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Abstract. The naïve tabu search (NTS) has been enhanced with two adaptive 
mechanisms namely back-tracking and adaptive search radius. The proposed 
search is called adaptive tabu search (ATS). The paper provides convergence 
and performance analyses of the ATS. 

1   Introduction 

The tabu search (TS) method was proposed in 1986 by Glover to solve combinatorial 
optimization problems [1]. Two principles of the TS method are the neighborhood 
search approach and the tabu list (TL), respectively. The method is often applied in 
the simplest form referred to as naïve tabu search (NTS) that is usually trapped by 
local solutions. The method has found a variety of applications such as [2-7] although 
a dead-lock by a local solution can occur.  

We propose an enhanced version of the NTS that composes of two mechanisms: 
namely back-tracking, and adaptive search radius mechanisms. Moreover, the  method 
possesses a random movement of solution findings in the preset neighborhood. These 
additional features have made the method more efficient and powerful. The search 
method has been named the adaptive tabu search (ATS) and successfully applied to 
identify linear and nonlinear system models [8].  

The convergence analysis of the conventional TS method has been proved [9,10]. 
The proofs were based on the deterministic recency and frequency approaches. In this 
paper, a new proof is provided for the ATS method to ensure its convergence. In addi-
tion, the performance evaluation was conducted through many-thousand search trials 
on three nonlinear mathematical functions. These are the unsymmetrical trigonometric 
sum, one of Bohachevsky’s functions, and the circle function. This paper reports the 
finite convergence analysis, and the performance evaluation of the ATS.   

2   Convergence of the ATS  

2.1   Definitions 

Definition 1. Let Ω be a finite search space having n members (n < ∞ ). 
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Definition 2. Let the finite search space Ω have k strictly local minima and be divided 
into k regions denoted by Λi (i = 1,2,…,k). Each region having a total of w members 
contains only one local minimum, which must not be located at the boundary.  

Definition 3. Let Ψ be a randomly-created finite sub-space of Ω, Ψ ⊂ Ω, having m 
members (m < n). 

Definition 4. Let a finite sequence S = {x0,i}, i = 1,2,…,p, be a collection of solution 
movements, x0, consisting of p solutions to reach the global minimum (k < p).  

Definition 5. Let Time(x) be a time consumed to visit a solution x in the search space 
Ω and it assumes to be constant for visiting any x ∈ Ω. That is Time(xi) = Time(x) > 0 
for i = 1,2,…,n.  

Definition 6. Let Iteration be a cumulative number of iterations indicating how many 
solutions in Ψ were already visited. Iteration is initialized at the start of a new sub-
space exploration. After exploring all generated solutions in Ψ, the updated Iteration 
is equal to m and the time is m⋅Time(x).  

Definition 7. Let Count be a cumulative search round of sub-space explorations indi-
cating how many sub-spaces in Ω were already explored entirely. Count is initialized 
only once at the beginning. Count is updated when all solutions in any Ψ have been 
visited. After an entire exploration, Count is equal to p and the overall time consumed 
is p⋅m⋅Time(x).  

Definition 8. Let BT denote the back-tracking mechanism to allow the use of any 
previously visited local minimum recorded in the TL for generating a new starting 
point rather than the one just obtained.  

Definition 9. Let AR denote the adaptive search radius mechanism that reduces the 
accessing time to a local minimum. Given that ρ = µ.r is the adaptive radius where r is 
a nominal radius and an arbitrary constant while 0 < µ ≤  1. The radius is used to de-
fine a neighborhood around a current solution. 

2.2   ATS Algorithms 

Step 1) Initialise the Tabu List (TL= ∅), Iteration = 0 and Count = 0. 
Step 2) Randomly select an initial solution x0,Count from the search space Ω and assign 

it as an initial global minimum x*. The time used for visiting the initial solu-
tion is Time(x). 

Step 3) Update Count by 1, then create a sub-space ΨCount. Evaluate the objective 
function of ∀x∈ ΨCount. Update Iteration by 1 when an x is examined. A solu-
tion with the minimum objective function is x′ . When the exploration of the 
subspace is finished (Iteration = m), the cumulative time consumed is 
m⋅Time(x).  

Step 4)  If x′ < x0,Count, keep x0,Count in the TL and set x0,Count = x′ . Otherwise put x′  in 
the TL instead. 

Step 5)  Update the global minimum. x* = x0,Count if   x0,Count < x*.  
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Step 6)  Evaluate the termination criteria (TC) and the aspiration criteria (AC). 
- Go to step 7 if TC is satisfied, otherwise repeat step 3. 
- Activate the AR mechanism to speed up the searching process.  
- Activate the BT mechanism if a local minimum trap occurs. Reset Iteration 

and repeat step 3.  
Step 7)  Terminate the search process. Accept the last updated x* as the global solu-

tion.  

Only a few numbers of solutions in Ω would be randomly visited and it is suffi-
cient to locate the global minimum by Count = p and p⋅m⋅Time(x) of the overall time 
consumed. 

2.3   Proof of Global Convergence  

Theorem A. If a total number of members, m, in a sub-space Ψ is large enough to 
give good representatives of a neighborhood, a local minimum nearby can be found by 
generating a sequence of some successive sub-spaces.  

Proof. Let x̂  be a strictly local minimum in a considered region, Λ (x0), of x0. That is 
ˆ( ) ( )f x f x<  for 0( )x x∀ ∈ Λ  and also for 0( )x N xρ∀ ∈ . This implies that both Nρ(x0) and 

sets of solutions nearby lie on the same region, 0( )xΛ . In a similar manner as the Hill-

climbing algorithm, updating a current solution leads descent direction to reach a 
nearby local minimum.  

Given an initial solution xt=0 in a finite sub-space Ψt  ⊂ Ω. To generate a sequence 
of xt+1, the descent property must be held to guarantee that a next move leads to a 
local minimum. At any current solution, there are only two possible outcomes that are 
either i) the solution is improved, 1( ) ( )t tf x f x+ < , or ii) the solution is not  

improved, 1( ) ( )t tf x f x+ ≥ . In the ATS method, given that the neighborhood, Nρ (xt), of 

the current solution xt is created and has a total of N members. The sub-space Ψt+1 

⊂ Nρ(xt) is then randomly generated with m finite members where m < N, and m is 
constant. This process is based on the assumption that not all members in the 
neighborhood give better cost than xt does, but only u members of Nρ (xt) satisfy 

( ) ( )tf x f x<  where x∈Ψt+1. The probability to improve the solution 

( )( ) ( )tP P f x f x= <  is given as follows. 

Case 1: (m > N – u)    
 P = 1, in this case, at least one of m satisfies the condition. 
Case 2: (m ≤  N – u) 

In this case, there are 
!

( )! !

N N

m N m m

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

 of the possible combination for randomly 

selecting m members out of N. In addition, 
( )!

( )! !

N u N u

m N u m m

−⎛ ⎞ −=⎜ ⎟ − −⎝ ⎠
 is a total of ways 

that the solution is not improved. Thus, the probability of the sampling, which cannot 
improve the current solution, is shown as follows. 
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!( )!

N u N m
P

N N u m

− −=
− −

 (1) 

When m and N are both fixed, Eq. (1) depends on u only. u is large when the cur-
rent solution is close to the local minimum. This search process updates the current 
solution with the best member in each iteration. Therefore, the solution will move 
towards the local minimum when the time increases. That is ( ) 0

t
lim u t
→∞

= . From Eq. (1), 

the probability of the event that the solution cannot be improved anymore (local 
minimum found) is expressed below. 

( )
( )

( ) !( )!
( ) 1

! ( ) !t t

N u t N m
lim P t lim

N N u t m→∞ →∞

− −
= =

− −
 

(2) 

When the process is repeatedly performed with a considerable amount of time, the 
probability of finding the local eventually global minimum is close to unity. 

Theorem B. The BT mechanism leads the search process to obtain multiple local 
minima. Among them, one is the global minimum.   

Proof. As previously mentioned, the random search process might fail to escape from 
a trap due to ineffectiveness of the algorithms. The use of some solution stored in the 
TL as an initial solution for the next search round enables various search directions. It 
increases possibility to run away from the already visited local minimum. Given nre 
be a counter for a solution cycling. “Solution cycling” means that the search cannot 
escape the entrapment of the just visited local minimum, so the movement of solutions 
will return to the just visited local minimum at the end of the next search round. The 
counter is updated every time a new final solution of any search round being equal to 
the one previously visited and already stored in the list. Let nre_Max be the maximum 
number allowance of the solution cycling. Therefore, the BT mechanism is activated 
by the following condition. If nre < nre_Max, then continue the search whether it can 
eventually escape from the solution lock, otherwise, performing the BT process. Once 
nre ≥ nre_Max, one of the solutions recorded in the TL is selected to be a new initial 
solution for creating the next sub-space Ψ. nre ≥ nre_Max, is an Aspiration Criteria. The 
BT mechanism will select a solution xh ∈ TL in such a way that 

i
h i o

x TL
x max x x

∈
= −  and 

the condition 0( ) ( )hf x f x<  must hold. After selecting the solution, set x0 = xh as a new 

initial solution for the next search round. Therefore,  

i) If the local minimum x̂  is obtained already and the length of TL is sizeable, 
there exists at least one solution that is relatively close to the boundary of 

0( )xΛ . Therefore, length(TL) 1 x>> → ∃ ∈ TL Bx x∧ − < γ , where xB is a 

boundary point and γ  is the maximum allowance.   
ii) During the search process if a current x0 is relatively close to boundary of 

0( )xΛ  as stated in (i), together with a certain radius ρ that is relatively large 

enough to be able to reach some solutions outside 0( )xΛ , the best solution of a 

current Ψ can be located outside 0( )xΛ .  
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� ( ) ( )0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )x x N x x x x xΨ − Λ ⊂ − Λ ⊄ Λ → ∃ ∉ Λρ  

iii) With proceeding a new search from a solution found outside 0( )xΛ  according 

to (ii), this restarts a new descent process to reach another local minimum of a 
new region nearby. By repeating the procedures with all k different local min-

ima being found within a finite search time
1

( ) ( )
n

i
i

p m Time x w Time x
=

⋅ ⋅ < ⋅∑ , and 

with the cost-value termination criterion being completely satisfied, one of the 
local minima is the global minimum. 

3   Performance Evaluation 

The ATS was coded in MATLABTM for running on a Pentium 4, 1.6 GHz, 256 
Mbytes RAM, 40 Gbytes HD. The search was conducted against three following func-
tions to find the global minimum. Firstly, the unsymmetrical trigonometric sum func-
tion (TSF) is expressed by Eq.(3). The global minimum is on x = –0.26 making  
f(x) = 4.56×10-5 and is used as the termination criterion. Secondly, the Bohachevsky’s 
function (BF) [11], Eq.(4), and thirdly, the circle function (CF) [12], Eq.(5), are used. 
Both functions have the global minimum at x = y = 0 with f (0,0) = 0. We use 1×10-5 
to approximate zero and it is set as the termination criterion for the last two cases. 

( ) 2( ) sin( ) 2.5sin(2 ) 1.5sin(4 ) 2sin(8 ) 4.4716f x x x x x x= + + + + +  (3) 

[ ]2 2( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7 , 1.0 ,1.0f x y x y x y x y= + − π − π + = ∈ −  (4) 

( ) ( ) [ ]
1 1

2 2 2 2 24 10( , ) sin 50 0.1 , 0.5 , 0.5f x y x y x y x y⎛ ⎞⎛ ⎞= + + + = ∈ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

(5) 

We report only the performance of the ATS because the NTS is completely unable 
to locate the global minimum. Five parameters are considered to influence the search 
performance of the ATS. They are: i) the initial search radius (R), ii) the number of 
neighborhood members (n), iii) the number of repetitions of solution cycling before 
back-tracking (n_re_max), iv) the kth backward solution selected by the back-tracking 
mechanism (kth backward selection), and v) the percentage of search radius reduction 
compared to the radius before adaptation. 

The first four tests begin with tuning four parameters (R, n, n_re_max and kth 
backward selection), where the search radius is non-adaptive. Each parameter setting 
is carried out with the maximum of 1,000 trials. It starts with a random initial solution 
generated by MATLAB. It stops when either of the following termination criteria is 
met: i) the maximum search round of 10,000, or ii) the cost function ≤ ε (a very small 
number to approximate zero).  

The setting from the first four tests that gives the best result is applied to conduct 
the fifth test, in which the search radius is adaptive. The adaptive radius scheme is set 
to have three steps of reduction as: i) if [cost function < 10-1] then [R(new) = R(old)/DF];   
ii) if [cost function < 10-2] then [R(new) = R(old)/DF]; and iii) if [cost function < 10-3] 
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then [R(new) = R(old)/DF], where R(old) and R(new) are the search radius before and after 
adaptation, and DF is the factor of radius reduction and it is assigned by the following 
values: 10, 15, 20, 25, and 30% of the current radius. The parameters for the fifth test 
obtained from Tables 1-4 are given as follows: TFS–{R = 2.5%, n = 30, n_re_max = 
5, and kth = –2}; BF–{R = 10.0%, n = 30, n_re_max = 5, and kth = –5}; and CF–{R = 
7.5%, n = 40, n_re_max = 5, and kth = –5}. The results of this test are summarized in 
Table 5. It shows that 20-25% reduction of the search radius gives good performance 
in terms of speed and convergence. 

4   Conclusions  

The convergence analysis and the performance evaluation of the ATS method have 
been presented in this paper. The global convergence can be guaranteed. We present 
the ATS performance in terms of function minimization. The NTS is completely un-
able to locate the global solution while the ATS can. To apply the ATS successfully, 
one is recommended to evaluate its performance against a set of interested problems 
such that its parameters rendering fast search could be identified.     

Table 1. Effects of search radius (R) 

Average search round Average search time (s) No of successful trials  

R (%) TSF BF CF TSF BF CF TSF BF CF 

2.5 459.45 7923.30 9341.4 1.31 48.51 52.43 1000 203 214 

5.0 936.41 7156.60 6610.2 2.81 41.18 38.87 1000 296 405 

7.5 897.83 3876.60 3742.3 3.28 20.95 20.63 1000 757 885 

10.0 924.17 1353.10 4878.8 3.92 6.06 25.40 1000 1000 816 

12.5 992.33 2263.70 5955.1 4.78 10.60 33.03 1000 988 700 

15.0 933.06 3071.40 6796.2 5.02 14.91 37.60 1000 954 548 

20.0 1035.50 4832.40 8038.0 6.78 24.59 47.148 1000 808 363 

Table 2. Effects of neighborhood size (n) 

Average search round Average search time (s) No of successful trials   
n TSF BF CF TSF BF CF TSF BF CF 

10 1473.5 4135.10 7134.4 2.14 10.33 21.82 998 893 526 
20 707.15 2203.30 4802.4 1.44 7.72 20.23 1000 987 804 
30 459.45 1353.10 3742.3 1.31 6.06 20.63 1000 1000 885 
40 357.17 1089.10 3029.3 1.40 6.37 19.37 1000 1000 910 
50 287.32 904.08 2928.5 1.33 6.49 25.06 1000 1000 873 
60 230.81 802.53 2304.2 1.26 6.70 22.32 1000 1000 908 
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Table 3. Effects of n_re_max 

Average search round Average search time (s) No of successful trials  n_re_ max 

TSF BF CF TSF BF CF TSF BF CF 
5 472.52 1310.90 3029.3 1.36 5.91 19.37 1000 1000 910 

10 473.65 1322.10 3279.4 1.43 5.95 22.15 1000 1000 871 
15 477.45 1353.10 3438.3 1.43 6.06 23.91 1000 1000 858 
20 475.71 1518.80 3466.4 1.44 6.61 24.12 1000 998 851 
25 485.43 1438.80 3360.0 1.42 6.51 23.37 1000 1000 862 

 

Table 4. Effects of the kth  backward selection 

Average search round Average search time (s) No of successful trials  kth  

TSF BF CF TSF BF CF TSF BF CF 
-1 461.60 1498.40 3455.1 1.49 6.33 24.09 1000 998 866 
-2 493.99 1488.40 3364.4 1.47 6.68 23.65 1000 998 871 
-3 477.19 1478.40 3253.7 1.57 6.90 22.21 1000 998 867 
-4 464.33 1586.30 3115.4 1.52 7.31 21.45 1000 998 884 
-5 470.31 1462.80 3029.3 1.53 6.21 19.37 1000 999 910 

 

Table 5. Effects of reduced R 

Average search round Average search time (s) No of successful trials  Reduced R 
 TSF BF CF TSF BF CF TSF BF CF 

10% 11.07 24.36 1195.4 0.03 0.09 8.70 1000 1000 892 
15% 13.36 26.18 1200.9 0.04 0.10 10.52 1000 1000 887 
20% 17.85 30.16 600.94 0.05 0.13 4.20 1000 1000 942 
25% 22.27 38.41 601.14 0.06 0.16 4.42 1000 1000 940 
30% 34.64 64.24 802.92 0.11 0.31 7.15 1000 1000 914 
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