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Land use and land cover (LULC) data is a basic GIS dataset require by various 

users, e.g. land and resources manager, city planner, or decision-maker. Due to rapid 

LULC change, LULC map is frequently required to update from the remotely sensed 

data within a short period of times. Thus, optimum classification method is necessary 

to identify for updating LULC map. The main objectives of the study area were (1) to 

classify LULC data by selection methods of pixel-based image analysis (PBIA) and 

object-based image analysis (OBIA), and (2) to identify an optimum method of PBIA 

or / and OBIA for LULC classification. In this study, pan-sharpened image of 

Landsat-8 image was applied to LULC classification in Wang Nam Khiao District of 

Nakhon Ratchasima Province. The research methodology framework consisted of 

three major components include (1) data collection and preparation (2) LULC 

classification under PBIA and OBIA and (3) thematic LULC accuracy assessment and 

the best practical method for LULC classification under PBIA and OBIA. 

According to the best performances of three representative methods of PBIA 

including (1) maximum likelihood classifier (MLC) with nine bands, (2) artificial 

neural network (ANN) at learning rate of 0.1 with six bands and (3) decision tree 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and significance of the study 

Digital image analysis is the science by using the pixel value for image 

interpretation or processing, which relies on multispectral data of remote sensing 

sensors to record reflection of objects on the earth (Ongsomwang, 2011). In practice, 

there is two main digital image analysis methods include pixel-based image analysis 

(PBIA) and object-based image analysis (OBIA). 

In general, PBIA is hitherto the most commonly used types of classification in 

remote sensing and it is described in detail and mathematically derived in the specialist 

textbooks (Nussbaum and Menz, 2008) such as Canty (1999), Richards and Jia (1999), 

Albertz (2001), Lillesand, Kiefer, and Chipman (2004). In contrast, OBIA is applied in 

several fields (Nussbaum and Menz, 2008) such as the wide-area monitoring of 

landscape areas (Blaschke, 2005; Chandra, Moreira, and Keydel, 2005; Crase and 

Hempel, 2005; Laliberte, Rango and Fredrickson, 2005; Witheside, 2005); the 

monitoring of densely settled urban areas (Chunyang, Li, Zhang, Pan, and Chen, 2005; 

Grenzdoerfer, 2005; Moeller, 2005); disasters assessment (Bitelli, Camassi, Gusella, 

and Mongol, 2004; Heremans, Willekens, Borghys, Verbeeck, Valckenborgh, and 

Perneel, 2005; Kouchi and Yamazaki, 2005); and data fusion and the establishment of 

GIS systems (Benz, Hofmann, Willhauck, Lingenfelder, and Heynen, 2004; Langanke, 
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Blaschke, and Lang, 2004; Sim, 2005; Cabral, Gilg, and Painho, 2005; Kosugi and 

Kosaka, 2005). 

However, the purely PBIA has increasingly reached its limit despite further 

development in recent years. One reason is the fact that with increasing spatial 

resolution of the satellite data, the (small) feature basis of spectral values often only 

provides insufficient results for classification. Furthermore, there is an increasing 

amount of additional data such as information from GIS system or digital elevation 

model (DEM). It appears meaningful for future investigation to integrate these 

additional data into satellite image analysis. OBIA offers great potential, since it has a 

very large feature basis for classification and additional data from other data sources 

can be readily integrated and used for analysis (Nussbaum and Menz, 2008). 

Meanwhile, land use and land cover (LULC) data is a basic GIS dataset require 

by various users, e.g. land and resources manager, city planner, or decision-maker. Due 

to rapid LULC change, LULC map is frequently required to update from the remotely 

sensed data within a short period of times. Weih and Riggan (2010) stated that LULC 

data have proven to be valuable assets for resource managers interested in landscape 

characteristics and the changes that occur over time.  

According to annual report of the Office of Agricultural Economics on 

agricultural land utilization in Nakhon Ratchasima Province during 2002-2013, areas 

of major agricultural land use types, namely paddy field, field crop, orchards and 

perennial trees, horticulture and flowers and other agricultural use are fluctuate (Figure 

1.1). This information confirms status and its change over the study area, Wang Nam 

Khieo District, Nakhon Ratchasima Province. Thus, optimum classification method is 

necessary to identify for updating recent LULC status. 
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Source: Office of Agricultural Economics, 2016. 

Figure 1.1 Comparison of agricultural land utilization in Nakhon Ratchasima Province 

during 2002 to 2013. 

 

Therefore, PBIA and OBIA are here examined to classify LULC data from 

moderate spatial resolution of the free-downloaded Landsat-data instead of very high 

spatial resolution data of IKONOS or QuickBird satellite. The derived results are then 

compared to identify an optimum method of PBIA and/or OBIA for LULC 

classification. The expected results can provide the basic guideline to image analyst for 

LULC classification in the future. In addition, the derived LULC can be used to update 

recent LULC information. 

 

1.2 Research objectives 

The aim of this research is to identify an optimum method of PBIA and/or OBIA 

for LULC classification from moderate free-downloaded Landsat data. The specific 

research objectives on PBIA and OBIA comparison for LULC classification are as 

follows: 
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(1) To classify LULC data by selection methods of PBIA and OBIA, 

(2) To identify an optimum method of PBIA or / and OBIA for LULC 

classification. 

 

1.3 Scope of the study 

Scope of this study can be summarized as follows: 

(1) Landsat 8 data (multispectral and panchromatic bands) acquiring in 

December 2015 is processed pan-sharpening image with predefined methods: (1) 

Modified IHS transformation (MIHS), (2) Wavelet fusion (WT), (3) High Pass Filtering 

(HPF), (4) Ehlers fusion (EF), and (5) Gram-Schmidt pan-sharpening (GS) to create 

optimum pan-sharpened image based on Universal Image Quality Index (UIQI) for 

LULC classification under PBIA and OBIA. In addition, the derived pan-sharpened 

image is further used to create additional bands for LULC classification methods 

include spectral indices (Normalized Difference Vegetation Index (NDVI), Modified 

Normalized Difference Water Index (MNDWI) and Normalized Difference Built-up 

Index (NDBI)) and physical data (elevation and slope). 

(2) Selected classification method for LULC classification under PBIA 

consists of maximum likelihood classifier (MLC), artificial neural network (ANN) and 

decision tree classifier (DT) while standard nearest neighbor classifier (SNN) and 

nearest neighbor classifier with feature space optimization (FSO) are applied under 

OBIA. 

(3) LULC classification system that is modified from standard land use 

classification system of LDD includes (1) urban and built-up area, (2) paddy field, (3) 

cassava, (4) maize, (5) sugarcane, (6) orchard and perennial trees, (7) forest area, (8) 



5 

water bodies, and (9) miscellaneous land. 

(4) Thematic LULC accuracy (overall accuracy and Kappa hat coefficient) is 

assessed using random stratified sampling points based on multinomial distribution 

theory by field survey in January 2017. In addition, pairwise Z test is also applied to 

examine significantly different of Kappa hat coefficient among selected classification 

methods. 

(5) An optimum classification method is identified under PBIA, OBIA and 

between PBIA and OBIA based on overall accuracy and Kappa hat coefficient. 

 

1.4 Limitations of the study 

Accuracy assessment of thematic map from various methods of PBIA and OBIA 

was conducted based on field survey January in 2017. It can be here observed that date 

of remotely sensed data and field survey data are different due to time constraint. 

However, the effect of phenological change on LULC in December and January are not 

significantly different.  

 

1.5 Study area 

Wang Nam Khiao District of Nakhon Ratchasima Province, Thailand is chosen 

as study area. It situates in the southern parts of Nakhon Ratchasima Province and has 

neighboring districts, namely Pak Thong Chai, Khon Buri, Pak Chong of Nakhon 

Ratchasima Province and Na Di, Prachantakham of Prachinburi Province. The district 

is subdivided into 5 sub-districts include Wang Nam Khiao, Wang Mhee, Ra Roeng, 

Udom Sap and Thai Samakkhi (Figure 1.2). 
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Wang Nam Khiao District has area of 1,054.30 km2 which consists of various 

LULC types with rapid LULC change. According to land use data of LDD in 2011, two 

main land use types in the study area are forest land (54.04%) and agricultural land 

(35.52%) as summarized in Table 1.1. 

 

 
Figure 1.2 Study area. 

 
Table 1.1 Major land use types of Wang Nam Khiao District (LDD, 2011). 

No. Land use type Area in sq. km Percent 
1 Urban and built-up area 49.99 4.74 
2 Agricultural land 374.50 35.52 
3 Forest land 569.70 54.04 
4 Water body 10.20 0.97 
5 Miscellaneous land 49.91 4.73 

Total 1,054.30 100.00 
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1.6 Benefits of the study 

 The benefits of the study are as follows: 

1. LULC data of pixel-based and object-based image analysis. 

2. An optimum method of PBIA for LULC classification. 

3. An optimum method of OBIA for LULC classification. 

4. An optimum method for LULC classification. 

 

1.7 Outline of the thesis 

The thesis is structured in two parts and follows a hierarchical organization as 

shown in Figure 1.3. Key information of each chapter in each part is summarized in the 

following section. 

The first part includes Chapters I “Introduction”, Chapter II “Basic Concepts 

and Literature Reviews” and Chapter III “Research Methodology”. Chapter I contains 

background problem and significance of the study, research objectives, scope of the 

study, limitation of the study, study area, benefits of the study and outline of the thesis. 

Chapter II consists of PBIA, OBIA and literature reviews.  Meanwhile, Chapter III 

explains details of research methodology including (1) data collection and preparation 

(2) LULC classification under PBIA and OBIA and (3) thematic LULC accuracy 

assessment and the best practical method for LULC classification under PBIA and 

OBIA. 

The second part consists of four chapters of the results with discussion, which 

separately describe according to objectives and one chapter presents conclusion and 

recommendation. Chapter IV “Preprocessing of Remote Sensing and GIS Data” 

contains (1) pan-sharpening processing, (2) optimum pan-sharpening method 
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identification using UIQI, (3) additional spectral band generation, (4) elevation and 

slope extraction, and (5) preparation of image dataset for PBIA and OBIA. Chapter V 

“Pixel-Based Image Analysis” explains results of LULC classification of PBIA 

including MLC, ANN, and DT. Likewise, Chapter VI “Object-Based Image Analysis” 

describes results of LULC classification using SNN and FSO under OBIA. Chapter VII 

“Optimum Method for LULC Classification” explains an optimum method of PBIA 

and/or OBIA for LULC classification. Chapter VIII “Conclusion and 

Recommendation” comprises conclusion of the study and recommendation. 

 

 
Figure 1.3 Structure of the thesis. 

Chapter IV 
Preprocessing of Remote Sensing and GIS Data 

Chapter V 
Pixel-Based Image Analysis 

Chapter VI 
Object-Based Image Analysis 

Chapter VII 
Optimum Method for LULC Classification 

Chapter VIII 
Conclusion and Recommendations 

Chapter I 
Introduction 

Chapter II 
Basic Concepts and Literature Reviews 

Chapter III 
Research Methodology 



 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

Basic concepts include (1) pixel-based image analysis (PBIA), and (2) object-

based image analysis (OBIA) and (3) literature reviews are briefly described in this 

chapter. 

 

2.1 Pixel-based image analysis (PBIA) 

The common image classification methods of PBIA that are frequently applied 

with multispectral remotely sensed data for LULC classification are here separately 

summarized into three groups: parametric, nonparametric and nonmetric classification 

methods. 

2.1.1 Parametric classification method 

Parametric classification method relies on assumption about the form of 

the probability distribution for each class. The most notable popular is maximum 

likelihood classifier (MLC), which explicitly uses a probability model to determine the 

decision boundaries. The necessary parameters for the model are estimates from 

training data. A useful property of parametric classifiers is theoretical estimation of 

classifiers error from the assumed distribution that is not possible with nonparametric 

classifiers (Schowengerdt, 1997). 
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In general, classifier of parametric classification method includes 

maximum likelihood classifier (MLC) and clustering classifier. In this study, MLC is 

chosen as representative of parametric classification method and it can be summarized 

its characteristics and advantage/disadvantage as below. 

The maximum likelihood decision rule is based on probability. The 

probability of a pixel belonging to each of a predefined set of m classes is calculated, 

and the pixel is then assigned to the class for which the probability is the highest. The 

maximum likelihood decision rule is still one of the most widely used supervised 

classification algorithms (Jensen, 2005). 

The maximum likelihood procedure assumes that the training data 

statistics for each class in each band are normally distributed (Gaussian). Training data 

with bi- or n-modal histograms in a single band are not ideal. In such cases the 

individual modes probably represent unique classes that should be trained upon 

individually and labeled as separate training classes. This should then produce 

unimodal, Gaussian training class statistics that fulfill the normal distribution 

requirement. The computation of an n-dimensional multivariate normal density 

function for the classes of interested using the equation: 

𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) = 1

(2𝜋𝜋)
𝑛𝑛
2 |𝑉𝑉𝑖𝑖|

1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �− 1

2
(𝑋𝑋 −𝑀𝑀𝑖𝑖)𝑇𝑇𝑉𝑉𝑖𝑖−1(𝑋𝑋 −𝑀𝑀𝑖𝑖)� (2.1) 

Where: 

 𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) is the probability density function of class 𝑤𝑤𝑖𝑖 

 |𝑉𝑉𝑖𝑖| is the determinant of the covariance matrix, 

 𝑉𝑉𝑖𝑖−1 is the inverse of the covariance matrix, 

 (𝑋𝑋 −𝑀𝑀𝑖𝑖)𝑇𝑇 is the transpose of the vector (𝑋𝑋 −𝑀𝑀𝑖𝑖) 
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The mean vectors (𝑀𝑀𝑖𝑖) and covariance matrix (𝑉𝑉𝑖𝑖) for each class are 

estimated from the training data. 

If there are m classes, then 𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) is the probability density function 

associated with the unknown measurement vector 𝑋𝑋, given that 𝑋𝑋 is from a pattern in 

class 𝑤𝑤𝑖𝑖. In this case the maximum likelihood decision rule becomes: 

Decide 𝑋𝑋 ∈ 𝑤𝑤𝑖𝑖, if, and only if, 

𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) ∙ 𝑝𝑝(𝑤𝑤𝑖𝑖) ≥ 𝑝𝑝�𝑋𝑋�𝑤𝑤𝑗𝑗� ∙ 𝑝𝑝�𝑤𝑤𝑗𝑗� (2.2) 

for all 𝑖𝑖 and 𝑗𝑗 out of 1, 2, ... m possible classes. 

Therefore, to classify a pixel in the multispectral remote sensing dataset 

with an unknown measurement vector 𝑋𝑋, a maximum likelihood decision rule computes 

the product 𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) ∙ 𝑝𝑝(𝑤𝑤𝑖𝑖) for each class and assigns the pattern to the class having 

the largest product. This assumes that some useful information about the prior 

probabilities of each class 𝑖𝑖 are known, i.e. 𝑝𝑝(𝑤𝑤𝑖𝑖) (Jensen, 2005). 

Advantage and disadvantage of maximum likelihood classifier is 

summarized in Table 2.1. 

 

Table 2.1 Advantage and disadvantage of maximum likelihood decision rule. 

Advantages Disadvantages 

• The most accurate of the classifiers in the 
ERDAS IMAGINE system (if the input 
samples/clusters have a normal distribution), 
because it takes the most variables into 
consideration. 

• Takes the variability of classes into account 
by using the covariance matrix, as does 
Mahalanobis distance. 

• An extensive equation that takes a long time 
to compute. The computation time increases 
with the number of input bands. 

• Maximum likelihood is parametric, meaning 
that it relies heavily on a normal distribution 
of the data in each input band. 

• Tends to over classify signatures with 
relatively large values in the covariance 
matrix. 

Source: ERDAS, 2002. 
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2.1.2 Nonparametric classification method 

Nonparametric classification method makes no assumption about the 

probability distribution and is often considered robust because it may work well for a 

variety of classification, as long as the class signatures are reasonably distinct 

(Schowengerdt, 1997).  

ERDAS (2002) stated that a nonparametric decision rule is not based on 

statistics; therefore, it is independent of the properties of the data. If a pixel is located 

within the boundary of a nonparametric signature, then this decision rule assigns the 

pixel to the signature’s class. Basically, a nonparametric decision rule determines 

whether or not the pixel is located inside of nonparametric signature boundary. The 

common nonparametric classification methods include level-slice classifier, 

parallelepiped classifier, minimum distance classifier, nearest neighbor classifier, fuzzy 

classifier and artificial neural network (ANN). Herein the ANN as a representative of 

nonparametric classification method is here summarized as below. 

Schowengerdt (1997) mentioned that the ANN algorithm is a recently 

popular nonparametric approach to classification. The decision boundaries by ANN are 

not fixed by a deterministic rule applied to the prototype training signature, but are 

determined in an iterative fashion by minimizing an error criterion on the labeling of 

the training data. In that sense, ANNs are similar to clustering algorithms. 

Keiner (1999) stated that ANN can be used for a variety of remote 

sensing application, including classification, noise reduction, feature tracking, 

forecasting, and function approximation. Jensen (2005) mentioned that ANN has been 

used to classify various types of remote sensor data and has in certain instances 

produces results superior to those of traditional statistics methods. This success can be 



13 

attributed to two of the important advantages of neural networks: freedom from normal 

distribution requirements and ability to adaptively simulate complex and nonlinear 

pattern given proper topological structures. 

The ANN normally contains neurons arranged in three types of layers: 

(1) an input layer, (2) a hidden layers, and (3) an output layer as shown in Figure 2.1. 

The hidden layer and the output layer contain processing elements at each node. The 

input layer nodes, on the other hand, are simply an interface to the input data and do 

not do any processing. The input patterns are the features used for classification. In the 

simplest case, they are the multispectral vectors of the training pixels, one band per 

node. Other features, such as a spatial neighborhood of pixels or multi-temporal spectral 

vectors, can also be used (Schowengerdt, 1997). 

 

Figure 2.1 Basic structure of a three layer ANN (Schowengerdt, 1997). 

 

In addition, Jensen (2005) mentioned that ANN requires training and 

testing (classification) to extract useful information from the remotely sensed and 

ancillary data like a supervised classification. The neuron in the input layers might be 
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the multispectral reflectance values plus their textures, surface roughness, terrain 

elevation, slope, aspect, etc. The use of neurons in the hidden layers enables the 

simulation of non-linear patterns in the input data. A neuron in the output layers might 

represent a single thematic map land cover class, e.g., agriculture. 

In principle, ANN is defined by neurons, topological structure, and 

learning rules. The neuron is the fundamental processing unit of an ANN for 

computation. Each input 𝑥𝑥𝑖𝑖 is multiplied by the scalar weight 𝑤𝑤𝑖𝑖 to form 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖, a term 

that is sent to the “summing unit” of the processing unit (Figure 2.2). An offset, b, may 

be added to the total (Jensen, 2005). The summation output: 

𝑛𝑛𝑛𝑛𝑛𝑛 = ∑ (𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖) + 𝑏𝑏𝑝𝑝
𝑖𝑖=1  (2.3) 

It referred to as net input, goes into an activation transfer function f that 

produces scaled neuron output y (between 0 and 1, or -1 to 1) through a transform 

algorithm. Thus, y can be calculated as: 

𝑦𝑦 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛) = �∑ (𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖) + 𝑏𝑏𝑝𝑝
𝑖𝑖=1 � (2.4) 

 

 

Figure 2.2 Mathematic model of neuron (Jensen, 2005). 
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Advantage and disadvantage of ANN is summarized by Jensen (2005) 

as in Table 2.2. 

 

Table 2.2 Advantage and disadvantage of ANN. 

Advantage Disadvantage 
• A single neuron simulates the computation of a 

multivariate linear regression model. 
• A neural network makes no a priori assumptions 

of normal and linear data distribution due to its 
operation in a nonparametric fashion. 

• Neural networks are able to learn from existing 
examples adaptive, which makes the 
classification objective. 

• The nonlinear patterns are “learned” from the 
empirical examples instead of pre-specified” by 
an analysis based on prior knowledge of the 
datasets. 

• The noisy information inevitably included in the 
examples supplied a trained neural network with 
the ability to generalized, which makes neural 
networks robust solutions in the presence of 
previous unseen, incomplete, or imprecise data. 

• A neural network can embrace data in all formats 
as long as the data are converted to a numeric 
representation. 

• Neural network are tolerant of noise and missing 
data and attempt to find the best fit for input 
patterns. 

• Neural networks continuously adjust the weights 
as more training data are provided in a changing 
environment. 

• Despite the excellent performance of 
neural networks in image classification, it 
is usually difficult to explain in a 
comprehensive fashion the process 
through which a given decision or output 
has been obtained from a neural network. 
The rules of image classification and 
interpretation learned by the neural 
network are buried in the weights of the 
neurons of the hidden layers. It is difficult 
to interpret these weights due to their 
complex nature. A neural network is often 
accused of being a black box. 

• Using neural network, an analyst might 
find it difficult to gain an understanding of 
the problem at hand because of the lack of 
explanatory capability to provide insight 
into the characteristics of the dataset.  

• It is difficult to incorporate human 
expertise to simplify, accelerate, or 
improve the performance of image 
classification; a neural network always 
has to learn from scratch. 

Source: Jensen, 2005. 

 

2.1.3 Nonmetric classification method 

Duda, Hart and Stork (2 0 0 1 )  mentioned that nonmetric classification 

method turned away from description patterns by vectors of real numbers and toward 

using lists of attributes. Nonmetric algorithms used nominal data for classification by 

rule-based or synthetic pattern recognition methods. The common nonmetric 
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classification is rule-based decision tree classifiers (DT) or expert systems. In this 

study, DT is chosen as representative of nonmetric classification method and it is 

summarized as below. 

Jensen (2005) stated that the best way to conceptualize an expert system 

is to use a decision-tree-structure where rules and conditions are evaluated in order to 

test hypotheses. When decision trees are organized with hypotheses, rules, and 

conditions, each hypothesis may be thought of as the trunk of a tree, each rule a limb 

of a tree, and each condition a leaf. This is commonly referred as a hierarchical 

decision-tree classifier. 

The DT grows in depth when the hypothesis of one rule is referred to by 

a condition of another rule. The terminal hypotheses of DT represent the final classes 

of interest. Intermediate hypotheses may also be flagged as being a class of interest. 

This may occur when there is an association between classes (ERDAS, 2002). Figure 

2.3 presents a single branch of DT. In this example, the rule, which is gentle southern 

slope, determines the hypothesis, good location. The rule has four conditions depicted 

on the right side, all of which must be satisfied for the rule to be true. However, the rule 

may be split if either southern or gentle slope defines the good location hypothesis. 

While both conditions must still be true to fire a rule, only one rule must be true to 

satisfy the hypothesis as shown in Figure 2.4.  
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Figure 2.3 Example of a decision tree branch (ERDAS, 2002). 

 

 

Figure 2.4 Split rule decision tree branch (ERDAS, 2002). 

 

An expert system comprises two independent components, a domain 

specific knowledge base and a domain-independent inference engine or control 

mechanism (Gao, 2009) as shown in Figure 2.5. Advantage and disadvantage of expert 

system is summarized as shown in Table 2.3. 
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Figure 2.5 General scheme and components of an expert system for image analysis 

(Gao, 2009). 

 

Table 2.3 Advantages and disadvantage of expert system. 

Advantage Disadvantage 
• Users can evaluate the output of the 

expert system and work backward to 
identify how a conclusion was reached. 

• Expert systems as nonmetric 
classification algorithm are being used 
such as decision trees, which make no 
assumption regarding the distribution of 
the data. 

• The decision tree can reveal nonlinear 
and hierarchical relationships among the 
input variables and use them to predict 
class membership. 

• A large body of evidence demonstrates 
the ability of machine-learning 
techniques (particularly decision trees 
and neural networks) to deal effectively 
with tasks that involve highly 
dimensional data. 

• The knowledge in a traditional expert system that 
must be extracted from knowledgeable experts of 
a domain area may be subjective and incomplete.  

• Knowledge in an expert system is represented by 
logical rules made up of binary predicates. 
Numerical attributes have converted to binary 
true/false statements, which may cause a large 
amount of information to be lost in the 
simplification process. 

• Most rule-based expert systems fail to generalize a 
predictable inference if an appropriate match with 
the prefect rules that must be articulated by experts 
cannot be obtained. 

Source: Jensen, 2005. 
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2.2 Object-Based Image Analysis (OBIA) 

Object-oriented classification is patches or segments by used multi-resolution 

image segmentation process that uses with very high-spatial-resolution imagery. An 

object can be defined as a grouping of pixels of similar spectral and spatial properties. 

Thus, applying the object-oriented paradigm to image analysis refers to analyzing the 

image in object space rather than in pixel space, and objects can be used as the 

primitives for image classification rather than pixels, which became an area of 

increasing research interest in the late 1990s, is a contextual segmentation and 

classification approach that may offer an effective method for overcoming some of the 

limitations inherent to traditional pixel-based classification of very high resolution 

(VHR) images. Particularly, the OBIA can overcome within class spectral variation 

inherent to VHR imagery (Yu, Gong, Clinton, Biging and Shirokauer, 2006). In 

addition, it can be used to emulate a human interpreter’s ability in image interpretation 

(Blaschke and Strobl, 2001; Blaschke, 2004; Benz et al., 2004; Meinel and Neubert, 

2004). 

Nussbaum and Menz (2008) stated that OBIA can be compared in a first 

approximation with visual perception. Thus, a viewer in visual image interpretation 

consciously recognizes specific shapes and correlations that go beyond the pure grey 

values and color grades of the image. It perceives typical patterns and associates them 

with real objects. Apart from pure color information, these patterns result from other 

features such as texture, shape, size or from the relations between individual objects. A 

procedure similar to visual interpretation is also aimed at by OBIA in general and the 

eCognition software used for image analysis in particular.  
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Nussbaum and Menz (2008) suggested an operational workflow for OBIA using 

eCognition software as shown in Figure 2.6. Herewith major tasks of OBIA are consist 

of (a) image segmentation, (b) feature extraction and (c) semantic modelling and 

classification. 

 

Figure 2.6 Workflow of object-based image analysis in eCognition. 

 

Under eCognition software, two basic classification methods of OBIA are 

standard nearest neighbor classifier (SNN) and nearest neighbor classifier with feature 

space optimization (FSO).  

2.2.1 Standard nearest neighbor classifier 

The standard nearest neighbor classifier is a supervised classification 

approach whereby for each of the classes require training samples and used to classify 

all remaining (unknown) objects in the image. The SNN has been used successfully for 

many classification problems (Wu, 2015). Basically, the distance in the feature space to 

the nearest sample object of each class is calculated for each image object. Then, the 

image object is assigned to the class represented by the closest sample object 

(Definiens, 2007). 
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2.2.2 Nearest neighbor classifier with feature space optimization 

The feature space optimization is an instrument to help you find the 

combination of features that is particularly suitable for separating classes in conjunction 

with the SNN. Basically, the feature space optimization compares the samples for 

selected classes with respect to the features. As a result it finds the combination of 

features that produces the largest average minimum distance between the samples of 

the different classes (Definiens, 2007). 

To refine the classification further, eCognition software offers an 

automated feature, the feature space optimization tool, to automatically identify the 

features which ‘best’ separate the classes for which samples have been selected. (Wu, 

2015). 

 

2.3 Literature reviews 

Matinfar, Sarmadian, Panah, and Heck (2007) had conducted comparisons of 

object-oriented and pixel-based classification of LULC types in arid region of Iran 

using Landsat 7 ETM+. In this study, land cover types of Kashan test area were 

analyzed using the minimum distance classification of ILWIS software for PBIA and 

nearest neighbor classification of eCognition software for OBIA. They concluded that 

the object-oriented approach gave more accurate results (including higher producer’s 

and user’s accuracy for most of the land cover classes) than those achieved by pixel-

based classification algorithms. 

Cleve, Kelly, Kearns, and Moritz (2008) explored the accuracy of pixel-based 

and object-based classification methods used for mapping in the wild land–urban 

interface with free, readily available and high spatial resolution urban imagery, which 
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was available in many places to municipal and local fire management agencies. This 

study was conducted in a small community in Napa County, California, USA. Herein, 

ISODATA (Iterative self-organizing data) of clustering technique was used for PBIA 

while nearest neighbor classification of eCognition software was applied for OBIA. 

The results indicated that an object-based classification approach provided a higher 

accuracy than a pixel-based classification approach when distinguishing between the 

selected LULC categories. 

Dehvari and Heck (2009) had conducted comparisons of PBIA and OBIA 

classification methods in Griffin Creek, Ontario, Canada. The airborne infrared image 

was used to produce a map of land cover types using MLC under PBIA and SNN under 

OBIA. Land cover classes that obtained traditional PBIA approach showed a salt-and-

pepper effect having the lowest producer accuracy (59.5%). Overall classification 

results increased up to 80% in OBIA but still failed to distinguish buildings and creeks. 

In addition, contours and DEM thematic layers enhanced classification results to a 

higher level (94%) and increased the producer accuracy for buildings and creek by 

creating reasonable objects in the segmentation process under OBIA. 

Weih and Riggan (2010) had conducted a comparison of an object-based 

classification with supervised and unsupervised pixel-based classification. Two multi-

temporal (leaf-on and leaf-off), medium-spatial resolution SPOT-5 satellite images and 

a high-spatial resolution color infrared digital orthophoto were used in the analysis. 

Combinations of these three images were merged to evaluate the relative importance of 

multi-temporal and multi-spatial imagery to classification accuracy. The object-based 

classification using all three-image datasets produced the highest overall accuracy 

(82.0%), while the object-based classification using the high-spatial resolution image 
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merged with the SPOT-5 leaf-off image had the second highest overall accuracy 

(78.2%). While these two object-based classifications were statistically significantly 

different from the other classifications. The presence of the high-spatial resolution 

imagery had a greater impact on improving overall accuracy than the multi-temporal 

dataset, especially with the object-based classifications. 

Myint, Gober, Brazel, Grossman-Clarke and Weng (2011) conducted per-pixel 

versus object-based classification of urban land cover extraction using high spatial 

resolution imagery in the central business district in the city of Phoenix. They employed 

six different classification procedures with the object-based paradigm that separates 

spatially and spectrally similar pixels at different scales for various urban land cover. 

Herewith, classifiers to assign land covers to segmented objects used in the study 

included membership functions and the nearest neighbor classifier. As results, they 

found that the object-based classifier achieved a high overall accuracy (90.40%), 

whereas the most commonly used decision rule, namely maximum likelihood classifier, 

produced a lower overall accuracy (67.60%). They concluded that the object-based 

classifier is a significantly better approach than the classical per-pixel classifiers.  

Whiteside, Boggs and Maier (2011) had conducted a comparison of object-

based and pixel-based classifications for mapping savannas in the tropical north of the 

Northern Territory of Australia. The object-based approach involved segmentation of 

image data into objects at multiple scale levels. Objects were assigned classes using 

training objects and the nearest neighbor supervised and fuzzy classification algorithm. 

In this study, two objects-based classifications were undertaken using Definiens 

Developer version 7 software. The first classification was conducted using only the 

VNIR bands from the ASTER imagery for comparison with the per-pixel classification, 
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while the second classification incorporated information from the ASTER DEM. Both 

OBIA involved two sub-processes: (i) segmentation and (ii) classification. The 

supervised pixel-based classification involved the selection of training areas and a 

classification using the MLC algorithm. Site-specific accuracy assessment using 

confusion matrices of both classifications were undertaken based on 256 reference sites. 

A comparison of the results showed a statistically significant higher overall accuracy 

of the object-based classification over the pixel-based classification. The incorporation 

of DEM layer and associated class rules into the object-based classification produced 

slightly higher accuracies overall and for certain classes. The results indicated that 

object-based analysis has good potential for extracting land cover information from 

satellite imagery captured over spatially heterogeneous land covers of tropical 

Australia. 

Duro, Franklin and Dubé (2012) had compared pixel-based and object-based 

image analysis approaches for classifying broad land cover classes over agricultural 

landscapes using three supervised machine learning algorithms: decision tree (DT), 

random forest (RF), and the support vector machine (SVM) in South Saskatchewan 

River, Saskatchewan, Canada. They found that overall classification accuracies 

between pixel-based and object-based classifications were not statistically significant 

(p>0.05) when the same machine learning algorithms were applied. However, there was 

a statistically significant difference in classification accuracy between maps produced 

using the DT algorithm compared to maps produced using either RF (p=0.0116) or 

SVM algorithms (p=0.0067) under object-based image analysis. Meanwhile, there was 

no statistically significant difference (p>0.05) between the results produced using 

different classification algorithms under pixel-based image analysis. Classifications 
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based on RF and SVM algorithms provided a more visually adequate depiction of 

wetland, riparian, and cropland cover types when compared to DT based classifications, 

using either object-based or pixel-based image analysis. 

Castillejo-González, Pe˜na-Barragán, Jurado-Expósito, Mesas-Carrascosaa and 

López-Granados (2014) compared pixel- and object-based techniques for mapping wild 

oat weed patches in wheat fields using multi-spectral QuickBird satellite imagery for 

site-specific weed management. The research was conducted at two levels: (1) at the 

field level, on 11 and 15 individual infested wheat fields in 2006 and 2008, respectively, 

and (2) on a broader level, by analyzing the entire 2006 and 2008 images. To evaluate 

the wild oat patches mapping at the field level, both pixel and object-based image 

analyses were tested with six classification algorithms: Parallelepipeds (P), 

Mahalanobis Distance (MD), Maximum Likelihood (ML), Spectral Angle Mapper 

(SAM), Support Vector Machine (SVM) and Decision Tree (DT). The results showed 

that weed patches could be accurately detected with both analyses obtaining global 

accuracies between 80% and 99% for most of the fields. The MD and SVM classifiers 

were the most accurate for both the pixel- and object-based images from 2006 and 2008, 

respectively. In the broad-scale analysis, all of the wheat fields were identified in the 

imagery using a multiresolution hierarchical segmentation based on two scales. The 

first segmentation scale was classified using the MD and ML algorithms to discriminate 

wheat fields from other land uses. Accuracies greater than 85% were obtained for MD 

and 88% for ML for both imagery. A hierarchical analysis was then performed with the 

second segmentation scale, increasing the accuracies to 93% and 91% for 2006 and 

2008 imagery, respectively. Finally, based on the most accurate results obtained in the 

field-level study, pixel-based classifications using the MD, ML and SVM algorithms 
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were applied to the wheat fields identified. The results of these broad-level analyses 

showed that wild oat patches were accurately discriminated in all the wheat fields 

present in the entire images with accuracies greater than 91% for all the classifiers 

tested. 

Powers, Hermosilla, Coops and Chen (2015) presented and assessed a 

geographic object-based image analysis (GEOBIA) approach with high-spatial 

resolution imagery (SPOT 5) to map industrial disturbances using the oil sands region 

of Alberta’s northeastern boreal forest as a case study. Key components of this study 

were (i) the development of additional spectral, texture, and geometrical descriptors for 

characterizing image objects (groups of alike pixels) and their contextual properties, 

and (ii) the introduction of decision trees with boosting to perform the object-based land 

cover classification. Results indicated that the approach achieved an overall accuracy 

of 88%, and that all descriptor groups provided relevant information for the 

classification. Despite challenges remaining (e.g., distinguishing between spectrally 

similar classes, or placing discrete boundaries), the approach was able to effectively 

delineate and classify fine-spatial resolution industrial disturbances. 

In summary, an identified data and method and results of the literature review 

are here again synthesized as summarized in Table 2.4. The finding shows that OBIA 

method can provide superior result of LULC classification than PBIA method. 

However, most of input data for comparisons of PBIA and OBIA classification of 

LULC are very high spatial resolution include aerial photographs, airborne infrared 

image, QuickBird, ASTER, and SPOT-5 images. In addition, size of study area are 

mostly small and LULC classification system are simple when they are compared with 

this research. Therefore, the comparison between PBIA and OBIA for LULC 
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classification for an optimum method of PBIA and/or OBIA from moderate spatial 

resolution of free-downloaded Landsat-8 is really challenge in this study.  

 

Table 2.4 Synthesis of literature reviews. 

Author (Title) Year Data and method Result 
Matinfar, Sarmadian, 
Panah and Heck 
(Comparisons of Object-
Oriented and Pixel-Based 
Classification of Land 
Use/Land Cover Types 
Based on Lansadsat7, 
ETM+ Spectral Bands 
(Case Study: Arid Region 
of Iran)) 

2007 - Using Landsat 7 ETM+. 
- Using the minimum distance 
classification of ILWIS 
software for PBIA. 
- Using nearest neighbor 
classification of eCognition 
software for OBIA. 

The results indicate that the 
object-oriented approach gave 
more accurate results than 
those achieved by pixel-based 
classification algorithms. 

Cleve, Kelly, Kearns and 
Moritz 
(Classification of the wild 
land–urban interface: A 
comparison of pixel- and 
object-based classifications 
using high-resolution aerial 
photography) 

2008 - Using high-resolution aerial 
photography. 
- Using ISODATA (Iterative 
self-organizing data) of 
clustering technique for 
PBIA. 
- Using nearest neighbor 
classification of eCognition 
software for OBIA. 

The results indicate that an 
object-based classification 
approach provides a higher 
accuracy than a pixel-based 
classification approach when 
distinguishing between the 
selected land-use and land-
cover categories. 

Dehvari and Heck 
(Comparison of object-
based and pixel based 
infrared airborne image 
classification methods 
using DEM thematic layer) 

2009 - Using airborne infrared 
image. 
- Using maximum likelihood 
classification for PBIA. 
- Using nearest neighbor 
classification for OBIA. 

Land cover classes that 
obtained pixel-based approach 
showed a salt-and-pepper 
effect having the lowest 
producer accuracy (59.5%). 
Overall classification results 
increased up to 80% in object-
based approach but still failed 
to distinguish buildings and 
creeks. Contours and DEM 
thematic layers enhanced 
classification results to a 
higher level (94%). 
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Table 2.4 Synthesis of literature reviews (Continued). 

Author (Title) Year Data and method Result 
Weih and Riggan 
(Object-based 
classification vs. Pixel-
based classification: 
comparative importance of 
multi-resolution imagery) 

2010 - Using Two multi-temporal 
(leaf-on and leaf-off), 
medium-spatial resolution 
SPOT-5 satellite images and 
a high-spatial resolution 
color infrared digital 
orthophoto. 
- Using unsupervised 
classification for PBIA. 
- Using supervised 
classification for OBIA. 

The object-based 
classification using all three-
image datasets produced the 
highest overall accuracy 
(82.0%), while the object-
based classification using the 
high-spatial resolution image 
merged with the SPOT-5 leaf-
off image had the second 
highest overall accuracy 
(78.2%). 

Myint, Gober, Brazel, 
Grossman-Clarke and 
Weng 
(Per-pixel vs. Object-based 
classification of urban land 
cover extraction using high 
spatial resolution imagery) 

2011 - Using QuickBird image 
data. 
- Using the decision rule and 
maximum likelihood 
classifier for PBIA. 
- Using membership 
functions and the nearest 
neighbor classifier for OBIA. 

The results indicate that the 
object-based classifier is a 
significantly better approach 
than the classical per-pixel 
classifiers. 

Whiteside, Boggs and 
Maier 
(Comparing object-based 
and pixel-based 
classifications for mapping 
savannas) 

2011 - Using the ASTER imagery. 
- Using the maximum 
likelihood classifier 
algorithm for PBIA. 
- Using the nearest neighbor 
supervised and fuzzy 
classification algorithms for 
OBIA. 

The results indicated that 
object-based analysis has 
good potential for extracting 
land cover information from 
satellite imagery captured 
over spatially heterogeneous 
land covers of tropical 
Australia. 

Duro, Franklin and Dubé 
(A comparison of pixel-
based and object-based 
image analysis with 
selected machine learning 
algorithms for the 
classification of 
agricultural landscapes 
using SPOT-5 HRG 
imagery) 

2012 - Using SPOT-5 HRG 
imagery 
- Using three supervised 
machine learning algorithms: 
decision tree (DT), random 
forest (RF), and the support 
vector machine (SVM) for 
PBIA and OBIA. 

The results indicated that 
overall classification 
accuracies between pixel-
based and object-based 
classifications were not 
statistically significant 
(p>0.05) when the same 
machine learning algorithms 
were applied. 
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Table 2.4 Synthesis of literature reviews (Continued). 

Author (Title) Year Data and method Result 
Castillejo-González, 
Pe˜na-Barragán, Jurado-
Expósito, Mesas-
Carrascosaa and López-
Granados (Evaluation of 
pixel- and object-based 
approaches for mapping 
wild oat (Avena sterilis) 
weed patches in wheat 
fields using QuickBird 
imagery for site-specific 
management) 

2014 - Using multi-spectral 
QuickBird satellite imagery. 
- Using six classification 
algorithms: Parallelepipeds 
(P), Mahalanobis Distance 
(MD), Maximum Likelihood 
(ML), Spectral Angle 
Mapper (SAM), Support 
Vector Machine (SVM) and 
Decision Tree (DT) for PBIA 
and OBIA. 

The results of these broad-
level analyses showed that 
wild oat patches were 
accurately discriminated in all 
the wheat fields present in the 
entire images with accuracies 
greater than 91% for all the 
classifiers tested. 

Powers, Hermosilla, Coops 
and Chen 
(Remote sensing and 
object-based techniques for 
mapping fine-scale 
industrial disturbances) 

2015 - Using high-spatial 
resolution imagery (SPOT 
5). 
- Using geographic object-
based image analysis 
(GEOBIA). 

Results indicated that the 
approach achieved an overall 
accuracy of 88%, and that all 
descriptor groups provided 
relevant information for the 
classification. Despite 
challenges remaining, the 
approach was able to 
effectively delineate and 
classify fine-spatial resolution 
industrial disturbances. 

 



 

CHAPTER III 

RESEARCH METHODOLOGY 

 

The research methodology framework consists of three major components 

include (1) data collection and preparation (2) LULC classification under PBIA and 

OBIA and (3) thematic LULC accuracy assessment and the best practical method for 

LULC classification under PBIA and OBIA (Figure 3.1). Details of each component 

with major tasks are separately described in the following sections. 

 

3.1 Data collection and preparation 

Landsat 8, Path 128 Row 50, acquired date 15 December 2015 was collected by 

downloading from USGS website (www.earthexplorer.usgs.gov). The Landsat 8 

satellite images have every 16 days of the entire Earth. Landsat 8 data products are all 

standard Level-1 product with terrain correction (USGS, 2015) and its specifications is 

summarized in Table 3.1. Landsat 8 measures different ranges of frequencies along the 

electromagnetic spectrum with 11 bands as shown in Table 3.2 and Figure 3.2. 

After that Landsat 8 data were processed pan-sharpening image to increase 

spatial and spectral resolutions of image using the selected methods include (1) MIHS, 

(2) WT, (3) HPF, (4) EF, and (5) GS. The derived results were then identified an 

optimum pan-sharpening image for LULC classification using the Universal Image 

Quality Index (UIQI) of Wang and Bovik (2002) as:  
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Figure 3.1 A Workflow of research methodology framework. 

PIXEL-BASED IMAGE ANALYSIS OBJECT-BASED IMAGE ANALYSIS 

Remote sensing data: 
Landsat 8 Data in 2015 

Accuracy assessment using overall accuracy and Kappa hat coefficient  
with pairwise Z test 

Component 1: Data collection and preparation 

Field survey 

The best practical method identification of PBIA and OBIA 
for LULC classification based on overall accuracy and kappa hat coefficient 

Component 3: Thematic LULC accuracy assessment and the best practical 
method for LULC classification identification under PBIA and OBIA 

Training area selection Training area selection 

MLC ANN DT SNN FSO 

LULC LULC LULC LULC LULC 

Preprocessing: 
Pan-sharpening processing  

Image classification Image classification 

GIS data: 
Administrative boundary and DEM 

Preprocessing: 
Study area extraction 
Elevation and slope extraction 

Component 2: LULC classification under PBIA and OBIA 

Pan-sharpened image with additional bands and derived GIS data 
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𝑄𝑄 =  𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

∗ 2𝑥̅𝑥𝑦𝑦�
(𝑥̅𝑥2)+(𝑦𝑦�2) ∗

2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2

 (3.1) 

Herewith x is pixel value of original image and y is test image, where 

 𝑥̅𝑥 =  1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 

 𝑦𝑦� = 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1  ,  

 𝜎𝜎𝑥𝑥2 = 1
𝑁𝑁−1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑁𝑁
𝑖𝑖=1 ,  

 𝜎𝜎𝑦𝑦2 = 1
𝑁𝑁−1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1  , 

 𝜎𝜎𝑥𝑥𝑥𝑥 =  1
𝑁𝑁−1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1  

 

In addition, the derived pan-sharpened image was used to create additional 

spectral bands included NDVI, MNDWI and NDBI using following equations: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅

 (3.2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (3.3) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑁𝑁𝑁𝑁𝑁𝑁

 (3.4) 

Where: 

 GREEN is Brightness value of Band 3 of Landsat-8; 

 RED is Brightness value of Band 4 of Landsat-8; 

 NIR is Brightness value of Band 5 of Landsat-8; 

 SWIR is Brightness value of Band 6 of Landsat-8. 

Meanwhile GIS data consisted of administrative boundary and DEM were used 

to extract study area and elevation and slope, respectively.  
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Table 3.1 Specification of Landsat 8 products. 

Processing Level 1 T- Terrain Corrected 

Pixel Size 

OLI multispectral bands 1-7, 9: 30-meters 

OLI panchromatic band 8: 15-meters 
TIRS bands 10-11: collected at 100 meters but resampled to 30 meters to match 
OLI multispectral bands 

Data 
Characteristics 

GeoTIFF data format 

Cubic Convolution (CC) resampling 

North Up (MAP) orientation 
Universal Transverse Mercator (UTM) map projection (Polar Stereographic 
projection for scenes with a center latitude greater than or equal to -63.0 
degrees) 
World Geodetic System (WGS) 84 datum 

12 meter circular error, 90% confidence global accuracy for OLI 

12 meter circular error, 90% confidence global accuracy for OLI 

41 meter circular error, 90% confidence global accuracy for TIRS 

16-bit pixel values 

Data Delivery .tar.gz compressed file via HTTP Download 

File size Approximately 1 GB (compressed), approximately 2 GB (uncompressed) 

Source: USGS, www, 2015. 

 

Table 3.2 Sensors and number band of Landsat 8. 

Sensor Bands Wavelength (µm) Resolution (m) 
Operational Land 
Imager (OLI) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2- Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 
Thermal Infrared 
Sensor (TIRS) 

Band 10 - Thermal Infrared 
(TIRS) 1 

10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared 
(TIRS) 2 

11.50 - 12.51 100 * (30) 

Source: USGS, www, 2015. 
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(a) Multispectral band 2-7  

(Band 5, 6, 4: RGB) 
(b) Panchromatic band 8 

Figure 3.2 Landsat 8 data acquired date 15 December 2015. 

 

3.2 LULC classification under PBIA and OBIA 

Representative of classification method of PBIA and OBIA were here applied 

to classify LULC data based on the defined training areas. Herein MLC of parametric 

classification method, ANN of nonparametric classification method and DT classifier 

of nonmetric classification method were used to classify LULC under PBIA. 

Meanwhile SNN classifier and NN classifier with feature space optimization were 

applied to classify LULC under OBIA. 

In this study, the derived pan-sharpened image of Landsat-8 in 2015 (Band 2, 3, 

4, 5, 6 and 7) based on optimum pan-sharpening method was here used as basic input 

dataset of PBIA and OBIA. Meanwhile additional bands of spectral indices and 

physical data were systematically assigned as additional band for LULC classification 

with various methods under PBIA and OBIA. 

The LULC classification system, which was modified from standard land use 

classification system of LDD, consisted of (1) urban and built-up area, (2) paddy field, 
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(3) cassava, (4) maize, (5) sugarcane, (6) orchard and perennial trees, (7) forest area, 

(8) water bodies, and (9) miscellaneous land. 

 

3.3 Thematic LULC accuracy assessment and the best practical 

method for LULC classification under PBIA and OBIA 

The derived thematic LULC maps from five selected methods of PBIA and 

OBIA were assessed accuracy using overall accuracy with producer’s accuracy and 

user’s accuracy and kappa analysis by field survey in 2017 according to error matrix as 

shown in Table 3.3.  

 

Table 3.3 The error matrix. 

Remote sensing 
classification 

Class 
Ground reference test information 

Row total 
1 2 3 𝒌𝒌 

1 𝑛𝑛1,1 𝑛𝑛1,2 𝑛𝑛1,3 𝑛𝑛1,𝑘𝑘 𝒏𝒏𝟏𝟏+ 

2 𝑛𝑛2,1 𝑛𝑛2,2 𝑛𝑛2,3 𝑛𝑛2,𝑘𝑘 𝒏𝒏𝟐𝟐+ 

3 𝑛𝑛3,1 𝑛𝑛3,2 𝑛𝑛3,3 𝑛𝑛3,𝑘𝑘 𝒏𝒏𝟑𝟑+ 

4 𝑛𝑛𝑘𝑘,1 𝑛𝑛𝑘𝑘,2 𝑛𝑛𝑘𝑘,3 𝑛𝑛𝑘𝑘,𝑘𝑘 𝒏𝒏𝒌𝒌+ 
Column 

total 
𝒏𝒏+𝟏𝟏 𝒏𝒏+𝟐𝟐 𝒏𝒏+𝟑𝟑 𝒏𝒏+𝒌𝒌 𝑵𝑵 

 

The formula for calculation of accuracy values (Congalton and Green, 1999) are 

as follows: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1
𝑛𝑛

 (3.5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛+𝑗𝑗

 (3.6) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟′𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛+𝑖𝑖

 (3.7) 

𝐾𝐾ℎ𝑎𝑎𝑎𝑎 = 𝑁𝑁∑ 𝑛𝑛𝑖𝑖𝑖𝑖−∑ (𝑛𝑛𝑖𝑖+×𝑛𝑛+𝑖𝑖)𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1
𝑁𝑁2−∑ (𝑛𝑛𝑖𝑖+×𝑛𝑛+𝑖𝑖)𝑘𝑘

𝑖𝑖=1
 (3.8) 
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Where: 

𝑘𝑘 is the number of rows ( land-cover classes) in the matrix 

𝑛𝑛𝑖𝑖𝑖𝑖 is the number of the observation in row i and column i 

𝑛𝑛𝑖𝑖+ is the marginal totals for row i 

𝑛𝑛+𝑖𝑖 is the marginal totals for column i 

𝑁𝑁 is the total number of observations. 

In this study, number of random stratified sampling points was calculated based 

on multinomial distribution theory (Congalton and Green, 1999) as: 

𝑁𝑁 = 𝐵𝐵
4𝑏𝑏𝑖𝑖

2 (3.9) 

Where: 

B is the upper (α/k) X 100 percentile of the chi square (χ2) distribution with 1 

degree of freedom, and 

bi is the desired precision (e.g., 5%) for the class. 

In addition, pairwise Z test was examined to identify the significant different of 

accuracy based on kappa hat coefficient values among various methods (Congalton and 

Green, 2009) as: 

Z =  |𝐾𝐾ℎ𝑎𝑎𝑎𝑎1−𝐾𝐾ℎ𝑎𝑎𝑎𝑎2|
�var� (𝐾𝐾ℎ𝑎𝑎𝑎𝑎1)+var� (𝐾𝐾ℎ𝑎𝑎𝑎𝑎2)

 (3.10) 

and variance of KHAT is calculated by: 

var� �K�� = 1
𝑛𝑛
�𝜃𝜃1(1−𝜃𝜃1)

(1−𝜃𝜃2)2
+ 2(1−𝜃𝜃1)(2𝜃𝜃1𝜃𝜃2−𝜃𝜃3)

(1−𝜃𝜃2)3
+ (1−𝜃𝜃1)2(𝜃𝜃4−4𝜃𝜃2)2

(1−𝜃𝜃2)4
� (3.11) 
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When: 

 𝜃𝜃1 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1  

 𝜃𝜃2 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+𝑖𝑖𝑘𝑘
𝑖𝑖=1  

 𝜃𝜃3 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛𝑖𝑖+𝑛𝑛+𝑖𝑖)𝑘𝑘
𝑖𝑖=1  

 𝜃𝜃4 = 1
𝑛𝑛3
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛𝑗𝑗+𝑛𝑛+𝑖𝑖)2𝑘𝑘

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1  

Z is standardized and normally distributed.  

Herein, given the null hypothesis H0: (K1 - K2) = 0, and the alternative H1: (K1 

- K2) ≠ 0, H0 is rejected if Z ≥ Zα/2. 

After that results of accuracy assessment were compared to identify the best 

practical method under PBIA, OBIA and between PBIA and OBIA for LULC 

classification. 



 

CHAPTER IV 

PREPROCESSING OF REMOTE SENSING  

AND GIS DATA 

 

Results of six major tasks of preprocessing of remote sensing data for PBIA and 

OBIA including (1) pan-sharpening processing, (2) optimum pan-sharpening method 

identification using UIQI, (3) Additional spectral band generation, (4) elevation and 

slope extraction, and (5) preparation of image dataset for PBIA and OBIA are described 

and discussed in this chapter. 

 

4.1 Pan-sharpening processing 

Landsat 8 data (multispectral and panchromatic bands) acquiring in 2015 were 

applied to process pan-sharpening image using the selected methods including (1) 

MIHS, (2) WT, (3) HPF, (4) EF, and (5) GS for PBIA and OBIA and its result is 

displayed as color composite image in Figures 4.1 to 4.5, respectively. The basic 

statistical data of six pan-sharpened image is summarized in Tables 4.1 to 4.5. 
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Figure 4.1 False color composite image of pan-sharpened image of modified IHS 

transformation: Band 5, 6 and 4 (RGB). 

 

 

Figure 4.2 False color composite image of pan-sharpened image of wavelet fusion: 

Band 5, 6 and 4 (RGB). 
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Figure 4.3 False color composite image of pan-sharpened image of high pass filtering: 

Band 5, 6 and 4 (RGB). 

 

  

Figure 4.4 False color composite image of pan-sharpened image of Ehlers fusion: Band 

5, 6 and 4 (RGB). 
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Figure 4.5 False color composite image of pan-sharpened image of Gram-Schmidt pan-

sharpening: Band 5, 6 and 4 (RGB). 

 

Table 4.1 Basic statistical data of pan-sharpened image with MIHS. 

 Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Band 2 0 254 9.011 5.97 35.68 
Band 3 0 254 12.352 6.99 48.85 
Band 4 0 254 12.878 9.63 92.72 
Band 5 0 255 62.230 11.58 134.17 
Band 6 0 255 52.594 22.40 501.67 
Band 7 0 145 18.536 12.12 146.77 

 

Table 4.2 Basic statistical data of pan-sharpened image with WT. 

 Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Band 2 0 252 8.447 6.07 36.88 
Band 3 0 251 11.835 77.13 5948.27 
Band 4 0 250 12.244 9.84 96.88 
Band 5 0 253 62.352 12.48 155.75 
Band 6 0 254 51.377 21.76 473.28 
Band 7 0 255 17.510 12.09 146.05 
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Table 4.3 Basic statistical data of pan-sharpened image with HPF. 

 Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Band 2 0 252 8.630 6.04 36.51 
Band 3 0 253 12.061 7.09 50.31 
Band 4 0 255 12.570 9.81 96.16 
Band 5 0 255 62.484 12.52 156.63 
Band 6 0 255 52.141 21.77 473.72 
Band 7 0 237 17.960 12.06 145.35 

 

Table 4.4 Basic statistical data of pan-sharpened image with EF. 

 Minimum Maximum Mean 
Std. 

Deviation 
Variance 

Band 2 0 255 8.272 6.16 37.88 
Band 3 0 254 11.546 7.24 52.45 
Band 4 0 254 12.115 9.91 98.17 
Band 5 0 255 61.879 12.34 152.15 
Band 6 0 255 51.826 21.99 483.34 
Band 7 0 229 24.184 16.18 261.73 

 

Table 4.5 Basic statistical data of pan-sharpened image with GS. 

 
Minimum Maximum Mean 

Std. 
Deviation 

Variance 

Band 2 0 255 9.129 6.92 47.89 
Band 3 0 255 12.556 8.03 64.40 
Band 4 0 255 13.080 10.92 119.25 
Band 5 8 255 62.989 11.59 134.24 
Band 6 0 255 52.627 20.64 425.97 
Band 7 0 245 18.430 12.10 146.43 

 

4.2 Optimum pan-sharpening method identification using UIQI 

The UIQI of Wang and Bovik (2002) was here applied to identify the optimum 

pan-sharpening method using Eq. 3.1 as mentioned Chapter III. In fact the domain value 

of UIQI varies between 0 and 1. In this study, UIQI were calculated using Model 

Builder module under ERDAS Imagine software as shown in Figure 4.6. 
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Figure 4.6 Universal Image Quality Index Model. 
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The average value of UIQI of the pan-sharpened images of Landsat 8 data in 

2015 is presented in Table 4.6. It reveals that WT method shows the best result with 

value of 0.95904 and followed by HPF, EF, GS and MIHST with value of 0.95090, 

0.93230, 0.89788 and 0.87619, respectively. In general, it can be assumed that WT 

method provides the best results of spectral authenticity. However, due to its poor 

performance in the visual test, this method is not be taken into consideration for PBIA 

and OBIA. The HPF represents a good alternative for the sharpening of Landsat 8 data 

in this study. In the quality estimate given above, the average UIQI value of this method 

is only about 0.00814 lower than the WT method. Moreover, the HPF method makes 

the sharpest optical impression. It is also decisive that the edges of LULC classes are 

retained thus making it easier to identify them as separate objects (Figure 4.7). 

Consequently, the pan-sharpened Landsat 8 satellite images by HPF is here selected as 

the data basis for PBIA and OBIA. 

 

Table 4.6 Comparison of the image quality from different pan-sharpening methods 

for Landsat 8 data of 2015 based on average UIQI value. 

Band 
Q and Q-average of various pan-sharpening methods 

MIHS WT HPF EF GS 
2 0.95543 0.96325 0.95778 0.95606 0.92171 
3 0.94582 0.95670 0.95632 0.94784 0.90828 
4 0.96401 0.94954 0.95443 0.96363 0.90203 
5 0.55387 0.99737 0.93639 0.86368 0.89708 
6 0.89358 0.94328 0.95019 0.95861 0.87532 
7 0.94440 0.94410 0.95029 0.90399 0.88285 

Sum 5.25711 5.75424 5.70541 5.59381 5.38727 
UIQI-average 0.87619 0.95904 0.95090 0.93230 0.89788 

Ranking 5 1 2 3 4 
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(a) (b) 

Figure 4.7 Comparison of color composite of pan-sharpened image (Band 5, 6, 4: 

RGB) for visual test: (a) WT and (b) HPF methods. 

 

4.3 Additional spectral band generation 

The derived pan-sharpened image of Landsat 8 was used to generate additional 

spectral bands for LULC classification included NDVI, MNDWI and NDBI as results 

shown in Figures 4.8 to 4.10, respectively.  

As a result, NDVI that was generated using Eq. 3.2 and it can be assumed that 

vegetation areas have high NDVI values and appears as bright gray tones in the image. 

In contrast, MNDWI that was generated using Eq. 3.3 represents degree of water 
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availability. Meanwhile, NDBI that was generated using Eq. 3.4 represents urban and 

built-up features.  

 

Figure 4.8 Normalized Difference Vegetation Index (NDVI) image. 

 

 

Figure 4.9 Modified Normalized Difference Water Index (MNDWI) image. 
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Figure 4.10 Normalized Difference Built-up Index (NDBI) image. 

 

4.4 Elevation and slope extraction 

Elevation and slope data that represents physical factor on distribution of LULC 

classes were here extracted from DEM of STRM 1 arc-second from 

earthexplorer.usgs.gov website with cell size of 15 x 15 m as results shown in Figure 

4.11 and Figure 4.12, respectively. The extracted elevation and slope were here further 

reclassify as thematic classes based on standard classification of LDD (2009) as shown 

in Figures 4.13 to 4.14, respectively. Area and percentage of elevation and slope in the 

study area is summarized in Tables 4.7 to 4.8, respectively. 

As results, it reveals that most of the study area situates between 350 and 750 m 

above mean sea level and covers area of 828.96 km2 or 78.63% of the total area. The 

top three dominant topography of the study area are undulation, rolling and slightly 

undulating and cover area of 331.13 km2, 204.96 km2 and 199.10 km2 or 31.41%, 

19.44%, and 18.88% of the total area. 
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Figure 4.11 Elevation data. 

 

 

Figure 4.12 Slope data. 
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Figure 4.13 Distribution of elevation classification. 

 

 

Figure 4.14 Distribution of slope classification. 
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Table 4.7 Area and percentage of elevation classification in the study area. 

No Elevation (m) Area (sq. km) Percentage 
1 < 200 1.00 0.09 
2 200-250 51.78 4.91 
3 250-350 152.93 14.51 
4 350-750 828.96 78.63 
5 750-800 9.80 0.93 
6 > 800 9.83 0.93 
 Total 1,054.30 100.00 

 

Table 4.8 Area and percentage of slope classification in the study area. 

No Slope (%) Topography Area (sq. km) Percentage 
1 0-2 Flat or almost flat 94.27 8.94 
2 2-5 Slightly undulating 199.10 18.88 
3 5-12 Undulating 331.13 31.41 
4 12-20 Rolling 204.96 19.44 
5 20-35 Hilly 158.72 15.05 
6 >35 Steep 66.12 6.27 
 Total 1,054.30 100.00 

 

4.5 Preparation of image dataset for PBIA and OBIA 

The derived pan-sharpened image of Landsat-8 in 2015 (Band 2, 3, 4, 5, 6 and 

7) based on HPF method were here used as basic input dataset of PBIA and OBIA. 

Meanwhile spectral indices (NDVI, MNDWI and NDBI) and physical data (elevation 

and slope) were systematically assigned as additional bands for LULC classification 

with various classification methods of PBIA and OBIA datasets as follows: 
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4.5.1 Dataset of PBIA 

For MLC classification of parametric approach and ANN classification 

of nonparametric approach under PBIA, two datasets were assigned for LULC 

classification included: 

(1) Six bands of pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 6 and 

7), and  

(2) Nine bands of six pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 

6 and 7) and three spectral index bands (NDVI, MNDWI and NDBI). 

In case of ANN classification, two datasets of six and nine bands were 

also applied to examine the performance of learning rate of ANN at 0.1 and 0.2 for 

LULC classification. 

Meanwhile, for DT classification of nonmetric approach under PBIA, 

three datasets were applied for LULC classification included: 

(1) Six bands of pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 6 and 

7);  

(2) Nine bands of six pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 

6 and 7) and three spectral index bands (NDVI, MNDWI and NDBI); and 

(3) Eleven bands of six pan-sharpened Landsat-8 images (Band 2, 3, 4, 

5, 6 and 7), three spectral index bands (NDVI, MNDWI and NDBI) and two physical 

bands (elevation and slope). 
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4.5.2 Dataset of OBIA 

Like DT classification under PBIA, three datasets of pan-sharpened 

Landsat-8 images and additional bands included: (1) six bands of pan-sharpened 

Landsat-8 images (Band 2, 3, 4, 5, 6 and 7); (2) nine bands of six pan-sharpened 

Landsat-8 images (Band 2, 3, 4, 5, 6 and 7) and three spectral index bands (NDVI, 

MNDWI and NDBI); and (3) eleven bands of six pan-sharpened Landsat-8 images 

(Band 2, 3, 4, 5, 6 and 7), three spectral index bands (NDVI, MNDWI and NDBI) and 

two physical bands (elevation and slope) were applied for LULC classification with 

SNN. 

Meanwhile, six bands of pan-sharpened Landsat-8 images (Band 2, 3, 4, 

5, 6 and 7) were used as basic data for feature selection under FSO with 5 combinations 

as follows: 

(1) Brightness, Mean value of Band 2-7, and Max. Diff.; 

(2) Brightness, Mean value of Band 2-7, Max. Diff., and Standard 

deviation of Band 2-7; 

(3) Brightness, Mean value of Band 2-7, Max. Diff., Standard deviation 

of Band 2-7, and Ratio of Band 2-7; 

(4) Brightness, Mean value of Band 2-7, Max. Diff., Standard deviation 

of Band 2-7, Ratio of Band 2-7, NDVI, MNDWI, and NDBI; 

(5) Brightness, Mean value of Band 2-7, Max. Diff., Standard deviation 

of Band 2-7, Ratio of Band 2-7, NDVI, MNDWI, NDBI, and gray level co-occurrence 

matrices (GLCM) of texture data (angular second moment, contrast, correlation, 

entropy and homogeneity). 



 

CHAPTER V 

PIXEL-BASED IMAGE ANALYSIS 

 

Results of the representative parametric classification method: maximum 

likelihood classifier (MLC), nonparametric classification method: artificial neural 

network (ANN), and nonmetric: decision tree classification (DT) under pixel-based 

image analysis (PBIA) are here reported and discussed under this chapter. 

 

5.1 LULC classification of MLC 

Two datasets of pan-sharpened Landsat-8 and additional layers included (1) six 

bands of pan-sharpened Landsat-8 (Band 2, 3, 4, 5, 6 and 7) and (2) nine bands of six 

original pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 6 and 7) and three spectral 

index bands (NDVI, MNDWI and NDBI) were here applied to extract LULC based on 

the common training areas in the study area under ERDAS Imagine software. Figure 

5.1 displays examples of training areas of LULC classes including (a) urban and built-

up area, (b) paddy field, (c) cassava, (d) maize, (e) sugarcane, (f) orchard and perennial 

trees, (g) forest area, (h) water bodies and (i) miscellaneous land. Result of both datasets 

are separately described and discussed in the following sections.  
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(a) (b) 

    
(c) (d) 

    
(e) (f) 

    
(g) (h) 

 

  

 

(i) 
Figure 5.1 Examples of training areas of 9 LULC classes for MLC: (a) urban and built-

up area, (b) paddy field, (c) cassava, (d) maize, (e) sugarcane, (f) orchard and perennial 

trees, (g) forest area, (h) water bodies and (i) miscellaneous land. 
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5.1.1 LULC classification of MLC with six bands 

The result of LULC classification using MLC with six multispectral 

bands of pan-sharpened image of Landsat-8 is summarized in Table 5.1 and distribution 

of LULC data is displayed in Figure 5.2.  

 

Table 5.1 Area and percentage of final LULC classification of MLC with 6 bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 35.88 3.40 
2 Paddy field 22.74 2.16 
3 Cassava 128.02 12.14 
4 Maize 182.54 17.31 
5 Sugarcane 8.02 0.76 
6 Orchard and perennial trees 37.84 3.59 
7 Forest area 590.34 55.99 
8 Water bodies 1.30 0.12 
9 Miscellaneous land 47.61 4.52 

Total 1,054.30 100.00 
 



56 

 

Figure 5.2 LULC classification of 2015 of maximum likelihood classifier with 6 bands. 

 

As results, top three dominant LULC classes in the study area are forest 

area, maize, and cassava and cover area of 590.34 km2, 182.54 km2 and 128.02 km2 or 

55.99%, 17.31% and 12.14% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points with stratified random sampling by field survey in 

2017 (Figure 5.3). Error matrix form for LULC accuracy assessment is displayed in 

Table 5.2.  It reveals that overall accuracy is 82.90%  and Kappa hat coefficient is 

78.00%. Meanwhile producer’s accuracy of LULC classes varies between 37.50% for 

orchard and perennial trees and 100.00%  for paddy field and maize while user’ s 
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accuracy of LULC classes varies between 27.27%  for orchard and perennial trees and 

100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient 

between 40-80% represents moderate agreement or accuracy between the predicted 

map and the reference map. 

 

Figure 5.3 Distribution of 193 sampling points for accuracy assessment. 
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Table 5.2 Error matrix and accuracy assessment of LULC classification of MLC with 

6 bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 7  1       8 

Paddy field (PD)  5      5 2 12 

Cassava (CV)   5  3 1 1   10 

Maize (MA)    20   1  4 25 

Sugarcane (SU)   1  10 1    12 

Orchard and perennial trees 
(OP)   4  4 3    11 

Forest area (FA)      3 75   78 

Water bodies (WB)        4  4 

Miscellaneous land (ML) 1       1 31 33 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 87.50 100 45.40 100 58.80 37.50 97.40 40.00 83.78  

User’s accuracy (%) 87.50 41.67 50.00 80.00 83.33 27.27 96.15 100 93.94  

Overall accuracy (%) 82.90 

Kappa hat coefficient (%) 78.00 

 

5.1.2 LULC classification of MLC with nine bands 

The result of LULC classification using MLC with nine bands of six 

multispectral bands and three spectral indices of pan-sharpened image of Landsat-8 is 

summarized in Table 5.3 and distribution of LULC data is displayed in Figure 5.4.  

Like the previous results of MLC, top three dominant LULC classes are 

forest area, cassava and maize cover area of 586.80 km2, 192.00 km2 and 152.61 km2 

or 55.66%, 18.21% and 14.47% of the total study area, respectively. 
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Table 5.3 Area and percentage of final LULC classification of MLC with 9 bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 25.92 2.46 
2 Paddy field 24.38 2.31 
3 Cassava 192.00 18.21 
4 Maize 152.61 14.47 
5 Sugarcane 5.44 0.52 
6 Orchard and perennial trees 25.67 2.43 
7 Forest area 586.80 55.66 
8 Water bodies 2.27 0.22 
9 Miscellaneous land 39.21 3.72 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.4.  It reveals that 

overall accuracy is 86.01% and Kappa hat coefficient is 81.93%. Meanwhile producer’s 

accuracy of LULC classes varies between 37.50% for orchard and perennial trees and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 27.27%  for orchard and perennial trees and 100.00% for urban and built-up 

area and water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient more 

than 80 percent represents strong agreement or accuracy between the predicted map and 

the reference map  
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Figure 5.4 LULC classification of 2015 of MLC with 9 bands. 
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Table 5.4 Error matrix and accuracy assessment of LULC classification of MLC with 

9 bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 7         7 

Paddy field (PD)  5      2  7 

Cassava (CV)   7  3 1 1   12 

Maize (MA)    20     5 25 

Sugarcane (SU)   1  9 1    11 

Orchard and perennial trees 
(OP)   3  5 3    11 

Forest area (FA)      3 76   79 

Water bodies (WB)        7  7 

Miscellaneous land (ML) 1       1 32 34 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 87.50 100 63.64 100 52.94 37.50 98.70 70.00 86.49  

User’s accuracy (%) 100 71.43 58.33 80.00 81.82 27.27 96.20 100 94.12  

Overall accuracy (%) 86.01 

Kappa hat coefficient (%) 81.93 

 

Discussion 

As results of LULC classification of MLC from both datasets, it was found that 

area of LULC classes from both datasets are similar except cassava and maize as shown 

in Figure 5.5. Area of cassava from MLC with nine bands is higher than MLC with six 

bands while area of maize from MLC with nine bands is lower than MLC with six 

bands. This results shows influence of additional three spectral indices on different 

LULC classes when they are applied on LULC classification with MLC.  
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Figure 5.5 Comparison area of LULC classification of MLC. 

 

In addition, it can be observed that overall accuracy and Kappa hat coefficient 

of LULC classification map of MLC with nine bands are higher than LULC 

classification map of MLC with six bands. Likewise producer’s accuracy and user’s 

accuracy of LULC classes of MLC with nine bands is higher than six bands as shown 

in Figure 5.6. 

Thus, it can be here concluded that LULC classification of MLC with 

multispectral band and addition spectral indices with totally nine bands is more suitable 

than only six bands of multispectral data. This finding was mentioned by many 

researchers include Skidmore, Turner, Brinkhof, and Knowles, (1997); Qiu and Jensen, 

(2004); and Stow, Coulter, Kaiser, Hope, Service, Schutte, and Walters, (2003). 
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Figure 5.6 Comparison of producer’s accuracy and user’s accuracy of MLC with six 

and nine bands. 

 

However, the pairwise Z test of MLC with two datasets based on Kappa hat 

analysis shows that the accuracy of both LULC classification of MLC with six and nine 

bands are not significantly different at the 80% confidence level since the Z-value is 

less than Chi square values at various confidence levels as shown in Table 5.5. This 

finding suggests that if operation time is considered, it should apply six bands dataset 
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instead of nine bands because their Kappa hat coefficients are not significantly 

different. 

Table 5.5 Pairwise Z test of Kappa hat coefficient value for LULC classification of 

MLC with six and nine bands. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
MLC with six bands 0.78005 0.00109 

0.86554 1.28 1.65 1.96 2.58 
MLC with nine bands 0.81931 0.00097 

 

5.2 LULC classification of ANN 

Two datasets of pan-sharpened Landsat-8 and additional layers include (1) six 

bands of pan-sharpened Landsat-8 (Band 2, 3, 4, 5, 6 and 7) and (2) nine bands of six 

multispectral of pan-sharpened Landsat-8 images (Band 2, 3, 4, 5, 6 and 7) and three 

spectral index bands (NDVI, MNDWI and NDBI) were here applied to extract LULC 

using the common training areas of MLC as points under RSI ENVI software. Figure 

5.7 displays examples of training areas of LULC classes for ANN. In addition, 

configuration of ANN operation with learning rate of 0.1 and 0.2 was here applied with 

two datasets as follows: 

Activation function: Logistic, 

Training Threshold Contribution: 0.9, 

Learning Rate: 0.1 and 0.2, 

Training Momentum: 0.9, 

Training RMS Exit Criteria: 0.1, 

Number of Hidden Layers: 1, 

Number of Training Iterations: 10000, 
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Result of LULC classification of ANN from two datasets with learning rate of 0.1 and 

0.2 are separately described in the following sections.  

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

    
(g) (h) 

 

  

 

(i) 
Figure 5.7 Example training areas of 9 LULC classes for ANN: (a) urban and built-up 

area, (b) paddy field, (c) cassava, (d) maize, (e) sugarcane, (f) orchard and perennial 

trees, (g) forest area, (h) water bodies and (i) miscellaneous land. 
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5.2.1 LULC classification of ANN at learning rate of 0.1 with six bands 

The result of LULC classification of ANN at learning rate of 0.1 with 

six multispectral bands of pan-sharpened image of Landsat-8 is summarized in Table 

5.6 and distribution of LULC data is displayed in Figure 5.8. Top three dominant LULC 

classes are forest area, maize, and cassava and cover area of 659.68 km2, 171.89 km2 

and 72.25 km2 or 62.57%, 16.30% and 6.85% of the total study area, respectively. 

 

Table 5.6 Area and percentage of final LULC classification of ANN at learning rate of 

0.1 with six bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 4.73 0.45 
2 Paddy field 59.70 5.66 
3 Cassava 72.25 6.85 
4 Maize 171.89 16.30 
5 Sugarcane 2.40 0.23 
6 Orchard and perennial trees 53.86 5.11 
7 Forest area 659.68 62.57 
8 Water bodies 5.56 0.53 
9 Miscellaneous land 24.23 2.30 

Total 1,054.30 100.00 
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Figure 5.8 LULC classification of 2015 of ANN at learning rate of 0.1 with six bands. 

 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.7.  It reveals that 

overall accuracy is 80.83% and Kappa hat coefficient is 75.48%. Meanwhile producer’s 

accuracy of LULC classes varies between 25.00%  for urban and built-up area and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 38.46%  for paddy field and Orchard and perennial trees and 100.00%  for 

sugarcane.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-80 
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percent represents moderate agreement or accuracy between the predicted map and the 

reference map. 

 

Table 5.7 Error matrix and accuracy assessment of LULC classification of ANN at 

learning rate of 0.1 with six bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 2  1       3 

Paddy field (PD) 5 5       3 13 

Cassava (CV)   6  7  1   14 

Maize (MA)   1 20   1  5 27 

Sugarcane (SU)     6     6 

Orchard and perennial trees 
(OP)   3  4 5 1   13 

Forest area (FA)      3 74   77 

Water bodies (WB) 1       9  10 

Miscellaneous land (ML)        1 29 30 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 25.00 100 54.55 100 35.29 62.50 96.10 90.00 78.38  

User’s accuracy (%) 66.67 38.46 42.86 74.07 100 38.46 96.10 90.00 96.67  

Overall accuracy (%) 80.83 

Kappa hat coefficient (%) 75.48 

 

5.2.2 LULC classification of ANN at learning rate of 0.2 with six bands 

The result of LULC classification of ANN at learning rate of 0.2 with 

six multispectral bands of pan-sharpened image of Landsat-8 is summarized in Table 

5.8 and distribution of LULC data is displayed in Figure 5.9. Top three dominant LULC 

classes are forest area, maize, and orchard and perennial trees and cover area of 647.93 

km2, 199.86 km2 and 68.69 km2 or 61.46%, 18.96% and 6.52% of the total study area, 

respectively. 
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Table 5.8 Area and percentage of final LULC classification of ANN at learning rate of 

0.2 with six bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 2.81 0.27 
2 Paddy field 54.85 5.20 
3 Cassava 40.62 3.85 
4 Maize 199.86 18.96 
5 Sugarcane 7.78 0.74 
6 Orchard and perennial trees 68.69 6.52 
7 Forest area 647.93 61.46 
8 Water bodies 11.96 1.13 
9 Miscellaneous land 19.80 1.88 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.9.  It reveals that 

overall accuracy is 80.31% and Kappa hat coefficient is 74.81%. Meanwhile producer’s 

accuracy of LULC classes varies between 12.50%  for urban and built-up area and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 38.46% for paddy field and Orchard and perennial trees and 100.00% for urban 

and built-up area and water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat 

coefficient between 40-80 percent represents moderate agreement or accuracy between 

the predicted map and the reference map. 
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Figure 5.9 LULC classification of 2015 of ANN at learning rate of 0.2 with 6 bands. 

  



71 

Table 5.9 Error matrix and accuracy assessment of LULC classification of ANN at 

learning rate of 0.2 with six bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 1         1 

Paddy field (PD) 7 5       1 13 

Cassava (CV)   6  1    2 9 

Maize (MA)    20   1  10 31 

Sugarcane (SU)   1  13 1    15 

Orchard and perennial trees 
(OP)   3  2 5 3   13 

Forest area (FA)   1  1 2 73  1 78 

Water bodies (WB)        9  9 

Miscellaneous land (ML)        1 23 24 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 12.50 100 54.55 100 76.47 62.50 94.81 90.00 62.16  

User’s accuracy (%) 100 38.46 66.67 64.52 86.67 38.46 93.59 100 95.83  

Overall accuracy (%) 80.31 

Kappa hat coefficient (%) 74.81 

 

Discussion 

As results of LULC classification of ANN from six bands with two different 

learning rate (0.1 and 0.2), it can be observed that area of LULC classes from both 

different learning rates are similar except cassava and maize as shown in Figure 5.10. 

Area of cassava from ANN with learning rate of 0.1 is higher than ANN with learning 

rate of 0.2 while area of maize from ANN learning rate of 0.1 is lower than ANN 

learning rate of 0.2. The finding shows effect of learning rate of ANN on LULC 

classification. 

 



72 

 

Figure 5.10 Comparison area of LULC classification of ANN from six bands with 

different learning rates (0.1 and 0.2). 

 

In addition, overall accuracy and Kappa hat coefficient of LULC classification 

map of ANN from six bands with learning rate of 0.1 is slightly higher than LULC 

classification map of ANN from six bands with learning rate of 0.2. Likewise, most of 

producer’s accuracy and user’s accuracy of LULC classes of ANN from six bands with 

learning rate of 0.1 are higher than ANN from six bands with learning rate of 0.2 as 

shown in Figure 5.11. Thus, it can concluded that LULC classification of ANN using 

six bands with learning rate of 0.1 provides higher accuracy than six bands with learning 

rate of 0.2. This finding is consistent with the previous work of Tessawat (2011) who 

found that ANN with learning rate of 0.1 provided the highest accuracy for LULC 

classification among three different learning rates (0.1, 02, and 0.3). 
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Figure 5.11 Comparison of producer’s accuracy and user’s accuracy of LULC classes 

of ANN from six bands with different learning rates. 

 

However, the pairwise Z test of ANN from six bands dataset with learning rate 

of 0.1 and 0.2 based on Kappa hat analysis shows that accuracy of LULC classification 

maps of ANN from six bands dataset with different rates are not significantly different 

at the 80% confidence level as shown in Table 5.10.  
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Table 5.10 Pairwise Z test of Kappa hat coefficient value for LULC classification of 

ANN from six bands dataset with different learning rate. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
ANN at learning rate of 
0.1 with six bands 0.75478 0.00116 

0.13654 1.28 1.65 1.96 2.58 ANN at learning rate of 
0.2 with six bands 0.74809 0.00124 

 

5.2.3 LULC classification of ANN at learning rate of 0.1 with nine bands 

The result of LULC classification of ANN at learning rate of 0.1 with 

nine bands of six multispectral bands and three spectral indices of pan-sharpened image 

of Landsat-8 is summarized in Table 5.11 and distribution of LULC data is displayed 

in Figure 5.12. Top three dominant LULC classes are forest area, maize, and paddy 

field and cover area of 544.68 km2, 266.21 km2 and 91.53 km2 or 51.66%, 25.25% and 

8.68% of the total study area, respectively. 

 

Table 5.11 Area and percentage of final LULC classification of ANN at learning rate 

of 0.1 with nine bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 6.82 0.65 
2 Paddy field 91.53 8.68 
3 Cassava 42.70 4.05 
4 Maize 266.21 25.25 
5 Sugarcane 4.32 0.41 
6 Orchard and perennial trees 75.82 7.19 
7 Forest area 544.68 51.66 
8 Water bodies 2.25 0.21 
9 Miscellaneous land 19.96 1.89 

Total 1,054.30 100.00 
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In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.12.  It reveals that 

overall accuracy is 76.17% and Kappa hat coefficient is 70.02%. Meanwhile producer’s 

accuracy of LULC classes varies between 50.00%  for urban and built-up area and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 26.32%  for orchard and perennial trees and 100.00%  for urban and built-up 

area and water bodies. Based on Fitzpatrick-Lins (1981), Kappa hat coefficient between 

40-80 percent represents moderate agreement or accuracy between the predicted map 

and the reference map. 

 
Figure 5.12 LULC classification of 2015 of ANN at learning rate of 0.1 with 9 bands. 
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Table 5.12 Error matrix and accuracy assessment of LULC classification of ANN at 

learning rate of 0.1 with nine bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 4         4 

Paddy field (PD) 4 5       6 15 

Cassava (CV)   6  5     11 

Maize (MA)   1 20   4  4 29 

Sugarcane (SU)   1  9     10 
Orchard and perennial trees 
(OP)   3  2 5 8  1 19 

Forest area (FA)     1 3 65 1 1 71 

Water bodies (WB)        8  8 

Miscellaneous land (ML)        1 25 26 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 50.00 100 54.55 100 52.94 62.50 84.42 80.00 67.57  

User’s accuracy (%) 100 33.33 54.55 68.97 90.00 26.32 91.55 100 96.15  

Overall accuracy (%) 76.17 

Kappa hat coefficient (%) 70.02 

 

5.2.4 LULC classification of ANN at learning rate of 0.2 with nine bands 

The result of LULC classification of ANN at learning rate of 0.2 with 

nine bands of six multispectral bands and spectral indices of pan-sharpened image of 

Landsat-8 is summarized in Table 5.13 and distribution of LULC data is displayed in 

Figure 5.13. Top three dominant LULC classes are forest area, maize, and cassava and 

cover area of 553.57 km2, 208.84 km2 and 114.11 km2 or 52.51%, 19.81% and 10.82% 

of the total study area, respectively. 

  



77 

Table 5.13 Area and percentage of final LULC classification of ANN at learning rate 

of 0.2 with 9 bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 32.03 3.04 
2 Paddy field 69.72 6.61 
3 Cassava 114.11 10.82 
4 Maize 208.84 19.81 
5 Sugarcane 4.77 0.45 
6 Orchard and perennial trees 48.96 4.64 
7 Forest area 553.57 52.51 
8 Water bodies 1.95 0.18 
9 Miscellaneous land 20.36 1.93 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.14.  It reveals that 

overall accuracy is 75.13% and Kappa hat coefficient is 68.30%. Meanwhile producer’s 

accuracy of LULC classes varies between 37.50%  for orchard and perennial trees and 

100.00% for maize while user’s accuracy of LULC classes varies between 25.00% for 

orchard and perennial trees and 100.00%  for urban and built-up area and water bodies. 

Based on Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-80 percent 

represents moderate agreement or accuracy between the predicted map and the 

reference map. 
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Figure 5.13 LULC classification of 2015 of ANN at learning rate of 0.2 with 9 bands. 
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Table 5.14 Error matrix and accuracy assessment of LULC classification of ANN at 

learning rate of 0.2 with nine bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 4         4 

Paddy field (PD) 4 4       4 12 

Cassava (CV)   8  3 1 1   13 

Maize (MA)    20   5  7 32 

Sugarcane (SU)   1  9 1    11 
Orchard and perennial trees 
(OP)   2  1 3 6   12 

Forest area (FA)     4 3 65 3  75 

Water bodies (WB)        6  6 

Miscellaneous land (ML)  1      1 26 28 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 50.00 80.00 72.73 100 52.94 37.50 84.42 60.00 70.27  

User’s accuracy (%) 100 33.33 61.54 62.50 81.82 25.00 86.67 100 92.86  

Overall accuracy (%) 75.13 

Kappa hat coefficient (%) 68.30 

 

Discussion 

As results of LULC classification of ANN from nine bands with both different 

learning rates (0.1 and 0.2), it can be observed that area of LULC classes from both 

different learning rate are rather different except sugarcane and miscellaneous land as 

shown in Figure 5.14. 
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Figure 5.14 Comparison area of LULC classification of ANN from nine bands with 

different learning rates (0.1 and 0.2). 

 

In addition, overall accuracy and Kappa hat coefficient of LULC classification 

map of ANN from nine bands with learning rate 0.1 is slightly higher than LULC 

classification map of ANN from nine bands with learning rate 0.2. Producer’s accuracy 

and user’s accuracy of LULC classes of ANN from nine bands with learning rate of 0.1 

and 0.2 are rather different as shown in Figure 5.15. Thus, it can be here concluded that 

ANN at learning rate of 0.1 with nine bands can provide better accuracy than ANN at 

learning rate of 0.2 with nine bands. 

However, the pairwise Z test of ANN from nine bands dataset with learning rate 

of 0.1 and 0.2 based on Kappa hat analysis shows that accuracy of LULC classification 

maps of ANN from nine bands dataset with different rates are not significantly different 

at the 80% confidence level as shown in Table 5.15. 
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Figure 5.15 Comparison of producer’s accuracy and user’s accuracy of LULC classes 

of ANN from nine bands with different learning rates. 

 

Table 5.15 Pairwise Z test of Kappa hat coefficient value for LULC classification of 

ANN from nine bands dataset with different learning rate. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
ANN at learning rate of 
0.1 with nine bands 0.70017 0.00137 

0.32056 1.28 1.65 1.96 2.58 ANN at learning rate of 
0.2 with nine bands 0.68296 0.00151 

 

0
20
40
60
80

100

UB PD CV MA SU OP FA WB ML

Pe
rc

en
t

LULC class

Producer’s accuracy 

ANN at learning rate of 0.1 with 9 bands

ANN at learning rate of 0.2 with 9 bands

0
20
40
60
80

100

UB PD CV MA SU OP FA WB ML

Pe
rc

en
t

LULC class

User’s accuracy 

ANN at learning rate of 0.1 with 9 bands

ANN at learning rate of 0.2 with 9 bands



82 

Furthermore, the pairwise Z test of LULC classification using ANN with 

learning rate of 0.1 and 0.2 and two different datasets (six and nine bands) were 

examined based on Kappa hat analysis. It was found that accuracy of LULC 

classification maps of ANN at learning rate at 0.1 or 0.2 with two different datasets (six 

and nine bands) are not significantly different at the 80% confidence level as shown in 

Table 5.16. Like MLC method, this finding suggests that it should apply six bands 

dataset for reducing operation time for LULC classification. 

Additionally, Kappa hat coefficient of LULC classification using ANN at 

learning rate of 0.1 with six bands (75.48%) is higher than Kappa hat coefficient of nine 

bands (70.02%). Likewise, Kappa hat coefficient of LULC classification using ANN at 

learning rate at 0.2 with six bands (74.81%) is higher than Kappa hat coefficient of nine 

bands (68.30%). As a result, it infers that additional spectral bands (NDVI, MNDWI, 

and NDBI) under nine bands dataset do not improve accuracy of LULC classification 

using ANN at learning rate of 0.1 or 0.2. This finding is adverse with the MLC as 

mentioned in Section 5.1. 

In summary, it can be here concluded that ANN at learning rate of 0.1 with six 

bands of pan-sharpened Landsat-8 data is the most suitable for LULC classification 

using ANN method under PBIA. 
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Table 5.16 Pairwise Z test of Kappa hat coefficient value for LULC classification of 

ANN at learning rate at 0.1 and 0.2 with two different datasets (six and nine bands). 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
ANN at learning rate of 
0.1 with six bands 0.75478 0.00116 

1.07680 1.28 1.65 1.96 2.58 ANN at learning rate of 
0.1 with nine bands 0.70017 0.00141 

ANN at learning rate of 
0.2 with six bands 0.74809 0.00121 

1.24863 1.28 1.65 1.96 2.58 ANN at learning rate of 
0.2 with nine bands 0.68296 0.00151 

 

5.3 LULC classification of DT 

Three datasets of pan-sharpened Landsat-8 and additional layers include (1) six 

bands of pan-sharpened Landsat-8 band (Band 2, 3, 4, 5, 6 and 7); (2) nine bands of six 

original pan-sharpened Landsat-8 image (Band 2, 3, 4, 5, 6 and 7) and three spectral 

index bands (NDVI, MNDWI and NDBI); and (3) eleven bands of six original pan-

sharpened Landsat-8 image (Band 2, 3, 4, 5, 6 and 7), three spectral index bands (NDVI, 

MNDWI and NDBI) and two physical data (elevation and slope) were here applied to 

extract LULC using the common training areas of MLC. In practice, ASCII file of 

training area include LULC class and independent variables (Landsat data, spectral 

indices, and physical data) are export into SPSS statistical software to construct tree 

using CRT algorithm with 100% samples and with splitting samples into 60% and 40% 

for modelling and testing. Result of three different datasets with two methods for 

construction decision tree are separately described and discussed in the following 

sections.  
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5.3.1 LULC classification of DT without splitting samples with six bands 

Summary of DT construction without splitting samples with six bands is 

summarized in Table 5.17 while binary decision tree structure is displayed in Figure 

5.16. It reveals that the final criteria of decision tree for LULC classification applies all 

six bands. The decision tree consists of 155 nodes that includes 78 with tree depth of 

15. This binary decision tree is further applied to classify LULC classes under 

Knowledge Engineer module of Expert System under ERDAS Imagine software. 

 

Table 5.17 Model summary of DT without splitting samples with six bands: 

specifications and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables BLUE, GREEN, RED, NIR, SWIR1, SWIR2 

Validation None 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results 

Independent Variables Included BLUE, GREEN, RED, NIR, SWIR1, SWIR2 

Number of Nodes 155 

Number of Terminal Nodes 78 

Depth 15 

 

  



85 

 

Figure 5.16 Binary decision tree structure for LULC classification without splitting samples with six bands. 
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 99.00% (Table 5.18). Basically, model-based inference statistic is not concerned with 

the accuracy of the thematic map. It is concerned with estimating the error of model 

that generates the thematic map. Model-based inference can provide the user with a 

quantitative assessment of each classification decision (Stehman, 2000, 2001). The 

accuracy of the derived optimum model for LULC classification varies between 

57.60% for urban and built-up area and 100% for water bodies. 

 

Table 5.18 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Observed 
Predicted 

CV FA MA ML OP PD SU UB WB Percent 
Correct 

Cassava (CV) 980 76 3 0 3 0 2 0 0 92.10% 

Forest area (FA) 33 23718 0 0 29 0 0 0 0 99.70% 

Maize (MA) 0 0 1780 6 0 8 0 0 0 99.20% 

Miscellaneous land (ML) 0 0 14 941 0 13 0 0 0 97.20% 
Orchard and perennial trees 
(OP) 0 161 0 0 1270 0 9 0 0 88.20% 

Paddy field (PD) 0 0 5 6 0 2081 0 5 0 99.20% 

Sugarcane (SU) 6 7 0 0 5 0 1372 0 0 98.70% 
Urban and built-up area 
(UB) 2 1 0 0 0 11 0 19 0 57.60% 

Water bodies (WB) 0 0 0 0 0 0 0 0 8296 100% 

Overall Percentage 2.50% 58.60% 4.40% 2.30% 3.20% 5.20% 3.40% 0.10% 20.30% 99.00% 

 

The result of LULC classification of DT without splitting samples with 

six bands is summarized in Table 5.19 and distribution of LULC data is displayed in 

Figure 5.17. Top three dominant LULC classes are forest area, maize, and cassava and 

cover area of 695.13 km2, 162.09 km2 and 108.37 km2 or 65.93%, 15.37% and 10.28% 

of the total study area, respectively. 
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In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.20.  It reveals that 

overall accuracy is 82.38% and Kappa hat coefficient is 77.02%. Meanwhile producer’s 

accuracy of LULC classes varies between 0.00%  for urban and built-up area and 

100.00% for paddy field, maize, and forest area while user’s accuracy of LULC classes 

varies between 0% for urban and built-up area and 100.00% for water bodies. Based on 

Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-80 percent represents 

moderate agreement or accuracy between the predicted map and the reference map. 

 

Table 5.19 Area and percentage of final LULC classification of DT without splitting 

samples with six bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 0.76 0.07 
2 Paddy field 46.35 4.40 
3 Cassava 108.37 10.28 
4 Maize 162.09 15.37 
5 Sugarcane 4.65 0.44 
6 Orchard and perennial trees 13.64 1.29 
7 Forest area 695.13 65.93 
8 Water bodies 3.29 0.31 
9 Miscellaneous land 20.02 1.90 

Total 1,054.30 100.00 
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Figure 5.17 LULC classification of 2015 of DT without splitting samples with six 

bands. 
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Table 5.20 Error matrix and accuracy assessment of LULC classification of DT without 

splitting samples with six bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 0         0 

Paddy field (PD) 7 5       1 13 

Cassava (CV)   7  4     11 

Maize (MA)    20     5 25 

Sugarcane (SU)   1  7 1    9 

Orchard and perennial trees 
(OP)   2  4 3    9 

Forest area (FA)   1  2 4 77   84 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 1       1 31 33 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 100 63.64 100 41.18 37.50 100 90.00 83.78  

User’s accuracy (%) 0 38.46 63.64 80.00 77.78 33.33 91.67 100 93.94  

Overall accuracy (%) 82.38 

Kappa hat coefficient (%) 77.02 

 

5.3.2 LULC classification of DT without splitting samples with nine bands 

Summary of DT construction without splitting samples with nine bands 

is summarized in Table 5.21 while binary decision tree structure is displayed in Figure 

5.18. It reveals that the final criteria of decision tree for LULC classification applies all 

nine bands. The decision tree consists of 175 nodes that includes 88 with tree depth of 

15. This binary decision tree is further applied to classify LULC classes under 

Knowledge Engineer module of Expert System under ERDAS Imagine software. 
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Table 5.21 Model summary of DT without splitting samples with nine bands: 

specifications and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables 
BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI 

Validation None 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results 

Independent Variables Included 
BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI 

Number of Nodes 175 

Number of Terminal Nodes 88 

Depth 15 
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Figure 5.18 Binary decision tree structure for LULC classification without splitting samples with nine bands. 
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 99.20% (Table 5.22). The accuracy of the derived optimum model for LULC 

classification varies between 81.80% for urban and built-up area and 100% for water 

bodies. 

 

Table 5.22 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Observed 

Predicted 

CV FA MA ML OP PD SU UB WB 
Percent 

Correct 

Cassava (CV) 1014 42 2 0 2 0 4 0 0 95.30% 

Forest area (FA) 7 23738 0 0 34 0 1 0 0 99.80% 

Maize (MA) 1 0 1783 0 0 10 0 0 0 99.40% 

Miscellaneous land (ML) 1 0 11 928 0 28 0 0 0 95.90% 

Orchard and perennial trees 

(OP) 
1 120 0 0 1308 0 11 0 0 90.80% 

Paddy field (PD) 2 0 9 8 0 2066 0 12 0 98.50% 

Sugarcane (SU) 2 0 0 0 5 0 1383 0 0 99.50% 

Urban and built-up area 

(UB) 
0 1 0 0 0 5 0 27 0 81.80% 

Water bodies (WB) 0 0 0 0 0 0 0 0 8296 100% 

Overall Percentage 2.50% 58.50% 4.40% 2.30% 3.30% 5.20% 3.40% 0.10% 20.30% 99.20% 

 

The result of LULC classification of DT without splitting samples with 

nine bands is summarized in Table 5.23 and distribution of LULC data is displayed in 

Figure 5.19. Top three dominant LULC classes are forest area, maize, and cassava and 

cover area of 666.40 km2, 152.83 km2 and 141.96 km2 or 63.21%, 14.50% and 13.46% 

of the total study area, respectively. 
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Table 5.23 Area and percentage of final LULC classification of DT without splitting 

samples with nine bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 2.88 0.27 
2 Paddy field 52.86 5.01 
3 Cassava 141.96 13.46 
4 Maize 152.83 14.50 
5 Sugarcane 6.50 0.62 
6 Orchard and perennial trees 14.84 1.41 
7 Forest area 666.40 63.21 
8 Water bodies 3.38 0.32 
9 Miscellaneous land 12.65 1.20 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.24.  It reveals that 

overall accuracy is 80.31% and Kappa hat coefficient is 74.66%. Meanwhile producer’s 

accuracy of LULC classes varies between 12.50%  for urban and built-up area and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 22.22%  for orchards and perennial trees and 100.00%  for urban and built-up 

area and water bodies. Based on Fitzpatrick-Lins (1981), Kappa hat coefficient between 

40-80 percent represents moderate agreement or accuracy between the predicted map 

and the reference map. 
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Figure 5.19 LULC classification of 2015 of DT without splitting samples with nine 

bands. 
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Table 5.24 Error matrix and accuracy assessment of LULC classification of DT without 

splitting samples with nine bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 1         1 

Paddy field (PD) 6 5       8 19 

Cassava (CV)   6  1  1   8 

Maize (MA)    20     5 25 

Sugarcane (SU)   1  13 1    15 
Orchard and perennial trees 
(OP)   3  3 2 1   9 

Forest area (FA)   1   5 75   81 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 1       1 24 26 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 12.50 100 54.55 100 76.47 25.00 97.40 90.00 64.86  

User’s accuracy (%) 100 26.32 75.00 80.00 86.67 22.22 92.59 100 92.31  

Overall accuracy (%) 80.31 

Kappa hat coefficient (%) 74.66 

 

5.3.3 LULC classification of DT without splitting samples with eleven 

bands 

Summary of DT construction without splitting samples with eleven 

bands is summarized in Table 5.25 while binary decision tree structure is displayed in 

Figure 5.20. It reveals that the final criteria of decision tree for LULC classification 

applies all eleven bands. The decision tree consists of 101 nodes that includes 55 with 

tree depth of 11. This binary decision tree is further applied to classify LULC classes 

under Knowledge Engineer module of Expert System under ERDAS Imagine software. 
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Table 5.25 Model summary of DT without splitting samples with eleven bands: 

specifications and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables 

BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI, SLOPE, 

ELEVATION 

Validation None 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results 

Independent Variables Included 

BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI, SLOPE, 

ELEVATION 

Number of Nodes 101 

Number of Terminal Nodes 51 

Depth 11 
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Figure 5.20 Binary decision tree structure for LULC classification without splitting samples with eleven bands. 
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 99.50% (Table 5.26). The accuracy of the derived optimum model for LULC 

classification varies between 94.00% for Orchard and perennial trees and 100% for 

paddy field and water bodies. 

 

Table 5.26 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Observed 
Predicted 

CV FA MA ML OP PD SU UB WB Percent 
Correct 

Cassava (CV) 1037 27 0 0 0 0 0 0 0 97.50% 

Forest area (FA) 9 23727 0 0 40 0 4 0 0 99.80% 

Maize (MA) 3 0 1789 2 0 0 0 0 0 99.70% 

Miscellaneous land (ML) 3 0 16 949 0 0 0 0 0 98.00% 
Orchard and perennial trees 
(OP) 1 71 0 0 1354 0 14 0 0 94.00% 

Paddy field (PD) 1 0 0 0 0 2096 0 0 0 100% 

Sugarcane (SU) 3 8 0 0 4 0 1375 0 0 98.90% 
Urban and built-up area 
(UB) 0 0 0 1 0 0 0 32 0 97.00% 

Water bodies (WB) 0 0 0 0 0 0 0 0 8296 100% 

Overall Percentage 2.60% 58.30% 4.40% 2.30% 3.40% 5.10% 3.40% 0.10% 20.30% 99.50% 

 

The result of LULC classification of DT without splitting samples with 

eleven bands is summarized in Table 5.27 and distribution of LULC data is displayed 

in Figure 5.21. Top three dominant LULC classes are forest area, cassava and maize 

and cover area of 657.38 km2, 198.78 km2 and 114.77 km2 or 62.35%, 18.85% and 

10.89% of the total study area, respectively. 
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Table 5.27 Area and percentage of final LULC classification of DT without splitting 

samples with eleven bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 8.94 0.85 
2 Paddy field 31.42 2.98 
3 Cassava 198.78 18.85 
4 Maize 114.77 10.89 
5 Sugarcane 4.81 0.46 
6 Orchard and perennial trees 16.84 1.60 
7 Forest area 657.38 62.35 
8 Water bodies 3.25 0.31 
9 Miscellaneous land 18.11 1.72 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.28.  It reveals that 

overall accuracy is 79.27% and Kappa hat coefficient is 73.13%. Meanwhile producer’s 

accuracy of LULC classes varies between 25.00% for orchards and perennial trees and 

100.00%  for paddy field and maize while user’ s accuracy of LULC classes varies 

between 25.00% for orchards and perennial trees and 100.00% for water bodies. Based 

on Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-80 percent represents 

moderate agreement or accuracy between the predicted map and the reference map. 
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Figure 5.21 LULC classification of 2015 of DT without splitting samples with eleven 

bands. 
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Table 5.28 Error matrix and accuracy assessment of LULC classification of DT without 

splitting samples with eleven bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 3      1   4 

Paddy field (PD) 2 5       5 12 

Cassava (CV) 1  6  7     14 

Maize (MA)    20     6 26 

Sugarcane (SU)   1  6 1    8 
Orchard and perennial trees 
(OP)   4  2 2    8 

Forest area (FA)     2 5 76   83 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 2       1 26 29 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 37.50 100 54.55 100 35.29 25.00 98.70 90.00 70.27  

User’s accuracy (%) 75.00 41.67 42.86 76.92 75.00 25.00 91.57 100 89.66  

Overall accuracy (%) 79.27 

Kappa hat coefficient (%) 73.13 

 

Discussion 

As results of LULC classification of DT without splitting samples from six, 

nine, and eleven bands, it can be observed that area of LULC classes from three dataset 

are quite different as shown in Figure 5.22. In addition, producer’s accuracy and user’s 

accuracy of LULC classes of DT without splitting samples from three datasets are rather 

different as shown in Figure 5.23. 

Overall accuracy and Kappa hat coefficient of LULC classification map of DT 

without splitting samples from six bands provides the best performance. Thus, it can be 

here concluded that DT without splitting samples from six bands of pan-sharpened 

Landsat-8 data is the most suitable for LULC classification using DT method without 

splitting samples under PBIA. 
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However, the pairwise Z test of DT from three datasets without splitting samples 

based on Kappa hat analysis shows that accuracy of LULC classification maps are not 

significantly different at the 80% confidence level as shown in Table 5.29.  

 

Figure 5.22 Comparison area of LULC classification of DT without splitting samples. 
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Figure 5.23 Comparison of producer’s accuracy and user’s accuracy of LULC classes 

of DT without splitting samples from six, nine, and eleven bands. 
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Table 5.29 Pairwise Z test of Kappa hat coefficient value for LULC extraction in DT 

without splitting samples. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
DT without splitting 
samples with six bands 0.77023 0.00113 

0.48576 1.28 1.65 1.96 2.58 DT without splitting 
samples with nine 
bands 

0.74660 0.00124 

DT without splitting 
samples with six bands 0.77023 0.00113 

0.79137 1.28 1.65 1.96 2.58 DT without splitting 
samples with eleven 
bands 

0.73128 0.00129 

DT without splitting 
samples with nine 
bands 

0.74660 0.00120 

0.30662 1.28 1.65 1.96 2.58 DT without splitting 
samples with eleven 
bands 

0.73128 0.00129 

 

5.3.4 LULC classification of DT with splitting samples with six bands 

Summary of DT construction with splitting samples with six bands is 

summarized in Table 5.30 while binary decision tree structure is displayed in Figure 

5.24. It reveals that the final criteria of decision tree for LULC classification applies all 

six bands. The decision tree consists of 135 nodes that includes 68 with tree depth of 

15. This binary decision tree is further applied to classify LULC classes under 

Knowledge Engineer module of Expert System under ERDAS Imagine software. 
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Table 5.30 Model summary of DT with splitting samples with six bands: specifications 

and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables 
BLUE, GREEN, RED, NIR, SWIR1, 

SWIR2 

Validation Split Sample 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results 

Independent Variables Included 
BLUE, GREEN, RED, NIR, SWIR1, 

SWIR2 

Number of Nodes 135 

Number of Terminal Nodes 68 

Depth 15 
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Figure 5.24 Binary decision tree structure for LULC classification with splitting samples with six bands. 
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 98.90% from training data and 98.70% from testing data (Table 5.31). 

 

Table 5.31 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Sample Observed 
Predicted 

CV FA MA ML OP PD SU UB WB Percent 
Correct 

Training Cassava (CV) 608 40 2 0 2 0 0 0 0 93.30% 

Forest area (FA) 12 14233 0 0 10 0 1 0 0 99.80% 

Maize (MA) 0 0 1054 6 0 6 0 0 0 98.90% 

Miscellaneous land (ML) 0 0 9 575 0 5 0 0 0 97.60% 
Orchard and perennial trees 
(OP) 0 117 0 0 717 0 13 0 0 84.70% 

Paddy field (PD) 0 0 9 9 0 1276 0 1 0 98.50% 

Sugarcane (SU) 1 6 0 0 5 0 814 0 0 98.50% 

Urban and built-up area (UB) 1 0 0 0 0 5 0 9 0 60.00% 

Water bodies (WB) 0 0 0 0 0 0 0 0 5069 100% 
 Overall Percentage 2.50% 58.50% 4.40% 2.40% 3.00% 5.20% 3.40% 0.00% 20.60% 98.90% 

Test Cassava (CV) 371 36 3 0 1 0 1 0 0 90.00% 

Forest area (FA) 12 9505 0 0 7 0 0 0 0 99.80% 

Maize (MA) 0 0 720 7 0 1 0 0 0 98.90% 

Miscellaneous land (ML) 1 0 5 369 0 4 0 0 0 97.40% 
Orchard and perennial trees 
(OP) 0 90 0 0 489 0 14 0 0 82.50% 

Paddy field (PD) 0 0 4 6 0 789 0 3 0 98.40% 

Sugarcane (SU) 6 1 0 0 5 0 552 0 0 97.90% 

Urban and built-up area (UB) 1 1 0 0 0 7 0 9 0 50.00% 

Water bodies (WB) 0 0 0 0 0 0 0 0 3227 100% 
 Overall Percentage 2.40% 59.30% 4.50% 2.40% 3.10% 4.90% 3.50% 0.10% 19.90% 98.70% 

 

The result of LULC classification of DT with splitting samples with six 

bands is summarized in Table 5.32 and distribution of LULC data is displayed in Figure 

5.25. Top three dominant LULC classes are forest area, maize, and cassava and cover 

area of 695.41 km2, 169.65 km2 and 104.86 km2 or 65.96%, 16.09% and 9.95% of the 

total study area, respectively. 
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Table 5.32 Area and percentage of final LULC classification of DT with splitting 

samples with six bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 0.53 0.05 
2 Paddy field 39.53 3.75 
3 Cassava 104.86 9.95 
4 Maize 169.65 16.09 
5 Sugarcane 4.64 0.44 
6 Orchard and perennial trees 14.02 1.33 
7 Forest area 695.41 65.96 
8 Water bodies 3.31 0.31 
9 Miscellaneous land 22.35 2.12 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.33.  It reveals that 

overall accuracy is 81.87% and Kappa hat coefficient is 76.23%. Meanwhile producer’s 

accuracy of LULC classes varies between 0.00%  for urban and built-up area and 

100.00% for paddy field, maize, and forest area while user’s accuracy of LULC classes 

varies between 0% for urban and built-up area and 100.00% for water bodies. Based on 

Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-80 percent represents 

moderate agreement or accuracy between the predicted map and the reference map. 
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Figure 5.25 LULC classification of 2015 of DT with splitting samples with six bands. 
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Table 5.33 Error matrix and accuracy assessment of LULC classification of DT with 

splitting samples with six bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 0         0 

Paddy field (PD) 7 5       1 13 

Cassava (CV)   7  4     11 

Maize (MA)    20     5 25 

Sugarcane (SU)   1  7 1    9 
Orchard and perennial trees 
(OP)   2  3 2    7 

Forest area (FA)   1  3 5 77   86 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 1       1 31 33 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 100 63.64 100 41.18 25.00 100 90.00 83.78  

User’s accuracy (%) 0 38.00 63.64 80.00 77.78 28.57 89.53 100 93.94  

Overall accuracy (%) 81.87 

Kappa hat coefficient (%) 76.23 

 

5.3.5 LULC classification of DT with splitting samples with nine bands 

Summary of DT construction with splitting samples with nine bands is 

summarized in Table 5.34 while binary decision tree structure is displayed in Figure 

5.26. It reveals that the final criteria of decision tree for LULC classification applies all 

nine bands. The decision tree consists of 175 nodes that includes 88 with tree depth of 

15. This binary decision tree is further applied to classify LULC classes under 

Knowledge Engineer module of Expert System under ERDAS Imagine software. 
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Table 5.34 Model summary of DT with splitting samples with nine bands: 

specifications and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables 
BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI 

Validation Split Sample 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 5 

Minimum Cases in Child Node 1 

Results 

Independent Variables Included 
BLUE, GREEN, RED, NIR, SWIR1, SWIR2, 

NDVI, MNDWI, NDBI 

Number of Nodes 175 

Number of Terminal Nodes 88 

Depth 15 
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Figure 5.26 Binary decision tree structure for LULC classification with splitting samples with nine bands.  
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 99.30% of training data and 98.90% from testing data (Table 5.35). 

 

Table 5.35 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Sample Observed 
Predicted 

CV FA MA ML OP PD SU UB WB Percent 
Correct 

Training Cassava (CV) 605 20 0 0 0 0 0 0 0 96.80% 

Forest area (FA) 14 14338 0 0 17 0 0 0 0 99.80% 

Maize (MA) 0 0 1071 2 0 2 0 0 0 99.60% 

Miscellaneous land (ML) 1 0 5 576 0 9 0 0 0 97.50% 
Orchard and perennial trees 
(OP) 2 62 0 0 810 0 2 0 0 92.50% 

Paddy field (PD) 1 0 4 9 0 1234 0 4 0 98.60% 

Sugarcane (SU) 2 0 0 0 3 0 834 0 0 99.40% 

Urban and built-up area (UB) 0 1 0 0 0 4 0 21 0 80.80% 

Water bodies (WB) 0 0 0 0 0 0 0 0 4985 100% 
 Overall Percentage 2.50% 58.50% 4.40% 2.40% 3.40% 5.10% 3.40% 0.10% 20.20% 99.30% 

Test Cassava (CV) 407 21 2 0 2 0 7 0 0 92.70% 

Forest area (FA) 6 9380 0 0 24 0 1 0 0 99.70% 

Maize (MA) 1 0 711 2 0 5 0 0 0 98.90% 

Miscellaneous land (ML) 0 0 6 362 0 9 0 0 0 96.00% 
Orchard and perennial trees 
(OP) 0 56 0 0 506 0 2 0 0 89.70% 

Paddy field (PD) 1 0 6 12 0 820 0 6 0 97.00% 

Sugarcane (SU) 8 0 0 0 6 0 537 0 0 97.50% 

Urban and built-up area (UB) 0 0 0 0 0 3 0 4 0 57.10% 

Water bodies (WB) 0 0 0 0 0 0 0 0 3311 100% 
 Overall Percentage 2.60% 58.30% 4.50% 2.30% 3.30% 5.20% 3.40% 0.10% 20.40% 98.90% 

 

The result of LULC classification of DT with splitting samples with six 

bands is summarized in Table 5.36 and distribution of LULC data is displayed in Figure 

5.27. Top three dominant LULC classes are forest area, maize, and cassava and cover 
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area of 671.76 km2, 148.26 km2 and 145.83 km2 or 63.72%, 14.06% and 13.83% of the 

total study area, respectively. 

Table 5.36 Area and percentage of final LULC classification of DT with splitting 

samples with nine bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 1.50 0.14 
2 Paddy field 47.06 4.46 
3 Cassava 145.83 13.83 
4 Maize 148.26 14.06 
5 Sugarcane 4.23 0.40 
6 Orchard and perennial trees 12.72 1.21 
7 Forest area 671.76 63.72 
8 Water bodies 3.53 0.33 
9 Miscellaneous land 19.42 1.84 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.37.  It reveals that 

overall accuracy is 79.79% and Kappa hat coefficient is 73.77%. Meanwhile producer’s 

accuracy of LULC classes varies between 0% for urban and built-up area and 100.00% 

for paddy field and maize while user’ s accuracy of LULC classes varies between 0% 

for urban and built-up area and 100.00%  for water bodies.  Based on Fitzpatrick-Lins 

(1981), Kappa hat coefficient between 40-80 percent represents moderate agreement or 

accuracy between the predicted map and the reference map. 
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Figure 5.27 LULC classification of 2015 of DT with splitting samples with nine bands. 
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Table 5.37 Error matrix and accuracy assessment of LULC classification of DT with 

splitting samples with nine bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 0         0 

Paddy field (PD) 7 5       3 15 

Cassava (CV)   6  6  1   13 

Maize (MA)    20     6 26 

Sugarcane (SU)   1  8 1    10 
Orchard and perennial trees 
(OP)   2  3 2    7 

Forest area (FA)   2   5 76   83 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 1       1 28 30 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 100 54.55 100 47.06 25.00 98.70 90.00 75.68  

User’s accuracy (%) 0 33.33 46.15 76.92 80.00 28.57 91.57 100 93.33  

Overall accuracy (%) 79.79 

Kappa hat coefficient (%) 73.77 

 

5.3.6 LULC classification of DT with splitting samples with eleven bands 

Summary of DT construction with splitting samples with eleven bands 

is summarized in Table 5.38 while binary decision tree structure is displayed in Figure 

5.28. It reveals that the final criteria of decision tree for LULC classification applies all 

eleven bands. The decision tree consists of 87 nodes that includes 44 with tree depth of 

11. This binary decision tree is further applied to classify LULC classes under 

Knowledge Engineer module of Expert System under ERDAS Imagine software. 
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Table 5.38 Model summary of DT without splitting samples with eleven bands: 

specifications and results. 

Specifications 

Growing Method CRT 

Dependent Variable CLASS 

Independent Variables 

BLUE, GREEN, RED, NIR, SWIR1, 

SWIR2, NDVI, MNDWI, NDBI, SLOPE, 

ELEVATION 

Validation Split Sample 

Maximum Tree Depth 15 

Minimum Cases in Parent Node 10 

Minimum Cases in Child Node 5 

Results 

Independent Variables Included 

BLUE, GREEN, RED, NIR, SWIR1, 

SWIR2, NDVI, MNDWI, NDBI, SLOPE, 

ELEVATION 

Number of Nodes 87 

Number of Terminal Nodes 44 

Depth 11 
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Figure 5.28 Binary decision tree structure for LULC classification with splitting samples with eleven bands.
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According to accuracy assessment of the model based on training data 

as model-based inference statistics, the derived decision tree provides overall accuracy 

of 99.40% from training data and 99.20% from testing data (Table 5.39). 

 

Table 5.39 Accuracy assessment of the model based on training data as model-based 

inference statistics. 

Sample Observed 
Predicted 

CV FA MA ML OP PD SU UB WB Percent 
Correct 

Training Cassava (CV) 627 17 4 0 0 0 0 0 0 96.80% 

Forest area (FA) 5 14238 0 0 25 0 0 0 0 99.80% 

Maize (MA) 0 0 1072 3 0 0 0 4 0 99.40% 

Miscellaneous land (ML) 0 0 14 553 0 0 0 0 0 97.50% 
Orchard and perennial trees 
(OP) 1 46 0 0 828 0 5 0 0 94.10% 

Paddy field (PD) 0 0 0 0 0 1207 0 0 0 100% 

Sugarcane (SU) 5 4 0 0 5 0 828 0 0 98.30% 

Urban and built-up area (UB) 0 0 0 2 0 0 0 23 0 92.00% 

Water bodies (WB) 0 0 0 0 0 0 0 0 4991 100% 
 Overall Percentage 2.60% 58.40% 4.40% 2.30% 3.50% 4.90% 3.40% 0.10% 20.40% 99.40% 

Test Cassava (CV) 395 18 3 0 0 0 0 0 0 95.00% 

Forest area (FA) 3 9491 0 0 18 0 0 0 0 99.80% 

Maize (MA) 0 0 705 4 0 0 0 6 0 98.60% 

Miscellaneous land (ML) 0 0 10 391 0 0 0 0 0 97.50% 
Orchard and perennial trees 
(OP) 0 39 0 0 517 0 4 0 0 92.30% 

Paddy field (PD) 1 0 0 0 0 889 0 0 0 99.90% 

Sugarcane (SU) 10 5 0 0 3 0 530 0 0 96.70% 

Urban and built-up area (UB) 0 0 0 1 0 0 0 7 0 87.50% 

Water bodies (WB) 0 0 0 0 0 0 0 0 3305 100% 
 Overall Percentage 2.50% 58.40% 4.40% 2.40% 3.30% 5.40% 3.30% 0.10% 20.20% 99.20% 

 

The result of LULC classification of DT without splitting samples with 

eleven bands is summarized in Table 5.40 and distribution of LULC data is displayed 

in Figure 5.29. Top three dominant LULC classes are forest area, maize, and cassava 
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and cover area of 681.94 km2, 151.29 km2 and 120.91 km2 or 64.68%, 14.35% and 

11.47% of the total study area, respectively. 

Table 5.40 Area and percentage of final LULC classification of DT with splitting 

samples with eleven bands. 

No. LULC class Area in sq.km Percent 
1 Urban and built-up area 22.04 2.09 
2 Paddy field 31.44 2.98 
3 Cassava 120.91 11.47 
4 Maize 151.29 14.35 
5 Sugarcane 3.99 0.38 
6 Orchard and perennial trees 11.62 1.10 
7 Forest area 681.94 64.68 
8 Water bodies 3.20 0.30 
9 Miscellaneous land 27.87 2.64 

Total 1,054.30 100.00 
 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 5.41.  It reveals that 

overall accuracy is 79.27% and Kappa hat coefficient is 72.93%. Meanwhile producer’s 

accuracy of LULC classes varies between 25.00%  for urban and built-up area and 

orchard and perennial trees and 100.00% for paddy field and maize while user’ s 

accuracy of LULC classes varies between 33.33% for orchards and perennial trees and 

100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient 

between 40-80 percent represents moderate agreement or accuracy between the 

predicted map and the reference map. 
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Figure 5.29 LULC classification of 2015 of DT with splitting samples with eleven 

bands. 
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Table 5.41 Error matrix and accuracy assessment of LULC classification of DT with 

splitting samples with eleven bands. 

Classified LULC class 
Reference data Row 

Total UB PD CV MA SU OP FA WB ML 

Urban and built-up area (UB) 2      1  1 4 

Paddy field (PD) 2 5       5 12 

Cassava (CV)   6  6     12 

Maize (MA)   1 20     4 25 

Sugarcane (SU)   1  6 1    8 
Orchard and perennial trees 
(OP)   2  2 2    6 

Forest area (FA)   1  3 5 76   85 

Water bodies (WB)        9  9 

Miscellaneous land (ML) 4       1 27 32 

Column Total 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 25.00 100 54.55 100 35.29 25.00 98.70 90.00 72.97  

User’s accuracy (%) 50.00 41.67 50.00 80.00 75.00 33.33 89.41 100 84.38  

Overall accuracy (%) 79.27 

Kappa hat coefficient (%) 72.93 

 

Discussion 

As results of LULC classification of DT with splitting samples from six, nine, 

and eleven bands, it can be observed that area of LULC classes from three dataset are 

similar as shown in Figure 5.30.  

Overall accuracy and Kappa hat coefficient of LULC classification map of DT 

with splitting samples from six bands also provides the best performance. Producer’s 

accuracy and user’s accuracy of LULC classes of DT without splitting samples from 

three datasets are rather different as shown in Figure 5.31. 

However, the pairwise Z test of DT from three datasets with splitting samples 

based on Kappa hat analysis show that accuracy of LULC classification maps are not 

significantly different at the 80% confidence level as shown in Table 5.42.  
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Additionally, it can be here concluded that DT with splitting samples from six 

bands is the most suitable for LULC classification using DT method under PBIA. 

 

Figure 5.30 Comparison area of LULC classification of DT with splitting samples from 

six, nine, and eleven bands. 
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Figure 5.31 Comparison of producer’s accuracy and user’s accuracy of LULC classes 

of DT with splitting samples from six, nine, and eleven bands. 
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Table 5.42 Pairwise Z test of Kappa hat coefficient value for LULC extraction in DT 

with splitting samples from three datasets. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
LULC data of DT with 
splitting samples with 
six bands 

0.76232 0.00117 

0.49972 1.28 1.65 1.96 2.58 DT with splitting 
samples with nine 
bands 

0.73768 0.00126 

DT with splitting 
samples with six bands 0.76232 0.00117 

0.66115 1.28 1.65 1.96 2.58 DT with splitting 
samples with eleven 
bands 

0.72933 0.00132 

DT with splitting 
samples with nine 
bands 

0.73768 0.00123 

0.16544 1.28 1.65 1.96 2.58 DT with splitting 
samples with eleven 
bands 

0.72933 0.00132 

 

Furthermore, overall accuracy and Kappa hat coefficient of LULC classification 

map of DT with and without splitting samples for decision tree construction in each 

dataset (six, nine, eleven bands) are compared to identify the most suitable DT method 

for LULC classification. It reveals that DT without splitting sample for decision tree 

construction of six bands provides the highest accuracy for LULC classification as 

shown in Figure 5.32. Producer’s accuracy and user’s accuracy of LULC classes of DT 

with and without splitting samples of three different bands are rather different as shown 

in Figure 5.33. It can be here concluded that DT without splitting samples from six 

bands of pan-sharpened Landsat-8 data is the most suitable for LULC classification 

using DT method without splitting samples under PBIA.  

However, the pairwise Z test of DT from with and without splitting samples of 

six, nine, and eleven bands based on Kappa hat coefficient and their error matrices 
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reveals that accuracy of LULC classification maps of DT with and without splitting 

samples of three different datasets are not significantly different at the 80% confidence 

level as shown in Table 5.43. This finding implies that the most effective dataset for 

LULC classification of DT with and without splitting samples is six bands dataset. 

 

Figure 5.32 Accuracy assessment of DT classification with and without splitting 

sample for decision tree construction in each dataset (six, nine, eleven bands). 
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Figure 5.33 Comparison of producer’s accuracy and user’s accuracy of LULC classes 

of DT classification with and without splitting sample for decision tree construction in 

each dataset (six, nine, eleven bands). 
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Table 5.43 Pairwise Z test of Kappa hat coefficient value for LULC extraction in DT 

with splitting samples. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
DT without splitting 
samples with six bands 0.77023 0.00113 

0.16377 1.28 1.65 1.96 2.58 DT with splitting 
samples with six bands 0.76232 0.00120 

DT without splitting 
samples with nine 
bands 

0.74660 0.00120 

0.17957 1.28 1.65 1.96 2.58 DT with splitting 
samples with nine 
bands 

0.73768 0.00126 

DT without splitting 
samples with eleven 
bands 

0.73128 0.00125 

0.03844 1.28 1.65 1.96 2.58 DT with splitting 
samples with eleven 
bands 

0.72933 0.00132 

 

 



 

CHAPTER VI 

OBJECT-BASED IMAGE ANALYSIS 

 

Results of the representative object-based classification method: standard 

nearest neighbor classifier (SNN) and nearest neighbor classifier with feature space 

optimization (FSO) under object-based image analysis (OBIA) are here reported and 

discussed under this chapter. 

 

6.1 LULC classification of SNN 

Three datasets of pan-sharpened Landsat-8 and additional bands included (1) 

six pan-sharpened Landsat-8 bands (Band 2, 3, 4, 5, 6 and 7); (2) nine bands of six pan-

sharpened Landsat-8 bands (Band 2, 3, 4, 5, 6 and 7) and three spectral bands (NDVI, 

MNDWI and NDBI); and (3) eleven bands of six pan-sharpened Landsat-8 bands (Band 

2, 3, 4, 5, 6 and 7), three spectral bands (NDVI, MNDWI and NDBI) and two physical 

data (elevation and slope) were here applied to extract LULC using SNN method under 

OBIA of the eCognition software. In practice, images of each dataset are firstly 

segmented using multiresolution segmentation method with specific scale and weight 

of spectral, shape, compactness and smoothness, then image object samples of each 

LULC class were collected and applied for LULC classification using SNN method. 

Figure 6.1 displays segmented image as image objects using multiresolution 

segmentation with the scale factor of 15 and color parameter of 0.9 and compactness of 
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0.5. Summary of image segmentation and its parameter and number of image objects 

of three datasets for LULC classification with SNN is presented in Table 6.1.  

 

 

Figure 6.1 Image segmentation as image objects using multiresolution segmentation 

with the scale factor of 15, color parameter of 0.9 and compactness of 0.5. 

 

Table 6.1 Parameter setting of multiresolution segmentation and number of the derived 

image objects of three datasets for LULC classification with SNN. 

Number of 
bands Scale Color 

weight 

Shape weight = 0.1 Number of 
image objects Compactness Smoothness 

6 bands 15 0.9 0.5 0.5 71,231 

9 bands 15 0.9 0.5 0.5 78,106 

11 bands 15 0.9 0.5 0.5 67,819 
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Meanwhile, Figure 6.2 displays an example of image object samples as training 

areas of each LULC classes. These training areas of SNN were also applied to nearest 

neighbor classifier with feature space optimization (FSO). The standard features that 

were applied for LULC classification with SNN of each dataset in this study is 

summarized in Table 6.2 
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(a) (b) 

    
(c) (d) 

    
(e) (f) 

    
(g) (h) 

 

  

 

(i) 
Figure 6.2 Training areas of 9 LULC classes for SNN and FSO methods: (a) urban and 

built-up area, (b) paddy field, (c) cassava, (d) maize, (e) sugarcane, (f) orchard and 

perennial trees, (g) forest area, (h) water bodies and (i) miscellaneous land. 
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Table 6.2 List of features of SNN with three different dataset. 

No 
Dataset 

Six bands Nine bands Eleven bands 
1 Brightness Brightness Brightness 
2 Mean layer 1 (Band 2) Mean layer 1 (Band 2) Mean layer 1 (Band 2) 
3 Mean layer 2 (Band 3) Mean layer 2 (Band 3) Mean layer 2 (Band 3) 
4 Mean layer 3 (Band 4) Mean layer 3 (Band 4) Mean layer 3 (Band 4) 
5 Mean layer 4 (Band 5) Mean layer 4 (Band 5) Mean layer 4 (Band 5) 
6 Mean layer 5 (Band 6) Mean layer 5 (Band 6) Mean layer 5 (Band 6) 
7 Mean layer 6 (Band 7) Mean layer 6 (Band 7) Mean layer 6 (Band 7) 
8 Max. Diff. Mean layer 7 (NDVI) Mean layer 7 (NDVI) 
9 Std. deviation 1 (Band 2) Mean layer 8 (MNDWI) Mean layer 8 (MNDWI) 
10 Std. deviation 2 (Band 3) Mean layer 9 (NDBI) Mean layer 9 (NDBI) 
11 Std. deviation 3 (Band 4) Max. Diff. Mean layer 10 (ELEVATION) 
12 Std. deviation 4 (Band 5) Std. deviation 1 (Band 2) Mean layer 11 (SLOPE) 
13 Std. deviation 5 (Band 6) Std. deviation 2 (Band 3) Max. Diff. 
14 Std. deviation 6 (Band 7) Std. deviation 3 (Band 4) Std. deviation 1 (Band 2) 
15 Ratio 1 (Band 2) Std. deviation 4 (Band 5) Std. deviation 2 (Band 3) 
16 Ratio 2 (Band 3) Std. deviation 5 (Band 6) Std. deviation 3 (Band 4) 
17 Ratio 3 (Band 4) Std. deviation 6 (Band 7) Std. deviation 4 (Band 5) 
18 Ratio 4 (Band 5) Std. deviation 7 (NDVI) Std. deviation 5 (Band 6) 
19 Ratio 5 (Band 6) Std. deviation 8 (MNDWI) Std. deviation 6 (Band 7) 
20 Ratio 6 (Band 7) Std. deviation 9 (NDBI) Std. deviation 7 (NDVI) 
21  Ratio 1 (Band 2) Std. deviation 8 (MNDWI) 
22  Ratio 2 (Band 3) Std. deviation 9 (NDBI) 
23  Ratio 3 (Band 4) Std. deviation 10 (ELEVATION) 
24  Ratio 4 (Band 5) Std. deviation 11 (SLOPE) 
25  Ratio 5 (Band 6) Ratio 1 (Band 2) 
26  Ratio 6 (Band 7) Ratio 2 (Band 3) 
27  Ratio 7 (NDVI) Ratio 3 (Band 4) 
28  Ratio 8 (MNDWI) Ratio 4 (Band 5) 
29  Ratio 9 (NDBI) Ratio 5 (Band 6) 
30   Ratio 6 (Band 7) 
31   Ratio 7 (NDVI) 
32   Ratio 8 (MNDWI) 
33   Ratio 9 (NDBI) 
34   Ratio 10 (ELEVATION) 
35   Ratio 11 (SLOPE) 
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6.1.1 LULC classification of SNN with six bands 

The result of LULC classification using SNN with six bands is 

summarized in Table 6.3 and distribution of LULC data is displayed in Figure 6.3.  

 

Table 6.3 Area and percentage of final LULC classification of SNN with six bands. 

No. LULC class Area in sq.km Percent 
0 Unclassified 2.52 0.24 
1 Urban and built-up area 80.49 7.63 
2 Paddy field 13.46 1.28 
3 Cassava 156.05 14.80 
4 Maize 120.35 11.42 
5 Sugarcane 3.76 0.36 
6 Orchard and perennial trees 5.10 0.48 
7 Forest area 618.32 58.65 
8 Water bodies 2.25 0.21 
9 Miscellaneous land 52.00 4.93 

Total 1,054.30 100.00 
 

As results, top three dominant LULC classes in the study area are forest 

area, cassava and maize and cover area of 618.32 km2, 156.05 km2 and 120.35 km2 or 

58.65%, 14.80% and 11.42% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.4.  It reveals that 

overall accuracy is 77.72% and Kappa hat coefficient is 70.74%. Meanwhile producer’s 

accuracy of LULC classes varies between 25.00%  for orchard and perennial trees and 

100.00% for paddy field while user’s accuracy of LULC classes varies between 31.25% 

for cassava and 100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa 
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hat coefficient between 40-80% represents moderate agreement or accuracy between 

the predicted map and the reference map. 

 

 

Figure 6.3 LULC classification of 2015 of SNN with six bands. 
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Table 6.4 Error matrix and accuracy assessment of LULC classification of SNN with 

six bands. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1       2 1 4 

Urban and built-up area 
(UB)  6  1       7 

Paddy field (PD)   5       1 6 

Cassava (CV)    5 1 5 1 3  1 16 

Maize (MA)    1 18   1  2 22 

Sugarcane (SU)    1  3 1    5 

Orchard and perennial trees 
(OP)      1 2 1   4 

Forest area (FA)    3  8 4 72   87 

Water bodies (WB)         7  7 

Miscellaneous land (ML)  1   1    1 32 35 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 75.00 100 45.45 90.00 17.65 25.00 93.51 70.00 86.49  

User’s accuracy (%) 0 85.71 83.33 31.25 81.82 60.00 50.00 82.76 100 91.43  

Overall accuracy (%) 77.72 

Kappa hat coefficient (%) 70.74 

 

6.1.2 LULC classification of SNN with nine bands 

The result of LULC classification using SNN with nine bands is 

summarized in Table 6.5 and distribution of LULC data is displayed in Figure 6.4.  
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Table 6.5 Area and percentage of final LULC classification of SNN with nine bands. 

No. LULC class Area in sq.km Percent 
0 Unclassified 3.20 0.30 
1 Urban and built-up area 59.20 5.61 
2 Paddy field 16.81 1.59 
3 Cassava 194.79 18.48 
4 Maize 118.39 11.23 
5 Sugarcane 5.07 0.48 
6 Orchard and perennial trees 6.30 0.60 
7 Forest area 617.15 58.54 
8 Water bodies 2.87 0.27 
9 Miscellaneous land 30.52 2.89 

Total 1,054.30 100.00 
 

As results, top three dominant LULC classes in the study area are forest 

area, maize, and cassava and cover area of 617.15 km2, 194.79 km2 and 118.39 km2 or 

58.54%, 18.48% and 11.23% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.6.  It reveals that 

overall accuracy is 78.24% and Kappa hat coefficient is 71.83%. Meanwhile producer’s 

accuracy of LULC classes varies between 25.00%  for orchard and perennial trees and 

96.10%  for forest area while user’ s accuracy of LULC classes varies between 33.33% 

for orchard and perennial trees and 100.00% for water bodies. 

Based on Fitzpatrick-Lins (1981), Kappa hat coefficient between 40-

80% represents moderate agreement or accuracy between the predicted map and the 

reference map. 
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Figure 6.4 LULC classification of 2015 of SNN with nine bands. 
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Table 6.6 Error matrix and accuracy assessment of LULC classification of SNN with 

nine bands. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1        1 2 

Urban and built-up area 
(UB)  6   1     1 8 

Paddy field (PD)   4  1     5 10 

Cassava (CV)    7  8 2 1   18 

Maize (MA)   1  17     3 21 

Sugarcane (SU)    1  5     6 

Orchard and perennial trees 
(OP)      2 2 2   6 

Forest area (FA)    3  2 4 74   83 

Water bodies (WB)         9  9 

Miscellaneous land (ML)  1   1    1 27 30 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 75.00 80.00 63.64 85.00 29.41 25.00 96.10 90.00 72.97  

User’s accuracy (%) 0 75.00 40.00 38.89 80.95 83.33 33.33 89.16 100 90.00  

Overall accuracy (%) 78.24 

Kappa hat coefficient (%) 71.83 

 

6.1.3 LULC classification of SNN with eleven bands 

The result of LULC classification using SNN with eleven bands is 

summarized in Table 6.7 and distribution of LULC data is displayed in Figure 6.5.  
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Table 6.7 Area and percentage of final LULC classification of SNN with eleven bands. 

No. LULC class Area in sq.km Percent 
0 Unclassified 1.29 0.12 
1 Urban and built-up area 95.84 9.09 
2 Paddy field 21.74 2.06 
3 Cassava 59.17 5.61 
4 Maize 153.50 14.56 
5 Sugarcane 4.74 0.45 
6 Orchard and perennial trees 8.76 0.83 
7 Forest area 673.70 63.90 
8 Water bodies 4.72 0.45 
9 Miscellaneous land 30.85 2.93 

Total 1,054.30 100.00 
 

As results, top three dominant LULC classes in the study area are forest 

area, maize, and urban and built-up area and cover area of 673.70 km2, 153.50 km2 and 

95.84 km2 or 63.90%, 14.56% and 9.09% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment with 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.8.  It reveals that 

overall accuracy is 81.35% and Kappa hat coefficient is 75.68%. Meanwhile producer’s 

accuracy of LULC classes varies between 35.29%  for sugarcane and 100%  for paddy 

field and forest area while user’s accuracy of LULC classes varies between 41.67% for 

cassava and 100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat 

coefficient between 40-80% represents moderate agreement or accuracy between the 

predicted map and the reference map. 
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Figure 6.5 LULC classification of 2015 of SNN with eleven bands. 
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Table 6.8 Error matrix and accuracy assessment of LULC classification of SNN with 

eleven bands. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1         1 

Urban and built-up area 
(UB)  6  1 1     3 11 

Paddy field (PD)  1 5       2 8 

Cassava (CV)    5  6    1 12 

Maize (MA)    1 18     4 23 

Sugarcane (SU)    1  6     7 

Orchard and perennial trees 
(OP)      3 4    7 

Forest area (FA)    3  2 4 77   86 

Water bodies (WB)         9  9 

Miscellaneous land (ML)     1    1 27 29 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 75.00 100 45.45 90.00 35.29 50.00 100 90.00 72.97  

User’s accuracy (%) 0 54.55 62.50 41.67 78.26 85.71 57.14 89.53 100 93.10  

Overall accuracy (%) 81.35 

Kappa hat coefficient (%) 75.68 

 

Discussion 

As results of LULC classification of SNN with three different datasets, it can be 

observed that area of LULC classes are rather different except sugarcane, orchards and 

perennial trees, and water bodies as shown in Figure 6.6.  

According accuracy assessment, it reveals that LULC map of SNN that was 

classified with eleven bands (six multispectral bands, three spectral index bands and 

two physical data) provides the highest overall accuracy of 81.35% and Kappa hat 

coefficient of 75.68% (Figure 6.7). Likewise, producer’s accuracy and user’s accuracy 

of LULC classes of SNN with eleven bands are higher than LULC classes of SNN with 

six and nine bands as shown in Figure 6.8. Thus, it can be here concluded that SNN 
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with eleven bands is the most suitable for LULC classification using SNN method under 

OBIA. 

 

Figure 6.6 Comparison area of LULC classification of SNN with three different 

dataset. 

 

 

Figure 6.7 Accuracy assessment of SNN with three different datasets. 
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Figure 6.8 Comparison producer’s and user’s accuracy of LULC classification of SNN. 

 

However, the pairwise Z test of SNN with three different datasets based on 

Kappa hat analysis shows that the accuracy of LULC classification are not significantly 

different at the 80% confidence level since the Z-value is less than Chi square values at 

various confidence levels as shown in Table 6.9. This finding suggests that it should 

apply six bands dataset for reducing operation time for LULC classification with SNN. 
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Table 6.9 Pairwise Z test of Kappa hat coefficient value for LULC extraction in SNN. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
SNN with six bands 0.70801 0.00140 

0.20503 1.28 1.65 1.96 2.58 
SNN with nine bands 0.71868 0.00131 
SNN with six bands 0.70801 0.00140 

0.95886 1.28 1.65 1.96 2.58 
SNN with eleven bands 0.75689 0.00120 
SNN with nine bands 0.71868 0.00131 

0.76273 1.28 1.65 1.96 2.58 
SNN with eleven bands 0.75689 0.00120 

 

6.2 LULC classification of FSO 

Five combinations of features of pan-sharpened Landsat-8 data and their 

properties were here applied to classify LULC with FSO including: 

(1) Brightness, Mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7) and Max. diff.;  

(2) Brightness, Mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Max. diff. and 

Standard deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7);  

(3) Brightness, Mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Max. diff., Standard 

deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7) and ratio of layer 1 to 6 (Band 2, 3, 

4, 5, 6 and 7);  

(4) Brightness, Mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Max. diff., Standard 

deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Ratio of layer 1 to 6 (Band 2, 3, 4, 

5, 6 and 7) and three spectral indices (NDVI, MNDWI and NDBI); and  

(5) Brightness, Mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Max. diff., Standard 

deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), Ratio of layer 1 to 6 (Band 2, 3, 4, 

5, 6 and 7), three spectral indices (NDVI, MNDWI and NDBI) and six GLCM texture 

(homogeneity, contrast, entropy, Ang. 2nd moment and correlation).  

In practice, image objects of six bands of pan-sharpened Landsat-8 data and 

training areas of SNN method as initial input data are firstly applied to extract optimize 
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features from each feature combination which provides the best separability among 

features. Then, the optimize features are applied to classify LULC using nearest 

neighbor classifier. 

Results of LULC classification of FSO with different feature combinations is 

separately reported and discussed in the following sections. 

6.2.1 LULC classification of FSO with feature combination # 1 

Under the first combination of features of pan-sharpened Landsat-8 data 

and their properties including brightness, mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7) 

and Max. diff., the optimize features that provide the best separability distance of 0.375 

for LULC classification are Mean Layer 2, 3 and 4 and Max. diff. 

The result of LULC classification using FSO with the first feature 

combination is summarized in Table 6.10 and distribution of LULC data is displayed 

in Figure 6.9.  

 

Table 6.10 Area and percentage of final LULC classification of FSO with feature 

combination # 1. 

No. LULC class Area in sq.km Percent 
0 Unclassified 0.19 0.02 
1 Urban and built-up area 116.13 11.01 
2 Paddy field 67.48 6.40 
3 Cassava 137.91 13.08 
4 Maize 89.65 8.50 
5 Sugarcane 0.47 0.04 
6 Orchard and perennial trees 8.72 0.83 
7 Forest area 612.28 58.07 
8 Water bodies 3.65 0.35 
9 Miscellaneous land 17.82 1.69 

Total 1,054.30 100.00 



147 

 

Figure 6.9 LULC classification of 2015 of FSO with feature combination # 1. 

 

As results, top three dominant LULC classes in the study area are forest 

area, cassava, and urban and built-up area and cover area of 612.28 km2, 137.91 km2 

and 116.13 km2 or 58.07%, 13.08% and 11.01% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.11.  It reveals that 

overall accuracy is 72.02% and Kappa hat coefficient is 63.63%. Meanwhile producer’s 

accuracy of LULC classes varies between 0.00%  for sugarcane and 94.81%  for forest 

area while user’ s accuracy of LULC classes varies between 0.00%  for sugarcane and 
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100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient 

between 40-80% represents moderate agreement or accuracy between the predicted 

map and the reference map. 

 

Table 6.11 Error matrix and accuracy assessment of LULC classification of FSO with 

feature combination # 1. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0          0 

Urban and built-up area 
(UB)  4  2 3     1 10 

Paddy field (PD)  4 4  1    1 6 16 

Cassava (CV)    7  7 1 1  1 17 

Maize (MA)     16   2  5 23 

Sugarcane (SU)      0     0 

Orchard and perennial trees 
(OP)      2 3 1   6 

Forest area (FA)    2  8 4 73   87 

Water bodies (WB)         8  8 

Miscellaneous land (ML)   1      1 24 26 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 50.00 80.00 63.64 80.00 0.00 37.50 94.81 80.00 64.86  

User’s accuracy (%) 0 40.00 25.00 41.18 69.57 0.00 50.00 83.91 100 92.31  

Overall accuracy (%) 72.02 

Kappa hat coefficient (%) 63.63 
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6.2.2 LULC classification of FSO with feature combination # 2 

Under the second combination of features of pan-sharpened Landsat-8 

data and their properties including brightness, mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 

7), Max. diff. and standard deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), the 

optimize features that provide the best separability distance of 0.579 for LULC 

classification are Mean Layer 4 and 5, Standard deviation Layer 4, and Max. diff. 

The result of LULC classification using FSO with the second feature 

combination is summarized in Table 6.12 and distribution of LULC data is displayed 

in Figure 6.10.  

 

Table 6.12 Area and percentage of final LULC classification of FSO with feature 

combination # 2. 

No. LULC class Area in sq.km Percent 
0 Unclassified 4.51 0.43 
1 Urban and built-up area 116.57 11.06 
2 Paddy field 24.79 2.35 
3 Cassava 136.04 12.90 
4 Maize 86.06 8.16 
5 Sugarcane 1.83 0.17 
6 Orchard and perennial trees 10.78 1.02 
7 Forest area 610.32 57.89 
8 Water bodies 2.42 0.23 
9 Miscellaneous land 60.97 5.78 

Total 1,054.30 100.00 
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Figure 6.10 LULC classification of 2015 of FSO with feature combination # 2. 

 

As results, top three dominant LULC classes in the study area are forest 

area, cassava and urban and built-up area and cover area of 610.32 km2, 136.04 km2 

and 116.57 km2 or 57.89%, 12.90% and 11.06% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.13.  It reveals that 

overall accuracy is 74.61% and Kappa hat coefficient is 66.49%. Meanwhile producer’s 

accuracy of LULC classes varies between 5.88%  for sugarcane and 93.51%  for forest 

area while user’ s accuracy of LULC classes varies between 40.00%  for orchard and 
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perennial trees and 100.00% for water bodies. Based on Fitzpatrick-Lins (1981), Kappa 

hat coefficient between 40-80% represents moderate agreement or accuracy between 

the predicted map and the reference map. 

 

Table 6.13 Error matrix and accuracy assessment of LULC classification of FSO with 

feature combination # 2. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1       1 1 3 

Urban and built-up area 
(UB)  5  1 4      10 

Paddy field (PD)   4 1      1 6 

Cassava (CV)    7  3 1 2  3 16 

Maize (MA)     15   1  2 18 

Sugarcane (SU)      1 1    2 

Orchard and perennial trees 
(OP)      1 2 2   5 

Forest area (FA)    2  12 4 72   90 

Water bodies (WB)         8  8 

Miscellaneous land (ML)  2 1  1    1 30 35 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 62.50 80.00 63.64 75.00 5.88 25.00 93.51 80.00 81.08  

User’s accuracy (%) 0 50.00 66.67 43.75 83.33 50.00 40.00 80.00 100 85.71  

Overall accuracy (%) 74.61 

Kappa hat coefficient (%) 66.49 
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6.2.3 LULC classification of FSO with feature combination # 3 

Under the third combination of features of pan-sharpened Landsat-8 data 

and their properties including brightness, mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), 

Max. diff., standard deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7) and ratio of layer 

1 to 6 (Band 2, 3, 4, 5, 6 and 7), the optimize features that provide the best separability 

distance of 1.423 for LULC classification are Mean Layer 4 and 5, Standard deviation 

Layer 4, Ratio Layer 2 and 5. 

The result of LULC classification using FSO with the third feature 

combination is summarized in Table 6.14 and distribution of LULC data is displayed 

in Figure 6.11.  

 

Table 6.14 Area and percentage of final LULC classification of FSO with feature 

combination # 3. 

No. LULC class Area in sq.km Percent 
0 Unclassified 4.41 0.42 
1 Urban and built-up area 132.31 12.55 
2 Paddy field 29.68 2.82 
3 Cassava 110.44 10.48 
4 Maize 96.35 9.14 
5 Sugarcane 2.96 0.28 
6 Orchard and perennial trees 15.47 1.47 
7 Forest area 615.09 58.34 
8 Water bodies 2.28 0.22 
9 Miscellaneous land 45.29 4.30 

Total 1,054.30 100.00 
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Figure 6.11 LULC classification of 2015 of FSO with feature combination # 3. 

 

As results, top three dominant LULC classes in the study area are forest 

area, urban and built-up area and cassava and cover area of 615.09 km2, 132.31 km2 

and 110.44 km2 or 58.34%, 12.55% and 10.48% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.15.  It reveals that 

overall accuracy is 76.17% and Kappa hat coefficient is 68.92%. Meanwhile producer’s 

accuracy of LULC classes varies between 11.76%  for sugarcane and 100%  for paddy 

field while user’ s accuracy of LULC classes varies between 33.33%  for orchard and 
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perennial trees and 100.00% for water bodies. Based on Fitzpatrick-Lins (1981), Kappa 

hat coefficient between 40-80% represents moderate agreement or accuracy between 

the predicted map and the reference map. 

 

Table 6.15 Error matrix and accuracy assessment of LULC classification of FSO with 

feature combination # 3. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1       2  3 

Urban and built-up area 
(UB)  5  1 1  1 1   9 

Paddy field (PD)   5       3 8 

Cassava (CV)  1  8  5    7 21 

Maize (MA)     18   1  1 20 

Sugarcane (SU)      2 1    3 

Orchard and perennial trees 
(OP)    1  2 2 1   6 

Forest area (FA)    1  8 4 74   87 

Water bodies (WB)         7  7 

Miscellaneous land (ML)  1   1    1 26 29 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 62.50 100 72.73 90.00 11.76 25.00 96.10 70.00 70.27  

User’s accuracy (%) 0 55.56 62.50 38.10 90.00 66.67 33.33 85.06 100 89.66  

Overall accuracy (%) 76.17 

Kappa hat coefficient (%) 68.92 
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6.2.4 LULC classification of FSO with feature combination # 4 

Under the fourth combination of features of pan-sharpened Landsat-8 

data and their properties including brightness, mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 

7), Max. diff., standard deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), ratio of layer 

1 to 6 (Band 2, 3, 4, 5, 6 and 7) and three spectral indices (NDVI, MNDWI and NDBI), 

the optimize features that provide the best separability distance of 1.434 for LULC 

classification are Mean Layer 4 and 5, Standard deviation Layer 4, MNDWI, and Ratio 

Layer 5. 

The result of LULC classification using FSO with the fourth feature 

combination is summarized in Table 6.16 and distribution of LULC data is displayed 

in Figure 6.12.  

 

Table 6.16 Area and percentage of final LULC classification of FSO with feature 

combination # 4. 

No. LULC class Area in sq.km Percent 
0 Unclassified 4.66 0.44 
1 Urban and built-up area 124.35 11.79 
2 Paddy field 34.65 3.29 
3 Cassava 110.16 10.45 
4 Maize 92.47 8.77 
5 Sugarcane 3.01 0.29 
6 Orchard and perennial trees 16.24 1.54 
7 Forest area 617.66 58.58 
8 Water bodies 2.28 0.22 
9 Miscellaneous land 48.82 4.63 

Total 1,054.30 100.00 
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Figure 6.12 LULC classification of 2015 of FSO with feature combination # 4. 

 

As results, top three dominant LULC classes in the study area are forest 

area, urban and built-up area and cassava, and cover area of 617.66 km2, 124.35 km2 

and 110.16 km2 or 58.58%, 11.79% and 10.45% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.17.  It reveals that 

overall accuracy is 75.13% and Kappa hat coefficient is 67.50%. Meanwhile producer’s 

accuracy of LULC classes varies between 11.76%  for sugarcane and 100%  for paddy 

field while user’ s accuracy of LULC classes varies between 31.58%  for cassava and 
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100%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient 

between 40-80% represents moderate agreement or accuracy between the predicted 

map and the reference map. 

 

Table 6.17 Error matrix and accuracy assessment of LULC classification of FSO with 

feature combination # 4. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0 1       2  3 

Urban and built-up area 
(UB)  4  1 1  1 1   8 

Paddy field (PD)   5       3 8 

Cassava (CV)  1  6  6    6 19 

Maize (MA)    1 18   1  1 21 

Sugarcane (SU)      2 1    3 

Orchard and perennial trees 
(OP)    1  2 2 1   6 

Forest area (FA)    2  7 4 74   87 

Water bodies (WB)         7  7 

Miscellaneous land (ML)  2   1    1 27 31 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 50.00 100 54.55 90.00 11.76 25.00 96.10 70.00 72.97  

User’s accuracy (%) 0 50.00 62.50 31.58 85.71 66.67 33.33 85.06 100 87.10  

Overall accuracy (%) 75.13 

Kappa hat coefficient (%) 67.50 
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6.2.5 LULC classification of FSO with feature combination # 5 

Under the fifth combination of features of pan-sharpened Landsat-8 data 

and their properties including brightness, mean layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), 

Max. diff., standard deviation of layer 1 to 6 (Band 2, 3, 4, 5, 6 and 7), ratio of layer 1 

to 6 (Band 2, 3, 4, 5, 6 and 7), three spectral indices (NDVI, MNDWI and NDBI) and 

six GLCM texture (homogeneity, contrast, entropy, Ang. 2nd moment and correlation), 

the optimize features that provide the best separability distance of 1.557 for LULC 

classification are GLCM Entropy (all dir.), Mean Layer 4, GLCM Homogeneity (all 

dir.), MNDWI, and Ratio Layer 5. 

The result of LULC classification using FSO with the fifth feature 

combination is summarized in Table 6.18 and distribution of LULC data is displayed 

in Figure 6.13. 

 

Table 6.18 Area and percentage of final LULC classification of FSO with feature 

combination # 5. 

No. LULC class Area in sq.km Percent 
0 Unclassified 2.12 0.20 
1 Urban and built-up area 44.15 4.19 
2 Paddy field 103.85 9.85 
3 Cassava 54.39 5.16 
4 Maize 42.40 4.02 
5 Sugarcane 1.50 0.14 
6 Orchard and perennial trees 3.69 0.35 
7 Forest area 594.53 56.39 
8 Water bodies 1.92 0.18 
9 Miscellaneous land 205.77 19.52 

Total 1,054.30 100.00 
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Figure 6.13 LULC classification of 2015 of FSO with feature combination # 5. 

 

As results, top three dominant LULC classes in the study area are forest 

area, miscellaneous land, and paddy field and cover area of 594.53 km2, 205.77 km2 

and 103.85 km2 or 56.39%, 19.52% and 9.85% of the total study area, respectively. 

In addition, the classified LULC map was further performed accuracy 

assessment using 193 sample points by field survey in 2017 (See Figure 5.3). Error 

matrix form for LULC accuracy assessment is displayed in Table 6.19.  It reveals that 

overall accuracy is 73.06% and Kappa hat coefficient is 64.53%. Meanwhile producer’s 

accuracy of LULC classes varies between 11.76% for sugarcane and 94.81% for forest 

area while user’s accuracy of LULC classes varies between 21.43% for paddy field and 
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100.00%  for water bodies.  Based on Fitzpatrick-Lins (1981), Kappa hat coefficient 

between 40-80% represents moderate agreement or accuracy between the predicted 

map and the reference map. 

 

Table 6.19 Error matrix and accuracy assessment of LULC classification of FSO with 

feature combination # 5. 

Classified LULC class 
Reference data Row 

Total UC UB PD CV MA SU OP FA WB ML 

Unclassified (UC) 0        1  1 

Urban and built-up area 
(UB)  7       1 1 9 

Paddy field (PD)   3 1 5   2  3 14 

Cassava (CV)    4  3  1   8 

Maize (MA)     11  1 1  1 14 

Sugarcane (SU)    1  2 1    4 

Orchard and perennial trees 
(OP)      5 2    7 

Forest area (FA)    3  7 4 73   87 

Water bodies (WB)         7  7 

Miscellaneous land (ML)  1 2 2 4    1 32 42 

Column Total 0 8 5 11 20 17 8 77 10 37 193 

Producer’s accuracy (%) 0 87.50 60.00 36.36 55.00 11.76 25.00 94.81 70.00 86.49  

User’s accuracy (%) 0 77.78 21.43 50.00 78.57 50.00 28.57 83.91 100 76.19  

Overall accuracy (%) 73.06 

Kappa hat coefficient (%) 64.53 

 

Discussion 

As results of LULC classification of FSO with five features combinations, it can 

be observed that area of LULC classes are rather different except water bodies as shown 

in Figure 6.14. 

According to accuracy assessment, it reveals that FSO with feature combination 

# 3 that was applied features: Mean Layer 4 (Band 5) and Mean Layer 5 (Band 6), 

Standard deviation of Layer 4 (Band 5), Ratio Layer 2 (Band 3) and Ratio Layer 5 
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(Band 6) to classify LULC provides the highest overall accuracy of 76.17% and Kappa 

hat coefficient of 68.92% (Figure 6.15). Likewise, most of producer’s accuracy and 

user’s accuracy of LULC classes of FSO with feature combination # 3 are higher than 

others as shown in Figure 6.16. Thus, it can be here concluded that FSO with feature 

combination # 3 is the most suitable for LULC classification using FSO method under 

OBIA. 

 

Figure 6.14 Comparison area of LULC classification of FSO with five features 

combinations. 

 

 

Figure 6.15 Accuracy assessment of FSO with five different features combination. 
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However, the pairwise Z test of FSO with five different features 

combinations based on Kappa hat analysis shows that the accuracy of five LULC 

classifications of FSO are not significantly different at the 80% confidence level since 

the Z-value is less than Chi square values at various confidence levels as shown in Table 

6.20.  

 

 

Figure 6.16 Comparison producer’s and user’s accuracy of LULC classification of FSO 

with five different features combination. 
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Table 6.20 Pairwise Z test of Kappa hat coefficient value for LULC classification with 

FSO. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
FSO with features 
combination #1 0.63627 0.00150 

0.53349 1.28 1.65 1.96 2.58 FSO with features 
combination #2 

0.66556 0.00152 

FSO with features 
combination #1 

0.63627 0.00150 
0.98745 1.28 1.65 1.96 2.58 FSO with features 

combination #3 
0.68945 0.00140 

FSO with features 
combination #1 0.63627 0.00150 

0.71959 1.28 1.65 1.96 2.58 FSO with features 
combination #4 

0.67521 0.00143 

FSO with features 
combination #1 0.63627 0.00150 

0.16597 1.28 1.65 1.96 2.58 FSO with features 
combination #5 

0.64536 0.00150 

FSO with features 
combination #2 0.66556 0.00152 

0.44194 1.28 1.65 1.96 2.58 FSO with features 
combination #3 

0.68945 0.00140 

FSO with features 
combination #2 0.66556 0.00152 

0.17768 1.28 1.65 1.96 2.58 FSO with features 
combination #4 

0.67521 0.00143 

FSO with features 
combination #2 0.66556 0.00152 

0.36749 1.28 1.65 1.96 2.58 FSO with features 
combination #5 

0.64536 0.00150 

FSO with features 
combination #3 

0.68945 0.00140 
0.26738 1.28 1.65 1.96 2.58 FSO with features 

combination #4 
0.67521 0.00143 

FSO with features 
combination #3 

0.68945 0.00140 
0.81767 1.28 1.65 1.96 2.58 FSO with features 

combination #5 
0.64536 0.00150 

FSO with features 
combination #4 

0.67521 0.00143 
0.55094 1.28 1.65 1.96 2.58 FSO with features 

combination #5 
0.64536 0.00150 

 



 

CHAPTER VII 

OPTIMUM METHOD FOR LULC CLASSIFICATION 

 

Under this chapter an optimum method of PBIA or OBIA for LULC 

classification based on overall accuracy and Kappa hat coefficient is firstly separately 

reported with discussion. Then, an optimum method between PBIA and OBIA for 

LULC classification are then reported and discussed. 

 

7.1 Optimum method of PBIA for LULC classification 

The best performance of three representative methods of PBIA according to 

accuracy assessment (overall accuracy and Kappa hat coefficient) include (1) MLC 

with nine bands, (2) ANN at learning rate of 0.1 with six bands and (3) DT without 

splitting samples with six bands were here compared to identify an optimum method of 

PBIA for LULC classification. Accuracy assessment of the best three representative 

methods of PBIA is presented in Table 7.1 and it is comparatively displayed in Figure 

7.1. Meanwhile, producer’s accuracy and user’s accuracy of the best three 

representative methods of PBIA is presented in Figure 7.2. 

 

Table 7.1 Accuracy assessment of the best three representative methods of PBIA. 

Method Overall accuracy (%) Kappa hat coefficient (%) 
MLC with nine bands 86.01 81.93 
ANN at learning rate of 0.1 with six bands 80.83 75.48 
DT without splitting samples with six bands 82.38 77.02 
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Figure 7.1 Accuracy assessment of the best three representative methods of PBIA. 
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classification in this study from pan-sharpened image of Landsat-8 data is maximum 

likelihood classifier (MLC) with nine bands (Band 2, 3, 4, 5, 6, and 7, NDVI, MNDWI, 

and NDBI). It can provide overall accuracy of 86.01% and Kappa hat coefficient of 

81.93% and it represents strong agreement or accuracy between the predicted map and 

the reference map (Fitzpatrick-Lins, 1981). The producer’s accuracy of LULC classes 

varies between 37.50%  for orchard and perennial trees and 100.00%  for paddy field 
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mentioned that because orchard and perennial trees is mixed class in this study by 

combining perennial trees (A4) and orchard (A5) of LDD’s land use classification 

system. So, it consists of varieties sizes and species of perennial trees and orchard. 

 

 

 

Figure 7.2 Producer’s accuracy and user’s accuracy of the best three representative 

methods of PBIA. 
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The pairwise Z test among the best performance of three representative methods 

of PBIA is reported in Table 7.2. It was found that accuracy of MLC with nine bands 

for LULC classification is significantly different at the 80% confidence level from 

ANN at learning rate of 0.1 with six bands since the Z-value is more than Chi square 

values. Meanwhile, accuracy of MLC with nine bands and DT without splitting samples 

with six bands for LULC classification are not significantly different at the 80% 

confidence level. However, implementation of MLC is easier than DT. In the meantime, 

accuracy of DT without splitting samples with six bands and ANN at learning rate of 

0.1 with six bands for LULC classification are also not significantly different at the 

80% confidence level. 

 

Table 7.2 Pairwise Z test of among the best performance of three representative 

methods of PBIA. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
MLC with nine bands 0.81931 0.00096 

1.39420 1.28 1.65 1.96 2.58 ANN at learning rate of 
0.1 with six bands 0.75478 0.00119 

MLC with nine bands 0.81931 0.00096 
1.06757 1.28 1.65 1.96 2.58 DT without splitting 

samples with six bands 0.77023 0.00116 

ANN at learning rate of 
0.1 with six bands 0.75478 0.00119 

0.32103 1.28 1.65 1.96 2.58 DT without splitting 
samples with six bands 0.77023 0.00116 
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7.2 Optimum method of OBIA for LULC classification 

The best performance of two standard methods of OBIA under eCognition 

software according to overall accuracy and Kappa hat coefficient include (1) SNN with 

eleven bands: six multispectral bands and three spectral indices of pan-sharpened image 

of Landsat-8 and two physical data and (2) FSO with feature combination # 3: Mean 

Layer 4 (Band 5) and 5 (Band 6), Standard deviation Layer 4 (Band 5), Ratio Layer 2 

(Band 3) and 5 (Band 6) is here compared to identify an optimum method of OBIA for 

LULC classification. Accuracy assessment of the best two methods of OBIA is 

presented in Table 7.3 and Figure 7.3. Meanwhile, producer’s accuracy and user’s 

accuracy of the best two methods of OBIA is presented in Figure 7.4. 

 

Table 7.3 Accuracy assessment of the best two methods of OBIA. 

Method Overall accuracy (%) Kappa hat coefficient (%) 
SNN with eleven bands 81.35 75.68 
FSO with feature combination # 3 76.17 68.92 

 

As results, it was found that the optimum method of OBIA for LULC 

classification in this study is standard nearest neighbor classifier (SNN) with eleven 

bands (Band 2, 3, 4, 5, 6, and 7, NDVI, MNDWI, NDBI, Elevation and SLOPE). It can 

provide overall accuracy of 81.35% and Kappa hat coefficient of 75.68% and it 

represents moderate agreement or accuracy between the predicted map and the 

reference map (Fitzpatrick-Lins, 1981) . The producer’ s accuracy of LULC classes 

varies between 35.29%  for sugarcane and 100%  for paddy field and forest area while 

user’ s accuracy of LULC classes varies between 41.67%  for cassava and 100.00%  for 

water bodies. 
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The pairwise Z test among the best two methods of OBIA is reported in Table 

7.4. It was found that accuracy of SNN with eleven bands for LULC classification is 

significantly different at the 80% confidence level from FSO with features combination 

#3 since the Z-value is more than Chi square values. 

 

 

Figure 7.3 Accuracy assessment of the best two methods of OBIA. 
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Figure 7.4 Producer’s accuracy and user’s accuracy of the best two methods of OBIA. 
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7.3 Optimum method for LULC classification 

The optimum method of PBIA, MLC with nine bands and OBIA, SNN with 

eleven bands as reported in early two sections were here compared to identify an 

optimum method for LULC classification. Accuracy assessment of both methods is 

presented in Table 7.5 and Figure 7.5. Meanwhile, producer’s accuracy and user’s 

accuracy of both methods is presented in Figure 7.6. 

 

Table 7.5 Accuracy assessment of the optimum method of PBIA and OBIA. 

Approach Method Overall accuracy (%) Kappa hat coefficient (%) 
PBIA MLC with nine bands 86.01 81.93 
OBIA SNN with eleven bands 81.35 75.68 

 

 

Figure 7.5 Accuracy assessment of optimum method of PBIA and OBIA. 
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Figure 7.6 Producer’s accuracy and user’s accuracy of optimum method of PBIA and 

OBIA. 
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with nine bands are higher than SNN with eleven bands except orchards and perennial 

trees, forest area and water bodies. Likewise, most of user’s accuracy of LULC classes 

using MLC with nine bands are higher than SNN with eleven bands except sugarcane 

and orchards and perennial trees. The producer’ s accuracy of LULC classes of MLC 

with nine bands varies between 37.50% for orchard and perennial trees and 100.00% 

for paddy field and maize while user’ s accuracy of LULC classes varies between 

27.27%  for orchard and perennial trees and 100.00% for urban and built-up area and 

water bodies. 

In addition, the pairwise Z test between the optimum method of PBIA and OBIA 

was calculated as result in Table 7.6. It was found that accuracy of MLC with nine 

bands under PBIA for LULC classification is significantly different at the 80% 

confidence level from SNN with eleven bands under OBIA since the Z-value, is more 

than Chi square values. This finding confirms that result of LULC classification with 

MLC with nine bands under PBIA is better than SNN with eleven bands under OBIA.  

 

Table 7.6 Pairwise Z test of between optimum method of PBIA and OBIA. 

Pairwise Z test Kappa 
hat Variance Z-

Statistic 
Confidential level of critical value 

80% 90% 95% 100% 
MLC with nine bands 0.81931 0.00096 

1.34428 1.28 1.65 1.96 2.58 
SNN with eleven bands 0.75689 0.00120 

 

In conclusion, it can be here concluded that MLC with nine bands of six 

multispectral bands and three spectral index bands (NDVI, MNDWI, and NDBI) under 

PBIA is the optimum method for LULC classification in this study. In practice, 

downloaded Landsat image is firstly preprocessed pan-sharpening and then creates 



174 

spectral indices (NDVI, MNDWI, and NDBI). After that training areas of LULC classes 

are selected to classify LULC map under ERDAS imagine software.  

This finding is totally contrast from the previous research works of Dehvari and 

Heck (2009), Myint et al. (2011), Whiteside et al. (2011), and Castillejo-González et 

al. (2014) as mentioned in literature reviews in Chapter II. Because they applied very 

high spatial resolution remotely sensed data included airborne infrared image, 

QuickBird data, ASTER and QuickBird, respectively for their studies. It is different 

from this study that applied moderate spatial resolution data from Landsat 8. In 

addition, size of study areas were small and LULC classification system were simple 

with few classes when they are compared with this study. 



 

CHAPTER VIII 

CONCLUSION AND RECOMMENDATION 

 

Under this chapter, major results according to objectives of the study, which 

were reported in Chapters V to VII, are here separately concluded and 

recommendations for future research and development are suggested. 

 

8.1 Conclusion 

8.1.1 Optimum method of PBIA for LULC classification 

Three representative classification methods included maximum 

likelihood classifier (MLC), artificial neural network (ANN), and decision tree 

classification (DT) under pixel-based image analysis (PBIA) were firstly applied to 

classify LULC and then assessed accuracy with 193 sample points by field survey in 

2017.  

As results of LULC classification using MLC with two different 

datasets, it was found that MLC with nine bands of six pan-sharpened Landsat-8 and 

three spectral index bands (NDVI, MNDWI, and NDBI) provided better result than 

six bands with overall accuracy of 86.01% and Kappa hat coefficient of 81.93%. 

However, the pairwise Z test of MLC of two datasets based on Kappa hat analysis 

showed that the accuracy of both LULC classification of MLC with six and nine 

bands were not significantly different at the 80% confidence level. 
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In the meantime, results of LULC classification using ANN with 

learning rate of 0.1 and 0.2 and two different datasets (six and nine bands), it was 

found that ANN with learning rate of 0.1 and six bands of pan-sharpened Landsat-8 

provided the best result with overall accuracy of 80.83% and Kappa hat coefficient of 

75.48%. The pairwise Z test of LULC classification using ANN with learning rate of 

0.1 and 0.2 and two different datasets (six and nine bands) based on Kappa hat 

analysis showed that accuracy of LULC classification maps of ANN were not 

significantly different at the 80% confidence level. 

Meanwhile, result of DT with two methods for construction decision 

and three different datasets (six, nine and eleven bands) showed that DT without 

splitting samples and six bands of pan-sharpened Landsat-8 provided the best result 

with overall accuracy of 82.38% and Kappa hat coefficient of 77.02%. The pairwise Z 

test of LULC classification using DT with and without splitting samples and three 

different datasets based on Kappa hat analysis showed that accuracy of LULC 

classification maps of DT were not significantly different at the 80% confidence level. 

According to the best performance of three representative methods of 

PBIA including (1) MLC with nine bands, (2) ANN at learning rate of 0.1 with six 

bands and (3) DT without splitting samples with six bands, it can concluded that the 

optimum method of PBIA for LULC classification in this study from pan-sharpened 

image of Landsat-8 data and its derivative spectral indices was MLC with nine bands 

(Band 2, 3, 4, 5, 6, and 7, NDVI, MNDWI, and NDBI). In addition, the pairwise Z 

test among the best performance of three representative methods of PBIA showed that 

accuracy of MLC with nine bands for LULC classification is significantly different at 

the 80% confidence level from ANN at learning rate of 0.1 with six bands. 
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8.1.2 Optimum method of OBIA for LULC classification 

Two representative classification methods included standard nearest 

neighbor classifier (SNN) and nearest neighbor classifier with feature space 

optimization (FSO) under object-based image analysis (OBIA) were firstly applied to 

classify LULC and then assessed accuracy with 193 sample points by field survey in 

2017.  

As results of LULC classification of SNN with three different datasets, 

it was found that SNN with eleven bands of six pan-sharpened Landsat-8, three 

spectral index bands (NDVI, MNDWI, and NDBI) and two physical data (elevation 

and slope) provided better result than six and nine bands with overall accuracy of 

81.35% and Kappa hat coefficient of 75.68%. However, the pairwise Z test of SNN 

among three datasets based on Kappa hat analysis showed that the accuracy of LULC 

classification of SNN within three datasets were not significantly different at the 80% 

confidence level. 

Meanwhile, results of FSO with five features combinations, it was 

found that FSO with feature combination # 3 which applied features: Mean layer 4 

(Band 5) and Layer 5 (Band 6), Standard deviation layer 4 (Band 5), Ratio layer 2 

(Band 3) and Layer 5 (Band 6) provided the best result with overall accuracy of 

76.17% and Kappa hat coefficient of 68.92%. The pairwise Z test of LULC 

classification using FSO among five different feature combinations based on Kappa 

hat analysis showed that accuracy of LULC classification maps of FSO were not 

significantly different at the 80% confidence level. 

According to the best performance of two representative methods of 

OBIA including (1) SNN with eleven bands and (2) FSO with feature combination # 
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3, it can be concluded that the optimum method of OBIA for LULC classification in 

this study is SNN with eleven bands (Band 2, 3, 4, 5, 6, and 7, NDVI, MNDWI, 

NDBI, elevation and slope). In addition, the pairwise Z test between the best 

performances of two representative methods of OBIA showed that accuracy of SNN 

with eleven bands for LULC classification is significantly different at the 80% 

confidence level from FSO with feature combination # 3. 

8.1.3 Optimum method for LULC classification 

By comparison between the best performance of two methods 

including (1) MLC with nine bands under PBIA and (2) SNN with eleven bands under 

OBIA, it can be concluded that the optimum method for LULC classification in this 

study was MLC with nine bands (Band 2, 3, 4, 5, 6, and 7, NDVI, MNDWI and 

NDBI). In addition, the pairwise Z test between the best performances of two 

mentioned methods showed that accuracy of MLC with nine bands for LULC 

classification is significantly different at the 80% confidence level from SNN with 

eleven bands.  

In conclusion, it can be concluded that MLC is the most appropriate 

method for LULC classification from moderate spatial resolution data of Landsat 8 

with variety of LULC classes. 
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8.2 Recommendation 

Three main objectives were here examined and implemented, the possibly 

expected recommendations could be made for further studies as following. 

(1) PBIA and OBIA for LULC classification should be examined in different 

areas to verify the results in this study. 

(2) In this study, training area of MLC under PBIA was here applied with 

other methods, especially SNN and FSO under OBIA, this technique may not be 

appropriate because OBIA might require more image objects as training areas. So, 

independent training areas of each methods under PBIA and OBIA should be 

investigated in the future. 
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