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การศึกษาในคร้ังน้ีมีวตัถุประสงคด์งัน้ี 1) เพื่อศึกษาระยะเวลาที่ใชใ้นการหมกัเช้ือราขาว 3 

ส า ย พั น ธุ์  (Pleurotus ostreatus (POT), P. sajor-caju (PSC) แ ล ะ  P. eous (PE)) ต่ อ ก า ร เพิ่ ม
ประสิทธิภาพการใชป้ระโยชน์ไดจ้ากโภชนะของตอฟางขา้วโดยศึกษาองคป์ระกอบทางเคมีและการ
ยอ่ยไดใ้นหลอดทดลอง 2) เพื่อศึกษาผลของระดบัยเูรียและระยะเวลาที่ใชใ้นการหมกัตอฟางขา้ว ที่
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ไดข้องโภชนะ กระบวนการหมกัในกระเพาะรูเมนและการเจริญเติบโตในแพะเน้ือ โดยการทดลอง
แรกเป็นการประเมินคุณค่าโภชนะของตอฟางขา้วที่ผ่านการหมกัจากเช้ือรากลุ่ม Pleurotus โดยวดั
จากค่าองค์ประกอบทางเคมี ได้แก่ วตัถุแห้ง (DM), อินทรียวตัถุ (OM), โปรตีน  (CP), Neutral 
Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), 
hemicellulose, cellulose และเถา้ (ash) นอกจากน้ีแลว้ยงัไดท้  าการศึกษาการยอ่ยไดข้องอินทรียวตัถุ
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และเถา้ (p<0.001) เม่ือเปรียบเทียบกบักลุ่มควบคุม ในขณะที่ค่าองคป์ระกอบของเยือ่ใย ไดแ้ก่ NDF, 
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การบ่มที่ 24 และ 96 ชั่วโมง ทั้งน้ีค่าประสิทธิภาพการย่อยได้ การยอ่ยได้อินทรีวตัถุ  และค่าของ
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ออกแบบการทดลองแบบแฟคทอเรียล  (3 x 2 x 2 factorial in CRD) ผลการทดลองพบว่า
ก ระบ วน ก ารหมัก ตอฟ างข้าวด้ว ย เช้ื อ ราไ ม่ ส่ งผล ต่อ ค่ าขอ งวัต ถุ แห้ ง , ไขมัน  แล ะ 
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PLEUTUS SPECIES/UREA TREATED/RICE STUBBLE 

  

 The objectives of this study were (i) to evaluate the potential of three species 

of Pleurotus fungi such as Pleurotus ostreatus (POT), P. sajor-caju (PSC) and  P. eous 

(PE) for the nutritive value of rice stubbles using chemical composi-tion and in vitro 

digestibility measurements, (ii) to study the effect of the urea level and duration in 

treating rice stubbles fermented with different Pleurutus fungi, and (iii) to examine the 

effect of fermented rice stubble with fungi and treated with urea on nutrient 

digestibility, rumen fermentation, and growth performance in goat meat. The first 

experiment was conducted to evaluate the nutritive value of rice stubble fermentation 

by Pleurotus fungi. The experiment used a complete randomized design (CRD). The 

chemical composition illustrated that all of the fermentation by Pleurotus fungi 

treatments were apparently increase (p<0.001) in crude protein (CP) and ash contents 

when compared with the control group. Whereas there was significant decreased in 

neutral detergent fiber (NDF), detergent fiber (ADF), lignin detergent fiber (ADL), 

hemicellulose, and cellulose contents of rice stubble by fungal fermentation. In vitro 

gas production was significantly increased at day 25 of fermentation in all fungal 

treatments for 24-96 h incubation. Moreover, effective degradability (ED), organic 

matter digestibility (OMD), and metabolizable energy (ME) were also increased in all 

Pleurotus fungi treatments. A second experiment used a 3 x 2 x 2 factorial design. The  
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CHAPTER I 

INTRODUCTION 

 

1.1 Rationale of the study 

Agriculture plays a significant role in the world to feed the growing human 

population. Therefore, land for crop production will be used more intensively for 

human food production and consequently animal production will rely on feeding the 

by-products from the food produced for human consumption. This is especially in the 

case of rapidly growing economies in several parts of Asia, increasing also the demand 

for meat and milk at a high rate. Thus, many countries in this area urgently need to 

increase their livestock production.  

Agricultural residues such as rice straw, maize stover, oil palm fronds, wheat 

straw, and sugarcane bagasse, are abundantly available in many countries (Wan Zahari 

et al., 2003; Devendra, 2009; Sarnklong et al., 2010); however, those parts of the 

plants that are regarded as waste often contain a relatively high concentration of plant 

cell walls approximately 80%. Plant cell walls consist of high lignocellulosic complex 

in which lignin, hemicellulose and cellulose are tightly bound to each other via 

covalent and non-covalent bonds (Jeffries, 1994). Cultivate residues are contending as 

low crude protein content of approximately 3 to 4% and high content of crude fiber of 

approximately 35 to 48% (Devendra, 1997), cause low digestibility and feeding values 

for ruminants (Karunanandaa et al., 1995; Karunanandaa and Varga, 1996; Islam et al., 

2000; Wan Zahari et al., 2003; Albores et al., 2006). Rice generates a relatively large 
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amount of crop residues, approximately 80% of the world’s rice is grown by small-

scale farmers in many developing countries including South East Asia and it is 

common to use rice straw for animal feeding. Devendra and Thomas (2002) mentioned 

that rice straw is the principal crop residue fed to more than 90% of the ruminant 

livestock in this area. The calculated utilization of rice straw for animal feed in South 

East Asia, including China and Mongolia, was 30-40% of the total rice straw 

production (Devendra, 1997). Rice straw is especially important during periods when 

other feeds are inadequate. In general, the maximum intake of rice straw by ruminants 

is about 1.0 to 1.2 kg per 100 kg live weight (Devendra, 1997). The problems of 

farmers who raise ruminants in summer are using rice straw replace grass. Although in 

current rice is harvested with a mechanical harvester affected to we cannot separate 

apart of straw and stubble. Rice stubble is a part of rice production system and we are 

not using it, rice stubble compound lignin bind cellulose and hemicellulose 

consistency than rice straw. Lignin in plant cell walls is blocking cellulose and 

hemicellulose, so that these carbohydrates are less accessible for rumen microbes. In 

general lignin consists of 3 building blocks namely p-coumaryl alcohol (p-

hydroxyphenyl propanol), coniferyl alcohol (guaiacyl propanol), and sinapyl alcohol 

(syringyl propanol) (Vanholme et al., 2010; Bugg et al., 2011). Lignin, therefore, 

blocks the accessible microbial in the rumen to digest fibrous compound. As such, 

lignin removal increases the accessibility of carbohydrates for rumen microbes. 

There are many applications have been studied to improve crop residues 

utilization such as physical, chemical, and biological treatments; thus, using white-rot 

fungi to break lignin with cellulose or hemicellulose bonds (Chen et al., 1995; Mahesh 

and Mohini, 2013; Bento et al., 2014; Nasehi et al., 2017). Fungi in white-rot fungi 
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group produce enzymes which contain lignin peroxidase (LiP), manganese peroxidase 

(MnP) and laccase these microbes are well known (Sánchez, 2009; Bugg et al., 2011). 

This is likely to increase nutrients digestibility and increased crud protein content due 

to increasing fungi biomass. Combination of several methods may be achieving 

maximum utilization of nutrients. Kinfemi et al. (2009) suggested that Pleurotus 

ostreatus increase in the crude protein (CP) from 12.25% for the control to 17.04% in 

cowpea husk. Pleurotus sajor-caju increased in CP content and fibrous digestibility 

(Jafari et al., 2007). Cultivation of Pleurotus Eous fungi on paddy straw was higher 

yield than other treatments it’s implied that fungi can be digested fibrous materials as 

high efficiency (Samsudin et al., 2013).  

 

1.2 Research objectives 

 1.2.1 To study types and period time fermentation of white-rot fungi as for 

improve rice stubble digestibility.  

 1.2.2 To study effect of rice stubble fermented with white-rot fungi on rumen 

fermentation, types and amount of microbes in the rumen and growth performance and 

nutrient digestibility of meat goats. 

 

1.3 Research hypothesis 

 1.3.1 Rice Stubble fermented with Pleurotus sp. and treated with urea will be  

improved digestibility. 

 1.3.2 Goats fed with rice stubble fermented Pleurotus sp. and treated with urea 

will be increased weight grain.
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1.4 Scope and limitation of this study 

1.4.1 Three species of white-rot fungi will be used in this study (Pleurotus eous, 

P. sajor-caju and P. ostreatus). 

1.4.2. Crossbred meat goats from goat farm of Suranaree University of 

Technology were used in the studies of optimizing improves rice stubble digestibility 

and growth performance of meat goat by fermentation of white-rot fungi. 

 

1.5 Expected results 

 1.5.1 To know the type of whit-rot fungi be suitable to improve rice stubble 

digestibility. 

 1.5.2 To know the effects of white-rot fungi treated rice stubble on nutrients 

digestibility, rumen fermentation, types and amount of microbes in the rumen and 

growth performance of meat goat. 
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CHAPTER II 

LITERATURE REVIEW  

 

2.1 Characterizes of Crop and Livestock Production System 

 The system of crop and livestock mixed farming are featured by 

interdependency between crop and livestock production activities (Ostergaard, 1995). 

It is the major system for smallholder farmers in many developing countries to 

produce (Ostergaard, 1995; Blackburn, 1998). 

 The main objective of farmers engaged in mixed crop - livestock farming is to 

gain complementary benefit from an optimum mixture of crop and livestock farming 

and spreading income and risks over both crop and livestock production (Lemma, 

2002; Solomon, 2004; Teshome, 2009). In the mixed crop livestock farming systems, 

livestock supply important inputs to crop cultivation, especially organic fertilizer and 

traction. Livestock are often the main source of cash that farmers can use to buy 

agricultural inputs. On the other hand, crops provide livestock with feed in the form of 

crop residues and by-products from crop production, which are transformed into worth 

products like meat, milk, and traction (ILCA, 1992). The crop residues ability to use as 

livestock feed are greatest in integrated crop/livestock farming systems (Kossila, 1988; 

Getachew, 2002; Lemma, 2002). The animals are require crop residues to supply feeds 

during the dry seasons; while they are also necessary to crop. In this situation, it is 

very likely that changes in the way and time farmers harvest their crops and manage 
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the residues offer a number of possibilities for increasing both crop and livestock 

production. 

 

2.2  Production system and feeding efficiency 

  Three factors to get highest benefit of animal production are genetic makeup, 

nutrition and management (Sethumadhavan, 2004). The effective of livestock feeding 

in systems in Thailand vary depending on the animal species/ type, and the feeding 

system. Feed conversion ratio can be used to estimate compound or concentrate 

livestock feed requirements, particulaly for non-ruminant species such as pig, poultry 

and fish. However, ruminant feeding systems are mainly reliant on local agro-

industrial by-products including the natural grasses found in the traditional crop, rice 

and livestock - based mixed farming systems. The mostly, or 95%, of extensive beef 

production systems use no cereal grain or concentrate feed supplements (Sommart et 

al., 2012). However, in the case of beef-dairy cattle, a shortage of feed, both in terms 

of quantity and quality, is a main limitation and is expected to pose larger obstacles as 

farm sizes increase. The shortage of high quality roughage forces dairy farmers to use 

high concentrate supplements combined with rice straw, crop residues, agro-industrial 

co-products and/or low quality roughage. This ensures in low feed intake, low 

digestibility, low energy utilization and thus low production efficiency as well as air 

and water environmental stress for instance N, P and enteric methane emissions. 

 

2.2.1. Crop residues 

          Crop residues are a main source of livestock feeds in Thailand for 

ruminants. Crop production areas and productivity are extremely associated with the 



10 

annual yield of their by - products and residues. Main crop residues for Thailand are 

arised from rice, corn, cassava, sugar cane, oil palm, soybeans, coconuts and 

pineapples. Many crops provide feed ingredients directly to livestock such as corn and 

cassava. Some crops generate more than one product and by-products, such as 

soybeans that provide the soybean meal used in non-ruminant feeds while supplying 

soybean hull and stems used in ruminant feeds. The main crop residues are rice straw 

and stove derived from rice harvesting, and sugar cane tops and corn stove. Cassava 

leaves and palm oil fond and residues are also sources for animal feed. Due to a lack 

of data, it is difficult to accurately estimate the quantity of crop residues used in 

livestock feeding (Sommart et al., 2014). 

 

2.2.2 Roots, tubers and other by-products 

          Generally, Thailand is the largest exporter of cassava. Cassava chip or 

cassava pulp feeding technologies have been developed and currently 20% of dairy 

cattle rations include cassava in order to decrease feed costs (Sommart et al., 2000a,b). 

Other crop by-products produce in Thailand are also plentiful such as baby corn waste, 

corn cobs, tomato waste, seafood industry waste, can fruit waste, fish processing waste 

etc. However, formal data on their availability, their productivity and utilization in 

animal feeding are lacking.  

 

2.2.3 Grasses and forages  

          Grasses are elementary sources of roughage for feeding ruminants in 

Thailand. Sources of grasses for livestock comprise communal pastures, natural 

pastures, forest grazing, roadside grazing, and natural grasses under paddy and upland 
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crops, fallow lands and introduced improved pastures. Most dairy farms depend on 

improved pasture, in addition to crop residues. Buffalo and goats depend on native 

grasses.  

 Even though Thailand has introduced substantial galore of leguminous species 

with the objective that the availability of protein/nitrogen feed inputs increase, so that 

benefiting the livestock sector, legumes play a minor role in livestock feeding. The 

Leucaena (Leucaena leucocephala) is an important forage tree in Thailand, grown 

elementary in the Central, North and Northeastern of Thailand. Its fresh fodder is use 

for ruminant feeding, while dry leucaena leaf meal is use in non-ruminant feeds. 

 

2.3  Rice production in Thailand 

 World rice production areas were 1,000.06 million rais which decreased from 

1,010.81 million rais in year 2014/15 or decreased 1.06%. The rice production was 

478.25 million tons which slightly reduced from 478.54 million tons in last year or 

reduced 0.06%. The mean yield was about 478 kilogram per rai which increased from 

473 kilogram per rai in last year or increased 1.0%. The enhancing production 

countries were China, Bangladesh, Vietnam, Myanmar, Philippines and Brazil. In 

contrast, the countries with decreased production were India, Indonesia, Thailand and 

Japan OAE (2016). In Thailand found rice production area in 2015 was reduced from 

2014 because the less rainfall in the early of rainy season and the under rainfall 

average of the overall actual rainfall in most regions. These situations caused delayed 

in farmers’ cultivation. Furthermore, the cultivation in some areas could not proceed. 

In addition, the declining price leaded farmers switched their planting to other crops 

with a good price condition like sugarcane for example. The production yield per rai 
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slightly decreased because the lower level of rainfall was insufficient to grow (OAE. 

2016). 

 

2.4   General goats production in Thailand 

 Goat plays an important role in the rural economy of many developing 

countries in Asia including South of Thailand. Nowadays, goat has been expanded 

throughout countries due to the lowering of land for large ruminant animals such as 

cattle and buffalo. Thus, small ruminant animals such as goat and sheep have been 

increasing interested by the farmers. Number of goat production in Thailand in 2013, 

2014 and 2015 are approximately 440277, 468413 and 539583 heads (DLD, 2016). It 

seems that goat population trends to be gradually increased and the raising location has 

been widely distributed throughout Thailand. The advantage of rearing goat may be 

relied on the fact that goats are easily reared and they are required a small size of pens 

when compared with large ruminant animals. 

 

Table 2.1 Area of rice production 2010-2015 in Thailand (1000 Rais) 

Year Planted Area Harvested Area 

2010 80,676 75,747 

2011 83,405 74,729 

2012 81,038 74,729 

2013 77,135 73,027 

2014 96,280 66,685 

2015 62,315 59,308 

Source: OAE (2016). 
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2.5   Feeding systems for goats 

 The diet for ruminant consists of roughages and concentrates. The most 

important diet is roughage which responsible for at least 50 - 100% depends on the 

quantity and quality of roughages. Goats are typically consumed browse from the top 

downward on a plant, therefore, assumes they are an effectively consumer of 

biological herbicide for regulating undesirable plants and shrubs.  

 Goats are good browsers and can selectively eat a wide variety of shrubs, 

woody plants, weeds and briers (Teixeira et al., 2011). The management of goat 

production depends on the available sources of roughages for example pasture, hay, 

haylage and silage. Fresh grass and hay are an excellent roughage sources for goats. 

Preservation method such as silage or haulage can be successfully used in goat rearing, 

however, there is limiting to use preserved roughage for young goats due to the 

incomplete rumen function in this stage of growth. It has been shown that goats are 

easily accepted novel feed when supply it during pregnancy.  

 

2.6   Ruminant animals feed 

 Livestock feeds provide the basic nutrients required for animal production, 

including energy, proteins, minerals, and vitamins. Feed for ruminant animals may be 

broadly classified as concentrate and roughage depending on their composition. 

2.6.1 Concentrates 

             Concentrates are feeds that contain a high density of nutrients, usually 

low in crude fiber content (less than 18% of dry matter) and high in total digestible 

nutrients. Concentrates may be fed in raw or milled forms as individual feeds or may 

be blended or formulated into balanced rations for particular production purposes. 
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Concentrates may be high in energy, referred to as energy concentrates, or high in 

protein, with over 20% crude protein, referred to as protein concentrates. 

 

Table 2.2 Population of goat in 2013-2015 in Thailand (heads) 

Years Central North east North South Total 

2013 157,112 14,613 32,921 235,631 440,277 
2014 174,295 16,252 34,681 243,185 468,413 

2015 209,155 19,822 38,876 271,730 539,583 

Source: DLD (2016). 

 

2.6.2 Roughages  

            Roughages or forages are the edible parts of plants with a low density 

of nutrients, with crude fiber content over 18% of DM and low in total digestible 

nutrients. Forages can provide feed for grazing animals or that can be harvested for 

feeding that includes the classes of feed such as fresh, herbage, hay and silage, browse, 

and straws. Forage consists largely of carbohydrate in the form of fiber, and its 

digestion is accomplished through the enzymic action of the rumen microbes. Forages 

are a potential feed for ruminant animals, as ruminants are best adapted to the 

utilization of plant cell walls for conversion of fibrous feed sources into milk and meat 

products. 

 

2.7   Nutritive quality of rice stubble 

 Rice stubble consists predominantly of cell walls, comprised of cellulose, 

hemicellulose, and lignin. To break down these components cellulase, hemicellulase 

and ligninase are required (Schiere and Ibrahim, 1989). These enzymes are not 
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produced by the animals themselves but the reticulorumen of ruminants maintains 

microorganisms that do produce cellulase and hemicellulase. However, lignin cannot 

be broken down in the rumen due to the lack of ligninase. Even if lignin could be 

degraded in the rumen it would not provide much energy for the animals. 

Theoretically, lignin located between the cellulose microfibrils is regarded as the most 

abundant natural aromatic organic polymer that plays a role in resisting compressing 

forces, providing protection against consumption by insects and mammals, and also 

inhibiting the rate and degree of microbial degradation (Iiyama et al., 1990). Silica, 

one element of the rice cell walls, can be present in high concentrations ranging from 

5% to 15%, depending on the rice variety (Vadiveloo, 1992) and the availability of 

this mineral in the soil (Agbagla-Dohnani et al., 2003). Silica reduces palatability and 

the degradability of rice straw in the rumen due to its direct action in preventing 

colonization by ruminal microorganisms (Bae et al., 1997; Agbagla-Dohnani et al., 

2003). The role of silica on the quality of rice straw was also reviewed by Van Soest 

(2006), in an attempt to put into perspective the problems of silicon metabolism. 

Besides cell wall polymers, rumen organisms need other nutrients for growth and 

metabolism (Hoover, 1986). Since rice straw does not contain enough sugars, amino 

acids and minerals for efficient microbial growth, feeding ruminants with only rice 

straw, without any supplementation of the other required nutrient sources, will result 

in poor performance of the animals (Doyle et al., 1986). The combination of low 

intake, low degradability, low nitrogen content and an unbalanced mineral 

composition means that rice straw alone may not even meet the animal’s maintenance 

needs. Poor degradability is caused by a series of factors (Schiere and Ibrahim, 1989). 

The fiber is very difficult to degrade, which is partly an intrinsic characteristic of the 



16 

straw fiber. The degradation of the straw fiber is also complicated by the poor 

functioning of the rumen due to the unbalanced availability of nutrients, the low 

protein content, the lack of easily available energy and the low content of essential 

minerals such as P and S. Hence, due to the low degradability and the poor rate of 

degradation, animals will tend to consume less. The mechanism regulating voluntary 

intake of low quality feeds, such as rice straw, is still not fully understood. The 

generally accepted theory of feed intake regulation for poor quality roughages is that 

the capacity of the rumen to process the feed is the major factor determining voluntary 

feed intake (Conrad, 1966; Baile and Forbes, 1974). The rumen processing capacity is 

characterized by rumen fill, the rate of degradation of potentially degradable matter 

and the rate of passage out of the rumen. Devendra (1997) summarized that the main 

determinants of intake and degradability of rice straw depend on their morphological 

characteristics, such as the proportion of the different plant parts (leaves and stems), 

their chemical composition and the distribution of the different chemical components 

in the tissues, their relative amounts of cell contents and cell walls and the physical 

and chemical nature of the cell walls. 

 These factors influence the chewing behavior of animals and the extent of 

fragmentation in the reticulo-rumen. Rice straw contains a relatively high proportion 

of leaf (60%), compared to other cereal straws such as barley (35%), oats (43%) and 

wheat (20-41%) (Theander and Aman, 1984). Leaves of rice straw contain less NDF 

than the stems, but more ash and acid-insoluble ash, resulting in a lower in vitro dry 

matter digestibility (IVDMD) of the leaves (50-51%) compared to the stems (61%) 

(Vadiveloo, 2000). In goats, Phang and Vadiveloo (1992) observed an in vivo dry 

matter digestibility of 56.2% for rice leaf and 68.5% for the stem. However, treatment 
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with a 4% urea solution for 21 d increased the IVDMD of the leaf fraction more than 

that of the stem fraction (Vadiveloo, 2000). Since rice straw consists of approximately 

60% leaves (Vadiveloo, 1995), which are less degradable than stems, improving the 

feed value of rice straw should focus on improving the degradability of the leaves.  

 Different technologies have been investigated to improve the feeding value of 

such by-products. Physical treatments, such as steaming, grinding and pelleting have 

been reported to increase the intake and digestibility of oil palm fronds and hence the 

performance of cattle (Wan Zahari et al., 2003). Alkali treatments, especially those 

with NaOH or NH3, have been reported to improve the intake and/or digestibility of 

rice straw (Sarnklong et al., 2010), maize stover (Oliveros et al., 1993), oil palm 

fronds (Wan Zahari et al., 2003) and sugarcane bagasse (Amjed et al., 1992); however, 

such physical and chemical treatments can be expensive, harmful to users or 

environmentally unfriendly (Van Soest, 2006). 

 

2.8  Plant cell walls 

 The plant cell wall is a complex macromolecular structure that surrounds and 

protects the cell. Cell walls are important features of plant cells that perform a number 

of essential functions, including providing shape to the many different cell types 

needed to form the tissues and organs of a plant. The composition of cell wall varies 

largely between plant species, tissues within the plant and also between different 

stages of growth. Plant cell walls are usually divided into two categories: primary 

walls that surround growing cells or cells capable of growth and secondary walls that 

are thickened structures containing lignin and surrounding specialized cells such as 

vessel elements or fiber cells (Figure 2.1)  
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Figure 2.1 Schematic representation of a plant cell and wall development  

(http://www.phschool.com/science/biology_place/biocoach/plants/walls.html). 

Plant cell walls contain a wide range of additional compounds that modify their 

mechanical properties and permeability. The major polymers are cellulose, hemicellu-

lose, pectin and lignin, which limited ability to digest by animals. However, have bac-

teria and other microbial populations in their digestive tracts can ferment these com-

pounds partially into usable nutrients for ruminant animals (Figure 2.2). Plant cell 

walls typically consist of about 35-50% cellulose, 20-35% hemicellulose and 10-25% 

lignin by dry mass (Sticklen, 2008). 

 

2.8.1  Cellulose 

            The cellulose chains are organized together into progressively more 

complex assemblies at increasing size scales. The chemical structure of cellulose, 

which is a linear polymer of β-(1, 4)-linked D-glucose monomer units, is in fact quite 

simple. Typically, cellulose chains in primary plant cell walls have degrees of 
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polymerization (DPs) in the range from 5000 to 7500 glucose monomer units, with the 

DP of cellulose from wood being around 10,000 and around 15,000 for cellulose from 

cotton. The basic repeating unit of cellulose is cellobiose, the β-(1,4)-linked 

disaccharide of D-glucose. Although cellulose functions as the rigid, loadbearing 

component of the cell wall, the rigidity of the cellulose microfibril is strengthened 

within a matrix of hemicelluloses and pectins (Figure 2.3)... ………………………….. 

(www.bio1151.nicerweb.com/Locked/media/ch05/cellulose.html). 

 

 

Figure 2.2   Idealized representation of fiber and its component cellulose, 

hemicellulose, and lignin (Krause et al., 2003). 

 

http://www.bio1151.nicerweb.com/Locked/media/ch05/cellulose.html
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Figure 2.3 Schematic presentation of cellulose structure.  

                     (www.bio1151.nicerweb.com/Locked/media/ch05/cellulose.html). 

 

2.8.2 Hemicellulose 

             Hemicellulose polysaccharides are found in all terrestrial plants, from 

woods, grasses and cereals. They were originally defined as those plant 

polysaccharides that could be separated from cellulose by extraction with alkali-water 

solutions.  Hemicelluloses are closely associated in plant tissues with cellulose and 

lignin, and they are most often structural polysaccharides in these tissues. 

Hemicellulose in plants is a mixture of polysaccharides that are soluble in dilute acid. 

In secondary walls of plant cells, it is characterized by a linear xylan core polymer that 

consists of repeating units of β-1, 4 linked xylose residues. Hemicelluloses are named 

according to the main sugar monomer unit in their backbone structure. Hemicelluloses 

are generally classified according to the main sugar residue in the backbone, e.g., 

http://www.bio1151.nicerweb.com/Locked/media/ch05/cellulose.html
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xylans, mannans, and glucans, with xylans and mannans being the most prevalent 

(Figure 2.4). Thus, xylans are polymers with D-xylose units in the main chain and 

those with D-mannose, L-arabinose and D-galactose are referred to as mannans, 

arabinans and galactans, respectively. Xylan is the major component of hemicellulose 

and is, after cellulose, the second most abundant polysaccharide in nature. Xylans 

account for 30-35% of the cell wall material of annual plants (grasses and cereals), 15-

30% of hardwoods and   7-10% of softwoods (Wilkie, 1979; Ladisch et al., 1983). Due 

to the significant presence of xylans in plants it serves as a major constituent of animal 

feed. 
 

 
 

Figure 2.4 Hemicellulose structure  (Ochoa-Villarreal et al., 2012) 

 

2.8.3 Pectin 

            Pectins are important both as cell wall components and as industrial 

gelling agents. Pectic polysaccharides are structurally complex and heterogeneous 

(Schols and Voragen, 1994; Schols et al., 1994), they consist of a backbone of (1→4) 

α-D-galacturonosyl residues interrupted with typically a 10% substitution of (1→2)-α-
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L-rhamnopyranosyl residues. A fraction of the rhamnosyl residues are branch points 

for neutral sugar side-chains that contain L-arabinose and D-galactose. Pectins are 

noncellulosic acidic cell wall polysaccharides and are divided into three classes: 

homogalacturonan, rhamnogalacturonan I, and rhamnogalacturonan II. Pectins 

function as a sol-like matrix, providing water and ion retention, support and 

facilitation of cell wall modifying enzymes, cell wall porosity, cell-tocell adhesion, 

cell expansion, cell signaling, developmental regulation, and defense. 

 

2.8.4 Lignin 

            Lignin is one of the most plentiful organic polymers in plants, just 

behind cellulose. It is the exclusive chemical composition of gymnosperm and 

angiosperm. The content of lignin in wood and Gramineae is 20-40% and 15-20 %, 

respectively. Lignin is the name of a group of substances; their inhomogeneity is 

manifested in different species of plants, length of growing season, and different parts 

of the plants. Even in the different morphologies of cells of the same xylem or 

different cell wall layers, the structures of lignin are not the same (Jiang, 2001). 

 Lignin is an intricate created for confounded phenylpropane units nonlinearly 

also haphazardly linked; three primary monomers would coumaryl alcohol, coniferyl 

alcohol and sinapyl alcohol. Because of the different monomers, lignin can be divided 

into three types (Figure. 2.5): syringyl lignin polymerized by syringyl propane, 

guaiacyl lignin polymerized by guaiacyl propane, and ydroxyl-phenyl lignin 

polymerized by ydroxyl-phenyl propane. Usually, gymnosperm mainly contains 

guaiacyl (G) lignin; the dicotyledon mainly contains guaiacyl-syringyl (GS) lignin; the 
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monocotyledon mainly contains guaiacyl-syringyl-hydroxy-phenyl (GSH) lignin (Wei 

and song, 2001). 

 At a time, lignin in plant was categorized into softwood, hardwood, and grass 

lignins. In light of those structure about lignin, Gibbs divided lignin into G lignin and 

GS lignin. G lignin is most formed through dehydrated oligomerization of coniferyl 

alcohol, and its structure is homogeneous. This kind of lignin has negative. 

 Maule interaction because less than 1.5 % of syringaldehyde and about 5 % of 

p-hydroxybenzaldehyde were produced when oxidized by nitrobenzene. Ultimate 

lignin in softwood belongs to G lignin, which is copolymerized by guaiacyl and has a 

positive Maule interaction. GSH lignin is the result of the dehydrated oligomerization 

of coniferyl alcohol and sinapyl alcohol; the lignin is content 17-23 %. The ratio of 

syringyl propane to guaiacyl propane is 0.5-0.1; it also contains 7-12 % ester groups. 

P-Coumaryl alcohol in it is linked to lignin in the form of ester (Gao and Tang, 2004) 

 

2.9 Lignin degradation 

2.9.1 Lignin degrading enzymes 

             Due to the branching, bulky three-dimensional structure and the C-C 

and C-O ether linkage heterogeneity of lignin, hydrolytic enzymes (like those 

responsible for the catabolism of linear cellulose and short-branching hemicellulose 

polysaccharides) unable to breakdown lignin (Abdel-Hamid et al., 2013). Likewise, 

low-potential oxidoreductases, such as the plant oxidases that initiate lignin 

polymerization, cannot oxidize the non-phenolic aromatic lignin subunits. These 

obstacles have constrained the evolutionary diversity of lignin-degrading microbial 

phenotypes to a limited set ofspecialized fungiand bacteria. Within lignin-degrading 
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fungi and bacteria, several enzyme classes have been identified that are proposed to 

have ligninolytic activity (Bugg et al., 2011; Abdel-Hamid et al., 2013; Adam and 

Stephen, 2014). While details surrounding the enzymology and distribution of these 

oxidative enzymes are beginning to be elucidated, the knowledgebase of ligninolytic 

enzymes still lags far behind the knowledge of cellulases. 

 

 

Figure 2.5  Basic structural unit of lignin (Wei and song, 2001) 

 

2.9.2 Fungal lignin enzymology 

             The knowledge and recognition encompassing fungal lignin 

degradation surpasses its bacterial counterpart and is the basis for most ligninolytic 

investigate. Modification and degradation of lignin has been most widely studied in 

the basidiomycetes, in especially the white-rot fungi and to a lesser extent the brown-

rot fungi (Gilbertson, 1980; Boyle et al., 1992; Adam and Stephen, 2014). 

Phanerochaete chrysosporiumis the model organism for lignin degradation by white-

rot fungi, so anyway many other species have been studied such as, Pleurotus 

ostreatus, Coriolus versicolor, Cyathus stercoreus, and Ceriporiopsis subvermispora 

(Martinez et al., 2004; Abdel-Hamid et al., 2013; Adam and Stephen, 2014). The 

activity of these organisms are depend on families of peroxidases and laccases have 

been primarily concerned as ligninolytic enzymes.  
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2.9.3 Fungal lignin enzymology 

             The innitial ligninolytic enzyme isolated, lignin peroxidase (LiP, EC 

1.11.1.14) was disconnected from P. chrysosporiumand found to be capable 

ofoxidizing sites of particularly high redox potential, including the moderately-

activated aromatic rings of non-phenolic model lignin compounds which can comprise 

up to 90% of the polymer (e.g., β-O-4 linkages) (Tien and Kirk,1984; Miki et al., 

1986). Wood-rot fungi produce two more extracellular ligninolytic peroxidases: 

manganese-dependentperoxidase (MnP, EC 1.11.1.13) and versatile peroxidase (VP, 

EC1.11.1.16) (Gold et al., 1984; Martinez et al., 2004). MnP is unique from LiP in 

that it relies upon the generation of Mn3+ as a diffusible charge-transfer mediator and 

cannot oxidize non-phenolic lignin model compounds (but can reduce amines, dyes 

and phenolic lignin model compounds) (Gold et al., 1984; Paszczyński et al.,1985; 

Wariishi et al., 1991). VP are fittingly named, as they are capable of both LiP and 

MnP (manganese independent and dependent) catalytic activities, cleaving high redox 

potential nonphenolics, as well as lower potential aromatics and amines (Martinez et 

al., 2004; Pérez-Boadaa et al., 2005).  

 The enzyme cycle of the ligninolytic peroxidases is very similar to other 

peroxidases where the heme group reacts with hydrogen peroxide to form an oxo-

ferryl intermediate (Figure 2.6.). However, there are two basic qualifications special to 

the ligninolytic peroxidases. These enzymes have a heme environment conferring an 

increased redox potential and restricting locales particular to non-phenolic aromatics 

or Mn2+in LiP or MnP, respectively (Martinez et al., 2004). For MnP the decreased 

Mn3+ is an extensively acknowledged diffusible mediator, fit for oxidizing targets 

distanced from the enzyme active site (Kuan et al., 1993; Kishi et al., 1994). The 
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emission of oxalic acid and other organic acids that chelate Mn3+ in stable complexes 

extends the scope of the MnP oxidative action (Bugg et al., 2011). It has been 

proposed that veratryl alcohol can act as a diffusible mediator for LiP, in spite of the 

fact that the veratryl alcohol cation radical seems to have a short half-life (Khindaria 

et al., 1995) Dye-decolorizing peroxidases (DyP, EC 1.11.1.19) make up the most as 

of late found class of heme-peroxidases occurring in fungi and bacteria, which impart 

no arrangement or structural similarity with other plant, fungal or bacterial 

peroxidases (Sugano et al., 2007; Liers et al., 2009). 

 The peroxidases (LiP, DyP, MnP and VP) (Figure 2.6) react with hydrogen 

peroxide to form oxo-ferryl intermediates (red and yellow circles), while laccases 

contain a four-copper active site that reduces oxygen to water to gain oxidative 

potential. While LiP and VP (and possibly DyP) have the reductive potential to 

directlyoxidize non-phenolics, MnP and laccases must use mediators to attack non-

phenolics.  

DyPs got their moniker from their can oxidize the high-redox potential 

anthraquinone dyes in addition to typical peroxidase substrates (Sugano et al., 2007). 

In supplement to these peroxidase ligninolytic enzymes, white-rot fungi emit 

adornment enzymes such as aryl-alcohol oxidase (veratryl alcohol oxidase; EC 

1.1.3.7) from P. eryngii and glyoxal oxidase (EC 1.2.3.5) from P. chrysosporiumthat 

generate hydrogen peroxide required by the peroxidases (Kersten and Kirk, 1987; 

Guillén et al., 1992). Other from this many fungi secrete oxidoreductases (such as 

quinone oxidoreductase [EC 1.1.5.1] and cellobiose dehydrogenase [EC 1.1.99.18]) 
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equipped for decreasing the radical methoxy-groups of lignin-derived compounds 

(Kersten and Kirk, 1987; Guillén et al., 1997). 

 

 
LiP 

(DyP) Fe(III) Fe(IV)˙+ Fe(IV) H2O2 
Non-phenolics, 

phenolics, Veratryl 
Alcohol 

Non- phenolics, 
phenolics 

MnP Fe(III) Fe(IV)˙+ Fe(IV) H2O2 Mn2+/Mn3+ Phenolics, Other 
Mediators 

VP Fe(III) Fe(IV)˙+ Fe(IV) H2O2 

Non-phenolics, 
phenolics, 

Mn2+/Mn3+, 
Veratryl Alcohol 

Non- phenolics, 
phenolics 

Laccase 4(Cu2+) 4(Cu+) 2(Cu+) 
2(Cu2+) O2 Phenolics, Mediators 

(ABTS, HBT, etc…) 
Non- phenolics, 

phenolics 

 

Figure 2.6 The catalytic cycle of ligninolytic peroxidases and laccases differ in their   

 oxidizing substrate (X), their target reducing substrates/mediators (A) and 

 their electron accepting metal co-factors (colored circles).  

 

 The use of fungi and/or their enzymes that metabolize lignocelluloses is a 

potential biological treatment to improve the nutritional value of straw by selective 

delignification, as mentioned in the review by Jalc (2002). Nevertheless, it is currently 
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too early to apply this method in developing countries due to the difficulties and lack 

of technology to produce large quantities of fungi or their enzymes to meet the 

requirements. There are also a number of serious problems to consider and overcome 

(Schiere and Ibrahim, 1989). For example, the fungi may produce toxic substances. It 

is also difficult to control the optimal conditions for fungal growth, such as pH, 

temperature, pressure, O2 and CO2 concentration when treating the fodder. With 

recent developments in fermentation technology and alternative enzyme production 

system, the costs of these materials are expected to decline in the future. Hence, new 

commercial products could play important roles in future ruminant production systems 

(Beauchemin et al., 2004). White-rot fungi treatment: White-rot fungi, belonging to 

the wood-decaying basidiomycetes, as lignocellulolytic microorganisms are able to 

decompose and metabolize all plant cell constituents (cellulose, hemicellulose, and 

lignin) by their enzymes (Eriksson et al., 1990). Many species of white-rot fungi 

which are effective lignin degraders have been used to assess their ability to improve 

the nutritive value of fodder for ruminant nutrition (Yamakava and Okamnto, 1992; 

Howard et al., 2003). Their extracellular lignin-modifying enzymes consist of lignin-

peroxidase (LiP), manganese-dependent peroxidase (MnP), laccase (phenol oxidase) 

and H2O2-producing oxidase (aryl-alcohol oxidase; AAO and glyoxaloxidase) (Kirk 

and Farrell, 1987; Arora et al., 2002; Novotny et al., 2004; Arora and Gill, 2005; 

Lechner and Papinutti, 2006). Some white-rot fungi are able to decompose free 

phenolic monomers and to break the bonds with which lignin is cross-linked to the 

polysaccharides in rice straw (Chen et al., 1996), enhancing IVDMD (Karunanandaa 

et al., 1992; 1995; Karunanadaa and Varga, 1996a, b; Fazaeli et al. (2006). 

Karunanandaa et al. (1995) reported the effect of incubation of rice straw for 30 days 
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with three white-rot fungi, showing that Pleurotus sajor-caju enhanced IVDMD, in 

both leaves and stems of rice. However, entire rice straw (leaf and stem) treated with 

Cyathus stercoreus had the highest IVDMD compared to the other fungi 

(Karunanandaa et al., 1992). Using white-rot fungi to increase the degradability of 

straw is often at the expense of easy assessable carbohydrates, such as cellulose and 

hemicellulose, resulting in less degradable feed for ruminants (Karunanandaa et al., 

1995; Karunanandaa and Varga, 1996a, b; Jalc, 2002). In fact, cellulose and 

hemicellulose losses during the initial part of incubation with fungi are rather 

common, but losses due to mycelial growth depend on the fungus species. After the 

initial period of incubation, some white-rot species preferably attack lignin, without 

degrading cellulose and hemicellulose. Rodrigues et al. (2008) were able to extract the 

enzymes from white-rot fungi that are responsible for breaking down the bonds in 

lignin and within the matrix of cell wall carbohydrates, but without also extracting 

enzymes affecting hemicellulose and cellulose. Using these enzymes on wheat straw 

the in vitro NDF degradability (IVNDFD) increased. Although the use of fungi to 

improve the feed value of rice straw is not new, progressing research and new 

knowledge offers new challenges and possibilities. Fungi can be selected that 

preferably attack lignin and not the structural carbohydrates in the cell walls. Once 

these species are identified, mycologists can breed even better strains. The most 

desirable situation would be that the mushrooms of the fungi are edible and can be 

harvested by farmers, after which the remaining straw can be fed to their herd. There 

are some edible white-rot fungi, like Pleurotis ostreatus. However, much research is 

needed to achieve these goals. The most suitable white-rot species have to be 

identified and breeding programs will possibly be needed to improve their 
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characteristics. Also, the optimal conditions to incubate straw with a fungus have to be 

investigated, not only with the purpose of harvesting quality mushrooms, but also 

achieving optimal feeding quality of the remaining straw-fungi mixture. To achieve 

optimal feed qualities of the straw, incubations with fungi in combination with other 

treatments, such as physical and chemical treatments, have to be investigated.  

 In cellulolysis, the 1, 4-beta-D-glycosidic linkages in cellulose are broken by 

either chemical or enzymatic hydrolysis. Here only enzymatic hydrolysis will be 

introduced (Onuki, 2006). Cellulose molecules can be broken into glucose by various 

cellulase enzymes found naturally in grazing animals such as cows and sheep. These 

enzymes can also be harvested from genetically engineered fungus, along with 

xylanase and hemicellulase enzymes, which can be used on plant feedstock to produce 

sugars for fermentation (Karhumaa et al., 2006). 

 Nowadays there many researcher were studied about white-rot fungi and their 

enzyme. The use of fungi and/or their enzymes that metabolize lignocelluloses is a 

potential biological treatment to improve the nutritional value of straw by selective 

delignification, as mentioned in the review by Jalc (2002).  Barrasa et al. (1995), 

Fazaeli et al. (2006), Barrasa et al. (1995) were studied Ligninolytic enzyme on wheat 

straw from Phanerrochaete chrysosporium, Pleurotus fungi, and Trichoderma 

versicolor respectively. Moreover, Rodrigues et al. (2008), Eun et al. (2006), Zhu et 

al. (2005), Giraldo et al. (2007) and Rai and Mudgal, (1996) were studied 

Trichoderma spp on wheat straw and rice straw. 

 Tuyen et al. (2012) studied 6 types of fungi found a net loss in DM, OM, NDF, 

ADF, and ADL, and consequently in cellulose and hemicellulose, but a net gain in CP 

of all substrates. However the fungi caused a loss of nutrients. In general, P. eryngii 



31 

incubation resulted in the lowest (p<0.05) loss of all nutrients in all substrates except 

for the loss of ADL and HC in the maize stove and the hemicellulose in rice straw. P. 

ostreatus, on the other hand, caused the highest (P<0.05) loss of all nutrients in maize 

stover and rice straw. L. edodes incubation resulted in the highest losses of nutrients in 

oil palm fronds and C. subvermispora incubation led to the highest losses of ADL and 

HC in sugarcane bagasse (p<0.05). C. subvermispora and L. edodes caused a higher 

loss of ADL in sugarcane bagasse compared to P. eryngii and P. ostreatus (p<0.01), 

but the reverse was observed for maize stover. All fungi caused a high loss of ADL in 

rice straw (41.1-67.6%) with P. eryngii causing the lowest loss (p< 0.01), while the 

other fungi resulted in similar losses.  

 The high lignin degrading capability of C. subvermispora, L. edodes, P. 

eryngii and P. ostreatus in maize stover, rice straw and sugarcane bagasse observed in 

the present experiment is generally in agreement with that reported previously (Kim et 

al., 1998; Okano et al., 2007, 2006; Rahman et al., 2011; Taniguchi et al., 2005; Wan 

and Li 2010); however, the selectivity for delignification in the substrates varied 

among the different fungi. P. ostreatus incubated with rice straw was more selective 

for lignin degradation than C. subvermispora (Taniguchi et al., 2005). In contrast, the 

C. subvermispora strain in the present study showed higher lignin degradation 

selectivity than the P. ostreatus strain. Using maize stover as substrate, Wan and Li 

(2010) reported lignin degradation of up to 40% after treatment with C. 

subvermispora for 42 days. Yang et al. (2010), on the other hand, showed no effect of 

P. ostreatus treatment (for 30 days) on the proportion of lignin in maize stover. These 

findings are different from those in the present study. 
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 A high loss of lignin accompanied by high losses of dry matter and organic 

matter was observed for the treatment with P. ostreatus in all substrates, except for 

sugarcane bagasse. Similar results have been reported for rice straw (Sherief et al., 

2010; Taniguchi et al., 2005) and wheat straw (Bhuvnesh et al., 2011; Tuyen et al., 

2012) treated with this fungus. Thus, even though P. ostreatus is an effective lignin 

degrader, it is not a potent fungus to be used for improving the nutritive value of 

fibrous by-products as feed for ruminants (Jung et al., 1992). 

 

2.10 Basics of urea treatment of straw 

The low quality roughages nutritive value of rice straws and stoves can be 

improved by many methods of treatment. Urea treatment is a method of choice for use 

at farm in the tropics as it is best adapted to the conditions of smallholder farmers 

(Chenost, 1995). The main advantages of using urea for crop residue improvement is 

ease of transport, handling, and do not pose any risk to those handling and using it 

(Sundstøl and Coxworth, 1984). Moreover, fertilizer grade urea is readily available 

and relatively cheap compared to either aqueous or anhydrous ammonia. There are 

two-stage process of urea treatment consisting of ureolysis, where urea is converted to 

ammonia and the effect of generated ammonia on the cell walls of the roughage being 

treated (Chenost, 1995). The hydrolysis of urea (ureolysis) proceeds according to the 

following reaction: NH2 (CO) NH2+ H2O →2NH3+ CO2 (Sundstøl and Coxworth, 

1984). The important thing to improve the use of crop residues for ruminants is to 

overcome the barriers to rumen microbial fermentation of lignocelluloses. The two 

well-known factors of rice straw that limit bacterial digestion in the rumen are its high 

level of lignification’s and low contents of nitrogen, vitamins and minerals. So that, in 
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principle, there are two approaches, which should be taken in combination, straw 

delignification treatment and nutrient supplementation. 

 

2.11 Methods of urea treatment 
 There are a lot of variations in the methods of treatment of poor quality 

roughages with urea. However, the principal method consists of dissolving urea in 

water and sprinkling it on layers of straw. The level of urea used varies, but it is 

commonly between 4%-5% of air dried mass of the straw/stove, and the amount of 

water used also varies from as low as 0.2 liters per kg of straw to as high as 1 liter per 

kg of straw (Sundstøl and Coxworth, 1984; Chenost, 1995).  
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CHAPTER III 

 EFFECT OF PLEUROTUS SPECIES PRETREATMENT 

OF LIGNOCELLULOSE ON A REDUCTION IN LIGNIN 

AND THE BIODEGRADATION OF RICE STUBBLE IN 

DRY SEASON IN DIFFERENT PERIOD TIME FOR 

FERMENTED 

  

3.1 Abstract 

The aim of this study was to examine the bioconversion of rice stubble 

fermentation with Pleurotus ostreatus (POT), Pleutus sajor-caju (PSC) and Pleurotus 

eous (PE). The rice stubbles was inoculated with the fungi and incubated in the dark 

cupboard in the laboratory at 30°C and 75% relative humidity (RH). The chemical 

composition and in vitro degradability of untreated rice stubble and treated rice stubble 

with Pleurotus species were analyzed at day 20, 25, 30, 35 and 40th inoculation. Results 

shown that all of fermentation by Pleurotus fungi treatments were apparently increased 

(p<0.001) in crud protein (CP) content when compared with the control. Whereas 

significant decreased in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid 

detergent lignin (ADL), hemicellulose, and cellulose contents of rice stubbles by fungal 

fermentation. In vitro gas production was significantly increased at
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day 25th fermentation in all fungal treatments from 24-96 h incubation. The estimated 

organic matter digestibility (OMD) of Pleurotus species fermented at 25 days was 

improved from 52.02% to 62.12%, 63.75%, and 65.27% (control, PSC, PE and POT) 

respectively. For the estimated of ME was similarly trend with organic matter 

digestibility 7.44 MJ/kgDM, 8.95 MJ/kgDM, 9.19 MJ/kgDM and 9.43 MJ/kgDM 

(control, PSC, PE and POT). It was implied that the period time was effected to fungi 

fermentation. 

Key Words : Rice stubble, Pleurotus species, Time fermentation, Chemical 

composition, Digestibility. 

 

3.2 Introduction 

The waste-products from agricultural such as rice straw, maize stover, oil palm 

fronds, and sugarcane bagasse, are abundantly available in many countries (Methu et 

al.,2001; Wan Zahari et al., 2003; Sarnklong et al., 2010; Ahmed and Babiker, 2015); 

however, there are high neutral detergent fiber (NDF) and lignin contents, but low 

protein contents, cause low digestibility and feeding values for ruminants 

(Karunanandaa and Varga, 1996; Islam et al., 2000; Wan Zahari et al., 2003; Albores et 

al., 2006; Malik et al., 2015). Agriculture is very important in the world to feed the 

growing human population. Therefore, land for crop production will be used more 

massively for human food production and consequently animal production will trust on 

feeding the by-products from the food produced for human consumption.  

Many crop residues from the human food industry have in common a high 

biomass, low crude protein content of approximately 3 to 4% and high content of crude 
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fiber of approximately 35 to 48% (Devendra, 2009). The problems of farmers who raise 

ruminants in summer are using rice straw replace grass. In currently rice straw was 

employed as ruminant feed over 87% of the roughage feed (Malik et al., 2015; Peripolli 

etl al., 2017) as well as rice is harvested with a mechanical harvester affected to the rice 

straw product consists of rice stubble (rice stubble is a part of rice production system 

and we are not using it), which high of lignin compound. Rice stubble compound high 

of lignin binds cellulose and hemicellulose consistency than rice straw. Therefore, using 

white-rot fungi to break lignin with cellulose or hemicellulose bonds is an alternative 

method. This is likely to increase nutrients digestibility and may be a combination of 

several methods to achieve maximum utilization of nutrients. 

Fungi in white-rot fungi group produce enzymes which contain lignin 

peroxidase (LiP), manganese peroxidase (MnP) and laccase these microbes are well 

known (Bugg et al., 2011). Usual in plants, lignin, cellulose and hemicellulose are 

compound together as lignocellulose. In general plants consist cellulose 30-45%, lignin 

13%, but in hardwood cellulose 45-56%, lignin 18-30% (Chen, 2014). The gold of this 

experiment was studied species of Pleurotus fungi to degrade lignocellulosic materials, 

to improve the utilization of rice stubble as feed. 

 

3.3 Objectives  

The objective of the present study was determined the period of each type fungi 

digestible of rice stubble and studied the chemical composition and nutrients 

digestibility of rice stubble in vitro gas production. 
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3.4 Materials and methods  

3.4.1 Fungal species and spawn preparation 

         In this experiment was used three sub experiments depend on types of 

Pleurotus species such as, Experiment 3.1= Pleurotus ostreatus, Experiment 3.2 = 

Pleurotus sajor-caju, and Experiment 3.3 = Pleurotus eous. The levels of fungal were 

0 and 2% of substrate according to (Survase, 2012), and period time at day 20, 25, 30, 

35, and 40th after inoculation. 

 

 3.4.2 Preparation of substrate and method of cultivation 

         Rice stubble was collected after harvesting of the grains in Thailand 

(Nakhon Ratchasima). The feedstuff was chopped by chopper machine into pieces of 

2-5 cm length and water was added to approximately three times the weight of the 

stubble and left overnight for the water to penetrate into the inner structures of the 

stubble and allow steam to effectively destroy the contaminated fungal spores. The 

stubble was weighed into plastic bag containers 200 g of rice stubble each and 

autoclaved, again at 121ºC for 1 h, after the first autoclaving. The autoclaved containers 

were cooled in an aseptic room at 20ºC and the substrate was inoculated aseptically with 

5 g of previously prepared spawn. The containers with inoculated straw were incubated 

in triplicate along with the control (autoclaved but un-inoculated straw) at 25-30 ºC for 

0, 20, 25, 30, 35 and 40 days in the air-conditioned chamber.  

 

 3.4.3 Chemical analysis 

         Samples (control and fermented stubble) were dried immediately in an air-

forced oven at 70ºC to constant weight to determine the dry matter (DM) content 
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before being ground over a 1 mm screen using a Wiley hammer mill. Ash content was 

determined by combustion at 550ºC for 3 h in a muffle furnace. Ash-free neutral 

detergent fiber (NDF) was analyzed by a modified method of (Van Soest et al., 1991) 

with addition of a heat stable amylase, and ash-free acid detergent fiber (ADF) and acid 

detergent lignin (ADL) were analyzed by the method of (Goering and Van Soest, 1970). 

The content of hemicellulose was calculated as the difference between NDF and ADF 

and cellulose as the difference between ADF and ADL. Nitrogen content was measured 

by (AOAC, 1995) and the crude protein (CP) content was calculated as N - 6.25. The 

loss of DM and other nutrients due to the incubation with fungi were calculated from 

the difference between the control and the fermented containers and expressed as a 

percentage of the total nutrient in the control. 

 

 3.4.4 Animals 

         Four fistulated crossbred goats (about 25 kg weighs) were used for rumen 

application in in vitro gas technique. The animals feeding twice daily with a diet 

containing rice stubble (60%) and concentrate (40%) and using factorial in Completely 

Randomized Design (CRD). 

 

 3.4.5 In vitro gas technique 

  3.4.5.1 Reagents preparation (Menke and Steingass, 1988) 

 Buffer solution 

 - Ammonium bicarbonate (NH4HCO3)    4 g  

 - Sodium bicarbonate (NaHCO3)     35 g 

 - Dissolve in water and bring up to 1 L in volumetric flask. 
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 - Increase volume of buffer solution as required. 

 Macro-mineral solution 

 - Sodium hydrogen phosphate, dibasic (Na2HPO4)   5.7 g 

 - Potassium phosphate, monobasic (KH2PO4)   6.0 g 

 - Magnesium sulfate, heptahydrate (MgSO4·7H2O)   0.6 g 

 - Dissolve in water and bring up to 1 L in volumetric flask. 

 - Increase volume of buffer solution as required. 

NOTE: Buffer and Macromineral solution can be stored refrigerated for up to 3 months 

and at room temperature for up to 1 month. 

 Micro-mineral solution 

 - Calcium chloride, dehydrate (CaCl2·2H2O)    13.2 g 

 - Manganese chloride, tetrahydrate (MnCl2·4H2O)   10.0 g 

 - Cobalt chloride, hexahydrate (CoCl2·6H2O)   1.0 g 

 - Ferric chloride, hexahydrate (FeCl2·6H2O)    8.0 g 

 - Dissolve in water and bring up to 100 mL in volumetric flask. 

NOTE: Micro-mineral solution can be stored refrigerated for up to 12 months. 

 0.1% (wt/vol) Resazurin 

 - Dissolve 0.1 g of resazurin 100 mL water. 

 - Store in dark (amber coloured) bottle at 4°C (infridge). 

 

3.4.5.2 Substrate preparation 

Substrates were dry at 55°C until dry (~48 h) and ground with mill 

through 1 mm screen after that weigh 0.5 g of substrate into each syringe.  
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 3.4.5.3 Medium preparation  

**This recipe is for 1 L, increase volume as required 

 -Weigh out 2.5 g tryptone and dissolve completely in 500 mL water 

 -Add 0.125 mL micromineral solution 

 -Add 250 mL buffer solution and 250 mL macromineral solution 

 -Add 1.25 mL 0.1% resazurin solution 

 Place container with medium in water bath (39°C) and flushed with CO2 through 

solution for 45 minutes. Put in 0.313 g L-cysteine hydrochloride and 0.313 g sodium 

sulphide and add directly to medium and flushed with CO2 through solution for another 

15 minutes or until solution turns grey to clear. A purple/pink color indicates the 

presence of oxygen. Keeping the medium in water bath and headspace saturated with 

CO2 until medium+inoculums, then transfer to incubation syringe. At this point rumen 

fluid can be collected. 

 

 3.4.6 Source of rumen fluid for in vitro incubations 

         Inoculum for the batch culture was obtained from four ruminally fistulated 

meat fed a diet consisting of 60% rice stubble and 40% concentrate. Rumen fluid was 

collected from different sites within the rumen approximately 2 h after the morning 

feeding, strained through 4 layers of cheesecloth into a flask and flushed with oxygen-

free CO2. Rumen fluid was transported in insulated flasks to the laboratory within less 

than 1 h of collection. Added rumen fluid to medium in a ratio of 1:4 (rumen 

fluid:medium). Anaerobic buffer medium 20 mL, (Goering and Van Soest, 1970) 

containing tryptone, buffer, macro and micro mineral solution, resazurin, and water. 

Forty-five milliliters of rewarmed media and 5 mL of inoculum were added 
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anaerobically to the 100 mL syringes by flushed with oxygen free CO2, after that 

incubated at 39oC for 72 h. The incubation was repeated with two runs. Blanks (rumen 

fluid plus anaerobic buffer medium) were also incubated using 4 replications for 

correction of gas production and disappearance, respectively. 

 

 3.4.7 Sample collection and processing 

         At pre-determined time points, headspace gas production (GP) were 

measured at 2, 4, 6, 9, 12, 16, 24, 36, 48, 60, 72 and 96 h post incubation, using in vitro 

gas production of (Ørskov and McDonald, 1979). Pressure values, corrected by the 

amount of substrate OM incubated and the gas released from negative controls, were 

used to generate volume using the equation of Mauricio et al. (1999) as:  

 Gas volume = 0.18 + (3.697 × gas pressure) + (0.0824 × gas pressure2) 

The kinetic parameters of GP were calculated using the equation of France et al. (2000) 

as: 

A = b × (1- e-c(t-L)) 

 Where A is the volume of GP at time t; b is the asymptotic GP (mL/g DM); c is 

the rate of GP (/h), and L (h) is the discrete lag time prior to gas produced.  

 

 3.4.8 Statistical Analysis 

          All data obtained from the experiment were statistically subjected to curve 

fit program and significant differences between treatments were determined using 

Duncan’s News Multiple Range Test (DMRT) (Steel and Torrie, 1980) and orthogonal 

contrast was used for trend analysis. 
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3.4.9 Experimental site  

         The experiment was conducted at Suranaree University of Technology, 

Nakhon Ratchasima, Thailand. 

 

3.4.10 Duration 

             The duration of the present experiment was from January to June 2015. 

 

3.5 Results and Discussions 

3.5.1 Experiment 3.1 

         Chemical composition of untreated and treated rice stubble with Pleurotus 

ostreatus (POT) was shown in Table 3.1. The Crude Protein (CP) and ash contents of 

the fungal treated substrates increased from day 20th incubation when compared with 

control. POT Fungal treatment reduced DM, OM, EE, ADF, NDF, and cellulose 

(p<0.05) at day 20th incubation, but DM and EE were increased after day 25th 

fermentation were not affected by fungi treated. ADL and hemicellulose were 

significantly decreased (p<0.01) at day 25th by POT fungi incubation. These results 

similar with Jafari et al. (2007) studied P. ostreatus treated rice straw found the 

constituents of OM, hemicellulose, ADF, NDF, and ADL were apparently decreased 

((p<0.05) when compared with untreated fungi. This result can explain that fungi was 

used fiber for growing so if we ferment long time fungi can used more fiber. Khattab et 

al. (2013) reported P. ostreatus treated rice straw was decreased NDF and ADF contents 

when compared with control. P. ostreatus was succeeded to degrade lignocelluloses 

materials during 30 days of fermentation using solid state fermentation technique 

indicated by decreased hemicellulose and lignin contents (Baker et al., 
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2014). The CP increase may have been an effect of increased fungal biomass (Chen et 

al, 1995). The increase in CP contents may be due to secretion of certain extracellular 

proteineous enzymes into the waste during their breakdown and its subsequent 

metabolism (Akinfemi et al., 2010). It may also be due to the capture of excess nitrogen 

during fermentation (Sallam et al., 2007). Valmaseda et al. (1991) and Gutierrez et al. 

(1996) ported that straw fermented by Pleurotus fungi reduced the cell wall contents 

and enhanced the soluble fraction of carbohydrates in the straw that could be as a result 

of enzymatic degradation. 

Gas production from the fermentation of the POT treated rice stubble and 

untreated rice stubbles were measured at 2, 4, 6, 9, 12, 16, 24, 36, 48, 60, 72 and 96 h 

using in vitro gas production of (Ørskov and McDonald, 1979). Table 3.2 shows the 

results of gas production characteristics, effective degradability (ED), estimated organic 

matter digestibility (OMD), and metabolizable energy (ME). The production from 

quickly soluble fraction (a), gas production from insoluble fraction (b), and gas 

production rate (c) were significantly different higher (p<0.01) at day 25th incubation of 

fungal treated stubbles compared with the untreated. Moreover, potential gas production 

(a + b) was highest at day 25th incubated stubble. These higher values of digestibility 

fractions in POT fermented rice stubble indicated by the significantly higher in gas 

volumes from 24-96 h (p<0.01) at day 25th incubation by fungi treatment. The ED, 

OMD, and ME values also apparently highest at day 25th by POT fungi fermentation, 

which could be related to fungi ability according to varies former studied (Mahesh and 

Mohini, 2013; Nasehi et al., 2014; Yilkal’ 2015; Nasehi et al., 2017). The increased of 

digestibility by POT fermented rice stubbles is could be influenced degradability of 

fungi. Increased in OMD may due to the breakdown of the CF and ADF contents of the 
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treated substrates and increase in its CP content (Kinfemi et al., 2009), It could also be 

due to breakdown of cell wall bonds during the fermentation of the substrates by the 

fungi (Call and Mineke, 1997; Jennings and Lyke, 1999; Akinfemi, 2012). Akinfemi et 

al. (2010) suggested that fungal treatment of sorghum stover resulted in improved CP 

and digestibility which indicated by significantly higher in insoluble fraction (b), OMD, 

and ME values. Bummel and Becker, (1997) suggested that gas production reflects 

degradable carbohydrate and the amount of gas produced depends on carbohydrates 

nature. Therefore, the lower levels of fiber fraction in the treated substrates increased 

amount of gas production (Akinfemi et al. 2010; Nasehi et al., 2017). Fungi have two 

types of extracellular enzymatic systems to degrade lignocellulosic materials; the 

hydrolytic system, which produces hydrolases that are responsible for polysaccharide 

degradation and a unique oxidative and extracellular ligninolytic system, which 

degrades lignin and opens phenyl rings (Sánchez, 2009). The in vitro gas production 

method was shown to be a reliable tool in feed evaluation because gas production was 

well correlated with microbial protein synthesis (Krishnamoorthy et al., 1990). Treated 

wheat straw with P. Ostreatus increased in vitro digestibility of OM and DM (Baker et 

al., 2014).Fig. 3.4 shows trend of in vitro gas production of rice stubbles treated and 

untreated POT fungi. 
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Table 3.1 Proximate composition and cell wall contents (% DM) of Pleurotus ostreatus treated rice stubbles at 20, 25, 30, 35 and 40  

                 days compared to untreated. 

Treatments DM Ash OM CP EE NDF ADF ADL Hemicellulose Cellulose 

Control 23.90ab 15.12d 84.87a 2.49c 0.90a 77.94a 58.03a 4.90a 19.90a 53.13a 

POT 20D 22.85bc 18.79bc 81.20bc 3.50b 0.51b 69.63b 51.26b 4.26ab 18.36ab 47.00b 

POT 25D 25.02a 16.44cd 83.55ab 3.33b 0.94a 66.92c 51.51b 3.97bc 15.41b 47.53b 

POT 30D 23.12bc 22.33a 77.66d 3.43b 1.04a 64.65c 47.36b 3.23d 17.29ab 44.12b 

POT 35D 22.82bc 19.77ab 80.22cd 4.71a 0.90a 61.70d 47.49b 3.53cd 14.21b 43.95b 

POT 40D 22.06c 20.59ab 79.40cd 3.72b 1.02a 61.29d 46.98b 2.23e 14.31b 44.74b 

P-value 0.021 0.008 0.008 0.004 0.091 0.0001 0.005 0.001 0.066 0.012 

SEM 0.244 0.257 0.257 0.264 0.211 0.284 0.261 0.273 0.220 0.251 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05). DM= dry matter, OM= organic matter, CP= 

crude protein, EE= ether extract, NDF= neutral detergent fiber, ADF= acid detergent fiber, ADL= acid detergent lignin.  
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Table 3.2 In vitro gas production characteristics, estimated organic matter digestibility (%OMD), and metabolizable energy (ME)  

                  (MJ/kgDM) treated by Pleurotus ostreatus (POT) fungal and untreated rice stubbles. 

Treatments a b c  a + b  GV24 GV 48 GV 72 GV 96 ED OMD ME  

Control 2.29c 62.18b 0.036b 64.48c 38.47c 45.92c 51.90c 54.51c 32.24c 52.02c 7.44c 

POT 20D 7.56ab 61.61b 0.028c 69.17c 37.79c 45.64c 53.18c 57.10c 34.59c 51.58c 7.36c 

POT 25D 9.29a 71.05a 0.039a 80.34a 53.02a 62.30a 68.47a 70.88a 40.17a 65.27a 9.43a 

POT 30D 9.27a 57.02c 0.030c 66.29c 39.16c 45.86c 52.32c 55.47c 33.15c 52.97c 7.54c 

POT 35D 6.07b 67.67a 0.038a 73.75b 46.58b 55.31b 61.54b 64.09b 36.88b 59.64b 8.56b 

POT 40D 7.50ab 57.89bc 0.032c 65.40c 38.78c 45.63c 51.94c 54.91c 32.70c 52.57c 7.49c 

P-value 0.0005 0.0001 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SEM 0.20 0.21 0.20 0.21 0.23 0.22 0.22 0.22 0.21 0.23 0.23 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05). SEM= standard error of mean. GV = gas 

volume (mL); ED = Effective Degradability (%), OMD = organic matter digestibility (%), ME = metabolizable energy (MJ/kgDM).
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3.5.2 Experiment 3.2 

         Chemical composition of untreated and PSC treated rice stubble was 

shown in table 3.2. Fungal treatment decreased OM content was significantly reduced 

(p<0.01) at day 30th incubation and proceed decreased value as long as fermented fungi, 

while ash content was increased (p<0.01) at day 30th incubation. DM, CP, and EE 

contents were increased number by fungi fermentation but not significant difference. 

ADF, NDF, hemicellulose, and cellulose were significantly reduced by PSC fungi 

fermentation (p<0.01) at day 20th incubation. ADL content was decreased (p<0.05) by 

fungi activity at day 35th fermentation. These results in accordance with previous studies 

(Fazaeli et al., 2004; Jafari et al., 2007). In generally fungus acquires requirements from 

decaying of OM, especially, the lignocellulolytic components. This finding could 

explain the changes resulted from Pleurotus cultivation on rice stubble. P. sajor-caju is 

belongings to the basidomycetes which enzymes production such as lignin peroxidase, 

manganese peroxidase, H2O2 producer enzymes, arylachol oxidase and laccase 

(Sánchez, 2009). The fungi need carbon and energy from lignin so they require 

substrates like cellulose or other carbon sources for their growth and delignification 

(Ruggeri and Sassi, 2003). Jafari et al. (2007) reported that P. sajor-caju high ability to 

degraded cell wall constitutions that indicated by reduction the contents of ADF, NDF, 

ADL, and hemicellulose in rice straw fermented with P. sajor-caju fungi. Pleurotus 

selectively removes lignin without the loss of appreciable amounts of cellulose, and has 

been found extremely attractive for use in biological processes, thereby improving the 

digestibility of highly lignified plant residues, and are useful in the bioconversion of 

lignocellulosics into their products (Dhanda et al., 2005). 
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Table 3.3 Proximate composition and cell wall contents (% DM) of rice stubbles fermented with Pleurotus sajor-caju fungi at 20, 25, 30,  

                 35 and 40 days compared to untreated. 

Treatments DM Ash OM CP EE NDF ADF ADL Hemicellulose Cellulose 

Control 23.90 15.12c 84.87a 2.50 0.90 77.94a 58.03a 4.90a 19.90a 53.13a 

PSC 20D 23.95 17.04bc 82.95ab 2.72 1.05 66.81b 50.99b 4.61ab 15.81b 46.37b 

PSC 25D 24.70 16.35bc 83.64ab 3.24 1.05 64.37b 49.81b 3.88ab 14.56b 45.92b 

PSC 30D 26.09 17.79b 82.20b 3.48 1.08 64.13b 50.43b 3.56abc 13.70b 46.86b 

PSC 35D 24.99 17.08bc 82.91ab 3.42 0.90 65.57b 49.63b 2.85c 15.93b 46.77b 

PSC 40D 21.77 21.21a 78.78c 2.97 0.95 57.65c 42.48c 3.29c 15.16b 39.19c 

P-value 0.0849 0.0093 0.0093 0.1694 0.4854 0.0002 0.0001 0.0215 0.0165 0.0001 

SEM 0.213 0.255 0.255 0.190 0.132 0.280 0.287 0.243 0.247 0.283 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05), PSC = Pleurotus sajor-caju, DM= dry 

matter, OM= organic matter, CP= crude protein, EE= ether extract, NDF= neutral detergent fiber, ADF= acid detergent fiber, ADL= acid 

detergent lignin.  
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Gas production was shown in table 3.4. The production from quickly soluble 

fraction (a) was significantly different higher (p<0.01) at day 20th incubation in PSC 

fermented stubbles compared with the untreated, insoluble fraction (b) was significantly 

increased (p<0.01) at day 35th fermentation, gas production rate (c) fraction was not 

affected by PSC fungi but had effected by incubated duration. Gas production at 24, 48, 

72, and 96 h incubation were apparently higher (p<0.01) at day 35th fermentation. ED, 

OMD, and ME of rice stubbles treated fungi also higher at day 35th fermentation. Present 

study in agreement with formers reported that fungi treated crop residues improve in 

vitro digestibility (Dhanda et al., 2005; Jafari et al., 2007). Wheat straw treated with 

Pleurotus fungi increased in vitro organic matter and dried matter digestibilities (Fazaeli 

et al., 2004). Kaur et al. (2012) demonstrated that in vitro gas production in spent straws 

of the Pleurotus species was highest (p<0.01) in net gas production including a, b, and 

c fractions. Rice husks fermentation by Pleurotus sajor-caju improved in vitro 

digestibility and crude protein (CP) content (Vadiveloo et al., 2009). White rot fungi 

produce several types of extracellular oxidative enzymes to break down lignin content 

in a plant cell wall. These include laccases and high redox potential ligninolytic 

peroxidases enzymes; the onset of their production is associated with secondary 

metabolism conditions in response to nutrient depletion, ligninolytic peroxidases 

degrades non-phenolic lignin units, whereas manganese peroxidase generates Mn3+, 

which acts as a diffusible oxidizer on phenolic or non-phenolic lignin units via lipid 

peroxidation reactions; a third type of ligninolytic peroxidase that combines the catalytic 

properties of ligninolytic peroxidases, manganese peroxidase and plant/microbial 

peroxidases (Bugg et al., 2011). Fig. 3.5 shows in vitro gas production of PSC fungi 

fermented rice stubbles. 
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Table 3.4 In vitro gas production characteristics, estimated organic matter digestibility (%OMD), and metabolizable energy (ME)  

                  (MJ/kgDM) of rice stubbles fermentation by Pleurotus sajor-caju (PSC) fungal and untreated rice stubbles. 

Treatments   a   b   c a + b GV24 GV 48 GV 72 GV 96     ED     OMD        ME 

Control 2.29c 62.18cd 0.036ab 64.48c 38.47c 45.92c 51.90c 54.51c 32.24c 52.02d 7.44d 

PSC 20D 9.65a 54.90e 0.030b 64.56c 38.44c 44.46c 50.63c 53.62c 32.28c 52.08d 7.44d 

PSC 25D 8.12a 65.73bc 0.041a 73.85b 49.54b 57.32b 62.68b 64.71b 36.93b 62.12b 8.95b 

PSC 30D 8.33a 57.95de 0.030b 66.29c 38.15c 45.08c 51.80c 55.14c 33.14c 51.89d 7.40d 

PSC 35D 5.47b 77.51a 0.042a 82.98a 54.98a 65.34b 71.50a 73.76a 41.49a 67.07a 9.69a 

PSC 40D 5.49b 68.02b 0.036a 73.51b 45.10c 54.11b 60.72b 63.53b 36.76b 58.28c 8.35c 

P-value 0.0002 0.0001 0.0074 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SEM 0.203 0.220 0.171 0.205 0.227 0.225 0.220 0.215 0.205 0.227 0.227 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05). SEM= standard error of mean. GV = gas 

volume (mL); ED = Effective Degradability (%), OMD = organic matter digestibility (%), ME = metabolizable energy (MJ/kgDM. 
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3.5.3 Experiment 3.3 

           When cultivated rice residue was inoculated with the PE fungi a decrease 

(p<0.05) in OM concentration (Table 3.5); this effect was related a greater 

mineralization of the organic matter, indicated by the increase (p<0.05) in ash 

concentration and greater biomass value, implied by the increase (p<0.01) in CP 

content. DM and EE contents were not affected by PE fungi fermentation (p>0.05). 

These results supported earlier studies (Mahesh and Mohini, 2013; Yilkal, 2015). 

Fungal treated straw contained higher CP, EE and ash contents and lower OM, CF, 

NFE, NDF, ADF, ADL, hemicellulose and cellulose contents than untreated straw 

(Yilkal, 2015). Treatment of straw incubation by fungi significant increases CP 

concentration (Jonathan et al., 2012; El-Rahman et al., 2014). The high CP content by 

fungi fermentation could be due to the production of various enzymes during the 

vegetative and reproductive phases with lignocellulose degrading properties then 

increased its cell biomass. Increasing ash content is indicated that fungi are capable of 

degrading fibrous fraction which caused of low cell wall contents (Sarnklong et al., 

2010; Mahesh and Mohini, 2013). 

The cell wall components of experimental treatments are presented in Table 3.5 

The fraction of NDF, ADF and cellulose were significantly decreased upon fungal 

treatment (p<0.01) at day 20th of incubation and constant concentration until the end of 

testing except NDF fraction precede reduced amount by fungi fermentation. The 

quantity of ADL content was apparently reduced (p<0.01) on fungi treatment at day 25th 

incubation; continue decreased number along with the time fungi fermentation. 

Hemicellulose component was significantly decreased by fungi inoculate ((p<0.01) at 

day 30th incubation and proceed reduced until the testing last. Cell wall contents were 
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apparently decreased by fungi fermentation according with previous studied (Mahesh 

and Mohini, 2013; Lynch et al., 2014; Shrivastava et al., 2014; Yilkal, 2015). The used 

fungal treated with rice straw which contained lesser fractions of NDF, ADF, 

hemicellulose, and cellulose than untreated straw (Samsudin et al., 2013). Cultivation 

of Pleurotus eous on paddy straw was higher yield than other treatments (Senthilraja, 

2014).  The losses of fibrous contents from the crop resedues suggested that the ability 

of fungi to solubilize and utilize the cell walls as carbon sources and thus changed the 

ratio of insoluble to soluble carbohydrates in the straw (Shrivastava et al., 2014). The 

change of ADL content by Pleurotus species fermentation of rice stubbles are shown in 

Figure 3.1, alteration of hemicellulose content illustrated in figure 3.2, fluctuation of 

cellulose in rice stubbles inoculated fugal are demonstrated in figure 3.3 These results 

indicated that all of fungal treatments were decreased cell wall concentration when 

compared with untreated treatment similar results with former studied (Akinfemi and 

Ogunwole, 2012; Mahesh and Mohini, 2013; Yilkal, 2015; Nasehi et al., 2017). 

Gas production of the PE fungi treated and untreated rice stubbles shown in 

Table 3.6. Gas volumes at 24, 48, 72, 96 h incubation were significantly increased 

(p<0.01) at day 20th by fungi fermentation compared with control. Quickly soluble 

fraction was increased (p<0.01) at day 20th incubation, insoluble fraction apparently 

increased at day 25th incubation, c fraction no affected by PE fungi fermentation. 

However, potential gas production was significantly highest (p<0.01) at day 30th 

incubation by fungi. ED was highest at day 30th incubation; OMD and ME values were 

significantly higher at day 25th incubation by fungi. These results in agreement with 

previous studied (Mahesh and Mohini, 2013; Yilkal, 2015). The ability of fungi and 

their enzymes could be degraded cell wall constituents of crop residues due to high 
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digestibility of fiber content which influent to increased CP concentration (Akinfemi et 

al., 2010; Bento et al., 2014). Increased b fraction of gas production after treatment by 

fungi has been reported (Rodrigues et al., 2008; Okano et al., 2009; Nasehi et al., 2017). 

Improved (a+b) content of gas production indicates that the fermented crop residues 

were highly available in the rumen. Therefore, increased (a+b) fraction of gas 

production upon fungi can be related to reduction in cell wall constituents that implies 

to increased utilization of fibrous fraction (Akinfemi et al. 2010). Successful biological 

treatment must be based upon the use of organism which degrades lignin. The use of 

fungi and enzymes that metabolize lignocelluloses is a potential biological treatment to 

improve the nutritional value of cultivated residues by selective delignification (Malik 

et al., 2015). Fig. 3.6 shows in vitro gas production of rice stubbles fermentation by PE 

fungi. 
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Table 3.5 Proximate composition and cell wall contents (% DM) of Pleurotus eous treated rice stubbles at 20, 25, 30, 35 and 40 days  

                  compared to control 

Treatments DM Ash OM CP EE NDF ADF ADL Hemicellulose Cellulose 

Control 23.90 15.12c 84.87a 2.49b 0.90 77.94a 58.03a 4.90a 19.90a 53.13a 

PE 20D 24.07 16.34bc 83.65ab 3.23a 1.15 68.43b 50.27b 4.48ab 18.15ab 45.79b 

PE 25D 23.96 17.58ab 82.41bc 3.49a 0.93 67.73b 50.25b 3.93bc 17.47ab 46.31b 

PE 30D 25.57 17.68ab 82.31bc 3.21a 0.94 64.30bc 50.46b 3.14cd 13.84bc 47.31b 

PE 35D 23.99 17.79ab 82.20bc 3.28a 0.99 64.18bc 51.72b 3.81bcd 12.46cd 47.90b 

PE 40D 24.99 18.66a 81.33c 3.40a 0.93 59.52c 50.82b 2.95d 8.69d 47.87b 

P-value 0.77 0.04 0.04 0.009 0.46 0.001 0.001 0.008 0.006 0.001 

SEM 0.084 0.228 0.228 0.255 0.135 0.273 0.272 0.256 0.258 0.271 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05), PE = Pleurotus eous, DM= dry matter, OM= 

organic matter, CP= crude protein, EE= ether extract, NDF= neutral detergent fiber, ADF= acid detergent fiber, ADL= acid detergent 

lignin.  
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Table 3.6 In vitro gas production characteristics, estimated organic matter digestibility (%OMD), and metabolizable energy (ME)  

                   (MJ/kgDM) of treated Pleurotus eous (PE) fungal and untreated rice stubbles. 

Treatments  a   b    c    a + b  GV24 GV48      GV72    GV 96 ED      OMD        ME 

Control 2.29b 62.18b 0.036 64.48c 38.47b 45.92b 51.90b 54.51b 32.24c 52.02b 7.44b 

PE 20D 9.79a 50.81c 0.031 60.60c 37.00b 42.04b 47.58b 50.24b 30.30c 50.78b 7.25b 

PE 25D 5.57b 69.49a 0.044 75.07ab 51.28a 59.38a 64.44a 66.20a 37.54ab 63.75a 9.19a 

PE 30D 6.58b 71.29a 0.037 77.88a 48.73a 58.40a 65.14a 67.96a 38.94a 61.43a 8.84a 

PE 35D 9.42a 56.56bc 0.033 65.99c 40.73b 47.17b 53.10b 55.82b 33.00c 54.21b 7.75b 

PE 40D 5.79b 62.33b 0.032 68.12bc 39.19b 47.12b 53.99b 57.26b 34.06bc 52.85b 7.55b 

P-value 0.0017 0.0001 0.1766 0.0021 0.0001 0.0002 0.0005 0.0009 0.002 0.0001 0.0001 

SEM 0.792 0.892 0.462 0.785 0.874 0.860 0.837 0.816 0.786 0.875 0.875 
a, b, c, Means within a column means with different superscripts differ significantly at (p<0.05). SEM= standard error of mean. GV = gas 

volume (mL); ED = Effective Degradability (%), OMD = organic matter digestibility (%), ME = metabolizable energy (MJ/kgDM. 



69 
 

 

 

3.6  Conclusions 

Utilization of agricultural residues treated with white rot fungi as ruminants feed 

has been demonstrated in numerous studies. This study shown that all of fungal species 

resulted in a reduction of the cell wall components, whereas increased CP and ash 

contents in experimental rice stubbles; fungal fermentation enhanced in vitro 

degradation of rice stubbles. The properly fermented period as high nutritive values of 

fermented rice stubble depend on fungus species. From the results it could be concluded 

that rice stubbles treated by Pleurotus fungi could be successfully used to enrich rice 

stubbles with protein, improve cell walls degradability and organic matter digestibility. 

The lost fibrous contents were compensated in increased fungal biomass and their 

enzymes that enhanced nutritional values of plant residues treated fungal. This implies 

that the fungi can be included with other feedstuffs and improving the feeding value of 

low quality fibrous crop residues. The system so proposed for the alternation of 

lignocellulosics into edible fungi may be promising on conversion of plant residues to 

higher quality ruminant feed. Further work is needed to study the effect of using 

untreated and treated rice stubbles by different Pleurotus species fungi treatments for 

observation digestibility of the resultant substrates in goats. Also future studies are 

needed for more explained in the experiment of in vivo determination. From this 

experiment I found that POT fermented at 25 days, PSC fermented at 35 days, and PE 

was fermented at 30 days were the best of each type on chemical composition and 

organic matter digestibility.  
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Figure 3.1 Changes in levels of acid detergent lignin (ADL) in rice stubble byPleurotus 

species fermentation from 20 to 40 days. POT: Pleurotus ostreatus, PSC: Pleurotus 

sajor-caju, PE: Pleurotus eous. 

 

 

Figure 3.2 Changes in levels of hemicellulose in rice stubble fermented by Pleurotus  

 species. POT: Pleurotus ostreatus, PSC: Pleurotus sajor-caju, PE: Pleurotus  

eous. Duration time to incubation: 20 to 40 days. 
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Figure 3.3 Changes in levels of cellulose in rice stubble fermented by Pleurotus species.  

Pleurotus ostreatus, PSC: Pleurotus sajor-caju, PE: Pleurotus eous.  

Duration time to incubation: 20 to 40 days. 

 

 

Figure 3.4 In vitro gas production of rice stubble treated and untreated by Pleurotus  

ostreatus. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

C O N TR O L 2 0  D A Y S 2 5  D A Y S 3 0  D A Y S 3 5  D A Y S 4 0  D A Y S

M
EA

N
 O

F 
C

EL
LU

LO
SE

 (G
/1

00
G

)

FERMENTATION PERIOD (DAYS)

CELLULOSE

POT1 PSC1 PE1

0

10

20

30

40

50

60

70

80

GV0 GV24 GV 48 GV 72 GV 96

Control
POT 20D
POT 25D
POT 30D
POT 35D
POT 40D

G
as

 p
ro

du
ct

io
n 



72 
 

 

 

Figure 3.5 In vitro gas production of rice stubble fermented by Pleurotus sajor-caju. 

 

 

Figure 3.6 In vitro gas production of rice stubble fermented by Pleurotus eous. 
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CHAPTER IV 

 STUDY ON UREA USE AS INHIBITOR ON WHITE-ROT 

FUNGI ACTIVITIES AND IMPROVE DIGESTIBILITY 

OF RICE STUBBLE BY IN VITRO GAS PRODUCTION 

 

4.1 Abstract 

 Studies were conducted to evaluate culturing of the edible mushroom on the 

chemical composition, cell wall degradation, and in vitro digestibility of rice stubble 

was investigated Pleurotus ostreatus (POT), Pleurotus sajor-caju (PSC), as well as 

Pleurotus eous (PE) treated with two level of urea and two time for treated urea. Fungi 

fermentation not influence to the amount of dry matter (DM), whereas ash and crude 

protein (CP) content significantly increased with processing by fungi in treatments 

(p<0.01). OM, NDF, ADF, ADL, and hemicellulose were apparently decreased in rice 

stubble fermentation by all of fungal (p<0.01). Ether extract (EE) and cellulose content 

did not differ by processing with fungi. In vitro digestibility higher in all of fungal 

treatments, but seem to be greater in POT fungi treatment. Level of urea indicated that 

2.5% more suitable for treat rice stubble and at 7 days seem to be properly treated 

substrates. Therefore, biological treatment can improve the nutritive value and in vitro 

digestibility of rice stubble for ruminant animals.  

Key Words : Rice stubble, Urea, Fungi, Chemical composition, Digestibility. 
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4.2 Introduction 

 The large portion of agricultural residues is important feed stuff for ruminants 

and can be used as a potentially important source of carbohydrates and energy. 

However, the agricultural residues that use as animals feed are the most plenty of 

lignocellulosic materials (Shrivastava et al., 2011; Bento et al., 2014). Therefore, the 

utilization of these materials as a feed source for ruminants is limited for their complex 

biological structure and low protein content (Rodrigues et al. 2008; Yalchi and 

Hajieghrari, 2011). There are various methods could increase the nutritive value of 

cultivated residues through physical and chemical as well as biological processing have 

been studied (Rahal et al. 1997; Jafari et al., 2007; Mahesh and Mohini, 2013; Polyorach 

and Wanapat, 2014; Malik et al., 2015; Oladosu et al., 2016). To increasing the nutritive 

values of crop residues and digestibility of lignocellulosic materials, it is important to 

break down the linkage between cellulose, hemicellulose, and lignin bond or break down 

the compact nature of the tissue before animals feeding (Gomaa et al. 2012; Muhammad 

et al., 2014). Recently, biological delignification of cultivated residues has been 

considered because of its capacity to remove lignin preferentially ((Moyson and 

Verachtert, 1991; Akinfemi et al., 2010; Yakin et al., 2016). Nutritive value of crop 

residues cultured with Pleurotus fungi has been reported by previous researchers 

(Fazaeli et al., 2002; Fazaeli et al., 2004; Jafari et al., 2007; Nasehi et al., 2014; 

Raghuwanshi et al., 2014). 

P. ostreatus, P. sajor-caju, and P. eous have been studied as an alternative to 

improve nutritive value of lignocellulosic substrates as ruminant feeds (Jafari et al., 

2007; Akinfemi et al., 2010; Singh et al., 2011; Bento et al., 2014; Wiaee-Kwagyan et 

al., 2016; Nasehi et al., 2017). The aim of this experiment was to study the fungal 
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activities blocked by urea and in vitro dry matter digestibility of rice stubbles were 

determined during fungal growth with different species of Pleurotus fungi and different 

duration to harvesting.  

 

4.3 Objectives  

To study the effect of urea on white-rot fungus activities and urea utilization to 

block white-rot fungus, improvement quality of rice stubble and enhance digestibility 

of rice stubble In vitro gas production. 

 

4.4 Materials and methods  

4.4.1 Fungal species and spawn preparation 

         In this experiment was used three types of Pleurotus species and different 

time for fermented of each type such as, Pleurotus ostreatus fermented at 25 days, 

Pleurotus sajor-caju fermented at 35 days and Pleurotus eous fermented at 30 days. The 

levels of fungal were 0 and 2% of substrate according to (Survase, 2012).   

 

 4.4.2 Preparation of substrate and method of cultivation 

         Rice stubble was collected after harvesting of the grains in Thailand 

(Nakhon ratchasima). The feedstuff was chopped by chopper machine into pieces of 2-

5 cm length and water was added to approximately three times the weight of the stubble 

and left overnight for the water to penetrate into the inner structures of the stubble and 

allow steam to effectively destroy the contaminated fungal spores. The stubble was 

weighed into plastic bag containers 200 g of rice stubble each and autoclaved, again at 

121ºC for 1 h, after the first autoclaving. The autoclaved containers were cooled in an 
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aseptic room at 20ºC and the substrate was inoculated aseptically with 5 g of previously 

prepared spawn. The containers with inoculated straw were incubated in triplicate along 

with the control (autoclaved but un-inoculated straw) at 25-30ºC for 25 days for POT, 

30 days for PE and 35days for PSC in the air-conditioned chamber.  

 

 4.4.3 Chemical analysis 

         Samples (control and fermented stubble) were dried immediately in an air-

forced oven at 70ºC to constant weight to determine the dry matter (DM) content before 

being ground over a 1 mm screen using a Wiley hammer mill. Ash content was 

determined by combustion at 550ºC for 3 h in a muffle furnace. Ash-free neutral 

detergent fiber (NDF) was analyzed by a modified method of Van Soest et al. (1991) 

with addition of a heat stable amylase, and  ash-free acid detergent fiber (ADF) and acid 

detergent lignin (ADL) were analyzed by the method of Goering and Van Soest (1970). 

The content of hemicellulose was calculated as the difference between NDF and ADF 

and cellulose as the difference between ADF and ADL. Nitrogen content was measured 

by AOAC (2002) and the crude protein (CP) content was calculated as N - 6.25. The 

loss of DM and other nutrients due to the incubation with fungi were calculated from 

the difference between the control and the fermented containers and expressed as a 

percentage of the total nutrient in the control. 

 

4.4.4 Animals 

         Four fistulated crossbred goats (about 25 kg weighs) were used for rumen 

application in In vitro gas technique. The animals feeding twice daily with a diet 
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containing rice stubble (60%) and concentrate (40%) and using factorial in Completely 

Randomized Design (CRD). 

 

 4.4.5 In vitro gas technique 

4.4.5.1 Reagents preparation (Menke and Steingass, 1988) 

 Buffer solution 

 - Ammonium bicarbonate (NH4HCO3)    4 g  

 - Sodium bicarbonate (NaHCO3)     35 g 

 - Dissolve in water and bring up to 1 L in volumetric flask. 

 - Increase volume of buffer solution as required. 

 Macro-mineral solution 

 - Sodium hydrogen phosphate, dibasic (Na2HPO4)   5.7 g 

 - Potassium phosphate, monobasic (KH2PO4)   6.0 g 

 - Magnesium sulfate, heptahydrate (MgSO4·7H2O)   0.6 g 

 - Dissolve in water and bring up to 1 L in volumetric flask. 

 - Increase volume of buffer solution as required. 

NOTE: Buffer and Macromineral solution can be stored refrigerated for up to 3 months 

and at room temperature for up to 1 month. 

 Micro-mineral solution 

 - Calcium chloride, dehydrate (CaCl2·2H2O)    13.2 g 

 - Manganese chloride, tetrahydrate (MnCl2·4H2O)   10.0 g 

 - Cobalt chloride, hexahydrate (CoCl2·6H2O)   1.0 g 

 - Ferric chloride, hexahydrate (FeCl2·6H2O)    8.0 g 

 - Dissolve in water and bring up to 100 mL in volumetric flask. 



85 
 

 
 

NOTE: Micro-mineral solution can be stored refrigerated for up to 12 months. 

 0.1% (wt/vol) Resazurin 

 - Dissolve 0.1 g of resazurin 100 mL water. 

 - Store in dark (amber coloured) bottle at 4°C (infridge). 

 

4.4.5.2 Substrate preparation 

Substrates were dry at 55°C until dry (~48 h) and ground with mill through 

1 mm screen after that weigh 0.5 g of substrate into each syringe.  

 

4.4.5.3 Medium preparation  

**This recipe is for 1 L, increase volume as required 

 -Weigh out 2.5 g tryptone and dissolve completely in 500 mL water 

 -Add 0.125 mL micromineral solution 

 -Add 250 mL buffer solution and 250 mL macromineral solution 

 -Add 1.25 mL 0.1% resazurin solution 

 Place container with medium in water bath (39°C) and flushed with CO2 through 

solution for 45 minutes. Put in 0.313 g L-cysteine hydrochloride and 0.313 g sodium 

sulphide and add directly to medium and flushed with CO2 through solution for another 

15 minutes or until solution turns grey to clear. A purple/pink color indicates the 

presence of oxygen. Keep medium in water bath and headspace saturated with CO2 until 

medium+inoculums is going to be transferred to incubation syringe. At this point rumen 

fluid can be collected. 
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 4.4.6 Source of rumen fluid for in vitro incubations 

         Inoculum for the batch culture was obtained from four ruminally fistulated 

meat fed a diet consisting of 60% rice stubble and 40% concentrate. Rumen fluid was 

collected from different sites within the rumen approximately 2 h after the morning 

feeding, strained through 4 layers of cheesecloth into a flask and flushed with oxygen-

free CO2. Rumen fluid was transported in insulated flasks to the laboratory within less 

than 1 h of collection. Added rumen fluid to medium in a ratio of 1:4 (rumen 

fluid:medium), anaerobic buffer medium (20 mL; (Goering and Van Soest, 1970) 

containing tryptone, buffer, macro and micro mineral solution, resazurin and water. 

Forty-five milliliters of pre-warmed media and 5 mL of inoculum was added 

anaerobically to the 100 mL syringes by flushed with oxygen free CO2, after that 

incubated at 39oC for 72 h. The incubation was repeated with two runs. Blanks (rumen 

fluid plus anaerobic buffer medium) were also incubated using 4 replications for 

correction of gas production and disappearance, respectively. 

 

 4.4.7 Sample collection and processing 

         At pre-determined time points, headspace gas production (GP) were 

measured at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 36, 48, 60, 72, and 96 h post incubation. 

Pressure values, corrected by the amount of substrate OM incubated and the gas released 

from negative controls, were used to generate volume using the equation of Mauricio et 

al. (1999) as:  

 Gas volume = 0.18 + (3.697 × gas pressure) + (0.0824 × gas pressure2) 

The kinetic parameters of GP were calculated using the equation of France et al. (2000) 

as: 
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  A = b × (1- e-c(t-L)) 

 Where A is the volume of GP at time t; b is the asymptotic GP (mL/g DM); c is 

the rate of GP (/h), and L (h) is the discrete lag time prior to gas produced.  

 

 4.4.8 Statistical Analysis 

         The data were analyzed by ANOVA to determine the main effects as 

factorial in Completely Randomized Design (CRD) design using the PROC GLM (SAS, 

1998) and were curve fit program. The differences among treatments were tested for 

significance by the least significant difference was determined using Duncan’s News 

Multiple Range Test (DMRT) (Steel and Torrie, 1980) and orthogonal contrast was used 

for trend analysis. Significant differences were based on a probability level <0.05. 

 

4.4.9 Experimental site  

         The experiment was conducted at Suranaree University of Technology, 

Nakhon Ratchasima, Thailand. 

 

4.4.10 Duration 

            The duration of the present experiment was from July to October 2016.  

 

4.5 Results and Discussion 

4.5.1 Chemical composition of treatment 

         The results of chemical composition are presented in Table 4.1 Dry matter 

(DM) content was not significant different among treatments. Ash content was 

apparently increased (p<0.0001) in all fungal fermented treatments including urea 
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treated only when compared with control but not affected by level and time of urea 

treated factors, this result supported previous studies described that spent straw 

fermented with WRF increased in the ash content (Langar et al., 1982;  Mahesh and 

Mohini, 2013). Organic matter (OM) concentration was significant decreased 

(p<0.0001) by fungal fermentation and treated with urea, no affected by level urea and 

time of urea treated portion. The decrease in organic matter was directly related with the 

increase in ash content. These results according to Bento et al. (2014) reported that 

fermented agro-industrial residues with the white-rot fungi P. Ostreatus was decreased 

(p<0.05) OM and increased ash concentration (p<0.05) excepted coconut fiber was 

decreased in ash. Rajarathnam and Bano, (1989) found that straw fermented with white-

rot fungi increased content of ash compared to the beginning material similar resulted 

of Zadražil (1997) described that wheat straw increased ash content after culture and 

harvesting of P. ostreatus mushrooms. Fazaeli and Masoodi, (2006) indicated that spent 

wheat straw compost from Agaricus bisporus mushroom production lower OM and 

higher ash than the initial wheat straw. Nasehi et al. (2017) suggested that agro by-

products fermented with P. florida fungi were significantly decreased (p<0.01) both of 

dry matter and organic matter contents. However, the hypothesis of ferment process of 

cultivated residues with fungal respect to increase in fungal biomass cold increases the 

concentration of EE and CP in the residues. The unavoidable organic matter losses 

during biological treatments imply that an increased OM digestibility is needed to 

compensate for the losses.  

The aim of biological method of upgrading lignocellulosics into feed for 

ruminants is to remove lignin from cellulose and hemicellulose in plant tissue to increase 

microbial digestibility. The results of this study indicated that the crude protein (CP) 
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contents of the fungal treated substrates was higher in P. Ostreatus and P. Eous 

fermented groups, P. sajor-caju also higher than urea treated only and control group, 

urea treated  group was apparent significant with control group. There were significant 

among treatments (p<0.0001), level of urea also affected to the CP concentration 

(p<0.0001) but no affected by time of treated of urea. EE content was not significant 

different among treatments. These results in agreement with earlier studies described 

that Ash and CP content increased (p<0.01) with processing with fungi in straw (Nasehi 

et al. 2014; Nasehi et al. 2017). EE and ADL content of treatment did not differed by 

processing with fungi. The increase of CP content by fermented fungal was observed by 

various former studies (Streeter et al., 1982; Rajarathnam and Bano, 1989; Kakkar et 

al., 1990). Agriculture residues fermented by urea were increased in CP content and 

improved nutritive values and well as expand crop residues utilization have been 

reported (Wanapat et al., 2009; Gunun and Wanapat, 2012; Polyorach and Wanapat, 

2014). The increase in the CP contents can be attributed to the increasing fungal protein 

during fermentation and extra-cellular enzymes and contained relatively high levels of 

nitrogen (Ball and Jackson, 1995; Nasehi et al. 2014). The bulk up in the CP 

concentration may be due to secretion of certain extra cellular enzymes which are 

proteineous in nature into the waste during their breakdown and its subsequent 

metabolism (Zadrazil, et al., 1996; Kadiri, 1999; Akinfemi et al., 2010). The increasing 

of CP content could also be due to the capture of excess nitrogen by fermentation 

(Sallam et al. 2007). During the growth and development of white rot fungi on 

lignocellulosics the digestibility of substrate changes, the substrate is decomposed, new 

substances and fungal biomass are built up (Zadrazil, 1997). The increase in CP content 

was described that fungal degradation of cellulose and hemicelluloses into monomers 



90 
 

 
 

could serve as a carbon source for the fungus to produce biomass and high gas 

production (Shrivastava et al., 2011). Jafari et al. (2007) illustrated that Pleurotus spp. 

fungal treatment significantly increased the CP content of the rice straw in agreement 

with Akinfemi (2010) also reported significant increased CP concentration in P. 

ostreatus fermented peanut husk compared to untreated. Increased CP content of 

fermented substrates was associated with increased fungal biomass (Chen et al., 1995; 

Mahesh and Mohini, 2013). These results indicated that the fermented substrates are 

good source of protein for livestock. 

 

 4.5.2 Cell-wall component of treatment 

          Cell wall constitution of rice stubble was decreased in all fungal treatments 

(Table 4.2). The content of neutral detergent fiber (NDF), acid detergent fiber (ADF), 

acid detergent lignin (ADL), hemicellulos, and cellulose were significantly decreased 

(p<0.05) in all fungal fermented treatments when compared to control and treated urea 

only. The level of urea and time for urea treated also affected to ADF, hemicellulos as 

well as cellulose content according to previous studies (Fazaeli and Talebian Masoodi, 

2006; Lynch et al., 2014; Raghuwanshi et al., 2014). Nasehi et al. (2014) reported that 

treating wheat straw with fungi decreased (p<0.01) the amount of NDF and ADF in 

treatments. Jennings and Lysek, (1996) suggested that decreasing of NDF content of 

wheat and barley straw by fungal treatment might be due to the natural habitats of the 

white-rote fungi that largely depend on organic carbon for their energy requirement form 

of structural material such as lignocellulosic. These fungi could solubilize and utilize 

the cell wall as carbon source and thus chang- 
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Table 4.1 Effect of level urea, fermented duration, and types of fungal on chemical  

                  composition of rice stubble. 

Items Level Time DM    Ash OM CP    EE 
Treatments        

RS   23.62 15.13 84.87 2.50 0.90 
USR 2.5 7 23.72 20.69 79.31 4.06 0.90 

 2.5 14 22.82 22.41 77.59 5.27 0.94 
 5 7 25.79 20.59 79.41 8.95 1.08 
 5 14 23.96 23.73 76.27 8.58 0.99 

POT 2.5 7 22.85 22.86 77.14 9.51 0.51 
 2.5 14 22.07 21.17 78.83 10.46 1.05 
 5 7 24.99 21.03 78.97 16.19 0.94 
 5 14 25.13 21.13 78.87 18.29 1.02 

PSC 2.5 7 24.77 19.76 80.24 9.66 1.05 
 2.5 14 23.95 20.86 79.14 10.81 0.93 
 5 7 21.78 19.86 80.14 14.26 0.91 
 5 14 23.99 20.31 79.69 13.10 0.95 

PE 2.5 7 23.09 20.74 79.26 9.81 1.15 
 2.5 14 24.71 21.53 78.47 11.36 1.04 

 5 7 24.07 21.24 78.76 15.91 0.90 
  5 14 24.99 20.83 79.17 14.93 0.93 
SEM   0.24 0.20 0.20 0.16 0.03 
Comparison         

A   0.72 0.0001 0.0001 0.0001 0.45 
B   0.06 0.64 0.64 0.0003 0.74 
C     0.87 0.80 0.80 0.05 0.38 

Interaction        
AxB   0.01 0.56 0.56 0.0001 0.14 
AxC   0.17 0.02 0.02 0.20 0.12 
BxC   0.5 0.63 0.63 0.02 0.53 

AxBxC     0.37 0.40 0.40 0.06 0.25 
abc Means  in the same row with different superscript differ (p<0.05); DM= Dry matter, 

CP = Crude protein, EE = ether extract, OM = Organic matter; untreated rice stubble 

(Control), urea treated rice stubble (URS), urea treated rice stubble fermented with 

Pleurotus ostreatus (POT), urea treated rice stubble fermented with Pleurotus sajor-

caju (PSC), urea treated rice stubble fermented with Pleurotus eous (PE), A= factor 

from roughage source,  B= factor from level of urea, C factor from period time for urea 

fermentation. 
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ed the ratio of insoluble to soluble carbohydrates in the straw, and consequently, the 

losses of NDF content from the straw (Fazaeli et al., 2004). Reduction in the fiber 

fraction of fungal-treated substrate has been reported (Nasehi et al., 2017). The lower 

amount of fibrous contents could be the result of decreased OM in the fungal fermented 

processing. Akinfemi et al. (2010) described that the degradation of the cell wall 

component of the substrates produced by extra cellular enzymes of fungus. Fungi have 

two kind of extra cellular enzymatic systems: the hydrolytic system which produces 

hydrolyses that are responsible for polysaccharide degradation and a unique oxidative 

and extracellular ligninolytic system, which degrades lignin and opens phenyl rings, 

laccases or lininolytic peroxidases produced by white-rot fungi oxidize the linin polymer 

have been explained (Sanchez, 2009). White-rot fungi lignocellulolytic microorganisms 

are able to decompose and metabolize all plant cell constituents (cellulose, 

hemicellulose, and lignin) by their enzymes (Malik et al., 2015). The decreasing of CF 

and CF fractions (NDF, ADF and ADL) in the treated sorghum stover may be the result 

of cellulase enzymes secreted by cellulolytic fungi (Akinfemi et al., 2010). Isikhuemhen 

and Nerude, (1999) explained that white-rot fungi produce extracellular lignin 

modifying enzymes, the best characterized of which are laccase, lignin peroxidase and 

manganese peroxidases. Lignin loss varied in fungus cultured straw, which increased 

progressively with period of incubation (Tripathi et al., 2008).  

Most white-rot fungi during bio-processing of plant material degrade lignin and 

cellulose simultaneously (Okano et al., 2005). Breaking down a considerable amount of 

lignin by fungus it’s causable to changes the components of lignin result in 

improvements in digestibility. 
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Table 4.2 Effect of level urea, fermented duration, and types of fungal on fibrous  

                  contents (p<0.05).  

Items Level Time NDF ADF ADL Hemi cellu 
Treatments        

RS   77.94 58.04 4.90 19.90 53.14 
USR 2.5 7 74.36 59.73 4.07 12.14 55.66 

 2.5 14 75.41 63.42 4.34 9.49 59.08 
 5 7 77.84 59.45 4.26 18.39 55.19 
 5 14 73.19 53.97 4.78 19.22 49.19 

POT 2.5 7 61.96 57.08 3.53 4.89 53.55 
 2.5 14 62.07 56.33 3.15 5.74 53.18 
 5 7 69.35 55.50 3.20 13.85 52.62 
 5 14 61.81 49.66 3.10 12.15 46.56 

PSC 2.5 7 65.53 58.90 3.41 6.63 55.49 
 2.5 14 66.87 54.47 3.20 12.40 51.38 
 5 7 60.25 56.77 3.08 3.48 53.68 
 5 14 68.60 55.40 3.09 13.20 52.32 

PE 2.5 7 66.50 55.69 3.32 10.81 52.37 
 2.5 14 63.84 52.91 3.50 10.93 49.41 
 5 7 56.51 53.19 3.18 8.29 50.01 

  5 14 68.33 54.36 3.17 13.97 51.19 
SEM   0.37 0.33 0.04 0.44 0.33 
Comparison        

A   0.0001 0.0001 0.0001 0.0001 0.0001 
B   0.8900 0.0003 0.09 0.0001 0.001 
C     0.1400 0.0030 0.31 0.006 0.002 

Interaction        
AxB   0.01 0.01 0.01 0.0001 0.004 
AxC   0.00 0.15 0.07 0.001 0.200 
BxC   0.13 0.13 0.13 0.100 0.090 

AxBxC     0.0001 0.0001 0.27 0.260 0.001 
abc Means  in the same row with different superscript differ (p<0.05); NDF = Neutral 

detergent fiber, ADF = Acid detergent fiber, ADL = Acid detergent lignin, Hemi = 

Hemicellulos, Cellu = Cellulose; untreated rice stubble (Control), urea treated rice 

stubble (URS), urea treated rice stubble fermented with Pleurotus ostreatus (POT), urea 

treated rice stubble fermented with Pleurotus sajor-caju (PSC), urea treated rice stubble 

fermented with Pleurotus eous (PE), A= factor from roughage source,  B= factor from 

level of urea, C factor from period time for urea fermentation. 
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4.5.3 In vitro gas production 

         The in vitro digestibilities of rice stubble incubated with different types of 

Pleurotus spp. and treated by urea are presented in Table 4.3 The results of gas 

production characteristics demonstrated that greater content of readily soluble fraction 

of OM (a) and potential degradability (a+b) fractions of DM digestibility increased 

(p<0.01) with processing by fungi in all types of fungal include URS treatment when 

compared with control, High level of urea also improved a fraction but no influence to 

a + b fraction. The b fraction of OM degradability significantly increased with 

processing by PE fungi in rice stubble (p<0.01), but was not apparently different by 

POT and PSC fungal as well as URS when compared with control including level of 

urea and time to treated urea. The degradation rate of insoluble fraction (c) was 

significantly greater by rice stubble treated with urea, but apparently reduced in all of 

fungal treatments. Lower level of urea and early treated urea were higher volume of c 

fraction. This study validated earlier report that in vitro gas production technique can be 

used to evaluate the potential value of feedstuffs. P. ostreatus can improve the 

digestibility of several agro-industrial residues of low nutritive value (Bento et al., 2014) 

in agreement with former studies reported that Pleurotus species fungi can increase in 

vitro digestibility (Zadražil, 1997; Jafari et al., 2007).  

The reason for such improvement in the degradability might be due to the 

breaking down of cell wall bonds during the fermentation of straw with the fungi 

(Fazaeli et al. 2004; Shrivastava et al., 2011). Biologically treated roughages with 

ligninolytic fungi have higher digestibility for most of the nutrients both cell walls and 

cell soluble (Malik et al., 2015). The use fungal treatment of rice stubble not only 
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Table 4.3 Effect of level urea, fermented duration, and types of fungal on the organic  

                 matter degradation parameters of gas production of rice stubble. 

Items          Level Time       a      b       c      a+b 
Treatments       

RS   -5.61 91.43 0.04 85.82 
USR 2.5 7 -0.63 108.22 0.05 107.59 

 2.5 14 -0.21 112.95 0.03 112.75 
 5 7 -1.26 112.46 0.04 111.20 
 5 14 0.44 82.29 0.03 82.73 

POT 2.5 7 1.23 104.92 0.04 106.15 
 2.5 14 -3.10 115.08 0.03 111.98 
 5 7 2.06 102.82 0.03 104.88 
 5 14 7.96 94.12 0.02 102.08 

PSC 2.5 7 1.14 104.58 0.03 105.72 
 2.5 14 -3.73 114.21 0.04 110.48 
 5 7 7.06 88.41 0.02 95.46 
 5 14 2.29 98.53 0.03 100.82 

PE 2.5 7 0.71 112.67 0.03 113.38 
 2.5 14 0.77 107.44 0.03 108.20 
 5 7 9.11 84.12 0.02 93.23 
 5 14 7.67 152.82 0.01 160.49 

SEM   0.71 2.22 0.00 2.29 
Comparison       

A   0.0001 0.00 0.0001 0.0001 
B   0.0001 0.01 0.0002 0.34 
C   0.37 0.02 0.0004 0.05 

Interaction       
AxB   0.01 0.02 0.17 0.01 
AxC   0.16 0.0001 0.01 0.0002 
BxC   0.22 0.42 0.85 0.25 

AxBxC     0.18 0.0001 0.30 0.00 
abc Means  in the same row with different superscript differ (p<0.05); a: the volume of 

gas production from soluble fraction (ml/gDM), b: the volume of gas production from 

insoluble but potentially degradable fraction (ml/g DM), a + b: potential degradability, 

c: rate of degradation of fraction b (/h) from the fraction b; untreated rice stubble 

(Control), urea treated rice stubble (URS), urea treated rice stubble fermented with 

Pleurotus ostreatus (POT), urea treated rice stubble fermented with Pleurotus sajor-

caju (PSC), urea treated rice stubble fermented with Pleurotus eous (PE). 
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improved the CP contents but also enhanced digestibility; fungal treated crop residues 

have a good potential as feed resources for ruminant animals and could be used in 

combination with other feedstuffs.  

 Gas volume after 96 h incubation upon fungal treatments and urea treated rice 

stubble was increased (p<0.01) when compared with control (Table 4.3). Gas production 

from the fermentation of the treated and untreated rice stubbles were measured at 96 h 

shown greater volumes in all of fungal and URS treatment excepted PE fungi was not 

significantly different with control group at 24 and 48 h. Using 2.5% of urea was higher 

gas volume than 5% of urea addition and time to treated urea suitable at 7 days (p<0.05). 

In vitro gas production tests are routinely used in feed research as gas volumes are 

related to both the extent and rate of substrate degradation (Blümmel et al., 1997). This 

result in accordance with Nasehi et al. (2017) suggested that after 96 h incubation upon 

fungal treatment, gas produced from all crop residues was increased (p<0.01). Although 

several species of higher fungi possess ligninolytic activity, Pleurotus species is the 

most studied fungi since they improved the digestibility and nutritional quality of straws 

(Streeter et al., 1982; Kakkar et al., 1990; Mahesh and Mohini, 2013). The degradation 

of lignin, a complex polymer is important because using lignin degrading fungi is to 

make as much as possible the digestibility of the substrates degraded (Kuforiji and 

Fasidi, 2004; Adenipekun and Fasidi, 2005). There are many factors influencing the 

amount of gas produced during fermentation, such as the nature or level of fiber and 

potency of the rumen liquor used for incubation (Babayemi 2007). High nutritional 

value straw was greater than for the low-nutritional value straw and at the end of the 96 

h of incubation (Peripolli et al., 2017). Fibrous constituents affected in vitro gas 



97 
 

 
 

production negatively; therefore, the lower levels of fiber fraction in the treated 

substrates increased amount of gas production (Akinfemi et al. 2010). 

The results of the efficiency digestibility (ED) showed higher values estimated 

in all the fungi cultured substrates comprehend urea treated stubble when compared with 

control group and highest in PE treatment (p=0.0001), there were no significantly 

different among treatments by the level of urea and treated duration. The value of 

organic matter digestibility (OMD) was higher in POT and PSC fungal treatments 

(p<0.01) but there were not apparently significant among treatments of PE fungi, URS, 

and control groups, not affected by duration of treated urea but level of urea influence 

to OMD. The metabolizable energy (ME) was higher in URS and all of fermented fungal 

(p=0.0001) excepted PE fungi was not significantly different when compared with 

control, ME value also affected by the level of urea and times.  Rice straw treated with 

urea increased ED have been informed in varieties former studies (Fadel Elseed, et al., 

2003; Sarnklong et al., 2010; Malik et al., 2015; Foiklang et al., 2016). Nasehi et al. 

(2014) illustrated that straws cultured with Pleurotus florida increased the degradability 

parameters of the DM in both of wheat and barley Straw. The high volume obtained for 

OMD in this study in accordance with previous studies (Jafari et al., 2007; Akinfemi et 

al., 2010; Mahesh and Mohini, 2013) indicated that the microbes in the rumen and 

animal have high nutrient uptake. ME was significantly increase (p<0.05) in rice straw, 

wheat straw, barley straw, soybean straw, pea straw, and rice husk fermentation by P. 

florida (Nasehi et al., 2017).  

A number of factors could be responsible for ME improvement in crop residues 

treated with fungi, such as high gas production in the treated substrate, reduction in cell 

wall components and an increase in CP content of urea treated rice st- 
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Table 4.4 Effect of level urea, fermented duration, and types of fungal on gas volume  

               and in vitro digestibility characteristics. 

Items Level Time       96         ED OMD ME 
Treatments      

RS   82.53 42.91 60.90 8.78 
USR 2.5 7 106.86 53.80 66.87 12.65 

 2.5 14 105.07 56.37 67.48 9.73 
 5 7 109.36 55.60 62.01 11.91 
 5 14 79.47 41.37 59.49 8.51 

POT 2.5 7 104.31 53.08 79.27 11.49 
 2.5 14 107.90 55.99 73.99 10.70 
 5 7 100.06 52.44 55.16 10.24 
 5 14 79.87 51.04 61.04 7.37 

PSC 2.5 7 100.84 52.86 64.35 10.26 
 2.5 14 106.54 55.24 69.99 10.60 
 5 7 85.52 47.73 59.68 8.30 
 5 14 93.41 50.41 62.48 9.22 

PE 2.5 7 106.83 56.69 70.31 10.15 
 2.5 14 100.21 54.10 65.31 9.39 
 5 7 83.64 46.61 54.67 8.33 
 5 14 85.55 66.91 51.42 6.76 

SEM   1.35 0.88 0.83 0.11 
Compearision       

A   0.0001 0.0001 0.0003 0.0001 
B   0.0001 0.01 0.0001 0.0001 
C   0.01 0.21 0.90 0.0001 

Interaction      
AxB   0.004 0.09 0.0001 0.0001 
AxC   0.0007 0.001 0.12 0.0001 
BxC   0.01 0.84 0.47 0.03 

AxBxC     0.001 0.0001 0.14 0.03 
abc Means  in the same row with different superscript differ (p<0.05); GV: gas volume 

(mL), ED: efficiency digestibility (%),OMD: organic matter digestibility (%), ME: 

metabolizable energy (MJ/kgDM); untreated rice stubble (Control), urea treated rice 

stubble (URS), urea treated rice stubble fermented with Pleurotus ostreatus (POT). 

 

ubble fermented with Pleurotus sajor-caju (PSC), urea treated rice stubble fermented 

with Pleurotus eous (PE). Treated substrate (Sallam et al. 2007; Nasehi et al., 2017). 
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Moreover, Zadrazil (2000) explained that WRF attack unaltered lignin polymers causing 

cleavage of interlignol bonds and aromatic ring cleavage, which ultimately results in an 

increase in in vitro digestibility. They mainly degrade polysaccharides by hydrolytic 

enzymes like cellulases and xylanases, and lignin by oxidative ligninolytic enzymes 

such as lignin peroxidase, manganese peroxidase and laccase (Mahesh and Mohini, 

2013).  

 

4.6  Conclusions 

It can be concluded that practical use of fungal treated rice stubbles, blocked by 

urea as roughage feed for ruminants could be possible, contained considerable amount 

of crud protein and may be used as a ruminant feed. This study suggests that rice stubble 

is suitable substrate for growing of all the Pleurotus species tested and rice stubble 

fermentation by fungi can improve its nutritive value for ruminant. Although all of 

fungal species demonstrate high capability improving the nutritive value and 

digestibility of rice stubble, however Pleurotus ostreatus fungi seem to be more potent 

for upgrading of rice stubble was indicated as greater crud protein content, compose 

lower lignin, and higher in vitro digestibility. Therefore, the conversion of 

lignocellulosics into edible fungi as animal feed may be the first economical technology 

for biological upgrading of cultivated residues.  
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CHAPTER V 

EFFECT OF UREA TREATED RICE STUBBLE FER- 

    ENTED FUNGI ON NUTRIENT DIGESTIBILITY  

   RUMEN FERMENTATION AND GROWTH  

  PERFORMANCE IN GROWING GOATS 

 

5.1 Abstract 

Cultivated residues are often referred to as lignocellulosics as they are high in 

cellulose which is bound with a biopolymer lignin. Biological treatment of such crop 

residues using fungi can break the ligno-cellulose complexes, liberating free cellulose 

and thus improving their feeding value for ruminants. The present research aims to 

investigate the effect of rice stubble treated by urea and fermented with fungi on 

digestibility, rumen fermentation, and growth performance in meat growing goats. 

Eighteen crossbred Thai native x Anglo-Nubain meat goats (average BW 20.4±4kg) 

were randomly assigned to feed on one of treatment diets according to completely 

randomized design.  The goats were divided into three groups of six goats each to 

receive untreated rice stubble (control), urea treated rice stubble (URS), and rice 

stubble fermented with fungi (POT) and treated by urea (URSF). All animals were 

offered ad-libitum daily throughout 90 days. The result shows a significant (p<0.05) 

increase in dry matter intake (DMI) and nutrient intakes for goats fed URS and URSF 

diets; the goats fed with URSF had significantly higher digestibility, ammonia 



109 
 

nitrogen (NH3-N) concentration, C2:C3 ratio for 2 h post feeding in the rumen, 

nitrogen (N) balance, blood urea nitrogen (BUN), and average daily gain (ADG)  as 

well as body weight gain; while pH value, total volatile fatty acid (VFA), and bacteria 

population  there were not significantly difference among diet treatments. The results 

of this study indicated that using fungi treatment of rice stubble resulted in improved 

apparent feed intake and nutrient digestibility, crud protein utilization, hence increased 

the growth and feed efficiency of growing goats. Therefore, the treated rice stubble or 

cultivated residues has a good potential as feed for ruminants. Moreover it’s expected 

to be an impractical, cost-effective and environmental-friendly. 

Key Words : Rice stubble, Urea, Fungi, Utilization, Goat  

 

5.2 Introduction 

In most developing countries particularly Southeast Asia, the main problem in 

ruminant production system is feed shortage, seasonal availability of forages, 

especially in dry season. Therefore, rice straw including rice stubble (rice stubble is a 

part of rice straw which high lignin content and low nutritive value) is available in 

plenty from the rice cultivated field has used as main part of feeding ingredients for 

the ruminants. However use of rice straw or stubble as an animal feed is limited by 

several factors such as the low nutritional quality due to high fiber content and 

lignification process, low nutritive value, low voluntary intake, slow rate of digestion 

and low content of available energy, protein, minerals and vitamins (Van Soest, 2006; 

Kholif et al., 2014; Malik et al., 2015). Lignin and cellulose commonly form 

lignosellulose bounds, a very strong bound, the higher lignin content resulting in poor 
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digestibility as lignification increase (Mustabi et al., 2013). Ester bonding and 

covalent bonds between lignin and polysaccharides contended in plant cell walls 

which prevents enzymes to degradation, hence lignin are the primary limiting factors 

in rice straw digestibility in ruminant animals (Hatfield, 1989; Jung, 1989). Therefore 

use rice straw or rice stubble as animal feed must be processed before using.  There 

are various processing to enhanced rice straw utilization such as physical, chemical, or 

biological treatments have been tried (Mahesh and Mohini, 2013; Mustabi et al., 2013; 

Kholif et al., 2014; Malik et al., 2015).  

One of the main processing methods to improve the nutritive value of stubbles 

or lignocellulosic residues could be the application of biotechnology. Fungal treatment 

as a biological method has been recently considered promising manner for enhancing 

the nutritive value of straw (Jafari et al., 2007; Akinfemi et al., 2010; Kholif et al., 

2014; Malik et al., 2015). The potential of biological treatments has been explained by 

the ability of certain microbes to disrupt plant cell wall by partial breakdown of the 

lignin-carbohydrate complex thus improving their utilization in the rumen by 

increasing the digestibility of lignocellulosic materials, it is important to break down 

the linkage between cellulose, hemicellulose, and lignin or break down the compact 

nature of the tissue (Keller et al., 2003; Mahesh and Mohini, 2013; Kholif et al., 2014; 

Malik et al., 2015). White rod fungi (WRF) have the natural ability in upgrading 

lignocellulosics have been reported by various studies (Jafari et al., 2007; Akinfemi et 

al., 2010; Mahesh and Mohini, 2013; Mustabi et al., 2013; Kholif et al., 2014). 

Although several species of higher fungi possess ligninolytic activity, Pleurotus sp. is 

the most studied fungi since they improved the digestibility (Kundu et al., 2005; 

Mahesh and Mohini, 2013). 
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The aim of present study was to evaluate utilization of spent rice stubble 

treated by urea and fungal fermented in the diet of meat goats, to observed voluntary 

feed intake, nutrient digestibility, rumen fermentation parameters, and growth rate of 

growing goats. 

 

5.3 Objectives 

This study was designed to investigate the effect of urea treated rice stubble 

fermented with fungi compared with rice stubble and rice stubble treated urea on 

nutrient digestibility, rumen fermentation and growth performance in meat goats. 

 

5.4 Materials and Methods 

    5.4.1 Animals, treatments, and experimental design 

        Eighteen meat goats crossbred Thai native x Anglo nubain an average 

body weight (BW) of 20.4 kg were allocated in Completed randomized design (CRD). 

The goats were housed in individual pens and allowed 2 weeks to adapt to the 

experimental conditions. Animals were received dietary treatments as followed: 

Control = Rice stubble (rice stubble untreated with urea) 

URS = Urea treated rice stubble  

USRF = Urea treated rice stubble fermented fungi  

TMR was offered twice daily ad libitum; approximately at 0700 and 1700 h. 

Diets were allowed to have 5% left over. Feed ingredients of the experimental diets 

are shown in Table 5.1. Water was available at all times. 

Animals were individually housed and intensively cared according to 

procedures of goat farm at Suranaree University of Technology.  
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5.4.2 Data collection, sampling and chemical analysis 

5.4.2.1   Feed sampling 

Feed was sampled daily during the collection period and was 

composition prior to analyses. During the last seven days of 30th, 60th and 90th days of 

fermentation. Feed samples were collected every day and divided into two parts, the 

first part be analyzed for DM, while the second part was kept and pooled at the end of 

each period for chemical analysis. Samples were dried 60°C and ground (1mm screen) 

and then analyzed for DM, ash, EE and CP content (AOAC, 2002), NDF, ADF (Van 

Soest et al., 1991). 

5.4.2.2   Fecal and Urine samplings 

Fecal samples were total collected and weighed during the last 

7 days of day 30th, 60th and 90th. The fecal samples were collected about 5% of total 

fresh weight and divided into two parts, the first part being analyzed for DM, the 

second part kept for chemical analysis at the end of each period.  

                          Urine samples were collected the same time with fecal 

sampling, recording total collection and urine samples were collected 10% of total of 

the day acidified with 50% H2SO4 then mixed together of each goat after that were 

stored at -20°C until analyzed NH3-N by the method of (Bremner and Keeney, 1965). 

 

5.4.2.3   Blood sampling 

Blood sample (about 10 ml) was collected from a jugular vein 

(at the same time as rumen fluid sampling) into tubes containing 12 mg of EDTA, and 

plasma was separated by centrifugation at 500×g for 10 min and stored at -20°C until 

analysis of blood urea-N (BUN) according to the method of Crocker (1967). 
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Table 5.1 Ingredients and chemical composition of the experimental diets in total    

                  mixed ratio (TMR) (% DM). 

Items Control URS URSF Control URS URSF 

Ingredients, %DM     

Soybean meal - - - 3.0 3.0 3.0 

Rice bran - - - 5.0 5.0 5.0 

Cassava hay - - - 47.0 48.5 49.3 

Rice stubble - - - 35.0 35.0 35.0 

Urea - - - 3.0 1.5 0.7 

Molasses - - - 5.0 5.0 5.0 

Salt - - - 0.4 0.4 0.4 

Sulfur - - - 0.2 0.2 0.2 

DCP - - - 0.5 0.5 0.5 

Limestone - - - 0.2 0.2 0.2 

Mineral 

premix 
- - - 0.7 0.7 0.7 

Control = Rice stubble, URS= urea treated rice stubble, URSF= urea treated rice 

stubble fermented fungi, DCP= Dicalcium phosphate 

 

5.4.2.4   Rumen fluid sampling 

Rumen fluid samples were collected by stomach tube at 0, 2 

and 4 h-post morning feeding in the day 30th, 60th and 90th. Approximately 500 ml of 

rumen fluid was taken using stomach tube at each time at the end of each period. 

Rumen fluid was immediately measured for pH using a portable pH meter. Rumen 
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fluid samples were then filtered through four layers of cheesecloth. Samples were 

 

Table 5.1 Ingredients and chemical composition of the experimental diets in total 

mixed ratio (TMR) (% DM) (con.) 

Items Control URS URSF Control URS URSF 

Chemical composition, % DM 

DM 96.00 23.90 23.00 46.25 48.78 41.95 

 ………………………………..%DM……………………………….. 

Ash 15.12 20.89 22.86 8.19 7.82 15.51 

OM 84.87 79.31 77.14 91.81 92.18 84.49 

CP 2.49 4.06 9.51 12.21 12.03 12.32 

EE 0.9 0.8 0.8 1.48 1.59 1.56 

NDF 77.94 76.82 65.92 35.39 35.41 32.45 

ADF 58.03 59.74 59.08 24.40 25.38 24.05 

ADL 4.90 4.02 3.50 1.66 0.32 0.28 

Control = Rice stubble, URS= urea treated rice stubble, URSF= urea treated rice 

stubble fermented fungi, DM= Dry matter, CP = Crude protein, EE = ether extract, 

OM = Organic matter, NDF = Neutral detergent fiber, ADF = Acid detergent fiber. 

 

divided into three portions; first portion was used for NH3-N analysis where 10 ml of 

50%H2SO4 solution was added to 100 ml of rumen fluid. The mixture was centrifuged 

at 16,000 x g for 15 minutes and supernatant was stored at -20 °C prior to NH3-N 

measurement (Bremner and Keeney, 1965) and VFA analysis (HPLC; model RF-

10AXmugiL; Shimadzu; Japan) according to Zinn and Owens (1986). Second portion 
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was fixed with 10% formalin solution in normal saline (0.9% NaCl, Galyean, 1989) 

and stored at 4 °C. The total direct counts of bacteria and protozoa numbers were 

counted using the methods of Galyean (1989) based on the use of a haemacytometer. 

The third portion was collected for microbial analyzed by roll tube technic according 

to Hungate (1969). 

 

  5.4.3 Data Statistical Analysis 

         All data obtained from the experiment were statistically subjected to 

ANOVA and analyzed as a Complete Randomized Design (CRD) design using the 

PROC GLM (SAS, 1998). Significant differences between treatments were 

determined using Duncan’s News Multiple Range Test (DMRT) (Steel and Torrie, 

1980) and orthogonal contrast was used for trend analysis. The following statistical 

model was used:   

Υijk  = µ+ τi + εij 

Where Υij  = represents of observation from animals 

µ = overall mean 

τi = Effect of treatment (i = 1-3) 

εij = Error of the term 

 

5.5 Results and discussions 

5.5.1   Chemical composition of feeds 

           The chemical compositions of feed ingredients are shown in Table 5.2. 

DM of experimental diets was adequate for protein requirement for growing and 

maintenance. TMR contained DM 46.25, 48.78 and 41.95%. For crude protein content 
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was similar among treatment 12.21, 12.03 and 12.32%, neutral detergent fiber was 

decrease on treatment 3 and acid detergent fiber was 24.4, 25.38 and 24.05% 

respectively. 

 

5.5.2   Feed intake and digestibility 

           Feed intake, nutrient intake and nutrient digestibility data are presented 

in table 5.3. Feed intake of total mixed ration were significantly different (p<0.05) 

among control and treated treatments (618.49, 658.47 and 687.35 gDM/d 

respectively). When compared by percentage of body weight and gram per kilo gram 

body weight 0.75 (g/kg BW0.75) found control and URS were not significant (p>0.05) 

but when compared to URSF was significantly difference (p<0.05), URSF was higher 

2.75, 2.76 and 3.10% for percentage of body weight and 59.91, 61.08 and 67.31 

g/kgBW0.75 respectively. It might be that rice stubble was spongier more than URS 

and USRF, Wanapat et al. (2009) reported that 5.5% urea treated rice straw increased 

DM intake in dairy cows when compared with RS. More reason the improvement of 

intake of rice stubble treated could be due to the physical character (the softness of the 

treated rice stubble structure) and the chemical changes (the biodegradation of its cell 

wall) in the straw during the biological fermentation (Arora et al., 1994; Zadrazil et 

al., 1995).  

 

5.5.3   Average daily gain and feed conversion ratio 

           URSF was increased average daily gain (ADG) apparent significantly 

(p<0.05) when compared to control and URS. But control and URS were not 

significant different 43.33, 48.41 and 79.36 g/d. In the case feed conversion ratio 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092894/#b50-ajas-26-12-1689-5
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(FCR) was lower number in goats fed URSF treatment but not distinctive different 

among treatments. The results indicated that used biological treatment of rice stubble 

with fungi was improved the efficiency of feed utilization in growing goats. It may be 

explained by more feed intake in gram per day and percentage of body weight affected 

to this group increased weight gain. Moreover, the nitrogen intake in goats fed URSF 

was higher than other groups. Similar with Jeerasak et al. (2009) studied level of 

protein on growth performance found ADG was 63 to 92 g/day of 12-14% CP. 

Moreover, Khotsakdee et al. (2010) reported that goats fed low fat (3%), high fat (6%) 

and high fat with yeast has average daily gain value equal 41.67, 66.67 and 80.56 g/d, 

respectively. Omer et al. (2012) had presented that biologically treated corn stalks can 

completely replace clover hay in the ration of growing sheep which was evident by a 

favorable increase in DM intake, and an improvement in the digestibility of all 

nutrients with higher ADG. 

 

5.5.4   Nutrient intake 

           Rice stubble which is a part of rice straw is a by-product of the rice 

grain industry. It has limited nutritive value (low crude protein, palatability 

digestibility and high oxalates) that may cause of restricted feed intake. Feed intake 

can be used as an indicator of the palatability of the diets. To improve the utilization 

of crop residues for ruminants is to overcome the barriers to rumen microbial 

fermentation of lignocellulosics. In this study the results of nutrient intakes of growing 

goats fed rice stubble are presented in Table 5.2 Nutrient intakes were affected by 

fermented stubble diets. The feed in take gram dry matter intake per day found that 

URS and URSF was not significantly different but when compared with control was 
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highly significant different. Feed in take in this study was 618.49, 658.47 and 687.35 

gDM/day similar with Moreira et al. (2016) who studied ammoniated babassu palm 

hay in anglo-nubian goat diets found feed intake range from 570 to 947 gDM/d. The 

OMI and NDFI were highest level in goats fed URS dietary treatment, there were 

significantly distinctive difference (p<0.05) when compared with control group but 

not significant different with goats fed URSF. These data support earlier works were 

descripted rice straw treated with urea improved DMI, OMI, and fibrous substrates 

(Mould et al., 1982; Trach et al., 2001; Qingxiang 2002; Wanapat et al., 2013; 

Polyorach and Wanapat. 2014). The increase of stubble intake in the present study 

may thus be explained by virtue of its increased degradability in the rumen and an 

increase in the outflow of stubble cell walls into the abomasum as reported by Trach et 

al. (2001); Wanapat et al. (2013). The higher intakes of treated treatments compared 

with untreated treatment may be because treated treatment is more palatable than 

Untreated. In the same way, particle passage is expected to decrease with increasing 

NDF intake. Van Soest (1965) opined that feed intake is limited by the amount of 

fiber in the diet when cell wall content lies between 50 and 60% of forage dry matter. 

Also the voluntary intake is expected to be inversely related to the fiber content of the 

forage because further intake is limited as the slower digesting fraction becomes large 

in relation to the volume of the digestive tract. Methods of treating straw may be 

classified broadly into mechanical, physical, chemical and biological categories. 

Several studies have reported the physical, chemical characterization and utilization of 

rice straw as ruminant feed also improve its nutritive value, enhance feed intake and 

digestibility (Trach et al., 2001; Vadiveloo, 2003; Wanapat et al., 2009; Malik et al., 

2015). 
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CPI per day was apparent (p<0.05) highest level in goats fed URSF formula. 

This result according with previous studies were reported utilization of fungal treated 

crop residues increased feed intake as well as nutrients utilization (Mahesh, 2012; 

Omer et al., 2012; Shrivastava et al., 2012; Mahesh and Mohini, 2013). Furthermore, 

Langar et al. (1980) reported spent straw remaining after edible mushroom harvesting, 

generally contains an increased CP, cell-wall soluble, total and acid insoluble ash and 

reduced cell wall components which might be more useful than the original straw for 

feeding ruminants. Various studies reported fungal treated cultivated remainders 

improved nutritive values; Increased CP content of fermented substrates was 

associated with increased fungal biomass (Chen et al., 1995; Tripathi et al., 2008; 

Akinfemi et al., 2009; Akinfemi 2010; Kholif et al., 2014). Walli et al. (1988) 

observed that the N intake, its digestion and retention in cross-bred calves fed fungal 

treated wheat straw supplemented with groundnut cake was higher than urea treated 

straw fed group. The fermented maize straw with P. ostreatus increased voluntary 

daily intake as well as gain in body weight of Pelibuey sheep (Díaz-Godínez and 

Sánchez. 2002). White-rot fungi (WRF) are capable of degrading lignin without 

affecting much of cellulose and hemicelluloses (Zadražil and Brunnert, 1982). WRF 

attack unaltered lignin polymers causing cleavage of interlignol bonds and aromatic 

ring cleavage, which ultimately results in an increase in in vitro digestibility (Zadražil 

et al., 1999). They mainly degrade poly-saccharides by hydrolytic enzymes like 

cellulases and xylanases, and lignin by oxidative ligninolytic enzymes such as lignin 

peroxidase, manganese peroxidase and laccase. Akinfemi and Ogunwole, (2012) 

reported the use of three different edible mushrooms: Pleurotus ostreatus, Pleurotus 

pulmonarius, and Pleurotus tuberregium treated with rice straw to examine nutritive 
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values, were studied through analysis of their proximate composition, mineral 

composition, crude fiber fractions and in vitro digestibility. 

 

Table 5.2 Effect of URS and URSF on feed intake, nutrient intake, apparent  

                   digestibility, metabolizable energy and microbial crude protein of growing  

                   meat goats. 

Items Control URS URSF SEM P-value 

Feed intake 
     

gDM/d 618.49b 658.47a 687.35a 6.62 0.003 

 %BW 3.02b 3.00b 3.63a 0.05 0.030 

g/kgBW0.75 64.27b 64.93b 75.76a 1.00 0.018 

Nutrient intake gDM/d  
  

OMI 567.86b 607.00a 580.77ab 5.77 0.041 

CPI 75.51b 79.24b 84.74a 0.81 0.001 

EEI 9.21b 10.47a 10.74a 0.10 0.0001 

NDFI 218.90b 233.22a 223.04ab 2.22 0.050 

ADFI 150.94b 167.12a 165.31a 1.61 0.002 

Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice stubble 

fermented fungi and treated with urea (URSF), OMI= Organic matter intake, CPI= 

crude protein intake, EEI= ether extract intake, NDFI= neutral detergent fiber intake, 

ADFI= acid detergent fiber intake, and SEM = Standard error of the mean.  

. 

It was observed that treatment of rice straw with different edible mushrooms 

improved the potential feeding value. Therefore, the product of fungal treatment has a 

good potential as feed resources for ruminants. The use of fermented rice straw and 

elephant grass with WRF can be improved feed intake in goats (Mustabi et al., 2013). 

The value of EEI and ADFI were similar value between goat fed stubble 

fermented with urea and stubble fermented with fugal and treated with urea groups. 



121 
 

Both were significantly different (p<0.05) levels with control group. These results 

similar with former studies reported biologically treated corn stalks fed with growing 

 

Table 5.2 Effect of URS and URSF on feed intake, nutrient intake, apparent  

                   digestibility, metabolizable energy and microbial crude protein of growing  

                   meat goats. (Con.) 

Items Control URS URSF SEM P-value 

Apparent Digestibility, % of intake 
  

DDM 58.69b 62.68ab 68.88a 1.24 0.014 

DOM 62.61b 65.93b 71.49a 1.02 0.010 

DCP 57.58b 63.59ab 67.12a 1.51 0.060 

DEE 65.08b 69.13ab 72.54a 0.79 0.006 

DNDF 46.87b 53.64ab 65.29a 2.31 0.017 

DADF 44.91 51.07 57.19 2.05 0.081 

ME (Mcal/kgDM) 1.78b 1.98a 2.02a 0.03 0.017 

MCP (kg/d) 0.84b 0.93a 0.95a 0.02 0.016 
abc Means  in the same row with different superscript differ (p<0.05); Untreated rice 

stubble (Control), Rice stubble treated urea (URS), Rice stubble fermented fungi and 

treated with urea (URSF) ME = Metabolizable energy, 1 kg DOMI = 3.8 Mcal 

ME/kgDM (Kearl, 1982),   MCP = Microbial crude protein (kg/d) = 0.13*kgDOMI;, 

SEM = Standard error of the mean.  

 

Sheep which was evident by a favorable increase in DM intake, and an improvement 

in the digestibility of all nutrients with higher ADG (Omer et al., 2012). These reports 

clearly indicate that majority of the fungal treated can be improved more palatable 

feeds (Kamra and Zadražil, 1988; Mahesh and Mohini, 2013). When rice straw was 

treated with urea, it resulted in improving the nutritional quality of the straw in terms 
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of nitrogen content, palatability and digestibility. During the treatment process, 

ammonia generated from urea, in the presence of water formed (Polyorach and 

Wanapat, 2014; Oladosu et al., 2016). Break down of rice stubble as lignin bond may 

reduce the time of passage in the rumen and improve feed for ruminants. Both of urea 

treated and biological treatment can be employed for improving the feeding value of 

low quality fibrous cultivated residues. 

 

5.5.5   Nutrient digestibility 

           Digestibility of ADF was not obviously different among treatment 

(p>0.05). DM and OM digestibility of URSF was highest and significant different 

when compared with control and URS (p<0.05), but control and URS were not 

significant different between treatment (Table 5.2). Digestibility of the straw is 

dependent on the deploy merisation of its structural carbohydrates. Enzymatic 

degradation of these macromolecules in the straw will result in degradation and 

increase in digestibility and availability of carbohydrates (Fazaeli et al., 2004; Mahes 

and Mohini, 2013). Karunanandaa et al. (1995) studied the effect of incubation of rice 

straw for 30 days with white-rot fungi, found that Pleurotu sajor-caju enhanced dry 

matter digestibility in animal, in both leaves and stems of rice. Fazaeli et al. (2002) 

observed fungal treated wheat straw fed cattle can increased DM and OM digestibility 

and palm leaves treated with pleurotus florida for sheep (Kabirifard et al., 2007). 

White-rot fungi are capable of degrading lignin without affecting much of cellulose 

and hemicelluloses thus causing decayed residue to turn white, WRF attack unaltered 

lignin polymers causing cleavage of interlignol bonds and aromatic ring cleavage, and 

increased digestibility (Zadražil and Brunnert, 1982; Zadražil et al., 1999). They 
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mainly degrade poly-saccharides by hydrolytic enzymes like cellulases and xylanases, 

and lignin by oxidative ligninolytic enzymes such as lignin peroxidase, manganese 

peroxidase and laccase (Mahes and Mohini, 2013). The examine in late lactating 

Holstein cows fed with fungal treated straw upto 30% of the total mixed ration in 

improved the nutrients digestibility (Fazaeli et al., 2004). White rot fungi use 

enzymatic mechanisms to break down lignin, alter lignocellulose structures, and 

improve the nutritive value of low quality feeds (Tripathi et al., 2008; Tuyen et al., 

2013; Yilkal, 2015). 

 Digestibility of CP, EE and NDF were not significant different between 

control and URS. As compared to URSF was significant different (p<0.05). 

Digestibility of CP was 57.68, 83.59 and 67.12% in treatment 1, 2 and 3 respectively. 

EE digestibility was 65.08, 69.64 and 72.54% and NDF digestibility was 46.87, 53.64 

and 65.29%, respectively. The explanation might be the URSF was already fermented 

of fiber during the fungi fermentation. So the fiber fraction in URSF is easily digested 

by microbes in the rumen leading to increased fiber digestion after feeding 

(Yuangklang et al., 2004). To improve digestibility and protein enrichment of the low 

quality fodder are known to be the aim of the bioconversion process when the product 

is destined for ruminant nutrition that is proposed process of biological upgrading of 

lignocellulosics into animal feed should be characterized by marked lignin 

decomposition and liberation of nutrients from the lignocellulose-matrix with 

contemporary accumulation of digestible substances along with enriching the final 

product with microbial protein (Kamra and Zadražil, 1988; Zadražil et al., 1999; 

Villas-Bôas et al., 2002;  Mahes and Mohini, 2013). However, a high quality 

standardized products of the acculturative remainder along with controlled conditions, 
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which the fungus, its enzymes, physical structure of substrate, physiological factors of 

fermentation and culture as well as nutritional conditions play an important role in 

controlling lignin degradation and digestibility of fermented substrate since cheap and 

safe to animal and environment (Zadražil, 1986; Zadražil et al., 1999). By the way 

using urea to treat crop residues have been reported to increase feed intake as well as 

nutrients digestibility in ruminants (Wanapat et al., 2009; Gunun and Wanapat, 2012; 

Wanapat et al., 2013; Cherdthong et al., 2014; Oladosu et al., 2016). The increases in 

apparent digestibility of the treated straw were reasonable due to increased rumen 

degradability resulted from increased susceptibility of structural carbohydrates of 

straw cell walls to rumen fermentation as well as more energy being made available 

for better growth of rumen microbes which degrade straw (Silva and Ørskov, 1988; 

Wanapat et al., 2013).  

 

5.5.6   Metabolizable energy and microbial crude protein  

           Metabolizable energy (ME, Mcal/kgDM) is derived from the 

calculation of digestible organic matter intake. It is an import to know that the more 

fermented organic matter in the rumen is associated with the high amount of 

metabolizable energy in the diet. The microbial crude protein (MCP, kg/d) value is 

also derived from the digestible organic matter intake in the rumen. The present 

experiment showed that metabolizable energy and microbial crude protein were 

significantly (p<0.01) increased in the goats fed URS and URSF (ME: 1.78, 1.98 and 

2.02 Mcal/kgDM respectively and MCP: 0.84, 0.93 and 0.95 kg/d respectively). It 

may be explained that fungi break down lignin in rice stubble straw structure and easy 

degrade in the rumen which enhancing organic matter digested, led to increase 
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metabolizable energy and microbial crude protein values. Such improvement of intake 

of the treated stubble could be due to the physical character (the softness of the treated 

straw structure) and the chemical changes (the biodegradation of its cell wall) in the 

straw during the biological fermentation as reported (Arora et al., 1994; Zadrazil et al., 

1999; Fazaeli et al., 2002). Feed intake in ruminants is dominated by two factors, the 

digestibility of the fed forage and the intake capacity of the animal (McOueen and 

Robinson, 1996). 

 

5.5.7   Body weight change 

           Initial and overall weights score not apparent difference among 

treatments. Nevertheless, body weight gain was significant different (p<0.01) among 

treatments (Table 5.3). Stubble fermented with fungi and treated by urea resulted in a 

higher than stubble treated urea only, and control (untreated) group results as (5.00, 

3.68, and 2.78) respectively. When the rice stubble fermented with fungi and treated 

by urea was higher level of intake and digested protein it could improve the 

metabolism and biological values of the protein and amino acid balance, this result 

supported previous studies (Silva et al. 2002; Fazaeli et al., 2002; Tripathi et al., 2008; 

Mahesh and Mohini, 2013; Yilkal, 2015). Ramirez-Bribiesca et al. (2010) reported 

that used corn straw fermented with P. ostreatus for 15 days increased crude protein 

39.5% and soluble protein 165%, soluble carbohydrates 621%, ash 188.32% and 

decreased neutral detergent fiber 14.5% similar results with our first study. This result 

supported by Díaz-Godínez and Sánchez, (2002) who reported that when spent maize 

straw of P. ostreatus increased voluntary daily intake as well as gain in body weight 

of Pelibuey sheep. In cattle consuming fungal treated wheat straw diet was observed 
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by (Fazaeli et al., 2002); the influence of P. ostreatus spent corn straw on the perfor-

mance of feedlot Pelibuey lambs was increased weight gain (Ramirez-Bribiesca et al., 

2010); A significantly increased DM intake and growth rates in West African dwarf 

lambs fed with biologically treated maize cobs replacing wheat offal in guinea grass 

based diets (Akinfemi and Ladipo 2011).  Fazaeli et al. (2004) reported that inclusion 

of fungal treated straw up to 30% of the total mixed ration in late lactating Holstein 

cows increased fat in milk yield by 13% and daily average body weight gain by 2.7 

times. The tendency to higher body weight change in fermentation of the fungi rice 

stubble and treated with urea (Fig. 5.1). 

 

Table 5.3 Effect of URS and URSF on body weight gains (kg). 

Items Control URS URSF SEM P-value 

Body weight 
     

Initial weight, kg 20.47 21.95 18.92 0.40 0.22 

Final weight, kg 23.20 25.00 23.92 0.39 0.22 

Weigh change, kg 2.73c 3.05b 5.00a 0.25 0.01 

ADG, g/d 43.33b 48.41b 79.36a 4.33 0.02 

FCR, kg 19.59 19.96 12.40 1.89 0.23 
abc Means  in the same row with different superscript differ (p<0.05). Untreated rice 

stubble (Control), Rice stubble treated urea (URS), Rice stubble fermented fungi and 

treated with urea (URSF), ADG= Average daily gain, FCR= Feed conversion ratio 

SEM = Standard error of the mean. 
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5.5.8   Rumen fermentation characteristics 

           The mean pH in the rumen fluid (Table 5.4) ranged from 6.34 to 7.09 

and there was affected by the diets (p>0.05) for all duration after feeding. This result 

similar ranging with previous studied which reported that feeding rice straw treated 

with Pleurotus ostreatus for lactating goats (Akinfemi and OgunwOle, 2012; Gomaa 

et al., 2012; Kholif et al., 2014).  

 

10
12
14
16
18
20
22
24
26
28
30

0 d 30 d 60 d 90 d

Control

URS

URSF

Body weight (kg)

 

Figure 5.1 Trenency of average body weight growth in growing goats affected by the  

                   using of fungi to ferment and urea treated from 0-90 days. 

 

The mean concentration (mg %) of ammonia-N in the rumen fluid was 

affected by the diets (p=0.002), goats consuming URSF diet was higher for 2, 4 h post 

feeding in the morning including mean value. The ammonia-N concentration 

increased rapidly after 2 h, increasing ammonia-N concentration in the rumen might 
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be explained by the treatment higher CP intake and digestibility which caused by fugal 

break down lignin bond for growing up its cell; therefore, URSF treatment high as 

microbes mass. Ruminal NH3-N concentration in this study ranged from 15.50 to 19.8 

mg/dl. Which these results were similar to the values obtained by Khejornsart and 

Wanapat (2010) and Gunun and Wanapat (2012) who studied effect of physical form 

of urea-treated rice straw found NH3-N concentration range from 12.4 to 22.8 mg/dl. 

Moreover Gomaa et al., 2012 have been reported to increased ammonia-N 

concentration in rumen 3 h after feeding.  

The mean total VFA concentration (mM/L) in the rumen fluid (Table 5.4) was 

not affected by the diet treatments. The concentration of Acetic acid (molar%) was 

affected by the diet (p<0.05) for 2 h after feeding, and the higher concentration was 

found in goats fed URSF when compared with control group but not (p>0.05) by the 

diet compared to URS treatment. Propionic acid and Butyric acid concentration were 

not significant different among treatments in any duration post feeding. C2:C3 ratio 

was also higher (p<0.05) for URSF treatment for 2 h post feeding but not significant 

different for 0 and 4 h after feeding. Volatile fatty acids concentrations in this 

experiment were similar ranges with previous studied (Aderinboye et al., 2012). 

Probable changes in the integrity of cell walls are also supported by the VFA 

concentrations. The tendency to higher acetate production in fermentation of the fungi 

wheat straw substrates corresponds to an improvement of fiber degradation 

(Rodrigues et al., 2007). 
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5.5.9   Rumen micro-organism population 

           Table 5.5 illustrated the result on ruminal microorganism population 

affected by urea treated and fungal fermented rice stubble in growing goats. The mean 

number of total bacteria and protozoa in the ruminal fluid was no affected by diet 

treatments of all duration post feeding. These results might be described as physical 

and chemical of fibrous have been affected by fungal fermented process, hence no 

affected to microbe population in the rumen. The higher digestibility in the fugal 

treated straw was likely to have been caused by its reduced contents of cell wall; 

especially lignin has been implicated in rations (Akinfemi and OgunwOle, 2012; 

Mahesh and Mohini, 2013). 

 

Table 5.4 Effect of URS and URSF on rumen fermentation in growing goats. 

Items Control URS URSF SEM P-value 

pH 

     0 h 7.09 6.82 6.94 0.05 0.120 

2 h 6.78 6.59 6.58 0.06 0.290 

4 h 6.34 6.53 6.52 0.05 0.250 

Mean 6.74 6.65 6.68 0.03 0.450 

NH3-N, mg% 

    0 h 13.00 14.21 16.15 0.53 0.080 

2 h 16.31b 17.38b 20.72a 0.42 0.002 

4 h 17.19ab 16.12b 18.01a 0.22 0.010 

Mean 15.50b 15.90b 18.29a 0.29 0.002 

Total VFAs mM/l     

0 h 75.36 62.92 75.20 4.16 0.400 

2 h 92.66 92.02 84.60 3.23 0.540 

4 h 98.79 110.57 90.81 5.34 0.340 

Mean 88.93 88.50 83.54 1.06 0.600 
abc Means  in the same row with different superscript differ (p<0.05); h= hour. 
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Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice stubble 

fermented fungi and treated with urea (URSF); SEM = Standard error of the mean. 

 

Table 5.4 Effect of URS and URSF on rumen fermentation in growing goats (con). 

Items Control URS URSF SEM P-value 

Acetic acid, molar% 

    h0 58.99 59.41 59.25 0.93 0.98 

h2 58.85b 61.34ab 66.14a 0.07 0.02 

h4 58.94 58.84 59.94 0.75 0.80 

Mean 58.93 59.87 61.78 0.46 0.07 

Propionic acid, molar % 

   0 h 30.82 28.64 30.40 0.95 0.62 

2 h 27.78 28.00 24.05 0.79 0.10 

4 h 28.34 27.13 27.75 0.85 0.85 

Mean 28.98 27.92 27.40 0.36 0.23 

Butyric acid, molar % 

   0 h 10.19 11.95 10.35 0.49 0.30 

2 h 13.36 10.65 9.80 0.64 0.09 

4 h 12.72 14.03 12.31 0.53 0.40 

Mean 12.09 12.21 10.82 0.28 0.12 

C2:C3 ratio 

    0 h 1.97 2.13 1.97 0.10 0.75 

2 h 2.16b 2.22b 2.81a 0.11 0.04 

4 h 2.14 2.23 2.18 0.10 0.94 

Mean 2.09 2.20 2.32 0.04 0.14 
abc Means  in the same row with different superscript differ (p<0.05); h= hour. 

Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice stubble 

fermented fungi and treated with urea (URSF); SEM = Standard error of the mean. 
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 Feeding of URSF diet to growing goats increased Amylolytic bacteria in the 

ruminal fluid evidently different (p<0.05) for 0 h after feeding compared with both of 

control and URS groups, for 4 h post feeding also higher significant different (p<0.05) 

when compared to URS treatment but not apparently different with control group. 

There were not significant different among treatments for 2 h and average. Proteolytic 

bacteria was distinctive higher population (p<0.05) in goats fed URSF for 0 and 4 h 

post feeding, but no significant different among treatments for 2 h and average times. 

Cellulolitic bacteria population was not affected by the treatment diets.   

 

Table 5.5 Effect of URS and URSF on microbial population in the rumen of growing  

               goats. 

Items Control URS URSF SEM P-value 

Bacteria (log10)     

0 h post feeding 6.92 6.90 6.90 0.03 0.97 

2 h post feeding 6.91 6.96 7.00 0.02 0.30 

4 h post feeding 7.02 6.99 7.00 0.01 0.62 

Mean 6.95 6.95 6.97 0.01 0.83 

Protozoa (log10)     

0 h post feeding 6.02 6.05 5.77 0.07 0.26 

2 h post feeding 5.86 6.05 5.95 0.08 0.62 

4 h post feeding 5.95 6.24 6.10 0.07 0.28 

Mean 5.94 6.11 5.94 0.03 0.45 
abc Means  in the same row with different superscript differ (p<0.05); h= hour. 

Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice stubble 

fermented fungi and treated with urea (URSF); SEM = Standard error of the mean. 
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5.5.10   Nitrogen balance 

The effect of dietary treatments on nitrogen (N) utilization is presented 

in Table 5.6 Present results expressed nitrogen retention as the cumulative nitrogen 

balances. N intake, N absorbed, and N balance, were higher significant different 

(p<0.01) level in goats fed URSF treatment compared with both of control and URS 

treatment diets, while N in urine and N in feces were not significant different level 

among treatments (p>0.05). Moreover, N absorption, % of intake and N balance, % of 

Table 5.5 Effect of URS and URSF on microbial population in the rumen of growing  

               goats (Con). 

Items Control URS URSF SEM P-value 

Amylolytic  Bacteria (log10 cfu/ml)    

0 h post feeding 8.58b 8.63b 8.73a 0.01 0.0001 

2 h post feeding 8.60 8.69 8.64 0.03 0.46 

4 h post feeding 8.55ab 8.50b 8.61a 0.01 0.02 

Mean 8.58 8.61 8.66 0.01 0.06 

Proteolytic Bacteria (log10 cfu/ml)    

0 h post feeding 8.24b 8.22b 8.37a 0.02 0.03 

2 h post feeding 8.28b 8.40ab 8.64a 0.05 0.03 

4 h post feeding 8.17 8.17 8.27 0.05 0.66 

Mean 8.35 8.27 8.31 0.03 0.44 

Cellulolitic Bacteria (log10 cfu/ml)    

0 h post feeding 9.17 9.15 9.20 0.03 0.70 

2 h post feeding 9.24 9.18 9.26 0.04 0.24 

4 h post feeding 9.23 9.26 9.26 0.03 0.87 

Mean 9.21 9.20 9.27 0.02 0.43 
abc Means  in the same row with different superscript differ (p<0.05); h= hour. 

Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice stubble 

fermented fungi and treated with urea (URSF); SEM = Standard error of the mean. 
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Intake were higher in URSF group apparently different level compared with control 

group but not significant different volume when compared with URS treatment group. 

Therefore, animals fed with URSF was improved retention of nitrogen according to 

previous studies were reported utilization of fungal treated crop residues increased 

nutrients utilization as well N balance (Mahesh 2012; Omer et al., 2012; Shrivastava 

et al., 2012; Mahesh and Mohini 2013).  

 

Table 5.6 Effect of URS and URSF on nitrogen utilization of growing goats. 

Items Control URS URSF SEM P-value 

N in  intake, g/d 12.08b 12.67b 13.55a 0.13 0.0012 

N in  feces,  g/d 5.13 4.62 4.46 0.19 0.1237 

N in  Urine, g/d 1.63 1.12 1.09 0.13 0.1879 

N absorbed, g/d 6.95c 8.05b 9.09a 0.23 0.0021 

N balance, g/d 5.32b 6.39b 8.00a 0.25 0.0008 

N absorption, %  of  intake 57.58b 63.59ab 67.12a 1.51 0.0599 

N balance, %  of  intake 44.04b 50.49ab 59.08a 1.68 0.0081 
abc Means  in the same row with different superscript differ (p<0.05); N= 

nitrogen.Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice 

stubble fermented fungi and treated with urea (URSF); SEM = Standard error of the 

mean. 

 

5.5.11   Blood urea nitrogen 

             Table 5.7 was showed that blood urea nitrogen (BUN) concentration in 

goats fed URSF was higher than goats fed URS and control at 0 h or before feeding 

and significantly different (p<0.05) 8.64, 11.11, and 14.70 mg% respectively. After 

feeding 2 h and 4 h found BUN in goat fed URS was increased higher than control 
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(p<0.05), but when compared to URSF was not significantly different. There has been 

known that URSF was easily degraded in the rumen, then it will use by the microbes 

together with carbon skeleton for their growth. Thus, there was less ammonia nitrogen 

to absorb through the rumen wall for urea synthesis by urea cycle (Van Soest, 1994). 

The mean BUN in this study was range from 11.80-19.12 mg%. It was similar with 

the optimal level in normal goats which has been reported by Lloyd. (1982)  the range 

of BUN start from 11.2 to 27.7 mg%. Preston et al. (1965) reported that the 

concentration of BUN is correlated to the level of ammonia production in the rumen. 

Furthermore, Wanapat et al. (2008) suggested that concentrations of blood urea N are 

highly correlated to the concentration of NH3 production in the rumen. 

 

Table 5.7 Effect of URS and URSF on blood urea nitrogen of growing goats. 

Items Control URS URSF SEM P-value 

BUN mg% 

    0 h post feeding 8.64b 11.11b 14.70a 0.65 0.009 

2 h post feeding 13.32b 16.65ab 20.83a 0.84 0.012 

4 h post feeding 13.44b 16.95ab 21.83a 0.92 0.011 

Mean 11.80b 14.90b 19.12a 0.78 0.009 
abc Means  in the same row with different superscript differ (p<0.05); BUN= blood 

urea nitrogen; Untreated rice stubble (Control), Rice stubble treated urea (URS), Rice 

stubble fermented fungi and treated with urea (URSF); SEM = Standard error of the 

mean. 
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5.6 Conclusion 

Ruminant production has had and will continue to play a very important role in 

developing country. A large proportion of the rice straw product was used as ruminant 

feed.  However, its major problems of crop residues as low quality of nutritive value 

and high lignin composition which are the major sources of available feed for 

ruminant. It is concluded that fungi can be used for improving utilization of rice 

stubble as animal feed, that was indicator by apparently increased of OM intake, 

nutrient intakes, nutrients digestibility, N utilization, and ADG as well as body weight 

gain of growing goats.  The results might be affected from fermented processing by 

fungal in degrading lignin or fibrous contents of rice stubble before feeding which 

improve its nutritional value. The use of biological treatments can be employed for 

improving the feeding value of low quality fibrous crop residues. Using fungal treated 

rice stubble has a good potential as feed resources for ruminant animals and could be 

used in combination with other feedstuffs. Moreover biological treatments are 

expected to be a practical, cost-effective, and environmental-friendly approach for 

heightening the nutritive value and digestibility of rice stubble. 
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CHAPTER VI 

OVERALL CONCLUSION AND IMPLICATION 

 

6.1 Conclusion 

 Rice cultivation generates large amount of crop residues which is a main source 

of roughage for ruminants in most developing countries especially southeast Asia. 

Carbohydrates in plant cell walls are highly fermentable and could be used as a source 

for ruminant nutrition. The constituent of lignin in cell walls obstructs the utilization of 

these carbohydrates and should thus be removed. The present study was conducted to 

enhancing the efficient utilization of rice stubble fermented by white-rot fungi and 

treated with urea as goat diets. The study was divided into 3 experiments. The first 

experiment was subdivided into 3 parts including in vitro studies. The experiment was 

conducted to evaluate the effect of Pleurotus species pretreatment of lignocellulose on 

a reduction in lignin and the biodegradation of rice stubble in dry season in different 

period time for fermented. The second experiment was conducted to investigate study 

urea utilization for block white-rot activities and improve digestibility of rice stubble 

by in vitro gas production and the last experiment was  studied the effect of urea 

treated rice stubble fermented fungi on nutrient digestibility rumen fermentation and 

growth performance in meat goats. 

In experiment 1 the fermentation of fungal with rice stubbles to observed 

chemical composition and in vitro digestibility. The results showed that treated rice 

stubbles with Pleurotus species fungi increased CP content, in contrast decreased 
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fibrous contents. All of fungal treatments enhanced in vitro degradation of rice 

stubbles. From the results it could be concluded that the stubbles treated by fungi could 

be successfully used to enrich rice stubbles with protein, improve nutrients digestibility 

and nutritive value of rations those containing fungi treated.  

Experiment 2 indicated that practical use of urea to treat stubbles fermentation 

by fungi can be operated silages as sustainable both of physical and chemical 

characteristic in feedstuffs. The properly level of urea to stop fungi activities as 2.5% 

and duration time as 7 days. This study shows that rice stubble is suitable substrate for 

growing of all the Pleurotus species tested and rice stubble fermentation by fungi can 

improve its nutritive value for ruminant. Although all of fungal species demonstrate 

high capability improving the nutritive value and digestibility of rice stubble, however 

Pleurotus Ostreatus fungi seem to be more potent for upgrading of rice stubble was 

indicated as greater crud protein content, compose lower lignin, and higher in vitro 

digestibility. Therefore, the conversion of lignocellulosics into edible fungi as animal 

feed may be the first economical technology for biological upgrading of cultivated 

residues.  

In experiment 3 fungi treatment and treated urea was apparently increased of 

OM intake, nutrient intakes, nutrients digestibility, N utilization, and ADG as well as 

body weight gain of growing goats.  The results implied that rice stubbles fermented 

with Pleurotus fungi could be increased in degrading lignin or fibrous contents of rice 

stubble before feeding which improve its nutritional value. The use of biological 

treatments can be employed for improving the feeding value of low quality fibrous crop 

residues. Using fungal treated rice stubble has a good potential as feed resources for 

ruminant animals and could be used in combination with other feedstuffs.  

This thesis describes the capability of fungal treatment to increase utilization of 
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lignocellulosic materials. Fungal treatment resulted in increased CP content and in vitro 

rumen degradability, thus increased cell wall accessibility. Moreover, increases the 

feeding value of stubbles, improves its quality, and betters animal performance. The 

same theory applies for agricultural residues fermentation in which fungal treatment 

results in increased accessibility of fibrous compounds by their enzymes. The crucial 

disadvantages of biotechnological treatment are chosen by considering cost 

effectiveness, relatively simple and environmentally-friendly. Future studies should 

focus on optimize chemical or method to keep fungal treatment after harvesting. 

 

6.2 Implications 

Overall, based on experimental data, each fungi was effected on period time 

for fermentation so in experiment 1 POT was highest in digestibility at 25 days of 

incubated,  PSC was 35days and PE was 30 days are suggested in term of increase 

protein content and digestibility. 

In second experiment POT fermented at  25 days with 2.5% urea is 

recommended on digestibility and in third experiment URSF was suggested for 

growing meat goats. 

The studies in this thesis have been performed to get more information and 

implication such as using difference substrate for fermentation, study type of rumen 

microbial by PCR technique   
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A. the spawn of white-rot fungi    B. Jam bottle use for fermentation 

 

C. Added water  into substrate   D. Cover by plastic  lid 

 

E. Autoclave        F. Waiting for cold 
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G. inoculate step  

 

 

 

H. Incubated in the air-conditioned chamber 
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I. After fermented  
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