THE PERFORMANCE OF LEARNING ALGORITHMS ON REDUCED
DATA SETS

Kittisak Kerdprasop and Nittaya Kerdprasop

School of Computer Engineering
Suranaree University of Technology
Nakorn Ratchasima 30000, THAILAND
kerdpras@ccs.sut.ac.th, nittaya@ccs.sut.ac.th

Abstract

Knowledge discovery is the process of extracting useful
and previously unknown information from the very
large data set. But extracting knowledge from a large
data set is computationally inefficient. Using a sample
from the original data can speed up the data mining
process, but this is only acceptable if it does not reduce
the quality of the induced information. We thus
investigate the behavior of learning algorithms on
different sampling sizes to decide which sample is
sufficiently similar to the original data. We observe the
accuracy of the induced rules extracted from training
samples of decreasing sizes and use these results to
determine when a sample is sufficiently small, yet
maintain the acceptable accuracy rate. We evaluate
random and stratified sampling methods on data from
the UCI repository with three learning algorithms.

Key Words: data mining, data reduction, sampling,
accuracy

1. Introduction

Data mining (also known as knowledge discovery in
databases, or KDD) is the process of applying specific
learning algorithm to extract interesting and useful
knowledge from data [1]. Typical data mining
applications extract knowledge from databases ranging
from small to moderate in size. When a data set is very
large, mining process may take a very long time.
Moreover, some mining algorithms may not be scalable
on huge amounts of data. To handle large data sets, data
reduction is one important step prior to applying the
mining algorithms.

Data reduction can be achieved by reducing the
number of instances and/or reducing dimensions of
those instances. Our study focuses on instance reduction
via the technique of sampling. Mining on reduced data
set is obviously more efficient in terms of mining time
than on the original data set. However, if the sample is
too small, some useful knowledge may be overlooked

or learning accuracy may be reduced. Our paper
addresses the question of sufficient sample sizes that
perform closely to the original data set, as well as the
improved mining time.

We compare the performance of three different
learning algorithms in terms of accuracy (or success
rate) and learning time for various sampling sizes. Then
conclude with the preferring samples. The rest of the
paper is organized as follows. The next section
describes various sampling methods. Section 3
discusses the algorithms chosen to run the data sets.
Sections 4 and 5 explain the experimental setup and the
results, respectively. Section 6 concludes the paper.

2. Sampling Methods

Sampling is used as a data reduction technique because
it allows a large data set to be represented by a much
smaller subset of the data. Basic methods of sampling
commonly used are random sampling, systematic
sampling, and stratified sampling [2].

Suppose that a large data set contains N instances.
Random sampling selects n instances (n < N) at a
random choice. The probability of drawing any instance
in the data set is 1/N, that is, all instances are equally
likely. This is the case of random sampling without
replacement. If the sampling is done with replacement,
an instance has a chance to be drawn more than once.

The systematic sampling method draws » instances
from the data set by their fixed stepping positions. This
sampling method draws the first instance at a random
position. Then iteratively draws subsequent instances at
the next k position, when £ is a stepping size.

Stratified sampling method first divides the data set
into mutually disjoint subsets called strata. Then draws
samples from each stratum independently by applying
the simple random sampling technique. The three
sampling methods are illustrated in Figure 2.1.

Random sampling T7
(without replacement)

Original data set

Random sampling Tl

Tl .. poor (with replacement) T12
T2 .. good / T1
T3 ... _moderate

T2
TI1
T4

T3

T4 ... _moderate Systematic sampling T10
T5 poor W‘V T3
T6 good T8
T7 . good T1 poor T1
T8 poor TS poor
T9 ... moderate T8 poor
T10 good T3 . moderate
T11 ... moderate T4 . moderate
T12 ... moderate T9 . moderate Tl poor
T11 . moderate T11 . moderate
T12 . moderate T4 ... moderate
Stratified T2 good /1 T7 ... good
sampling T6 good
T7 good
T10 good

Figure 2.1 Different Sampling Methods to Draw 4 Samples.

3. Learning Algorithms

The three learning algorithms selected to perform the
supervised learning task are OneR, naive Bayes, and
J48. OneR is a simple algorithm proposed by Holt [3].
OneR induces classification rules based on the value of
a single attribute. We choose OneR to be a base
algorithm for comparing the predictive accuracy with
other sophisticated algorithms. It is shown that we can
get reasonably accurate decision rules by simply
looking at one attribute, as opposed to a more
sophisticated top-down decision-tree induction
algorithms such as C4.5 [4]. The average accuracy of
OneR for the data sets tested by Holte [3] is just 5.7%
lower than that of C4.5.

Naive Bayes classification algorithm [5] is based on
Bayes theorem of posterior probability. Given the
instance, the algorithm computes conditional
probabilities of the classes and picks the class with the
highest posterior. Naive-Bayes classification assumes
that attributes are independent. The probabilities for
nominal attributes are estimated by counts, while
continuous attributes are estimated by assuming a
normal distribution for each attribute and class.
Unknown attributes are simply skipped. Experimental
studies [5, 6] suggest that naive Bayes tends to learn
more rapidly than most induction algorithms. We,
therefore, choose this algorithm to be a benchmark on
comparing the rate of learning.

J48 algorithm [7] is an implementation of the C4.5
decision tree learner [4]. The algorithm uses the greedy
technique to induce decision trees for classification. A
decision-tree model is built by analyzing training data
and the model is used to classify unseen data. An
information-theoretic measure is used to select the
attribute tested for each nonleaf node of the tree.
Decision tree induction is an algorithm that normally
learn a high accuracy set of rules. We thus choose the
algorithm to compare with others on the basis of
accuracy rate.

4. Experimental Methodology

The aim of our experiments is to study the performance
of learning algorithms on the reduced data sets of
various sizes. We choose the chess data set from the
UCI Repository [8]. The data set is sampled using two
different sampling methods: random sampling (without
replacement) and stratified sampling. We skip the
systematic method because in our preliminary
experiments it gives a set of data that performs very
close to that of the random method.

For each sampling method, a data set is drawn for
six different sample sizes: 25%, 17%, 10%, 5%, 1% and
0.1% of the original data set. Then run the three
learning algorithms on each sample three times and
average the result. The learning algorithm is also run on
the original data set (sampling size = 100%) to observe

the accuracy and the learning time. These two criteria
will be used as a benchmark to compare against those
obtained from the various samples.

The experiments are performed on the WEKA
(Waikato Environment for Knowledge Analysis) system
[9]. WEKA system is an open-source Java-based
machine learning environment that provides tools and
algorithms to be used as a data-mining workbench.

In our experiments, we partition the original data set
into two mutually disjoint sets: a training set and a test
set. The training set is used to train the learning
algorithm, and the induced decision rules are tested on
the test set. The test set contains 281 instances.
Sampling for different sizes is done on the remaining
27,775 instances.

5. Results

Table 5.1 shows the results of running three different
algorithms on the seven sampling sizes (100%, 25%,
17%, 10%, 5%, 1%, and 0.1%). Each sample is drawn
using the normal random and the stratified random
sampling methods. For each run the number of correctly
classified rules is observed and reported as the accuracy
of the learned model (shown in columns 4, 6, and 8).
The learning time (or time to build model) is also
investigated and displayed in columns 5, 7, and 9.

To clarify the comparison of accuracy and learning
time, the bar graphs are shown in Figure 5.1. The upper
graph shows the high accuracy of the decision-tree
induction algorithm (J48). Despite the impressive
accuracy rate, the accuracy curve is unstable on the
reducing data sets, whereas the OneR and naive Bayes
show the stable accuracy on the data sets reduced down
to 1% of the original data set. It turns out as we expect
that the accuracy rate of OneR is the lowest among the
three algorithms. Moreover, at the sampling sizes 5%
and 1% the accuracy of naive Bayes and J48 are
insignificantly difference.

The lower graph in Figure 5.1 shows the improved
learning time of the algorithms on the reducing data
sets. Since the J48 algorithm consumes far more leaning
time than the other two algorithms, we have to plot their
logarithmic time values. The learning time of J48 drops
drastically when we reduce the data set to the 25%
sample size. It employs the learning time 85% lower
than the time used by the original data set to trade with
the 19% increase in the error rate. The OneR and naive
Bayes algorithms run in time almost linear with the
number of instances; that is, the differences in learning
time on reduced data sets at different sizes are not very
significance.

Table 5.1 Experimental Result of Accuracy Estimation for each Reduced Data Set and the Learning Time.

Learning Algorithms
Sampling | Number of Sampling .
Sizes Instances Methods OneR Naive Bayes J48
Accuracy Time Accuracy Time Accuracy Time
(seconds) (seconds) (seconds)
100% 27,775 No Sampling | 24.62% 0.93 31.31% 1.1 69.75% 95.02
25% 6,944 Random 21.11% 0.2567 30.13% 0.35 50.41% 14.08
Stratify 22.77% 0.2767 31.07% 0.257 51.00% 13.39
17% 4,630 Random 21.94% 0.2333 30.63% 0.127 46.02% 6.537
Stratify 22.77% 0.13 31.19% 0.2 45.90% 6.717
10% 2,778 Random 21.94% 0.0767 29.89% 0.11 42.11% 2.977
Stratify 21.94% 0.0567 29.06% 0.07 38.91% 3.08
5% 1,389 Random 22.77% 0.0533 27.99% 0.037 34.63% 0.717
Stratify 21.94% 0.0533 29.77% 0.06 35.23% 0.753
1% 278 Random 20.043% | 0.02 26.57% 0.037 25.26% 0.07
Stratify 19.093% | 0 27.01% 0 27.75% 0.113
0.1% 28 Random 9.4833% | 0 19.45% 0 13.04% 0
Stratify 13.633% | 0 19.81% 0 14.11% 0

Accuracy Comparison

Success Rate (%)
S
S

N

B TR YY)
A S A A A SN
B A A A AN NN

T T T T P S AN SATASAN SN
B N e

Ry

0 i
Sampling

Sizes 100% 25% 17% 10% 5% 1%

=}

.10%

OR Acc(OneR) OS Acc(OneR) R Acc(NB) S Acc(NB) IR Acc(J48) S Acc(J48) ‘

Learning Time Comparison

W
I

N
L

Time (log of time in msec)

—_
I

Y

§
§
L
0
0
|
L
.

|
7

0+

Sampling 100% 25% 17% 10% 5% 1% 0.10%
Sizes

OR Time(OneR) OS Time(OneR) DR Time(NB) OS Time(NB) ER Time(J48) OS Time(J48)

Figure 5.1 The Comparisons of Accuracy and Learning Time of Algorithms on each Sample Size.
R_Acc is the accuracy (or success rate) on the random sampling (without replacement) data set.
S_Acc is the accuracy (or success rate) on the stratified sampling data set. R_Time is the learning
time on a data set obtained from random sampling. S Time is the learning time on a stratified
random data set. Learning time of all the 0.10% sampling data is 0 second.

Sampling Error Rate % Time Usage 200

100% 75.38 100 180 OneR
160 4
25% 77.23 29.75 140
17% 77.23 13.98 120 4
100 4
10% 78.06 6.09 20

5% 78.06 5.73 60 1

40 -

1% 80.91 0 20 |
0 T

0.10% 86.37 0
100% 25% 17% 10% 5% 1% 0.10%

EError_Rate(OneR) M % Time Used

Sampling Error Rate % Time Usage 180
100% 68.69 100 160 - Naive Bayes
140
25% 68.93 23.12
120
17% 68.81 18.02 100 -

80 -

10% 70.94 6.31
60 -
5% 70.23 5.41 40 4
1% 72.99 0 20
0 T

0,
0.10% 80.19 0 100% 25% 17% 10% 5% 1% 0.10%
E Error_Rate(NB) B % Time Used
Sampling Error Rate % Time Usage 140
100% 30.25 100 120 J48
25% 49 14.09 100 4
17% 54.1 7.07 80
10% 61.09 3.24 60
5% 64.77 0.79 40 +
1% 72.25 0.12 20 1
0

0.10% 85.89 0
100% 25% 17% 10% 5% 1% 0.10%

EError_Rate(J48) M % Time Used

Figure 5.2 The Tradeoff in Decreasing Learning Time and Increasing Error Rate.
The varied sampling sizes are plotted on the horizontal axis. Vertical axis shows the
percentage of error rate (of the model on predicting the unseen data) versus percentage of
time usage on building model.

Figure 5.2 shows the accuracy-learning time tradeoff
point to guide the decision of which sampling size
should be the optimal choice. OneR and naive Bayes
have shown the characteristic of fast learning
algorithms. They need samples around 1 to 10% to
achieve the high accuracy. This results also agree with
the studies of Langley et al. [5, 6] regarding the fast
learning rate of naive Bayes classifier. J48, on the other
hand, needs almost 100% of the samples to reach the
highest accuracy rate. However, in the situation that
resources are limited and the data set is too large, the
sampling sizes of 25% down to 10% should give the
acceptable model in terms of accuracy.

6. Conclusion

As data sets grow to the point where the amounts are
typically measured in the unit of gigabytes, mining data
sets of this size is an arduous and impractical task.
Using a sample from the data set can speed up the data
mining process. But sampling involves a decision about
a tradeoff in lower the accuracy to obtain the improved
and practical running time of a data mining algorithm.
We perform the experiments to explore the behavior of
three different algorithms on various grains of data set.
OneR and naive Bayes algorithms show the almost
stable accuracy rate. This result reflects the fast-
learning property of OneR and naive Bayes. This
property, however, does not hold in the decision-tree
induction algorithm.

We also suggest the range of sampling sizes for each
type of learning algorithms. OneR and naive Bayes
require sample around 1 to 10% to reach their high
accuracy rate. For the decision-tree induction algorithm,
the sampling size of 10 to 25% should give the
acceptable accurate model. Nevertheless, because of the
diversity on the data domains, we encourage further
study toward each data group.

References

[1] U. Fayyad, G. Piatetsky-Shapiro, & P. Smyth, From
data mining to knowledge discovery in databases, A/
Magazine, 1996, 37-54.

[2] K. Josien, G. Wang, T.W. Liao, E. Triantaphyllou, &
M.C. Liu, An evaluation of sampling methods for data
mining with fuzzy c-means, In Dan Braha (Ed.), Data
Mining for Design and Manufacturing, Chapter 15
(Kluwer Academic, 2001) 351-365.

[3] R.C. Holt, Very simple classification rules perform
well on most commonly used datasets, Machine
Learning, 11,1993, 63-90.

[4] J. R. Quinlan, C4.5: Programs for machine learning
(Morgan Kaufmann, 1993).

[5] P. Langley, W. Iba, & K. Thompson, An analysis of
Bayesian classifiers, Proceedings of the 10™ National
Conference on Artificial Intelligence, 1992, 223-228.

[6] P. Langley & S. Saga, Induction of selective
Bayesian classifiers, Proceedings of the 10" Conference
on Uncertainty in Artificial Intelligence, 1994, 399-406.

[7] LH. Witten & E. Frank, Data mining: Practical
machine learning tools and techniques with Java
implementations (Morgan Kaufmann, 2000).

[8] C. L. Blake & C. J. Merz, UCI Repository of
machine learning databases, University of California,
Irvine, Department of Information and Computer
Science, 1998. [http://www.ics.uci.edu/~mlearn/ML
Repository.html].

[91 WEKA (Waikato Environment for Knowledge
Analysis), University of Waikato, Department of
Computer Science, New Zealand. [http://www.cs.
waikato.ac.nz/~ml].

	Abstract
	Key Words: data mining, data reduction, sampling, accuracy
	References

