairs were found: 1)

Road surface factor (env surface) correlated with weather condition (r = 0.840). This

was particularly evident in cases where there were unusual conditions, such as rain

resulting in a wet road surface; 2) Factor of the number of traffic lanes and median

type (r = 0.621). This relationship is rational, as roads in Thailand typically have four

or more traffic lanes and median types usually include a depressed median and

barrier. Some pairs exhibited no relationship, such as driver age and road slope, or

driver gender and road surface type.

4.4 Methods

4.4.1 Variable setting

The dependent variables were determined as categorical values, such

as fatal = 1, non-fatal = 0. According to independent variables, there were two

variable types: 1) categorical variables, the values of which were divided according to

variable characteristics in numeric form, for example, gender (0 = male, 1 = female),

vehicle types (1 = small vehicle, i.e., motorcycle, 2 = medium vehicle, i.e., car, pickup

truck, 3 = large vehicle, i.e., six-wheel truck), crash types (1 = going straight, 2 =

decelerating, 3 = stopped), and 2) continuous variables, such as number of lanes

(2,3,4, ...). ‘Per C Truck’ was the proportion of trucks traffic volume.



Table 4.4 Correlation among independent variables

1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

1.Vehicle types
1.0
0 -0.05 0.11 -0.20 0.07 0.02 -0.01 0.14 0.16 -0.03 -0.05 0.05 -0.03 0.02 0.07 0.08 0.06 -0.02 -0.02 0.09 0.15 0.03

2.CrashType 1.00 0.01 0.02 -
0.09

0.00 0.01 -0.10 -0.10 0.00 0.04 -0.07 0.16 0.16 -0.10 -0.08 -0.02 -0.05 0.00 -0.16 -0.10 -0.23

3.person_age 1.00 -0.13
-

0.01
-0.02 -0.01 0.02 0.03 -0.01 0.02 0.00 0.01 0.02 0.00 0.01 -0.01 0.00 0.02 0.01 0.00 -0.04

4.Gender 1.00
-

0.02
-0.01 -0.01 -0.05 -0.04 0.00 0.02 -0.02 0.03 -0.03 -0.02 -0.02 -0.08 0.04 -0.01 -0.04 -0.04 0.00

5.Main_Road 1.00 -0.02 -0.01 0.40 0.23 -0.17 0.06 -0.04 -0.05 -0.04 0.01 0.01 0.08 0.04 -0.01 0.35 0.07 0.06

6.Entran_Exit 1.00 0.01 0.13 0.05 -0.01 0.02 -0.01 0.02 -0.03 -0.02 -0.02 0.00 0.00 -0.01 0.13 0.02 0.03

7.Normal 1.00 0.06 0.05 -0.03 0.02 0.00 0.00 0.00 0.03 0.03 0.00 -0.02 0.02 0.05 0.01 -0.03

8.road_lane 1.00 0.62 -0.22 0.11 -0.09 -0.12 0.05 -0.01 -0.01 0.12 0.06 -0.05 0.60 0.17 0.09

9.road_isle 1.00 -0.13 0.12 -0.08 -0.12 0.16 0.02 0.03 0.09 0.09 -0.04 0.48 0.26 0.06

10.Asphalt 1.00 -0.05 0.04 -0.06 -0.08 0.06 0.03 -0.10 0.07 0.03 -0.10 -0.04 -0.06

11.Straight 1.00 -0.39 0.03 0.03 -0.11 -0.08 0.03 0.05 0.01 0.07 -0.07 0.01

12.Slope 1.00 -0.05 -0.04 0.05 0.04 -0.02 -0.07 0.00 -0.06 0.09 -0.04

13.Intersection 1.00 0.08 -0.07 -0.06 0.00 -0.06 0.03 -0.11 -0.05 -0.09

14.Median_op
en

1.00 -0.02 -0.03 -0.01 -0.01 0.00 -0.05 0.03 -0.11

15.env_surface
s

1.00 0.84 -0.02 0.00 -0.01 -0.03 0.04 0.07

16.Weather 1.00 0.02 0.00 0.01 -0.03 0.04 0.06

17.env_light 1.00 -0.05 0.02 0.10 0.06 0.04

18.SafetyEqui 1.00 -0.01 0.08 -0.01 0.00

19.Alcohol 1.00 -0.04 -0.04 -0.08

20.AADT60 1.00 0.03 0.12

21.PerCTruck 1.00 0.03

22.SpeedExc 1.00

Note: Bold number represented correlation, which is significant at the 0.05 level (2-tailed).

80
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4.4.2 Classification tree and building model

This study used a decision tree or classification tree (DT) model for

rear-end crash data analysis, which started by determining target variables (dependent

variables). Two models were constructed. Model#1 analyzed at-fault/not-at-fault

drivers. In order to consider this variable, the driver factor was only selected for the

first and second vehicles, as the first vehicle was clearly identifiable as accident-

prone. Therefore, 4,192 vehicles (2,096 rear-end crashes) were analyzed in the model.

Model#2 was an analysis of factors resulting in fatal and non-fatal rear-end collisions.

Therefore, data included the two or more vehicles involved in a rear-end crash. Out of

a total of 4,554 vehicles, 2,096 were involved in those crashes.

The DT model consists of three components. These are decision node,

branches, and leaf nodes. Within the DT structure, each decision node displays the

variable, and each branch displays one variable value based on decision rules, while

leaf nodes exhibit the expected values of target variables (Song & Lu, 2015).

SPSS was used to conduct the analysis. In order to create the DT, the

full dataset was first split according to root node, which was the proportion of values

in the target variable. This was then split into a number of smaller subsets. Several

SPSS types can be used to carry out splitting and growing, including CHAID, CART

and QUEST. Each of these types has advantages and disadvantages. This study chose

CRT for two reasons. First, CRT is capable of analyzing binary node splitting, which

is suitable for the interpretation of accident data analysis results (X. Yan & Radwan,

2006). Second, CRT can potentially analyze influence variables. This research sought

to find the relationship between target variables and other variables expressed in form

of the rank of each independent (predictor) variable according to its importance to the
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model (IBM, 2012). A great deal of previous research has used CRT to analyze

accident data (Kashani & Mohaymany, 2011; Pakgohar et al., 2011; Pande et al.,

2010), as CRT functions to emphatically focus on maximizing within-node

homogeneity. The extent to which a node does not represent a homogenous subset of

cases is an indication of impurity (IBM, 2012).

Choosing the correct splitting algorithm is also important. SPSS CRT

offers two types of splitting, Gini and Twoing. Gini splits, which are widely used,

function to maximize the homogeneity of child nodes with respect to the values of the

dependent variables. Gini is based on squared probabilities of membership for each

category of the dependent variable (Chang & Chien, 2013; IBM, 2012; Kashani &

Mohaymany, 2011). For CART acceptance, splitting was achieved by using unit

misclassification costs. This is the proportion of observed and predicted data

comparisons (Khan et al., 2015).

In order to determine the optimal tree model, ten-fold cross-validation

was undertaken, which is one of several cross-validation techniques to select for

appropriate tree size. To avoid over-fitting the model, the maximum tree depth was

five nodes, minimum cases in the parent node were 150, and minimum cases in child

node were 75 (Khan et al., 2015).

4.5 Results and Discussion

According to the results from the CART of the two models, when considering

misclassification costs for predictive accuracy (Table 4.5), Model#1 had overall

correctness of 52.9% and Model#2 of 65.1%. Despite these low values, as confirmed



83

by Kashani and Mohaymany (2011); Khan et al. (2015), they can be accepted and

interpreted.

Table 4.5 Misclassification costs

Model#1
Observed Predicted

Not-at-fault At-fault Percent Correct
Not-at-fault 1654 442 78.9%

At-fault 1538 558 26.6%
Overall 76.2% 23.8% 52.9%

Model#2

Observed
Predicted

Non-Fatal Crash Fatal Crash Percent Correct
Non-Fatal Crash 2332 1066 68.6%

Fatal Crash 522 634 54.8%
Overall 62.7% 37.3% 65.1%

4.5.1 Model#1

Model#1 (Figure 4.3) found six major variables related to the target

variables. The most significant variable is driver’s age (person_age). Drivers aged

less than 21 years were at-fault drivers in 57.3% of accidents. This may be because

younger drivers are less careful. Chandraratna and Stamatiadis (2009); L. Ma and Yan

(2014) found that young drivers are more likely to be at fault than middle-aged

drivers. Those aged over 21 years were at-fault only 48.9%. The significant variable

was road lane, which can be interpreted that if a driver aged more than 21 years drives

on a road with 10 or more traffic lanes (considering at only 10 lanes as there is no

frequency of seven lanes), the chances of being at-fault drivers are 61.7%. This is

consistent with research by Pande et al. (2010). This may be because roads with many

lanes provide greater opportunities for speeding and vehicles are often parked on the

roadside. Some less observant older drivers may be at fault for rear-end collisions. For
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accidents occurring at the median (median_opening), where the median is on a road

with fewer than 10 traffic lanes, drivers older than 21 years were more likely to be at-

fault. Due to the characteristics of median openings, front car drivers are more likely

to reduce car speed in order to turn or execute a u-turn. If the car behind is too close,

the chances of a rear-end collision are high. Dividing drivers into less and more than

25 years is a variable that has not previously been investigated. This research found

that drivers in these two age ranges potentially consist of not-at fault drivers. When

considering drivers aged over 25 years together with median type, there are more at-

fault drivers when driving on unoccupied streets with a raised or flush median, with a

greater chance of being at-fault than drivers on roads with barriers or depressed

medians. The causes of these results were raise median, no median, and painted

median. In Thailand, most of these median types are used on roads with low traffic

flow, such as in residential areas or urban streets. Therefore, when driving too close,

there is a chance of rear-end collision. This is consistent with research conducted by

Joon-Ki et al. (2007); MRJ Baldock et al. (2005), who concluded that spacing on low-

speed roads is a major cause of rear-end collisions. However, a study by Das and

Abdel-Aty (2011) indicated that median type had no effect on the frequency of rear-

end collisions.

Overall policy and public relations, therefore, should promote the

reduction of rear-end collisions in the following ways: driver training should place

special emphasis on drivers under 21 years of age, focusing on driving at the legal

speed limit, and maintaining an appropriate distance from the vehicle in front. For

drivers aged 21 years and older, it is important to pay special attention to roads with

more than 10 lanes, and to take greater care of median openings on roads with fewer
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lanes. In other words, drivers should observe whether the car in front is executing a u-

turn. Drivers aged 25 years or older should take special care on roads with no median,

with a raised median, or with a depressed median, and they should maintain a greater

distance from the car in front.

4.5.2 Model#2

The results of Model#2 (Figure 4.4) reveal 14 variables essential to

fatal/non-fatal crashes. The most significant variable was safety equipment

(SafertEqui), such as seatbelts or helmets. Those who did not use safety equipment

were a 29.5% risk of dying in a rear-end collision. This is consistent with other

research which has found that the use of safety equipment can reduce accident

severity (Chen et al., 2015; MRJ Baldock et al., 2005). The next most significant

variable was visibility, with a rear-end crash at night with no light having a 49% risk

of fatality. This result supports findings by Chen et al. (2015); Sullivan and Flannagan

(2003). Low light driving leads to rear-end crashes against cars parked along

roadsides. In addition, a lower quantity of night-time traffic leads to drivers driving at

higher speeds, which, in turn, causes a greater number of fatalities due to high

velocity while crashing. In the case of sufficient light (in the daytime and at night with

light), the variable of roads with a minimum of 2-8 traffic lanes on which a large

number of trucks are parked, the chances of rear-end crashes are high. Moreover, the

second variable, vehicle type (Veh_type), shows that large cars and trucks with six

wheels or more result in 39.7% of deaths. This is relevant to the findings of Chang

and Chien (2013); Chen et al. (2015), who found that the chances of fatality while

decelerating and going straight were 53.1% (60/113 of crash accidents). Large

vehicles which hit small vehicles on 2-4 lane roads have a high chance of fatality due
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to the vehicle body size factor (Xuedong  Yan&Radwan, 2009). With regard to other

crash types, stopped crash type has a 33% chance of fatalityy (80/240 crash

accidents). In other words, rear crashes, occurring when the front cars are stopping,

have a high fatality rate. With regard to medium and small vehicles, the chances of

fatal crashes are high when the driver is aged more than 36 years (31.4%).

For drivers who use seatbelts, the second variable of raised and flush

median led to a higher chance of fatality than other median types as these two types

exist in areas of low-speed driving. If drivers violate the rules, the chances of rear-end

collisions will be very high. For example, roads with a flush median type usually have

no auxiliary lane to separate turning cars. Therefore, if a speeding car comes from

behind, the resulting rear-end crash will be severe. This is consistent with the second

variable, median opening, where there is a 48.8% probability of death. For other

median types, two to four traffic lanes had 16.2% fatal rear-end crashes. With regard

to leaf node, envi_light was found to be in accordance with Chen et al. (2016), who

found that collisions occurring at night with both light and no light have a greater

chance of fatality chances than collisions occurring during the daytime.

Policy recommendations to reduce fatalities from rear-end collisions

are as follows: promoting awareness of seatbelt use by focusing on the driving license

test, and increasing the strictness of law enforcement. For light conditions affecting

visibility, drivers must be made aware of the danger of driving on roads with no

lights, especially at night. Relevant authorities should consider increasing light

installation on roads where the risk of rear-end collision is high. With regard to

vehicle type, truckers must increase their awareness of parking their vehicles on roads

with a high risk of rear-end collision, such as where there are no parking lanes and no
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light. In other words, the relevant departments, such as the DOH, should consider

setting up illuminated roadside rest stops for trucks.

4.5.3 Discussion of the two models

Considering the overall picture of the two models, similar variables

result in frequent rear-end collisions and fatalities. The first variable is the small

number of lanes (2-4 traffic lanes), which is common in Thailand. The results of the

models differed. Model#1 found fewer at-fault drivers in cases of a small number of

traffic lanes, while model#2, found a high chance of fatalities. Future research should

analyze this issue with regard to how different traffic lanes affect the frequency and

severity of rear-end collisions. Another variable which was significant in both models

was median type. Barrier and depressed median types result in a small number of

rear-end collisions, and a low fatal crash rate. Therefore, when subordinate units of

the DOHs make road improvements, these two median types should be considered.

With regard to median opening point, both models found that rear-end collisions

occurring at the median opening had a high incidence of at-fault, and caused high

proportion of fatal crashes as the front vehicle decelerated or executed a u-turn. In

these conditions, there is a high probability for the occurrence of a rear-end collision.

In the case of fatal crashes, if the following vehicle has not seen the turning signal, a

serious rear-end collisions will occur.
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Figure 4.3 Tree Model#1
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Figure 4.4 Tree Model#2

4.6 Conclusion

This research sought to explore two issues related to rear-end crashes. First, to

find the factors which increase the number of rear-end collisions. This was achieved

by focusing on the driver and environmental characteristics that cause rear-end

collisions. Second, to find the factors causing fatal rear-end collisions. Using highway

rear-end collision data from 2011 to 2015, non-parametric analysis was conducted on

the significance of other variables which affect target variables, using an overview of

factors, including drivers, the driving environment, and physical road characteristics.

The model results were found to be able to predict rear-end collisions and fatalities
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with acceptable accuracy. The factors can contribute to a reduction in the number of

at-fault drivers, and a reduction in the fatality rate of rear-end collisions.

The factors acquired from this analysis can be used to develop transportation

office and rural road office policy and public relations practices, in order to reduce the

number and severity of rear-end collisions.

It is recommended that future research parametric and non-parametric analysis

to compare these factors in order to better understand the factors affecting crashes. In

addition, a further investigation of lane numbers, median type, and median opening

affecting the number of rear-end collisions, and fatal crashes, is called for, as these

three variables were imperative for both models.
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CHAPTER V

REAR-END CRASH MODELS: A COMPARISON

BETWEEN URBAN AND RURAL ZONES

5.1 Abstract

This study compares models that demonstrate the severity of rear-end

collisions between the said areas. Severity was categorized into three levels based on

the extent of injuries, namely, fatal, serious, and minor injuries. Occurrences of rear-

end collisions in Thailand were classified according to the rural and urban zones of

the municipalities in various districts. Afterward, factor analysis was used to reduce

the number of variables for analysis of latent variables. Then, the integrated model

was built using a structural equation modeling of both zones to verify consistency and

build individual models. Lastly, the indicators of the latent variables of the rear-end

collision models for urban and rural areas were compared using the measurement

invariance method. Results showed that the models differed with regard to crash type

and vehicle involvement factors. The findings will be beneficial for decision makers

who are responsible for implementing traffic schemes or reducing fatalities from

accidents.

5.2 Introduction

Rear-end collision is considered an important incident due to the frequent

recurrence of crashes. In several countries, the number of deaths from rear-end
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crashes are numerous in comparison with other types of collisions.

Several differences can be noted when considering the severity of rear-end

crashes between urban and rural areas from various perspectives. For example, the

number of intersections results in a decrease in a front car‘s speed upon reaching

signalized and unsignalized intersections. This scenario increases the chance of rear-

end crashes, but severity may differ from that on rural roads (M. T. Islam, 2016).

Chatterjee and Davis (2016) aimed to prevent shock waves from forming on freeways

where rear-end collisions tend to occur. The speed of urban vehicles is typically low

due to the relatively dense traffic, whereas rear crashes occurring in rural zones or on

roads that connect the districts and provinces may be more severe because most

vehicles on rural roads use high speed (David & Santosh, 2015). In terms of vehicle

types that potentially access roads on rural and urban zones as well. For example,

large trucks are allotted a limited time for road accessibility in urban areas. Vehicle

types as classified by size also affect the severity of rear crashes in these areas. In

term of attitude of driver, Zabihi et al. (2019) studied seat belt usage among adult

drivers on urban and rural roads.

The studies on rear-end collisions in urban and rural zones are few. Chen et al.

(2015) investigated the severity of driver injury based on road function factors, such

as urban, rural interstate, and rural non-interstate roads. The result indicated that

urban roads significantly influenced no level of injury. David and Santosh (2015)

explored the factors that affect the severity of rear crashes in urban and rural zones. In

terms of road environmental factor, the authors’ key finding is that rear crashes in

rural areas were less frequent. The speed of cars in rural zones leads to severe rear-

end crashes. In addition old drivers (> 65 years) sustained high levels of injurybut had
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a slight effect on the incidence of rear crashes. According to gender, female drivers

tend to obtain severe injury, especially, in high-speed environments, which increases

the severity of rear-end crashes.

As previously mentioned, many dimensions in research place an emphasis on

the “injury level” of drivers. For example, Chen et al. (2015) investigated various

factors that influence injury levels in rear-end crashes in the United States using data

on New Mexico from 2010 to 2011. Injury levels were divided into three, namely,

property damage only, injury, and fatality, which is similar to that of Chen et al.

(Chen et al., 2016), death risks (Sullivan & Flannagan, 2003), and severity of rear

crash incidents on urban arterials (Das & Abdel-Aty, 2011). However, the number of

victims involved in said rear crashes has not been studied. The other dimension of

analysis was identifying the “rear-end crash size,” which is the integration of the

number of injured people across levels. The present study considers latent variables

and employs structural equation modelling to analyze the relationship between

factors. Previous research has identified crash severity in terms of latent variables. For

example, Lee et al. (2008) examined crash size on expressways using accident size as

a dependent variable, which was indicated by the number of deaths, injuries, cars, and

number of vehicles damaged. Hassan and Al-Faleh (2013) explored the relationship

between exploratory factors associated with crash size indicated by the number of

cars, injuries, and damages to the government and private sectors. Schorr and Hamdar

(2014) compared the severity between signalized and unsignalized intersections by

defining indicators from four aspects, namely, severity, number of cars, number of

injuries, and number of deaths. Hamdar and Schorr (2013) Compared roads between

interrupted and uninterrupted flows and used factors, such as injury count, fatality
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count, severity, and traffic violation of aggressive maneuver as dependent variables.

Kim et al. (2011) studied the severity of accidents as indicated by the extent of

damage to vehicle, type of injury, and involved vehicle or unit.

However, research that provides a comparative study of crash severity using

latent variables, especially that of rear-end crashes between urban and rural zones.

Therefore, the present study aims to fill this research gap. Knowledge of different

characteristics that influence the size of crashes occurring on urban and rural zones

can be applied for improving the physical characteristics of specific roads to reduce

the severity of rear-end crashes.

The study poses the following research question: “What are the differences

between the indicators of latent factors influencing accident severity caused by rear-

end crashes in urban and rural zones?” Subsequently, the following issues will be

discussed:

Issue 1: What are the differences between crash size indicators for rear-end

crashes on urban and rural roads?

Issue 2: Do differences exist between the indicators of road factors of rear-end

crashes between urban and rural zones? How?

Issue 3: Do differences exist between the indicators of environmental factors

of rear-end crashes between urban and rural zones? How?

Issue 4: Do differences exist between the indicators of vehicles of rear -end

collisions between urban and rural zones? How?

Issue 5: Do differences exist between the indicators of crash types between

urban and rural zones? How?
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Issue 6: What are the differences between the overall structure of both

models?

5.3 Method

This section discusses the procedures and methods used to achieve the

research objectives. Figure 5.1 illustrates the procedure, which consists of four main

steps, namely, 1( data collection, 2) Geometric Information System (GIS) process, 3)

factor analysis, and 4) model development. The figure describes the process in detail.

5.3.1 Data collection

Data consist of two parts. The first is highway crash reports on cases of

road accidents for 2011–2017 occurring on highways across the country. During

accidents, a highway officer investigates and records each case. The record contains

information about the scene of the accident (specific name of the road and location in

kilometer), date, physical characteristics of the road (i.e., median type and

intersection), environmental factors (i.e., weather, time, and lighting), vehicle type,

crash type, and UTM. Data were collected from the Highway Accident Information

Management System of the Department of Highways in Thailand. After filtering, a

total of 11,976 rear-end crash cases were obtained. Data on traffic volume were

retrieved from the Traffic Information Movement System. The two sets of data were

subsequently matched with highway number and phase of kilometre range. The

second part is 2) GIS (shape file) data on the WGS84 datum of UTM zone 47 that

shows the administrative area, which is a municipality and characterized as polygon

data. The reason for dividing the zones per municipality is due to a clearly divided

area of crowded buildings, which differentiates traffic flow or physical road
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characteristics, vehicle type, number of users, and connected roads.

Note: Rectangles in solid lines denote the main processes. Rectangles in dashed lines pertain to sub-
processes.

Figure 5.1 Framework of the study

To specify the actual zones of the occurrences of rear crashes in urban

or rural zones, the GIS program was used by running a selection according to location

and determining the shape files of rear crashes in the municipality. Results showed a

total of 3,303 and 8,664 cases of rear-end crashes in urban and rural zones,
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respectively. After dividing the crash sites into two areas, the descriptive statistics are

presented in Table 5.1.

Table 5.1 Descriptive Statistics (Urban)

Variables Description Value

Urban

Count %
Mean (person)

Slight
injury

Serious
injury

Fata

Main_Roa
d

Crashing on main roads
(including parallel lanes

and exits)

1 = Yes 372 12.27 0.50 0.14 0.09

0 = Other 2,661 87.73 0.67 0.19 0.17

Raised Raised median
1 = Yes 884 29.15 0.69 0.19 0.17
0 = Other 2,149 70.85 0.63 0.18 0.16

Depressed Depressed median
1 = Yes 535 17.64 0.78 0.23 0.20
0 = Other 2,498 82.36 0.62 0.17 0.15

Barrier Roads divided by barriers
1 = Yes 655 21.60 0.43 0.07 0.07
0 = Other 2,378 78.40 0.71 0.22 0.19

Asphalt
Roads made of asphalt

and/or concrete
1 = Yes 2,418 79.72 0.68 0.19 0.18
0 = Other 615 20.28 0.52 0.16 0.11

Straight Crashing on straight roads
1 = Yes 2,907 95.85 0.64 0.18 0.15
0 = Other 126 4.15 0.80 0.29 0.37

Slope
Degree for slope more

than 3%
1 = Yes 36 1.19 0.83 0.50 0.42
0 = Other 2,997 98.81 0.65 0.18 0.16

Intersectio
n

Crashing on intersection
1 = Yes 497 16.39 0.71 0.23 0.15
0 = Other 2,536 83.61 0.64 0.18 0.16

Med_Open
Crashing on opening

median point
1 = Yes 297 9.79 0.74 0.23 0.22
0 = Other 2,736 90.21 0.64 0.18 0.16

Weather Visualization of drivers
1 = Other 162 5.34 0.70 0.2 0.25
0 = Clean 2,871 94.66 0.65 0.18 0.16

Day Time of accident
1 = Day 1,884 62.12 0.67 0.16 0.12
0 = Other 1,149 37.88 0.62 0.22 0.23

Night_NoL
ight

Night-time crashes on
roads without lighting

poles

1 = Yes 170 5.61 0.89 0.39 0.39

0 = Other 2,863 94.39 0.63 0.17 0.15

Deceleratin
g

Leading vehicle was
decelerating speed

1 = Yes 710 23.41 0.69 0.23 0.19
0 = Other 2,323 76.59 0.63 0.17 0.15

Stopped
Leading vehicle has

stopped
1 = Yes 127 4.19 0.50 0.24 0.25
0 = Other 2,906 95.81 0.65 0.18 0.16

Motorbikes
Small-sized vehicles (i.e.,

motorcycles, three-
wheeled vehicles)

1 = Yes 639 21.07 0.66 0.27 0.23

0 = Other 2,394 78.93 0.64 0.16 0.14

Trucks
Large-sized vehicles

(trucks with six wheels or
more)

1 = Yes 301 9.92 0.71 0.24 0.28

0 = Other 2,732 90.08 0.64 0.18 0.15
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Table 5.1 Descriptive Statistics (Rural) (Continued)

Variables Description Value

Rural

Count %
Mean (person)

Slight
injury

Serious
injury

Fatal

Main_
Road

Crashing on main roads
(including parallel lanes

and exits)

1 = Yes 1,310 15.12 0.41 0.10 0.05

0 = Other 7,354 84.88 0.77 0.27 0.23

Raised Raised median
1 = Yes 1,530 17.66 0.71 0.22 0.20

0 = Other 7,134 82.34 0.71 0.24 0.20

Depressed Depressed median
1 = Yes 2,310 26.66 0.79 0.26 0.21

0 = Other 6,354 73.34 0.69 0.23 0.20

Barrier Roads divided by barriers
1 = Yes 2,000 23.08 0.41 0.08 0.05

0 = Other 6,664 76.92 0.80 0.29 0.24

Asphalt
Roads made of asphalt

and/or concrete
1 = Yes 7,757 89.53 0.72 0.25 0.21

0 = Other 907 10.47 0.67 0.20 0.14

Straight Crashing on straight roads
1 = Yes 8,194 94.58 0.69 0.23 0.19

0 = Other 470 5.42 1.19 0.43 0.32

Slope
Degree for slope more

than 3%
1 = Yes 199 2.30 1.49 0.62 0.49

0 = Other 8,465 97.70 0.7 0.23 0.19

Intersection Crashing on intersection
1 = Yes 956 11.03 0.89 0.30 0.17

0 = Other 7,708 88.97 0.69 0.23 0.20

Med_Open
Crashing on opening

median point
1 = Yes 725 8.37 0.93 0.31 0.27

0 = Other 7,939 91.63 0.69 0.23 0.19

Weather Visualization of drivers
1 = Other 564 6.51 0.97 0.31 0.25
0 = Clean 8,100 93.49 0.70 0.24 0.19

Day Time of accident
1 = Day 5,710 65.90 0.72 0.23 0.15

0 = Other 2,954 34.10 0.71 0.26 0.30

Night_No
Light

Night-time crashes on
roads without lighting

poles

1 = Yes 796 9.19 0.88 0.37 0.47

0 = Other 7,868 90.81 0.70 0.23 0.17

Deceleratin
g

Leading vehicle was
decelerating speed

1 = Yes 1,719 19.84 0.82 0.31 0.24
0 = Other 6,945 80.16 0.69 0.22 0.19

Stopped
Leading vehicle has

stopped
1 = Yes 411 4.74 0.65 0.31 0.36

0 = Other 8,253 95.26 0.72 0.24 0.19

Motorbikes
Small-sized vehicles (i.e.,

motorcycles, three-
wheeled vehicles)

1 = Yes 1,505 17.37 0.67 0.30 0.32

0 = Other 7,159 82.63 0.72 0.23 0.17

Trucks
Large-sized vehicles

(trucks with six wheels or
more)

1 = Yes 908 10.48 0.84 0.33 0.34

0 = Other 7,756 89.52 0.70 0.23 0.18

Given the exploratory variables associated with the average number of

deaths, we found that the top two variables were road characteristics, with a degree

for slope more than 3%, and rear crashes at night (i.e., without light). Crashes in urban

zones occurred in curves and intersections, whereas accidents in rural areas were

caused by crashing against parked cars and trucks.

For the proportion of a small number of samples, crashes that occurred

on slopes reached only 1.19% and 2.3%in urban and rural zones, respectively. The
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reason behind the finding is the small number of outstanding physical road

characteristics in Thailand, especially when separated into urban and rural zones.

However, similar research has been conducted and analyzed using a small sample size

of approximately 2% (Hassan & Al-Faleh, 2013; Lee et al., 2008). The continuous

variable in the urban and rural zones is the average traffic volumes of 24,101 and

21,590 vehicles per day with the proportions of trucks at 16.48% and 17.06%,

respectively.

5.3.2 Factor analysis

As the rear crash model based on latent variables has not been

previously studied, a dimension reduction was required using exploratory factor

analysis (EFA) as the research tool. Observable variables were collected, which will

indicate latent variables as structural equation modelling method was used. Thus,

EFA was used to select the observable variables for indicating each latent variable.

EFA was developed in the early 20th century by Pearson and Spearman. Its purpose is

to identify variables that cannot be directly observed or measured and reduce the

number of observable variables. EFA was used to describe the covariance value of all

variables in the form of unobserved variables (Washington et al., 2011).

Table 5.2 provides the results of EFA, were analyzed using the

unweighted least square method, which is ideal for categorical data in SPSS

(Basto&Pereira, 2012). In terms of goodness of fit, a Kaiser-Meyer - Olkin (KMO)

value of 0.585 and significant of the Chi-square test at p-value < 0.000 were

considered acceptance criteria (Cerny & Kaiser, 1977).
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Table 5.2 EFA Result

Factor

1 2 3 4

Main_Road .466 −.019 .061 .031

Raised −.309 −.214 .108 .141

Depressed .965 −.136 .261 .012

Barrier .782 −.159 −.065 −.071

Asphalt −.111 .001 −.082 −.056

Straight .512 −.021 .206 .167

Slope −.458 .031 −.209 −.110

Intersection −.266 −.143 .178 .067

Med_Open .211 −.044 −.183 .090

LN_AADT .730 .148 .118 .031

Per_Truck .256 .059 .026 .009

Weather −.083 .063 −.075 −.069

Day −.017 −.096 .463 −.312

Night_NoLight −.166 .158 −.574 .256

Motorbike −.078 −.028 .027 −.057
Truck .021 .145 .000 −.113
Stopped 0.050 −.156 −.036 .001

Decelerating −.179 −.346 .243 .073

Note: Goodness of fit: Chi-square (87) = 4208.458, p-value < 0.000, and KMO measure of
sampling adequacy = 0.585

Given the high values of factor loadings, findings show that theycan be

reduced to four factors. These values were named factor 1 (i.e., Main_Road, Raised,

Depressed, Barrier, Asphalt, and Straight, Slope, Intersection, and Median_Open).

This group of variables is considered road factors. The variables Stopped and

Decelerating constitute factor 2, which was named crash type. Factor 3 or

environmental factor included Weather, Day, and Night_No Light. Factor 4 consisted

of Motorbike and Truck and named vehicle involvement.

5.3.3 Model development

The individual models were developed by categorizing the locations of

rear end- crash scenes before analyzing data by invariance analysis.
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Step 1: Create separate models for both zones in which all variables are

taken into consideration and adjust such models to be reasonably suitable (based on

EFA results) and create fit indices. For modelling, all independent variables are

discrete and have count variables outcomes; thus, using an estimator as weighted least

squares (WLS) or WLSMV in Mplus (Lee et al., 2008; Yu, 2002) is necessary.

Parameter estimation in SEM was carried out by predicting the population covariance

matrix of an observe variable: (i.e., Σ that can be specified in the terms of an unknown

parameter:(θ)), which consists of Β, Γ, Φ, and Ψ matrices. The components of the

covariance matrix in the model is Σ = Σ(θ) .Therefore, the parameters of θ can be

predicted by minimizing the discrepancies between the sample and population

covariance matrices, which results in Σ(θ). The components in SEM consist of two

models, namely, measurement model (pertains to the relationship between indicators)

and structural model (denotes the relationship between latent variables). For further

reference, see Hair Jr et al. (2010).

To verify whether the relationship between latent variables (i.e.,

whether or not the measurement and structural models are adequate for SEM analysis)

and to complete this step, the values indicating the model parameters were examined,

such as comparative fit index (CFI)> 0.95 and Root mean square error of

approximation (RMSEA)< 0 .05 (Mulaik & Millsap, 2000). The developed models

relevant to the empirical data were realized according to the index of item–objective

congruence (IOC)of models, where each parameter line, reasonableness of size, and

parameter line direction were considered using the values of goodness-of-fit statistics.
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Results show that the standard criteria were acceptable, as shown in Table 5.3 (Hair Jr

et al., 2010; Kenny, 2016; Yu, 2002).

Table 5.3 Goodness-of-fit indices

Measure Definition Fit indices

Chi-square statistic (χ2) -
Expected significant

p-valuesaDegree of freedom (df) -

p-Value -

χ2/df - Value < 3b

CFI CFI = 1 − max − , 0max − , ( − ) >0.92a

TLI TLI = / − /( / ) − 1 >0.92a

WRMR = 2 ( ˆ) Value <1.00c

RMSEA = max 2 ( ˆ) − 1 , 0 Values <0.07 with
CFI values of 0.92

or higher*
Note:

References:
a(Hair Jr et al., 2010).
b(Washington et al., 2011).
c(Yu, 2002).
Tucker–Lewis index (TLI) and CFI, where dfb and dfHo are the degrees of freedom for the

baseline and hypothesized (under H0) models, respectively.
Weighted root mean square residual, where e denotes the number of sample

statistics, and F(θˆ) = ( ) = min ( ) − ( ) ′ [ − ( )], which is the minimum of
the WLS fitting function.

RMSEA, where d denotes the degrees of freedom of the model, and F(θˆ) is the minimum of
fitting function F(θ).

Step 2: Create two individual SEM models of rear-end crashes for

urban and rural zone. Refer to the structures of the models buildings of the 1 step.

Step 3:Multi-group SEM analysis, which is also known as

measurement invariance analysis, is an application for the comparison of similarly

structured models. This test aims to determine the similarity of two groups of samples

(invariance measurement or equivalence) using similar models (Hair Jr et al., 2010).

This process is also known as cross-validation. For example, there are comparison for
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number of constructs, factor loading of indicator, mean, covariance, etc. The statistics

used for comparison are the differences of Chi-square value and degrees of freedom.

Consequently, both values are considered to test the levels of significance and

indicate whether or not the various parameters of the two models are different (Hair Jr

et al., 2010; Jomnonkwao et al., 2015; Nambulee et al., 2019).

The first step of for the measurement invariance (MI) of categorical

variable is to check the structure of the model (configural invariance).This test

pertains to the factor structure within each group or each latent variable separately

(Hortensius, 2012). It consists of two sub-models as follows. (1)A model that will

determine that all parameter values are independent in both groups (free across

groups). However, the threshold value must be set to 1, and all other parameters must

be set to zero. This model is called configural equivalence or base model. (2)The next

step is building a model that specifies that all parameter values are equal except for a

threshold value of 1, whereas all other parameters are set to zero. This model is called

full equivalence or full model. Lastly, both models are employed for the Chi-square

difference test.

5.4 Results

Step 1: Considering the consistency between the models and empirical data

with the goodness of fit values, as shown in Table 6,we found that nearly all variables

meet the criteria according to Table 5.3, except for WRMR, which is 2.512.This

finding is due to the sufficiently high correlation between categories. However, the

result remains acceptable, which is in agreement with Hanson and Kim (2007), where

WRMR values at less than 3 were considered acceptable. Moreover, a similar

research does not reflect WRMR values as fit indices because it is not a well-studied
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fit statistic and has failed to behave as well (Hassan&Al-Faleh, 2013; Schorr&

Hamdar, 2014).

Table 5.4 SEM results of Step 1

Model/Variables
Step 1

Estimate S.E. Est./S.E. p-Value

ACCZ

Serious 0.371 0.01 38.947 <0.000

Fatal 0.515 0.015 35.179 <0.000

Slight 0.325 0.009 37.763 <0.000

ROAD

Main_Road 1.12 0.05 22.238 <0.000

Raised −0.161 0.016 −10.287 <0.000

Depressed 0.004 0.027 0.162 0.871

Barrier 1.461 0.062 23.636 <0.000

Asphalt −0.238 0.018 −13.07 <0.000

Straight 0.271 0.017 15.72 <0.000

Slope −0.232 0.021 −10.868 <0.000

Intersection −0.322 0.016 −19.934 <0.000

Med_Open −0.177 0.015 −11.505 <0.000

LN_AADT 0.722 0.028 25.422 <0.000

Per_Truck 0.037 0.007 5.267 <0.000

ENVI
Weather 1 0.00 999 999.000

Day −0.168 0.019 −8.748 <0.000

Night_NoLight 3.285 0.384 8.566 <0.000

VEH_INV

Motorbike 1 0.00 999 999.000

Truck 0.08 0.023 3.49 <0.000

CRASH_T

Decelerating 2.465 0.016 150.053 <0.000

Stopped −0.188 0.002 −88.077 <0.000

ACCZ ON

ROAD −0.361 0.018 −20.092 <0.000

ENVI 0.058 0.008 7.242 <0.000

VEH_INV 0.158 0.009 18.429 <0.000

CRASH_T −0.012 0.005 −2.331 0.02

Note: ACCZ = crash size, ENVI = environmental factor, VEH_INV = vehicle involvement, CRASH_T
= crash type, S.E. = standard error, Est. = estimate
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We then considered the rationale, as shown in Table 5.4, and found that all

variables are consistent with reality. For example, we observed that the weight of the

fatal variable has the highest loading value in terms of crash size. We infer that this

variable is the main indicator of the measurement followed by serious and slight

injuries.

Step 2: This step is a result of running the model by separating the two sample

groups, as shown in Table 5.5 and Figure 5.2 and Figure 5.3. In summary, both trends

are similar. In other words, the highest loading factor belongs to fatality followed by

serious and slight injuries for crash size (ACCZ). In the urban zone models, slight

injury has a negative value because this variable negatively correlates with certain

independent variables. However, this result is possible due to the weight given by the

fatal variable. A slight difference is observed in the structural model, that is, the

maximum weight variable is ROAD followed by ENVI and VEH_INV, respectively,

but in the model of rear crashes in rural zone, CRASH_T variable significantly affects

ACCZ in negative direction.

Step 3: Table 5.6 provides the analysis results from invariance analysis, which

first considers the goodness of fit of the configural equivalence model (i.e., the model

enables the parameters to be independent from one another) and full equivalence

model (i.e., the model forces the parameters of both sample groups to be

equivalent). Result ofthe difference test reveals that the value of delta Chi -square (5)

 =30 .182 (p < 0.000). This finding indicates that the measure of the latent variables of

rear-end crash models in urban and rural zones is significantly different.
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Table 5.5 SEM results of Step 2

Model/Variables
Step 2 (Urban Zone) Step 2 (Rural Zone)

Estimate S.E. Est./S.E. p-Value Estimate S.E. Est./S.E. p-Value

Measurement
model
ACCZ

Serious 1.766 0.006 281.515 <0.000 0.347 0.006 58.158 <0.000

Fatal 2.035 0.171 11.93 <0.000 0.526 0.008 61.855 <0.000

Slight 0.028 0.004 −7.447 <0.000 0.292 0.015 19.075 <0.000

ROAD

Main_Road 0.715 0.043 16.64 <0.000 1.074 0.02 54.77 <0.000

Raised −0.527 0.049 −10.805 <0.000 −0.224 0.018 −12.168 <0.000

Depressed −0.073 0.048 −1.529 0.126 −0.022 0.018 −1.234 0.217

Barrier 1.169 0.04 29.078 <0.000 1.266 0.018 72.186 <0.000

Asphalt −0.128 0.058 −2.199 0.028 −0.093 0.017 −5.334 <0.000

Straight 0.249 0.044 5.694 <0.000 0.27 0.018 14.773 <0.000

Slope −0.252 0.062 −4.048 <0.000 −0.226 0.024 −9.347 <0.000

Intersection −0.414 0.026 −15.636 <0.000 −0.373 0.016 −23.261 <0.000

Med_Open −0.155 0.033 −4.63 <0.000 −0.336 0.018 −18.721 <0.000

LN_AADT 0.651 0.021 31.48 <0.000 0.619 0.008 82.15 <0.000

Per_Truck 0.191 0.02 9.629 <0.000 −0.005 0.008 −0.633 0.527

ENVI

Weather 0.192 0.047 4.057 <0.000 0.117 0.028 4.249 <0.000

Day −0.923 0.072 −12.876 <0.000 −0.821 0.036 −22.828 <0.000

Night_NoLight 0.913 0.071 12.806 <0.000 1.072 0.046 23.073 <0.000

VEH_INV

Motorbike 1 0 999 999.000 1 0 999 999.000

Truck 1.418 0.234 6.051 <0.000 0.121 0.027 4.469 <0.000

CRASH_T

Decelerating 2.362 0.027 87.697 <0.000 2.508 0.02 123.082 <0.000

Stopped −0.202 0.005 −43.138 <0.000 −0.182 0.002 −76.698 <0.000

Structural model

ACCZ

ROAD −0.073 0.007 −10.27 <0.000 −0.453 0.011 −40.906 <0.000

ENVI 0.073 0.008 9.332 <0.000 0.258 0.014 18.292 <0.000

VEH_INV 0.043 0.004 9.636 <0.000 0.119 0.011 11.22 <0.000

CRASH_T 0.003 0.002 1.321 0.187 −0.021 0.006 −3.707 <0.000

Note: ACCZ = crash size, ENVI = environmental factor, VEH_INV = vehicle involvement, CRASH_T
= crash type, S.E. = standard error, Est. = estimate



Table 5.6 Measurement of invariance results and goodness of fit

χ2 df p-Value χ2/df RMSEA CFI TLI WRMR Delta χ2 Delta df p-Value

Step 1: Total samples 2634 163 <0.000 16.159 0.036 0.953 0.939 2.512

Step 2: Single model

Urban Model 561.044 157 <0.000 3.574 0.029 0.942 0.923 1.620

Rural Model 3101.094 172 <0.000 18.030 0.044 0.935 0.921 2.802

Step 3: Invariance analysis

Configural equivalence (base model) 3253.643 339 <0.000 9.687 0.039 0.936 0.920

Full equivalence (full model) 3283.825 344 <0.000 9.458 0.038 0.936 0.922

Difference test 30.182 5 <0.000
Note: RMSEA = root mean square error of approximation, CFI = comparative fit index, TLI = Tucker–Lewis index, WRMR = weighted root mean square residual

113
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Figure 5.2 Model for urban areas
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Figure 5.3 Model for rural areas

5.5 Discussion

Measurement Invariance (MI) is conducted to test for the differences in the

indicators of each latent variable and consecutively compare rear-end crash models

between urban and rural zones. The study addresses the research question with the

following result: The latent variables of the rear crash models in urban and rural zones

are significantly different. This finding has been confirmed by similar previous works.

Yan et al. (2005) Investigated the road types that influence rear crashes in

intersections using the logistic regression model. Analysis indicated thatthe location

of crashes or roads when classified as urban and rural areas significantly affect the
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severity of rear crashes. That is, urban roads increase the chances of rear crashes

compared with rural roads 20%. Khorashadi et al. (2005) highlighted that accident

occurrences in urban and rural areas resulted in different levels of injury. Lord et al.

(2005) differentiated between crash flow density and crash flow V/C using the

differences in road characteristics in urban and rural areas, which is similar to that of

Stylianou and Dimitriou (2018). Kmet and Macarthur (2006) explored the injury

levels of children and young drivers from road accidents between two zones. The

authors found that accidents occurring on rural roads were more likely to lead to

mortality than those on urban roads. This finding is possibly due to the shortage of

road safety features, such as traffic control devices, graded curves, lighting, and

divided traffic streams. Li et al. (2008) studied medical service utilization for traffic

and compared fatalities between accidents in urban and rural zones. The authors also

concluded that providing good medical services or promoting the use of helmets and

seat belts can decrease fatality rates in rural zones. Czech et al. (2010) compared the

cost of alcohol-related traffic crashes in rural and urban zones. The results indicated

that alcohol-related traffic crashes in rural areas were 1 .5 times higher than those in

urban zones, which resulted in seven to eight times higher accident costs. Peek-Asa et

al. (2010) Considered the factors influencing teenage driver-involved crashes and

found that in terms of number of accidents, those that occurred in rural areas were less

than those in urban zones. However, in terms of injury levels, accidents in rural zones

had increased chances of leading deaths and serious injury than those in urban zones.

According to crash type, single vehicle- collision at night typically occurred in rural

areas. Factors affecting severity included traffic quantity, vehicle type, and proportion

of heavy trucks, among others. In addition, the impact of the industry could reduce
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severity by promoting campaigns to abstain from changing traffic lanes while driving

at high speeds. Other crash types include agriculture equipment crashes (Harland et

al., 2014) and pedestrian collisions (S. Islam & Jones, 2014). Studies from the

perspectives of driving attitude and behavior of young drivers resulted in urban and

rural area, found that driver behavior differs in terms of speed, vehicle selection, and

public transport facility. (Eiksund, 2009). In the following sections, we will discuss

detailed issues.

Issue 1: The similar indicators of crash size in both models mainly focus on

the number of fatalities, which is reasonable because crash size is based on the

weighting of the highest level of injury followed by the number of serious injuries and

number of slight injuries. This issue is similar to that presented by Schorr and Hamdar

(2014), which indicated that the higher the level of severity, the higher the severity

index.

Issue 2: Several differences were observed for the indicators of road factors.

However, the loading factors in the top three ranks were similar. (1) Barrier type

influenced slight injury. This finding is in agreement with Zou and Tarko (2018), that

is, barrier type can reduce severity. (2) Rear-end crashes on main traffic lanes

(Main_Road) influenced slight severity; research on this factor is relatively few.

However, given the rationale, commonly, differences in speed on traffic lanes are

relatively less compared with roads with parallel lanes. Moreover, the greater the

number of connected roads, the higher the chances of collision (David & Santosh,

2015). (3) High traffic volumes resulted in smaller crash sizes. This finding is relevant

to research that aims to explain the possibility that the increase in AADT will lead to a

decrease in speed. This situation potentially caused the crash severity (Haleem
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&Abdel-Aty, 2010; Haleem et al., 2019; Haleem & Gan, 2013). In terms of the

difference in both models, Per Truck was a significant indicator of rear crashes in

urban zones but not in rural zones.

Issue 3: Regarding the indicators of environmental factor, results indicate that

both models follow the same direction. That is, the first rank increases the severity of

accidents at night with no lighting. Several studies (Chen et al., 2015; Chen et al.,

2016; Reeves et al., 2019) supported this issue. The previous literature indicated that

sight distance was short during crashes followed by night crashes, which increased

severity and poor visualization and thus led to increased injury. The results of the two

variables are consistent with those of Lee et al. (2008).

Issue 4: Distinctive differences were noted for vehicle indicator. The model

posits that motorbike is a reference variable. In the rear-end crash model for urban

area, the present study found that trucks increased the severity of crashes. This finding

is in agreement with David and Santosh (2015). If motorcycles are involved in rear-

end crashes in rural zones, then crash size becomes more severe. On rural roads in

Thailand, motorcycles use high speed in general due to the low-density traffic

volume. Truck drivers frequently stop at road shoulders to sleep. However,

motorcycles at high speed can collide with the truck’s rear end, which leads to the

death of motorcycle drivers.

Issue 5: The indicators of rear crash type showed that both models were

identical. In other words, the variable that resulted in increased crash severity is the

one that identifies whether or not the leading vehicle is decelerating. However, for the

rear crash model in urban zones, this latent variable did not influence crash size. In

terms of urban zones, the study found that collision with front cars that are parked
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increased the severity of rear crashes due to different speeds while crashing. Rear  -end

crashes resulted in fatal and serious injuries in high-speed zones (David & Santosh,

2015).

Issue 6: The structural model shows the relationship between latent variables.

It considers the weighting of the loading factors that influence crash size by

comparing rear crashes between urban and rural zones. The identified distinct

differences were as follows. (1) The orders of weight in the urban model that

influence crash size are equal but are in opposite directions (i.e., −0.073 for road

factor and 0.073 for environmental factor). Road factor has the highest weight in rural

zones followed by environmental factor (−0.453 and 0.258, respectively). (2) For rear-

end crashes in urban zones, crash type did not significantly influence crash size;

however, this variable significantly affected crash size in rural zones due to the speed

of leading car during crashing. This factor evidently influenced crash size. For clarity,

road conditions in rural zone led to the differences in speed of rear crashes. This

factor clearly influenced crash size (David & Santosh, 2015). Moreover, the problem

of parked trucks resulted in rear crash occurrences, which involved cars driving at

high speeds without any precaution. These factors are the possible causes of rear

crashes and increased chances of deaths, especially in the case of motorcycles.

5.6 Conclusion

This study compared the severity of rear crashes in terms of latent variables,

namely, number of fatality, serious injury, and slight injury. Furthermore, SEM was

applied to determine the indicators of crash size. Difference between urban and rural

zones are characterized by various factors, such as speed factor of different vehicles
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and vehicle type. In addition, studies that compared these factors between the two

areas are relatively few. Therefore, the results of the present study can be considered

for further study. Additionally, relevant parties, such as highway maintenance

agencies, can use the results to enhance the design ofroad schemes.

Significant differences were denoted based on the results using the MI of two

models that tested the indicators of each latent variable, such as road factors,

environmental factors, vehicle involvement, and crash type. For the overall individual

model, the study found that both models had a similar structure. The only difference

between them is the extent to which crash type influenced crash size but only for rural

zones. Discussion of the detailed issues of the latent variables also pointed to several

differences. In the case of a truck-involved crashes in urban zones, there was more

severity than the motorcycle-involved crash. While casein rural zone, there was more

severity in a motorcycle-involved. To reduce the severity of rear-end crashes in both

areas, the first factor pertains to the median, which is a barrier type, followed by the

occurrence of rear crashes on main channels. Lastly, the variable Night_NoLight was

found as the main indicator of crash size severity in both areas.

5.7 Limitation and future research

This study comes with certain limitations. The first is the data of crashes

occurring on highways in Thailand are used, such that potential drivers should

consider the relevant physical road characteristics, crashes occurrences and vehicle

type for appropriate application. The second is that the driver factor has been omitted

to specifically focus on physical road characteristics and environment factors that

influence rear crash severity. However, driver factors, such as gender, age,
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occupation, and experience, are undeniably significant factors.Future studies should

integrate these potential factors into the model for analysis.
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CHAPTER VI

THE APPLICATION OF HIERARCHICAL LOGISTIC

MODELS TO COMPARE URBAN AND RURAL

ROADWAY MODELING OF FATAL REAR-END

VEHICULAR CRASHES

6.1 Abstract

A rear-end crash is a widely studied type of road accident. The road area at the

crash scene is a factor that significantly affects the likelihood of fatalities from rear-

end collisions. These road areas may be classified as urban or rural and evince

obvious differences such as speed limits, number of intersections, vehicle types, etc.

However, no study comparing rear-end crashes occurring in urban and rural areas has

yet been conducted. Therefore, the present investigation focused on the comparison of

diverse factors affecting the likelihood of rear-end crash fatalities in the two types of

roadways. Additionally, hierarchical logistic models grounded in a spatial basis

concept were applied by determining varying parameter estimations with regard to

road segments. Additionally, the study compared coefficients with multilevel

correlation model and those without multilevel correlation. Four models were

established as a result. The data used for the study pertained to rear-end crashes

occurring on Thai highways between 2011 and 2015. The results of the data analysis

revealed that the model parameters for both urban and rural areas are in the same

direction with the larger number of significant parameter values present in the rural
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rear-end crash model. The significant variables in both the urban and rural road

segment models are the number of traffic lanes, seat belt use by drivers, and the time

of the incident. To conclude, the present study is useful because it provides another

perspective of rear-end crashes to encourage policy makers to apply decisions that

favor rules that assure safety.

6.2 Introduction

The classification of fatal accidents by their crash type yielded the result that

the highest number of fatalities occur from rear-end crashes, as illustrated in Figure

6.1. In terms of statistical consideration, the numbers of such accidents rose

continuously between 2014 and 2016 (DOH, 2015, 2016, 2017). Therefore, the injury

levels or severity of the rear-end accidents must first be ascertained and emphasized

to reduce the number of rear-end crashes.

Figure 6.1 Trend of fatal road traffic accidents classification by collision type

(DOH, 2015a, 2016, 2017)
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Rear-end crashes occur frequently and are considered to cause high fatalities.

Numerous studies have been conducted on rear-end crashes and have found the

factors that cause loss of life. For example, Sullivan and Flannagan (2003) studied the

relationship between deaths from rear-end crashes and time periods and found the

fatality risks of rear-end crashes were two times higher when they occurred in

darkness than at daytime. This outcome is consistent with the study conducted by Yan

and Radwan (2009). Chen et al. (2015) found that the involvement of a truck was the

primary potential cause of the high severity of injuries from rear-end crashes (Wiacek

et al., 2015). This element was followed by driving under the influence of alcohol,

and the third aspect on the list was rear-end crashes occurring at night in conditions of

darkness. In addition, Chen, Zhang, Yang, et al. (2016) also discovered that visibility

and road-slope were features predicting fatal driver injuries.

Some studies have examined road factors related to rear-end injury levels.

Among them, Shawky et al. (2016) have found that rural roads cause the most driver

fatalities, followed by the number of traffic lanes. This study found a high risk of

fatality caused by rear-end crashes when the number of traffic lanes was less than 4.

Similarly, Chen et al. (2015) found that rear-end crashes that happened in urban areas

caused fewer deaths than those that took place in rural areas. Research on other

factors causing fatalities from such accidents included results such as curved roads

resulted in fewer rear-end crashes, or that the involvement of a motorcycle in the

accident resulted in high fatality rates from rear-end crashes.

The differing physical characteristics of urban and rural roads possibly result

in the dissimilar severity of injuries found in rear-end accidents in cities vis-à-vis

villages. Chen, Zhang, Liu, et al. (2016) discovered that collisions on curved urban
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roads presented the possibility of a high risk of injuries due to high speed driving. The

truck volume is also another critical reason. The dissimilar levels of severity between

urban and rural roads were also attributed to the differing nighttime illumination in

these areas. The results of an investigation by Uddin and Huynh (2017) found that

increased traffic volume was likely to reduce the injury level, especially in rural areas.

The road area characteristics for both urban and rural areas are summarized in

Table 6.1. Previous research initiatives on the severity of injuries compared models

classified according to these characteristics. These investigations found that before

2016, researchers rarely compared the two roadway types, focusing instead on either

the urban or rural model (Chen, Zhang, Huang, et al., 2016; Das & Abdel-Aty, 2011;

Khorashadi et al., 2005). After 2016, however, some clear comparisons

(Islam&Brown, 2017; Uddin & Huynh, 2017; Wu et al., 2016) between the urban and

rural locations were undertaken. Nonetheless, none of these extant investigations has

attempted a vigorous comparison of rear-end crashes in urban and rural locales. The

present study fulfills this research gap.

In terms of methodology, most studies have applied the mixed logit model.

The mixed effect multinomial logit model is an analysis tool that allows the

parameters of exogenous variable values to vary to accident cases by specifying the

function of unobserved heterogeneity into the linear function (Washington et al.,

2011)
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Table 6.1 Summary study injury severity analysis base on roadways

Works

Focus
on Rear-

end
crash

Road location

Raised issues MethodUrba
n Rural Comparison

This study    

Comparison fata rear-
end crash based on

road location (Urban
and Rural)

Hierarchical
Binary Logistic

model

Uddin and
Huynh (2017)

-   

Truck-involved
crashes injury severity
analysis for different
lighting conditions on

rural and urban
roadways

Mixed logit
model

Islam and
Brown (2017);

Wu et al. (2016)
-   

A comparative injury
severity analysis of
motorcycle at-fault
crashes on rural and

urban roadways
Mixed logit

model

Wu et al. (2016) -   

Analysis of driver
injury severity in

single-vehicle crashes
on rural and urban

roadways

Mixed logit
model and

Nested logit
model

Chen, Zhang,
Liu, et al. (2016)

- -  -

Driver injury severity
outcome analysis in

rural interstate
highway crashes

a two-level
Bayesian
logistic

regression

Chen, Zhang,
Huang, et al.

(2016)
- -  -

Examining driver
injury severity

outcomes in rural non-
interstate roadway

crashes

Hierarchical
ordered logit

model

Das and Abdel-
Aty (2011)

  - -

A combined
frequency–severity

approach for the
analysis of rear-end

crashes
Genetic

Programming

Khorashadi et al.
(2005)

- -  -

Differences in rural
and urban driver-
injury severities in
accidents involving

large-trucks
Multinomial

logit

Research projects on road safety often consider accident data on hierarchically

ordered levels. It has been observed that accidents do not occur at single planes.

Rather, they happen at multiple levels: the driver may represent the first level, while

roads characteristics divided by road range or area of each province may be

considered at a higher plane (Dupont et al., 2013). The multilevel or hierarchical

structure analysis offers the advantage of clarity in the perception of the features of
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different accident occurrences. For example, an accident analysis may be divided into

two levels: the driver factor level (such as gender, age, drunk driving, etc.) and

vehicle type (such as personal cars, buses, trucks, etc.) form the first level, while the

type of road is held as the second level. The analysis results can then display the

factors that most influence accidents or cause the most critical injuries. For level 2,

the roads may be divided into segments or according to the controlled phases of each

highway. The differences between the road conditions selected for analysis may

include features such as road type (main road, secondary road, etc.), police vigilance,

and traffic volume passing through the particular stretch of the road. Inevitably, this

examination will yield discrete results for accidents and accident severity as

mentioned above. By analyzing two distinct planes, the different policies may be

observed both at the organization level of road maintenance and of drivers who use

the road types (driver characteristics). The results of such a model could be employed

both for the determination of guidelines for a spatial policy and for a personal level

campaign to reduce rear-end accidents (Park et al., 2017).

6.3 Multilevel analysis for road safety research

This section describes the application of the logistic model to the predictive

analysis of fatal rear-end crashes caused by the effect of relevant variables. An

additional concept for the selection of variables to be incorporated into the model

pertains to road accidents classified into more than one level. In other words,

explanation variables that affect injury levels should have hierarchical structures. For

instance, based on researchers’ viewpoints, accident cases should be assigned

personal factors that affect the first injury level along with the second level of the
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physical features of the road where the accident occurred: straight or curved roads,

intersection characteristics, (Dupont et al., 2013) or area characteristics such as sub-

districts, districts, provinces, etc.

The application of multilevel analyses for road safety studies may be

categorized according to the characteristics of data analysis management, which

comprise 3 types:

1) Multilevel modeling of aggregate accident data. This type of analysis

examines spatial data distribution, dividing data into hierarchical structures according

to the nature of the area (spatial data). The division of the area depends on the way the

research questions are framed. For example, the Adanu et al. (2017) study determined

the second level factor to be the area attributes classified according to the postal code

of each location. The aggregate data analysis encompassed the risks of accidents

occurring on each road or in each area. The area classification yielded a large amount

of accident data, enabling the researchers to conduct a multilevel modeling of the

aggregate data analysis (Dupont et al., 2013).

2) Multilevel modeling of disaggregate accident data. This kind of analysis

focuses on separate accident cases. Most multilevel disaggregate data are analyzed for

injury level patterns and can be organized as hierarchical data: for example, road

characteristics, regional characteristics, and so on. Analyses based on the multilevel

modeling of disaggregate accident data focus on accidents that involve a small

number of vehicles (Dupont et al., 2013). The solution is to specify the estimated

variance of the random effect of the second level data. For example, Kim et al. (2007)

investigation analyzed the intersection characteristics (level two). The variables

selected at this level were traffic signal lights, the angles of the intersections angle,
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road segment types, etc. These were tested to determine the type of crashes that

occurred more frequently: rear or side collisions.

3) Multilevel modeling of behavioral and attitudinal data. This sort of analysis

investigates the attitudes of drivers through aspects such as speed, drunk driving, and

seatbelt use. This method is grounded in the concept that the questioned drivers vary

according to road-sites. To cite an example, Vanlaar (2005) examined drivers who

drank alcohol before driving and determined variables according to diverse to road

characteristics such as the traffic flow, the estimated density of parking cars etc.

The present study determines the factors affecting the gravity of the injury at

the second level to be the road characteristics (divided by controlled road segment)

because the researchers believe that the features of each controlled road segment

depend on the supervision of each highway district divided by the boundary of the

province or by the district in the case of the large province. The multilevel analysis

provides the benefit of the ability to interpret the results of the factors affecting injury

levels both at the stage of the occurrence of the accident at the individual level and at

the plane of different road characteristics.

Figure 6.2 Hierarchical structure of rear-end crash
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Logistics models applying multilevel concepts begin by determining the driver

factor (driver i) in the road group j. Each accident involves the driver (driver i th) on

road j (road j th) (Figure 6.2) and determines the two severity levels including

= 1; in case of fatal crash0; in case of non − fatal crash
where | ~ ( ), = Pr ( = 1) is the probability of driver

i from road j being fatally injured in a crash emanating from the relationship of the

estimated parameters of explanation variables such as sex, age, which can be

calculated from

log = = + (6.1)

where represents the log odds of driver i on road j which has fatal rear-end

crashes. is the constant or the average value of log odds1 which has fatal rear-end

crashes on road j only. is an explanatory variable at the individual level for

predicting likelihood odds of fatality j and are parameter values that indicate the

relationship (slope) between the driver level variables and the log odds likelihood that

possibly causes the fatalities from rear-end collisions. Equation (6.1) assumes that

accidents on each road result in different degrees of severity. Thus, the equations are

different from those of common logistic models. Each road has a constant value( ) but the slopes ( ) are different.

Considering a multilevel model as the explanation of the variation of the

regression coefficient and variables at the second level from the road characteristics,
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these qualities are both supposed to be constant and the slope values are the effect at

level 1 (Equation (6.1)) which can be varied according to the explanation variables of

each road ( ) such as length, annual average daily traffic (AADT), etc. This equation

will be:

= + + (6.2)

= + + (6.3)

where indicates the log odds log odds likelihood of fatal rear-end crashes

on the road, is an explanation variable for each road j, and is the slope or the

relationship between the predictor variables. , , and are prediction errors of

information at the road level and demonstrate the unique effect of each road j. is

the mean value of the predictor effect from level 1 and is the slope showing the

relationship between the variables at road level, and the fatality rate on each road j.

The multilevel model is created by substituting and into Equation (6.1)

to get

= + + + + + (6.4)

Equation (4) can be explained by asserting that the effect of the variable at the

driver level is predicted by the fixed effect of each road. For example, the value

obtained through Equation (2) is not substituted in Equation (1). Therefore, to reduce

the errors of Equation (1), the effects of factors at the driver level are first allowed to

vary from the characteristics of each road. This equation subsequently demonstrates a
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random intercept and random slope. For models that only exhibit a random intercept

the reference to the driver odds log i from road j will yield the fatality risk.

represents the calculation of the log odds of fatality of common drivers on

general roads. In other words, the different road characteristics indifferently affect the

likelihood of death. represents the effect value from the driver level and

indicates the effect values of each road.

To obtain additional effects in a multilevel model consisting of , the

parameters of the driver level are believed to affect the road level and are

variables indicating the randomization of both the constant and slope values. Marginal

effects are the effect that one-unit increase of an explanatory variable has on fatality

probabilities on rear-end collision.

Test results must be obtained from models without parameter estimation

(unconditional model) before a multilevel model analysis is conducted. This task is

accomplished by considering the proportion of variance of dependent variables

(outcome) within the group (accidents happening on the same road) and between

groups (each road). This intra-class correlation coefficient (ICC) is potentially

calculated by assuming that the dependent variables have logistic distribution. For the

driver level errors of which the variance value is /3 (Bryk & Raudenbush, 1992),

ICC values can be calculated as follows:

= / (6.5)

Where is the variance of the dependent variables between each road (level

two). ICC values should be nonzero for them to be suitable for multilevel modeling. If
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the ICC value is zero, there is no variation between the data pertaining to accidents

occurring on each road. Previous research has evinced that ICC values should be

higher than 0.09 or 9%. At the second level, the variables included the intersection

(Kim et al., 2007), for which the variance at accident level was 16% (Andrew P. Jones

& Stig H. Jørgensen, 2003), and the injury levels in accident cases, for which the ICC

value was measured as 28.9% (Huang et al., 2008)

The following step is taken to assess mode suitability by comparing between

the intercept-only model with all parameters set to zero and the convergence model

with parameter vector The values used for comparison are the log-likelihood of both

models, called Pseudo R-Squared or McFadden

= 1 − ( )( ) (6.6)

where ( ) is the log-likelihood value of the model with parameter

estimation and (0) is the log-likelihood of the model without parameter estimation

or with parameter estimation that only takes a constant value. If has a value close to

1, the model’s predictive accuracy is close to the actual data (Washington et al.,

2011).

In this study, the R program package that included: glm: (Fitting Generalized

Linear Models) was used to analyze for coefficients without the multilevel modeling

technique. Additionally, glmer: (Fitting Generalized Linear Mixed-Effects Models)

was used to analyze for coefficients with multilevel modeling technique.
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6.4 Developing the models

6.4.1 Data collection

The data consist of 3 parts: 1) the highway crash report data including

road accidents occurring nationwide on Thai highways between 2011 and 2015. Each

case was surveyed and recorded by highway district officials who are regularly

stationed at various provinces throughout the country. The data consist of information

relating to accident locations (road/kilometer post), date of accident, physical road

characteristics (road median type, intersection, etc.), environmental information

(weather, time, lighting conditions), driver evidence (car type, driver age, gender, seat

belt use, and alcohol or drugs consumption) and the Universal Transverse Mercator

(UTM) coordinate, etc. All data were collected from the Department of Highway

Accident Information Management System (HAIMS). Next, the data were screened

for rear-end accidents and incomplete information was removed. Finally, 2,096 cases

involving 4,554 drivers remained for analysis 2) Traffic volume data were drawn

from the Traffic Information Movement System. The two data-sets were matched

with highway numbers and kilometer posts, and 3) According to the classification of

urban or rural areas, the data were obtained on the geographical information system

(GIS) in the form of a shape file) on the datum WGS84, UTM zone 47 range system,

showing the administrative controls of a municipality as polygon data due to the clear

division of building densities resulting in the differences in traffic or physical road

characteristics, car types, number of road users, and connecting roads.

To specify the location of cases in either urban or rural areas, the GIS

program was used by commanding selection by location and by determining rear-end

shape files comprising 953 drivers in urban areas and 3,061 drivers in rural areas. The
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number of victims in urban areas was rather small because the department of

highways officers did not survey the data if the accidents were not serious if minor

injuries were sustained in accidents occurring in urban areas, and if the victims could

settle the matter successfully with each other. Consequently, such instances were not

available in the system.

The description data presented in Table 6.2 shows the 24 independent

variables divided by road areas (urban and rural) and classified according to the

dependent variable, a fatal rear-end crash with 1 or more fatality. After initial

consideration, it was found that when accidents occur, the highest proportion of the

victims of fatal rear-end accidents include a drunk driver. This ratio remains high in

both urban (5.25%) and rural (19.65%) locations, followed by roads that are regularly

used. In terms of road factors, the notable proportion of fatal rear-end crashes were

found to be caused by painted road medians with values of 5.09% in urban areas, and

19.57% in rural areas.

6.4.2 Model developments

The model development process shown in Figure 6.3 included 3

essential steps including 1) analyzing the correlation test for the relationship between

the independent and dependent variables, 2) considering data consistency through the

creation of hierarchical structural models, and 3) creating a hierarchical model

comprising 2 sub-models incorporating the random intercept model, and the random

parameters model.

Conducting a correlation test can help to obtain an overview of the

relationships between the independent variables. It can also assist in the selection of

the variables to assimilate into the model by distinguishing independent and
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dependent variables between fatal and non-fatal rear-end crashes. Three variables

were not included into the models based on the selection criteria of significant values

at p-value>0.05: “normal,” “env_surface,” and “weather.”
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Table 6.2 Data Description

Variable name Description Code Description

Road Area
Urban Rural

Non-Fatal Crash Fatal Crash Non-Fatal Crash Fatal Crash
Freq. % Freq. % Freq. % Freq. %

VehType Type of vehicle
1 Small Vehicle 244 5.36% 84 1.84% 919 20.18% 306 6.72%
2 Middle Vehicle 385 8.45% 113 2.48% 1,434 31.49% 412 9.05%
3 Large Vehicle 80 1.76% 47 1.03% 336 7.38% 194 4.26%

Gender Gender of driver
0 Male 550 12.57% 202 4.62% 2,094 47.85% 757 17.30%
1 Female 140 3.20% 30 .69% 485 11.08% 118 2.70%

Main Road
Crash location divided by traffic

lane
0 Outer traffic lane 640 14.05% 226 4.96% 2,378 52.22% 844 18.53%
1 Inner traffic lane 69 1.52% 18 .40% 311 6.83% 68 1.49%

Normal The road was not being repaired
0 Other 9 .20% 7 .15% 76 1.67% 21 .46%
1 Yes 700 15.37% 237 5.20% 2,613 57.38% 891 19.57%

Divided road
Road was divided by median

island
0 No 264 5.80% 103 2.26% 977 21.45% 296 6.50%
1 Yes 445 9.77% 141 3.10% 1,712 37.59% 616 13.53%

Flush
Road was divided by flush

median
0 No 676 14.84% 232 5.09% 2,570 56.43% 828 18.18%
1 Yes 33 .72% 12 .26% 119 2.61% 84 1.84%

Raised
Road was divided by raised

median
0 No 567 12.45% 179 3.93% 2,116 46.46% 679 14.91%
1 Yes 142 3.12% 65 1.43% 573 12.58% 233 5.12%

Depressed
Road was divided by depressed

median
0 No 532 11.68% 199 4.37% 2,005 44.03% 693 15.22%
1 Yes 177 3.89% 45 .99% 684 15.02% 219 4.81%

Barrier Road was divided by barrier
0 No 616 13.53% 225 4.94% 2,353 51.67% 832 18.27%
1 Yes 93 2.04% 19 .42% 336 7.38% 80 1.76%

Concrete The road was concrete pavement
0 No 623 13.68% 217 4.77% 2,348 51.56% 815 17.90%
1 Yes 86 1.89% 27 .59% 341 7.49% 97 2.13%

Straight Road horizontal alignment
0 Other 39 .86% 29 .64% 162 3.56% 67 1.47%
1 Straight 670 14.71% 215 4.72% 2,527 55.49% 845 18.56%

Slope Road graded
0 Other 696 15.28% 234 5.14% 2,611 57.33% 856 18.80%
1 Slope 13 .29% 10 .22% 78 1.71% 56 1.23%

Intersection
Rear-end collision happened near

intersection (<100 m)
0 Other 585 12.85% 196 4.30% 2,168 47.61% 789 17.33%
1 Yes 124 2.72% 48 1.05% 521 11.44% 123 2.70%

Median opening
Rear-end collision happened at

opening median point
0 Other 633 13.90% 211 4.63% 2,364 51.91% 774 17.00%
1 Yes 76 1.67% 33 .72% 325 7.14% 138 3.03%

env_surfaces Status of road surface
0 Dry 656 14.40% 226 4.96% 2,506 55.03% 847 18.60%
1 Wet 53 1.16% 18 .40% 183 4.02% 65 1.43%

Weather
Visualization of drivers as

accident
0 Other 654 14.36% 218 4.79% 2,496 54.81% 845 18.56%
1 Clean 55 1.21% 26 .57% 193 4.24% 67 1.47%

142
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Table 6.2 Description Data (Continued)

Variable
name Description Code Description

Road area
Urban Rural

Non-Fatal Crash Fatal Crash Non-Fatal Crash Fatal Crash
Freq. % Freq. % Freq. % Freq. %

Day Time of crash
0 Night 201 4.41% 89 1.95% 824 18.09% 398 8.74%
1 Day 508 11.16% 155 3.40% 1,865 40.95% 514 11.29%

Night_NoLight
Collision happened at night in low-light

conditions
0 Other 670 14.71% 209 4.59% 2,462 54.06% 753 16.53%
1 Yes 39 .86% 35 .77% 227 4.98% 159 3.49%

Night_light
Collision happened at night in high-light

conditions
0 Other 547 12.01% 190 4.17% 2,092 45.94% 673 14.78%
1 Yes 162 3.56% 54 1.19% 597 13.11% 239 5.25%

safety_equip Driver used safety equipment
0 No 422 9.27% 182 4.00% 1,591 34.94% 681 14.95%
1 Yes 287 6.30% 62 1.36% 1,098 24.11% 231 5.07%

alcohol Driver was drunk
0 No 702 15.42% 239 5.25% 2,664 58.50% 895 19.65%
1 Yes 7 .15% 5 .11% 25 .55% 17 .37%

Speed_Exceed Cause of crash was exceeding speed
0 No 181 3.97% 86 1.89% 805 17.68% 299 6.57%
1 Yes 528 11.59% 158 3.47% 1,884 41.37% 613 13.46%

four_lane Road was 4 lanes or more
0 No 537 11.79% 217 4.77% 2,059 45.21% 749 16.45%
1 Yes 172 3.78% 27 .59% 630 13.83% 163 3.58%

Crash Type Moving of leading vehicle before rear-end crash
1 Going Straight 458 10.06% 152 3.34% 1,776 39.00% 569 12.49%
2 Decelerating speed 212 4.66% 71 1.56% 791 17.37% 276 6.06%
3 Stopped on traffic lane 39 .86% 21 .46% 122 2.68% 67 1.47%

Note: Freq. = Frequency.

143
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Figure 6.3 Developing Model

With regard to the random effect of unconditional models, the results

depicted in Table 6.3 evidence that the urban roadway model was generated with

random effect with an ICC value of 0.09, and the value of 0.093 was computed for the

rural roadway. It may thus be interpreted that the fatal rear-end crash variance on the

same road accounted for approximately 9% of the total variance. Both models met the

acceptance criteria for the creation of multilevel models (Kim et al., 2007).

All the independent variables included in the construction of the

models were divided into two standards: 1) the random intercept prototype

(coefficients without multilevel modeling) in which the random effects values of

independent variables and the physical characteristics of the road were not set

according to road data, and 2) the random parameters exemplar (coefficients with

multilevel modeling) in which the random slopes of the physical characteristics
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variables (such as vehicle types, road median types, intersections, slopes, etc.) were

set according to the road segments where the accidents occurred.

Table 6.3 Results of unconditional model

Effect
Urban road Rural road

Estimate std. Estimate std.
Fixed Effect

Intercept -1.066 0.0742 -1.0813 0.0383
Random effect

Intercept 0.3086 0.0233 0.3295 0.0151
ICC 0.086 0.091

- 2log L 782 3255.2
Note: N of Urban = 953 and N of Rural = 3601

6.5 Results and discussion

The results of the analysis of the 4 constructed models included coefficients

without multilevel modeling technique (NMLM) and coefficients with multilevel

modeling technique (MLM) and were divided into 2 representative areas, urban and

rural, as displayed in Table 6.4.

6.5.1 Urban models

Overall, 922 drivers on 331 roads were included in the models of fatal

and non-fatal rear-end crashes occurring on urban roadways. There were. In the

NMLM model, the value of was 0.085, which met the acceptance criteria

(Kockelman & Kweon, 2002) but in comparison, the MLM value of was 0.1498,

indicating that the prediction capability achieved through MLM was much better than

via NMLM. Random effect values were estimated at 4.454 (S.E. = 0.746) evincing

that fatal rear-end crashes varied according to road segments. This result significantly

affected the models.
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The comparison between the estimate parameter values of NMLM and

MLM revealed their tendency to move along the same direction. In other words, in the

case of a positive estimated direction, the movement would be positive for both

models with only a slight difference in the significance level. The first group

pertained to the consistent variables of the two models, “safety_eqiup_1 = 1” which

had a marginal effect of –0.0939. This outcome suggested that the use of driver safety

equipment could reduce fatal rear-end crashes by 9.39%. This result is precisely

reasonable and is in congruence with numerous previous studies (Abdel-Aty, 2003;

Hassan & Meguid, 2017; Shawky et al., 2016; Wiacek et al., 2015). The next variable

in this group was driver age with marginal effect of 0.0013. This finding

demonstrated the increasing likelihood of fatality when older drivers were involved in

rear-end accidents. This result opposes the findings of Chen et al. (2015); Chen,

Zhang, Yang, et al. (2016) for whom the driver age did not affect the injury level. The

studies conducted by Abdel-Aty (2003); Xiao et al. (2019) also obtained equivalent

results and were aligned to the two previously mentioned studies. The third variable

was the number of traffic lanes. This study discovered that roads with four or more

traffic lanes reduced the likelihood of fatal rear-end crashes, perhaps because roads

with two traffic lane have narrow boundary lanes. This inadequate space may result in

more severe rear-end crashes when the car driver wants to turn immediate right and

must break suddenly because of the differing speeds of the two cars involved in the

accident. This finding is congruent with the results obtained by a study conducted by

Flask et al. (2014), which found that roads with 4 or more traffic lanes activated the

reduction of the risk of fatality. However, this result is not consistent with the

outcomes of investigations undertaken by Yuan et al. (2017), which reported that the
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number of traffic lanes increased the injury levels of rear-end crashes in which a truck

was involved. In addition, Hyodoa and Todorokia (2018) found that this variable did

not significantly affect injury levels.

For the second variable group, “day = 1” was not significant in

NMLM, but significant in MLN (p <0.1) with a marginal effect of –0.0462. It may be

inferred that fatality risks could be reduced when the rear-end crash happened in the

daytime. This result is understandable because a large number of vehicles ply on

urban roads during the daytime and also because clear vision is a factor for the

prevention of accidents. In a daytime scenario, a driver may be able stop the car in

time before an accident occurs or the presence of a large number of vehicles on urban

thoroughfares may cause drivers not to operate vehicles at vastly different speeds

(ITARDA, 2011; Sullivan & Flannagan, 2003; Yuan et al., 2017)

For the third variable group, “lnAADT” (marginal effect = –0.0399)

was significant (p-value <0.1) in NMLM, but not significant in MLM. Perhaps this

variable was not significant in MLM because the traffic volume was not accorded

enough weighted values to exert a significant effect when road factors were allowed

to vary according to the road segments. Observed mostly in the rear-end crash

frequency model, these variables often report a significantly positive effect (Chen,

Zhang, Yang, et al., 2016; Das & Abdel-Aty, 2011).
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Table 6.4 Estimate results model of urban and rural roadways (Urban roadway)

Variables Urban
NMLM MLN

Est. Std. Marg. Est. Std. Marg.

Fixed effects:

(Intercept) 2.819 4.100 1.966 4.496

VehType=2 −0.726 0.447 - −0.672 0.527 -

VehType=3 0.187 0.577 - 0.601 0.679 -

Gender=1 −0.518 0.547 - −0.528 0.672 -

safety_equip_1=1 −1.343** 0.630 −0.0751 −1.224* 0.739 −0.0393

alcohol_1=1 0.332 1.418 - 0.379 2.131 -

person_age 0.032 0.013 0.0017 0.036** 0.016 0.0013

Day=1 −0.696 0.499 - −1.171* 0.664 −0.0462

Night_NoLight=1 1.185 0.954 - 1.064 1.108 -

CrashType=2 −0.224 0.550 - −0.289 0.788 -

CrashType=3 1.046 0.886 - 1.172 1.067 -

env_surfaces=1 −0.861 0.865 - −0.685 1.242 -

Main_Road=1 0.302 1.228 - 0.294 2.003 -

Devided_Median=1 0.229 1.516 - 0.177 2.457 -

four_lanes=1 −1.756** 0.779 −0.0992 −2.345* 1.391 −0.0342

Flush=1 −0.180 1.880 - 0.439 2.817 -

Riased=1 0.848 1.473 - 0.909 2.354 -

Depressed=1 0.432 1.452 - 1.014 2.340 -

Intersection=1 −0.699 0.585 - −0.930 1.096 -

Median_opening=1 0.318 0.663 - −0.433 1.662 -

PerCTruck 0.043 0.042 - 0.045 0.041 -

Straight=1 −0.820 0.989 - −1.216 1.064 -

Councrete=1 0.619 0.785 - −0.641 1.091 -

lnAADT −0.750* 0.443 −0.0399 −0.629 0.490 -

Slope=1 −1.001 2.710 - −0.824 3.111 -

Random effects:

(mean) 4.454** 0.746

LL(0) −391.0

LL(NMLM) −357.7

LL(MLM) −332.4

McFadden 0.085 0.1498

Note: ** p<0.05, * p<0.1,
LL(0): log-likelihood value at convergence
NMLM: Coefficients without multilevel modeling technique,
MLM: Coefficients with multilevel modeling technique, Est.: Estimation, Std.:Standard error,
Marg.: Marginal effect
Urban roadway models: Number of observation: 922, groups: Route_Con2, 331 segments.
Rural roadway models: Number of observation: 3454, groups: Route_Con2, 715 segment.
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Table 6.4 Estimate results model of urban and rural roadways (Rural

roadway) (Continued)

Variables Rural
NMLM MLN

Est. Std. Marg. Est. Std. Marg.
Fixed effects:
(Intercept) 0.410 1.530 0.806 2.007
VehType=2 −0.258* 0.141 −0.0248 −0.122 0.169 -

VehType=3 0.457** 0.188 0.0478 0.600** 0.229 0.0522

Gender=1 −0.190 0.179 - −0.260 0.216 -

safety_equip_1=1 −0.737** 0.176 −0.0713 −0.923** 0.213 −0.0710

alcohol_1=1 0.472 0.575 - −0.238 0.810
person_age 0.015** 0.004 0.0014 0.013** 0.005 0.0010

Day=1 −0.782** 0.168 −0.0790 −0.924** 0.220 −0.0764

Night_NoLight=1 0.317 0.259 - 0.343 0.333 -

CrashType=2 0.310* 0.178 0.0303 0.033 0.266 -

CrashType=3 0.952** 0.282 0.0998 1.198** 0.353 0.1111

env_surfaces=1 −0.483** 0.262 -0.0448 −0.686* 0.353 −0.0493

Main_Road=1 −0.884** 0.342 −0.0797 −1.208** 0.452 −0.0817

Devided_Median=1 −0.106 0.460 - 1.380 0.903 -

four_lanes=1 −0.059 0.237 - −1.332* 0.749 −0.0608

Flush=1 1.225** 0.537 0.1340 0.171 1.016 -

Riased=1 0.470 0.452 - −0.866 1.053 -

Depressed=1 0.178 0.449 - −0.642 0.971 -

Intersection=1 −0.789** 0.213 −0.0724 −1.938** 0.704 −0.0690

Median_opening=1 −0.289 0.221 - −0.680 0.714 -

PerCTruck 0.041** 0.015 0.0040 0.046** 0.018 0.0037

Straight=1 0.117 0.305 - 0.318 0.449 -

Councrete=1 −0.027 0.322 - −0.749 0.474 -

lnAADT −0.314* 0.167 −0.0305 −0.470** 0.218 −0.0372

Slope=1 0.443 0.385 - 0.923 5.022 -

Random effects:
(mean) 1.350** 0.411

LL(0) −1621.7
LL(NMLM) −1486.8
LL(MLM) −1312.3
McFadden 0.0832 0.1907

6.5.2 Rural models

The overview of the models of rear-end accidents on rural roadways

encompassed 3,454 drivers on 715 road segments. The value of in the NMLM

model equaled 0.0832 which met acceptance criteria. However, when compared with

the value of of MLM which was 0.1907, the prediction ability of MLM was

demonstrated to be superior to that of NMLM. The random effect was estimated to be
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1.354 (SE = 0.411) and indicated that fatal rear-end crashes varying according to road

segments significantly affected the models with regard to rural roads.

The acquired overall picture of the rural model was alike the urban

model, which evinced the tendency estimation in the same direction. In terms of the

first variable group, vehicle type represented the primary significant variable for both

NMLM and MLM. Large vehicles were found to be more likely to cause more fatal

rear-end crashes. When considering the MLM, it was found that the estimated value

was higher (marginal effect = 0.0478 and 0.0522). Thus, this variable is quite

reasonable because the vehicle size could affect the force of the impact. In

considering the physical characteristics of rural roads on which most vehicles are

driven at high speed along with the vehicle size, the increase in fatal rear-end crashes

(Abdel-Aty, 2003; Wiacek et al., 2015; Yan & Radwan, 2009; Zeng et al., 2016)

becomes even more plausible. The second most important variable is seatbelt usage.

In terms of driver age, it was found that older drivers caused a slightly higher fatality

risk from rear-end crashes (marginal effect = 0.001). The results obtained from both

NMLM and MLM models were very similar. This result is consistent with Zheng et

al. (2018) study. With regard to the timing of the occurrence of the rear-end crash as a

variable, the result was obvious: there were higher fatality risks when rear-end crashes

occurred at night. In term of tendency estimation, MLM was found to present a

clearer parameter value. For variables with rather high parameter estimates, the rear-

end crash was type 3, or an accident with a parked lead car. This finding depicts that

in comparisons between rear-end crash types, rural road rear-end accidents with a

parked lead car were 3.3 times more likely to cause fatalities than when the lead car

was driving at a normal speed (marginal effect = 0.1111). This result is consistent
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with the rear-end crash study conducted by Beck and Tripathi (2015) who anticipated

that a high degree of difference in the speeds of the front and rear vehicles in an

accident augmented the risk of fatality (Misener et al., 2000). The analysis of road

surface variables revealed that dry road surfaces increased fatality risk (marginal

effect = –0.0493, p-value <0.1). This outcome is aligned with the findings of Kim et

al. (2007)’s study. They reported that most drivers tended to drive carefully in wet

road conditions by decelerating. Therefore, when a rear-end crash occurred, there was

a decreased risk of fatality in comparison to dry road conditions in which divers could

accelerate to the extent they desired (Chen, Zhang, Huang, et al., 2016; Chen, Zhang,

Yang, et al., 2016).

The accident location variable compared rear-end crashes occurring on

main roads to those that happened on parallel pathways. Rear-end accidents on the

main roads reported lower fatality risks (marginal effect = –0.0817), perhaps because

of superior access control into the interior traffic lanes, which causes only a slight

difference in vehicle speed. When a rear-end crash occurs in such conditions, the

accidents are not very grave. Conversely, the parallel road often allows the parked car

scenario. This result is consistent with Khorashadi et al. (2005). The variable of

accident location near an intersection caused a noticeably elevated result in the MLM

(marginal effect = –0.069). When considering the effect, it was found that accidents

occurring at intersections cause less fatal rear-end crashes, perhaps because of the

presence of clear signs on intersections on Thai highways. This signage makes drivers

accessing intersections reduce their speed (Li et al., 2019). In termsof the involvement

of trucks, these were found to cause a greater proportion of fatal rear-end crashes. The

results posted by Kidando et al. (2019) indicating that increasing truck proportions
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caused lower fatality are deemed irrelevant to the present study; however, Yan and

Radwan (2009) reported that rear-end crashes in which trucks were involvement

caused more severe injuries. With regard to the AADT, an increase in this variable

was found to lower the likelihood of fatality (marginal effect = –0.0372). This

outcome is consistent with the studies conducted by Haghighi et al. (2018); Kidando

et al. (2019). Both these research endeavors found that an increase in traffic quantity

resulted in decreased vehicular speed.

The number of traffic lanes was a variable that was found to be

significant in MLM but not in NMLM. The MLM analysis results for this study

revealed that rear-end collisions that happened on roads with 4 or more traffic lanes

were less likely to cause fatal rear-end crashes than those that occurred on roads with

only two lanes (marginal effect = –0.0608, p-value <0.1). The number of traffic lanes

influenced crash severities in varied ways since the parameters of the models were

very different. A study undertaken by Flask et al. (2014) analyzed collisions with

mixed effect models and also reported that increasing traffic lanes reduces accident

severity.

Three variables were significant in the NMLM model, but not

significant in the MLM: 1) rear-end crashes that occurred when the front car was

decelerating caused fewer fatal rear-end crashes than those in which the lead car was

moving at normal speed (marginal effect = 0.0303, p-value <0.1); 2) medium cars,

private vehicles, and pick-up vans caused fewer fatality risks than motorcycles, a

reasonable finding because of the presence of superior safety equipment such as

airbags, seat belts within the vehicle body, equipment that can soundly reduce the

injury severity (Abdel-Aty, 2003); and 3) painted road medians increased the risks of
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fatal rear-end crashes (marginal effect = 0.1340, p-value <0.05) because, in Thailand,

these features are used on roads with relatively small traffic volumes and are

associated with stretches on which most cars move at speed. This finding is consistent

with the outcomes of a study accomplished by Tarko et al. (2008), which

demonstrated that flush medians influenced the severity of injuries from accidents. It

may be contended all the three variables mentioned above do not vary according to

road segments: the rear-end crash severity attributed to these factors are similar

regardless of the road type on which they occur.

6.5.3 Comparison of coefficients urban and rural roadway models

Some variables were significant with multilevel correlation

coefficients in terms of the estimated parameter in both urban and rural models. It was

found that rear-end crashes on rural roads tended to be more severe than those that

occurred on urban roads (Kidando et al., 2019; Li et al., 2018). Seat belt use was the

most important and obvious variable because of its relatively high estimate value to

potentially reduce the risks of fatality. This result is understandable because using

seatbelts reduces the chances of death regardless of whether accidents occur on urban

or rural roads. The second most vital variable for both types of roads was the driver

age, a factor that was discovered to move in the same direction for all the models. The

involvement of an older driver in a rear-end crash probably increases the risk of death

(urban: marginal effect = 0.0013, rural: marginal effect = 0.0010). Both the MLM and

NMLM comparisons evinced the significant effect of driver age on the risk of fatality

and this danger did not vary by road segments. In relation to environmental factors,

nighttime collisions were found to move in the same direction for both types of

roadways: the risk of fatalities increased for nighttime collisions. In terms of the
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significance level of this variable, both the NMLM and NMLM analyses of rural

roads yielded significant results (urban: marginal effect = –0.0462; rural: marginal

effect = –0.0764). With regard to urban roads, this variable was significant only when

for the random effect model.

The variables selected for the urban road model were not significant

while many significant variables were discovered for the rural model. However, the

overall image represented the same direction of the estimate values:

1) Large vehicle type: It can be interpreted from the obtained results

that a rear-end crash involving a truck on urban roads will not significantly result in

fatalities. This outcome is deemed reasonable because of the speed limits applied on

urban roads. This finding is also aligned to the results reported by Khorashadi et al.

(2005)’s study: road accidents caused by speed violations are significant influential

only on rural road models.

2) Crash type with a parked lead car: The speed of vehicles plying on

urban roads is restricted by heavy traffic conditions and a large number of

intersections. When a rear-end crash occurs, the speed of the involved vehicles is not

vastly different (Beck&Tripathi, 2015). Khorashadi et al. (2005) found unequivocally

that the variable identified as a parked lead car (at a standstill on a roadway) had

much higher estimate coefficients in the rural road models than in the urban road

models.

3) Dry or wet road surface characteristics: Vehicles operating on urban

roadways exhibit comparable speeds regardless of wet or dry road conditions. Thus,

effects are not significantly different for accidents occurring in either circumstance.
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On rural roads, however, vehicles tend to accelerate on dry roads (Chen, Zhang, Liu,

et al., 2016), causing more chances of fatalities in the case of an accident.

4) Crash locations (main roads or parallel lanes): Despite their ability

to accommodate high vehicular speeds, main traffic lanes include a large number of

intersections and access roads in urban areas, which obstruct their operating at full

speed (Greibe, 2003).

5) Location of accident (near or further from intersections): In spite of

a greater number of intersections, the severity of rear-end crash injuries were not

found to be at significance level for urban areas (Greibe, 2003).

6) Truck volume specifying whether or not a truck is involved in an

accident: This result was not significant in the urban area model.

7) Traffic volume: This factor yielded the interesting outcome that

when it was specified that the likelihood of fatality did not vary according to the road

type or segment, the variable achieved the significance level (p-value <0.1).

6.6 Conclusion

A rear-end crash is a primordial order crash type and is deemed important

because of the continuously increasing number of fatalities attributed to such

accidents. The physical road characteristics resulting from land use (divided into

urban roads and rural roads) evidently influenced the severity of crash injuries in

distinct manners. However, no study has yet compared the differences in the gravity

of fatal and non-fatal rear-end crashes. This identified research gap required to be

filled to benefit agencies engaged in road design, bodies supervising security policies,

and scholars looking to apply these concepts to develop appropriate models.
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This study found that the unconditional model can be analyzed via a layered

structure and applied a hierarchical logistic regression model that determined the

estimate parameters to vary according to road segments. It also compared modeling

with multilevel coefficient correlation (MLM) to casting without the use of multilevel

coefficient correlation (NMLM). The 4 models were consequently established through

the utilization of data pertaining to rear-end accidents occurring on Thai highways in

a given period. The results of a comparison study of model suitability effected by

comparing the values found that the analyses achieved through MLM potentially

yielded results superior to NMLM.

An overview of the results obtained from the models of urban and rural roads,

the urban road models were discovered to yield fewer numbers of significant

parameters than the rural road models. The number of traffic lanes commanded the

highest estimate value, followed by seat belt use by the driver, and the time of the

accidents. Therefore, policy makers can apply the results of this study to both rural

and urban areas. For example, they could initiate a public campaign favoring seat belt

use, and caution the populace to be more careful when driving at night or in the dark.

The risks of fatal rear-end accidents were found to increase on rural roads.

Significant variables in the direction of escalation were identified as roads with less

than 4 lanes, the lack of adequate intersections to reduce speed and prevent rear-end

crashes, rear-end crashes on interior lanes, rear-end crashes with a parked lead car,

rear-end crashes at night, the lack of seat belt use, acceleration on dry road surface

conditions, rear-end crashes with large truck involvement, low-traffic roads, a large

number of trucks, and the presence of older drivers.
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This study presents the limitations of investigating a relatively small number

of rear-end crashes, especially in urban areas. This difficulty emanated from the fact

that small accident cases were neither surveyed nor recorded in the system.

Nonetheless, the results of this study have revealed interesting variables in the form of

crash types. The findings obtained from the constructed models evidenced that rear-

end crashes with a parked lead car were most likely to cause fatalities. Accordingly,

future studies should compare the severity of injuries vis-à-vis types of accidents and

should also develop models that incorporate injury levels as dependent variables to

obtain comprehensive information that may be applied to ensure higher road safety

across Thailand.
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CHAPTER VII

SPATIAL ZERO-INFLATED NEGATIVE BINOMIAL

REGRESSION MODELS: AN APPLICATION TO

ESTIMATE REAR-END CRASH FREQUENCIES ON

THAI HIGHWAY

7.1 Abstract

Rear-end crash is a type of road traffic accidents that often occur. Currently,

the application of advanced statistical models to predict the frequency of the accident

number has been increasingly used as it makes the model predictions more accurate.

This study focuses on fulfilling the application of statistical models to find the

relationship between the explanatory variable and the rear end crash frequency. The

data used in the study are rear-end collisions occurring on highways throughout

Thailand in the years 2011-2018. The number of rear-end collisions was distributed

according to the segments of which road physical characteristics were similar. In this

study spatial correlation was applied by varying according to the jurisdiction of the

Department of Highways. For model development, there were 4 models starting with

Poisson regression model, Negative binomial model, Zero-inflated negative binomial

model and spatial zero-inflated negative binomial model (SZINB). When compared

with AIC, it was found that SIZNB was the model that suit data most. Regarding

random effect results, the effect of the significance which was constant both
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significant variables of conditional sate and zero state included Segment length,

Number of lanes, and Traffic volume. This study can be a starting point for those who

are interested in applying the spatial model in rear-end crash analysis.

7.2 Introduction

Rear-end crash is a crash type that worldwide researchers value. To predict the

accident number, they have developed a model which is one method they have been

focusing on for a long time. When considering the number of accidents classified by

type of collisions on the highways in Thailand (Figure 7.1). The number of rear-end

crashes or car crashes coming along the same direction was found the second-highest

number of collisions, followed by off path in straight. For the number of deaths, the

rear-end crashes caused the highest number of fatalities. In addition, when annually

considered, it was found that its trend has been continuously increasing (DOH, 2016,

2017, 2018).
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Figure 7.1 Number of crash and fatalities on Thai highway classification by crash

type

According to previous studies which focused on finding the relationship

between various factors affecting the number of rear-end crashes as shown in Table

7.1, it was found that the different methods were used in many studies including the

study of probabilities of rear-end accidents on signalized intersections analyzed by

Negative binomial regression (Wang et al., 2002), the rear-end collisions on freeway

analyzed by Poisson probability (Joon-Ki et al., 2007) as well as the rear-end collision

on the freeway analyzed by Probabilistic Neural network for instantaneous Appraisal

of rear-end crash risk (Anurag  Pande & Abdel-Aty, 2008) the analysis of rear-end

collisions on urban arterials using Genetic programming (Das & Abdel-Aty, 2011),

the risk of rear-end collisions at work zone analyzed by Stepwise regression method
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(Meng & Weng, 2011) and Truncated count data models (Qi et al., 2013), the risk of

rear-end accidents caused by drivers’ merging behavior (Weng et al., 2015a),

frequency analysis of rear- end accidents in urban road tunnels (Meng & Qu, 2012),

the risk of rear-end collisions at signalized intersections with and without green signal

countdown devices. (Ni & Li, 2014), the factors such as vehicle by vehicle

interactions with road physical characteristics and operational condition on urban

roads (Dimitriou et al., 2018). In Thailand, Champahom et al. (2019) have studied the

rear-end collisions on the highways throughout the country using Classification and

Regression Tree to analyze the relationship between explanatory and target variables.

The study consisted of 2 models which wereat-fault vs not at-fault model and fatal vs

non-fatal model.

However, there have not been any studies establishing the models to predict

the frequency of the rear-end collisions by using spatial model of crash frequency.

Actually, spatial model Technique which is multilevel modeling of aggregate accident

data is in the current trend of technique used for analysis which distributes and divides

the spatial data into hierarchical structures according to their nature. In addition, the

division of the area depends on the way of research questions. For example, the

studies of Adanu et al. (2017) determined the second level factor to be the area

characteristics, classified according to the postal code of each area. For the purpose of

aggregate data analysis, most data analyzed the risks of accidents occurring on each

road or each area. Due to the area classification, there was a large number of accident

data which enabled the researcher to conduct multilevel modeling of aggregate data

analysis (Dupont et al., 2013). The study of the accident number on intersections

which were grouped into a spatial model in order to identify factors at the area level
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potentially affecting the number of accidents both observable zonal effects and

unobserved heterogeneity which can be done by considering heterogeneous and

spatial correlations (Cai et al., 2018). Zone classification for analysis spatial

correlation may be considered from traffic analysis zones (TAZs) which have been

divided by traffic characteristics, Urbanization Density of the junction etc. (Huang et

al., 2019; Osama & Sayed, 2017).

When considering the research that studied the rear-end accident number. It

was found that many factors affected  the frequency or the probability of rear-end

collisions were segment length, traffic volume or travel, the truck proportion, the

urban area, the road physical characteristics such as traffic lane number, Innermost

traffic lanes, shoulder width, the existence of medians, and median width etc.

(Bhowmik et al., 2018; Das & Abdel-Aty, 2011; Joon-Ki et al., 2007; Ma et al., 2017;

Mothafer et al., 2017).

Liu et al. (2018) stated that a spatial model was used to find the relationship

between explanatory factors with the rear-end collisions frequency (Compared with

side swipe and other crashes). However, the study of rear-end crashes were conducted

only in urban areas. Therefore, this study has implemented the spatial model to find

the relationship between road physical characteristics and the rear end collision

frequency. The areas of this study are under the responsibility of Department of

Highways throughout the country divided by the provinces which have different

spatial characteristics, number of passing vehicles etc. The contribution of this study

is to be a starting point for applying spatial models for rear end crash studies.
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Table 7.1 Previous work in rear-end crash occurrences modeling

Work Method Location Raised issue
Wang et al.
(2002)

negative binomial
regression

Tokyo,
Japan

Rear-end crash occurrence at signalized
intersections

Joon-Ki et
al. (2007)

Poisson
probability

Tokyo,
Japan Freeway Rear-End Crash Occurrence

Anurag
Pande and
Abdel‐Aty
(2008)

Probabilistic
Neural Networks

Orlando FL,
USA

Road segments were divided into two groups
based on the average traffic speeds observed
around the crash location prior to the crash
occurrence.

Das and
Abdel-Aty
(2011)

The Genetic
Programming
(GP)

Florida,
USA

Rear-end crashes on urban arterials which
analyzed rear-end crash frequency and severity
of injuries

Meng and
Weng
(2011)

Stepwise
regression Singapore

Rear-end crash risk at work zone using work
zone

Meng and
Qu (2012)

Inverse Gaussian
regression Singapore

Analyze the time to collision (TTC) data
collected from rear-end crash on road tunnels

Qi et al.
(2013)

Truncated count
data models

New York,
USA

Frequency and Severity of Rear-End Crashes in
Work Zones

Ni and Li
(2014)

A microscopic
modeling
approach

Suzhou,
China

Rear-end crash proability at intersections with
and without Green Signal Countdown Devices

Weng et al.
(2015b)

Mixed probit
model

Ang Mo Kio
Avenue 3 in
Singapore

The relationship of drivers’ merging behavior
and rear-end crash risks work zone merging

Dimitriou
et al.
(2018)

Multinomial Logit
model

Nicosia,
Cyprus

Rear-end crash potential in urban environmental
road including factor vehicle-by vehicle
interactions, geometric characteristics and
operational conditions

Champaho
m et al.
(2019)

Classification and
Regression Tree
Model Thailand

Modeling of at-fault/not-at-fault and fatal/non-
fatal form rear-end collision on Thai highway.
Rear-end crash occurrences was predicted from
the at-fault driver in differences environmental
factor and road characteristics factors

This study

Spatial zero-
inflated negative
binomial
regression model Thailand

Rear-end crash frequencies modeling which is
specifics of road geometry explanatory factors.
Spatial correlation is applied to develop models

7.3 Method

7.3.1 Data collection

The data used in this study consisted of two parts including 1)

Collision data which were data collected from the Highway offices located throughout

the country. The data were accidents on Thai highways occurring from 2011 to 2018
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and the rear-end collisions which were subsequently screened totaled 22,536 cases 2)

Road segment data which were also divided by the Department of Highways officials.

Segments were divided due to any change of the road characteristics (Agbelie, 2016;

Anastasopoulos, 2016; Mothafer et al., 2016) including lane numbers, traffic surface

types, lane width, shoulder width, available medians, median width. When compiling

national highways, it consisted of 16,939 segments as data description shown in Table

7.2 indicating the average segment length of 3.082 kilometers, the average lane

number of 3.186, the average width shoulder of 1.738 meters. The traffic volume

logarithm value was 8.881, and the average truck proportion was 16.329%.

Considering the number of rear-end collisions occurring in each

segment, it was found that the mean was 1.331 (SD = 11.56). Figure 7.2 shows the

distribution of the number of rear-end accidents indicating that most of them are 0,

accounting for 82.5%, so statistical models which would be applied  have to not only

match count  data but also suit the data distribution in case that the data contain a lot

of 0 (Liu et al., 2018).

Table 7.2 Data description

Variables Description Mean SD Min Max

Rear-end crash Number of rear-end crashes 1.331 11.560 0 679

Length Length of road segment (Kilometers) 3.082 5.022 0.100 63.165

No_Lane Number of lanes 3.186 1.778 1 14

Concrete Pavement type (1 = concrete, 0 = other) 0.099 0.299 0 1

Lane_width Lane width (Meters) 3.474 0.209 2.500 6

Footpath Indicate type of shoulder (1 = footpath,

0 = otherwise)

0.048 0.213 0 1

Shoulder_widt

h

Shoulder width(Meters) 1.738 0.876 0 7.200

Median Divided road (1 = yes, 0 = other) 0.331 0.470 0 1

Median_Width Median width (Meters) 1.844 3.273 0 15

LogAADT Log of annual traffic volume 8.881 1.177 4.060 12.734

Percent_Truck Percentage of heavy truck 16.329 11.771 0 72.507
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(a) (b)

Figure 7.2 Histogram of rear-end crash frequency in log10 scale

Note:(a) = divided by pavement type (1 = concrete pavement; 0 = otherwise); (b) = Road segment is
divided a median (1= yes; 0=otherwise)

For spatial data shown in Figure 7.3, it can be explained that 18

highways are governed by Department of Highways nationwide and Sub-departments

of highways (Sub-DOH) are classified by province. In case of a large province, there

will be many Sub-DOHs, for example, in the small figure which presents a large

province divided into 3 Sub-DOHs. Additionally, the different line colors represent

roads that are under the control of each Sub-DOH. Totally, there are 104 Sub-DOHs

in Thailand.
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Figure 7.3 District control of sub department of highway

7.3.2 Model development

Count data consist of Nonnegative integer value and is normally found

in transportation models such as number of routes drivers change per week, accident

number occurring on each road per year, etc. The common error for the count data
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model is to see the number of occurrences as continuous data. Thus, the application of

broad-spectrum regression theory such as Standard least squares regressions clearly

inaccurate as the general regression model can predict the values of variables both

non-negative and negative. (Washington et al., 2011).

 Poisson regression model

The count data model begins with the consideration of the dependent

variable distribution referring to, in this case, the number of rear-end collisions which

occur on each road. The most distribution of count data  is usually Poisson

distribution (Caliendo et al., 2019) where the probability of road i will have the

number of accident occurrences. yi can be calculated from

( ) = ( )! (7.1)

When ( ) is the probability of the accident number yi on road i และ is

Poisson parameter for each road. [ ] is the number of predicted accidents that will

occur on each road where [ ] is a prediction of the number of occurrences due to

Explanation variables including traffic volume, each road length, road physical

characteristics, road surface characteristics, median types, driver visibility conditions,

etc. The relationship between the explanation variables and the Poisson parameter is

in the type of a log-linear model.

= exp ( X ) (7.2)
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Where X is the vector of the explanation variable and is the vector of the

parameter estimation. The number of occurrences or the number of accidents can be

predicted from [ ] = = exp ( X ) and this model is predicted using maximum

likelihood methods.

( ) = ∏ [ ( )][ ( )]! (7.3)

Log of the likelihood function is easier to manage and more suitable for

estimation. It can be calculated from

( ) = ∑ [− exp( X ) + X − ( !)] (7.4)

 Negative binomial regression model (NB)

The NB model is used when the invariance results from the Poisson

model are not appropriate, that is, the mean of the estimation is not equal to the

variance. If the expected value is greater than the variance, it is called under dispersed( [ ] > [ ]) or over - dispersed ( [ ] < [ ]). The phenomenon that

most often occurs is Over-dispersed. Negative binomial regression model will be used

to adjust from the equation (7.2) (Saeed et al., 2019; Washington et al., 2011).

= EXP ( X + ) (7.5)

Where EXP( ) is Gamma - distribution has mean value equal to 1, and the

variance into which has been added in order to change the mean value.
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[ ] = [ ] 1 + [ ] = [ ] + [ ] (7.6)

For Probability equation of the Poisson model. α is assigned to be 0, which

means that the choice between two models (Poisson and Negative binomial) depends

on the value of α, which is most often the over-dispersed model. The probability of

the number of rear-end collisions occurring on the road segment that is considered to

be a negative binomial distribution can be calculated from

P( ) = ! / /
(7.7)

Where Γ(. ) Is the gamma function, for parameter estimation, it can be

calculated from

P( ) = ∏ ! / /
(7.8)

 Zero-Inflated Negative binomial regression model

For predicting the annual number of accidents occurring each year,

there may be some roads on which no accidents have taken place. Thus, these 2

different characteristics can be divided into Normal-countand Zero-count. The general

model may not be comprehensive for separating the analysis into two parts.

Therefore, the most suitable model for a dual-state is the Zero-inflated model. When

established on negative binomial model, it is called Zero-inflated Negative

binomial:ZINB (Mahmud et al., 2019).
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For ZINB similar to the model of the independent event equation =( , … , )
= 0 ℎ + (1 + ) (7.9)

= ℎ (1 + ) Γ + (1 − )Γ ! , = 1,2,3, …
Where = (1/ )[1/ + ] is the maximum likelihood method used for

parameter estimation again in the ZINB model. For parameter estimation, the

maximum likelihood method is used, while the confidence value is determined by the

value of likelihood ratio test.

 Random effects count models

In some cases, there may be reasons for predicting that there is a

mutual correlation between the observed data. This relationship occurs because of

spatial data such as accident data occurring in the same area. The effect should be

determined not to be observed. In this study, the road is divided into areas according

to the supervision of Sub-Department of Highways. Having such a relationship, the

model application should generate random effects and Fixed effect (When the

unpredictable influence is considered an indicator variable)

For the equation of random influence of numbers, improve from the equation

(7.5) to

( ) = X + + or, = EXP( X + )EXP ( ) (7.10)
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Where is the expected number of events for the data i in group j (the

regulatory space of Sub-Department of Highway, which is expected to have

unobserved heterogeneity. X is the vector of explanation variable variable, is the

parameter prediction vector and is the random effect for the data group j. Spatial

correlation is calculated from the spatial variation proportion out of the total

variation (Huang et al., 2017; Osama&Sayed, 2017) as follows.

Spatial correlation = (7.11)

Where is the variance obtained from predicting i or is the variance within

the same Sub-DOH area. is the variance obtained from fixed effect estimation or is

the variance between the areas of Sub-DOH responsibilities.

The general model is derived from the assumption that is randomly

distributed through each group. For example ( ) as a Gamma-distribution with

mean value equal to 1 and variance is α which is established from Negative binomial

regression model.

7.4 Results

7.4.1 Parameter estimation

Table 7.3 shows the parameter estimation from 4 models. The Poisson

regression model (POI) found that there are all statistically significant parameters

except "Median width". When considering the prediction of the number of zero

accidents it is found that their proportion is 66%. Therefore, it can be considered that

the model should be analyzed between the two groups of rear-end collisions including
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zero and non-zero rear collisions. Dispersion ratio is the consideration of the model

results ( [ ] < [ ])with its value of 34.194; when considered together with

Pearson’s Chi-square, it is statistically significant. For model development, the

elements of Over-dispersion model should be supplemented.

The following model is Negative binomial regression model (NB). An

overview of the parameters found that there are 3 variables which are not statistically

significant at the confidence level of 95% such as “Concrete”, “Lane width” and

“Footpath”. For Over-dispersion, its value is 0.099 (SD = 0.002) which is considered

significant to the model. Therefore, it can be concluded that the model is better than

POI.

Zero-inflated negative binomial model (ZINB). The results of the

ZINB parameter estimation come out in two states, namely Conditional model and

Zero-inflation model. For conditional model, it was found that most factors have

statistical significance except “Concrete”. Regarding Zero-inflation model, there are

many significant variables, including Intercept, No_Lane, Concrete, Shoulder_ width,

Median and LogAADT. For examining the Over-dispersion, its value is 0.181 (SD =

0.03) with statistical significance. It can be repeatedly interpreted that NB analysis is

more appropriate than POI.

For the model that applies the Spatial Zero-inflated negative binomial

model (SZINB), the spatial correlation value equaling 0.355 shows the large

proportion of rear end variability within the area. Therefore, spatial analysis is

appropriate. For the random parameter (RP) components, it means that the rear-end

crash frequency is allowed to vary to the areas within the responsibility of Sub-DOH.

Regarding the estimation results showing those of 4 variables, Intercept is 5.556 (SD
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= 2.357) which is considered that is not significant zero (Han et al., 2018).

Although the remaining 3 variables are not statistically significant, they can also help

improve the model to be more efficient and simultaneously reduce the number of

significant variables (Osama & Sayed, 2017).
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Table 7.3 Estimated parameter results

Explanation variable
POI NB ZINB SZINB
Mean SD P-value Mean SD P-value Mean SD P-value Mean SD P-value

Random effect
(Intercept) 5.556 2.357
LogAADT 0.078 0.279
Percent_Truck 0.002 0.012
Distance 0.001 0.028
Fixed effect
Conditional model:
(Intercept) –7.213 0.170 <0.000 –6.594 0.555 <0.000 –5.018 0.485 <0.000 -6.932 0.743 <0.000
Length 0.091 0.001 <0.000 0.120 0.005 <0.000 0.044 0.005 <0.000 0.064 0.006 <0.000
No_Lane 0.116 0.003 <0.000 0.171 0.019 <0.000 0.121 0.020 <0.000 0.093 0.024 <0.000
Concrete[=1] –0.128 0.018 <0.000 –0.134 0.095 0.157 –0.070 0.109 0.517 -0.091 0.130 0.484
Lane_width –0.339 0.045 <0.000 –0.158 0.141 0.263 –0.233 0.117 0.047 0.040 0.175 0.820
Footpath[=1] 0.792 0.019 <0.000 0.237 0.127 0.061 0.344 0.143 0.016 0.286 0.159 0.073
Shoulder_width –0.081 0.009 <0.000 0.100 0.038 0.008 0.082 0.039 0.035 0.225 0.045 0.000
Median[=1] 0.417 0.022 <0.000 0.561 0.096 <0.000 0.468 0.109 <0.000 0.711 0.121 0.000
Median_Width 0.002 0.002 0.323 0.027 0.013 0.044 0.026 0.015 0.080 0.026 0.016 0.111
LogAADT 0.820 0.008 <0.000 0.606 0.031 <0.000 0.583 0.031 <0.000 0.599 0.052 <0.000
Percent_Truck –0.011 0.001 <0.000 -0.010 0.002 <0.000 –0.009 0.003 <0.000 -0.001 0.003 0.709
Zero-inflation model:
(Intercept) 4.186 1.128 <0.000 2.680 1.227 0.029
Length –1.172 0.094 <0.000 –1.239 0.102 <0.000
No_Lane –0.130 0.030 <0.000 –0.130 0.031 <0.000
Concrete[=1] –0.165 0.143 0.247 –0.243 0.149 0.104
Lane_width –0.113 0.293 0.699 0.151 0.323 0.639
Footbath[=1] –0.127 0.188 0.500 –0.186 0.196 0.344
Shoulder_width –0.141 0.065 0.029 –0.056 0.066 0.399
Median[=1] –0.430 0.151 0.004 –0.224 0.157 0.154
Median_Width 0.010 0.020 0.621 0.014 0.019 0.476
LogAADT –0.158 0.055 0.004 –0.126 0.058 0.029
Percent_Truck 0.004 0.004 0.328 0.004 0.004 0.330
Predicted Zero 66%
Dispersion ratio 34.194
Over-dispersion 0.099 0.002 0.181 0.030
Spatial correlation 0.355 180
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7.4.2 Comparison of Models Goodness-of-fit model

An overall picture of the all model suitability started with the concept

of creating a model based on the distribution of accident number and got the Poisson

regression model (POI). The Negative binomial model (NB) was subsequently

developed from POI with the principle of Over-dispersed. The following step was

considering the distribution of rear end collisions in each road segment which showed

a large number of 0. Thus, the model was developed into Zero-inflated negative

binomial regression model (ZINB). Consequently, the application of spatial concept

which was the analysis of the relationship of rear-end collisions within the

responsibility area of Sub-DOH was the final model Zero-inflated negative binomial

regression with spatial correlation model (SZINB). According to Table 7.4, the model

accuracy is determined by The Akaike Information Criterion (AIC). It was found that

the SZINB value is extremely close to zero. This can therefore interpret that SZINB is

the most consistent with empirical data (Fountas & Anastasopoulos, 2018). For of

SZINB is 0.090. Despite its relatively small number, it is still acceptable (Ma et al.,

2017; Venkataraman et al., 2013)

Table 7.4 Models goodness-of-fit

Model Log-Likelihood AIC ρ2
POI(m0) –74797 149596

POI(m1) –50753 101527 0.321

NB(m0) –15203 30410

NB(m1) –14164 28345 0.068

ZINB(m0) –15200 30412

ZINB(m1) –13670 27392 0.101

ZINBS(m0) –14697 29407

ZINBS(m1) –13380 26831 0.090
Note: m0 is intercept only model, m1 is convergence models. The Akaike Information
Criterion (AIC) is calculated as: AIC = 2[K-LL(m1)]. Where, K is the number of
model parameters. McFadden is calculated as: = 1 − ( 1)/ ( 0)
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7.5 Discussion

The direction of the parameters in all 4 models tend to go in the same

direction. However, this section has focused on evaluating results from spatial zero-

inflated negative binomial models (SZINB) due to its best goodness-of-fit by taking

direction and size of the parameters into consideration.

Regarding the Conditional model, Intercept has value of –6.932 (P <0.000)

which means that regardless of other factors, it was found that on each segment road

there was no rear-end crash. The variable with the highest parameter value which is

more likely to cause rear-end collisions was the road segment with medians. This is

consistent with the Baldock et al. (2005) whose study found that most rear-end

collisions occurred on roads with raised medians (73.7%). Regarding reasons, it can

be considered from the area issues as most highways in Thailand usually built the

medians in urban or community areas (Bureau of location and design, 2011). The

urban roads tend to have higher rear-end collisions than rural roads on which there are

a small number of raised medians. For the result of Parameter estimation of

LogAADT which is 0.599 (P<0.000), this result is very reasonable due to the

increasing traffic volume which resulted in reducing vehicle headway and giving the

opportunity to increase rear end crashes (Das & Abdel-Aty, 2011; Dimitriou et al.,

2018; Gaca et al., 2011; Liu et al., 2018; Zavareh et al., 2017). The next variable is the

footpath type which found that the availability of a footpath increased the rear- end

collisions frequency since a footpath provides a lot of pedestrians leading to the high

demand for sidewalks which are most often in urban areas where there is relatively

high traffic volume causing the  high likelihood of rear-end collisions as well. Many

researchers have found that the number of rear-end collisions in urban areas is higher
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than that in rural areas (Joon-Ki et al., 2007). For the shoulder width, it was found that

The width of the shoulder potentially increased the frequency of rear end collisions.

This result does not correspond with Joon-Ki et al. (2007) which found that the width

of the shoulder which was narrower resulted in increasing rear-end crashes while Das

and Abdel-Aty (2011) found that the shoulder width did not affect the number of rear-

end collisions. However, when considering the correlation coefficient as shown in

Table 7.5, it was found that the shoulder width had a relatively high relationship with

LogAADT. This can be said that the wide shoulder width design was built for high

traffic volume roads which subsequently and inevitably increased the rear-end crash

opportunities. For the number of traffic lanes, it was found that the increasing lane

number led to an increase in rear-end collisions. This is in accordance with the study

of Venkataraman et al. (2013) who found that road segments with 4 traffic lanes were

more likely to cause rear-end collisions than those with 3 lanes. For all types of

collisions, Agbelie (2016); Anastasopoulos (2016) discovered that the increasing lane

number also increased the crash frequency. The variable specifying the length of the

road segment has been found that the road segment length increased, the number of

rear-end collisions increased consequently. This result is consistent with many

researches (Agbelie, 2016; Caliendo et al., 2019).

For Zero-inflation model: The results were interpreted by considering

directions together with significance.  If there is a positive direction, increasing the

parameter value will make the number of rear-end collisions on the road segment to

be 0. For Intercept with a positive direction, it shows that when other variables are not

considered, the overall picture of rear-end collisions is 0. The variable with the

highest estimation is "length". It was found that if the length of the segment increases,
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the rear end collision will not be zero. This result resembles the zero sate model of

Dong et al. (2014) found that Intercept was positive and length was also positive. For

the increasing traffic lane number, the rear-end collision will not be 0. For traffic

volume, which has been discovered that when the amount of traffic volume increased,

the rear end collisions were not significant zero.

7.6 Conclusion

This study aims to be the starting point for the study of rear-end collisions

with advanced statistical models. In order to get a precise model for analyzing, the

relationship between road physical characteristics factors and the frequency of rear-

end accidents. The data used are rear-end collisions occurring on Thai highways

distributed on the road segments with the same characteristics in each such as Number

of lanes, Shoulder width etc. For model development, it was established on the

concept of a linear relationship between the number of rear-end collisions and the

explanatory factors. The process began with the Poisson regression model in which

the problem of Over-dispersion was adjusted with the Negative binomial regression

model. Since the data on the number of rear-end collisions in each segment contained

a lot of 0, the model was developed by Zero-inflated model and finally added with

spatial correlation of which the areas were classified in authority of Highway District.

The final model is the Spatial Zero-inflated Negative binomial regression model

(SZINB). When considering the statistical values to compare with the model. (The

Akaike Information Criterion: AIC), it was found that the SZINB model was the most

suitable for this data set.
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For the results of SZINB random effect, it was found that only constant value

was significant. This showed that the relationships between the remaining variables

have relationships within the Sub-DOH areas were not strong enough. However,

spatial correlation allowance helped make the model more appropriate. In terms of

fixed effect, when considering conditional model together with zero-inflated model,

there are 3 significant variables, which are segment length, number of lanes and

traffic volume. It was found that when these variables increased, they resulted in the

increasing number of rear-end collisions. For other variables, which were insignificant

in the zero state but significant in the conditional state, were the existence of the

medians which increased the chances of rear-end collisions, especially the raised

median. In addition, other variables which increased the number of rear-end collisions

included Shoulder width, lane number, and the availability of footpath shoulder.

This study has limitations in terms of road physical characteristics of which a

few factors potentially analyzed as independents were missing such as road surface

roughness, number of junctions per segment, distance of median openings, land-use

benefits, and parking permission etc. All of these factors tend to affect rear-end

collisions. Future studies may add these factors to the rear-end crash model for

potentially new insights. However, this study was the beginning point to those

interested in applying the spatial model to analyze the rear-end crashes. Further model

development may increase comparisons between urban areas and suburb areas by

using multivariate for analysis.
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CHAPTER VIII

CONCLUSION AND RECOMMENATIONS

Road accidents in Thailand have been a problem for a long time. At present,

both government sectors and private organizations have been regularly focusing on

campaigning and solving problems. When considering the statistics of deaths from

accidents on highways, it was found that rear-end collisions is the crash type causing

the highest fatality. Therefore, the focus to find a way for reducing the number of road

accidents and the death rate caused by rear-end collisions is absolutely necessary.

According to the literature review, it was found that the Important dimensions related

to rear-end collisions which, if studied, will be able to reduce the number and death

rate from rear-end accidents The review results showed that there are 6 important

dimensions. This study is therefore divided the studies into 6 dimensions which can

be summarized as follows:

8.1 Factors affecting the rear-end crash size

Study 1: A model to analyze factors affecting the rear-end crash size was

created. It is measured by the number of injured and deaths in form of latent variables

and using the Structural Equation Modeling to analyze the mentioned relationship

such as female drivers, drivers aged 35-55 years, high speeding, a truck - involved

accident resulting in the driver and passengers’ higher level of injuries, asphalt road

surface and roads with medians which potentially reduce the severity of injuries.



193

8.2 Rear-end collision at Intersections

Study 2: Rear-end collisions at intersections are more likely to occur because

the front vehicles must reduce the speed to get to the crossroads Therefore, this

research aims to find ways to reduce the number of rear-end collisions on the

intersection through the guidance for relevant agencies to improve road physical

characteristics as well as campaign guidelines. The data used for analysis were

accident cases occurring on highways from 2011 to 2015 and were analyzed

classification and regression tree (CRT) and specifying the target variables as a

collision on an intersection / an external collision outside the intersection. From the

tree model, it was found that the important variables to be suggested were rear end

crash type, average traffic volume, road surface type, and light factors. In addition to

this research which made suggestions for reducing the number of rear-end collisions

on intersection area, it also provided guidance for the study of rear-end collisions on

crossroads.

8.3 Models of at-fault driver vs not at-fault driver and Fatal crash

vs non-fatal crash

Study 3: has applied Quasi-Induced Exposure, which is one way to study the

rear-end accidents in order to focus on reducing the number of rear-end accidents and

their severity. The result of this objective can be used as a way to train drivers to

become more aware of the rear-end accident severity. The study found that the factors

causing the driver to become at-fault driver were number of traffic lanes and areas at

the median opening etc. For another model that analyzed the relationship between

fatal rear –end crash and non-fatal rear-end crash, it was found that the use of safety
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equipment such as helmets or seat belts mostly reduced the chance of death from rear-

end collisions.

8.4 Comparison of rear-end crash size between urban and rural

areas

Study 4: Differences between urban and rural roads result from different road

physical characteristics as well as traffic flow. The occurrence of rear-end accidents

varies accordingly. This objective is to study the differences between rear-end

accidents that occur between urban and rural roads when mitigation policies were

differently identified. This study applied the Measurement of Invariance to compare

the differences between rear collisions in urban and rural areas. The results showed

that both two models were different, especially crash type and vehicle involvement

factors.

8.5 Factors affecting to fatal rear-end crash: Hierarchical model

approach

Study 5: Rear-end crash is a type of road accidents which have been

abundantly studied. One factor that quite affects the likelihood of fatalities caused by

rear-end collisions is the road area at the accident scene,  classified as urban and rural

roads, which  are obviously different such as speed, number of intersections, car

types, etc. However, there has never been any comparison study of rear-end collisions

occurring between พurban and rural areas. Therefore, this study has focused on

comparing factors that affected the likelihood of fatality in rear-end crash which is

different between 2 roadways under the concept of spatial basis. Hierarchical logistic
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model was applied by determining estimation of parameters to vary according to the

road segment, and comparing the models having coefficient with multilevel

correlation and coefficient without multilevel correlation. Therefore, there were 4

models. The data used in this study were the rear-end collisions occurring on the Thai

highways from 2011 to 2015. The study found that the direction of the parameter

values of the model in the rural rear-end collisions model went in the same direction.

However, the number of significant parameters in rural rear-end crash are higher. The

significant variables in both models were the number of traffic lanes, the driver's seat

belt usage, and the accident time. To conclude, this study can help fulfil the rear end

knowledge. Additionally, the policy decision makers can apply the results to make

decisions on safety policy.

8.6 Rear-end crash frequency models: Spatial zero-inflated

negative binomial approach

Study 6: Currently, the application of advanced statistical models to predict

the frequency of the accident number has been increasingly used. This can make the

model predictions more accurate. This study focuses on fulfilling the application of

statistical models to find the relationship between the explanatory variables and the

rear-end crash frequency. The data used in the study were the rear-end collisions

occurring on Thai highways from 2011-to 2018 and were distributed by segment with

the same road physical characteristics. The spatial correlation varies according to the

jurisdiction of the Department of Highways. For the development of the model, there

are 4 models, starting from Poisson regression model, Negative binomial model,

Zero-inflated negative binomial model and spatial zero-inflated negative binomial
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model (SZINB). The AIC comparison results show that SIZNB had the lowest value.

This showed that this model was the most suitable for the data. The effect of the

random effect was significant only for the constant values, both in the conditional

state and the zero state, which are segment length, number of lanes, and traffic

volume. This study can be a starting point for those interested in applying a spatial

model for rear-end crash analysis.

8.7 Recommendations

This study focuses on finding factors potentially affecting rear-end collisions,

both in terms of severity (meaning fatality risk) and number (referring to the chances

causing rear crashes or crash frequency occurring on road segment), which lead to the

policy of reducing severity and the number of rear-end collisions. Another

contribution is the analysis of rear-end collisions with statistics. Accordingly, the

recommendation consists of three issues:

The policy to reduce the rear-end collisions severity. From many models of

severity, it was found that Rear-end collisions tended to be severe when going

together with a trucks the agencies involved with the driving license should

emphatically warn the truck driver not to closely approach the car in front. In

addition, other drivers, especially motorcycles sharing roads with large vehicles

should be simultaneously warned to have appropriate space and be aware of the road

where the trucks are parked. The study results showed that the crash type when a front

car was parked was highly severe. In terms of the environmental factors, it was found

that the rear-end collisions at night without illumination causing higher fatal rear-end

crash. Therefore, involved departments, such as the Department of Highways, should
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regularly pay attention to those areas. For spatial rear-end collisions, it has been

discovered that the crashes occurring between urban and rural areas were different.

For the policy to reduce the rear-end collision frequency which  focuses on the

driver factor, the results showed that the chances of a driver being the cause of a rear-

end collision often the accident points where the front car has slowed down such as

the traffic island opening point and at the junction area. Therefore, the Department of

Land Transport should emphasize that drivers must be aware of the warning signs,

especially when entering an intersection or median openings.

The advanced models were applied on the basis of distributing the data

containing a large number of zero and adding the estimation values of unobserved

heterogeneity which varied to the spatial value. This study has confirmed that these

two concepts make the model more accurate. Therefore, those interested in creating a

model to predict the frequency of accidents potentially apply these two principles.
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