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CHAPTER I

INTRODUCTION

Most Thai families have a typical plan for their children as follows: 1)

study in a good school and a good university; 2) work in a good place; 3) buy a

good car; and 4) have a good marriage. However, different circumstances make

people have different necessities. Therefore, life planning provides an appropriate

approach for an individual. Nowadays, throughout the world life style changes to

that of an ageing society. The statistical records show that the birth rate continue

to decrease significantly. The Thailand National Statistical Office informs that

Thailand has begun to be an ageing society in the year of 2005 and will become a

complete ageing society in 2021. Thailand’s urban life style has changed to that

of a small individual family with few or no children at all. Hence the search for

a systematical model for life style forecasting, which is fit for present day, is still

the major work of scientists.

Insurance is one of many good ways to organize one’s life. It provides life

and non-life risk management. A life insurance is a contract between an insurer

and a policyholder in which the insurer guarantees payment of a death benefit

to named beneficiaries upon the death of the insured. The insurance company

promises a death benefit in consideration of the payment of premium by the in-

sured. The risks that are covered by life insurance include premature death, income

during retirement, and illness. Life insurance products mostly consist of whole life,

endowment, term, medical and health, and life annuity plan. On the other hand,

non-life insurance covers things apart from what is covered in life insurance.
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That is, a non-life insurance policy aims to protect an individual against

losses and damages other than those covered by life insurance. The risks that

are covered by non-life insurance are property loss (for example stolen car, burnt

house) liabilities arising from damage caused by an individual to a third party,

accidental death or injury. The main products of non-life insurance include motor

insurance, fire/house owners/householders insurance, personal accident insurance,

medical and health insurance and travel insurance. This research is focusing on

the mathematical and statistical model for life insurance.

In order to make an insurance contract, the insurance company may ask

the client for much information. Because of the variety of factors, the company

then has a process for offering a suitable insurance product to the client. Hence,

each insured has an insurance contract corresponding to his/her personal circum-

stances. However, there is no mathematical analysis of common and differentiating

factors of the health insurance in Thailand. The relation of insured data and value

of insurance contract should be analyzed. The knowledge obtained will help an

insurance company to design appropriate insurance products tailored to the in-

sured. It helps in transforming the insurance data to the information that is useful

for the data analysis in the future. The result can reinforce background in many

subjects, e.g. mathematics, statistics, economics, actuarial science, data science,

etc. It may also support an insurance company in making insurance products for

variety customers. The understanding by mathematical and statistical models for

the life insurance provides a lot of benefits to both insurance companies and com-

mon people. This would help people in finding a suitable life insurance product

for life planning, strategically.

This thesis aims to apply fundamental statistics and probability to make a

mathematical model for the sample insurance data. Many of probability distribu-
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tions related to the health insured were reviewed and studied. Source of insurance

data for testing our assumption was obtained from a free standard dataset. The

RStudio program was used to analyse statistically and show the histogram of data.

Also curve fitting was done by some library function in RStudio. Types of proba-

bility distributions which deserve for fitting the model were scoped. Generalized

linear models for selected probability distributions were done. All models were

tested for accuracy. The process in this research may be applied and extended to

further related works.

1.1 Research objectives

The objectives of this thesis were to find and analyze distributions which

are appropriate for obtained insurance claims data.

1.2 Scope and limitations

1. Insurance claims data from “Sample Insurance Claim Prediction Dataset”

which based on “[Medical Cost Personal Datasets][1]”, Dataset owner Ea-

son, date created 2018-05-14, last updated 2018-06-04, version 2, avail-

able on https://www.kaggle.com/easonlai/sample-insurance-claim-

prediction-dataset.

2. Statistics calculation based on RStudio software version 1.2.1335 © 2009-2019

RStudio, Build 1379 (f1ac3425) Inc., working on Microsoft Windows 10.

1.3 Research procedure

The research work proceeded as follows:
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1. study the theory of mathematics and statistics related with the insurance

work

2. study the application of general linear model (GLM)

3. study the RStudio software

4. analyze the obtained life insurance claim data preliminarily

5. develop GLM models for the insurance claim data

6. measure accuracy for the predicting models

1.4 Expected results

It is expected to have a concept to find an appropriate distributions and

general linear model for insurance claims data.



CHAPTER II

LITERATURE REVIEW

In this chapter, the knowledge of basic mathematics and statistics related

with actuarial science is reviewed. The following sections consist of the topics

in statistical distributions and the theory to model actuarial claim data. Most

contents of probability and random variables comes from Grimmett and Stirzaker

(2001), Grimmett and Welsh (1986) and Adewale (2017).

2.1 Probability

The mathematical theory of probability starts with the idea of an experi-

ment (or trial), being a course of action whose consequence is not predetermined;

this experiment is reformulated as a mathematical object called a probability space.

Definition 2.1. If A is some event, the occurrence or non-occurrence of A depends

upon the chain of circumstances involved. This chain is called an experiment or

trial; the result of an experiment is called its outcome. The set of all possible

outcomes of an experiment is called the sample space and is denoted by Ω.

Definition 2.2. A Bernoulli trial or binomial trial is a random experiment/trial

with exactly two possible outcomes, “success” and “failure”, i.e.

Ω = {success, failure} .

Definition 2.3. A non-empty collection F of subsets of the sample space Ω is

called an event space of F .
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Definition 2.4. A collection F of subsets of Ω is called a σ-field if it satisfies the

following conditions:

1. ∅ ∈ F ;

2. if A1, A2, . . . ∈ F then
∞
∪
i=1

Ai ∈ F ;

3. if A ∈ F then Ac ∈ F , where Ac is the complement of A.

Definition 2.5. A probability measure P on (Ω,F) is a function P : F → [0, 1]

satisfying

1. P(∅) = 0 and P(Ω) = 1;

2. if A1, A2, . . . is a collection of disjoint members of F , in that Ai ∩Aj = ∅ for

all pairs i, j satisfying i ̸= j, then

P
( ∞
∪
i=1

Ai

)
=

∞
Σ
i=1

P (Ai) .

The triple (Ω,F ,P), comprising a set Ω, a σ-field F of subsets of Ω, and a proba-

bility measure P on (Ω,F), is called a probability space.

The above definitions give more efficient tools to measure the likelihoods

of the occurrences of events. Compared to the classical concept, the experience

of most scientific experimentation is that the proportion of times that A occurs

settles down to some value as N becomes larger; that is, writing N(A) for the

number of occurrences of A in the N trials, the ratio N(A)/N appears to converge

to a constant limit as N increases. The ultimate value of this ratio as being the

probability P(A) that A occurs on any particular trial. In practice, N may be taken

to be large but finite, and the ratio N(A)/N may be taken as an approximation

to P(A). Some individuals refer informally to P as a probability distribution.
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Definition 2.6. Conditional Probability is a measure of the probability of one

event occurring with some relationship to one or more other events. The condi-

tional probability of A given B, or the probability of A under the condition B, is

usually written as P(A|B), or sometimes PB(A) or P(A/B), defined by

P(A|B) =
P(A ∩B)

P(B)
,

where P(A ∩B) is the probability that both events A and B occur.

2.2 Random variables and their distribution

Quantities governed by randomness correspond to functions on the prob-

ability space called random variables. The value taken by a random variable is

subject to chance, and the associated likelihoods are described by a function called

the distribution function.

Definition 2.7. A random variable is a function X : Ω → R with the property

that

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for each x ∈ R. Such a function is said to be F-measurable.

Distribution is a statistical concept used in data research. It is a listing or

function showing all the possible values of the statistical data and how often they

occur. Every random variable has a distribution function. Distribution functions

are very importance and useful.

Definition 2.8. The distribution function of a random variable X is the function

F : R → [0, 1]

given by F (x) = P(X ≤ x).
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The distribution function satisfies the following conditions.

Theorem 2.1. A distribution function F has the following properties:

1. lim
x→−∞

F (x) = 0,

2. lim
x→∞

F (x) = 1,

3. F is nondecreasing, i.e. if x < y then F (x) ≤ F (y),

4. F is right-continuous, i.e. F (x+ h) → F (x) as h → 0+.

Moreover, some conditions for the relation of the distribution function of a

random variable X and the probability measure P are as follows:

Theorem 2.2. Let F be the distribution function of X. Then

1. P(X > x) = 1− F (x),

2. P(x < X ≤ y) = F (y)− F (x),

3. P(X = x) = F (x)− lim
y→x−

F (y).

2.3 Discrete and continuous random variables

Random variables can be classified into two basic categories, discrete and

continuous.

Definition 2.9. The random variable X is called discrete if it takes values in

some countable subset {x1, x2, . . .}, only, of R. The discrete random variable X

has (probability) mass function f : R → [0, 1] given by f(x) = P(X = x).

Definition 2.10. The random variable X is called continuous if its distribution

function can be expressed as

F (x) =

∫ x

−∞
f(u)du x ∈ R,
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for some integrable function f : R → [0,∞) called the (probability) density function

of X.

2.4 Expectation

Let x1, x2, . . . , xN be the numerical outcomes of N repetitions of some ex-

periment. The average of this outcomes is

m =
1

N

∑
i

xi.

Consider the N discrete random variables with a common mass function f . For

each possible value x, about Nf(x) of the outcome Xi, i = 1, . . . , N , will take that

value x. So the average value is

m =
1

N

∑
x

xNf(x) =
∑
x

xf(x),

where the summation is over all possible values of the Xi. This average is called

the expectation or mean value of the underlying distribution with mass function

f .

Definition 2.11. The mean value, or expectation, or expected value of a discrete

random variable X with mass function f is defined to be

E(X) =
∑

x:f(x)>0

xf(x), (2.1)

whenever this summation is absolutely convergent.

The expectation (2.1) of a discrete variable X or an average of the possible

values of X may be written in form

E(X) =
∑
x

xP(X = x),

which means each value being weighted by its probability.
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Lemma 2.3. If X has a mass function f and g:R → R, then

E(g(X)) =
∑
x

g(x)f(x),

whenever this sum is absolutely convergent.

Definition 2.12. If k is a positive integer, the kth moment mk of X is defined to

be

mk = E(Xk) =
∑
x

xkP(X = x).

The kth central moment σk is

σk = E((X − E(X))k).

Definition 2.13. The two moments of most use are

• m1 = E(X), called the mean (or expectation) of X, and

• σ2 = E((X − E(X))2), called variance of X.

These two quantities are measures of the mean and dispersion of X; that is, m1 is

the average value of X, and σ2 measures the amount by which X tends to deviate

from the average. The mean m1 is often denoted µ, and the variance of X is often

denoted var(X). The positive square root σ =
√

var(X) is called the standard

deviation.

For continuous variables, expectations are defined as integrals.

Definition 2.14. The expectation of a continuous random variable X with density

function f is given by

E(X) =

∫ ∞

−∞
xf(x)dx,

whenever the integral converges absolutely.
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By the definition (2.12) of moment for a discrete random variable, we define

the kth moment of a continuous variable X as the following.

mk = E(Xk) =

∫ ∞

−∞
xkf(x)dx, (2.2)

whenever the integral converges absolutely.

Therefore, we can define mean and variance for a continuous random vari-

able similar to definition 2.13 as µ = E(X) and σ2 = E((X−E(X))2), respectively,

where the kth moment is defined by (2.2).

2.5 Distributions related insurance claims data

Well known distributions and distributions used in insurance data analysis

and generalized linear modelling are mentioned in this section.

2.5.1 Bernoulli distribution

The Bernoulli distribution admits only two possible outcomes, for examples

Ω = {Yes,No} and Ω = {True,False}. It is usually considered as Ω = {0, 1}, where

the event “1” is often called a success, the other “0”, a failure. Further f(1) = p and

f(0) = 1−p, where p is the probability of the event occurring and 0 ≤ p ≤ 1. The

mean and variance of a Bernoulli random variable are p and p(1− p), respectively.

The variance is largest when p = 0.5. The probability function is

f(k) = pk(1− p)1−k, k = 0, 1. (2.3)

The examples of using this distribution in insurance works are

• a claim or no claim on a policy in a given year;

• a person dying or surviving over a given year;

• a claim or no claim on the vehicle insurance.
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2.5.2 Binomial distribution

Let 0 ≤ k ≤ n, and consider f(k). Exactly
(
n
k

)
points in Ω give a total of

k wanted evens; each of these points occurs with probability pk(1− p)n−k, and so

f(k) =

(
n

k

)
pk(1− p)n−k if 0 ≤ k ≤ n. (2.4)

The random variable X is said to have the binomial distribution with parameters

n and p. This distribution is the discrete probability distribution of the number of

successes in a sequence of n independent experiments. If there are n independent

Bernoulli random variables, each with success probability p, then the total number

of successes has the binomial distribution.

In insurance claim, policies may be grouped according to geographical area

and socioeconomic indicators. For the number of policies n and varying probabil-

ities p, number of claims arising from each area may be able to be described by

binomial of the form (2.4).

A binomial random variable is often transformed into a proportion by di-

viding by n. The resulting random variable k/n is called the binomial proportion

and the probability function (2.4) shifted on to 0, 1/n, 2/n, . . . , 1.

The binomial distribution is the basis for the popular binomial test of sta-

tistical significance, where the binomial test is an exact test of the statistical

significance of deviations from a theoretically expected distribution of observa-

tions into two categories. The binomial distribution is practically and historically

important and leads directly to Poisson distribution as discussed after this.
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2.5.3 Poisson distribution

If a random variable X takes values in the set {0, 1, 2, . . .} with mass func-

tion

f(x) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

where λ > 0, then X is said to have the Poisson distribution with parameter λ.

The Poisson distribution is a discrete probability distribution that expresses

the probability of a given number of events occurring in a fixed interval of time

or specified intervals such as distance, area, volume or space, if these events occur

with a known constant rate and independently of the time since the last event.

Suppose, in the binomial distribution n becomes large while p becomes

small, by (2.4), let n → ∞ and p → 0 in such a way that np approaches a

non-zero constant λ. Then,(
n

k

)
pk(1− p)n−k ∼ 1

k!

(
np

1− p

)k

(1− p)n → λk

k!
e−λ, for k = 0, 1, 2, . . .

For the numbers of non-life insurance claims, a Poisson distribution is usu-

ally more appropriate to represent some uncertainty. This is because most non-life

policies provide cover for a fixed period of time with no limit on the number of

claims. However, there are also exceptions to this, because the Poisson distribution

has variance equal to its mean.

2.5.4 Geometric distribution

A geometric variable is a random variable with the geometric mass function

f(k) = p(1− p)k−1, k = 0, 1, 2, . . . ,

for some number p in (0, 1).
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Suppose that independent Bernoulli trials (parameter p) are performed in

times 1, 2, . . . Let X be the time which elapses before the first success; X is called

a waiting time. Then P(X > k) = (1− p)k and thus

P(X = k) = P(X > k − 1)− P(X > k) = p(1− p)k−1.

The geometric distribution gives the probability that the first occurrence of success

requires k independent trials, each with success probability p.

2.5.5 Negative binomial distribution

Let Xr be the waiting time for the rth success of Bernoulli trials of a

random variable Xr, which takes values 1 and 0 with probabilities p and q(= 1−p),

respectively. It is easy to check that Xr has mass function

P(Xr = k) =

(
k − 1

r − 1

)
pr(1− p)k−r, k = r, r + 1, ...;

it is said to have the negative binomial distribution with parameters r and p. The

random variable Xr is the sum of r independent geometric variables. Note that if

r = 1, it becomes the geometric distribution.

The negative binomial distribution is a discrete probability distribution of

the number of successes in a sequence of independent and identically distributed

Bernoulli trials before a specified (non-random) number of failures r occurs, in

which the probability of success is the same every time the experiment is con-

ducted.

Panjer (1980) and Heckman & Meyer (1982) (cited in Wright, 2007) have

developed the work of forecasting the number of non-life insurance claims with the

negative binomial distribution. They believe that the model require two parame-

ters, which may possibly be extracted from mean and variance.
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2.5.6 Continuous uniform distribution

A random variable X is uniform on [a, b] if it has distribution function

F (x) =


0 if x ≤ a,

x− a

b− a
if a < x ≤ b,

1 if x > b.

Roughly speaking, X takes any value between a and b with equal probability. The

continuous uniform distribution or rectangular distribution is a family of symmetric

probability distributions such that all members of the family are equally probable.

2.5.7 Exponential distribution

A random variable X is exponential with parameter λ > 0 if it has distri-

bution function

F (x) = 1− e−λx, x ≥ 0.

The exponential distribution is the probability distribution that describes the time

between events in a Poisson point process. The Poisson point process is a type

of random mathematical object that consists of points randomly located on a

mathematical space. The Poisson point process is often defnned on the real line,

where it can be considered as a stochastic process. This distribution proves to be

the cornerstone of the theory of Markov processes in continuous time.

2.5.8 Normal distribution

The most important continuous distribution is the normal (or Gaussian)

distribution, which has two parameters µ and σ2 and density function

f(x) =
1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
, −∞ < x < ∞.
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The normal distribution arises in many ways. In particular it can be obtained as

a continuous limit of the binomial distribution as n → ∞.

Insurance companies use normal distributions to model certain average

cases.

2.5.9 Log-normal distribution

A log-normal distribution is a statistical distribution of logarithmic values

from a related normal distribution, i.e. for a variable x, y = ln(x) is normal

distributed,

f(x) =
1√
2πσ2

exp
(
−(lnx− µ)2

2σ2

)
, x > 0.

Some research proposes that there is the complexity to obtain the distribution

function of the total amount of incurred claims thus a log-normal distribution

model is used to for insurance claims data (Zuanetti, Diniz and Leite, 2006).

2.5.10 Gamma distribution

The random variable X has the gamma distribution with parameters λ, t >

0, if it has density

f(x) =
1

Γ(t)
λtxt−1e−λx, x ≥ 0.

Here Γ(t) is the gamma function

Γ(t) =

∫ ∞

0

xt−1e−xdx.

The gamma distribution is a two-parameter family of continuous probabil-

ity distributions. The exponential distribution can be considered as a special case

of the gamma distribution.
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2.5.11 Pólya Distribution

The Pólya distribution is similar to the negative binomial distribution but

it works with a continuous time. A Pólya Model is a type of statistical model used

to model a variety of contamination processes, including the spread of contagious

diseases. This model was proposed by the Hungarian mathematician George Pólya

(1887-1985). In the Pólya model, an urn initially contains w white balls and b black

balls. A trial consists of drawing one ball at random, noting its color, and then

replacing it together with c additional balls of the same color. Obtaining a white

ball on the first trial therefore increases the probability of selecting a white ball on

the next trial. The probability function for the number Wm of white balls obtained

in m trials, is derived by conventional combinatorial methods:

Pr {Wm = n} = Pn (w, b, c;m)

=

(
m

n

)
Πn−1

i=0 (w + ic)Πm−n−1
i=0 (b+ ic)

Πm−1
i=0 (w + b+ ic)

.

A distribution with probabilities Pn (w, b, c;m) is known as a Pólya distri-

bution. The ratio γ = c/w is customarily called the degree of contagion. When

there is no contagion (c = γ = 0), the Pólya distribution is identical to the simpler

binomial distribution for which the probability of drawing a white ball remains

constant throughout successive trials (Bahnemann, 2015).

In the case that there is an outbreak by some contagion infection, the

probabilities of claims are inconsistent with respect to time. Thus some types of

probability, e.g. Poisson distribution, do not explain precisely because they were

used to explain phenomena which have a uniform probability of occurrence claims

on the considered time. Moreover, each claim must be independent. The negative

binomial distribution satisfies that requirement but it is a discrete probability

distribution. However, it was found that the Pólya distribution is more appropriate
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to model the claim according to our requirements.

2.6 Exponential family

The exponential family is a class of probability distributions. All probabil-

ity function of the general form

f(y) = c(y, ϕ) exp
{
yθ − a(θ)

ϕ

}
, (2.5)

where θ and ϕ are parameters. The parameter θ is called the canonical parameter

and ϕ is called the dispersion parameter. Probability functions which can be

written as equation (2.5) are said to be members of the exponential family. In

terms of a(θ),

E(y) = ȧ(θ), Var(y) = ϕä(θ), (2.6)

where ȧ(θ) and ä(θ) are the first and second derivatives of a(θ) with respect to θ,

respectively. Equation (2.5) and equations (2.6) provides two important proper-

ties:

1. The distribution can be written as a function of mean and variance.

2. The variance is a function of mean.

Examples of exponential family distributions and their parameters are shown in

Table 2.1.

2.7 Generalized Linear Models (GLM)

Regression modeling deals with explaining how one variable is generally

thought of as being caused or explained by another or more other variables. The

simple linear model (classical linear model or normal linear model) forms the basis

of generalized linear modeling.
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Table 2.1: Examples of exponential family distributions and their parameters.

Distribution θ a(θ) ϕ E(y) Var(y)

Binomial B(n, p) ln
(

p
1−p

)
n ln

(
1 + eθ

)
1 np np(1− p)

Poisson P(λ) lnλ eθ 1 λ λ

Negative binomial

NB(µ, r) ln
(

rµ
1+rµ

)
−1

r
ln
(
1− reθ

)
1 µ µ (1 + rµ)

Normal N(µ, σ2) µ θ2

2
σ2 µ σ2

Gamma G(λ, ν) − 1
λ

− ln (−θ) 1
ν

λ νλ2

2.7.1 History and terminology of linear modeling

1. Simple linear modeling. The model obtained is able to explain an ob-

served variable y by a another observed variable x. The variable y is called

the response variable, which may be called in alternative names dependent

variable or outcome. Whereas the variable x is called the explanatory vari-

able, which alternative names are factor, covariate, independent, predictor,

driver, risk factor, regressor or simply the “x” variable.

2. Multiple linear modeling. This model extends the previous model by

supposing more than one explanatory variable to explain the response vari-

able y.

3. Transforming the response. In this case, the model aims to use the

observed variables x to explain the transformation of the response variable y,

g(y), where g is a monotonic transformation. The most used transformations

are logarithm and logit function*.

*logit(x) = ln
(

x

1− x

)
= ln(x)− ln(1− x), x ∈ (0, 1).
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4. Classical linear modeling. For this model, the statistical average of y is

modeled in terms of x, i.e. the response variable y is replaced by it expected

value E(y).

5. Generalized linear modeling. Here g (E(y)) is explained in terms of

variables x, where g is a monotonic function. Function g is called the link.

Table 2.2: The most used link functions.

link functions g(µ) g−1(µ)

identity µ µ

logarithm lnµ eµ

logit function ln
(

µ

1− µ

)
eµ

1 + eµ

reciprocal 1

x

1

x

Here, the word “linear” in linear modeling means that the variables in x are linearly

combined to arrive at the explanation of y, g(y), E(y) or g (E(y)). “Linearly

combined” means as the followings:

i) If x1, x2, . . . , xm are the explanatory variables, the linear combination of the

explanatory variables is

β0 + β1x1 + · · ·+ βmxm,

where βi is a parameter, i = 1, . . . ,m.

ii) The linearity refers to linearity in the coefficients, βi not the x variables, for

examples β0 + β1x1 + β2(x2)
2 and β0 + β1x1 + β2x2 + β3x1x2.
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2.7.2 The generalized linear model

The generalized linear model (GLM) is a model which can be specified

to include a wide range of different models. Note that ANOVA and multiple

linear regression models are just special cases of GLM. Generalized linear modeling

is used to assess and qualify the relationship between a response variable and

explanatory variables. GLM is able to describe pattern of the interaction variables.

It can be also used for prediction. The modeling differs from an ordinary modelling

in two main respects:

• The distribution of the response variable is chosen from the exponential

family.

• A transformation of the mean of the response is linearly related to the ex-

planatory variables.

Given a response variable y, the GLM is

f(y) = c(y, ϕ) exp
{
yθ − a(θ)

ϕ

}
, g(µ) = xtβ, (2.7)

where

• xt is the transpose of the explanatory variable x, [1, x1, · · · , xm],

• β is a vector of parameters, whose transpose is [β0, β1, · · · , βm],

• µ is a mean,

• ϕ is the dispersion parameter,

• θ is the canonical parameter,

• a and c are some functions depended on the distribution of variables,
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• g is a monotonic differentiable function which is linearly related to explana-

tory variables contained in x.

Equations (2.7) show that

• the distribution of the response y is in the exponential family;

• observations on y are assumed to be independent;

• given x, µ is determined through g(µ) = xtθ;

• the choice of g(µ) determines how the mean is related to the explanatory

variables x, for examples

– for multiple linear regression models (MLRMs), g is identity,

g(µ) = µ = β0 + β1x1 + β2x2 + · · ·+ βmxm,

– for count data, the logarithm is used,

g(µ) = ln(µ) = β0 + β1x1 + β2x2 + · · ·+ βmxm,

which is called loglinear model,

– for binary data, the logit function is often used,

g(µ) = ln
(

µ

1− µ

)
= β0 + β1x1 + β2x2 + · · ·+ βmxm;

• given µ, θ is determined through ȧ(θ) = µ;

• E(y) = ȧ(θ) and Var(y) = ϕä(θ);

• given θ, y is determined as a draw from the exponential density specified in

a(θ);

• the choice of the function a(θ) determines the response distribution; and

• the choice of the function c(y, ϕ) determines the actual probability function.
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2.8 Maximum Likelihood Estimation

The maximum likelihood method is a good tool for estimating parame-

ters (Vapnik, 1998). This method was first introduced by Fisher in 1922. He

described different problems or estimating functions from given data as the prob-

lems of parameter estimation of specific (parametric) models and suggested the

maximum likelihood method for estimating the unknown parameters in all these

models. The concept of maximum likelihood is the making of the world of ideas

and nomenclature including ‘‘parameter,’’ ‘‘statistic,’’ ‘‘likelihood,’’ ‘‘sufficiency,’’

‘‘consistency,’’ ‘‘efficiency,’’ ‘‘information’’ and ‘‘estimation’’ (Aldrich, 1992). The

maximum likelihood method was suggested to be a good tool for estimating pa-

rameters of models even for small sample sizes. The following contents are based

on the Lecture Notes in Stat 378 by Dr. Karen Buro, Department of Mathematics

and Statistics, MacEvan University (Buro, n.d.)

2.8.1 Simple Linear Regression

Definition 2.15. A random variable y fits a Simple Linear Regression Model, if

and only if there exist β0, β1 ∈ R so that for all x ∈ R

y = β0 + β1x+ ϵ,

where ϵ is normal distributed, with zero mean and σ2 variance.

Theorem 2.4. If y fits a Simple Linear Regression Model, then for a fixed value

of x ∈ R the conditional expectation of y given x equals

E(y|x) = E(β0 + β1x+ ϵ) = β0 + β1x

and the conditional variance of Y given x equals

var(y|x) = var(β0 + β1x+ ϵ) = var(ϵ) = σ2.
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β0 and β1 are called the regression coefficients, and are the parameters of the model.

If one has n sample data (x1, y1), (x2, y2), . . . , (xn, yn), they can be used to

estimate the value of β0 and β1 of the simple linear regression model.

The least-squares estimators have the property that the total squared ver-

tical distances of the measurements to the least squares line are minimal, i.e. the

function
n∑

i=1

[yi− (β0 + β1xi)]
2

assumes its minimum for the least-square estimates β0 and β1.

Theorem 2.5. The least square estimates for the simple linear regression model

are

β̂1 =
SSxy

SSxx

and β̂0 = ȳ − β̂1x̄,

where

SSxx =

(
n∑

i=1

x2
i +

(
∑n

i=1 xi)
2

n

)
,

SSxy =

(
n∑

i=1

xiyi +
(
∑n

i=1 xi) (
∑n

i=1 yi)

n

)
,

ȳ =

∑n
i=1 yi
n

,

x̄ =

∑n
i=1 xi

n
.

β̂0 and β̂1 are called the least-squares estimators of β0 and β1 and

ŷ = β̂0 + β̂1x

is called the least-squares regression line.

Some properties of least square estimators are

• The estimators are linear in the random variable yi, i = 1, . . . , n :

β̂1 =
n∑

i=1

ci, yi, where ci =
xi − x̄

SSxx

, i = 1, . . . , n,
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and

β̂0 =
n∑

i=1

di, yi, where di =
1

n
− cix̄, i = 1, . . . , n;

• β̂0 and β̂1 are unbiased estimators for β0 and β1, respectively, i.e.

E(β̂0) = β0 and E(β̂1) = β1;

• var
(
β̂0

)
= σ2

(
1

n
+

x̄2

SSxx

)
and var

(
β̂1

)
=

σ2

SSxx

.

Definition 2.16. For sample data (xi, yi), i = 1, . . . , n, the ith residual is defined

as

ei = yi − ŷi = yi −
(
β̂0 + β̂1xi

)
.

Some properties of the residuals are

•
n∑

i=1

ei = 0;

•
n∑

i=1

yi =
n∑

i=1

ŷi;

• ȳ = β̂0 + β̂1x̄;

•
n∑

i=1

xiei = 0;

•
n∑

i=1

ŷiei = 0.

Theorem 2.6. Let SSres =
∑n

i=1 (yi − ŷi)
2 =

∑n
i=1 e

2
i , SST =

∑n
i=1 (yi − ȳ)2 and

SSR =
∑n

i=1 (ŷi − ȳ)2. Then

• if E(SSres) = σ2 then

σ̂2 =
SSres

n− 2
,

where σ̂2 is a variance of ŷ;
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• SST = SSR + SSres, i.e.

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2 .

The second part of the theorem shows that the total sum of squares mea-

suring of the total variation present in the measurements for the response variable

y (SST ) is equal to the addition of the sum for measuring how much of the vari-

ation can be accounted for through the regression model (SSR), and the residual

variation (SSres).

Definition 2.17. (Model fit) The way to measure model fit is through the

Coefficient of Determination

R2 =
SSR

SST

= 1− SSres

SST

.

The SSres is the amount in the total Sum of Squares in y, which remains unex-

plained by the model. Therefore the R2 is the proportion of the variance in y

which can be explained by the model. A value of R2 is close to 1 shows that the

model is a very good estimator, on the other hand, the model does not fit if R2 is

close to 0.

2.8.2 Maximum Likelihood

Assuming that the error for the n data points, (xi, yi), i = 1, . . . , n, is

independent and identically normal distributed, with zero mean and σ2 variance.

the density function of the normal distribution is needed.

A Maximum-Likelihood Estimator (MLE) for a parameter is chosen, such

that the chance of the data occurring is maximal if the true value of the parameter

is equal to the value of the Maximum Likelihood Estimator.



27

The likelihood function L, L : Θ× Rn → [0, 1], assigns to parameter value

θ ∈ Θ and sample data ỹ ∈ Rn the likelihood to observe the data ỹ, if θ is the true

parameter value describing the population.

Let f(ỹ|θ) be the density function for random variable Ỹ (representing the

random sample) with parameter θ. Then the Likelihood function is:

L(θ|ỹ) = f(ỹ|θ)

The MLE for θ based on data ỹ is the value ˜ which maximizes the likelihood

function for the given ỹ. In most cases it will be easier to maximize the function

l := ln(L). This is valid because the “ln” function is monotonic increasing.

Maximum likelihood estimation is one of the methods for estimating the

parameters of a probability distribution by maximizing a likelihood function.

Two examples of applications of maximum likelihood estimations for dis-

crete distribution and continuous distribution are as follows (Hogg).

The maximum likelihood estimation for Bernoulli distribution

Let Y1, Y2, . . . , Yn denote a random sample with Bernoulli distribution (2.3). In

this case θ = p. The probability that Y1 = y1, Y2 = y2, . . . , Yn = yn is the joint

probability mass function

py1 (1− p)1−y1 py2 (1− p)1−y2 · · · pyn (1− p)1−yn = p
∑

yi (1− p)
∑

yi ,

where yi equals 0 or 1, i = 1, 2, . . . , n. This probability is the likelihood function

L (p) = p
∑

yi (1− p)
∑

yi , 0 ≤ p ≤ 1. (2.8)

Let l(p) = lnL(p), then

l(p) =

(
n∑
i

yi

)
ln p+

(
n−

n∑
i

yi

)
ln (1− p) .

Since function “ln” is a monotonic increasing differentiable function thus the like-

lihood function L(p) and its logarithm l(p) are maximized for the same value of
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p. In order to find the maximum value p, let

d

dp
[l(p)] =

∑
yi
p

− n−
∑

yi
1− p

= 0. (2.9)

Equation (2.9) provides that p is not equal to 0 or 1, which is equivalent to the

equation ∑
yi
p

=
n−

∑
yi

1− p
.

The solution of equation (2.9) is p =

∑
yi

n
, which also maximizes equation (2.8).

The corresponding statistic

p̂ =
1

n

n∑
i=1

Yi

is called the maximum likelihood estimator of p.

The maximum likelihood estimation for Normal distribution

Support Y1, . . . , Yn are independent and identically distributed random variables

N(µ, σ2). In this case θ = (µ, σ2), the probability that Y1 = y1, Y2 = y2, . . . , Yn =

yn and the common probability density function is

L(µ, σ2) =
n∏
i

[
1√
2πσ2

exp
(
−(yi − µ)2

2σ2

)]
=

(√
2πσ2

)−n
2 exp

(
− 1

2σ2

∑
(yi − µ)2

)
.

The natural logarithm of the likelihood simplifies to

l(µ, σ2) = −n

2
ln 2π − n lnσ − 1

2σ2

n∑
i=1

(yi − µ)2 . (2.10)

Taking partial derivatives of equation (2.10) with respect to µ and σ and setting

them to 0, which provides

∂l

∂µ
=

1

σ2

n∑
i=1

(yi − µ) = 0,

∂l

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(yi − µ)2 = 0.
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Solving the above equations, one obtain

µ̂ =
1

n

n∑
i=1

yi and σ̂2 =

∑
(Yi − µ̂)2

n

as the maximum likelihood estimator of (µ, σ2).

2.9 Akaike Information Criterion

The Akaike information criterion (AIC) is an estimator of out-of-sample

prediction error and thereby relative quality of statistical models for a given set

of data. The main concept is to approximate the out-sample prediction loss by

the sum of the in-sample prediction loss and a correction term (Ding, Tarokh

and Yang, 2018). Suppose that we have a statistical model of some data with k

numbers of estimated parameters in the model. The AIC value of the model is the

following,

AIC = 2k − 2 ln
(
L̂
)
,

where L̂ is the maximum value of the likelihood function for the model which is

defined by L̂ = p(x|θ̂,M), x is the observed data, θ̂ are parameter values that

maximize the likelihood function and M is the model.

2.10 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is an index used in Bayesian

statistics to select among a finite set of models. It is another popular model

selection principle (Ding, Tarokh and Yang, 2018). The BIC is also known as the

Schwarz information criterion or the Schwarz-Bayesian information criteria. When

fitting models, it is possible to increase the likelihood by adding parameters, but

doing so may result in overfitting. Both BIC and AIC attempt to resolve this
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problem by introducing a penalty term for the number of parameters in the model;

the penalty term is larger in BIC than in AIC. The BIC value of the model is

defined as

BIC = ln(n)k − 2 ln
(
L̂
)
,

where n is the number of data points in x, the number of observations, or equiv-

alently, the sample size.

2.11 Researches Related with the Applications of Statisti-

cal Models to Insurance Claims

In this section, the researches related with the applications of statistical

models to insurance claims are reviewed.

Boucher, Denuit and Guillén (2008) modeled insurance claim counts with

time dependence based on generalization of Poisson and Negative Binomial Distri-

butions. They found that some intuitive models involving time dependence cannot

be used to model the number of reported claims. Also random effect models have

a better fit than some other models.

Edwards (2004) calculated the moments of the distribution of aggregate

life insurance claims from seriatim inforce data. He approximated the aggregate

claims distribution with a mixture of a gamma distribution plus an exponential

distribution with parameters chosen.

Boucher and Davidov (2011) presented an application of Tweedie Distribu-

tion to Claims Reserving Model. They considered Tweedie’s compound Poisson

model in a claims reserving triangle in a generalized linear model framework.

Smolárová (2017) proposed applications of Tweedie compound Poisson

model in non-life insurance pricing and claims reserving. The model was applied
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on the real data.

Gómez-Déniz et al. (2011) proposed a new distribution which is applicable

to actuarial works, including short and long tailed count data. They considered

the compound version of the geometric distribution.

Achieng (n.d.) studied industrial statistical distributions used in actuarial

analysis of insurance claim amounts and more specifically in motor policy, which

are Exponential, Gamma, Log-normal and Weibull distributions.

Kumar, Ghani and Mei (2010) claimed that health insurance costs across

the world have increased alarmingly in recent years. The cause are payment errors

made by the insurance companies while processing claims. The errors result in

extra administrative effort to reprocess (or rework) claims, which accounts for up

to 30% of the administrative staff in a typical health insurer. They applied data

mining to describe a system that helps reduce these errors. The machine learning

techniques was used to predict claims that will need to be reworked, generating

explanations to help the auditors correct these claims, and experiment with feature

selection, concept drift and active learning to collect feedback from the auditors

to improve over time.

T. L. Oshini Goonetilleke and H. A. Caldera (2013) analyzed customer

attrition by classifying all policy holders who are likely to terminate their policies.

Retaining customers who purchase life insurance policies is an even bigger challenge

since the policy duration spans for more than twenty years. Thus companies are

eager to reduce these attrition rates in the customer-base by analyzing operational

data. Data mining techniques play an important role in facilitating these retention

efforts.

M. Durairaj and V. Ranjani (2013) studied reports of different types of

data mining applications in the health care sector to reduce the complexity of the
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study of the health care data transactions.

David, Marcus and Celynda (2016) demonstrated the ability of this state-

of-the-art predictive analysis to find potential rare-disease patients in a large and

complex database. Machine-learning techniques applied to a de-identified claims

database are clearly capable of identifying these undiagnosed and inappropriately

treated patients. This information could be valuable to claims managers and

employers who may realize savings by helping physicians bring these patients to

appropriate treatment sooner. The potential exists to apply this technique to

other diseases that are rare.

Spedicato, Dutang and Petrini (2017) explored the applicability of novel

machine learning techniques such as tree boosted models to optimize the proposed

premium on prospective policyholders. Given the predictive gain over GLMs, they

carefully analysed both the advantages and disadvantages induced by their use.

As the level of competition increases, pricing optimization is gaining a central role

in most mature insurance markets, forcing insurers to optimize the rating and

consider customer behaviour.

Noorhannah and Manoj (2018) presented risk prediction in life insurance

industry using supervised learning algorithms. Risk assessment is a crucial element

in the life insurance. Companies perform underwriting process to make decisions

on applications and to price policies accordingly. With the increase in the amount

of data and advances in data analysis, the underwriting process can be automated

for faster processing of applications. They aim at providing solutions to enhance

risk assessment among life insurance firms using predictive analysis. The real world

data set with over hundred attributes has been used to conduct the analysis. The

dimensionality reduction has been performed to choose prominent attributes that

can improve the prediction power of the models. The data dimension has been
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reduced by feature selection techniques and feature extraction namely.



CHAPTER III

RESEARCH METHODOLOGY

This chapter presents the process used in this research. The process com-

prises of 8 parts as follows:

1. data import and packages installation;

2. histogram plots and descriptive analysis;

3. train and test data splitting;

4. fit of distributions;

5. modelling by generalized linear models (GLM);

6. feature selection by variable selection methods;

7. method prediction for GLM fitting;

8. accuracy measurement for the predicting model.

3.1 Data Import and Packages Installation

The data used in this thesis was obtained from “Sample Insurance Claim

Prediction Dataset” based on “[Medical Cost Personal Datasets][1]”, Dataset

owner Eason, date created 2018-05-14, last updated 2018-06-04, version 2,

available on https://www.kaggle.com/easonlai/sample-insurance-claim-

prediction-dataset.
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Table 3.1: Variables of insurance data using in this thesis.

variable description

age age of policyholder

sex gender of policy holder (female=0, male=1)

bmi body mass index, providing an understanding of body,

weights that are relatively high or low relative to height,

objective index of body weight (kg/m2) using the ratio

of height to weight, ideally 18.5 to 25

steps average walking steps per day of policyholder

children number of children / dependents of policyholder

smoker smoking state of policyholder (non-smoke=0;smoker=1)

region the residential area of policyholder in the US (north-

east=0, northwest=1, southeast=2, southwest=3)

charges individual medical costs billed by health insurance

insuranceclaim yes=1, no=0

The insurance data claim is composed of variables as shown in Table 3.1

The data was saved in CSV file which is available for viewing and working by Excel,

SPSS, MATLAB, RStudio, etc. However, this thesis focused on using RStudio for

the mathematical and statistical study.

R is a language and free software environment for statistical computing and

graphics. The R project was first developed by Robert Clifford Gentleman and

Ross Ihaka in the early 1990s. Robert Gentleman is a Canadian statistician and

bioinformatician and Ross Ihaka retired as an associate professor of statistics at

the University of Auckland, New Zealand, in 2017. RStudio software uses the R

language to develop statistical programs.



36

Detail of insurance data import to R and packages usage are shown in

section A.1 of Appendix A.

3.2 Histogram Plots and Descriptive Analysis

A histogram is a diagram consisting of rectangles whose area is proportional

to the frequency of a variable, which is a visual representation of the distribution

of numerical data. It presents an estimate of the probability distribution of a

continuous variable.

All numerical values of the nine variables shown in Table 3.1 were consid-

ered in histogram charts. The shapes diagram presented in each histogram chart

provides us an statistical informatics which leads to the related probability dis-

tribution. Note that examples of histogram command in RStudio software are in

section A.2 of Appendix A.

3.3 Train and Test Data Splitting

This part divides the data set into two subsets:

• training set: This is a subset that we use to train the model.

• test set: This is a subset that we use to provide an unbiased evaluation of

the final model fit on the training data.

In this thesis, the dataset was randomly split, 70% into the training set and the

remaining 30% into the test set. It was done by using caret, R library, an example

of which is shown in section A.3 of Appendix A.
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3.4 Fit of Distributions

Before fitting one or more distributions to a data set, a predefined set of

some distributions is required. The choice is scoped by the knowledge or the char-

acteristic of the data. Even though there is a theory for popular parametric claim

size distributions (Wüthrich, 2017), one need to confirm that what the distribu-

tion is fit for our data. The RStudio software has the fitdistrplus package which

provides a tool for the basic evaluation for that propose.

Some commands concerned fitting the proper distribution are shown in

section A.4 of Appendix A.

3.5 Modelling by Generalized Linear Models (GLM)

The purpose of this thesis is to explain how the variable charges depends on

other variables, i.e. age, sex, bmi, step, children, smoker, region and insurance-

claim. Since our data may not be normal distributed, generalized linear model

(GLM) is appropriate for our variables. The family types used in GLM modelling

were considered from the result of the previous section (fit of the distributions).

Examples of using glm() function of RStudio software are shown in section A.4 of

Appendix A.

3.6 Feature Selection by Variable Selection Methods

The Akaike Information Criterion (AIC) value helps in finding the subset

of variables in our data set which makes a model has lowest prediction error. Thus,

AIC provides a means for feature selection.

There are three strategies of stepwise AIC:

1. Forward selection: The selection process is started with an empty model
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and variables are added sequentially.

2. Backward selection: The selection process is started with the full model

and variables are excluded sequentially.

3. Both (forward and backward) selection: This selection process com-

bines both forward and backward selection. It starts like the forward model,

no predictors, then one sequentially adds the most contributive predictors.

However, after adding each new variable, some variables may be removed if

they no longer provide improvement in the model fit.

All strategies were applied to our data set. The subset of variables, which provide

best performing model (least AIC value), were selected. Note that, for each fitting

distribution, the model has a different appropriate subset of variables. RStudio

software is available of all three strategies, an example of which is shown in section

A.6 of Appendix A.

3.7 Accuracy Measurement for the Predicting Model

The test data set is applied to the obtained model. The following values of

the our results are evaluated:

• root mean square error (RMSE)

The root mean square error is the standard deviation of the prediction errors

of a model with respect to a test set. RMSE is a measure of how spread out

these errors are.

• mean square error (MSE)

The mean squared error (MSE) or mean squared deviation (MSD) of an

estimator measures the average of the squares of the errors of a model with

respect to a test set.
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• mean absolute error (MAE)

The mean absolute error of a model with respect to a test set is the mean of

the absolute values of the individual prediction errors on over all instances

in the test set.



CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents the results from the process proposed in Chapter

III Research Methodology. The main goal in this section is about the output

from R software manipulated on data set “Sample Insurance Claim Prediction

Dataset” (n = 1, 338) which based on “[Medical Cost Personal Datasets][1]”,

Dataset owner Eason, date created 2018-05-14, last updated 2018-06-04, ver-

sion 2. available on https://www.kaggle.com/easonlai/sample-insurance-

claim-prediction-dataset.

4.1 Exploratory Analysis of the Data Set
Some properties of the variables presented in table 4.1 are as follows:

1. sex, smoker, region and insuranceclaim are normal scale data type.

2. age, bmi, steps, children and charges are ratio scale data type.

3. The unit of age variable is year.

4. For sex variable, “0” means “female” and “1” means “male”.

5. The unit of bmi variable is (kg/m2).

6. The unit of step variable is average walking steps per day.

7. The unit of children variable is person.

8. For smoker variable, “0” means “non-smoke” and “1” means “smoker”.
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Table 4.1: Some statistical values of sample insurance claim prediction dataset

(n = 1, 338).

variable mean variance skewness kurtosis

age 39.20702541 197.4013867 0.055672516 -1.245087653

sex 0.505231689 0.250159595 -0.020951397 -2.002556636

bmi 30.66339686 37.18788361 0.284047111 -0.050731531

steps 5328.623318 6020365.13 0.662112022 -1.149448629

children 1.094917788 1.453212746 0.93838044 0.202454147

smoker 0.204783259 0.162968876 1.46476616 0.145755539

region 1.515695067 1.220770683 -0.038100508 -1.32770195

charges 13270.42227 146652372.2 1.515879658 1.606298653

insuranceclaim 0.585201794 0.242922211 -0.346253982 -1.882924956

9. For region variable, “0” means “northeast”, “1” means “northwest”, “2”

means “southeast” and “3” means “southwest”.

10. The unit of charges variable is dollar.

11. For insuranceclaim variable, “0” means “no” and “1” means “yes”.

4.2 Histogram Plots

The distributions of the data set of each variable were considered by his-

togram plots. The shape of each histogram shown in figure 4.1 presents informa-

tive characteristics of the variable. Obviously, only some variables are suitable to

study, e.g. bmi and charges. However, the study of charges provides more benefit

for to both insurance companies and common people. The shape of histogram plot

for variable charges is explored according to some family of distributions. Here we
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scope on logistic, negative binomial, normal, log-normal and gamma distributions

since the shape of the histogram plot of charges is skewed to the right.
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Figure 4.1: Histograms of data of each variable.

4.3 Train and Test

The data set was divided into 2 groups: 70% of the data was selected

randomly into the training set and the remaining 30% samples into test data set.

Here there are 937 units in the training set and 401 units in the test set. Some

statistic values of the training data set are shown in Table 4.2. Compare to the

statistic values of the data set in Table 4.1, the characteristic of the training set

is similar to one of the data set. Our sampling is good to be the representative of
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the data set.
Table 4.2: Some statistical values of the training set (n = 937).

variable mean variance skewness kurtosis

age 39.26254002 198.1104863 0.031374321 -1.262186535

sex 0.500533618 0.250266809 -0.002137897 -2.004278075

bmi 30.72647279 37.18961674 0.287976056 -0.152925079

steps 5373.33191 6138814.427 0.619908572 -1.215203543

children 1.058697972 1.395055141 0.962238237 0.291107676

smoker 0.194236926 0.156676153 1.548251684 0.397928085

region 1.50266809 1.239576207 -0.027666038 -1.348435789

charges 13101.42315 148085510.6 1.559048197 1.731307595

insuranceclaim 0.5773746 0.244273869 -0.313774673 -1.905617511

4.4 Fit of Distributions

This process, it is to determine which distributions fits our train set best.

Histogram and theoretical densities plot for charges variables are shown in Fig-

ure 4.2. Log-likelihood was a tool used in this process to find out the suitable

distribution roughly.

By the given table, log-likelihood value for log-normal distribution is the

highest, -5448.2398, and log-likelihood value for gamma distribution is the second

highest, -5477.4609. AIC and BIC values of both distributions are also lower; the

lower value provides that it is better in model fitting. Hence both distributions

are considered for using in the GLM modelling.

However, negative binomial distribution is also another distribution used
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Figure 4.2: Histogram and theoretical densities plot for charges variables.

Table 4.3: Parameter Estimates for the Distributions.

Distribution Log-Likelihood AIC BIC

Gamma -5477.4609 10958.9217 10968.6071

Lognormal -5448.2398 10900.4796 10910.1649

Logistic -5774.7823 11553.5646 11563.2500

Normal -5828.0319 11660.0639 11669.7492

in the GLM modelling because Boucher, Denuit, and Guillén (2008) proposed

that insurance claim counts with time dependence can be modelled by negative

binomial distribution. Negative binomial distribution is a two parameter discrete

distribution which is skew right, its variance value is greater than its mean.
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4.5 Generalized Linear Model

4.5.1 Gamma distribution

The R software performed the relation that charges depends on 5 variables,

i.e. age, bmi, steps, children and smoker, which AIC = 18786,

1

charges = (1.670× 10−4)+(−9.515× 10−7)age+(−6.734× 10−7)bmi

+(3.038× 10−9)steps +(−2.277× 10−6)children

+(−8.104× 10−5)smoker.
The coefficients of variables in the model are in table 4.4.

Table 4.4: Coefficients of variables in the GLM model based on gamma distribu-

tion.

Variables Coefficient Values

Intercept 1.670× 10−4

age −9.515× 10−7

bmi −6.734× 10−7

steps 3.038× 10−9

children −2.277× 10−6

smoker −8.104× 10−5
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4.5.2 Log-normal distribution

The R software performed the relation that charges depends on 7 variables,

i.e. age, sex, bmi, children, smoker, region, and insuranceclaim, which AIC =

18184 and

ln (charges) = 6.9466+(0.0349)age− (0.0583)sex +(0.0169)bmi

+(0.0815)children+(1.6123)smoker+ (−0.0416)region

+(−0.1077)insuranceclaim.

Here σ coefficient value is −0.817 and the coefficients of variables in the model are

presented in table 4.5.

Table 4.5: Coefficients of variables in the GLM model based on log-normal dis-

tribution.

Variables µ Coefficient Values

Intercept 6.9466

age 0.0349

sex −0.0583

bmi 0.0169

children 0.0815

smoker 1.6123

region −0.0416

insuranceclaim −0.1077
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4.5.3 Negative binomial distribution

The R software performed the relation that charges depends on 6 variables,

i.e. age, bmi, children, smoker, region, and insuranceclaim, which AIC = 18469,

and

ln (charges) = 7.31797+(0.02846)age− (0.01756)bmi +(0.06663)children

+(1.54337)smoker− (0.05260)region

− (0.10264)insuranceclaim.

The coefficients of variables in the model are presented in table 4.6.

Table 4.6: Coefficients of variables in the GLM model based on negative binomial

distribution.

Variables Coefficient Values

Intercept 7.31797

age 0.02846

bmi 0.01756

children 0.06663

smoker 1.54337

region −0.05260

insuranceclaim −0.10264
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4.5.4 Evaluation of the Models Obtained

The three prediction models obtained can be evaluated according to the

measurements by RMSE, MAE and MSE. The lower value in each measurement

means the better model. All values are presented in table 4.7.

Table 4.7: RMSE, MAE and MSE of the models obtained.

Model based on distribution RMSE MAE

Gamma 1.052 5378

Log-Normal 0.3936 4337

Negative binomial 0.5328 4491



CHAPTER V

CONCLUSION AND RECOMMENDATION

In this thesis, we proposed an analysis of distributions for insurance claims

data. By the review literature, the application of GLM to model data set was

used as a tool in analysis. Many contents in mathematics and statistics of data

were studied. By the study, the well known distributions relating to claims data

are logistics, normal, gamma and log-normal distributions. The histogram plots

of each variable of insurance data provided an information to scope of our study.

Here variables charges was chosen to analyze. The data obtained was split into 2

groups, training set and test set. The training set was composed of 937 items and

the test set composed of 401 items. The histogram of train set was estimated by

the distributions which we have proposed. The results in Table 4.3 implied that

gamma and log-normal distributions were better fit in modelling. However, the

negative binomial distribution was also another distribution used in this thesis.

In the process of GLM modelling, all three proposed distributions were applied.

For the model using gamma distribution, variable charges did not depend on sex,

region and insuranceclaim. For the model using Log-normal distribution, variable

charges did not depends on steps only. In the case of using negative binomial

distribution, variable charges did not depend on sex and step.

The models obtained were measured the accuracy by the test data set. The

result in Table 4.7 shows that log-normal distribution is the best in GLM model

fitting, negative binomial distribution is the second best performance and gamma

distribution performed worst.
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This chapter presents some R commands using in this thesis.

A.1 Loading data and using related package in RStudio

software

In order to load data into RStudio software and use libraries, the process is

the following:

- Set and Get working directory in R:

wd<-”D:/GLM/n/3/”

setwd(wd)

getwd()

- Reading a CSV File in R:

mydata = read.csv(Data input.csv)

- Using packages:

library(MASS) #Support Functions and Datasets for Venables and Ripley’s MASS

library(gamlss) #Generalised Additive Models for Location Scale and Shape

library(fitdistrplus) #Help to Fit of a Parametric Distribution to Non-Censored or

Censored Data

library(caret) #Classification and Regression Training

library(kernlab) #Kernel-Based Machine Learning Lab

A.2 Histogram Plots and Descriptive Analysis

To show histogram of input data, some examples are as follows:

hist(mydata$age)

hist(mydata$charges)

hist(mydata$insuranceclaim)
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A.3 Train and Test Data Splitting

The following code uses library dplyr to split 70% of the data selected

randomly into training set and the remaining 30% sample into test data.

train<-sample_frac(mydata,0.7)

sid<-as.numeric(rownames(train))

test<-mydata[-sid,]

A.4 Fit of Distributions

Here, library fitdistrplus was used in the thesis. The package fitdistrplus

provides functions for fitting univariate distributions to different types of data

and allowing different estimation methods. Example of using fitdistrplus package

for fitting distribution is the followings.

library(fitdistrplus)

x<-train$charges

fg <-fitdist(x, ”gamma”)

fn <-fitdist(x, ”norm”)

fln <-fitdist(x, ”lnorm”)

plot.legend <- c(”gamma”,”norm”,”lnorm”,”logis”)

hist(x)

denscomp(list(fg,fn,fln,flg), legendtext = plot.legend)

A.5 Generalized Linear Model

Generalized linear model are fit using the glm() function. The form of the

glm function is

glm(formula,family=familytype (link=linkfunction),data=)
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For log-normal distribution, the commands are

library(gamlss)

glm.lognormal <-gamlss(charges~ages+sex+bmi+step+children+smoker+region

+insuranceclam, family = LOGNO() ,data=train)

In the case of the negative binomial, the commands are

library(MASS)

glm.negbi <-glm.nb(charges~ages+sex+bmi+step+children+smoker+region

+insuranceclam, data=train)

With the library MASS, for other distributions in the exponential family,

the command can be changed to

glm.model <-glm.nb(charges~ages+sex+bmi+step+children+smoker+region

+insuranceclam, family = XXXX(link=”YYYY”), data=train)

Here XXXX is a family and YYYY is a link function in table A.1

A.6 Feature Selection by Variable Selection Methods

Finding the appropriate subset of variables which makes model perform-

ing well via AIC for all three strategies is available in the following process:

library(MASS)

glmmodel <-glm(charges~.,family =XXXX(link=”YYYY”), data=train)

modelf <-stepAIC(glmmodel, direction = ”forward”)

modelb <-stepAIC(glmmodel, direction = ”backward”)

modelboth <-stepAIC(glmmodel, direction = ”both”)
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Table A.1: Table of family distribution names and link functions used in the glm

command.

Family DefaultLinkFunction

binomial (link=”logit”)

gaussian (link=”indentity”)

Gamma (link=”inverse”)

inverse.gaussian (link=”1/mu^2”)

poisson (link=”log”)

quasi (link=”indentity”,variance=”constant”)

quasibinomial (link=”logit”)

quasipoisson (link=”log”)

A.7 Accuracy Measurement for the Predicting Model

Root mean square error (RMSE), mean square error (MSE) and mean ab-

solute error (MAE) can be obtained according to the following commands respec-

tively:

predictmodel <- predict(bestmodel,newdata=test,type = ”response”)

RMSE <-sqrt(mean((test$ charge - predictmodel)2̂/test$ charge2̂))

MAE <-mean(abs(test$ charge - predictmodel))

MSE <-sqrt(mean((test$ charge - predictmodel)2̂))
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