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CHAPTER I 

INTRODUCTION 

 

1.1 General Introduction 

An electric power system is a power grid that contains the electrical components 

installed to supply, transmission, and use of electric power. It is the grid that could be 

extended to other area ranged in the distance. Basically, the supply side is referred to 

the power generations, the transmission system is carried out the power from the 

generating centres to the load centres, and the distribution system is constructed to feed 

the power to nearby consumers. Figure 1.1 shows the simplified diagram of an 

alternating current (AC) electricity delivery from generation stations to consumers’ 

service drop. 

 

 

Figure 1.1 An Example of the Electric Power System. 

 

In the power grid, the electric utilities need to be balanced the power generation 

and load considering economic operation with the grid reliability and quality of supply. 
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Therefore, optimal power flow (OPF) techniques for possible future power system 

operation are steadily proposed with various optimization techniques. Recently, the 

innovation of computer processor units has produced as a matter of engineering 

required to solve their problems as fast as possible in real time and online. Optimal 

power dispatch (OPD) has become one of the most extensive optimization tools adopted 

in the power system planning and electricity market. With the above issues, many 

researchers have endlessly studied optimization techniques to investigate the optimum 

operation of the power system. Many optimization algorithms have always been 

mentioned both artificial intelligence and conventional methods to obtain an OPD 

solution.  

 

1.2 Problem Statement 

At the present time, the supply-demand balancing issues are frequently occurred 

in the developing countries and some areas due to the growth of the business, industrial 

productivity, population, commercial, and residential requirements endlessly. System 

operator (SO) has an obligation to respond to this matter according to the customers’ 

needs. Sometimes, the costly power generation has to operate indeed to meet the 

required demands, but it may have some complexities inside. In modern technological 

development, this kind of problem can be handled by a demand response (DR) program 

thorough notes of Section 2.5.2. The optimization technique is still a useful tool to 

figure out the expected optimal profits, while the nature of the linear programming (LP) 

can advance this kind of cost minimization problem very well, as many researchers ever 

developed up to now. Nevertheless, load variations are also the difficulties in this case 

study, however, it will be addressed by the powerful technique called Monte Carlo 
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simulation, which can deal extensively with the uncertainties in the power system 

represented in Section 3.8. 

Dealing with this problem, it has to be done immediately in the real-time process 

by SO and retailers relying on the customers’ prerequisite, there is a proposed 

perspective in this research concept. The problem formulation is to model uncertainty 

loading variations using normal PDF and PTNF considering PRDR to balance between 

supply availability and demand side. Furthermore, linear programming optimal power 

dispatch (LPOPD) will provide the optimum solutions to SO by understanding the 

problems clearly gaging the known constraints. 

 

1.3 Study Objective 

The objective of the study is to minimize the total system investment cost in 

considering PRDR for every single hour for day-ahead in the distribution system. The 

developed framework aims to curtail the spiky demand in the distribution system. Apart 

from the settled procedures, the LPOPD is proposed for solving the power generation 

dispatch with PRDR. The Newton-Raphson power flow (NRPF) is used to obtain the 

losses and to test the feasibility of the dispatch solution. Therefore, the proposed method 

can efficiently and effectively illustrate the total power generation cost, while trading 

off the PRDR cost in the POPD problem with loading uncertainties. The aim of this 

work is to compensate for the power demand with the price-based power generation 

considering PRDR scheme, there are several expected benefits as, 

i. Reducing the overall incremental production cost, 

ii. Co-optimizing energy market and demand side, 

iii. Promoting reasonable DR prices to clients by technological development, 
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iv. Forecasting elasticity of demand in hour-ahead or day-ahead, and 

v. Hourly dispatch in a competitive market. 

 

1.4 Scope and Limitation 

In this work, LPOPD has implemented a plan in adapting the NRPF with the 

generators’ operating costs for each generator in the system, which would be given by 

piecewise linear cost functions.  The power generation dispatch and total diminished 

investment cost will be obtained from the computational procedure of LPOPD in Figure 

3.4, while the forecasted load pattern hour-ahead or day-ahead with PRDR would be 

presented in the power grid participated in the objective function. The computational 

procedure of LPOPD will be tested with the initial system data of the modified IEEE 

30-bus test system is shown in Figure 4.1 and the generators’ operating costs for each 

generator as shown in Table 4.1 will be used in this procedure. After that, the LP has 

computed to co-optimize the total power generation and PRDR pattern in the projected 

time slot, and then the forecasted day-ahead load pattern will be considered of the case 

study. Moreover, the overall incremental production cost reduction and realistic DR 

prices will be claimed by DR participants. 

 

1.5 Conception 

Essentially, the LPOPD is proposed for solving the power generation dispatch 

in associated with PRDR. The proposed method neglects the overall investment cost in 

the case of power demand running on the peak period and co-optimize between power 

demand and available supply. The size of DR will be arranged in real-time depending 

on the proportion of actual peak load and forecasted load pattern hour-ahead or day-

ahead. The simulation result has prosperously shown that the proposed method can 
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handle the OPD solutions considering PRDR. Therefore, the proposed method can 

efficiently and effectively illustrate the total power generation cost, while trading off 

the PRDR cost in the OPF problem. 

Figure 1.2 illustrates the characteristic of the DR concept in real-time in order 

to operate the system in participating with the curtailable aggregate load. The required 

contract between the SO and DR customers would settle in the appropriate conditions 

as well. 

 

Aggregate Load

Curtailable Load

Time [hrs]

L
oa

d 
[M

W
]

 

Figure 1.2 DR Concept in Real-Time. 

 

1.6 Research Benefits 

The proposed method accentuates the probabilistic inquiries in POPD solutions. 

The empirical rule will perform with important PTNF sampling method as a vital role 

in the computational procedure to avoid the infeasible load flow (LF) results during the 

computation. It uses to warrant the real-time simulation over the existing works is used 

the normal PDF to represent the uncertainty of variables in the system. The results will 

release preciously from simulation method with a fairly time frame. 
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1.7 Thesis Outline 

Besides the introduction, this thesis is consisted of Chapter II introduces the 

model of uncertainties including DR schemes, expresses load modelling, probabilistic 

loading pattern, and sampling methods. Chapter III represents the problem formulation 

of the POPD using LP with DR programs, while the real power demand at load buses 

is represented by normal PDF with and without PTNF. Meanwhile, it explains the 

probabilistic technique and conditions for sampling the input variables to represent the 

real power demand and rules for Truncated normal PDF to state a specific range for the 

random variable to obtain better accuracy. Also, the proposed framework of Monte 

Carlo technique and performance of the simulation are denoted in this chapter. Chapter 

IV indicates the simulation results from the modified 30-bus test system. Moreover, it 

contains the parameter set and the required data. Lastly, Chapter V provides the 

conclusion. 

 

1.8 Chapter Summary 

This Chapter I presents the general introduction in power system problem on 

the distribution network considering DR strategy to capture the study objective in the 

electrical market. The problem statement is also provided in this section. Furthermore, 

the concept with limited scope is definitely provided to co-optimize between available 

supply and power demand. After that, it is implemented with the POPD computational 

procedure detailed in the methodology section to contend the benefits of this 

framework. Especially, the relevant study area of LPOPF and POPF with and without 

DR programs would provide in the literature review section.



CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

In an electrical grid, there are various techniques to be developed in power 

system optimization. This chapter provides a brief summary that many different 

proposed and practical system configurations are modified in order to understand how 

the optimization problems can be carried out with the OPF or to enhance the economic 

dispatch and methods of solution. In this case study, the economic dispatch considering 

PRDR is taken as a comprehensive analysis and discussion of the optimization problem. 

 

Table 2.1 Summary Literature with its Term and Description 

Proposed Key Aspect Description 

Chauhan et al, 
2017 

ILP, DR 
strategy, IRES 

Using ILP, a DR strategy based on energy 
consumption scheduling during summer 
and winter seasons obtained, then IRES 

sizes and system costs savings performed 
as well. 

Babonneau et al, 
2016 

LP, DR, DG, 
flexible load, 

DER 

LP introduced to model power distribution, 
market clearing processes for flexible load, 
and DERs could respond to marginal cost-

based prices to provide DR, secondary 
reserves, and reactive power compensation. 

Ongsakul et al, 
2001 

LP, MCP, 
hourly bus spot 

price 

Optimal real power dispatched by LP and 
MCP is the equilibrium point of the 

aggregate supply and required demand. 
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Table 2.1 Summary Literature with its Term and Description (Continued) 

Proposed Key Aspect Description 

Viana et al, 2018 

DR, PVDG, 

power utility 

planning 

Integrated analysis the price-based DR by 

TOU and PVDG developed for power utility 

sustainable planning to reduce flexible 

energy bill of residential consumers. 

Li et al, 2017 

Economic 

dispatch, RTP, 

OPF 

Economic dispatch for total system cost 

minimization in DC microgrid improved by 

RTP participation every single hour. 

Shigenobu et al, 

2016 

RTP, OPF, 

electricity market 

DisCo introduced RTP to electricity market 

whether high DGs penetration in distribution 

system initiating voltage deviation. 

Moshari et al, 

2016 

DR, reliability 

assessment, 

smart grid 

RTP and TOU applied to evaluate the short-

term reliability of wind-integrated power 

systems. 

Wang et al, 2011 

Smart grid, DR 

pricing, energy 

management 

Different proposed rates of pricing programs 

experienced effectually based on peak load 

reduction, bill bearings, and fulfilment of 

customers in a smart grid. 

Ntakou et al, 2014 

Price discovery, 

power marker, 

flexible load 

Supply-demand balancing enabled to 

marginal cost in day-ahead market. Several 

scenarios made for the distribution market. 

Faria et al, 2011 

DR, competitive 

market, optimal 

RTP 

Regarding efficiency level in competitive 

markers, retailer used DemSi to figure out 

consumer-based price elasticity approach 

supported by RTP. 

Stoft, 2002 
Power market, 

fundamental 

Designing markets for electricity described 

the contents for power system economic. 

Allan et al, 1981 PLF, MCS, FFT 

Better accuracy and fast computation 

obtained a PLF using MCS compared 

numerical results of FFT and conventional 

method as uncertainty of random variation. 
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Table 2.1 Summary Literature with its Term and Description (Continued) 

Proposed Key Aspect Description 

Chayakulkheeree 
et al, 2013 

POPF, MCS, PE, 

POPF using percentiles algorithm 
determined magnificently for hour-ahead 

scheduling while system loading represented 
by Weibull PDF. 

Zhang et al, 2013 
Probabilistic 
evaluation, 

ALSC 

Load uncertainty signified by LHS could 
overcome the SRS to achieve the ALSC 

problem by MCS in the distribution system. 
Giraldo-

Chavarriaga et al, 
2014 

POPF, PEM, 
MCS, PDF 

POPF accounted for the uncertainty RVs 
made by PEM in different kinds of PDF. 

Shargh et al, 2016 
POPF, PEM, 

PDF,  

PEM based Nataf transformation to solve 
POPF problem while uncertainty RVs of 

wind power and demand denoted by PDF. 

Chayakulkheeree, 
2015 

PLF, MCS, PE, 
PDF 

PVDG represented by Weibull PDF could 
greatly reduce the computational speed in 

PLF using PE. 

Carpinelli et al, 
2015 

PLF, MCS, PDF, 
evaluation 

Proposed technique gave the assessment of 
output RV using PDFs more accurate than 

classic MCS in PLF problem. 

Villanueva et al, 
2011 

PLF, MCS, 
power plant, 

demand 

Power plant and load generated by 
probabilistic values and performed by MCS 

to generate PDF of bus voltages and LF. 

Matthiss et al, 
2017 

PLF, energy 
management, DG 

Uncertainty variable forecasts made to 
appraise computational complexity and 
accuracy in energy management project 

between simulation and analytical methods. 

Gu et al, 2016 
Economic 

dispatch, MCS 
Quasi-MCS based economic dispatch 

proposed to advance the conventional MCS. 

Jorgensen et al, 
1998 

PLF, MCS, 
voltage quality 

MCS applied to investigate the voltage 
quality and compared the cost of the grid if 

wind turbines installed. 
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Table 2.1 Summary Literature with its Term and Description (Continued) 

Proposed Key Aspect Description 

Zhang et al, 2016 
PLF, MCS, 

JSQN 

PLF based JSQN generator claimed better 
accuracy by MCS to study the uncertainties 

of wind power integration in the power 
network. 

Burkardt, 2014 
Normal PDF, 
randomness, 

PTNF 

PTNF developed from normal PDF in 
order to eliminate the drawback and 

accumulate the probability density in a 
finite range. 

Krenek et al, 
2016 

PTNF, 
convolution, 
application 

Proposed PTNF convolution enhanced the 
accuracy and precision in real-world 

production processes. 

Ni et al, 2016 
PLF, PTNF, 
uncertainty 

quantification 

Extended PTNF covered efficiently the 
truncated RVs in computation effort of grid 

planning and load management. 

Mazzeo et al, 
2018 

PTNF, mixture, 
PDF, estimation 

The validity of developed PTNF verified 
the wind speed estimation by various PDFs 

to greater accuracy. 

Proposed 
method 

POPD, MCS, 
LP, PRDR, 
PDF, PTNF 

Operating cost minimization in considering 
PRDR of every single hour for one day, in 

the competitive electricity market. 

 
 

2.2 Literature Overview 

The linear programming is one of the most conventional methods which 

becomes a widely practical method in optimal power system operation. For example, a 

DR strategy based on energy consumption scheduling was modelled by integer linear 

programming (ILP) to prove the demand minimizing in peak period (Chauhan, A. and 

Saini R.P., 2017). The marker prices are exposed by LP proposed framework equivalent 
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to the marginal cost for the utility (Babonneau, F., Caramanis, M., and Haurie, A., 

2016). Similarly, it was used to minimalize the expensive fuel operating cost in extra 

high voltage (Tuaimah, F.M. and Meteb, M.F., 2014). Another proposed LP algorithm 

is to minimize the supply cost in power pool auction. In the power pool auction, the 

hourly bus spot price incorporating the marginal transmission loss and network quality 

of supply can be regulated (Ongsakul, W., Chirarattananon, S., and Chayakulkheeree, 

K., 2001; Wood, A.J., Wollenberg, B.F., and Sheblé, G.B., 2014). LP has the potential 

to capture optimal adaptive operating costs and provide the optimal dispatch module in 

both short and long terms optimization problems, such as numerous economic, social, 

military and real-time problems. In practice, the short-term load forecast for hour-ahead 

dispatch is usually uncertain in nature. Therefore, the probabilistic model representation 

for the system loading can be used to deal with uncertainty. 

In trendy power grid, DR programs have been developed and studied in many 

researches in modern power systems. The purpose of developing DR models is to 

provide accurate dispatch balance and stability analysis of the future grid. DR is a 

specific program to motivate the end users’ response to reduce or rearrange the 

electricity usage patterns during critical peak time. In developing an approach of the 

modern power grid, some models of DR have implemented to manage the higher prices 

during the peak demand in the system to avoid increasing power generation. 

Meanwhile, consumers have always billed their energy consumption through a tariff 

depending on the users’ demands and had no any economic instructions or reports on 

how to plan to use or shift the consumption during peak periods. The aims of the 

evaluation methodology are to prove the peak demand and power consumption in 

economizing the total operating cost efficiency associated with DR program are 



12 
 

extracted (Viana, M.S., Junior, G.M., and Udaeta, M.E.M., 2018). Real-time Pricing 

(RTP) is a well-known prospect of DR scheme proposed by the system operator (SO) 

(Li, C., Bosio, F.D., Chen, F., Chaudhary, S.K., Vasquez, J.C., and Guerrero, J.M., 

2017; Shigenobu, R., Yona, A., and Senjyu, T., 2016). Aggregate consumers are 

encouraged to draw attention to reduce their demands accordingly to the required power 

balance in the system reliability. The DR programs in which price variations of energy 

over time produce changes at consumers’ demand profile. It is necessary to improve 

the above problems to balance between supply and power demand side. To sum up, 

there are more details on DR programming and optimization algorithms (Vardakas, 

J.S., Zorba, N., and Verikoukis, C.V., 2015), practical indication and key-elements for 

global experience (Paterakis, N.G., Erdinç, O., and Catalão, J.P.S., 2017), demand-side 

elasticity and DR budding (Müller, T. and Möst, D, 2018), bearing investigation with 

its solution (Rahiman, F.A., Zeineldin, H.H., et al., 2014), and uncertainties in power 

systems (Moshari, A., Ebrahimi, A., and Fotuhi-Firuzabad, M., 2016). 

In order to investigate the output target of the power system, there are three 

broadly used methods to solve the POPD problems such as analytical, approximation, 

and simulation methods. One of the most powerful techniques for POPD is Monte Carlo 

simulation (MCS) which is extensively used the method to deal with uncertainties in 

the power system; it is relied on repeated random sampling to get the numerical results 

and reliability analysis statistically. In the proposed framework, the normal probability 

density function (PDF) was transformed to be the Truncated normal PDF, and it was 

shown that small errors occurred in the computed expected values which could be 

compensated for by shifting the computed probability-density curve so that its expected 

value coincided with the value deduced from a conventional deterministic analysis. It 
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was formerly used to examine how probabilistic load flow (PLF) can be evaluated and 

found out the greater accuracy throughout the computational optimum speed (Allan, 

R.N., Leite da Silva, A.M., and Burchett, R.C., 1981). Another point of view, MCS is 

used to perform the probabilistic short-term load forecast scheduling in a power system 

by assuming the PDF as the system loading, the total operating cost is effectually 

optimized (Chayakulkheeree, K., 2013). Furthermore, many similar researches have 

studied the effect of correlation of uncertain variables such as probabilistic appraisal of 

accessible load supply capability (Zhang, S., Cheng, H., Zhang, L., Bazargan, M., and 

Yao, L., 2013), POPF behavior and relationship of the wind power, load uncertainties 

and line parameters (Giraldo-Chavarriaga, J.S., Castrillón-Largo, J.A., and Granada-

Echeverri, M., 2014; Shargh, S., Khorshid ghazani, B., Mohammadi-ivatloo, B., 

Seyedi, H., and Abapour, M., 2016), PLF for solar power using percentile estimation 

of Weibull PDF (Chayakulkheeree, K., 2015), probabilistic investigation when wind 

and photovoltaic generation connected to system (Carpinelli, G, Caramia, P., and 

Varilone, P., 2015) PLF based on correlated series of generation, loading, and wind 

farm (Villanueva, D., Feijóo, A., and Pazos, J.L., 2011), probabilistic comparison and 

evaluation with energy management application (Matthiss, B., Gaedke, P., Felder, M., 

and Binder, J., 2017), economic dispatch relied on Quasi-MCS is used to models the 

stochastic behaviors of wind speed and distributed loads (Gu, B.C., Chen, Z.M., Ji, 

T.Y., Zhang, L.L., Wu, Q.H., Li, M.S., and Huang, J.H., 2016), uncertainty of loads 

and wind speed is characterized by MCS to represent the total number of hours with 

overvoltage a year (Jorgensen, P., Christensen, J.S., and Tande, J.O., 1998), hybrid 

MCS is performed to evaluate PLF when a large-scale wind power integrated to power 

system (Zhang, L., Cheng, H., Zhang, S., Zeng, P., and Yao, L., 2016). All these 



14 
 

probabilistic problems and some other relevance are modelled in different purposes to 

balance the system loading by adjusting the add-on power generation in the power 

system. 

In this thesis, the linear programming optimal power dispatch (LPOPD) 

considering price-based real-time demand response (PRDR) is proposed to implement 

in the modified IEEE 30-bus test system. Based on the problem formulation, the 

piecewise linear cost function is used to represent the generator’s operating cost. At the 

same time, the PRDRs participate in dispatching aggregator loads connected to the 

system. The purpose is to accomplish the supply-demand balancing without upward 

power supply. Many works were developed in the smart grid, distributed generation, 

and other energy sources to serve the growing demands. Those additional generations 

will add the extra production cost and many complexities along. The simulation output 

of LPOPD with and without PRDR are addressed and compared in the results. 

 

2.3 Supply-Demand Balancing 

One of the most compulsory difficulties in the electric power system is the 

number of losses along with the active power consumptions. There is a must between 

active power produced and active power consumed plus losses, in the case that more 

power is produced than consumed, the frequency will rise and vice versa. Even though, 

small divergence from the nominal frequency range can damage the synchronous 

machine and other appliances in the consumers’ side. Maintaining the constant 

frequency is a common task for transmission system operators and many researchers 

are focusing on the power system optimization problem. In the European Union and 
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some countries, this can be accomplished over a balancing market using ancillary 

services (Stoft, 2002). 

 

2.4 Power Distribution 

The power generation in every station can be produced in different potential 

depending on the desired voltage level, further relevant voltage levels are shown in 

Figure 1.1. The AC is regularly adopted in the long-distance generation and 

transmission, otherwise, the rectifiers will be used in order to invert from AC to direct 

current (DC) power supply respectively such as railway electrification system, 

industrial purposes etc. Anyway, both AC and DC with its advantages are practically 

modelled in different majorities and applications. From transmission to distribution, 

there must be power substation, which is a part of the electrical generation, 

transmission, and distribution network. Especially, each substation will regulate the 

voltage level according to the specific purposes and functions and then transmit the 

power to consumers nearby the area. There are several functions in the power substation 

as, 

i. Enabling switches and circuit breakers to be connected or disconnected 

from the grid or distribution lines during the operation period, 

ii. Transformers to be stepped up or down the voltage, and 

iii. Busbars to be split the power distribution to customers in different 

directions. 

 

The overhead distribution is mostly in a rural area, while urban area is mainly 

underground distribution or utility tunnel distribution sometimes. Distribution networks 

are divided into two types, radial or network.  A radial system is arranged like a tree 
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where each customer has one source of supply. A network system has multiple sources 

of supply operating in parallel. Spot networks are used for concentrated loads. Radial 

systems are commonly used in rural or suburban areas. Radial systems usually contain 

emergency connections where the system can be reconfigured in case of problems, such 

as a fault or planned maintenance. This can be completed by opening and closing 

switches to isolate a certain section from the grid. Long distance feeders will experience 

voltage drop or power factor distortion requiring capacitors or/and voltage regulators 

to be installed. Most of the world uses the 50 Hz rated at 220/230 V single-phase, or 

rated at 400V three-phase for residential and light industrial services. In this system, 

the primary distribution network supplies a few substations per area, and the 230V / 

400V power from each substation is directly distributed to end users over a region of 

normally less than the 1km radius. Three live wires and the neutral are connected to the 

building for a three-phase service. Single-phase distribution, with one live wire and the 

neutral, is used domestically where total loads are light. In Europe, electricity is 

normally distributed for industry and domestic use by the three-phase, four wire system. 

This gives a phase-to-phase voltage of 400 volts wye service and a single-phase voltage 

of 230 volts between any one phase and neutral. In the UK a typical urban or suburban 

low-voltage substation would normally be rated between 150 kVA and 1 MVA and 

supply a whole neighbourhood of a few hundred houses. Transformers are typically 

sized on an average load of 1 to 2 kW per household, and the service fuses and cable 

are sized to allow anyone property to draw a peak load of perhaps ten times this. For 

industrial customers, three-phase 690/400 volt is also available or may be generated 

locally. Large industrial customers have their own transformer(s) with input from a high 

kV level. 
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2.5 Prevailing Economic Conditions using LPOPD and PRDR 

Electric power system plan and operation are always involved with more than a 

few complex tasks. The long-term trend for electric supply, demand, and system costs 

are growing unreliable and unpredictable as of the objective of this study concept. The 

required power generation is fluctuating due to current energy deregulation lawmaking 

and also due to the expanding demands for energy in a global economy of rising fuel 

prices. The assortment of power generation energy efficiency resources is considered 

to meet the required customer demands each time period. The optimization methods 

play a very important role in the power grid despite the fact that the investment cost in 

these complexities is extremely costly to set up. Moreover, the LP is an important 

technique of operations research developed for optimum utilization of resources. It is 

used for selecting the best possible strategy from a number of alternatives, which can 

maximize the profit or minimize the cost of production. In this case, it is set up to 

minimize the cost of the overall incremental production, co-optimize the energy market 

including the demand response programming within hour-ahead or day-ahead. 

2.5.1 Study Area of LPOPF 

An integrated renewable energy system consists of micro hydropower, 

biogas, biomass, solar, wind and battery bank storage are considered in order to meet 

the electrical and cooling energy demands of the study area. Using ILP, a DR strategy 

based on energy consumption scheduling of appliances has been modelled in this 

reference. The Hybrid DC-AC coupled configuration of the integrated renewable 

energy system (IRES) is proposed for the study area as shown in Figure 2.1. It has been 

 

 



18 
 

 

 

Figure 2.1 Proposed Configuration of IRES. 

 

found that reduction of 1.82 kW and 23 kW in peak hourly energy consumption during 

summer and winter seasons respectively are obtained with DR strategy in comparison 

of the system without DR. Finally, size optimization of the proposed IRES without and 

with DR strategy has been performed using discrete harmony search algorithm. It has 

been observed that significant amount of savings in system sizes and costs are obtained 

with DR strategy compared to a system without DR (Chauhan, A. and Saini R.P., 2017). 

The non-linear load flow distribution market clearing approach by 

Ntakou, E. and Caramanis, M. (2014) has been adapted to a computationally efficient 

linear programming approximation and has been extended to model flexible space 

conditioning loads and secondary reserves.  It has been shown that a straightforward 

linearization with one or two iterations to improve on the linearization gap can provide 
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Figure 2.2 Illustration Information between Agents. 

 

an accurate representation of market-based-marginal-cost-pricing incentives. Flexible 

loads and distributed energy resources can respond to marginal cost-based prices to 

provide demand response, secondary reserves, and reactive power compensation. In 

numerical illustrations of the model, it has been shown that these effects are non-

negligible and one concluded that they should be considered in the regional integrated 

energy models that are currently developed in several countries (Babonneau, F., 

Caramanis, M., and Haurie, A., 2016). Figure 2.2 introduces the two-way 

communication between power retailers and customers that enables DR based on RTP 

defines a competitive framework involving the customers as agents having an influence 

on the price they are charged. 

The LP algorithm is used for the first time on the Iraqi extra high voltage 

(400kV) grid for optimal power flow to minimize the active power generation cost. this 

reference has presented an LP-based. The problem constraints are the coupled 

linearized power flow equations and the system variable limits. A piecewise linear 

approximation of the objective function is built by adding iteratively a tangent cut in 
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each iteration. It can be also noted that the results of the production cost are significantly 

decreased when using LP with the results derived in the case of NRPF. There is about 

30.16% decrease in the production costs when using cheap fuel type, whereas there is 

about 28.2% decrease in production costs when using expensive fuel type as given by 

Tuaimah, F.M. and Meteb, M.F. (2014). The proposed method implementation is 

solved the optimal power by LP uses an iterative technique to obtain the optimal 

solution, it is called successive linear programming (SLP) method. There are several 

procedures of SLP as, 

Step 1: Select the set of initial control variables, 

Step 2: Solve the power flow problem to obtain a feasible solution that satisfies  

the power balance equality constraint, 

Step 3: Linearize the objective function and inequality constraints around the  

power flow solution and formulate the LP problem. Then solve the LP 

problem and obtain the optimal incremental control variables ΔPGi, 

Step 4: Update the control variables PGi
k+1 = PGi

k + ΔPGi , 

Step 5: Obtain the power flow solution with updated control variables, and 

Step 6: Check the convergence. If ΔPGi in Step 4 is below the user-defined  

tolerance, the solution converges. Otherwise, go to Step 3. 

 

The LP based optimal real power dispatching algorithm is successfully 

and effectively minimizing the supply cost in power pool auction. With the block bid 

protocol, the market clearing price is the equilibrium point of the aggregate supply 

curve and the required demand, in which the total generation satisfies the power 

balance, generator operating limits, and transmission line constraints. The hourly bus 
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spot price including the marginal transmission loss and the network quality of supply 

is also determined (Ongsakul, W., Chirarattananon, S., and Chayakulkheeree, K., 

2001). In this work, the market model used is Poolco and auction method is single sided 

(one buyer). The bid protocol is block bid protocol without considering elasticity on the 

demand side (non-demand bidding). The market allocation rule used is the uniform 

price rule in an hour-ahead market. In this model, the independent system operator 

(ISO) sorts the offered price in the ascending order to obtain the aggregate supply curve. 

The equilibrium point or the market clearing price (MCP) is the intersection of the 

aggregate supply curve and the required gross demand (total system load plus loss) as 

shown in Figure 2.3. Note the block bids are increasing staircase functions only. 

 

 

Figure 2.3 Uniform Price Rule Dispatch Model. 

 

The thermal unit economic dispatch and methods of solution using the 

LP technique is used to carry out the power system optimization by Wood, A.J., 

Wollenberg, B.F., and Sheblé, G.B. (2014). There are N thermal-generating units 
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connected to the system to serve the total demands with and without network 

transmission losses considered. The same procedure for other references is necessary 

to minimize the cost operating solution. The LP method using piecewise linear cost 

functions as shown in Figure 2.4 is discussed in this section with the lambda iteration 

method sometimes called binary search, dynamic programming, non-linear 

programming, and convex optimization. Therefore, the LP stands as one of the most 

powerful optimization technique ever developed. 
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Figure 2.4 Piecewise Linear Cost Functions. 

 

2.5.2 Study Area of DR 

The untapped demand and energy in distribution systems with DR and 

photovoltaic distributed generation (PVDG) are resources for power utility planning, 

enabling deferring of network expansion investments and reduction in energy 
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consumption from the substation. Reduction in technical losses contributes to the 

efficiency of the electrical system and energy conservation. Changes in regulation are 

needed to address the issue of responsibility of distribution utilities for the sale of 

energy to low-voltage retail captive consumers, such as in the current Brazilian system 

in the context of increasing PVDG penetration. The residential consumers can reduce 

the energy bill with DR, depending on their flexibility to change the consumption 

behaviour or through the implementation of PVDG. The adoption of a non-flat tariff as 

a consumer option, such as in the case of Brazilian white tariff (a survey performed by 

a distribution utility (DU) in Brazil is considered in the case study involving the 

optional time-of-use (TOU) tariff called white tariff), can make the simultaneous use of 

DR and PVDG not economically attractive for the consumer in comparison with PVDG 

only use, indicating a situation where a review of regulation can be assessed to stimulate 

DR. The method presented in this study enables an integrated analysis of DR and PVDG 

as resources for power utility planning, and is structured to make it feasible for 

adaptation to the analysis of other distributed energy resources or using different 

network models (Viana, M.S., Junior, G.M., and Udaeta, M.E.M., 2018). Practical 

PRDR, A flat tariff is considered for commercial and residential non-responsive 

consumers. For the responsive residential consumers (RRCs) defined two situations are 

considered on a weekday: the same flat tariff as that of non-responsive consumers for 

scenarios without DR and a TOU tariff for scenarios with DR. The TOU tariff price per 

kWh on weekend and on public holidays is the same as that in the off-peak hours. The 

following time classification is considered on a weekday: 

 Peak hours: from 19:00 to 21:59, 

 Intermediate hours: from 18:00 to 18:59, and 
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 Off-peak hours: from 0:00 to 17:59 and from 23:00 to 23:59. 

 

In order to improve the system efficiency of a 380 VDC microgrid 

network as shown in Figure 2.5 while participating in DR, an optimal power flow 

problem is formulated. The cost function represents not only the operating cost within 

the microgrid incurred by the fuel and efficiency of the components and the power flows 

in the transmission line but also the DR requirements from the utility by considering 

RTP. The proposed algorithm is implemented by means of a heuristic method based on 

genetic algorithm (GA). A six-bus dc microgrid is tested to verify the proposed 

algorithm in a 24-hour span. The test results show that GA can find the optimal control  

 

 

Figure 2.5 Schematic of DC-Microgrid Operating at 380 VDC (Li, C., Bosio,  

F.D., Chen, F., Chaudhary, S.K., Vasquez, J.C., and Guerrero, J.M.,  

2017). 

 

parameters to optimally manage the dispatchable resources. Finally, the proposed 

algorithm successfully reduces the operating cost compared to the case study in which 
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the system is managed without optimization (Li, C., Bosio, F.D., Chen, F., Chaudhary, 

S.K., Vasquez, J.C., and Guerrero, J.M., 2017). 

A method for setting the electricity price for a distribution company 

(DisCo) considering the participation of customer in RTP is proposed by Shigenobu, 

R., Yona, A., and Senjyu, T. (2016), and reactive power incentive for to obey optimal 

scheduling cooperatively. From the simulation results, the consumer changed their load 

demand to the load that desirable at DisCo by RTP. By the RTP,  which could achieve  

 

Electricity Price
CP [Currency/kWh]

-0.04 0.04
 

Figure 2.6 Typical day-ahead Electricity Price Setting Against ΔPload  

   (Shigenobu, R., Yona, A., and Senjyu, T., 2016). 

 

a reduction in the total cost of electricity price and could reduce the large battery 

energy-storage system (BESS). Reactive power incentive could reduce additional 

devices for high penetration distribution generators (DGs). It is confirmed that the 

proposed method can get the benefit for DisCo and customer each other. It is possible 

that they could take more profit that to use either method RTP of the reactive power 

system. This proposed method could promote the participation of customer in the 

electricity market. The electricity price CP is first determined using the setting function 
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shown in Figure 2.6 the day-ahead electricity price for ΔPload. After that, consumers 

are notified about the electricity price CP, which set to 25 [Currency/kWh] as a base 

price in this case, and the load demand shift is prompted by a cheap electricity price 

when the daytime reverse power flow occurs. It is confirmed that daytime electricity 

price CP is cheaper than the base electricity price, and the nighttime price CP is more 

expensive than the base price. 

Moshari, A., Ebrahimi, A., and Fotuhi-Firuzabad, M., (2016) have 

studied the effects of DR programs on the short-term reliability of wind-integrated 

power systems. Here, a new modelling has been proposed for DR programs considering 

the uncertainties associated with these programs. In addition, a new reliability 

modelling has been developed for wind energy conversion systems to be applicable to 

the short-term reliability studies. We have also proposed an algorithm for short-term 

reliability evaluation of composite power systems, which includes the effect of different 

initial states of system components and the lead-time of DR and reserve resources. This 

work shows that issues like possible changes in components initial statuses and the 

lead-time of remedial resources may significantly affect the short-term reliability 

assessment of composite power systems. On the other hand, real-world uncertainties 

can seriously influence the reliability enhancement feature of DR programs. Therefore, 

incorporating these parameters in short-term assessments can significantly improve the 

effectiveness of DR resources planning. The results also reveal that DR programs 

improve the reliability level and the peak-load carrying capability of wind integrated 

power systems and can be a potential solution to eliminate the negative impacts of wind 

energy volatility. 
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Even though demand response is not a new concept, it can have much 

more relevant importance in the context of competitive electricity markets. In the scope 

of a competitive market, with technical and economic issues having to be equally 

considered, active demand players can bring the additionally required flexibility to 

attain the envisaged efficiency operation levels. This paper presented the most 

important demand response concepts and programs, as well as some relevant 

experiences in this field. Increasing interest in this area is leading to an increasing 

number of works. However, new approaches are required in order to take full advantage 

of demand response in the benefit of electricity market operation and electricity market 

players. This paper presented demand response simulator (DemSi), a demand response 

simulator that allows studying demand response actions and schemes, using a realistic 

network simulation based on power systems computer-aided design (PSCAD) software. 

DemSi allows simulating a variety of demand response methodologies and to optimally 

achieve a solution according to the available demand response opportunities. DemSi is 

used to support the case study presented in the paper. This case study is based on the 

retailer’s perspective and includes a set of events with a load reduction level being 

envisaged for each one. The study considers both prices and loads reduction caps for 

each consumer. For each envisaged load reduction, the optimal demand response 

solution is determined using a non-linear programming approach. Results show that 

customer’s demand depends on price elasticity of demand, and on the RTP tariff. The 

optimal solution also depends on the imposed price caps according to the concerned 

DR programs. The study includes simulations considering a normalized tariff for each 

consumer type and considering individual consumer tariffs. When comparing the 

results obtained imposing the use of a normalized tariff and those resulting from the 
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consideration of individual consumer tariffs, it can be concluded that the retailer’s 

benefits are almost the same. Considering normalized tariffs for each consumer type is 

a fairer strategy in comparison with applying different tariffs for consumers of the same 

type, being more prone to be well accepted by the consumers. This is an important 

conclusion to be taken into account when DR programs are designed (Faria, P. and 

Vale, Z., 2011). 

 

 

Figure 2.7 Demand Response Planning and Operations (US Department of  

Energy, 2010). 

 

2.5.3 Study Area of POPF with and without DR 

The basic PLF solution proposed by (Allan, R.N., Leite da Silva, A.M., 

and Burchett, R.C., 1981)  was that proposed previously and is based on linearizing the 

LF functions around the expected value and using convolution to evaluate the relevant 

density functions of the output variables. This proposed work has extended these 

techniques by replacing conventional convolution with Fast Fourier Transforms (FFT). 

It has been shown that the FFT method is a very significant improvement in the 
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conventional method and gives fast, very precise results. The problems associated with 

the central limit theorem to justify a normal distribution for the output densities have 

been discussed and clarified. The accuracy of the PLF solution has been tested using 

MCSs. This has shown that the performance of the linear model is very good within a 

certain range of uncertainty of random variation of the input data. It has also been shown 

that the convolution technique used in the PLF method to combine realistically an 

infinite range of solutions is a very powerful tool. 

Chayakulkheeree, K. (2013) proposed POPF using parameter estimation 

by the percentile algorithm efficiently and effectively solves Weibull PDF parameters 

of the OPF variables. With the estimation of Weibull parameters from percentiles, the 

number of OPF runs can be substantially reduced in the proposed POPF process. The 

results show that the proposed POPF can successfully determine the PDF of OPF output 

variables, considering the Weibull PDF of system load. The proposed POPF is 

potentially applicable to the power system with probabilistic load due to good model 

representation, simple computation, and the minimum number of OPF sub-problem 

runs. Similarly, Chayakulkheeree, K. (2015) PLF using Weibull PDFs of photovoltaic 

power generation is investigated. The results show that the parameters estimation by 

percentile estimation is representative of the PLF variables. With the estimation of 

Weibull parameters from percentiles, the number of LF run, for preliminary probability 

study with a photovoltaic power plant in the distribution system can be substantially 

reduced. 

In order to describe the impact of uncertainties, such as fluctuation of 

bus loads and intermittent behavior of renewable generations, on the available load 

supply capability (ALSC) of distribution system accurately and comprehensively, 
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Zhang, S., Cheng, H., Zhang, L., Bazargan, M., and Yao, L. (2013) defines a series of 

meaningful indices for the probabilistic evaluation of ALSC. An efficient simulation 

method, Latin hypercube sampling-based Monte Carlo simulation (LHS-MCS), 

combined with step-varied repeated power flow method is proposed to compute the 

defined indices. Compared with simple random sampling-based Monte Carlo 

simulation (SRS-MCS), LHS-MCS is found to be more suitable for the probabilistic 

evaluation of ALSC. It can achieve more accurate and stable ALSC indices under 

relatively small sample sizes. The calculation speed of LHS-MCS is comparable with 

that of SRS-MCS under the same sample sizes, and the required CPU time of LHS-

MCS is far less than SRS-MCS under the same calculation accuracy. Case studies 

carried out on the modified Baran & Wu 33-bus and the modified IEEE 123-bus 

distribution systems verify the feasibility of the defined indices and high performance 

of the proposed method. 

Giraldo-Chavarriaga, J.S., Castrillón-Largo, J.A., and Granada-

Echeverri, M. (2014), a validation of two proposed schemes of the point estimate 

method (PEM) is made, not only for normal distributions but also different kinds of 

PDF, such as Weibull and generalized extreme value and Shargh, S., Khorshid ghazani, 

B., Mohammadi-ivatloo, B., Seyedi, H., and Abapour, M. (2016) proposes a PEM based 

Nataf transformation to solve probabilistic multi-objective optimal power flow (MO-

OPF) problem considering fuel cost and emission as objectives. Uncertainties in the 

wind power output and load demand are considered. The main contribution of the work 

reported here is to apply the Nataf transformation to the PEM in order to solve the 

probabilistic MO-OPF problem with correlated input random variables (RVs). This 

method only requires data for the marginal distribution function of each input RV and 
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the correlation coefficients instead of their joint PDF. In this work, the effect of different 

correlation coefficients is observed on the control and output data of problem and on 

the accuracy of PEM. It is concluded that correlation among input RVs increases 

uncertainty in control and output data of MO-OPF problem which makes planning and 

forecast more complicated than before. The effectiveness of the method is demonstrated 

using a 30-bus test system. Results of the proposed method are compared to those of 

MCS which confirms high accuracy of the method. 

 

2.6 Chapter Summary 

This chapter II is provided with the introduction and overview of the electric 

power system that contains the electrical components installed to supply, transmission, 

and use of electric power. There are various research methodologies ever done by 

researchers as mentioned in the literature review Section 2.5. There are three main study 

areas presented in this section: study area of LPOPF proposed and experimented in 

similar objectives, study area of DR applied flexible strategies to server the power 

balance in electrical market, and study area of POPF with and without DR used different 

optimization techniques to advance the dispatch solutions and benefits for their studies. 

A similar standpoint is to serve the power demands with the optimum investment cost, 

while the known secure constraints in the distribution system are attached in the case 

study. 

 



CHAPTER III 

METHODOLOGY  

 

3.1 Introduction 

This chapter represents the problem formulation of the POPD using LP with DR 

programs. It also contains the general mathematical formulation of the optimization 

formed into the LP optimization technique with the power balance and generator 

operating limit constraints. Moreover, the Monte Carlo technique is used to develop the 

proposed framework with sampling conditions. The normal distributed random variable 

is used to model the real power demand at the specific bus as load uncertainty during 

the simulations. 

 

3.2 Problem Formulation and Methodology 

Practically, optimization is an important tool in scientific solutions and in the 

analysis of physical systems. In order to make use of this tool, the objective has to be 

identified. The objective could be profit, time, potential energy, or any quantity or 

combination of quantities that can be represented by a single number. It can be 

depended on certain characteristics of the system, called variables or unknown 

parameters. The process of identifying objective, variables, and constraints for a given 

problem is known as modelling. Moreover, the variables are limited with some 

constraints to find values of the variables that optimize the objective. After the model 

has been expressed, an optimization algorithm will be used to find its solution assisted 
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by a computer. It should be noted that the objective function in this work would be 

formulated and solved by the LP, which is expressed in Section 3.3. 

 

3.3 General Mathematical Formulation of Optimization 

Mathematically, the optimization is to minimize or maximize a function subject 

to constraints on its variables and use the following notation (Nocedal, J. and Wright, 

S.J., 2006), 

i. x is the vector of variables, also called unknowns or parameters, 

ii. f is the objective function, a (scalar) function of x that we want to 

maximize or minimize, and 

iii. ci are constraint functions, which are scalar functions of x that define 

certain equations and inequalities that the unknown vector x must 

satisfy. 

From these three notations, the optimization problem can be formulated as, 

 

Minimize ( )
nx

f x
∈

 (3.1) 

Subject to  
( ) 0,
( ) 0,

i

i

c x i
c x i

ε
γ

= ∈
 ≥ ∈

 

Here ε and γ are sets of indices for equality and inequality constraints, 

respectively. 
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Figure 3.1 Geometrical Representation of the Problem. 

 

 

Figure 3.2 Linear Programming in 2-Dimension with Solution at x*. 
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 Formally, Linear programs have a linear objective function and linear 

constraints, which may include both equalities and inequalities. The feasible set is a 

polytope, a convex, connected set with flat, polygonal faces. The contours of the 

objective function are planar. Figure 3.2 depicts a linear program in two-dimensional 

space, in which the contours of the objective function are indicated by dotted lines. The 

solution, in this case, is unique—a single vertex. A simple reorientation of the polytope 

or the objective gradient c could, however, make the solution non-unique; the optimal 

value cTx could take on the same value over an entire edge. In higher dimensions, the 

set of optimal points can be a single vertex, an edge or face, or even the entire feasible 

set. The problem has no solution if the feasible set is empty (the infeasible case) or if 

the objective function is unbounded below on the feasible region (the unbounded case). 

Linear programs are usually stated and analyzed in the following standard form: 

  The LP can be summarized mathematically as cost minimization below, 

 

  Minimize Tc x  (3.2) 

 

Subjected to the constraints, 

   Ax b≤  (3.3) 

   0x ≥ , nx∈  

 

Where, 

x  is an unknown n×1 vector 

c is the n×1 vector of cost coefficients 

A is the m×n matrix of constraint coefficients 

b is the right-hand side m×1 vector 
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 There are n variables in the x vectors represented the output, cT represented the 

overall benefit to be optimized, and m constraint equations in the A matrix. 

 

3.4 Problem Formulation 

In this case study, the LPOPD adapted the NRPF with the operating cost for 

each generator which is given by piecewise linear cost functions, as shown in Figure 

3.3. It can be used instead of the quadratic cost functions. 

 

Quadratic 
model

Piecewise 
linear 
model

Generator 
Operating Cost

($/Hr)

PGi (MW)
PGi

maxPGi
min

Slope Sij

 

Figure 3.3 Piecewise Linear for Generator Cost Functions. 

 

Hence, the objective function can be expressed by a piecewise linear 

optimization model (Ongsakul, W., Chirarattananon, S., and Chayakulkheeree, K., 

2001; Wood, A.J., Wollenberg, B.F., and Sheblé, G.B., 2014). The objective function 

is to minimize the total power generating cost including cost of PRDR, and can be 

expressed as, 
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Minimize 
1 1 1

ij i

NG NSi NB

ij G i DR
i j i

TC S P D P
= = =

= +∑∑ ∑ ,  (3.4) 

 

Subjected to the power balance constraint, 

 

1 1 1
i i i

NG NB NB
o

G DR D loss
i i i

P P P P
= = =

+ = +∑ ∑ ∑  ,  (3.5) 

 

In the cost formulation of the LPOPD, we have some variables to control this 

problem. The control variables could be the generator real power, generator voltage 

magnitude, and the transformer taps. The linearized incremental cost shown in Figure 

3.3 is the most likely shape that may be occurred in the competitive generation 

environments. 

Respecting to power balance, the constraint to consider in LPOPD are the 

constraints that represent the power balance between real and reactive power generated, 

and that consumed in the loads and losses. There are some constraints and limitation to 

minimize the objective function.  

And the generator operating limit constraint, 

 

min max
i i iG G GP P P≤ ≤ , i=1,2,…,NG,  (3.6) 

 

1 1
i i

NG NB

G D loss
i i

P P P
= =

= +∑ ∑  ,  (3.7) 

 

i i i

o
D D DRP P P= −  , i=1,2,…,NB,  (3.8) 
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min

1
i ij i

NSi

G G G
j

P P P
=

= +∑ , i=1,2,…,NG,  (3.9) 

 

max0
ij ijG GP P≤ ≤ , j=1,2,…,NSi,  (3.10) 

 

max
lm lmf f≤ , and  (3.11) 

 

min max
i i iV V V≤ ≤ , i=1,2,…,NB. (3.12) 

 

 For the NRPF technique, the bus power injections including active and reactive 

power for every bus can be reproduced in polar coordinates and expressed as, 

 

( )
1

cos
i i

NB

G D i k ik ik ik
i

P P V V y θ δ
=

− = −∑ , i=1,2,…,NB,  (3.13) 

 

( )
1

sin
i i

NB

G D i k ik ik ik
i

Q Q V V y θ δ
=

− = − −∑ , i=1,2,…,NB,  (3.14) 

 

Where, 

TC is the total system cost, 

iGP  is the real power generation at bus i, 

ijS  is the linearized incremental cost curve for each segment of 
iGP  at bus i, 

iD  is the linearized incremental cost curve for each demand response at bus i, 

iNS  is the number of segments of the linearized cost of the generator at bus i, 

NG is the number of generators in the system, 

NB is the number of buses in the system, 
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iDRP  is the real power demand response at bus i, 

iDP  is the probabilistic real power demand at bus i, 

iGQ  is the reactive power generation at bus i, 

iDQ  is the probabilistic reactive power demand at bus i, 

lossP  is the total transmission loss in the system, 

min
iGP  is the minimum real power generation at bus i, 

max
iGP  is the maximum real power generation at bus i, 

lmf  is the apparent power flow on the branch between bus l and m, 

max
lmf  is the maximum limit at apparent power flow between bus l and m, 

iV  is the voltage magnitude at bus i, 

min
iV  is the minimum voltage magnitude at bus i, 

max
iV  is the maximum voltage magnitude at bus i, 

iky  is the magnitude of the yik element of Ybus, 

ikθ  is the angle of the yik element of Ybus, and 

ikδ  is the voltage angle between bus i and k. 

 

3.5 DR Schemes 

DR programs have essentially empowered because the evolution in the up-to-

date technology required to tool them to regulate the target. An implication of DR is to 

consider the possibility of the power generation cost reduction, customers’ electricity 

bill saving, and reliability of the power grid. PRDR is a program in which customers 
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are paid for the load reduction in accordance with SO request. The PRDR price can be 

assigned by agreements for the real-time curtailable load. The demand of each load bus 

in the system has adjusted to maintain with the feasible power generation, principally, 

every customer would manage their power consumption to be a part of improving the 

efficiency and reliability of the system during peak periods. The system operator 

sometimes has to run costly power plant to adjust the total needs power generation to 

meet the peak demand while the promise pollution can be exceeded their authority, 

however, whether DR scheme has contributed to the system. Hence, there are 

persuasively two DR programs in vogue (Vardakas, J.S., Zorba, N., and Verikoukis, 

C.V., 2015; Paterakis, N.G., Erdinç, O., and Catalão, J.P.S., 2017) which are price-

based programs (PBPs) and incentive-based programs (IBPs). PBPs are commonly 

cased study for researchers which provoke the consumers voluntarily provide load 

reductions by reacting to economic gestures. In spite of IBPs the customers have bided 

the payments in order to report an exact amount of load reduction over a specified time 

interval. Many economists are convinced that they are the most direct and efficient DR 

programs suitable for competitive electricity markets and should be the focus of 

policymakers. 

3.5.1 Price-based Programs (PBPs) 

All manner of PBPs, there are three subroutines of the PBPs were 

mentioned by the researcher. First is RTP, the pricing will be refreshed with a short 

time, as a rule, hourly or daily. During, RTP customers will be exactly reported to adapt 

their power usage patterns to SO in the case of the cost of the wholesale power 

generation market have to change accordingly. Second is TOU, basically, TOU pricing 

will be imitated the variations of the longer-term electricity supplying cost under 
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average market conditions responding to the time within a day or a season, but it is not 

capturing the everyday instability of supply costs. Consumers are billed with flat prices 

are not alert to the varying cost of electricity. Flat rates represent average electricity 

supplying costs and may remain constant for years. Yet, its structure contains a peak 

rate, an off-peak rate, and possibly a shoulder-peak rate by the distinct time periods 

from the SO. Lastly, whereas RTP is a typical pricing scheme, Critical Peak Pricing 

(CPP) is applied tariff for the short-term electricity supply cost in the power system, 

which is the full-size RTP execution outstanding to the methodological limitation of 

DR. CPP tariff is a kind of the aggressive pricing scheme in combination of RTP and 

TOU enhancing also TOU rate and time-invariant rate in the critical peak prices 

dispatching in the computed CPP event. Moreover, CPP is relatively noticed for the 

limited number of hourly or/and daily a year, customarily, CPP customers will obtain 

a price discount in non-CPP periods. Nevertheless, CPP does not gain thriftily 

competent as RTP scheme, it is objectively able to condense the possible price hazard 

accompanying with RTP in reflecting critical period short-term cost. Whatever can help 

to inspire customers by decreasing the peak load of the electricity locating risk. Hence, 

CPP is more well-organized than TOU and CPP to reach better cooperation between 

TOU and RTP. 

3.5.2 Incentive-based Programs (IBPs) 

Latterly, IBPs have categorized into three subroutines. First is Direct 

Load Control (DLC), and the purpose is to participate a large number of the small kind 

of consumers, throughout the programs in which the SO in a related manner rounds a 

customer’s electrical utilization on a short-term to discourse system contingencies. 

DLC is principally granted to the residential and small commercial consumers’ loading 
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participation. Participating customers will sometimes collect either incentive payments 

or rate discount depending on the customer certain duty round. Regularly, DLC is 

limited the number of times or hours for customer’s usage to be turned off within year 

on year or seasonally. These programs will be achieved by the SO in resulting to the 

end-user is not alerted for an intermission. These events possibly will be trigged 

economic or reliability. Second is Curtailable Load (CL), are the programs directed to 

medium and large consumers. The selected participants will be gotten incentives to 

switch off the specific loads or to disconnect the power usage responding to calls 

emitted by the SO. Alike in DLC programs, the maximum number and interval of calls 

should be stated in the contracts. Presently, the SO has used these programs as effective 

tools to regulate the peak load. Lastly, Demand Bidding (DB) is earnestly mechanism 

to shift the power demand the consumption pattern overbidding, which is a part of 

electricity market competition and provide customers with the opportunity to triumph 

the economic rewards, at the same time, they may be required to submit the load 

reduction pattern by using the high-tech load management tools and strategies. These 

programs are mostly applied directly with small consumers and indirectly through 

third-party aggregators. Not only DB but also demand side may be associated with 

capacity and ancillary services to implement the load variations in the system within 

different time. And besides, DB can pointedly raise the elasticity of demand, discipline 

problem in the wholesale power market and price spikes. Consequently, the total 

needed power generation and CO2 emission can be reduced with DR schemes. Another 

point of the profitable application of a DR scheme, the reduction of the total power 

generation can be obtained from this operation resulted in minimizing the loss of the 
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system. Additionally, this objective has solved the overload operation in the distribution 

system in real-time problems to ensure the reliability of the system. 

 

3.6 Customer Response 

Practically, there are frequently three kinds of action from customers’ response. 

The load will be lessened during critical peak load period, and then maintained the 

normal load pattern during off-peak time. This encouragement can serve a decrease in 

customers’ side with relief as they are required to limit the electricity usage at a specific 

period but to condenses the overall consumption, consequently, reduced electricity bill 

even supplementary. One more action that could be engaged in order to answer high 

electricity prices or low availability is to equilibrium the electricity uses from peak to 

off-peak period. After that, this technique will maintain the load profile by both 

declining the peak load and filling up small consumption basins. Moreover, it does not 

only lower the regular amount of power demand used by the end-user but also it does 

increase the transmission and distribution efficiency and reliability as the system 

operates in a steadier state. After all, customers can use on-site generation to decrease 

consumption perceived by the SO. It will raise users’ self-government, more reorganize 

generation and decrease the regular load on transmission and distribution networks. 

Then again, it will exploit system complication. 

 

3.7 Optimization Technique 

 Dantzig’s development of LP: the simplex method in the late 1940s marks the 

start of the modern era in optimization problem (Nocedal, J. and Wright, S.J., 2006). 

This method showed its possibilities for economists and researchers to formulate large 

models and analyze them in a methodical and efficient way. Dantzig’s discovery 
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matched with the advance of the first numerical optimization in the engineering field, 

and the simplex method became one of the most primitive important applications of 

this new and innovative technology (Luenberger, D.G.). Until now, computer 

implementations of the simplex method have been repeatedly improved and refined, the 

LP is without doubt one of the furthermost influential optimization techniques 

constantly developed (Bazaara, M.S., Jarvis, J.J., Sherali, H.D., 1990; Frederick, S.H., 

Lieberman, G.J., c1974). They have benefited principally from interactions with 

numerical analysis, a branch of mathematics that also came into its own with the 

appearance of computers in many research areas, and have now reached a high level of 

sophistication. 

The LPOPD algorithm approach is based on an iterative computation between 

NRPF and LP. The computational procedure is shown in Figure 3.4. There are several 

procedures of LPOPD computational procedure as, 

 

Step 1: Read the initial system data for the required variables and offered price  

of generators and PRDR, 

Step 2: Determine the preliminary output data by NRPF technique, 

Step 3: Determine the real power generations by LP optimization, 

Step 4: Solve NRPF with the power generation outputs from Step 3, 

Step 5: Decide the LP outputs to match with NRPF outputs then go to Step 6,  

or else, go to Step 3, and 

Step 6: Compute total power generation and DR costs. 
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Start

Read System Data and Offered Price Curves

Initial Output Data from Previous NRPF

Solve LP for Real Power Generation Outputs

Solve NRPF with the Power Generation Outputs from LP

LP Outputs match NRPF Outputs?

Compute Total Power Generation and DR Costs

Stop

YES
NO

 

Figure 3.4 Computational Procedure of LPOPD. 

 

3.8 Probabilistic Technique and Sampling Conditions 

3.8.1 Monte Carlo Simulation 

Essentially, the MCS framework is a combination of OPD computation, 

LP application in MATLAB toolbox, and file.m supplementary code for additional 

conditions as mentioned in this Section 3.8.3. In this thesis, the MCS is used for 

probabilistic power demand simulation and the OPD is run until the average total real 

power generation of the iteration k+1 (TPgavg
k+1) is close to that of the iteration k 

(TPgavg
k). More specifically, the MCS base OPD is run until |TPgavg

k − TPgavg
k+1| < ε, 

where ε is a very small real number. In this case study, the ε is set to 0.0001. There are 

several procedures of the proposed framework of MCS procedure as, 
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Step 1: Read the initial system data for the required variables and offered price  

of generators and PRDR, 

Step 2: Create the PDF of power demand at every specified bus i in Table 4.2, 

Step 3: Execute the iteration k = 1 where TPgavg
k  = 0, 

Step 4: Determine the preliminary output data by NRPF technique, 

Step 5: Determine the real power generations by LP optimization, 

Step 6: Solve NRPF with the power generation outputs from Step 5, 

Step 7: Simulate the OPD problem with MCS, 

Step 8: Decide the LP outputs to match with NRPF outputs then go to Step 9,  

or else, go to Step 5, 

Step 9: Decide whether |TPgavg
k − TPgavg

k+1| < ε at iteration k + 1 then go to  

Step 10, or else, go to Step 7, and 

Step 10: Compute total power generation and DR costs. 

 

MCS is widely used to investigate the power system operation and PDF 

to forecast the load and uncertainty variables in the system. However, to directly 

sampling the PDF can lead to infeasible solutions that need further variation process. 

Therefore, the PTNF could participate in this proposed framework to improve the 

technique over the existing POPD and lead to better precise results as addressed in 

Section 5. Without implementing PTNF in this study, the simulation will be included a 

number of infeasible LF solutions during the computational procedure. Therefore, it is 

noticeably shown that the proposed technique can handle the dispatch solutions 

considering PRDR effectively and accurately. 
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Figure 3.5 Framework of MCS Procedure. 

 

3.8.2 Probabilistic Load Models 

In probability and statistics manner, random variables or stochastic 

variables are variables whose represent possible numbers by using probability theory. 

Practically, the normal PDF is a common continuous probability distribution to produce 
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real-valued random variables as load uncertainty. In this work, the normal distributed 

random variable is used to model the real power demand on the specific load bus. 

For this purpose, the equivalent PDF can be formulated as, 

 

( )
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Where, 

iDP  is the probabilistic real power demand at bus i, 

Dµ  is the mean value, and 

Dσ  is the standard deviation of the demand profile. 

 

3.8.3 Sampling Condition 

  Related to Section 3.8.2, the normal PDF is chosen to model the load 

uncertainty with the specified parameters Dµ  and Dσ  obtained from the practical data 

as shown in Section 4.1. One of the most important aspects of this simulation is to 

execute a specific range ( , )x a b∈ . Suppose that 2~ ( , )D Dx µ σΝ , -∞ ≤ a < b ≤ ∞. 

Then the normal distribution has become the Truncated normal PDF lying on the 

interval a < x < b. Formally, the Truncated normal PDF will be symbolized by 𝛹𝛹() 

(Burkardt, J., 2014). And it may be classified by the formula, 
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Where, 
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From the above summary, it is clearly shown that 𝛹𝛹() is 0 at x ≤ a and 

1 at b ≤ x, and it is in-between the shifted version of the behavior of 𝛷𝛷() at a < x < b. 

In statistics, there is a rule called the 68–95–99.7 rule to deal around the 

mean value in the normal distribution, sometimes known as the empirical rule, in order 

to get more accurately, 68.27%, 95.45% and 99.73% of the random variables within 

one standard deviation, two standard deviations, and three standard deviations of the 

mean, respectively. 

To formulate the data in this study, the approximated normal PDF data 

set aimed at empirical data derivation. In this case, vector x generated randomly on a 

specific range as mentioned in Figure 3.6, represented by x(a,b)=[x1,x2,…,xmcs] which 

samples depending on how many times MCS will simulate in the 68–95–99.7 rule 

framework. The standard deviation σD of the power demand profile is a foremost part 

of modelling the significance of the random measurement error. When σD becomes 

wide-ranging, the measurement is moderately imprecise. As the result, a small value of 

σD will represent a minor error to prove a highly efficient output of random variation. 
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68.27% of the data
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deviation σ of the mean µ

95.45% of the data are within
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99.73% of the data are within
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Figure 3.6 Graphical Illustration of the Empirical Rule. 

 

3.9 Chapter Summary 

 This chapter III is represented the methods and applied optimization techniques 

to formulate the objective function. The general mathematical formulation of 

optimization is shown and linked with the linear programming to formulate the 

objective function as shown in Section 3.4 to state the feasible region of cost 

minimization. Also, the DR scheme participates in the cost function, and PRDR briefed 

in Section 3.5. To clarify the convergent solutions in the computational framework, a 

probabilistic technique called Monte Carlo simulation has implemented in procedure 

2000 runs. The desired result will be palpably exposed in Chapter IV, and it is 

responded to the problem statement successfully. 



CHAPTER IV 

RESULT AND DISCUSSION 

 

4.1 Introduction 

This chapter represents the simulation results and discussion following the 

computational procedure. The proposed framework of MCS procedure in Figure 3.5 

was implemented to prove the productivity and effectiveness in the power sector 

problem with day-ahead loading condition and the 24-hour loading pattern is shown in 

Section 4.2. The inclusive performance of the proposed framework was experienced 

with the modified IEEE 30-bus test system. The related results and discussion would 

offer as well in this section. Meanwhile, the accurate error will be slightly come along 

the provided output variables due to the nature of the simulation methods. The test 

system has nominated to program and simulated with MATLAB R2014a on the system 

window 10 Pro, Intel® Core ™ i7-4700MQ CPU @ 2.4GHz, RAM installed 16.00GB, 

64-bit operating system. The simulation results from the POPD context are provided 

well investigation between the dispatch results of LPOPD with normal PDF and PTNF 

sampling methods. There are a few graphs and tables provided in order to express 

effectiveness and successful outputs from the proposed framework. As a result of the 

projected outcomes, the objective can be successfully determined and compared to 

other recently proposed methods as shown in the subsection. 
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4.2 Parameters and Required Data 

The online diagram of the modified test system is shown in Figure 4.1, besides, 

bus data, branch data, generator data, generators’ operating costs, and other related data 

for this system following the standard IEEE 30-bus test system. 
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Figure 4.1 Diagram of the Modified IEEE 30-bus Test System. 

 

4.2.1 Generators’ Operating Costs using Piecewise Linear Cost Function 

The piecewise linear cost function for every generator is provided in  

Table 4.1. The generators’ operating costs for each generator are provided and 

linearized incremental cost curve for each segment of PGi as shown in Figure 3.3.  

Some crucial data for the simulation is provided in Table 4.2 including 

PDRi assuming the costs and quantities. With the piecewise linear staircase cost function, 

the real power generation of the individual segment is dispatched in merit order until 

reaching the PGi
max maximum real power generation. 
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Table 4.1 Generators’ Operating Costs for Each Generator 

Bus 
No. 

Incremental Piecewise Linear 
Incremental Cost 

($/MWHr) 

PGmin 

(MW) 
PGmax 

(MW) From 
(MW) 

To 
(MW) 

1 

50 
71 
92 
110 
128 
146 
164 
182 

71 
92 
110 
128 
146 
164 
182 
200 

4.540 
5.150 
5.600 
6.150 
6.860 
7.150 
8.120 
8.850 

50 200 

2 

20 
40 
60 
80 
100 
120 
140 
160 

40 
60 
80 
100 
120 
140 
160 
180 

5.050 
5.550 
6.100 
8.150 
9.000 
10.15 
11.00 
11.85 

20 180 

5 

15 
31.9 
48.8 
65.65 
82.5 
99.4 
116.3 
133.15 

31.9 
48.8 
65.65 
82.5 
99.4 
116.3 
133.15 

150 

4.050 
4.240 
4.490 
5.150 
5.850 
6.500 
7.200 
8.850 

15 150 

8 

10 
25.6 
41.2 
56.85 
72.5 
88.15 
103.8 
119.4 

25.6 
41.2 
56.85 
72.5 
88.15 
103.8 
119.4 
135 

4.750 
5.650 
5.870 
6.650 
7.410 
8.150 
8.970 
9.350 

10 135 
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Table 4.1 Generators’ Operating Costs for Each Generator (Continued) 

Bus 
No. 

Incremental Piecewise Linear 
Incremental Cost 

($/MWHr) 

PGmin 

(MW) 
PGmax 

(MW) From 
(MW) 

To 
(MW) 

11 

10 
25 
40 
55 
70 
85 
100 
115 

25 
40 
55 
70 
85 
100 
115 
130 

3.670 
4.350 
5.670 
6.050 
6.670 
7.170 
7.970 
8.950 

10 130 

13 

12 
28 
44 
60 
76 
92 
108 
124 

28 
44 
60 
76 
92 
108 
124 
140 

3.100 
5.350 
5.450 
6.000 
7.600 
8.150 
9.200 
10.50 

12 140 

 
 

Table 4.2 Power Demand for the Modified 30-bus Test System 

Bus 
No. 

Power demand Sizing of PDR 

(MW) PDRmin (MW) PDRmax (MW) ($/MW) 

2 2

*
DP  

2 2

**
D DRP P−  0 2 2

*
D DP P−  2.27 

5 5

*
DP  

5 5

**
D DRP P−  0 5 5

*
D DP P−  3.22 

7 7

*
DP  

7 7

**
D DRP P−  0 7 7

*
D DP P−  2.01 

8 8

*
DP  

8 8

**
D DRP P−  0 8 8

*
D DP P−  2.51 

12 12

*
DP  

12 12

**
DRDP P−  0 12 12

*
D DP P−  2.12 

21 21

*
DP  

21 21

**
DRDP P−  0 21 21

*
D DP P−  1.78 

30 30

*
DP  

30 30

**
DRDP P−  0 30 30

*
D DP P−  2.15 

 

*The power demand-based from the standard IEEE 30-bus test system. 

**The size of PRDR PDR from LP optimization. 
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Along with each generator data, the power demand data for the modified 

30-bus test system are improved to adapt to the proposed framework. There are some 

required data to assume for the necessary parameters in order to simulate in this 

experimentation. The PRDRs are regulated on the load bus 2, 5, 7, 8, 12, 21, and 30 

which ranged from 10.6 MW to 94.2 MW assuming to be the dispatchable aggregator 

loads. In comparing to the fixed price, consumers have participated in the PRDR 

program by decreasing their energy usage ranged by 11% to 21% in the whole year. 

Evidently, a reference (Wang, J., Biviji, M.A., and Wang, W.M., 2011) is represented 

by the average 12% of participants have saved their annual consumption pattern. In this 

work, the reactive power generating cost is not included in the result. 

In the meantime, the 24-hour loading condition as shown in Figure 4.2 

(Chayakulkheeree, K., 2015) is used to test the proposed algorithm and the annual data 

for every single hour are fitted into normal PDF to get the required data for sampling 

in the simulation as shown in Table 4.3. Based on the LP linear cost function, the limit 

constraint as mentioned in Equation (3.11) is applied to guarantee the well-balanced 

power generation equivalent to the power demand. Another thing to be taken into this 

approach is to assign the number of segments, which affects the dispatch solutions from 

LPOPD. As shown in Table 4.1, the generators’ operating costs for each generator is 

provided with eight segments for each cost function to observe very close solutions to 

the target outputs in verifying with the lambda iteration method (Wood, A.J., 

Wollenberg, B.F., and Sheblé, G.B., 2014) and the Dommel-Tinney method (Alsac, O. 

and Stott, B., 1974). 
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Figure 4.2 24-hour Loading Data from Annual Power Demand Record. 

 

4.2.2 Probabilistic and Practical Loading Pattern 

 For this simulation, the practical loading patterns using parameters Dµ  

and Dσ  are selected to use as power demand data patterns as shown in Figure 4.2 by 

transforming into the normal PDF and the PTNF. 
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Figure 4.3 Parameters Dµ  and Dσ  for Power Demand Forecasting Pattern. 

0
50

100 150
200

250
300

350

0
5

10
15

20

0.4

0.5

0.6

0.7

0.8

0.9

1

Annual Power Demand DataHourly Loading for a Day Pattern

N
or

m
al

iz
ed

 D
at

a



57 
 

Consistently, the normalized annual data (Chayakulkheeree, K., 2013) 

has selected as a reference, while Dµ  is taken from the peak loading day on 4th April 

2010 and Dσ  is assumed to be 5% of Dµ . After that, the parameters Dµ  and Dσ  will 

be obtained for use in the sampling conditions in Section 3.8.3 and exampled in Figure 

4.3 and the required data are shown in Table 4.3. 

 

Table 4.3 Parameters for Sampling Data 

Hour 
Parameters Case 1: 

µD ± σD 
Case 2: 

µD ± 2σD 
Case 3: 

µD ± 3σD 

µD σD a b a b a b 

1 0,7728 0,0386 0,7342 0,8114 0,6955 0,8501 0,6569 0,8887 

2 0,7485 0,0374 0,7111 0,7859 0,6737 0,8234 0,6362 0,8608 

3 0,731 0,0366 0,6945 0,7676 0,6579 0,8041 0,6214 0,8407 

4 0,7064 0,0353 0,6711 0,7417 0,6358 0,7770 0,6004 0,8124 

5 0,708 0,0354 0,6726 0,7434 0,6372 0,7788 0,6018 0,8142 

6 0,7507 0,0375 0,7132 0,7882 0,6756 0,8258 0,6381 0,8633 

7 0,7328 0,0366 0,6962 0,7694 0,6595 0,8061 0,6229 0,8427 

8 0,7849 0,0392 0,7457 0,8241 0,7064 0,8634 0,6672 0,9026 

9 0,9197 0,0460 0,8737 0,9657 0,8277 1,0117 0,7817 1,0577 

10 0,9549 0,0477 0,9072 1,0026 0,8594 1,0504 0,8117 1,0981 

11 0,9788 0,0489 0,9299 1,0277 0,8809 1,0767 0,8320 1,1256 

12 0,9147 0,0457 0,8690 0,9604 0,8232 1,0062 0,7775 1,0519 

13 0,9389 0,0469 0,8920 0,9858 0,8450 1,0328 0,7981 1,0797 

14 1,0000 0,0500 0,9500 1,0500 0,9000 1,1000 0,8500 1,1500 

15 0,9877 0,0494 0,9383 1,0371 0,8889 1,0865 0,8395 1,1359 

16 0,9713 0,0486 0,9227 1,0199 0,8742 1,0684 0,8256 1,1170 

17 0,898 0,0449 0,8531 0,9429 0,8082 0,9878 0,7633 1,0327 
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Table 4.3 Parameters for Sampling Data (Continued) 

Hour 
Parameters Case 1: 

µD ± σD 
Case 2: 

µD ± 2σD 
Case 3: 

µD ± 3σD 

µD σD a b a b a b 

18 0,8562 0,0428 0,8134 0,8990 0,7706 0,9418 0,7278 0,9846 

19 0,9615 0,0481 0,9134 1,0096 0,8654 1,0577 0,8173 1,1057 

20 0,9485 0,0474 0,9011 0,9959 0,8537 1,0434 0,8062 1,0908 

21 0,9237 0,0462 0,8775 0,9699 0,8313 1,0161 0,7851 1,0623 

22 0,8931 0,0447 0,8484 0,9378 0,8038 0,9824 0,7591 1,0271 

23 0,8614 0,0431 0,8183 0,9045 0,7753 0,9475 0,7322 0,9906 

24 0,8163 0,0408 0,7755 0,8571 0,7347 0,8979 0,6939 0,9387 
 
 

4.3 Simulation Results 

 Regarding the results from Monte Carlo simulation with normal PDF and 

PTNF, the probabilistic investigation figures are intended that the output from the 

proposed method is demonstrated the convergence significantly. Even though, in the 

beginning, it seems a little bit worth divergence from the spot solution, it came out after 

some iterations. It is noticed that the yield is hereby indicated the active power demand, 

which is functioning to the total operating cost. On the one hand, PRDR will be 

instanced dependability in this study due to the contract in the DR program. In contrast, 

the reactive power generation and system losses are not considered in this framework. 

Still, it is certainly simplified the effectiveness of the proposed context. The dispatch 

results for day-ahead will be shown in Table 4.4 which will compare to some relevant 

methods respectively in Table 4.6. 
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4.3.1 Investigation Results of LPOPD with Normal PDF Sampling 

The proposed framework was performed by POPD computational 

procedure with simulation 2000 runs. Figure 4.4 illustrates the MCS of the experimental 

studies, which represents the outputs of total operating cost from POPD simulation 

convergence with normal PDF. Besides, the simulation results were congregated in 

different trial point, in the same manner, there is the evidence to verify the simulations 

have converged magnificently with an hourly dispatch for day-ahead scheduling 

without applying PTNF. 

As shown below figure, the outputs from POPD simulations using 

simple MCS computational framework are shown the good convergent solutions as 

well as many other references indicated in Section 2.5.3, the system loading was 

randomized by normal PDF to represent the uncertainties. In this case, the infeasible 

results are always getting along with the feasible results during the simulations due to 

the nature of normal PDF modelled in Section 2.8.2. This would cause a problem in the 

MCS simulations and lead to stop the program with divergent results. Anyway, it does 

not mean that this negative point will happen in every application, but it actually exists 

in the experimental process. In order to avoid the drawback in this thesis, the 

probabilistic technique and sampling conditions in Section 3.8 are implemented in the 

numerical computation. 
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Figure 4.4 Convergence of MCS from Normal PDF for Day-ahead Loading. 

 

The pattern of total system cost with and without DR program is shown 

in Figure 4.5 when the system loading represented by normal PDF sampling methods. 

Moreover, the proposed LPOPD framework is really dispatched with the probabilistic 

technique, the peak load point at 14:00 in Figure 4.5 is selected to inspect and evaluate 

with normal and PTNF sampling methods to check the simulation convergence. 

Anyways, the PTNF simulation results have provided in Section 4.3.2. It is simulated 

based on the modest MCS process and next section would indicate the better accuracy 

when PTNF is applied to the LPOPD procedure over this normal sampling method. The 

evidence for these entitlements is the convergent investigation from MCS simulation 

outputs in Figure 4.4 and Figure 4.6–4.8. 
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Figure 4.5 Total System Cost with and without DR when Load Uncertainties  

  represented by Normal Sampling Methods. 

 

4.3.2 Investigation Results of LPOPD with PTNF Sampling 

Concerning the drawback of normal PDF sampling methods as mention 

in Section 4.3.1, the proposed framework in Figure 3.5 is developed with important 

PTNF sampling methods. It is used to ensure the convergent of MCS would come faster 

than simple MCS simulation and improve the precision of the computation when there 

is a kind of load uncertainties in the power system. 
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Figure 4.6 PTNF Output with Case 1 for Day-ahead Loading. 

 

 

Figure 4.7 PTNF Output with Case 2 for Day-ahead Loading. 
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Figure 4.8 PTNF Output with Case 3 for Day-ahead Loading. 

 

For the meantime, the proposed framework was still performed by 

POPD computational procedure with simulation 2000 runs. Figure 4.6–4.8 illustrate the 

MCS convergence of the experimental studies, which represents the outputs of the total 

operating cost from POPD simulation convergence with PTNF sampling methods. 

Moreover, the pattern of the total system cost with and without DR program is shown 

in Figure 4.9 when the system loading represented by PTNF sampling rules in order to 

confirm the practicality of the proposed setting. It is exposed that the proposed methods 

could offer the dispatch results as shown in Figure 4.5 and Figure 4.9 and it provided 

the neglected error less than one percent because of the output data were provided with 

an average value during the simulations. Furthermore, to explain that the proposed 

LPOPD framework is positively dispatched with the probabilistic technique and 

sampling conditions, the peak load point at 14:00 in Figure 4.10 is selected to inspect 
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and evaluate with normal in Figure 4.5 and PTNF sampling methods to check the 

simulation convergence. 

 

 

Figure 4.9 Total System Cost with and without DR when Load Uncertainties  

  represented by PTNF Sampling Methods. 

 

 

Figure 4.10 Convergence Investigation with and without PTNF Sampling Methods. 
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From the results represented in the above figure, normal PDF sampling 

variables with the computational framework processed at least 1540 trials to meet the 

convergent solution. Involvement in this study, it was enhanced after applying the 

empirical rule mentioned in Section 3.8.3. They are complicated in the computational 

procedure by refining to give the convergent solutions at least 411 trials within one 

standard deviation (Case 1) and at least 817 trials within two standard deviations (Case 

2). Otherwise, within three standard deviations (Case 3), the convergence has met at 

least 1406 trials parallel to the case of normal PDF sampling methods. However, it was 

cleared that the standard deviation value σD became extensive then the measurement 

would be moderately inaccurate just like the theorist intended the idea (Wood, A.J., 

Wollenberg, B.F., and Sheblé, G.B., 2014; Burkardt, J., 2014; Mazzeo, D., Oliveti, G., 

and Labonia, E., 2018). It could be converged at least 1540 trials or more with the 

random numbers from the normal PDF random variables in the framework as shown in 

Figure 3.5 whereas it has the opportunity to get the faster convergent solutions at 411 

trials. Meanwhile, the solutions were obtained with slightly errors of mean value 

between before and after applying the probabilistic model to the system simulation. It 

is because of the characteristics of simulation methods. In the same way, other 

developers (Krenek, R., Cha, J., and Cho, B.R., 2016) of the convolutions of PTNF 

random variables were successfully implemented with similar these sampling 

conditions in order to lead a better conceptualized with PTNF to represent the 

uncertainties in their framework and approximation production processes. Consistently, 

these important sampling methods were efficiently modelled based on simple MCS 

process (Ni, F., Nguyen, P.Η., Cobben, J.F.G., and Tang, J., 2016). Anyway, this work 

was faced with several challenges and caused to an expensive computational effort. 
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Added advantages over these mentioned references, the proposed frameworks in this 

thesis lead the dispatch solutions for real power dispatch hour-ahead in participating by 

DR in the peak periods to keep power balancing in case of the power demand 

represented as load uncertainties. Especially, this work can provide competently time-

consuming by numerical computation processes. Next subsection 4.3.3 provides 

accumulative dispatch results to confirm the above statements. 

4.3.3 Dispatch Results 

 Apropos of results from MCS simulation with normal PDF and PTNF, 

the probabilistic investigation in Figure 4.4–4.10 are intended that the output from the 

proposed method is demonstrated the convergence significantly and handle the 

objectives very well. Even though it seems a little bit worth divergence from the spot 

solutions in the beginning, but it can be convergent after some iterations as mentioned 

detailed in Section 4.3.2. To be noticed that, the yield is hereby indicated the active 

power demand, which is functioning to the total operating cost. Another thing is PRDR 

sizing will be compensated depending on the proportion between the aggregated system 

loadings with forecasting demand-based. Table 4.4 indicates the simulation 

performance both normal sampling and important PTNF sampling methods for every 

single hour in a day-ahead competitive market and get a lump sum of 24-hour costs and 

quantities. 

From the simulation results, it presented that the proposed method has 

fulfilled the objective function as mentioned in Section 1.3 to provide the dispatch 

solutions. To confirm the base case study of OPF, the computational procedure is 

successfully publicized in reference (Chhor, U., Leeton, U., and Chayakulkheeree, 

2019). It has compatibly verified with reference (Alsac, O. and Stott, B., 1974) for OPF 
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steady-state security solved by non-linear optimization and it is certainly made clear 

that the proposed LPOPD is successfully dispatched with a neglected slop error due to 

the nature of the piecewise linear optimization model. In Table 4.4, the POPD is run 

with normal PDF random variation input as loading uncertainties at the specified bus 

as shown in Table 4.2, which the size of PDR was also enhanced from LP optimization 

to participate in the system and then it properly determined the total system operating 

cost dispatch 17,200 $/day. After that, the PRDR is still directed on the system planning 

for aggregate loads. 

 

Table 4.4 Dispatch Results for Day-ahead 

Variable 
Base OPD POPD POPD with PTNF 
Case w/o DR N (µ, σ) Case 1 Case 2 Case 3 

Total 
Generation 

[MWhr, 
MVARhr] 

[7,885.6 ; 
2002,7] 

[7,885.2 ; 
2,006.4] 

[6,949 ; 
1,980] 

[6,950.8 ; 
1,980.7] 

[6,949.5 ; 
1,980.9] 

[6,949.3 ; 
1,980.8] 

Total P-Q 
Load 

[MWhr, 
MVARhr] 

[7,806.2 ; 
3,028.8] 

[7,806 ; 
3,028.8] 

[6,876.5 ; 
3,028.8] 

[6,877.8 ; 
3,028.8] 

[6,876.2 ; 
3,028.8] 

[6,876 ; 
3,028.8] 

Total DR Size 
[MWhr] − − [385.4] [377.4] [380.5] [385] 

Total Syst. 
Losses 

[MWhr, 
MVARhr] 

[79.44 ; 
-412.32] 

[78.96 ; 
-412.08] 

[72.5 ; 
-438.77] 

[73 ; 
-438.07] 

[73.3 ; 
-437.81] 

[73.3 ; 
-437.92] 

Total Gen. 
Cost 

($/day) 
18,996 17,739 16,178 16,228 16,206 16,181 

Total DR Cost 
($/day) − − 1,022.6 1,001.6 1,009.7 1,022.6 

Total Syst. 
Cost 

($/day) 
18,996 17,739 17,200 17,229 17,216 17,204 
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Moreover, the rules of PTNF has applied to the LPOPD procedure then 

the total operating cost becomes much better. In probabilistic approach contained 

within sampling conditions, the total system operating cost is dispatched to 17,229 

$/day when POPD with PTNF was applied to case 1 simulation. It continued to carry 

out the total dispatch operating cost at 17,216 $/day by case 2 simulation. Meanwhile, 

it is equally dispatched to 17,204 $/day by case 3 simulation. To be notified that there 

must be some clearance payments for PRDR customers as specified in Table 4.4 due to 

the PRDR contracts between customers and SO in this prospectus.  

 

4.4 Discussion 

According to Table 4.6 indicates the achievement of the proposed method 

comparing to other recently proposed methods. The probabilistic technique and 

sampling conditions in Section 3.8 play an imperative role in the computational process 

by producing only feasible solutions during the simulations and lead the results to the 

dispatch solutions as well as extra reliable and less time-consuming. The results are 

significantly achieved the good performance by applying PTNF in the computational 

framework. Without PTNF, the feasible load of PDF modelling cannot be established 

efficiently. 

From an economic point of view, the total investment cost of the system for 

day-ahead, the proposed method is observably offered cheap system operating cost 

dispatch. It had total system cost of approximately 17,200 $/day less than the amount 

of 19,314 $/day by PEM (Shargh, S., Khorshid ghazani, B., Mohammadi-ivatloo, B., 

Seyedi, H., and Abapour, M., 2016). Regarding the proposed method, the approximate 

system cost in both normal PDF and PTNF sampling methods is satisfactory to confirm 
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the effectiveness of the proposed framework. A set of evidence previously presented 

the convergence of the simulations in Section 4.3 and illustrated in Figure 4.4 and 

Figure 4.6−4.8. 

 Regarding the simulation method implemented in this work by MCS technique, 

the random number generator for power demand forecasting would be aimlessly due to 

a different sequence of numbers after each time and it produced different expected 

power demand. This led the convergence would come out with a different point. For 

the meantime, the investigation for 20-trial is made to ensure the certainty of convergent 

iteration at the peak load of the day at 14:00. Then these 20 data simulations of 

convergence are fitted with normal PDF in order to prompt the average number of 

convergent iterations as shown in Figure 4.11 and Table 4.5 indicated the number of 

iteration for convergence with standard deviation σ respectively. Furthermore, all 

figures for the convergence of each case study represented in Appendix I. 

 

 

Figure 4.11 20-Data Simulation of Convergence are fitted with Normal Distribution. 
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Table 4.5 Number of Iteration for Convergence at 14:00 with 20 Trials 

Sampling 

Variable 

Number of Iteration Standard 

Deviation (σ) Minimum Average Maximum 

Normal PDF 1229 1438.15 1718 160.36 

PTNF (Case 1) 516 670.6 953 110.922 

PTNF (Case 2) 668 883.6 1175 140.262 

PTNF (Case 3) 942 1136.85 1387 127.679 

 
 

Table 4.6 Data Comparison with Related Case Study 

Sampling 

Variable 

Average of 

Iteration 

Total System 

Cost [$/day] 

Normal PDF 1438 17,200 

PTNF (Case 1) 671 17,229 

PTNF (Case 2) 884 17,216 

PTNF (Case 3) 1137 17,204 

 
 

To conclude, the proposed PTNF framework could provide the results with high 

accurateness of convergence not only comparing to the normal PDF sampling methods 

but also it could improve the computation time and offer the better performance within 

the feasible solution region of the simulations. Furthermore, the conclusion and 

recommendation are provided in the next chapter. 
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4.5 Chapter Summary 

Responding to Chapter I-III above, this chapter IV has applied the research 

methodology and problem formulation and lead to the prospective results. The 

necessary data such as generators’ operating costs to participate in problem formulation 

is provided and probabilistic loading is also attached along in Section 4.2. As a result 

of simulations, the investigations with its statement have provided in Section 4.3 with 

normal PDF and PTNF sampling methods. Hence, the results are expressed to inspect 

the dispatch outcomes in Table 4.4 and relevant competitive methods in Table 4.6. The 

POPD computational procedure with simulation 2000 runs has illustrated the 

convergence as well since earlier iteration stated clearly in Section 4.3.1-4.3.2 on how 

PTNF sampling methods claimed its advantages over normal PDF and lead the results 

to the dispatch solutions as well as more reliable and cheap computational time. From 

Table 4.5 and Table 4.6, it is shown the average number of iterations: 1438 iterations 

from normal PDF simulation, 671 iterations from PTNF (Case 1) simulation, 884 

iterations from PTNF (Case 2) simulation, and 1137 iterations from PTNF (Case 3) 

simulation. Accordingly, simulations could recommend that the results with high 

accuracy and exactness of convergence, it should advance considerably with these 

numbers of iterations as well. To end, this chapter is replied to the problem statement 

due to the objective function was intensely solved by the proposed framework. 

 



CHAPTER V 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

In this thesis, the POPD based on LP is proposed to dispatch the power 

generations complemented by PRDR to minimize total operating cost. The objective 

function is to moderate the total system cost while compensating between the high 

peaking cost power generations and PRDR offered. In the same way, the predictable 

load uncertainties at the demand side are represented by the normal PDF with PTNF 

sampling methods as input variations in the framework of the MCS procedure. 

Therefore, the proposed method can effectively and efficiently curtail the total power 

generation cost, while the PRDR is a trade-off between the benefits of the SO and 

electricity users in the energy market. As a result, the proposed method enhances the 

benefits not only the SO but also the consumers, though they are able to claim their 

paybacks by participating in PRDR contracts. The only thing to do is to rearrange their 

consumptions during the peak periods or time-ahead from SO’s request or contract and 

there are some possible solutions recommended in Section 5.2. As a final point, it is 

substantiated that the proposed method can potentially be used to deal with the future 

electricity supply market. It is definitely replied to the study objectives mentioned in 

Section 1.3, 

i. Overall incremental production cost reduced by LPOPD participated by 

PRDR in peak periods for day-ahead, 
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ii. SO and demand side co-optimized and claimed individual benefits in the 

energy market, 

iii. Rational DR prices promoted to clients by technological  

development, 

iv. Elasticity of demand in hour-ahead and day-ahead forecasted and 

enhanced the advantages by important PTNF sampling methods, and 

v. Hourly dispatch achieved in a competitive market. 

 

5.2 Recommendation 

Exploring the effectiveness of the proposed method basis, POPD simulation 

considering DR strategy has experimented with the curtailable aggregate loading 

pattern. Addition to this conception, the compulsory contract between the SO and 

PRDR customers would set up in the proper conditions as well. Furthermore, the 

emerging perception of MCS technique in Figure 3.5 shall be developed into a higher 

level of simulation approach and proposed an index to limit the number of trials in order 

to reduce very time-consuming. Another significant aspect of PRDR management, the 

load buses 2, 5, 7, 8, 12, 21, and 30 were presumed to be the aggregate loads with the 

proposed criteria. The next steps for electricity demand response (Eid, C., Koliou, E., 

Valles, M., Renese, J., and Hakvoort, R., 2016) is to engage additional roles for the grid 

and incorporate many customer technologies (The Future of Electricity, 2017) for 

bidirectional energy trading concept in order to enhance the system security (Shoreh, 

M.H., Siano, P., Shafie-khah, M., Loia, V., and Catalão, J.P.S., 2016) and participation 

of consumers.  
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 Investigation for 20-trial convergence from normal PDF simulations, 
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 Investigation for 20-trial convergence from case 1 simulations, 
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 Investigation for 20-trial convergence from case 2 simulations, 
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 Investigation for 20-trial convergence from case 3 simulations, 
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