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CHAPTER I 

INTRODUCTION 

 

1.1 Background/Problem 

Maternal diabetes mellitus, the most common medical complication and 

metabolic condition during pregnancy, which leads to insulin resistance and 

abnormality in glucose metabolism changing to meet the nutritional demands of the 

mother and fetus causes an increased susceptibility to diabetes and hypertension later in 

the life of the offspring (Reece et al., 2009). In order to maintain proper glucose 

metabolism, the amount of insulin secreted from β-cells increases during pregnancy 

(Lain et al., 2007). The perinatal environment in utero significantly impacts on health 

and disease of the fetus, the infants, and the adult offspring (Harding, 2001; Norma et 

al., 2008; Osmond et al., 1993). 

Maternal malnutrition or imbalanced food consumption, especially protein in the 

perinatal period can lead to low birth weight and subsequently induces several 

disorders, including insulin resistance, diabetes mellitus, and hypertension in adult 

offspring, and via epigenetic mechanisms, these can transfer to the next generation 

(Barker et al., 2002; Forrester, 2004). Maternal diabetes mellitus during pregnancy may 

increase the risk of diabetes and hypertension in their offspring due to many reasons 

such as genetic and environmental factors, mainly from the lifestyle such as diet, foods 

that contain protein (Ferrara, 2007; Beischer et al., 1991; Ishak and Petocz, 2003; 

Thorpe et al., 2005; Zargar et al., 2004).       
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Taurine (2-aminoethansulfonic acid) is amino sulfonic acid found at a high 

concentration in many organs including brain, heart, liver, muscle, kidneys, and 

reproductive organs (Bouckenooghe et al., 2006; Huxtable, 1992). In general, taurine 

content in these organs is highest during perinatal and early postnatal life, and it 

gradually declines after birth (Aerts and van Assche, 2002). During lactation, mothers 

transfer taurine to their embryos or fetuses via the placenta and to the newborn via the 

maternal milk (Tosh et al., 2010).  During perinatal period, taurine supplementation is 

commonly used as a dietary supplement (McPherson and Hardy, 2011; Wu, 2009; 

Yamori et al., 2010). Previous results indicate that dietary taurine supplementation 

during perinatal period not only decreases or protects against spontaneous hypertension 

in adult animal and human models (Nara et al., 1978; Fujita and Sato 1984; Wyss et al., 

1994; Anuradha and Balakrishnan, 1999; Militante and Lombardini, 2002) but also 

stimulates postnatal growth and reduces insulin resistance in adult offspring (Hultman 

et al., 2007). While the effects of adult taurine exposure are modest, altered exposure 

during the perinatal period can have lifelong effects on adult function and disease 

(Sturman, 1993). 

A close relationship between muscular taurine content and exercise performance 

is suggested by studying a depletion of taurine in the skeletal muscle as well as other 

organs. The exogenous taurine is needed during the transient deficiency of endogenous 

taurine transport, which caused by exercise performances (Ito et al., 2008; Warskulat et 

al., 2004). In rat, skeletal muscle taurine concentration was decreased after exhaustive 

exercise (Matsuzaki et al., 2002). Furthermore, exogenous taurine supplementation 

prevented the exercise-induced taurine reduction in the rat gastrocnemius (Sullivan and 

Armstrong, 1978), and consequently, significantly enhanced exercise performance 
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(Miyazaki et al., 2004). Therefore, the muscular taurine content might be lowered by 

exercise, and compensated by exogenous taurine supplementation. 

Although the mechanism(s) of these effects still unclear, the evidence found that 

the mechanisms for the taurine-mediated enhancement in exercise performance might 

involve increased cardiac contractility during exercise (Baum and Weiss, 2001). In the 

diabetic rats, previous reports demonstrated that taurine supplementation helps to 

maintain blood sugar level concentrations during prolong exercise and improved 

hyperglycemia or insulin resistance with increased muscular glycogen content (Ishikura 

et al., 2011; Harada et al., 2004). This study focuses on the effect of perinatal taurine 

supplement action in maternal diabetes mellitus, and exercise on prevention of diabetes 

and hypertension via glucose-Insulin interaction in the adult male offspring. 

1.2 Research objectives 

The experiments are designed to clarify the followings: 

1. To study the effect of taurine supplementation on metabolic disorder in their 

offspring. 

2. To study the effect of exercise on metabolic disorder in their offspring. 

3. To explore the relationship between taurine supplementation and exercise on 

metabolic disorder in their offspring. 

1.3 Research hypothesis 

Taurine supplementation in the perinatal period on maternal diabetes mellitus and 

exercise prevents the development of metabolic disorder in their offspring. 
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1.4 Expected results 

1.4.1 The findings will provide the new evidence of the beneficial effects of 

taurine supplementation in perinatal-neonatal period to control of blood 

sugar, insulin level and blood pressure control. 

1.4.2 The findings will provide the exercise relating to control of blood glucose, insulin 

levels and blood pressure control.  

1.4.3 The findings will provide interaction between taurine supplementation in 

perinatal-neonatal period and exercise to control of blood glucose, insulin 

levels and blood pressure control.  



CHAPTER II 

LITERATURE REVIEW 

 

2.1 Programming hypothesis 

The hypothesis as Pedersen found that hyperglycemia in maternal diabetes 

mellitus or gestational diabetes mellitus and affect to fetus hyperglycemia also. This 

phenomenon helps explain several anomalous structures and changes in newborns 

(Pedersen, 1967). There is abundant data supporting the hypothesis of Pedersen. For 

example, the cordon umbilical insulin concentrations are strongly correlated with fetal 

growth in humans and animal studies. Schwartz to the reported fetal size was 

significantly correlated with umbilical total insulin, free insulin and C-peptide 

(Schwartz et al., 1994). Hyperglycemia was recently completed and study of adverse 

pregnancy outcome showed a linear relationship between increased maternal glucose 

and C-peptide in cord birth weight. (HAPO Study Cooperative Research Group, 

1996). Several in vivo animal models also support the hypothesis of Pedersen. Twelve 

hours after injection of insulin in fetuses of rats, significantly increased compared to 

saline injection controls (Ogata et al., 1988). The authors concluded increased fetal 

insulin, even in the presence of normal breast substrate concentrations was the 

development promotion in non-human primates (Susa et al., 1984). Studies could link 

of glucose maternal greater to an increase of weight in the birth of the child as well as 

different degrees of morbidity, among others things the incidence of malformations of
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morbidity, among others things the incidence of malformations congenital, supporting 

the hypothesis, that even glucose moderately growing of the blood in the absence of 

diabetes influences positively on the growth of the fetus (Macfarlane and Tsakalakos, 

1988; Robert and Lindsay, 2009). In 1952 the Pedersen, formulated the hypothesis 

that maternal hyperglycemia during pregnancy can cause fetal hyperglycemia, which 

exposes the fetus to high insulin levels. This would result in an increased risk of fetal 

macrosomia and neonatal hypoglycemia. The glucose concentration of blood in 

humans depends on diet, especially energy intake and the proportion of carbohydrates 

in the diet. High glucose in the blood of pregnant women cause to an intensified 

transfer of nutrients to the fetus, increased fetal growth (Kerssen et al., 2007). 

Subsequently carried out modifications to the hypothesis of Pedersen: nutrients other 

than sugar and its linkage to the fetal overgrowth in diabetic pregnancy were taken 

into account; but however, emphasized the crucial role of the hyperinsulinism fetal 

and maternal glucose monitoring. Recent studies indicated that diabetes in the mother 

in their offspring increases the risk of obesity and diabetes type 2 (Robert et al., 

2010). 

The "Barker hypothesis", or thrifty phenotype, found the effect of on adult health 

conditions during pregnancy. Associated risk of lifelong diseases, including 

cardiovascular disease, type 2 diabetes, obesity and hypertension. Babies who are 

born lighter weight appear to have a higher mortality rate of babies who are born with 

a heavier weight (Bateson, 2001). The "Barker Hypothesis" also known as "the 

hypothesis of fetal programming." "Program" Programming is the idea that the critics 

of the early days of the development of the fetus, persistent changes in the structure 

and function of the body are caused by irritation of the environment. This is related to 
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the concept of plasticity of the development where our genes can express different 

ranges of states physiological or morphological in response to the conditions 

environmental during the development fetal. However, the environment during 

childhood and fetal life appears to be strongly related to risk of non-communicable 

diseases in adulthood (Barker, 2004). To explain these apparently the causal 

relationships is proposed that adaptations during critical phases of growth and 

development can guarantee the maintenance of homeostasis and thus survival, when 

the environment commits (Gluckman and Hanson, 2004). Variation in the supply of 

nutrients during the development early seems to be a strong signal to initiate these 

adaptive processes. Media through which described events in early life permanent 

trigger responses such as nutritional or metabolic programming (Lucas, 1991).  

These terms describe the process through that, causes a stimulation or an insult 

during a critical period of fetal or child development Permanent responses that 

produce long-term changes in the structure of the tissue or function. The 

programming is the consequence of the innate ability to develop tissues to adapt to the 

conditions that prevail during the first years of life, which for almost all types in all 

organs of the cell is a skill it is present for a short period of the time of birth. This 

constantly evolving concept is now described as the origins of health and disease 

development hypothesis. 

The origins of health and disease development the hypothesis was originally 

developed to explain associations between patterns of fetal and infant growth and 

major States of disease in human populations, but he has received strong support from 

experimental studies in animals. Thus, If the mother has an inadequate diet, then 

points to the baby that the condition of life, in the long run, to be poor. Accordingly, 
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the baby adapts to changing their body size and metabolism to prepare for the harsh 

conditions of food scarcity after the birth. Physiological and metabolic processes in 

the body undergo changes in the long term as a result of restricted growth. When the 

environment condition of malnutrition to a society of abundance of nutrients, this 

exposes the infant to a rich environment which goes against what your body is 

designed for and this puts your baby at increased risk for diseases of adult later in 

adulthood (Barker, 2004). Similarly, if the fetus grows in a healthy mother's womb is 

exposed to the famine extended after birth, the baby would be less adaptive to the 

harsh environment that baby of low weight at birth. 

2.2 Diabetes mellitus and classifications 

World Health Organization (WHO) describes Diabetes mellitus as a metabolic 

disorder of multiple characterized hyperglycemia with disturbances of carbohydrate, 

fat and protein metabolism resulting from defects in insulin secretion, insulin action, 

or both (World Health Organization, 1998). The chronic hyperglycemia of diabetes is 

associated with damage to long-term, dysfunction and failure of various organs, 

especially the eyes, kidneys, nerves, heart and blood vessels. The American Diabetes 

Association (ADA) suggests that divided general classification forms of diabetes are: 

1) Type 1 diabetes; 2) type 2 diabetes; 3) gestational diabetes mellitus; and 4) the 

specific type of diabetes due to other causes (Alexandria and Virginia, 2016). 

1) Type 1 diabetes (T1DM) or Insulin-dependent diabetes mellitus (IDDM) is a 

disease in which the pancreas does not produce any insulin, results from a cellular 

mediated autoimmune destruction of the β cells of the pancreas. Can be diagnosed at 

any age, but mostly develops in a baby. Change in the genetic background and the 
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results environmental factor can increase the incidence and prevalence of T1DM 

(Gillespie, 2006). 

2) Type 2 diabetes (T2DM) or Non-insulin-dependent diabetes mellitus 

(NIDDM) is represented insulin resistance resulting from the body cannot produce 

enough insulin or not- respond action of insulin. The pathogenesis of T2DM reduces 

the sensitivity to insulin and insulin action as a function of hyperglycemia. Including 

obesity, impaired insulin action and decreased insulin secretion can cause metabolic 

abnormalities that these individual factors have before the onset or during the 

development of diabetes. All these factors favor the progression of normal glucose 

tolerance (NGT) to impaired glucose tolerance (IGT) and ultimately diabetes (Weyer 

et al., 1999). Insulin resistance (IR) in muscle and liver and β-cell deficiency represent 

the main pathophysiological defects in the development of type 2 diabetes. Age, 

genes, IR, lipotoxicity, glucotoxicity, amyloid deposition, Abnormal insertion are 

factors that play a role in progressive β-cell dysfunction. The progressive decrease in 

insulin secretion, decreased mass and β-cell function of the pancreas and the presence 

of IR contribute to changing the status of dysglycemia from normal glucose tolerance 

and glucose tolerance. 

3) Gestational diabetes mellitus (GDM) is a variable degree of hyperglycemia in 

diabetes during pregnancy. Most women with GDM appear to have β-cell dysfunction 

already indicated before pregnancy on a background of resistance to chronic insulin. 

In less than 10% of patients with gestational diabetes, β-cell dysfunction is caused by 

an autoimmune destruction of pancreatic β-cells, such as in intolerance diabetes 

glucose type 1 occurs normally during pregnancy, especially in the third trimester. 
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4) Another class of glucose regulation is diabetes that cannot be classified into a 

single class, such as pancreatic dysfunction, high blood glucose level during 

pregnancy, progressive exocrine pancreas injuries chemical induced diabetes, β-cell 

destroyer from certain virus’s infection, inflammation mediated diabetes. 

2.2.1 Diagnosis criteria for diabetes mellitus 

Several tests are available for diabetic patients who directly measure the 

glucose levels in the blood.  According to the guidelines of the American Diabetes 

Association (ADA) in 2010, fasting plasma glucose (FPG) overnight, and the values 

of 2 hours of testing blood glucose test and tolerance against oral glucose testing 

(OGTT) were submitted after high glucose consumption. 

In addition, the classic symptoms of diabetes (especially polyuria, 

polydipsia, and weight loss) are precarious with the concentration of glucose in the 

plasma of time in the time in each provisional period. Show with the glucose 

concentration in the plasma rare every day, regardless of the time since the last above 

the intake of 200 mg/dl overnight for at least 8 hours the blood glucose level higher 

than 126 mg/dl or an oral glucose tolerance test of 200 mg/dl a glucose load with 75 

g, according to the protocol of the World Health Organization. As impaired fasting 

glucose level (IFG) is between 100-125 mg/dl and as impaired glucose tolerance 

(IGT) between 140-199 mg/dl, risk factors for future diabetes are altered and under 

increased account "pre-diabetes" (American Diabetes Association, 2010). 

2.2.2 Diabetes and pregnancy  

During a normal pregnancy, as many physiological changes, they increase 

hormone release, which regulates the glucose level in the blood, as a "leakage" of   

glucose to the fetus, the slow emptying of gastric excretion of glucose through the 
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kidney, and the resistance of the cells versus insulin. The risk of the fetus developing 

maternal diabetes includes miscarriage, restriction of growth, acceleration of growth, 

fetal obesity (macrosomia), mild neurological deficits (Meaghan et al., 2008), 

polyhydramnios and birth defects. An environment, maternal hyperglycemia also has 

been associated with newborn infants are increased risk for the development of the 

negative results in health as future obesity, resistance to insulin, diabetes mellitus type 

2 and metabolic syndrome (Christine et al., 2011). The effect of pregnancy on the 

metabolism of diabetic fuel is one of the under-utilization of exogenous fuel in the fed 

state (reduced anabolism ease) and the overproduction of the fasting endogenous 

source (hyper-accelerated hunger). The first sign of pregnancy in a diabetic 

(especially in type 1 diabetes) and in the first week of pregnancy and even before 

nausea or vomiting is set in the early morning hours ketonuria. A smaller proportion 

of women does not have the necessary β-cells reserves to maintain normal blood 

glucose levels during pregnancy and to develop impaired glucose tolerance (IGT). 

The insulin responses are significantly lower at 30 and 60 minutes after glucose 

exposure by oral glucose tolerant compared to control, while insulin sensitivity is 

similar to that in the second trimester (Nicholls et al., 1995). 

Reaction intravenous glucagon C-peptide was also significantly reduced in 

women with IGT during pregnancy, while the increase in serum proinsulin. The need 

for insulin therapy in gestational diabetes mellitus (GDM) is associated with an 

increased circulating levels of proinsulin, which means that the β-cell dysfunction 

increases leads to poor glucose intolerance. (Dornhorst et al., 1991). The need for 

treatment of insulin in gestational diabetes mellitus (GDM) is associated with elevated 

levels of proinsulin circulating, implying that greater dysfunction β-cells lead to the 
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worst glucose intolerance (Nicholls et al., 1994). Glucose intolerance during 

pregnancy may vary in intensity, but also mild degrees, accompanied by other 

abnormalities, including disorders of the metabolism of glycerin and nonesterified 

fatty acid metabolism (Coppack et al., 1999). Women with a previous history of GDM 

that become tolerant to postpartum glucose to see continuous B-cell dysfunction, 

characterized by the release of insulin in response to oral glucose and lipolysis 

deteriorated despite the normal insulin sensitivity impaired (Chan et al., 1992; 

Dornhorst et al., 1990). This shows a decrease in the function of β-cells in GDM 

women, which makes them susceptible to the future development of type 2 diabetes 

(Dornhorst, 1993). Carbohydrate intolerance worsens in pregnancy in women with 

diabetes early, in parallel with the physiological decrease in insulin sensitivity. 

Women with type 1 diabetes are dependent on the dose of insulin to increase glycemic 

control. On average, from 12 weeks to 37 weeks of pregnancy, weekly increments of 

6% of the dose of insulin may require your preconception dose. Late pregnancy is 

associated with a triple incidence of type 1 diabetes newly introduced (Takizawa et 

al., 2003). This may occur because the insulin resistance of pregnancy imposes an 

additional burden on the woman's β-cells that are in the prolonged phase, but 

subclinical prediabetes with active insulitis, but enough mass of residual β-cells to 

prevent "obvious hyperglycemia beyond pregnancy. Maternal diabetes also affects the 

placenta, both structurally and functionally. Placental glycogen content and insulin 

binding capacity is higher in pregnancies pre-gestational in non-diabetic pregnancies 

(Gernot et al., 2007). Lipolysis induced by pregnancy caused type 1 diabetes women 

are more prone to diabetic ketoacidosis. It can develop quickly and with relatively 

mild hyperglycemia. Untreated, it can lead to the death of the unborn child. Mother 
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with type 2 diabetes also has to increase the production of insulin to compensate for 

the insulin resistance associated with pregnancy. Prior to the pregnancy these women 

had reduced sensitivity to insulin. Additional requirements for their β-cell impaired 

because the cell function in most women with insulin regimen require type 2 (oral 

antidiabetics or in parts of the world where insulin is not available) in the early 

pregnancy. 

2.2.3 Classification of diabetes in pregnancy 

Always uniform diabetic pregnancies epidemiological and clinical 

classification needs necessary. Both the World Health Organization (WHO) (WHO 

Diabetes Mellitus, 1985) and the National Data Group Diabetes (NDDG) (National 

Diabetes Data Group, 1979) of the National Institutes of Health (NIH) have approved 

a classification based on etiology. The WHO classification differs only in recognition 

of glucose intolerance before pregnancy. It is simple, but no prognostic value. 

Classification of maternal diabetes during pregnancy: Existing diabetes:  

1. Type 1 or type 2 pre-existing or secondary  

2. Pregnancy diabetes diagnosis is made after pregnancy; normal glucose 

tolerance  

3. Any type of diabetes that occurs, pregnancy 

2.2.4 Pre-gestational diabetes mellitus (PGDM) 

This term refers to a diabetic already performed during pregnancy. Time, it 

was known that the incidence of maternal and fetal complications is strongly 

influenced by the severity of maternal diabetes. Diabetes duration, the age of the 

mother at the beginning of diabetes, the presence or absence of vascular 

complications and treatment methods: the severity, the following factors must be 
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considered. Based on the prejudice of factors, Priscilla White established a clinical 

classification procedure in 1949 (White, 1949) and was amended in 1965 and 1971. 

This division has tried to predict the outcome of pregnancy among various metabolic, 

obstetric and other factors and prognosis A (best) to F (worst). Subsequently, the 

classification attempts to update and ischemic heart disease and kidney transplant take 

for general use were too heavy (Hare and White, 1980). Another classification system 

is used prognostically unfavorable signs of pregnancy, found on the basis of the risk 

factors during pregnancy. It is toxemia, pyelonephritis clinically manifest, severe 

acidosis, lack of patient cooperation and markedly negative social conditions. A 

combination of these two ratings predicts more fetal prognosis accurately, but its 

complexity has become superfluous. Effects of changes in fuel metabolism diabetic 

pregnancy. If hyperglycemia occurs in the first three months, when organogenesis 

occurs, birth defects can occur. It is said that the incidence is as high as 8% of 

pregnancies without diabetic complications (uncontrolled during the first 8 weeks of 

pregnancy), which is two to three times higher in the general population. Defects 

often affect the heart and the central nervous system and are potentially fatal. In 

addition to birth defects, there may be an early fetal loss due to miscarriage (Hanson 

et al., 1990). Contrary to the previous assumption that due to altered hypoglycemia 

early pregnancy maternal organogenesis Pedersen found a significant negative 

correlation between the onset of birth defects and severe hypoglycemia that occurred 

in the first trimester of pregnancy (Sadler, 1989).  
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Table 1 Fetal problems associated with maternal hyperglycaemia after trimesters. 

Frist trimester Second trimester Third trimester 

Malformations Hypertrophic Hypoglycemia 

Growth cardiomyopathy Hypocalcemia 

Retardation Polyhydramnios Hyperbilirubinemia 

Fetal wastage Erythremia Respiratory distress 

 
Placental syndrome 

 
Insufficiency Macrosomia 

 
Preeclampsia Hypomagnesemia 

 
Fetal loss Intrauterine death 

 
Low IQ 

 

(Sadler et al., 1989). 

In addition to breast hypoglycemia, several other factors may be involved 

in the development of malformations due to maternal diabetes. The role of other 

factors has been ketonemia maternal, fetal zinc depletion and inhibited the effect of 

somatomedin in animal experiments (Sadler, 1989; Lewis, 1983; Goldman, 1985; 

Sadler et al., 1986). The role of the genetically determined vulnerability requires 

further clarification. It seems likely that the high incidence of malformations in 

newborns of diabetic mothers is multifactorial. Defects develop in individuals 

genetically predisposed to follow a number of teratogenic factors. 

Hyperglycaemia in the second quarter may result in intellectual disability in 

the performance of the offspring. The fetal pancreas is able to insulin 8-11 weeks of 
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pregnancy size. Maternal glucose passes through the placenta stimulates the β-cells, 

and mixed nutrients have similar effects (Figure 1). Accordingly, the activity of the β-

cells of the fetus depends on the level of glucose and amino acids in the maternal 

blood. Once stimulated the pancreas continues to secrete insulin fetal autonomously, 

independently of glucose stimulation. Maternal-fetal hyperinsulinemia and glucose 

produce macrosomia (weight> 4 kg) and hypokalemia, the latter producing deadly 

cardiac arrhythmias. Unequaled stillbirth in the third trimester, although rare, may be 

due to fetal hypoxia (placental insufficiency). This potentially lethal metabolic state 

could be prevented by maintaining maternal euglycemia throughout the duration of 

pregnancy. 

 

Figure 1 The result of altered assumption of maternal hyperglycemia by Pedersen 

hypothesis (Pedersen, 1967). 

 

Hypoglycemia because endogenous hyperinsulinemia and suppression of 

endogenous glucose production, the infant diabetic mother (IDM) is an increased risk 

of hypoglycemia between 1 and 3 hours after birth. The factor that primarily protects 

against fetal hypoglycaemia is the optimal control of maternal hypoglycaemia, 
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especially during the third trimester and during work. It has been shown in the past 

four hours in a diabetic mother that leads to an increased incidence of newborn 

hypoglycemia that shows the average maternal glucose> 6 mmol /L About 25% IDM 

may have serum calcium <7 mg/dl, which can remain largely asymptomatic and is 

usually detectable in the second and third day of birth.  

2.3 The Effects of hyperglycemic intrauterine environment due to 

offspring disorders 

2.3.1 Growth and adiposity 

Offspring of diabetic mothers have an excess of macrosomia of growth 

resulting and large for gestational age (LGA), contribute to an increased risk of 

caesarean section or traumatic birth (Jansson et al., 2006). This excess fetal growth is 

caused by the increased availability of nutrients from the mother caused by the 

placenta to the fetus. Maternal serum glucose, which is the main excess nutrients in 

these circumstances, free the placenta happens while not native insulin. 

Hyperglycaemia fetal when fetal pancreas, while immature is able to produce a higher 

level of insulin, which in turn acts as a growth hormone and promotes growth and 

fatness in the following induced fetus (Ashworth et al., 1973). The degree of 

hyperglycemia appears to determine the metabolic effects of the newborn (Lain and 

Catalano, 2003). The addition of an excess of glucose, changes in the supply of amino 

acids and an over-expression of placental transport systems also contribute to 

increasing fetal growth (Jansson et al., 2006; Ericsson et al., 2007). In particular, 

exposure to the diabetic intrauterine environment leads to changes in the growth 

pattern of the fetus, which predispose these children to overweight and obese even 

later in life, even in the absence of macrosomia in birth (Pettitt et al., 1987). Insulin 
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seems to play an important role, as the levels of insulin in the third quarter correlates 

independently with obese infants (Silverman et al., 1991).  

2.3.2 Glucose tolerance disturbance 

Many studies have shown that the offspring of diabetic mothers have a 

statistically higher impaired glucose tolerance (IGT), which is a known pre-diabetic 

condition (Silverman et al., 1995). In the case of gestational diabetes, it was shown 

that offspring decreased insulin secretion, whereas, in the case of pre-existing 

diabetes, it was shown that offspring insulin had high resistance, perhaps a display 

small difference in the underlying mechanisms (Plagemann et al., 1997). Earlier 

studies have shown that children were shown in all groups exposed to utero 

hyperglycemia age, the incidence of diabetes was higher compared to children of 

mothers without diabetes, although some of these even develop diabetes in the future 

(Dana, 2007). Therefore, diabetes is mainly progeny after exposure to diabetic 

intrauterine environment, and genetic susceptibility. 

2.3.3 Cardiovascular abnormalities 

The main problem is whether these metabolic abnormalities in the offspring 

increase the risk of cardiovascular disease later in life-threatening diseases because 

such a discovery closer to their mothers with diabetes could lead to glycemic control 

and monitoring possible next own offspring as a high- Population. However, few 

studies have investigated the effect of intrauterine environment diabetes on 

cardiovascular risk factors in the offspring (Figure 2) Still, since it is known that 

obesity and diabetes increase the risk of cardiovascular disease, it is believed that the 

cardiovascular effects occur in children of mothers with diabetes (Halfon et al., 2012). 

The detection of cardiovascular changes of pregnancies complicated by diabetes is 
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already evident in the third quarter of life in utero. The fetal heart shows ventricular 

contractility reduced compared to pregnancies complicated by diabetes, even if they 

were complicated by hypertensive disease (Hibbard, 2002). These results suggest that 

the diabetic intrauterine environment induces biochemical changes in the 

cardiovascular system that affect their function and that these changes differ from 

those of other poor intrauterine environments as observed in the hypertensive 

pregnancies observed. Furthermore, systolic blood pressure, a known risk factor for 

cardiovascular disease, for children born diabetic mothers was significantly higher 

than that of those born of nondiabetic mothers (Silverman et al., 1991). Research data 

also show that exposure to a diabetic intrauterine environment during pregnancy is 

associated with an increase in dyslipidemia, vascular inflammation, and subclinical 

processes of endothelial dysfunction in offspring that are linked to the development of 

diseases related cardiovascular in later life. Dyslipidemia leads to an increase in total 

cholesterol and low-density lipoprotein cholesterol (LDL). Vascular inflammatory and 

endothelial dysfunction inhibitors have been shown to inhibit plasminogen activator-1 

(PAI-1), vascular adhesion molecule 1 (VCAM), molecule-1 intercellular adhesion 

(ICAM) E-selectin, Insulin-like growth factor 1 (IGF-1) and other (Manderson et al., 

2002). Consequently, women with gestational diabetes and their fetuses show changes 

in the marker for endothelial NOS (eNOS) uncoupling, oxidative stress, and 

endothelial dysfunction, and these changes are correlated with the levels of 

hyperglycemia (Mordwinkin et al., 2012). 
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Figure 2 Maternal hyperglycemia, hyperinsulinemia and hyperglycemia, therefore, 

fetal and hyperinsulinemia affects the function of every step in the fetal metabolism, 

including the hypothalamus, the pancreas, and adipose tissue. These metabolic 

disorders are passed on to offspring and can eventually increase the cardiovascular 

risk in young adults (Vrachnis et al., 2012). 

 

2.4 Glucose homeostasis 

Most of the tissues and organs need glucose constantly, as an important source of 

energy. Low blood glucose concentrations may cause convulsions, loss of 

consciousness and death. On the other hand, long-lasting increase in the concentration 

of glucose can cause that the blindness, renal failure, cardiovascular disease, etc. 

must, therefore, blood glucose concentrations within narrow limits to be held. The 

process of maintaining the glucose in the blood to a stationary level called glucose 

homeostasis (DeFronzo, 1988). This is accomplished by the finely-regulation of 
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hormones of absorption of glucose, peripheral glucose uptake and the production of 

hepatic glucose during the ingestion of carbohydrates (Szablewski, 2011). 

2.4.1 Mechanisms of glucose homeostasis 

To avoid fasting hypoglycemia, postprandial hypoglycemia, the body can 

adjust the levels of glucose by secreting two hormones, insulin, and glucagon in 

opposition one to another. During periods of high blood sugar, the β-cell, the 

pancreatic islets of Langerhans cells secrete more insulin. Insulin is synthesized in β-

cells of the pancreas in response to a rise in blood glucose and amino acid after a 

meal. The main function of insulin to counteract the procedures involved for a number 

of hyperglycemia-generating hormones to maintain low blood glucose levels. It also 

plays an important role in regulating the metabolism of glucose. This hormone that 

regulates the metabolism of glucose, in many areas, reducing liver glucose output, 

through decreased gluconeogenesis and glycogenolysis, facilitates the transfer of 

glucose in striated muscle and adipose tissue and inhibits glucagon secretion. Insulin 

is not secreted if the concentration in the blood is less than or equal to 3 mmol/L, but 

is secreted in increasing amounts, as glucose concentrations increase beyond this limit 

(Gerich, 1993). When blood glucose levels increase over the approximately 5 mmol/l 

β-cells increase their production of insulin. Glucagon production α-cells of the 

pancreas the islets of Langerhans remained calm, holding those hormones. It is to note 

that postprandially, insulin secretion occurs in two phases. An initial rapid release of 

insulin preshaped, followed by insulin increased synthesis and release in response to 

glucose in the blood. Long-term insulin release occurs if glucose levels remain high 

(Aronoff et al., 2004; Cryer, 1992). On the other hand, during periods of low blood 

sugar, the alpha of the pancreatic islets of Langerhans cells secrete glucagon more. It 
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is the main hormone responsible for maintaining glucose in plasma inappropriate 

levels during periods of higher demand functional (Cryer, 2002). This hormone 

counteracts the hypoglycemia and opposes actions of insulin stimulating hepatic 

glucose production. It induces a catabolic effect, mainly activating hepatic 

glycogenolysis and gluconeogenesis, resulting in the release of glucose into the 

bloodstream, thus increasing blood glucose levels. Digestion and absorption of 

nutrients that are also associated with increased excretion of multiple intestinal 

hormones that Act distal targets. There are more than 50 intestinal hormones and 

peptides are synthesized and released from the gastrointestinal tract. These hormones 

are synthesized by specialized enteroendocrine cells are found in the epithelium of the 

stomach, small intestine, and large intestine. It was demonstrated that ingest foods 

caused more potent insulin release from glucose is injected intravenously (Wook and 

Josephine, 2008). This effect, called the Incretin effect suggests that the signals of the 

gut are important in the hormonal regulation of the disappearance of glucose. The 

Incretin hormones are secreted peptide hormones from the intestine and specific 

criteria have to be met so that an agent called an Incretin. They have a number of 

important biological effects, as for example, the release of insulin, inhibition of 

glucagon and β-cells mass maintenance and feeding inhibition. Various Incretin 

hormones have been characterized, but currently (glucose-dependent insulin tropic 

polypeptide) GIP and GLP-1 (Glucagon-Like-1 peptide) are the only known incretins. 

GLP-1 and GIP are secreted in a nutrient-dependent manner and stimulate glucose-

dependent insulin secretion. The hormones in the intestine are secreted at low basal 

levels in the fasting State. The secretion of hormones in the gut is regulated, at least in 

part, by nutrients. Intestinal hormones most plasma levels rise rapidly within minutes 
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of absorption of nutrients and they fall quickly thereafter mainly because they are 

eliminated by the kidney and are inactivated enzymatically (Drucker, 2007). 

2.5 Hyperglycemia 

Hyperglycemia is the technical term for the high blood glucose (sugar). It 

develops when there is too much sugar in the blood. High blood glucose occurs when 

the body has too little insulin or when the body does not use insulin properly. 

Hyperglycemia is a serious health problem for people with diabetes. In people with 

diabetes, there are two specific types of hyperglycemia that appear. Hyperglycemia 

fasting is defined as a larger 90-130 mg/dl (5-7.2 mmol/l) blood sugar after fasting for 

at least 8 hours. Postprandial (Hyperglycemia after eating) is defined as a blood sugar 

tends to be higher than 180 mg/dl (10 mmol/l). Hyperglycemia in diabetes can be 

caused by skip or forget oral or insulin glucose - lowering medicine, eating too many 

grams of carbohydrates by the amount of administered insulin, eating too much food 

and have many calories, infection, disease, increased stress, decreased activity or 

exercise less unusual physical activity, intense.  

Early signs and symptoms of hyperglycemia include increased thirst, headaches, 

difficulty concentrating, blurred vision, frequent urination, fatigue (feeling of 

weakness, fatigue), weight loss, blood sugar more than 180 mg/dL (10 mmol/L), high 

levels of sugar in the urine. Prolonged hyperglycemia in diabetes may lead to vaginal 

and skin infections, slow-healing cuts and sores, low vision, nerve damage causing 

the painful cold or unfeeling legs, stomach and intestinal problems. In people without 

diabetes postprandial or meta-meal sugar rarely go above 140 mg/dL (7.8 mmol/L), 

but sometimes, after a big meal, a 1 2-hour glucose levels can reach 180 mg/dL (10 

mmol/L). Blood glucose levels may vary from day to day. An occasional high level 
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(above 10 mmol/L) is not problem, provided it returns to normal (under 7 mmol/L; 

126 mg/dL) within 12-24 hours. Persistently high levels of blood glucose (above 15 

mmol/L; 270 mg/dL) for more than 12-24 hours may result in symptoms of 

hyperglycemia (Carroll et al., 2003). 

2.6 Insulin 

The Figure 3 shows the structure of insulin then. C-chain, connecting chains A 

and B is released together with insulin after the breakdown of the proinsulin. Insulin 

monomers aggregate to form dimers and hexamers (Bell et al., 1980). Zn Hexamer is 

composed of three associated insulin regulators in the triple symmetric pattern. Insulin 

is synthesized in the pancreas β-cells in the form of pre-proinsulin that is the 

precursor end the same gene is located on chromosome 11 near of Insulin-like growth 

factor 2 (IGF-2) (Bliss, 1993). Within a minute after the composition being discharged 

in external space of rough endoplasmic reticulum where it is cleaved to proinsulin by 

proteolytic enzymes. Proinsulin with a C string (which connects) to the chains A and 

B is then transported by macrovesicles to the golgi apparatus. Insulin is secreted from 

β-cells in response to various stimuli such as glucose, arginine, sulfonylureas, though 

physiologically the glucose is the main determinant. Several neural, endocrine and 

pharmacological agents may also be stimulated effect. Glucose is taken from β-cells 

through glucose transporter 2 (GLUT2) receptors. After entering the β-cell, glucose is 

oxidized by the glucokinase, which acts as a glucose sensor. Below 90 mg/dl glucose 

concentration does not cause the release of insulin. 
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Figure 3 Structure of insulin (Bell et al., 1980). 

 

Proinsulin is released into the vesicles. Conversion of proinsulin to insulin 

continues in the process of maturing the granules through the action of the 

prohormone converts 2 and 3 and carboxypeptidase H. Mature granules are translated 

with the help of microtubules and microfilaments. At such concentrations of glucose 

ATP-sensitive K+ channel (KATP channel) through the open of flow keep the cell 

membrane potential a negative β-cell that channels unbound calcium (Ca2+) voltage-

gated are closed. As there is the increase of glucose in plasma, the absorption of 

glucose and β-cell metabolism is higher. An increase in the result of the concentration 

of ATP in the closure of the KATP channel, leads to a depolarization of the membrane, 

an opening of voltage-gated channels Ca2+, Ca2+ influx, an increase of intracellular 

calcium concentration and, ultimately, exocytosis of insulin granules. 

Structurally, the pancreatic KATP channel consists of two unrelated subunits: a 

sulfonylurea (SUR1) receiver and a channel subunit of potassium (Kir6.2) that form 

the central ion-conducting pathway (Figure 4). The mature KATP channel exists as a 
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steamer of SUR1 Kir6.2 and subunits in a stoichiometry 4:4 (Figure 4). A subunit c 

site-specific co specifies the pancreatic KATP channel, confers an advantage on the 

other secretagogues, sulphonylurea, glimepiride. Drugs sulfonylureas and not 

sulfonylureas act as secretagogues insulin closing those channels KATP preventing 

the metabolism of the β-cell. Diazoxide is a potassium channel opener and inhibits the 

secretion of insulin, independent of blood glucose levels (Gribble et al., 2003; 

Ashcroft and Gribble, 1999). Glucose and insulin secretion. β-cells respond to many 

nutrients in the circulation of the blood, such as glucose, other monosaccharides, 

amino acids and fatty acids. Glucose is evolutionarily the main stimulus for the 

release of insulin in some animal species since it is a major component of food and 

can accumulate immediately after the ingestion of food. In fact, in rodents and 

humans, the amplitude of the glucose-induced insulin secretion is much higher in 

comparison with that stimulated by protein or fat. Oral ingestion of 75g of glucose 

will cause insulin to plasma Ascend from a baseline level (20-30 pmol/l) 250-300 

mmol/l in 30 min, while the intake of a similar amount of fat or a diet of fat and 

protein will increase by only 50 to 60 mmol/l plasma insulin levels respectively, in 

human subjects (Bakari and Onyemelukwe, 2004). 
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                        Figure 4 β-cell schematic (Gribble et al., 2003). 

 

Glucose is the fuel supply forces for neurons, including the β-cells can be used 

other cells, alternative sources of fuel during brief periods of starvation, an adaptation 

that could predispose to glucolipotoxicity. β-cells do not seem to contain receptors for 

glucose of membrane - bound but they have several devices sensors that measure 

glucose in circulation. Glucose transporter 2 (GLUT2) is constitutively expressed in 

β-cells, is first found in the β-cells glucose sensor. Most of the glucose in the by 

facilitated diffusion GLUT2-mediated β-cell. GLUT2 is the glucose transporter 

expressed only in β-cells. Also, it is expressed in the liver and to a lesser extent in 

renal and intestinal absorption cells. Unlike the GLUT4, which is expressed mainly in 

the muscle and fat cells, GLUT2 mobilization to the plasma membrane is independent 

of insulin and the transporter protein shows a low affinity for the substrate, ensuring 

high glucose influx. After entering the β-cells, glucose is phosphorylated by the 

enzyme glucokinase speed limitation, a subtype of hexokinase. Glucokinase is 
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expressed in only four types of mammalian cells: liver cells, β-cells, enterocytes, and 

glucose-sensitive neurons. Two important properties enable glucokinase function as a 

sensor of glucose β-cells, differentiating it from other hexokinases. The first property 

is its relatively low affinity for glucose than other hexokinases. The second property is 

that not is inhibited by its product, often a regulatory feature in metabolism. This 

feature allows your ongoing activity despite a high load glycolysis. Glucokinase is the 

rate-limiting step in the metabolism of glucose of β-cells and is considered an 

important glucose sensor (Suckale and Soliman, 2008). 

The insulin human is produced now by deoxyribonucleic acid (DNA) 

recombinant technology. Several companies differ in their methodology but the basic 

principle is the introduction of insulin human or genes of proinsulin in organisms such 

as E. coli or yeast. The technology of base of the yeast can provide physics-chemical 

structural and protein folding advantages although this may not be clinically 

significant. Agencies continue multiplying and in turn produce insulin or proinsulin 

becoming insulin by enzymatic cleavage. Dry human insulin is a crystalline powder 

with a molecular weight of 5808. Insulin rushes to its isoelectric 5.4 pH, whereas it is 

soluble at a pH of 2-3.1 IU of insulin corresponds to 38.5 g of dry matter. Insulin is 

available in the market the strength of 40 U and 100 U: 40 U/ml and 100 U/ml 

respectively. U500 is even available in the united states and U10 is sometimes 

formulated individually for use in infants with diluent provided by the manufacturer. 

Life half of injected Insulin is around 40 min. 
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2.7 Insulin resistance 

Insulin resistance (IR) is a medical condition in which cells fail to respond 

properly to the hormone insulin. The body produces insulin when glucose begins to be 

released into the bloodstream from the digestion of carbohydrates in the diet. 

Normally this response to insulin causes glucose taken into the cells of the body, to be 

used for energy, and inhibits the body uses fat for energy. The level of glucose in the 

blood decreases, as a result, is within the normal range, even when a lot of 

carbohydrates consumed. When the body produces insulin in insulin-resistant 

conditions, the cells are resistant to insulin and it is unable to effectively use, leads to 

hyperglycemia. In the pancreas β-cells subsequently increase their production of 

insulin, contributing further to a high blood level of insulin. What often remains 

undetected and may contribute to the diagnosis of type 2 diabetes or latent 

autoimmune diabetes of adults (Chiu et al., 2007). Although this type of chronic 

insulin resistance is harmful, during the acute illness is actually a well-evolved 

mechanism for protection. Recent investigations have revealed that the insulin 

resistance helps keep the supply of glucose to the brain prevents the muscles take 

excessive glucose (Wang and Guanyu, 2014). Insulin resistance should be 

strengthened even under severe metabolic conditions such as pregnancy, during which 

the increased fetal brain requires more glucose. One of the functions of insulin is to 

regulate the supply of glucose to the cells to provide energy. Insulin resistant cells 

cannot take in glucose, amino acids, and fatty acids. So, glucose, fatty acids and 

amino acids "leaked" out of the cells. The decline in the proportion of 

insulin/glucagon inhibits glycolysis, which in turn reduces energy production. The 
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resulting increase in blood glucose may raise levels outside the normal range and 

cause adverse health effects, depending on nutritional conditions.  

Certain types of cells such as fat and muscle cells require insulin to absorb 

glucose. When these cells do not respond properly to the circulation of insulin, blood 

glucose levels rise. The liver helps to regulate glucose levels by reducing the secretion 

of glucose in the presence of insulin. This normal reduction in the production of 

glucose from the liver cannot occur in people with insulin resistance. Insulin 

resistance in muscle and fat cells reduces the absorption of glucose (and also storage 

of glucose as glycogen and triglyceride, respectively), while the resistance to insulin 

in the liver cells results in the reduction of glycogen synthesis and storage and also a 

failure to suppress the production of glucose and released into the blood. Insulin 

resistance usually refers to reduced insulin glucose lowering effects. However, other 

functions of insulin may also be affected.  

For example, resistance to insulin in the fat cells reduces the normal effects of 

insulin on lipids and results in the reduction of lipid absorption and greater hydrolysis 

of triglycerides stored in circulation. Greater mobilization of stored lipids in these 

cells elevates the free fatty acids in the blood plasma. Concentrations of fatty acids 

high blood (associated with resistance to insulin and type 2 diabetes mellitus), 

reduced muscle glucose uptake and increased hepatic glucose production contribute to 

high levels of glucose. High plasma levels of insulin and glucose due to insulin 

resistance are an important component of the metabolic syndrome. If there is 

resistance to insulin, more insulin needs to be secreted by the pancreas. If there is this 

compensatory increase, the concentrations of blood glucose. Is the most common type 
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of insulin resistance associated with overweight and obesity in a condition known as 

Metabolic syndrome.  

Insulin resistance often develops into full type 2 diabetes mellitus (T2DM) or 

latent autoimmune diabetes in adults (Behme et al., 2003). This is often seen when 

hyperglycemia develops after a meal when pancreatic β-cells are not able to produce 

enough insulin to keep blood sugar levels normal blood against insulin resistance. The 

inability of β-cells produces insulin enough in a condition of Hyperglycemia is what 

characterizes the transition from resistance to insulin to T2DM (McGarry, 2002). 

2.8 Mechanism of blood pressure regulation 

One of the most important factors for the cardiovascular function of blood 

pressure. The blood pressure is defined as the force or pressure of the blood against 

the walls of the vessels of the cardiovascular system. The blood pressure is transient 

and fluctuates due to the pulse cycle. When the heart contracts to increase the blood 

from the heart and the vessels of the cardiovascular system, the blood pressure, and 

the maximum pressure in the container is known as the systolic blood pressure (SBP). 

However, if the heart relaxes between heartbeats (pulse), the pressure in the vessels 

decreases and the lowest pressure is the diastolic blood pressure (DBP). Clinically 

systolic and diastolic blood pressures are called systolic pressure on diastolic pressure. 

For example, a systolic pressure of 120 mmHg and a diastolic pressure of 80 mmHg 

are designated 120/80. Although the pressure can be recorded in many different units, 

clinically, blood pressures are measured in millimeters of mercury (mmHg). 

Systolic and diastolic pressures are two or more independent values representing 

the cardiovascular performance of the heart. Clinically, these two values can be 

combined into an average arterial pressure, the mean arterial pressure called, 
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reflecting the influence of systolic pressure and diastolic pressure in the 

cardiovascular system.  The other designation known as mean arterial pressure (MAP) 

is considered as an integrated blood pressure parameter. The mean arterial pressure 

can be calculated using the following formula:  

 

MAP = DBP +1/3 (SBP - DBP) (Lee et al., 2006) 

 

The calculation of the main blood pressure is a good way to assess stress on the 

vessel walls. This new parameter can be useful to quickly estimate the excessive 

burden on the cardiovascular system in the future. Although the various body tissues 

are able to regulate their own blood flow, the blood pressure should remain constant 

enough that the blood changes from one area of the body to another. The mechanisms 

used to regulate blood pressure depends on whether short- or long-term adjustment 

needs. 

2.8.1 Short-term regulatory 

Short - term regulatory mechanisms of blood pressure that work for a few 

minutes or hours are designed to correct transient imbalances in blood pressure, as 

during movement and changes in the body position occurs. These mechanisms are 

also responsible for maintaining the blood pressure levels in survival situations that 

endanger life, as in the case of an acute bleeding incident. The short-term regulation 

of blood pressure is mainly based on neuronal and humoral mechanisms, including 

fast neural mechanisms. 
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2.8.1.1 Neural Mechanisms 

Neural control centers for regulating the blood pressure in the 

reticular formation of the cord and the lower third of the bridge, with the integration 

and modulation of the autonomous nervous system (ANS) reactions occurring. This 

area of the brain contains vasomotor and heart monitoring centers and is often 

referred to collectively as the cardiovascular center. The cardiovascular 

parassimpáticos center sends impulses to the heart via the vagus nerve and 

compassionate heart and blood vessels into the spinal cord and the peripheral 

sympathetic nerve impulses. Heart stimulation leads to a decrease in heart rate while 

the causes of sympathetic stimulation increased heart rate and contractility of the 

heart. The blood vessels are selectively innervated by the sympathetic nervous 

system. Increased sympathetic activity causes a narrowing of the small arteries and 

arterioles with a resulting increase in peripheral vascular resistance. Autonomic 

nervous system blood pressure control is mediated by intrinsic blood flow reflexes, 

superior reflexes, and extrinsic neuronal control sites. Individual reflexes, including 

baroreceptor and chemoreceptor reflexes, are arranged in the circulatory system and 

are designed for fast regulation and short-term blood pressure. Extrinsic sensors 

reflections from traffic. They include reactions in the blood pressure associated with 

factors such as pain and cold. The nerve pathways of these reactions are more diffuse 

and reactions are less uniform than the intrinsic reflexes. Many of these reactions are 

channeled by the hypothalamus, which plays a crucial role in the control of the 

sympathetic nervous system reactions. Among the top middle of the answers are those 

caused by changes in mood and emotion. Baroreceptors are sensitive to pressure in 

the walls of the blood vessels and heart receptors. The carotid and the aorta 
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baroreceptors are removed in strategic positions between heart and brain. Respond to 

changes in the area of the vessel wall by sending pulses to the cardiovascular center in 

the brain stem to make appropriate changes in heart rhythm and vascular tone of the 

smooth muscle. For example, the blood pressure drop occurs when moved from the 

rest position to the standing position causing a decrease in the stretch baroreceptor, 

with a resulting increase in heart rate and induced sympathetic vasoconstriction, 

which causes an increase in peripheral vessel resistance. Baroreceptor resetting refers 

to the activation of a receptor in the direction in the pressure threshold to a change in 

the prevalence of MAP (Krieger, 1986; Lohmeier et al., 2004). During the restoration, 

the baroreceptor mechanism is set to a high pressure, thus maintaining performance 

rather than suppressing hypertension. There seem to be two different forms of 

adaptation that are characterized by the underlying mechanism primarily causing the 

variation of the pressure threshold. The first form is called acute baroreceptor 

reversal. It begins with rapid changes in the pressure to which the receptors are 

exposed for a short period of time, usually 20 minutes or less (Munch et al., 1983).  

This initial variation of the threshold voltage remains stable for at 

least one hour, without changing the sensitivity of the receivers, and is completely 

reversible. The second type is called Chronic Wielder, in which the sensitivity of the 

baroreceptor decreases. The pressure threshold will be moved in the direction of the 

pressure change, but this time the changes are not easily reversible (Sleight et al., 

1977). The first proof that adapted Baroreceptors appeared in 1956 (McCubbin et al., 

1956). At this time, a study of nerve receptors and sinus nerve aorta in dogs with renal 

hypertension has been shown to induce baroreceptor burning and high pressure a 

high-pressure threshold at which the shot was continuous; This was significant 
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compared to normal controls. To confirm that the baroreflex remained functional over 

these dogs, a separate set of experiments was performed to document pressure 

responses to occlusive arteria carotid before and during the development of renal 

hypertension, weekly. There was no pressure response Carotid occlusion attenuation 

increased as hypertension, suggesting that the channel baroreflex dogs was intact in 

renal hypertension. Subsequent studies have confirmed the presence of re-regulation 

receptors in the aorta wall and carotid sinus (Sleight et al., 1977). The underlying 

mechanisms for the adaptation and the relative importance of chronic acute 

baroreceptor adjustment and are hardly understood. Myelinated fibers are in the 

possibilities of baroreceptors neuro rules and are connected to a rapid recovery, while 

unmyelinated fibers seem to be re-launched chronic hypertonia models (Seagard et 

al., 1992; jones et al., 1977). It has also been shown that in general the size of the 

adjustment does not seem to correlate with the degree of change in the MAP (Munch 

et al., 1983). Adjustments in the context of chronic hypertension have been attributed 

to a damage to the receptors, lead to a change in the coupling between the recipient 

and the vessel walls, certain receptors themselves have genetic properties and reduced 

compliance the vessel walls, and the receivers are integrated. (Aars, 1968; Brown et 

al., 1976). This last option is particularly advantageous as the prevalence of 

arteriosclerosis and hypertension coexists. It appears that adherence to the wall, which 

is an activation susceptibility factor large baroreceptor, decreases when compliance 

with the blood vessels decreases. However, the threshold pressure at which the 

baroreceptor is activated depends on the blood pressure and other factors that are not 

yet defined (Andresen, 1984). Arterial baroreceptor controls the sympathetic drive to 

the heart and peripheral blood vessels. Constantly adjust to maintain systemic changes 
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in the blood pressure sympathetic activity relative homeostasis. Based on this 

mechanism, it was thought that the separation of the result of the baroreceptor afferent 

to chronically increased sympathetic activity, suggesting hypertension, was confirmed 

by a number of early experiments (Ferrario et al., 1969). Subsequent work confirmed, 

however. In animal studies, dogs with sinoaortic baroreceptor denervation (SAD) was 

conducted in a very labile MAP in response to environmental irritation and physical 

movements, but only a slight increase in MAP in terms of controls (Cowley et al., 

1973). In addition, it significantly reduces the ability to maintain a stable blood 

pressure after hemorrhage. Similar effects of SAD are reported by transient MAP 

without significant persistent hypertension in rats, rabbits, cats and monkeys (Osborn 

et al., 1990; Saito et al., 1986; Ramirez et al., 1985). It was then done hypertension 

and decreased sympathetic nervous system (SNS) activity. Several mechanisms have 

been proposed to explain long-term baroreceptor unregulated MAP. One of the most 

popular theories involved the reset baroreceptor phenomenon discussed in the 

previous section. Another explanation is that in addition to the carotid sinus and 

baroreceptors aortic cardiopulmonary receptors are actively involved in the control of 

blood pressure, which is involved in the short term, as evidenced by the fact that the 

combined denervation SAD receptor and cardiopulmonary MAP increases dogs. A 

third explanation relates to evidence that the enhancement of the baroreceptor control 

system was not sufficient to account for the long-term consistency of the blood 

pressure. Studies on narcotized dogs and rabbits, for example, have shown that the 

baroreceptors show only 65-75% for a particular blood pressure (Cowley, 1992) 

change arterial. It was assumed that one mechanism was the last possible loss-

inducing baroreceptor activation after SAD. The loss of this duration impulse leads to 
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a modification of the neuronal process in the nucleus of the tract solitaries (NTS) or 

another route baroreflex nuclei, as shown by experiments on animal models SAD 

(Alan et al., 1997). Arterial chemoreceptors are chemosensitive cells that control the 

oxygen content, carbon dioxide, and hydrogen blood. They are found in the body of 

the carotid, at the crotch of the two organs of the common carotid artery and the aorta 

in the aorta. Because of its location, these chemoreceptors are always in close contact 

with arterial blood. Although the main function of chemoreceptors is regular airing as 

they can communicate with cardiovascular centers in the brainstem and induce a 

generalized vasoconstriction. Every time the blood pressure falls below a critical 

threshold, the chemoreceptors are stimulated due to the decrease in oxygen and 

carbon dioxide ion storage and hydrogen. 

2.8.2 The long-term regulatory 

The long-term regulatory mechanisms control the daily, weekly and 

monthly blood pressure. Although the neural and hormonal mechanisms in fast-term 

of the measure of the blood pressure rule, they are not able to maintain their 

effectiveness over time. Instead, the long-term regulation of blood pressure is largely 

attributed to the kidneys and their role in the regulation of extracellular fluid volumes. 

After the late Arthur Guyton, a well-known physiologist, the extracellular volume, 

and blood pressure are regulated around the equilibrium that is the normal pressure 

for a particular individual. When the body contains an excess of extracellular fluid 

due to an increased intake of water and salt, at which the pressure rises in the blood 

and the rate that kidney is excreted through the kidney (pressure diuresis) and salt (ie, 

natriuresis). Therefore, there are two ways to increase the blood pressure with the 

design: one is the removal of salt and water to a higher-pressure level and the second 
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modification of the fluid level change extracellular wherein diuresis and natriuresis 

occur. The role of the kidney in long-term regulation of blood pressure can be 

influenced by a number of factors. For example, excessive activity of the sympathetic 

nerve or release of vasoconstrictors can affect kidney transmission of blood pressure. 

Similarly, changes in neural control of humoral and renal function may cause the 

diuretic-natriuretic process to move to a fluid level or higher pressure, thereby 

initiating an increase in blood pressure. There are two general mechanisms by which 

an increase in the fluid volume can increase blood pressure. It is a direct effect on the 

delivery and the other indirect self-control of the blood flow and its effect on the 

peripheral vessel resistance. In the distribution of the blood flow in different body 

tissues according to their metabolism needs auto regulation mechanisms. If the blood 

flow to a specific tissue bed is too high, narrow the local blood vessels, and if the flow 

is small, local vessels dilate. In situations of increasing the extracellular fluid volume 

and causing an increase in cardiac output, all body tissues are exposed to the same 

throughput increase. The result is a generalized exacerbation of the arteries and an 

increased peripheral vascular resistance and blood pressure. The role of the kidney in 

the regulation of blood pressure is demonstrated by the fact that many 

antihypertensive drugs produce their effect of lowering blood pressure by increasing 

the excretion of sodium and water. 

2.8.2.1 Humoral Mechanisms 

Several humoral mechanisms contribute pressure to the regulation 

of blood, including the renin-angiotensin-aldosterone system and vasopressin. Other 

humoral substances such as adrenaline released from a sympathetic neurotransmitter 

from the adrenal gland directly stimulate an increase in heart rate, cardiac contraction, 
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and vascular tone. The renin-angiotensin system plays a central role in the regulation 

of blood pressure. Renin is an enzyme that is synthesized and released from the 

juxtaglomerular cells of the kidney in response to increased sympathetic nervous 

system activity or a decrease in blood pressure, extracellular fluid concentration, or 

extracellular sodium concentration. Most renin is released to the kidney and acts in 

the bloodstream, where it converts the plasma protein excellently enzymatically 

inactive called angiotensinogen into angiotensin I. Angiotensin I is then converted by 

angiotensin II. This transformation is almost completely in the lungs, such as blood 

catalyzed by the small vessels of the lungs, through an enzyme called angiotensin-

converting enzyme flowing through which is present in the endothelium of the 

pulmonary vessels. Although II angiotensin has a half-life of only a few minutes, 

renin persists in the circulation for 30 minutes to 1 hour and continue to produce 

angiotensin II during this time. Angiotensin II regulation works both short- and long-

term blood pressure. It is a potent vasoconstrictor, especially arteries and to a lesser 

extent, veins. Constriction of arterioles increases the peripheral vascular resistance 

and thus contributes to the short-term regulation of the blood pressure. Angiotensin II 

also decreases the excretion of sodium, increasing sodium reabsorption by the kidney 

proximal tubules. A second important role of angiotensin II, the stimulation of 

aldosterone secretion by the adrenal gland, contributes to the long-term regulation of 

the increase in salt retention and water by the kidneys, blood pressure. Vasopressin, 

also known as antidiuretic hormone (ADH), is released by the posterior pituitary in 

response to decreased blood volume and blood pressure, an increase in osmolality of 

body fluids and other stimuli. Vasopressin has a direct vasoconstrictor effect, 
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especially in the vessels of splanchnic circulation, which provides the abdominal 

organs. 

 

Figure 5 The blood pressure regulation by the renin-angiotensin system. Renin 

converts angiotensinogen plasma protein enzyme of angiotensin I; The converting 

enzyme inhibitors in the lung transformation of angiotensin I to angiotensin II; And 

angiotensin II causes vasoconstriction and increases the retention of water and salt by 

direct action on the kidney and increasing aldosterone secretion from the adrenal 

cortex (Paul et al., 2006). 

 

However, long-term vasopressin does not increase the blood pressure can 

maintain, and make the induced hypertension vasopressin does not increase hormones 

sodium retention or other vasoconstrictor substances. It has been suggested that 
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vasopressin plays a permissive role in hypertension due to its water retention 

properties or as a neurotransmitter that alters the function of ANS. 

2.9 Effect of insulin resistance on cardiovascular disease 

Insulin resistance modified reveals a biological response to insulin. In the early 

stages of insulin resistance is a compensatory increase in insulin concentration. 

Although persistence hyperinsulinemia can compensate for some of the biological 

effects of insulin, in tissues can lead to overexpression of actions that keep normal 

insulin sensitivity or altered minimally. In addition, high insulin concentrations can 

act by receptor insulin-like-growth-factor 1 (IGF-1). Thus, stressing certain insulin 

resistance actions with other concurrent actions results in different symptoms and 

effects of resistance syndrome in clinical insulin. 

Insulin and IGF-1 stimulation increases the amount of PI3 -kinase associated 

with IRS, and the binding process is associated with increased activity of the enzyme. 

Activation of the enzyme is crucial for transducing the actions of these peptides in 

cardiovascular (CV) tissue (Sowers et al., 1997; Sowers, 1997) as well as 

conventional insulin-sensitive tissues (Hunter et al., 1998) (Figure 6). 

The insulin and the IGF-1 and a functional homology sensitive tissue CV insulin 

and classic adipose tissue such as skeletal muscle and. IGF-1 in contrast to insulin is 

synthesized by vascular smooth muscle cells (VSMCs) and cardiomyocytes (Sowers, 

1997; Sowers 1996). The production of IGF-1 in the CV tissue stimulated by 

mechanical stress, insulin, angiotensin II (Ang II) and other growth factors. Insulin 

and IGF-1 reduce vascular tone, because of the effects on the metabolism of partial 

cations (Figure 6).  
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Figure 6 The actions of insulin and IGF-1 on cationic metabolism and vascular tonus 

(Samy et al., 2001). 

 

Both peptides reduce calcium influx in vascular smooth muscle cells (VSMC) 

currents to reduce mediated Ca2+ activated receptor voltage channel and associated 

with contraction responses VSMC. Both peptides increase the Ca2+ adenosine 

triphosphate activity of Ca2+ ATPase in the plasma membranes and intracellular 

organelles and activated potassium channels dependent Ca2+. 

Since no active K-dependent Ca2+ channels, the effect of insulin / IGF-1 in these 

channels are partly mediated by the increased production of NO by endothelial cells 

and VSMCs. Another mechanism by which insulin / IGF-1 reduces Ca2+/ intracellular 

VSMC vasoconstriction by stimulating the Na+, K+ ATPase pump, by transcriptional 

and post-translational modifications of the pump. That the Na+, K+ ATPase stimulates 

the transport of Na+ and K+ ions against concentration gradients, energy must be 

provided by hydrolysis of ATP. The ATP generated by aerobic glycolysis is preferably 
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used for this procedure, suggesting that the glucose transport mediated by insulin / 

IGF-1 is a possible mechanism by which these peptides stimulate the activity of the 

pump. Recently, it has been shown that the activation of insulin strains / IGF-1 

Phosphoinositide 3-kinase (PI3K) has been crucial for the ability of these peptides to 

stimulate the pump. Therefore, PI3K responses modified insulin / IGF-1 might 

explain the decreased ability of these peptides to mediate vasodilatation in patient’s 

resistant to insulin. As shown, Ang II interferes with the activation of PI3 in VSMC 

and cardiomyocytes, the over-expression of the renin-angiotensin system (RAS) is 

one of the main factors of resistance to CV / IGF-1 (Figure 8). 

Classically sensitive tissues such as muscles and adipose tissue. PI3 kinase 

average increases in the ability of NO, Na+, K+, and sensitivity to myofilament 

calcium (Ca2+) increase in traffic and the translocation of NO synthase and pumping 

and conveyors of glucose units. Therefore, the resistance to the action of insulin and 

IGF-I occurs in these tissues whenever it is a diminished activation of PI3K. 

Several studies have shown a close relationship between the use of insulin-

dependent glucose and increase in blood flow in response to insulin muscles. 

Peripheral vasodilatation, which occurs in the systemic infusion of insulin, is 

eliminated by the administration of inhibitors of the NO synthase enzyme, a crucial 

role for NO in the vasodilating response to normal insulin. The effect of insulin 

vascular NO production induces (Chen et al., 1998). In fact, significant evidence 

suggests that the insulin sensitivity is selectively impaired in extrahepatic tissues, the 

development of hypertension associated with increased salt sensitivity (Ferri et al., 

1998). 
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Figure 7 The interaction of insulin / IGF-1 and RAS in cardiovascular tissues shows 

insulin / IGF-1 signaling steps inhibited by Ang II (Samy et al., 2001). 

 

2.10 Effect of insulin resistance on renin-angiotensin system (RAS) 

The renin-angiotensin system (RAS) is traditionally known for its role in the 

regulation of blood pressure, fluid balance, and electrolytes (Schmieder et al., 2007). 

Angiotensinogen (Ang), the main RAS peptide precursor undergoes enzymatic 

cleavage by renin and angiotensin converting enzyme (ACE) to form angiotensin II 

(Ang II), the main system effector peptide (Castrop et al., 2010). Ang II exerts its 

physiological effects by two receptors with the G protein-coupled Ang II receptor type 

1 (AT1) and types 2 (AT2). In addition to the systemic RAS, there are also several 

local organs such as brain tissue, pancreas, heart and obese. Since Ang II blood 

pressure is increased by AT1, ACE inhibitors (ACE inhibitors) and angiotensin 
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receptor blocker (ARB) are used clinically as antihypertensive agents (Jones et al., 

1997; Paul et al., 2006). The evidence for the role of systemic and local RAS in 

hypertension, renal function, and cardiovascular disease was previously investigated, 

RAS and cardiovascular disease; Adipose RAS and cardiovascular disease; RAS brain 

and hypertension; Endocrine and paracrine RAS; RAS fat and metabolic disorders 

(Thatcher et al., 2009). Interestingly, epidemiological studies have shown that patients 

with ACE inhibitors or ARBs have a lower risk of developing compared to those 

treated with another antihypertensive type 2 diabetes. Angiotensin is cleaved by renin-

angiotensin I (Ang I) enzyme. Renin is mainly caused by the kidneys and their 

secretion is the main limiting factor in the regulation of the systemic RAS step. Renin 

receptor can also come to recognize the renin/prorenin recently and increase the 

efficiency of the catalytic formation of angiotensin I. Angiotensin I is then cleaved by 

the angiotensin-converting enzyme, which is currently mainly present in the vascular 

endothelium of the lung, Angiotensin II. Alternatively, angiotensin II can also be 

formed by the action of chymase and cathepsin, in particular, local RAS (Figure 10).  

From this observation, we also showed that mice overexpressed renin in the 

liver develop glucose intolerance. Also, recently, he showed that adipous RAS 

specific overactivation leads to intolerance and resistance to systemic insulin to 

glucose (Kalupahana et al., 2011). Overall, this shows that the systemic or chronic 

overactivation of obese RAS led to systemic insulin resistance. 
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Figure 8 Angiotensinogen is cleaved by renin and angiotensin converting enzyme 

(ACE), angiotensin II (Ang) I and II, respectively. Ang II acts through Ang II type 1 

receptor (AT1) and type 2 (AT2) its physiological effects (Schmieder et al., 2007). 

 

2.11 Effect of renin-angiotensin system on blood pressure control 

The systemic system function Renin-angiotensin (RAS) in the regulation of 

blood pressure and volume homeostasis and the pathophysiology of hypertension 

(HTN) has been the subject of several decades. Increased accessibility activity is also 

an important factor in many disease states due to angiotensin II (Ang II) increases 

aldosterone and blood pressure and contributes to the development of lesions in the 

final body effects directly on the heart tissue, vascular and kidney (Paul et al., 2006). 

As is generally known, Angiotensin II is systematically generated. RAS substrate Ang 

is released from the liver and is cleaved by reining circulating by the juxtaglomerular 
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kidney secreted to Angiotensin I. Further, Angiotensin I is easily activated by 

Angiotensin II converting enzyme (ACE) High concentrations on the surface of the 

endothelial cells in the pulmonary circulation (Ichihara et al., 2004). 

Angiotensin II, which is the strongest RAS active product, affects it on specific 

receptors. Note that this vision of RAS is expanded by newer results that increase the 

complexity of the system. They described a different receptor and signaling pathways. 

Routes, additional peptides were recognized as a 1-7 and the proposed substitutions 

for the formation of Angiotensin II, for example, serine protease chymase (Figure 11). 

The change from our inspection of the RAS became the concept of "local" RAS or 

substance). Among them, the pathophysiological effects of intracranial RAS were the 

main target in the pathogenesis of HTN and progressive renal damage. Many data are 

available that support the central role of internal RAS exerts various pathological 

effects on the development and progression of HTN and kidneys. The large proportion 

of Angiotensin II at the cellular level, such as cell growth and apoptosis, may be 

important factors important physiological stimuli. Over-expression transgenic and 

knockout models as genes of animals showed a functional role of RAS in prenatal 

development (Brand et al., 2006; Takahashi et al., 2005). In addition, many 

epidemiological and experimental studies have provided a strong RAS involvement in 

fetal programming of hypertension and sick adults (Woods et al., 2001).  

Programming during fetal life occurs with an unfavorable fetal environment and leads 

to long-term adaptation reactions that lead to structural and physiological changes and 

the further development of HTN (Barker et al., 1989; Brenner et al., 1988). Thus, we 

will summarize the physiological effects of angiotensin II, including the internal renin 

angiotensin system (RAS) and the latest results related to its role in the pathogenesis 
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of HTN. Evidence for the effects of internal RAS in fetal programming regarding 

HTN is also discussed. 

2.11.1 Physiologic actions of angiotensin II (Ang II) 

 Physiological effects are a renin-angiotensin system (RAS) critical to 

manipulating the stability of the blood pressure and the homeostasis of the 

extracellular fluid. Most of these actions are performed by RAS Angiotensin II with 

its receptor in a variety of organs and tissues. Angiotensin II is one of the most potent 

vasoconstrictors known and affects the heart, vascular system, nervous system, 

digestive system, skin, reproductive system, sense organs, tissue, lymph, adipose 

tissue, adrenal glands, and kidneys. It seems likely that local and systemic effects of 

the RAS must be integrated into the concerted action. Vasoconstrictor responses of 

arterioles afferents angiotensin II mediated by angiotensin II-1A (AT1a), and 1B (AT1B), 

while responses to vasoconstrictor angiotensin blood-derived arterial II are mediated 

by only AT1a receptors in the mouse kidney (Harrison et al., 2002). Angiotensin II also 

reduces the coefficient increases while the resistance to glomerular filtration and 

laxative arterioles, which contributes to the reduction of the glomerular filtration rate. 

Acute infusion of Angiotensin II is sufficient to alter the cause of the proteinuria renal 

hemodynamics. However, sustained increases in Angiotensin II-induced intracranial 

proteinuria induced by progressive injury to the glomerular filtration barrier, which 

consists of products of the endothelial glomerular membrane and the basal glomerular 

(Whaley et al., 2006). The pharmacological effect of Ang II is the glomerular 

filtration rate (GFR) is blocking variable, either increased, decreased or unchanged. 

Most clinical studies show that the GFR is introduced during the blockade of 

angiotensin II remains stable. II increases the nephron GFR single currency and single 
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nephron plasma when the blood pressure significantly reduces angiotensin blockage. 

On the contrary, often a significant reduction in the glomerular filtration rate was 

observed in patients with renal disease. Presumably, the lowering of the blood 

pressure by blocking Angiotensin II stimulates the sympathetic nervous activity, a 

vasodilator. 

Angiotensin II also has a modulating effect on the sensitivity to a 

tubuloglomerular feedback mechanism which ensures equilibrium between resorption 

tubules of the filtered load and GFR setting. Transgenic mice analysis showed 

micropuncture in a substantial role of Angiotensin II in the regulation feedback 

tubuloglomerular mediated AT1a receptor (Schnermann, 1999). Ang II is involved in 

the regulation of the renal excretion of sodium and water not only by the effects on 

renal hemodynamics, GRF and the regulation of the secretion of aldosterone, but also 

by direct effects on the transport of renal tubules. In addition, it stimulates the 

secretion of H+ and HCO3 in the proximal and distal tubular reabsorption and 

regulates cell H+ ATPase activity intercalated in the collection tube (Valles et al., 

2005). The activation of the Na Exchange +/H+ apical and basolateral Na+ /HCO3 

cotransport basolateral Na+, K+ -ATPase and apical H+ -ATPase is involved in the 

absorption of sodium and bicarbonate-induced transcellular Angiotensin II in the 

proximal tubule, while the exchange of Na+ H+ and H+ -ATPase contributes to the 

absorption of sodium and bicarbonate in the distal tubule. In addition, it was shown 

that the metabolism of water abnormally absents in mice the AT1a receptor, suggesting 

that Angiotensin II stimulates the urinary concentrating mechanism in the internal 

medullary collection line, which leads to an increase in the absorption of water. 
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Important data provide convincing evidence that Angiotensin II impacts 

the growth of the kidney cells. The fact that Angiotensin II-mediated proliferation or 

hypertrophy of kidney cells is rather dependent. All components of the RAS are 

regulated in the kidney organogenesis and the RAS in the development of renal 

blockage shows serious renal abnormalities and abnormal cell renewal (Kang et al., 

2003). The effects of Angiotensin II-induced growth is also present in the 

development of glomerulosclerosis and tubule-interstitial fibrosis, and anger these 

effects is a primary goal of the renoprotection way in clinical Nephrology. 

2.11.2 Angiotensin II receptor 

In different regions, segments of nephrons and types of cells in the 

kidney, Angiotensin II receptors play an important role in the complex actions and 

stretches of Angiotensin II on renal function. AT1 receptors (subtypes 1A and 1B) and 

Angiotensin II type 2 (AT2) receptors are two major types of receptors Angiotensin II. 

The AT1 receptor is primarily responsible for most of the actions of Angiotensin II and 

has been widely distributed by the kidney. In hypertension Angiotensin II-dependent 

glomerular vessel and AT1 receptors are down-regulated, but the proximal tube 

receivers will either be adjusted or altered. Deficient mice AT1a receptors showed a 

predominant role of AT1a receptors and a limited role of the AT1B receptor in the 

regulation of blood pressure and renal responses to the administration of angiotensin 

II in the long run. 

The expression of the AT2 receptor is found in the proximal tubule, 

collecting channel, glomerular epithelial cells and a part of the vascular system. The 

AT2 receptor significantly increases during fetal life and decreases greatly after birth. 

It is believed that the activities mediated by the AT2 receptor are generally performed 
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against those of the AT1 receptor while the functions of the AT2 receptor are largely 

unknown. The absence of the AT2 receptor leads to renal vascular disease and 

hypersensitivity to angiotensin II, including anti-Natriuretic, hypertension, suggesting 

that the AT2 receptor plays a protective role in the regulation of bradykinin-mediated 

and nitric oxide against anti-Natriuretic actions and angiotensin II- Pressor. 

2.11.3 Role of renin-angiotensin system - fetal programming of hypertension 

 Fetal programming is the process by which the negative effects of 

environmental damage can predispose to adult disease early in life, especially in the 

uterus prenatal death (Barker et al., 1989). He confirmed for the first time an inverse 

association with a birth weight and the death of cardiovascular disease in the adult 

age, which shows that some components of the prenatal environment, partly related to 

the death of the mother, can "program" the individual into one Increased 

cardiovascular risk. Since then, several studies have provided a strong link between 

events and the following intrauterine conditions such as glucose tolerance, type 2 

diabetes, obesity, and chronic renal disease. Among them, the programming of 

hypertension has been the most studied. Both epidemiological and experimental data 

have shown strong evidence that the prenatal environment can alter blood pressure in 

adults. Linkage mechanisms with low birth weight (LBW) with hypertension appear 

to be multifactorial and involve changes in natural systems of regulation and renal 

function that affect long-term control of blood pressure. Burner suggested that the 

HTN is associated with congenital loss of the number of neurons that would result in 

reduced sodium renal excretion and increased sensitivity to sustain (Brenner et al., 

1988). This assumption is based on the understanding that in the context of the loss of 

neurons, compensatory hypertrophy and hyper in the remaining glomeruli occurs the 
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proper renal function. Although not the exact mechanism of reducing the number of 

neurons has been clarified possible causes suggested program; DNA methylation 

changes, the increase in apoptosis in the development of the kidneys, renal RAS 

activity, and increased fetal exposure to glucocorticoids. It is known that all the 

components of the RAS play present in the kidney and the development an important 

role in nephrogenesis. Several experimental models have shown that the reduced 

expression of RAS components during nephrogenic time helps to reduce the number 

of neurons and HTN in later life. Specifically, Woods noted that the restriction of the 

strain protein during pregnancy was associated with renal renin mRNA and 

Angiotensin-II levels in the tissues of the offspring at birth in rats (Woods et al., 

2001). RAS suppression of this model was associated with a reduction in the 

glomerular count, increased blood pressure and a decrease in GFR.  

2.12 Taurine 

 

Figure 9 Chemical structure of Taurine. 

 

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid in 

condition synthesized in the body as a result of cysteine metabolism (Figure 12). This 

amino acid passes the blood-brain barrier and is distributed in the brain, heart, skeletal 

muscle, intestine, bile, liver, kidney, retina, leukocytes, thrombocytes and 0.1% of 
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total body weight (Bidri and Choay, 2003). In premature infants, the enzymes that 

cause cystathionine to cysteine are lacking in its deficiency. For this reason, taurine 

supplementation is necessary for small children. Taurine-containing energy products 

are Red Bull, AMP Energy, Celsius, Full Gas, 5 Hour Energy, Monster Energy, 

Rockstar, and Venom (Bidri and Choay, 2003). 

Taurine deficiency causes a reduction in oxygen consumption and the synthesis 

of adenosine triphosphate, causing superoxide formation and generating an oxidative 

stress. A number of conditions, including the abnormalities in the central, epilepsy, 

myopathy, hypertension, cardiovascular diseases such as arrhythmias, 

cardiomyopathy and heart failure, high cholesterol levels, liver disorders, 

mucoviscidosis, retinal degeneration, cancer, immune deficiency, development of 

nervous system growth and development Associated with taurine deficiency (Yamori 

et al., 2010). It is reported that supplementing the diet taurine prevents the progress of 

hypertension, coronary heart disease, and endothelial dysfunction in young men, type 

1 diabetes, hepatitis and high cholesterol. This amino acid has a different 

pharmacological activity. Taurine is an anxiolytic effect of the activation of the 

glycine receptor and exerts anti-depressants, anti-inflammatory, anti-apoptotic and 

antioxidant activity. 

Taurine increases the development of nerve tissue and is important for synaptic 

transmission in the central nervous system. Protects against seizures and glutamate 

excitotoxicity. Hypoxia glutamate brain released very rapidly, which leads to the 

opening of calcium channels and its concentration in nerve cells to increase. Taurine 

plays a neuroprotective role by interacting with the GABA receptor (Yamori et al., 

2010) and regulating the homeostasis of cytoplasmic and mitochondrial calcium 
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mirrors due to the inhibition of the Ca2+ influx induced by glutamate through channels 

L-, P/Q- and calcium channel N-type with the closed voltage (Oja and Saransaari, 

2007). 

The facts reported in patients with Alzheimer's disease have lower levels of 

taurine and this amino acid increases the level of acetylcholine in the brain by 

showing animals that have taurine positive effects on Alzheimer's disease and other 

neurological disorders caused by β-amyloid neurotoxicity GABA receptors (Oja and 

Saransaari, 2007). The normal function of dopaminergic neurons is controlled by 

NMDA receptors. Its overactivity leads to the accumulation of dopamine and neuronal 

death. Taurine reduces the release of dopamine receptor antagonists as NMDA acts 

(Yamori et al., 2010). Taurine is important for preventing cardiovascular and 

cardiovascular function because it improves the left ventricular function, cardiotropic 

effect lowers blood pressure, stabilizes heart rate, prevents platelet aggregation and 

regulates the osmotic pressure. It affects the heart, nervous system, blood vessels and 

the kidney to help regulate blood pressure (Roysommuti and Wyss, 2012). The 

antihypertensive effect of this amino acid is based on the fact that with essential 

hypertension after 6 weeks of treatment was reduced in patients mean systolic blood 

and diastolic. Oral supplementation of taurine induces antihypertensive effects in 

animal models of hypertension due to both central and peripheral effects. CNS effects 

include amino-specific mediation baroreflex modulation and regulation of the activity 

of hypothalamic neurons involved in the secretion of vasopressin (Roysommuti and 

Wyss, 2012). The vasodilation and blood pressure lowering effect of taurine 

associated with peripheral medium following mechanisms are:  

1) Reduction of plasma catecholamines adrenaline and norepinephrine. 
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2) Improve natriuresis, the volume of urine and secretion of kallikrein. 

3) The effect as osmoregulation in vascular endothelial and smooth muscle cells. 

4) Increased expression of endothelial nitric oxide synthetase, which leads to the 

production of nitric oxide vasodilator, and stimulates the release of the vascular 

endothelium. 

5)  Minimize serum cytokine, endothelin, and thromboxane B2 neuropeptide Y 

6) Modulation of the activity-aldosterone system renin-angiotensin.  

In endothelial cells, the anti-apoptotic effect of this amino acid is mediated by 

its anti-inflammatory effect and its ability to inhibit reactive oxygen species. Taurine 

also has help people with congestive heart failure, has been shown to increase the 

strength and effectiveness of cardiac muscle contractions (Abebe and Mozaffari, 

2011). 

Taurine supplementation is probably beneficial for the prevention of 

atherosclerosis, coronary heart disease, and hepatic impairment, the secretion of 

apolipoprotein B100, which is a structural component of very low-density lipoprotein 

(VLDL) and LDL (Yanagita et al., 2014). This amino acid prevents the development 

of atherosclerosis and vascular disease caused by the following mechanisms: 1) 

Reduction of serum lipids and lysophosphatidic acid, a lipid component of the 

atherosclerotic plaques; 2) reduce the oxidation of LDL (Roysommuti and Wyss, 

2012); 3) inhibition of thrombocyte aggregation, thereby reducing the risk of arterial 

thrombus formation. Taurine reacts with hypochlorous acid derivatives from the 

training phagocyte autocleaning. This compound inhibits the synthesis of interleukins 

6 and 8 and suppresses the physiological activation of matrix metalloproteases 

secreted by macrophages of the intima and the cells of the foam. This results in the 
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inhibition of proteolysis of collagen fibers and other proteinaceous components of the 

intracellular matrix and reduces the rupture of the atherosclerotic plaques (Abebe and 

Mozaffari, 2011). It is reported that the myeloperoxidase inhibits taurine expression of 

the enzyme derived by this mechanism hypochlorous acid and phagocytes which 

reduce the risk of coronary heart disease and myocardial infarction. It acts as a 

diuretic to keep potassium and magnesium in the cell and the excess sodium outside 

the cell (Roysommuti and Wyss, 2012). This amino acid lowers the blood glucose and 

prevents microangiopathy with diabetes and nephropathy (Das and Sil, 2012). The 

antioxidant effect of taurine in biological systems is the result of its ability to capture 

the reactive oxygen species, bio-membranes and reduce the production of lipid 

peroxidation. Also reduces oxidative stress, which inhibits the formation of products 

glycation end. It acts as an antioxidant and protects against the toxicity of lead and 

cadmium and many tissues prevented by a toxic injury induced by oxidants. 

Supplementation with taurine prevents oxidative stress induced by movement (Bidri 

and Choay, 2003). This amino acid is important in early embryonic development, the 

immune system and the function of the skeletal muscle (Silva et al., 2011). Taurine 

has a positive effect in the eyes of the dystrophic processes in the retina to protect and 

the development of diabetic cataract, senile or traumatic radiative (Bidri and Choay, 

2003). 

This amino acid is found in high concentrations in the skeletal muscle, the 

modulus of contractile function and increases the production of energy, which 

increases by accumulation and release from the sarcoplasmic reticulum calcium 

(Gwacham and Wagner, 2012).  Taurine helps cell proliferation and the viability and 

stability of membranes. Physiologically plays an important role in abnormal 
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metabolism and promotes the repair of tissue process. This amino acid improves 

energy processes, detoxifies some xenobiotics, and regulates the rate of calcium ions 

in the blood hypolipidemic activity for its role metabolism exerts fat metabolism 

products (Bidri and Choay, 2003). Taurine is involved in the regulation of secretion of 

vasopressin and oxytocin secretion. It has been shown cultured to have a protective 

effect on human hair follicles in vitro (Bidri and Choay, 2003). 

2.12.1 Taurine synthesis 

The synthesis of taurine is important because the substance plays several 

functional roles in the body, which can be improved by supplementation. It is for this 

reason that the chemical synthesis of taurine has been developed as an industrial 

process that allows for the increased uptake of the amino acid. Taurine is an amino 

acid present in many foods and its intake to a daily dose of about 58 mg, depending 

on the individual plan. In particular fish and meat products have a high content of 

taurine and individuals on a vegetarian or vegan diet tend to have lower consumption 

values. In addition, taurine is naturally present in some parts of the body, including 

the gastrointestinal tract, muscle tissue and bile. This taurine is synthesized in the 

pancreas of cysteic acid via sulfonic acid as the biosynthesis of taurine. It is the 

oxidation of the thiol group of cysteine, followed by a decarboxylation reaction and a 

final spontaneous reaction to form taurine. Taurine also occurs in adult male testes. 

There are two streams that are often used for chemical reactions of taurine. The first 

involves a reaction between ethylene oxide and sodium bisulphite oxidized to form is 

thionic acid, which is then used as the synthetic taurine. The second uses the chemical 

reaction between aziridine and sulphur to taurine in a single process acid transporter. 
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Taurine can be synthesized from the precursor amino acid, cysteine, by a 

variety of mechanisms (Huxtable, 1989). In the central nervous system, however, 

taurine synthesis proceeds from cysteine to cysteine sulfinate, hypotaurine, and finally 

taurine, a sequence commonly called the cysteine sulfinate decarboxylase (CSD) 

route (Tappaz et al., 1992). Contributions to taurine synthesis via cysteamine or 

cysteine are very minor or insignificant. The taurine-synthesizing enzymes, cysteine 

dioxygenase (CDO) and CSD, have been identified and characterized in the rat brain 

(Misra and Olney, 1975; Remy et al., 1990). In addition, Ohkuma (Ohkuma, 1984). 

demonstrated conversion of cysteine to cysteine sulfinic acid, hypotaurine, and taurine 

in rat whole brain homogenates. In hyperosmotic hypernatremia, contents of a number 

of organic osmolytes including polyamines, polyalcohol sugars, and amino acids are 

elevated in brain tissue (Heilig et al., 1989; Lien et al., 1990). In some animal models, 

accumulation of taurine accounts for as much as 50% of the additional osmolytes 

needed for brain volume regulation (Trachtman et al., 1988). Tissue culture studies of 

cerebral astrocytes have demonstrated increased cellular contents and rates of the 

influx of taurine (Olson et al., 1990) and inositol (Strange et al., 1994) during 

hyperosmotic exposure. However, in situ, enhanced cellular accumulation of taurine 

only serves to sequester available taurine intracellularly, as unidirectional transport 

from blood to the brain is not elevated by acute hyperosmotic treatment (Strange et 

al., 1994). Thus, activation of de novo synthesis of taurine may play an important role 

in the brain’s adaptation to hyperosmotic conditions. 
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2.12.2 Taurine transfer and metabolism 

Most amino acids are provided from the maternal circulation to the fetus 

by active transport across the placenta. (Regnault et al., 2005). Dependent transporter 

amino acid of energy is expressed in both maternal surfaces and the surfaces of fetal 

trophoblast in the human placenta. There are several different transport systems 

specific groups transfer according to their charge and structure of amino acids 

(Regnault et al., 2002). The final transfer rate for a single amino acid depends on the 

relative concentrations of amino acids in maternal plasma and abundance and the 

activity of transport systems. In addition, there is amino acids shuttle between the 

fetal liver and placenta exchange serine glycine and glutamate for glutamine. These 

exchanges result in net uptake of serine and glutamate from the fetus by the placenta 

(Christensen, 1990). However, with the exception of serine and glutamate, under 

normal conditions, net absorption of amino acids from the placenta of the fetus 

(Rozance et al., 2009). Since amino acids are also released into the fetal circulation 

fetal tissue, total rates of the occurrence of amino acids in the fetal plasma (which are 

the removal rate of the fetal amino acid in the form equal to steady state) are greater 

than the net-detection rate of the placenta of the fetus. Removing fetal amino acids in 

direct flow to the placenta and flow to fetal tissues. For most amino acids, the stream 

is further divided into protein synthesis and the oxidation of amino acids. The 

synthesized proteins can be degraded, and the difference between syntheses and 

protein degradation is the net charge of protein accumulation. The relative 

contribution of each of these sets (fetal placenta plasma flow rate, protein synthesis 

and oxidation) to the safe elimination of fetal amino acids varies for each particular 

amino acid (Anderson et al., 1997; Carver et al., 1997; Chien et al., 1997; Guyton et 
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al., 1993; Lemons et al., 1976; Liechty et al., 1999). However, accumulation of the 

total protein in late pregnancy is estimated to be 2-4 g / day (Van et al., 2009). Taurine 

supplementation has many physiological functions and development. It is considered 

essential for the fetus and newborn amino since the de novo synthesis fetuses at this 

age are not enough. The specific effects of taurine in the developing pancreas are 

highlighted by a series of examinations of a particular model of intrauterine growth 

restriction rat characterized by progressive loss of beta cells and functional disorders. 

Maternal fed a low protein isocaloric diet (8% vs. 20% dietary protein) throughout 

gestation gave birth to pups with lower birth weight and reduced β-cell mass and 

function compared to controls (Snoeck et al., 1990; Boujendar et al., 2003). Plasma 

taurine was lower in low protein maternal and their fetuses, and taurine 

supplementation to the low protein maternal during pregnancy normalized β-cell mass 

and insulin secretion (Sodoyez et al., 1979). However, fetal and pup body weights 

were not corrected. Despite the persistently low body weights in the low protein 

fetuses and pups, which in this particular model is almost certainly due to deficiency 

of other amino acids, the improvement in β-cell mass and function with taurine 

supplementation has important potential implications for the design of future 

therapeutic interventions (Kimball et al., 1998).Thus, with an adequate supply of 

nutrients, the fetus taurine supplementation has the potential to improve beta cell 

function and insulin secretion, the necessary increase in anabolic hormones allows the 

fetal growth to improve fetus. 

2.12.3 Effect of taurine on glucose metabolism 

In the pancreas, taurine is found mainly in most positive glucagon-

positive cell cells and some somatostatin, while it is absent in the insulin-positive 
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cells. The role of taurine in the pancreas is not clearly understood. Although a 

hypoglycemic effect of taurine was observed in 1930 until the 1990s, only a few 

studies have investigated the possible role of taurine in the regulation of glucose 

metabolism. The amino acid appears to increase gluconeogenesis and glycolysis 

glucose oxidation and the glucose uptake in the liver and the heart of adult rats. Some 

reports show that taurine increases the activity of insulin, probably by binding to the 

insulin receptors. However, the effect of taurine on the endocrine pancreas seems to 

depend on age, and adults appeared insulin secretion (Lucas et al., 2001), while in the 

fetal pancreas stimulated the release of insulin by reducing leucine and arginine 

(Cherif et at., 1998). 

2.12.4 Effect of taurine on insulin 

Taurine has a variety of biological effects, including antioxidation, 

modulation of movement of ions, osmoregulation, modulation of neurotransmitters, and 

conjugation of bile acids that can maintain physiological homeostasis. Furthermore, 

supplementation against insulin-dependent diabetes, non-insulin-dependent, and insulin 

resistance (Franconi et al., 2004; Hansen 2001; Schaffer et al., 2009). Taurine plays a 

role in the modulation of cardiovascular function, acting not only in the brain but also 

in peripheral tissues. The above data have shown that GABA taurine assets are shown. 

The functional involvement of the GABAA receptor is the relaxation of arterial 

vessels, vasodilatation and reduced blood pressure. In the preparations of the aorta, 

taurine vasorelaxation can be induced mainly GABAA receptors expressed on smooth 

muscle cells. In addition, taurine acts as an agonist of GABA receptors (Idrissi et al., 

2009). In cardiac muscle cells, taurine inhibits the increase in Ca2+ induced by the β-

adrenergic receptor stimulating agent (Failli et al., 1992). This could be mediated 
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cardiomyocyte level (e.g regulation of calcium homeostasis and contraction 

properties) or by the interaction of taurine with the autonomic nervous system (ANS) 

innervation of the heart. Taurine also proved to be a potent agonist of the GABA 

receptors, and the activation of these receptors was demonstrated to affect the 

cardiovascular function and the peripheral resistance. 

Taurine effects are mediated by the GABAA receptors. The source of 

taurine and GABA in such an environment can result from the release of these 

substances that result from the pancreas. It has been shown that the pancreas contains 

taurine and GABA. Therefore, GABA or taurine can be released through the pancreas 

and cause tonic relaxation of the smooth muscle cells in the aorta. Taurine 

independently affects insulin release from the pancreatic β-cells. First, taurine is taken 

up by the taurine transporter (TauT) on the β-cells. Once in the cytoplasm, taurine 

inactivates the ATP-sensitive K+ channel. Taurine binds to the sulfonylurea receptor 

(SUR) portion of the channel and inhibits the ATP-sensitive K+-channel leading to the 

opening of voltage-sensitive calcium channels (VSCC) or alternately the efflux of 

calcium from intracellular stores. Ultimately, the increase in cytoplasmic calcium 

concentration results in the exocytotic release of the large dense-core vesicle (LDCV) 

containing insulin and GABA. 

2.12.5 Taurine and diabetes mellitus 

It has recently been shown that taurine has positive effects in 

experimental models of DM (Trachtman et al., 1988). In the initial experimental 

studies, the positive effect of taurine occurs without any significant change in blood 

glucose. However, two long-term studies during more than 6 months have shown that 

taurine supplementation glucose, eventually lowers blood levels in rats with 
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streptozotocin (Franconi et al., 1999). There are no clear explanations for this taurine 

effect; it probably improves the spontaneous regeneration of the pancreas, which 

occurs after the injection of streptozotocin. Furthermore, in the above study Odetti, 

the taurine administration will not modify the extended products of glycosylation in 

the kidney and the skin and does not affect the glomerular disease. This is in contrast 

to other studies that have shown that taurine partially prevents diabetic 

glomerulopathy. However, Trachtman showed that taurine did not inhibit in vitro 

glycation of albumin and an inhibitory effect on the renal accumulation of 

glycosylation end products. In the rat skin, streptozotocin-injected effects of taurine 

compared with vitamin E and selenium. Interestingly, the decrease in lipid 

peroxidation and the maintenance of the activity of taurine supplementation-induced 

sodium pump are more stable than in the treated groups with vitamin E and selenium 

(Leo et al., 2003). While the treatment of diabetic patient’s leads to a lower incidence 

of diabetic complications and ultimately lowers mortality, whether taurine reduces the 

mortality in diabetics by streptozotocin via induced rat is vitamin E plus selenium. 

Although supplementation does not decrease the mortality rate, the former has 

significantly increased the survival rate (Franconi et al., 2004). The main cause of 

mortality and morbidity associated with DM and insulin-resistant condition are long-

term vascular complications; thus, taurine can reduce cardiovascular mortality. 

Clinically patients with insulin-dependent diabetes mellitus and insulin-dependent 

taurine in plasma and blood platelets decreased (Luca et al., 2001). 

Several studies have shown that taurine peroxidation products induced 

in plasmalipid-induced type 1 diabetes can prevent hyperglycemia in taurines also 

reported in type alloxan-induced diabetic rabbits. Otsuka Long Evans Tokushima 



64 

 

Fatty in rat model of non-insulin-dependent diabetes with hyperglycemia and insulin 

resistance and abdominal fat was compared to normal rats accumulated. It has been 

shown that taurine supplementation improves insulin resistance and hyperglycemia 

(Harada et al., 2004; Nakaya et al., 2000). Furthermore, an inverse correlation was 

found between the logarithm of the plasma taurine and glycated hemoglobin. In 

addition, in insulin-dependent diabetic patients, reduced taurine supplementation 

platelet aggregation, restored its own plasma levels and platelets (Franconi et al., 

2004) and removed to the inverse correlation between the logarithmic taurine and 

glycosylated hemoglobin. However, in a double-blind study with a duration of 1 year, 

taurine does not improve kidney associated with type 2 diabetes-associated 

complications (Hansen, 2001), which agrees with the results of Odetti (Odetti et al., 

2002). Therefore, the effect of taurine in the reported tissue can be specific. 

2.12.6 Taurine and fetal programming on development of type 2 Diabetes 

Mellitus 

The hypothesis that changes in the endocrine pancreas "programming" 

system persist in fetal life and childhood throughout life, creates the risk of later 

development of type 2 DM (Hales and barker, 1992). Many data show that taurine is 

important for fetal development, including pancreatic function (Sturman, 1993). A 

fetus is provided by the mothers, and when the activity of the placenta is reduced, 

fetal tissue becomes depleted of taurine. In diets, low protein diet reduces the level of 

taurine in the fetus (Cherif et al., 1998) and induces maternal DM, changes in the 

endocrine fetal pancreas (Oliver et al., 2001), and glucose tolerance in adult offspring. 

Cultured fetal pancreatic islets obtained from fetuses under our showed 

a defect in insulin secretion which was not repaired by in vitro exposure to taurine but 
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could be restored by filling mothers with taurine that confirmed taurine has an effect 

on the maturation of taurine Β-cells of the fetus (Cherif et al., 1998). Maternal taurine 

supplementation reduced the rate of apoptosis by IL-1-induced pancreatic islets 

(Merezak et al., 2004) and fetal on the DNA synthesis, which prevents the abnormal 

development of the endocrine pancreas. The plasma taurine content was low in 

diabetic pregnant rats and their offspring in the course of life and in fetuses of the next 

generation (Aerts and Van, 2001). The above results suggest that it is time to conduct 

detailed studies on the involvement of taurine in "fetal programming" to determine if 

this amino acid should be supplemented during pregnancy, to prevent insulin 

resistance and other metabolic damage up to adult and second generation. 

2.12.7 Effect of taurine on sympathetic nervous system (SNS) 

It is reported that GABA blood pressure in test animals and people after 

systemic and its main administration or suggested that the depressive effect is lowered 

by systemic administration of GABA-induced blockage of the sympathetic ganglion 

(Takahashi et al., 2005). It has been reported that GABA inhibits sympathetic 

neurotransmission in the artery by presynaptic GABA-B receptor subtype and GABA 

acts to remove GABA receptors presynaptic neurotransmitter release (and thereby 

attenuate renal vasoconstriction) upon activation of the sympathetic nervous system. 

While the sympathetic nervous system caused vasoconstriction proportional to the 

level of activation of adrenergic receptors, GABAerge system-mediated 

vasodilatation. Isolated thoracic aorta rings of rats that exacerbate chronic β-alanine 

internal taurine to norepinephrine showed reactions rich in potassium and contraction 

and improved the relaxant response to sodium nitroprusside (SNP) and acetylcholine 

(Abebe and Mozaffari, 2011). Thoracic aorta rings of rats isolated chronic taurine, 
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showed a reduction of norepinephrine and rich in potassium contraction reactions of 

nonspecific (Abebe and Mozaffari, 2000). 

2.12.8 Effects of taurine on the renin-angiotensin system and insulin 

The Renin-angiotensin system plays an important role in blood pressure 

homeostasis, the body's fluid and electrolyte balance, as well as the activation of the 

renin-angiotensin contributes to hypertension in several animal models. Taurine 

reduces hypertrophic cardiac effects of angiotensin II in the adult rat (Schaffer et al., 

2009). However, taurine deficiency in adult animals exacerbates many adverse effects 

of angiotensin II in the heart, blood vessels and kidneys (Cross et al., 2000). 

Angiotensin II induces heart hypertrophy in vivo and in vitro and taurine can inhibit 

these adult rats (Schaffer et al., 2010). 

In adult animals, taurine supplementation or the inhibition of the 

angiotensin converting enzyme, hypertension induced by high carbohydrate can 

prevent or reduce. A hypoglycemic effect of taurine reduced or delayed diabetes 

mellitus (Kim et al., 2007) and prevented by sugar induced hypertension (Harada et 

al., 2004). The hypoglycemic effects of taurine include insulin sensitivity increased 

and the secretion of pancreatic insulin. Therefore, the antihypertensive effect of 

taurine can be by decreasing the insulin resistance or inhibiting the renin-angiotensin 

system in the sugar-induced hypertension. 

2.13 Effect of exercise on diabetes mellitus 

The present study is that moderate-intensity aerobic exercise for 10 weeks in 

combination with a high-fructose diet, which prevents adverse effects of fructose-

induced hemodynamic overload, regional and metabolic rate. However, studies in 

humans have shown that the consumption of fructose can induce weight gain, reduces 
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insulin sensitivity, dyslipidemia, and hypertension (Elliott et al., 2002). Although 

calorie intake was similar between the groups, it is clear that a chronic consumption 

of fructose product causes a change in production and secretion of hormones and 

peptides appetite regulators such as ghrelin, leptin, and peptide YY, thereby 

contributing to an increase in fat and weight. In addition, in obese subjects have 

identified plasma catecholamine levels, cardiovascular abnormalities, and autonomic 

activation increased in the renin-angiotensin system several studies (Simona, 2013; 

Zouhal et al., 2010). 

In addition, the sympathetic nervous system appears to play an important role in 

metabolic and cardiovascular disorders in metabolic syndrome. In addition, 

sympathetic hyperactivity leads to insulin resistance, which can lead to the activation 

of the α1-adrenergic receptors. This sympathetic activation reduces the blood flow 

causing and thus a reduction in the administration of glucose into the skeletal muscle. 

The regular exercise program can improve metabolic and chronic cardiovascular 

adjustments. It is known that regular exercise glucose, lipid profile (Durstine and 

Haskell, 1994) and sensitivity to insulin improves body weight and improves the 

absorption of glucose by the muscle. In diabetic and hypertensive rats, physical 

training has played an important role in the treatment of metabolic disorders and self-

improvement of nervous disorders heart rate variability (HRV) baroreflex sensitivity, 

modulation of vagal pressure and blood. In addition, physical training can influence 

the metabolism, hemodynamics, and hypertension. Self-control, even in healthy 

persons (Laterza et al., 2007). In addition, chronic low stimulation rates in vivo or in 

vitro caused muscle induction of GLUT4 expression above the baseline level. 

Exercise training increases the use of glucose-mediated insulin whole body of the 



68 

 

human being, an adjustment in the muscle caused by dependent mechanisms of local 

contraction. Physical training in humans does not alter the function of the muscle 

insulin receptor, but increases the muscle GLUT4 content (Houmard et al., 1991; Dela 

et al., 1994). Similarly, chronic exercise improves the expression of GLUT4 in the 

muscle of rats (Ploug et al., 1990). In fact, it seems that a single training unit that 

improves the expression of GLUT4 in the muscles. Furthermore, chronic movement 

also increases the content of GLUT4 in insulin resistant skeletal muscle obese sugar 

rats (Snyder et al., 1990). GLUT4 is translocated site of the intracellular cell surface of 

muscle fibers in response to insulin or exercise (Zorzano et al., 2015).  

It is also shown that insulin promotes significant recruitment of GLUT4 to the 

carriers of the cell surface in cardiac myocytes. In fact, GLUT4 was recruited in 

response to the combination of insulin and exercise. The conclusion is a feature of the 

muscle cells that involve two different cell surfaces, namely the sarcomeres and T-

tubules involved in GLUT4 recruitment in response to insulin or exercise. Therefore, 

a sensitive intracellular GLUT4 movement bath of subcellular fractionation of rat 

skeletal muscle was identified; this group does not show the insulin sensitivity of 

GLUT4 indicating that different groups can be responsible for the translocation of 

GLUT4 movement dependent and insulin. 
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weaning (DM and Control groups). After weaning, male offspring were fed the 

normal rat chow and RO throughout the experiment (n = 8 each group). 

 

Figure 10 Flow chart showing experiment timeline. 

 

- Group 1: Adult male offspring from maternal non-diabetes rats were fed 

with RO ad libitum (C).  

- Group 2: Adult male offspring from maternal non-diabetes rats were fed 

with 3% taurine in RO ad libitum (T). 

- Group 3: Adult male offspring from maternal diabetes rats were fed 

with RO ad libitum (DM).  

- Group 4: Adult male offspring from maternal diabetes rats were fed 

with 3% taurine in RO ad libitum (DMT).  

- Group 5: Adult male offspring from maternal non-diabetes rats were fed 

with RO ad libitum and exercise (Ex). 

- Group 6: Adult male offspring from maternal non-diabetes rats were fed 

with 3% taurine in RO ad libitum and exercise (TEx). 

- Group 7: Adult male offspring from maternal diabetes rats were fed 

with RO ad libitum and exercise (DMEx). 



  

CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Material 

3.1.1 Animal preparation 

Male and female Wistar rats (weight 250-300 g) were bred at the animal 

unit of Suranaree University of Technology and maintained at constant humidity (60 

± 5%), temperature (24 ± 1oC), and light cycle (06:00-18:00). All rats were fed 

normal rat chow and water RO (Reverse Osmosis) ad libitum. Female rats were 

divided into two groups: the first group is non-diabetic mellitus (Non-DM) rats and 

another group is a diabetic mellitus (DM) rats. Female rats were induced by a single 

intraperitoneal injection of freshly prepare Streptozocin (STZ) 50 milligram (mg)/ 

kilogram (kg)/of body weight was dissolved in 0.1 M cold citrate buffer solution, pH 

4.5 and prepared freshly before immediately use within 10 min by intraperitoneal 

injection (IP) followed by 20% glucose in RO for 24 hour (hr) (to prevent initial drug-

induce hypoglycemic mortality). Three days later, fasting blood glucose (FBS) was 

confirmed to be 280-350 mg/dl (Gajdosik et al., 1999). Then, these animals were 

subjected to a mating procedure. The control group were similarly treated without 

diabetic induction (Control group). In experiment, the pregnant rats were caged 

individually and supplemented with 3% taurine in RO (Control plus taurine 

supplementation, T; Diabetes plus taurine supplementation, DMT) or RO alone until 
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- Group 8: Adult male offspring from maternal diabetes rats were fed 

with 3% taurine in RO ad libitum and exercise (DMTEx). 

3.1.2 Exercise protocol 

The exercise group after weaning, rats were transported to a treatment 

room, where exercise rats were forced to swimming in cylindrical tank with a 

diameter and height of 60 and 100 cm, respectively, in water at a depth of 30–45 

centimeter (cm). Water temperature was monitored and maintained at 36°C. At 4 

weeks of age, rats were forced swimming for 10 minutes (min)/5 days/ week (wk). At 

five to eleventh weeks forced swimming for 15 min/5 day/ wk. and since the twelve 

weeks is the end swimming for 1 hr/ 5 days/ wk. (Santos et al., 2010). All 

experimental procedures were approved by the universities animal care and use 

committee and were conducted in accordance with the National Institutes of Health.  

 

 

Figure 11 showing exercise protocol. 

 

3.1.3 Experimental designs 

At 16 weeks of age, fasting blood glucose and plasma insulin levels were 

determined from blood samples drawn from rat tail vein. Two days later, all rats were 

anesthetized with Nembutal (30 mg/kg of body weight, IP), implantation with femoral 
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arterial and venous catheters, and arterial pressure and heart rate continuously 

recorded by Power Lab (Pty ADInstrument Ltd., Lab Chart 5, Australia) (Chen et al., 

1998), After baseline data recording, a baroreflex sensitivity control of heart rate was 

measured by an intravenous infusion of phenylephrine (to increase arterial pressure) 

and sodium nitroprusside (to decrease arterial pressure). Then, blood samples were 

collected for blood chemistry measuring blood urea nitrogen (BUN), Creatinine (Cr), 

and blood sugar level, insulin level, and lipid profile. Pancreas were collected for 

study morphology of Islet of Langerhans. Finally, all rats were sacrifice by a high 

dose of anesthesia and heart and kidney weights were collected. 

3.2 Methods 

3.2.1 Experimental techniques  

Rats were anesthetized with Nembutal (30 mg/kg of body weight, IP), After 

hair shaving, the femoral sheath was exposed through skin incision. The femoral 

nerve, artery, and vein were then isolated from the connective tissues by arterial 

forceps. Both femoral artery and vein were inserted with Polyethylene tube-10 (PE) 

fused to PE tubes-50 containing 0.9% NaCl and heparin (20 units/ milliliters (ml)) 

into blood vessels about 2-3 centimeters for monitoring arterial pressure and 

intravenous infusion, respectively (Jespersen et al., 2012). 
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Figure 12 Flow chart showing experiment design.
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3.2.2 Determination of baroreflex sensitivity 

After catheterization, all adult male rats offspring were tracheotomized and 

tracheal tube insertion in a supine position, femoral arterial and venous catheters were 

flushed with heparinized saline. The arterial catheter was connected to a pressure 

transducer and Power Lab system to record arterial pressure and the venous one for 

fluid and drug injection as mentioned earlier. Body temperature were controlled the 

heating lamp over the animal. Then, the arterial catheter was connected to a pressure 

transducer that connected to the power lab for continuous recording of arterial pulse. 

Venous catheter was connected to syringe pump for saline and drug administration. 

After 30 mins resting, phenylephrine, a specific α-adrenergic agonist (100 mg/ml in 

saline) were intravenously infused at a rate of 0.02 ml/min for 2 mins or until mean 

arterial pressure increased about 20-30 mm Hg. The animal was allowed to rest until 

arterial pressure returned to baseline (20-30 mins). Then, sodium nitroprusside (25 

mg/ml in saline) were similarly infused until the mean arterial pressure down to 20-30 

mmHg. Baroreflex sensitivity during hypertensive or hypotensive responses were 

estimated offline by Chart 6 (Power Lab System, CA, USA). Baroreflex sensitivity 

control of heart rate were estimated by a slope of the simultaneous changes of heart 

rate to mean arterial pressure during the drug infusion (Swenne, 2013). Mean arterial 

pressure and heart rate were offline analyzed from the record arterial pressure using 

the Chart software version 6. About 20 min length of continuous tracing were used to 

average the baseline data and at least a minute length for others. 
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3.2.3 Determination of blood chemistry assay 

At the end experiment. Blood were collected and centrifuged. After that all 

serum plasma were kept in frozen -20 degree celsius until further assay for the plasma 

parameters such as plasma triglyceride (TG), total cholesterol (TC), high-density 

lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), Blood Urea 

Nitrogen (BUN), Creatinine (Cr), Alanine Aminotransferase (ALT) and Aspartate 

aminotransferase (AST) were measured by automatic blood analyzer (Jeon and Kim, 

2006) by Suranaree University of Technology hospital. 

3.2.4 Determination of insulin level 

3.2.4.1 Preparation of sample 

Whole blood was directly drawn into a centrifuge tube that contains 

no anti-coagulant kept at room temperature for 30 min and centrifuged the blood 

clotted at 2,000 g for 15 mins at 4 degrees Celsius serum samples were transferred in 

separate tube and kept at -20 degrees Celsius. 

3.2.4.2 Assay procedure 

Pre-warm all reagents to room temperature prior to setting up assay. 

the 10X wash buffer was diluted (50mM Tris buffered saline containing Tween-20) 

concentrate 10-fold by mixing the entire content of each bottle of wash buffer with 

450mL de-ionized water (DW). (Dilute both bottles with 900 ml deionized water). 

The required number of strips was removed from the microtiter assay plate. Unused 

strips should be resealed in the foil pouch and stored at 2-8°C. Assemble strips in an 

empty plate holder and wash each well 3 times with 300 µL of dilute wash buffer per 

wash. Wash buffer was decanted and removed the residual amount from all wells by 

inverting the plate and tapping it smartly onto absorbent towels several times. Do not 
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let wells dry before proceeding to the next step. 10 µL of assay buffer was added 

(0.05 M phosphosaline pH 7.4, 0.025M EDTA, 0.08% sodium azide and 1% BSA) 

follow by 10 µl matrix solution (Charcoal stripped pooled mouse serum) to each of 

the blank standard and control wells. After that, 10 µl of rat insulin standards was 

added in duplicate in the order of ascending concentration to the appropriate wells. 

Next, 10 µl of duplicate was added to the appropriate wells. After that, 10 µl 

Rat/Mouse insulin quality control 1 (QC1) and 10 l Rat/Mouse insulin quality 

control 2 (QC2) were added to the appropriate wells, respectively. Next, 10 µl of 

samples were added of the unknown samples in duplicates to remaining wells follow 

by 80 µl of Detection Antibody (Pre-titered biotinylated anti-insulin antibody). The 

plate was covered with plate sealer and incubated at room temperature for 2 hours on 

an orbital microtiter plate shaker set to rotate at moderate speed, about 400 to 500 

rpm. After that, plate sealer was removed and decanted solutions from the plate. Tap 

as before to removed residual solutions in well. Wells were washed 3 times with 

diluted wash buffer, per well per wash. Decant and tap after each wash to removed 

residual buffer.  100 µL of Enzyme Solution was added (Pre-titered streptavidin-

horseradish peroxidase conjugate in buffer) to each well. Plate was covered with 

sealer and incubated with moderate shaking at room temperature for 30 min on the 

microtiter plate shaker. After that, sealer was removed and decant solutions was 

removed from the plate and tap plate to the residual fluid. Next, wells were washed 6 

times with diluted Wash Buffer, 300 µl per well per wash. Decant and tap after each 

wash to remove residual buffer. 100 µl of Substrate Solution was added (3,3’,5,5’-

tetramethylbenzidine in buffer) to each well, plate with sealer was removed and shake 

in the plate shaker for approximately 5 to 20 mins. Blue color should be formed in 



78 

 

wells of Insulin Standards with intensity proportional to increasing concentrations of 

insulin. Next, Sealer was removed and added 100 µl stop solution (0.3M HCl) and 

shake plate by hand to ensure complete mixing of solution in all wells. The blue color 

should turn into yellow after acidification. Finally, the bottom of the microtiter plate 

was wiped to remove any residue prior to reading on plate reader. Read absorbance at 

450 nm and 590 nm in a plate reader within 5 minutes and ensure that there are no air 

bubbles in any well. The difference of absorbance units was recorded (Tulin et al., 

2012; Nakagawa et al., 2011; Zhen et al., 2011). 

3.2.5 Determination of AT1 receptor expression 

3.2.5.1 Preparation of sample  

Heart and Kidney were fixed with liquid nitrogen and kept at -20 

degree celsius and then organ was kept in cool (dry iced) and prepared for 

homogenization by break down organ to small size. Fix solution was prepared for 

homogenize organ by phosphatase inhibitor (cocktail 1:100, 100mM NaF 1:100, 

100mM NaV2O5 1:100, 500mM β-glycophosphate 1:100 and RIPA (50mM Tris-base 

PH 8.0, 150 mM NaCl PH 8.0, 0.5% DOC, 1% NP-40, 0.1% SDS). Next, phosphatase 

solution was put into test tube and put all sample break down in to same tube were 

homogenized. Next, sample was kept in cool. 30 mins later, homogenize sample was 

transferred to new microtube and centrifuged at 12,000 g for 20 mins and then 

supernatant was transferred onto new microtube and 2-5 µl of supernatant was 

separated for measuring spectrum absorbent by microplate reader for calculation the 

concentration of protein in supernatant and how to know the quality of protein to in 

the running gel. After measuring absorbent, all sample were calculated concentration 

of protein. Next, calculation protein was removed to new microtube and mixed with 
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RIPA (50mM Tris-base PH 8.0, 150 mM NaCl PH 8.0, 0.5% DOC, 1% NP-40, 0.1% 

SDS) and mixed with dye (1:5) by vortex. Finally, all sample was boiled by heat for 

10 mins and kept cool down, respectively. 

3.2.5.2 Preparation of gel for running  

Lower gel: 10% Persulfate was prepared (Ammonium Persulfate 30 

mg, H2O 270 µl). Next, solution was mixed for preparing 12% gel (DDW 4.3 ml, 40% 

acrylamide 3.0 ml, Lower buffer 2.6 ml (1.5M Tris base pH 8.8 18.16 g, 0.4% SDS 

0.4 g, DDW 100 ml), Persulfate 0.20 ml, TEMED 0.004 mL) total volume 100 ml and 

then lower gel was loaded into block and isopropanol was loaded into the same block 

(get rid of bubble) and waited for 20 mins for stronger gel. Gel was rinsed by DW for 

3 times after gel stronger. After that, 5% stacking gel was prepared (upper gel) (DDW 

3.1 ml, 40% acrylamide 0.62 ml, Upper buffer 1.26 ml (0.5 M Tris base pH 8.8 6.055 

g, 0.4% SDS 0.4 g, DDW 100 ml), Persulfate 50 µl,) total volume 5 ml. Next, 

stronger gel was raised by DW and upper gel was loading into the same gel for upper 

gel. The comb was put into the upper gel and wait for until the upper gel strong. 

Finally, sample was loaded into well (marker was loaded into the first and the last 

well 5 µl each well). The block was closed and opened the electricity (100 V). 

3.2.5.3 Preparation of transfer AT1 process 

Sponge, filtration paper, transfer paper polyvinylidene difluoride 

(PVDF) were stained in transfer buffer (Glycine 14.4 g, Trizma base 3.03 g, DW 800 

ml, Methanol 200 ml). A sandwich was prepared for each gel from bottom to top 

consist of black cassette, sponge, filter paper, gel, membrane paper (PVDF), sponge 

and white cassette, respectively. The sandwich was placed into the black/red holder 

(black cassette facing the black side of the container). A container was filled with 
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transfer buffer and ice pack and then switch on run transfer at 100 V for 1 hr. Next, 

milk blocking solution was prepared (150 ml/membrane: PBS pH7.4 150 ml, non-fat 

dry milk 7.5 g, 0.1% Tween 150 µl) and mixed in a beaker with stirring bar. At the 

time to finish, ice pack, transfer buffer, cassette wear removed, and the membrane 

paper was taking to stain in Ponceau stain for 1 min. Next, the stain was removed and 

rinsed with DW several times. After that, the membrane was cut into smaller size and 

put the cut membrane into a rectangular plastic container and 10 ml milk blocking 

solution was added to it. the milk blocking solution was changed every 15 mins for 1 

h. The container was put on the rocker (speed level 4) then milk was discarded. Next, 

antibody was added (Rabbit Anti-AT1 receptor affinity purified polyclonal antibody: 

1:500, AB15552-50UL, Millipore, USA) into milk solution and then applied to the 

membrane and incubated at 4 degrees Celsius overnight. Next, milk was discarded 

and changed the milk solution every 15 mins for 1 h and then secondary antibody was 

added (a goat anti-rabbit IgG, Peroxidase conjugated: 1: 5,000, AP132P, Millipore, 

USA) into milk solution and incubated at room temperature for 1 hr on a rocker 

(speed level 2). Next, Transfer membrane was washed with milk solution every 15 

min for 45 mins follow by tris-buffered saline (TBS) (25mM Tris pH 7.5, 150mM 

NaCl) every 15 min for 30 mins. Chemiluminescent reagent 1X ECL reagent was 

prepared (12630, Cell Signaling Technology, USA) by diluting one-part 2X reagent A 

and part 2X reagent B (for 10 ml, add 5 ml Reagent A and 5 ml reagent B) and mixed 

well. TBS solution was discarded and chemiluminescent reagent was dropped into 

transfer membrane for 1 min and kept membrane paper to develop box and take a 

photo. 
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3.2.5.4 Preparing of transfer actin process 

The same transfer membrane was put into a rectangular plastic 

container and 10 ml of milk blocking solution was added to it. The milk blocking 

solution was changed every 15 mins for 1 hr. The container was put on the rocker 

(speed level 4) and then discarded milk. Next, Anti-Actin, clone 4 was added 

(Monoclonal: 1:500, MAB1501, Millipore, USA) with milk blocking solution and 

incubated at room temperature for 2 hr. on a rocker (speed level 2) Next, milk was 

discarded and transfer membrane was washed for 3 times with TBS (25mM Tris pH 

7.5, 150mM NaCl) for 3-5 mins each wash. Next, the transfer membrane was 

incubated with secondary antibody (A goat anti-mouse IgG (H+L) HRP conjugated, 1: 

5,000: AP124P, Millipore, USA) in TBS with milk solution for 60 mins at room 

temperature and the transfer membrane was washed 3 times in TBS for 3-5 mins each 

wash. Finally, chemiluminescent reagent was used for detection band of actin. 

Analysis of intensities of angiotensin II type 1 (AT1) expression was conducted using 

image J software. In each band, 5 areas were randomly selected and the intensities 

were then analyzed. The experiment was repeated using tissue from 5 different 

individuals. The intensities were show as mean ± S.D. The means among group were 

compared using one-way analysis of variance (ANOVA), Followed by a Duncan’s 

multiple range test. The probability value less than 0.05 (P<0.05) was used to indicate 

a significant difference. 

3.2.6 Determination of histology in pancreas tissue 

The pancreatic were harvested from the sacrificed rat after dissection and 

weight, washing with saline. The specimens were stretched on filter paper and 4% 

paraformaldehyde. The specimen was fixed and into the processed for dehydration, 
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after that embedded in paraffin blocks. The paraffin section was thinner 4 micrometer 

(µm) paraffin by a rotary microtome. The sections were stained with hematoxylin and 

eosin (H&E) The sections were stained with H&E using the traditional method, 

sections were infused in xylene for clear up of paraffin. The sections were rehydrated 

by infuse graded series of alcohol (100-70%) and then distilled water, followed by 

staining with hematoxylin for 3-5 mins wash in running tap water until sections is 

blue color for 5 mins or less, differentiate in 1% acid alcohol (1% HCl in 70% 

alcohol) for 5 mins. washing in running tap water until the sections are again blue by 

dipping in an alkaline solution (eg. ammonia water) followed by tap water wash. stain 

in 1% eosin Y for 10 mins washing in tap water for 1-5 mins and dehydrate for 

increasing concentration of alcohols and clear in xylene. Finally, the samples mount 

in mounting media (Rahier et al., 2008; Longnecker, 2014). and observe under 

microscope. 

The percentages of number islet of Langerhans were calculated. From each 

section, 10 microscopic fields were photographed. The percentages of number islet of 

Langerhans were then calculated as described below. 
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3.3 Data analysis 

1. Cardiovascular parameter: Blood pressure and heart rate. These data 

were recorded and analyzed by Power lab and Lab chart program. 

2. The baroreflex sensitivity (ΔHR⁄ ΔBP), as measured by the changes in 

heart rate (ΔHR) and mean blood pressure (ΔBP). 

3. Baroreflex sensitivity were measured by the IV injection of 

phenylephrine and sodium nitroprusside as described previously. The delta changes in 

heart rate (ΔHR) and delta change in mean blood pressure (ΔBP) after the injection 

were measured. 

4. The baroreflex sensitivity was then calculated as the delta change in 

heart rate divided by the delta change in blood pressure (ΔHR⁄ ΔBP). 

3.4 Statistical analysis 

All data are expressed as mean ± SD. Statistical comparisons among the eight 

groups were performed by using one-way ANOVA followed by the post hoc 

Duncan’ s Multiple Range test (StatMost32 version 3.6, Dataxiom, CA, USA). The 

probability value less than 0.05 (P≤0.05) was used to indicate a significant difference. 



CHAPTER IV 

RESULTS 

 

4.1 Body weight, organ weight and blood chemistry  

In adult male rats offspring, at 16-18 weeks of age, body weights differences 

decreased significantly in offspring from maternal diabetes rats (DM) when compared 

with control group (C) (384 ± 15.27 versus 357 ± 7.55, P≤0.05) and then differences 

decreased significantly in the exercise group compared with a non-exercise group. 

While heart and kidney weight differences increased significantly in the exercise 

groups compared with non-exercise groups (Table 1). FBS and TG differences 

increased significantly in offspring from maternal diabetes rats (DM) when compared 

with control group (C) (116.1 ± 12.30 versus 82.5 ± 6.04, P≤0.05) (166.6 ± 19.80 

versus 130.0 ± 14.45, P≤0.05). While, plasma insulin level differences decreased 

significantly in offspring from maternal diabetes rats (DM) compared with control 

group (C) (7.2 ± 1.81 versus 10.1 ± 13.00, P≤0.05). FBS and TG differences 

decreased significantly in exercise groups when compared with non-exercise groups. 

While insulin level differences increased significantly in exercise groups when 

compared with non-exercise groups. No significant differences in cholesterol were 

observed among groups. HDL levels differences decreased significantly in offspring  
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from maternal diabetes rats (DM) compared with control group (C) (51.7 ± 6.20 

versus 62.0 ± 3.89, P≤0.05). In contrast to LDL level difference increased 

significantly in offspring from maternal diabetes rats (DM) compared with control 

group (C) (122.0 ± 15.91 versus 106.6 ± 5.50, P≤0.05) (Table 2). The level of HDL 

increased and LDL decreased in exercise groups. Blood urea nitrogen (BUN) 

difference decreased significantly in offspring from maternal diabetes rats (DM) 

compared with control group (C) (23.1 ± 3.60 versus 25.1 ± 1.40, P≤0.05). No 

significant differences in serum creatinine were observed among group. While, SGOT 

difference increased significantly in offspring from maternal diabetes rats (DM) 

compared with control group (C) (106.3 ± 9.91 versus 134.8 ± 15.18, P≤0.05) and 

SGPT difference decreased significantly in offspring from maternal diabetes rats 

(DM) compared with control group (C) (33.5 ± 6.40 versus 44.7 ± 7.10, P≤0.05) 

(Table 3). SGOT and SGPT increased in taurine supplementation with exercise group 

(TEx).
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Table 4.1 Body weight, heart weight, kidney weight. 

Each value is mean ± SD for eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range test. Different letters indicate different values 

among group (P≤ 0.05). (C, Control; T, Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal diabetes rats were fed with 3% 

taurine; Ex, Exercise; TEx, offspring from maternal non-diabetes rats were fed with 3%  taurine and exercise; DMEx, offspring  from maternal diabetes rats 

were fed with RO and exercise; DMTEx, offspring from maternal diabetes rats were fed with 3% taurine and exercise). 

Treatment Body weight (g) Heart weight (g) Kidney weight (g) HW/BW (%) KW/BW (%) 

C 384 ± 15.27a 1.29 ± 0.09b 1.38 ± 0.13a 0.34 ± 0.02d 0.36 ± 0.04b 

T 386 ± 19.80a 1.29 ± 0.09b 1.27 ± 0.10b 0.34 ± 0.01d 0.33 ± 0.01c 

DM 357 ± 7.55b 1.33 ± 0.09b 1.15 ± 0.08c 0.37 ± 0.03c 0.32 ± 0.02c 

DMT 347 ± 14.63b 1.30 ± 0.11b 1.14 ± 0.08c 0.38 ± 0.03c 0.33 ± 0.02c 

Ex 322 ± 3.70c 1.42 ± 0.01a 1.37 ± 0.04a 0.44 ± 0.01b 0.43 ± 0.01a 

TEx 313 ± 4.70cd 1.43 ± 0.01a 1.38 ± 0.05a 0.46 ± 0.03ab 0.44 ± 0.01a 

DMEx 298 ± 4.34e 1.37 ± 0.01ab 1.30 ± 0.03ab 0.46 ± 0.01ab 0.44 ± 0.03a 

DMTEx 304 ± 5.02de 1.42 ± 0.01a 1.36 ± 0.01a 0.47 ± 0.01a 0.45 ± 0.02a 
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Table 4.2 Blood chemistry. 

Treatment Fasting blood 

sugar (mg/dl) 

Insulin level 

(ng/ml) 

Triglyceride 

(mg/dl) 

Total cholesterol 

(mg/dl) 

HDL (mg/dl) LDL (mg/dl) 

C 82.5 ± 6.04c 10.1 ± 13.00ab 130.0 ± 14.45b 80.3 ± 13.84a 62.0 ± 3.89b 106.6 ± 5.50b 

T 82.4 ± 3.34cd 14.5 ± 3.41ab 124.5 ± 11.60b 77.8 ± 9.53a 60.6 ± 4.74b 105.6 ± 8.89b 

DM 116.1 ± 12.30a 7.2 ± 1.81c 166.6 ± 19.80a 85.2 ± 18.79a 51.7 ± 6.20c 122.0 ± 15.91a 

DMT 85.3 ± 4.51c 10.7 ± 2.61bc 132.6 ± 19.20b 80.2 ± 15.30a 61.5 ± 4.14b 102.0 ± 9.65b 

Ex 76.6 ± 7.60d 16.0 ± 5.23a 121.0 ± 10.50b 82.2 ± 10.60a 74.1 ± 7.07a 103.7 ± 7.40b 

TEx 77.8 ± 8.01d 15.6 ± 5.12a 121.6 ± 10.80b 84.1 ± 9.40a 74.0 ± 6.78a 106.0 ± 7.70b 

DMEx 92.6 ± 5.02b 14.5 ± 4.11ab 123.0 ± 6.70b 90.7 ± 13.90a 75.0 ± 8.51a 108.3 ± 15.30b 

DMTEx 81.1 ± 5.80cd 14.6 ± 5.41ab 120.0 ± 11.60b 83.5 ± 9.10a 76.7 ± 10.56a 102.0 ± 11.70b 

Each value is mean ± SD for eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range test. Different letters indicate different 

values among group (P≤ 0.05). (C, Control; T, Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal diabetes rats were 

fed with 3%  taurine; Ex, Exercise; TEx, offspring from maternal non-diabetes rats were fed with 3%  taurine and exercise; DMEx, offspring  from 

maternal diabetes rats were fed with RO and exercise; DMTEx, offspring from maternal diabetes rats were fed with 3%  taurine and exercise).(HDL, 

high density lipoprotein; LDL, low density lipoprotein) 
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Table 4.3 Blood Urea Nitrogen, Serum creatinine, SGOT and SGPT. 

Each value is mean ± SD for eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range test. Different letters indicate different 

values among group (P≤0.05). (C, Control; T, Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal diabetes rats were fed 

with 3% taurine; Ex, Exercise; TEx, offspring from maternal non-diabetes rats were fed with 3% taurine and exercise; DMEx, offspring  from maternal 

diabetes rats were fed with RO and exercise; DMTEx, offspring from maternal diabetes rats were fed with 3% taurine and exercise)

Treatment Blood Urea Nitrogen 

(mg/dl) 

Serum creatinine 

(mg/dl) 

SGOT (µ/l) SGPT (µ/l) 

C 25.1 ± 1.40ab 0.45 ± 0.11a 134.8 ± 15.18a 44.7 ± 7.10a 

T 24.7 ± 1.80ab 0.43 ± 0.10a 142.1 ± 15.68a 41.8 ± 6.70b 

DM 23.1 ± 3.60c 0.41 ± 0.11a 106.3 ± 9.91b 33.5 ± 6.40c 

DMT 25.1 ± 1.91ab 0.41 ± 0.08a 134.3 ± 14.90a 35.8 ± 7.10c 

Ex 26.2 ± 2.31a 0.49 ± 0.11a 133.7 ± 14.00a 50.6 ± 8.70a 

TEx 26.1 ± 1.92a 0.40 ± 0.13a 143.0 ± 12.70a 45.2 ± 6.41a 

DMEx 23.3 ± 3.20ab 0.39 ± 0.12a 125.1 ± 9.50a 44.7 ± 6.90a 

DMTEx 24.7 ± 3.20ab 0.43 ± 0.07a 135.8 ± 10.60a 41.5 ± 6.61b 
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4.2 Mean arterial pressures and baroreflex sensitivity 

 

 

Figure 13 Mean arterial pressures (Each value is mean ± SD for eight rats in each 

group. ANOVA followed by post hoc Duncan’s multiple range test. Different letters 

indicate different values among group (P≤0.05). (C, Control; T, Taurine; DM, 

offspring from maternal diabetes rats; DMT, offspring from maternal diabetes rats 

were fed with 3% taurine; Ex, Exercise; TEx, offspring from maternal non-diabetes 

rats were fed with 3% taurine and exercise; DMEx, offspring  from maternal diabetes 

rats were fed with RO and exercise; DMTEx, offspring from maternal diabetes rats 

were fed with 3% taurine and exercise). 
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Mean arterial pressures (MAP) difference increased significantly in offspring 

from maternal diabetes rats (DM) when compared with another groups. Taurine 

supplementation and exercise can maintain mean arterial pressures not to exceed. 

While heart rates (HR) difference decreased significantly in exercise-groups when 

compared with non-exercise groups. However, we found that no significant 

differences in HR were observed in offspring from maternal diabetes rats (DM) and 

offspring from maternal diabetes rats were fed with 3% taurine (DMT), In contrast, 

offspring from maternal diabetes rats were fed with 3% taurine and exercise 

(DMTEx) decreased MAP and HR when compared with non-exercise groups. 

MAP, the baroreflex sensitivity control of heart rate induced by either 

phenylephrine (PHE) or sodium nitroprusside (SNP) infusion difference were lower 

than in diabetes group when compared with another group. On the other hand, 

Perinatal taurine supplementation abolished these adverse effects of maternal diabetes 

mellitus without any effect on hemodynamic parameters in the control groups. While 

Baroreflex sensitivity difference were higher than in exercise groups when compared 

with non-exercise groups. 
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Figure 14 Heart rates (Each value is mean ± SD for eight rats in each group. ANOVA 

followed by post hoc Duncan’s multiple range test. Different letters indicate different 

values among group (P≤0.05). (C, Control; T, Taurine; DM, offspring from maternal 

diabetes rats; DMT, offspring from maternal diabetes rats were fed with 3% taurine; 

Ex, Exercise; TEx, offspring from maternal non-diabetes rats were fed with 3% 

taurine and exercise; DMEx, offspring  from maternal diabetes rats were fed with RO 

and exercise; DMTEx, offspring from maternal diabetes rats were fed with 3% taurine 

and exercise). 
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Figure 15 Baroreflex sensitivity of heart rate response to phenylephrine. (Each value 

is mean ± SD for eight rats in each group. ANOVA followed by post hoc Duncan’s 

multiple range test. Different letters indicate different values among group (P≤0.05) 

(C, Control; T, Taurine; DM, offspring from maternal diabetes rats; DMT, offspring 

from maternal diabetes rats were fed with 3% taurine; Ex, Exercise; TEx, offspring 

from maternal non-diabetes rats were fed with 3% taurine and exercise; DMEx, 

offspring from maternal diabetes rats were fed with RO and exercise; DMTEx, 

offspring from maternal diabetes rats were fed with 3% taurine and exercise). 
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Figure 16 Baroreflex sensitivity of heart rate response to sodium nitroprusside. 

(Each value is mean ± SD for eight rats in each group. ANOVA followed by post 

hoc Duncan’s multiple range test. Different letters indicate different values among 

group (P≤0.05). (C, Control; T, Taurine; DM, offspring from maternal diabetes rats; 

DMT, offspring from maternal diabetes rats were fed with 3% taurine; Ex, Exercise; 

TEx, offspring from maternal non-diabetes rats were fed with 3% taurine and 

exercise; DMEx, offspring  from maternal diabetes rats were fed with RO and 

exercise; DMTEx, offspring from maternal diabetes rats were fed with 3% taurine 

and exercise). 
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4.4 Islet of Langerhans of pancreas 

 

Figure 17 Islet of Langerhans of pancreas stained by H&E. Scale Bars = 200 µm. 

 

Islet of Langerhans of pancreas stained by H and E (Figure 17) observe in 

offspring from maternal diabetes rats (DM) was smaller size of Islet of Langerhans 

when compared with control group (62.22 versus 89.23 µm). When taurine 
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supplementation with exercise can maintain body size or increased body size islet of 

Langerhans. 

 

Figure 18 Percentage of number islet of Langerhans. (Each value is mean ± SD for 

eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range test. 

Different letters indicate different values among group (P≤0.05). (C, Control; T, 

Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal 

diabetes rats were fed with 3% taurine; Ex, Exercise; TEx, offspring from maternal 

non-diabetes rats were fed with 3% taurine and exercise; DMEx, offspring  from 

maternal diabetes rats were fed with RO and exercise; DMTEx, offspring from 

maternal diabetes rats were fed with 3% taurine and exercise). 

 

The percentage of islet of Langerhans number no significant differences in 

offspring from maternal diabetes rats (DM) when compared with control groups. The 
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percentage of islet of Langerhans number difference were higher than in taurine 

supplementation with exercise group when compared with another group.  

4.5 Expression of AT1 receptor in heart and kidney 

 

Figure 19 Expression of AT1 receptor in heart. 

 

Percentages expression of AT1 receptor in heart difference increased significantly 

in offspring from maternal diabetes rats (DM) when compared with control groups 

(61.33 ± 1.53% versus 40.66 ± 2.52%, P≤0.05). When offspring from maternal diabetes 

rats (DMT) plus taurine, offspring from maternal diabetes rats with exercise (DMEx), 

and offspring from maternal diabetes rats plus taurine with exercise (DMTEx), 

expression of AT1 receptor in heart difference were lower than in offspring from 

maternal diabetes rats (DM).  
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Figure 20 Percentage expression of AT1 receptor in heart (Each value is mean ± SD 

for eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range 

test. Different letters indicate different values among group (P≤0.05). (C, Control; T, 

Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal 

diabetes rats were fed with 3% taurine; Ex, Exercise; TEx, offspring from maternal 

non-diabetes rats were fed with 3% taurine and exercise; DMEx, offspring  from 

maternal diabetes rats were fed with RO and exercise; DMTEx, offspring from 

maternal diabetes rats were fed with 3% taurine and exercise). 
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Figure 21 Expression of AT1 receptor in kidney. 

 

Percentages expression of AT1 receptor in kidney difference increased 

significantly in offspring from maternal diabetes rats (DM) when compared with 

control groups (65.05 ±2.53% versus 41.94 ±1.78%, P<0.05). When offspring from 

maternal diabetes rats (DMT) plus taurine, offspring from maternal diabetes rats with 

exercise (DMEx), and offspring from maternal diabetes rats plus taurine with exercise 

(DMTEx), expression of AT1 receptor in heart difference were lower than in offspring 

from maternal diabetes rats (DM).  

 



99 

 

 

 

       

 

Figure 22 Percentage expression of AT1 receptor in kidney. (Each value is mean ± SD 

for eight rats in each group. ANOVA followed by post hoc Duncan’s multiple range 

test. Different letters indicate different values among group (P≤0.05) (C, Control; T, 

Taurine; DM, offspring from maternal diabetes rats; DMT, offspring from maternal 

diabetes rats were fed with 3% taurine; Ex, Exercise; TEx, offspring from maternal 

non-diabetes rats were fed with 3% taurine and exercise; DMEx, offspring from 

maternal diabetes rats were fed with RO and exercise; DMTEx, offspring from 

maternal diabetes rats were fed with 3% taurine and exercise). 

 



 
 

CHAPTER V 

DISCUSSION AND CONCLUSION 

 

5.1 Body weight and organ weight 

The present study, body weights differences decreased significantly in offspring 

from maternal diabetes rats (DM) when compared with control group (384 ± 15.27 

versus 357 ± 7.55, P≤0.05). The previous study found that diabetes is an autoimmune 

damage of pancreatic β cells brings to a defect of insulin secretion that goes to be the 

metabolic disorder about with diabetes. In additional various biochemical mechanisms 

that report for damage of tissue response to insulin. Imperfection in insulin advance to 

uncontrolled lipolysis and high levels of free fatty acids in the plasma, which are 

repressed glucose metabolism have the affected to peripheral tissues, which are 

involved the weight loss such as skeletal muscle (muscle weakness) (Westerblad et 

al., 2010). Insulin resistance is reduced glucose uptake in peripheral tissues leads into 

reduced rate of glucose metabolism. However, the level of hepatic glucokinase is 

controlled by insulin secretion. Therefore, a lower rate of glucose phosphorylation in 

hepatocytes bring to high delivery to the plasma (Westerblad et all., 2010). In 

addition, body weights differences decreased significantly in all exercise groups 

compared with non-exercise groups. It was observed that the final body mass of rats 

trained with moderate intensity exercises were smaller after 12 weeks period of 

physical training, suggesting increase in the energy use in these animals. The 

processes of metabolic are suggesting increase in the energy use in these animals.
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The processes of metabolic are responsible for creating adenosine triphosphate (ATP), 

the energy source for all muscle action. ATP is created by three basic energy systems.  

First, the ATP-phosphocreatine (ATP-PCr) system, second is the glycolytic 

system and third is the oxidative system. In each system supply to energy production 

in every type of exercise. The corresponding addition of each will base on influence 

such as the energy of activity rate at the start of exercise and the show of oxygen in 

the muscle. The processes of metabolic adaptations appear in skeletal muscle in 

response to endurance training. Adaptation combined with the high in capillaries and 

muscle blood flow in the trained, highly enlarge the oxidative capacity of the 

endurance-trained muscle. Endurance training also enlarges the capacity of skeletal 

muscle to store glycogen (Kiens et al., 1993). The understanding of trained muscles to 

use fat as an energy source is also improved, and this high dependence on fat spares 

glycogen stores (Kiens et al., 1993). The high capacity to use fat succeeding 

endurance training results from an enlarger can be to activate free-fatty acids from fat 

store and an enhanced capacity to oxidize fat consistent to the high in the muscle 

enzymes important for fat oxidation (Jack et al, 1994). 

Heart weight differences increased significantly in all exercise groups compared 

with non-exercise groups. Moreover, infinite variables may lead cardiac hypertrophy 

in rats present to physical exercises, such as the density, intensity and period of the 

physical training series, over and above the training program period. Another 

influence consists of star the age at the onset of the training, sex and group of animals 

used in the physical training (James et al., 1974). Therefore, the results show in this 

investigation linked to the heart’s corresponding weight after low and high intensities 

training, allow with the previous mentioned above. Furthermore, low intensity 
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exercises did not affect for increase in the heart weight of trained rats, in 

corresponding to the non-trained. Yet, there was increase in the related weight of these 

organs and myocytes hypertrophy, expose through the histopathological investigation 

of the rats trained at high intensity. 

Kidney weight differences increased significantly in all exercise groups 

compared with non-exercise groups. According to Shizuru (Shizuru et al., 1991), the 

renal responses to physical exercises are related to their intensity, therefore, exercises 

performed at low intensities increase the urinary flow and the sodium excretion, while 

at high intensities, these two parameters considerably decrease. Maybe such decrease 

is due to the high plasmatic indices of aldosterone, hormone which progressively 

increases, reaching up to six times more than the indices observed in resting bodies, as 

means of keeping the body liquids and the homeostasis. Actually, Carla (Carla et al., 

2016) reported that the primary function of the kidneys is to regulate the volume and 

composition of the extra cellular liquid, and hence, these alterations that occur during 

the performance of physical exercises may generate hemodynamic changes and 

changes in the sodium and water excretion. It may be coming from the changes 

mechanism in the homeostatic mechanism such as increased cardiac output and blood 

pressure during stress have the effected to contributed increased kidney weight after 

stress (Chang et al., 1995). Stress were inducing adrenal hypertrophy is a well-

established phenomenon. Strong stimulation of the adrenal glands during prolonged 

stress situations is known to cause adrenal hyperplasia and hypertrophy (Marti et al., 

1993; Tuli et al., 1995). The regular and appropriate exercise is believed to be 

beneficial to overall health and has a positive effect on various organs, heart and liver 
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in particular. However, exhaustive exercise may result in organ damage in the liver 

and kidney as was first demonstrated by Fojt (Fojt et al., 1976). 

5.2 Blood chemistry  

FBS and TG differences increased significantly in offspring from maternal 

diabetes rats (DM)when compared with control group (116.1 ± 12.30 versus 82.5 ± 

6.04, P≤0.05) (166.6 ± 19.80 versus 130.0 ± 14.45, P≤0.05). While, plasma insulin 

level differences decreased significantly in offspring from maternal diabetes rats 

(DM) compared with control group (7.2 ± 1.81 versus 10.1 ± 13.00, P≤0.05). 

According Schalaan found to increase significantly in FBS in maternal diabetes rats 

could be due to the destruction of the pancreatic β-cell by STZ in rat mothers that 

affect to children could cause plasma insulin levels to decrease (Weyer et al., 2000; 

Wohaieb et al., 1987). Elevation of blood glucose may be attributed to the reduced 

entry of glucose to peripheral tissues, muscle and adipose tissue (Beck-Nielsen, 

2002), increased glycogen breakdown (Gold, 1970) and increased gluconeogenesis 

and hepatic glucose production (Raju et al., 2001). In a group of diabetic rats were 

have taurine combination with exercise, there was a significant reduction in blood 

glucose levels and increased insulin levels in adult rats. Similarly, to Miyazaki the 

serum glucose level in the exercise without taurine group was significantly decreased 

compared to that in the non-exercise without a taurine group (Miyazaki et al., 2004). 

The study found that exercise improves insulin sensitivity. As a result, glucose uptake, 

the greater per unit of insulin. It the flow of blood to the working muscles to increase 

the size of perfused capillary and the number of insulin receptors are present (Wahren 

et al., 1971) and exercise can facilitate the glycemic control by increased insulin 

sensitivity, improved fuel for oxidation, and increased storage of muscle glycogen 
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(Doi et al., 1979). The previous study found that taurine supplementation diabetes 

during pregnancy reduced the rate of apoptosis by IL-1-induced pancreatic islets 

(Merezak et al., 2004) and fetal on the DNA synthesis, which prevents the abnormal 

development of the endocrine pancreas (Sangeeta et al., 2007). The plasma taurine 

content was low in diabetic pregnant rats and their offspring in the course of life and 

in fetuses of the next generation (Aerts and Van, 2002). The above results suggest that 

it is time to conduct detailed studies on the involvement of taurine in "fetal 

programming" to determine if this amino acid should be supplemented during 

pregnancy, to prevent insulin resistance and other metabolic damage up to adult and 

second generation. In addition, taurine administration for 4 weeks enhances both the 

growth of the β-cell islets of the pancreas and the degree of insulin secretion (Idrissi et 

al., 2009) and protects the β-cells from death or a functional defect induced by several 

stresses, such as hyperglycemia and hyperlipidemia (Oprescu et al., 2007; Chang, 

2000; Tang et al., 2007). 

HDL levels differences decreased significantly in offspring from maternal 

diabetes rats (DM) when compared with control group (51.7 ± 6.20 versus 62.0 ± 

3.89, P≤0.05). In contrast to LDL level difference increased significantly in offspring 

from maternal diabetes rats (DM) when compared with control group (122.0 ± 15.91 

versus 106.6 ± 5.50, P≤0.05). Effect insulin production apolipoprotein regulates the 

enzyme lipoprotein lipase and cholesterol ester transport protein, which is causing the 

fat with diabetes. The previous study found that insulin deficiency reduces the activity 

of hepatic lipase and lipoprotein lipase. Hypertriglyceridemia occurs by decreased 

HDL cholesterol, important feature of the plasma lipid abnormalities found in 

diabetes. (Grundy et al., 2004; Wang et al., 2012). Hypertriglyceridaemia, caused of 
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very low-density lipoprotein (VLDL) triglyceride lipoproteins and increased nutrient 

levels in the secretion of free fatty acids and triglycerides glucose (Ginsberg, 2005). 

The report also states that it will result in a pattern in high blood lipid levels (elevation 

of serum triglycerides, cholesterol, LDL-C, reduction in HDL), triglycerides and 

cholesterol accumulated in the liver associated with a reduction in liver glycogen 

content as supported by previous studies (Schaalan et al., 2009). Clinical 

characteristics related to hepatic steatosis disease include obesity, hyperlipidemia, and 

diabetes, all of which are attributable to insulin resistance. (Harrison et al., 2002).  

In the present study, rats swimming for exercise group showing differences 

increased significantly in high-density lipoprotein (HDL) levels, but decreased 

significantly in lipoprotein, low density (LDL). Our observations support the idea that 

exercise affects lipid and lipoprotein metabolism. (Oyelola and Rufai, 1993). The 

previous studies have reported that body training regularly promotes increased plasma 

concentrations of HDL (Thompson et al., 2001) and decrease in its concentration of 

LDL cholesterol (Silva et al., 2011).  

In this study, shows the blood urea nitrogen (BUN) and serum glutamate 

pyruvate transaminase (SGOT) were increased in a groups of taurine supplement with 

exercise. Our results are in accordance with previous studies where prolonged 

exercise swimming has been shown to increase plasma levels of SGOT and BUN, 

caused of damages in skeletal muscle, liver, and kidney (Bowers et al., 1987; 

Decombaz et al., 1979; Raimondi et al., 1975; Riley et al., 1975; Soloman, 1979). In 

addition, regular exercise aggravated renal damage in hypertensive animals (Kuru et 

al., 2005). The previous study found that activities of SGOT, SGPT and ALP 

(Alkaline phosphatase) in serum were altered in DM. In offspring from maternal 
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diabetes rats (DM), the changes in the levels of SGOT, SGPT and ALP are directly 

related to changes in metabolism in which the enzymes are involved. The increased 

activities of transaminases, which are active in the absence of insulin due to the 

availability of amino acids in the blood of diabetes mellitus and are also responsible 

for the increased gluconeogenesis and ketogenesis (Kumaresan et al., 2014). 

5.3 Mean arterial pressures and baroreflex sensitivity 

In the present study, mean arterial pressures are increased in offspring from 

maternal diabetes rats (DM). According to previous studies in a diabetes group the 

pressures and heart rate are increased (Brands et al., 1996).  The heart rate is non-

changes, for understood this mechanism. However, the study reported that induction 

of poor glycemic control increased mean arterial pressure (Michael and Sharyn, 

2001). Despite the modest amplitude of the pressure rise, several additional features 

of the response were noteworthy. First, the increase in pressure was rapid in onset, 

consistent with peripheral vasoconstriction. Second, the increase occurred despite 

significant urinary sodium and volume losses: the increase in arterial pressure may 

have contributed to the natriuresis, but it still could be predicted that elimination of 

the urinary losses may have yielded a greater increase in arterial pressure. Third, 

arterial pressure decreased rapidly with the restoration of good glycemic control and 

reversed, rising with equal rapidity, with the onset of a second diabetic period (Brands 

and Hopkins, 2001). Those results indicated that the onset of diabetes could affect 

systemic hemodynamics directly, and also suggested there was underlying 

vasoconstriction. In addition, cardiac output decreased progressively during the first 

week of diabetes, due in part to the significant decrease in sodium balance. Total 

peripheral resistance increased markedly, however, and the changes in cardiac output 
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and sodium balance during the diabetic and recovery periods suggested that there was 

a vasoconstrictor influence associated with the period of poor glycemic control 

(Michael et al., 2001). 

In the present study are decreased baroreflex sensitivity (BRS) and depressed 

heart rate variability (HRV) in offspring from maternal diabetes rats (DM). 

Autonomic dysfunction with increased sympathetic activation expressed by the low 

value of BRS along with depressed HRV is the characteristic feature of metabolic 

syndrome. In diabetes to reduces the resistance of insulin and increases sympathetic 

tone. As a result, low value of baroreflex sensitivity (Dela et al., 1994). In addition, in 

diabetic patients, BRS and HRV can be considered as early signs of cardiovascular 

autoimmune disease, a fivefold increase in mortality and morbidity.  

While BRS were improved in exercise groups when compared with non-exercise 

groups. MAP increases in response to dynamic exercise, largely owing to an increase 

in systolic blood pressure, because diastolic blood pressure remains at near-resting 

levels. Systolic blood pressure increases linearly with increasing rates of work, 

reaching peak values of between 200 and 240 mmHg in normotensive persons. 

Because MAP is equal to cardiac output times total peripheral resistance, the observed 

increase in mean arterial pressure results from an increase in the cardiac output that 

outweighs a concomitant decrease in total peripheral resistance. This increase in mean 

arterial pressure is a normal and desirable response, the result of a resetting of the 

arterial baroreflex to a higher pressure (Brooks et al., 1996). A program of mild-

intensity exercises would be enough to show some improvement in the autonomic 

function of healthy adults (Uusitalo et al., 2002). or those with chronic heart failure 

(Malfatto et al., 2002), even without direct training supervision (Radaelli et al., 1996), 
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changes on vagal activity caused by physical training would be central, possibly 

directly on baroreflex, whereas the sympathetic activity would be primarily related to 

peripheral changes (vasoconstriction) (Radaelli et al., 1996). The previous study 

found that BRS increase after exercise training, increases in markers of vagal activity 

(LaRovere et al., 2002). Some studies found that exercise can improve diabetes, 

cardiovascular and nervous system disorders. (Howorka et al., 1997; Frattola et al., 

1997; Soška et al., 2001). In addition, studies have also show that increased interest in 

the effects of hypoglycemia has been reported by studies showing the relationship 

between severe hypoglycemia and blood vessel disease in type 2 diabetic, which are 

shown that increased interest in the effects of hypoglycemia (Zoungas et al., 2010) 

and by large-scale clinical studies showing an association between intensive glycemic 

control and adverse cardiovascular events (Gerstein et al., 2008; Patel et al., 2008; 

Duckworth et al., 2009). Multiple processes associated with cardiovascular injury or 

dysfunction are induced during hypoglycemia are including increased activation of 

the renin-angiotensin-aldosterone system, endothelial dysfunction, decrease in the 

spontaneous baroreflex, and increased sympathetic nerve activity.  All of these factors 

have a role in the adverse clinical outcomes associated with hypoglycemia (Adler et 

al., 2010; Joy et al., 2015; Limberg et al., 2014).  

5.4 Histological study in islet of Langerhans 

In the present study in the pancreas show smaller size of islet of Langerhans in 

offspring from maternal diabetes rats (DM) when compare the control group. 

Similarly, with Saito (Saito et al., 1979). The islet of Langerhans is smaller are may 

be the mechanism is oxidative stress and decreased protective superoxide dismutase 

enzymes. The presence of amyloid deposits in type 2 diabetes had led to the 
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suggestion that it is causal for diabetes since islets with amyloid deposits are 

decreased the percentage of β-cells, and islet amyloid polypeptide (IAPP) fibrils have 

been shown to induce apoptosis (Lorenzo et al., 1994). 

Maternal has received the taurine supplements have the resulting islet of 

Langerhans size are increased, also the taurine has the affected to increase insulin 

secretion, and in inhibition of apoptosis (Huxtable, 1992; Hansen, 2001). Moreover, 

taurine also seems to have plasma improves insulin sensitivity (Nakaya et al., 2000). 

In maternal fed a low-protein diet, insulin secretion in vitro from islets of Langerhans 

show from the offspring was reduced. When taurine was added to the drinking water 

of low-protein-fed, the release of insulin from fetal islets was restored to normal 

levels (Cherif et al., 1998). Although, taurine supplementation in maternal fed low 

protein has been reported to normalize the vascularization and beta-cell mass in the 

fetal endocrine pancreas (Boujendar et al., 2003). The present, it was reported that 

taurine supplementation during pregnancy and lactation in rats fed low protein starve 

collected, a less in beta-cell working in vivo in the old offspring (12-week) (Merezak 

et al., 2004). The effect of maternal taurine supplementation on beta-cell function in 

old offspring was present studied in maternal fed a control or fed low protein 

(Merezak et al., 2004). 

5.5 The expression of AT1 receptor in heart and kidney 

In the present study shows that percentages expression of AT1 receptor in heart 

and kidney difference increased significantly in offspring from maternal diabetes rats 

(DM)when compared with control groups. The study found that maternal dietary 

protein restriction or diabetes during pregnancy is associated with renal 

morphological and physiological changes. Different mechanisms can contribute to 
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this phenotype: exposure to fetal glucocorticoid, alterations in the components of the 

RAS, apoptosis, and DNA methylation. A maternal protein restriction diet or diabetes 

during gestation decreases the activity of placental 11ß-hydroxysteroid 

dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic 

pituitary- adrenal axis in the offspring. The abnormal function/ expression of AngII 

receptors during any period of life may be the consequence or cause of renal 

adaptation. (José et al., 2015). The previous study found that mechanism of AngII has 

also been implicated in insulin resistance and inhibits insulin-mediated GLUT4 

translocation in this skeletal muscle model through a transient activation of mitogen-

activated protein (MAP) kinases ERK1/2 inhibiting insulin receptor substrate 1/2 

(IRS-1/2) and through a direct inhibitory nitration of Akt. It induces tyrosine 

phosphorylation of IRS-1 by Janus kinase 2 associated with AT1 receptor stimulation 

which attenuates insulin-induced activation of phosphatidylinositol-3-kinase 

associated with IRS-1, leading to decreased insulin sensitivity (Kifor et al., 1991). The 

mechanism of AT1, AT1 receptor stimulation leads to renal arterial vasoconstriction, 

tubule epithelial sodium reabsorption, augmentation of tubulo–glomerular feedback 

sensitivity, and inhibition of pressure-natriuresis (Carey et al., 2003) can cause 

hypertension (Ferrario et al., 2006; Goldblatt et al., 1984). Conversely, AT2 receptor 

activation exerts the opposite effects with respect to cardiovascular hemodynamics 

and cell growth. AT2 receptor activation stimulates BK and NO production, 

vasodilatation, and modulates the vasoconstrictor action mediated by the AT1 receptor 

through endothelium-dependent vasodilatation (Zhang et al., 2003). 

When offspring from maternal diabetes rats (DM) plus taurine, offspring from 

maternal diabetes rats with exercise (DMEx), and offspring from maternal diabetes 
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rats plus taurine with exercise (DMTEx), expression of the AT1 receptor in heart and 

kidney difference was lower than in offspring from maternal diabetes rats (DM). The 

previous study found that training exercise, causing changes in circulating RAS. The 

reduction of circulating ACE activity and AngII concentrations are essential. 

Increasing of arterial renal sympathetic nerve activity, depending AngII are reduce in 

plasma. (Liu et al., 2001) However, it is possible that exercise training reduced AngII 

in circulatory system because the AT1 expression was substantially lower in the 

exercise-trained rats.     

In conclusion, perinatal-neonatal exposure of the taurine health program and 

adult disease. Maternal diabetes mellitus has long-term effects on adult offspring, 

including metabolic and cardiovascular diseases. This study shows that offspring are 

more sensitive to maternal hyperglycemia. However, the taurine supplementation 

perinatal-neonatal period prevents blood pressure dysregulation and metabolic by 

induced maternal diabetes mellitus. Therefore, our studies indicate that taurine 

supplementation in the perinatal-neonatal period on maternal diabetes mellitus may be 

having anti-Diabetes mellitus and anti-hypertension in the later life offspring. 
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APPENDIX  

 THE PREPARATIONS OF REAGENTS  

 

Phosphate buffer saline pH 7.4 

Chemicals 

 Sodium chloride (NaCl)      8 g 

 Potassium chloride (KCl)      0.2 g 

 Disodium hydrogen phosphate (Na2HPO4)    1.44 g 

 Potassium dihydrogen Phosphate (KH2PO4)    0.24 g 

 Distilled water        1 L 

Preparation 

Add chemical compounds one by one into 800 ml of distilled water. 

Adjust the pH to 7.4 with HCl. Add distilled water to a total volume of 1 liter. 

Sterilization by autoclaving (20 min, 121-degree Celsius, liquid cycle). Store at room 

temperature. 

 

Lysis Buffer 

Chemicals 

10 mM TRIS hydrochloride (Tris-HCl) pH 7.2    0.16 g 

150 mM Sodium chloride (NaCl)      0.87 g 

1 mM Ethylenediaminetetraacetic acid (EDTA)    0.04 g 

 



159 

 

0.5% Triton X-100        25 µl 

1mM Phenylmethylsulfonyl fluoride (PMSF)    50 µl  

Distilled water         100 ml 

Preparation 

Prepare stock solution by adding Tris-HCl, NaCl, and EDTA into 80 ml 

distilled water. Adjust pH to 7.2 and then add distilled water to a total volume of 100 

ml. Sterilization by autoclaving (20 min, 121°C, liquid cycle program). Prepare 

working solution by adding PMSF and Triton X-100 into 4.945 ml stock solution. 

 

Electrophoresis Buffer pH 8.3 

Chemicals 

Tris (hydroxymethyl) aminomethane (Tris base)    3.02 g 

Glycine         14.4 g 

Sodium dodecyl sulfate (SDS)      1 g 

Distilled water         1 L 

Preparation 

The total chemical compounds were mixed in 1000 mL distilled water. 

 

Transfer Buffer 

Chemicals 

Tris (hydroxymethyl) aminomethane (Tris base)    2.93 g 

Glycine         5.81 g 

Sodium dodecyl sulfate (SDS)      0.375 g 

Methanol         200 ml 
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Distilled water         1 L 

Preparation 

The total chemical compound was mixed in distilled water. Ready for use. 

 

Separating gel 

Chemicals 

Autoclaved H2O        5.68 ml 

30% acrylamide         12 ml 

Separating gel buffer        6 ml 

10% Sodium dodecyl sulfate (SDS)      240 µl 

10% Ammonium persulfate (APS)      120 µl 

(N, N, N, N, -tetramethyl ethylenediamine) TEMED    8 µl 

Preparation 

Mix all chemical compounds together, except TEMED which was added 

at the final process. 
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Stacking gel 

Chemicals 

Autoclaved H2O        6 ml. 

30% acrylamide        1.34 ml. 

Stacking gel buffer        2.5 ml. 

10% Sodium dodecyl sulfate (SDS)      100 µl. 

10% Ammonium persulfate (APS)      50 µl. 

(N, N, N, N, -tetramethyl ethylenediamine) TEMED    5 µl. 

 

Preparation 

Mix all chemical compounds together, except TEMED which was added 

at the final process. 
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Gel Setting 

Reagents 12.5% separating gel 15% separating gel 4% stacking gel 

2 sides 4 sides 2 sides 4 sides 2 sides 4 sides 

1. 30% 

acrylamide 

5 ml. 10 ml. 6 ml. 12 ml. 0.67 ml. 1.34 ml. 

2. Separating 

gel buffer 

3 ml. 6 ml. 3 ml. 6 ml. - - 

3. Stacking gel 

buffer 

- - - - 1.25 ml. 2.5 ml. 

4. 10% SDS 120 µl. 240 µl. 120 µl. 240 µl. 50 µl. 100 µl. 

5.Autoclaved 

H2O 

3.84 ml. 7.68 ml. 2.84 ml. 5.68 ml. 3 ml. 6 ml. 

6. 10% APS 60 µl. 120 µl. 60 µl. 120 µl. 25 µl. 50 µl. 

7. TEMED 4 µl. 8 µl. 4 µl. 8 µl. 2.5 µl. 5 µl. 
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