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AND ITS VICINITY) อาจารยท่ี์ปรึกษา : รองศาสตราจารย ์ดร.ทรงกต  ทศานนท,์ 
264 หนา้. 

 

 การประยุกต์ใช้ขอ้มูลอุณหภูมิพื้นผิวดินจากขอ้มูลดาวเทียมเพื่อการวิจยัเชิงลึกเก่ียวกับ
ปรากฏการณ์เกาะความร้อนในเขตเมือง (UHI) ในประเทศไทยยงัมีค่อนขา้งน้อย ขอ้มูลอุณหภูมิ
พื้นผิวดินส่วนใหญ่ถูกน าไปใชใ้นการศึกษาปรากฏการณ์เกาะความร้อนในเขตเมือง การประเมิน
คุณภาพอากาศและการตรวจหาจุดความร้อนของไฟป่า ดงันั้น ในการศึกษาคร้ังน้ีจึงไดอ้อกแบบ
แผนการวจิยัเพื่อท าการประเมินและคาดการณ์เชิงพื้นท่ีของปรากฏการณ์เกาะความร้อนในเขตเมือง
อยา่งเป็นระบบ วตัถุประสงคห์ลกัของการศึกษาคือ (1) เพื่อคน้หาปัจจยัท่ีมีอิทธิพลต่อรูปแบบของ
อุณหภูมิของประเทศไทย (2) เพื่อระบุวิธีการภูมิสถิติ (Geostatistical method) ท่ีเหมาะสมส าหรับ
การประมาณค่าในช่วงของอุณหภูมิเฉล่ียจากขอ้มูลภาคสนาม (3) เพื่อสกดัและคาดการณ์อุณหภูมิ
ผวิดินจากแบนด์ความร้อนของขอ้มูล Landsat ส าหรับการศึกษาปรากฏการณ์เกาะความร้อนในเขต
เมือง และ (4) เพื่อประเมินและคาดการณ์ปรากฏการณ์เกาะความร้อนในเขตเมืองและการ
เปล่ียนแปลงระหว่างปี พ.ศ. 2549 ถึง 2569 องค์ประกอบหลกัของวิธีการวิจยัประกอบด้วย การ
รวบรวมและเตรียมขอ้มูล การคน้หาปัจจยัท่ีมีอิทธิพลต่อรูปแบบของอุณหภูมิ วิธีการภูมิสถิติท่ี
เหมาะสมส าหรับการประมาณค่าในช่วงของอุณหภูมิเฉล่ีย การสกดัและการคาดการณ์อุณหภูมิ
พื้นผิวดินจากขอ้มูลดาวเทียม และการประเมินผลและการคาดการณ์ปรากฏเกาะความร้อนในเขต
เมือง 
 จากผลการศึกษาปัจจยัท่ีมีอิทธิพลในระดบัทอ้งถ่ินต่อรูปแบบของอุณหภูมิ พบวา่ ปัจจยัท่ีมี
อิทธิพลอยา่งมีนยัส าคญัต่อรูปแบบของอุณหภูมิในประเทศไทย ประกอบดว้ย ปัจจยัดา้นชีวกายภาพ 
(NDVI, NDBI, Elevation และ MNDWI) และปัจจยัดา้นส่ิงแวดลอ้ม (PM10, CO และ SO2) วิธีการท่ี
เหมาะสมสูงสุดส าหรับประมาณค่าในช่วงอุณหภูมิเฉล่ียรายเดือนในประเทศไทยจากขอ้มูลของ
กรมอุตุนิยมวิทยา ได้แก่ Universal kriging (UK) ในขณะท่ี ผลการศึกษาในการประเมินและการ
คาดการณ์ปรากฏการณ์เกาะความร้อนในเขตเมือง พบว่า พื้นท่ีเมืองของกรุงเทพมหานครและ
ปริมณฑลมีการเพิ่มข้ึนอยา่งต่อเน่ือง ความเขม้ขน้ของเกาะความร้อนเฉล่ียแบบถ่วงน ้ าหนกั (WAI) 
มีความเข้มข้นสูงมากระหว่างปี 2549 ถึง 2565 และมีความเข้มสูงระหว่างปี 2567 ถึง 2569 ใน
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ขณะเดียวกัน ดัชนีสัดส่วนเกาะความร้อนในเขตเมือง (URI) ซ่ึงแสดงระดับการพัฒนาของ
ปรากฏการณ์เกาะความร้อนในเขตเมือง พบวา่ เพิ่มข้ึนในปี พ.ศ. 2553 และ 2559 และลดลงอย่าง
รวดเร็วในปี พ.ศ. 2561 และเพิ่มข้ึนอย่างต่อเน่ืองระหว่างปี พ. ศ. 2563 ถึง 2569 นอกจากน้ี การ
เปล่ียนแปลงโดยรวมของดชันีการเปล่ียนแปลงระดบัอุณหภูมิ (TGCI) ในเขตเมืองเก่า (old urban) 
และพื้นท่ีการขยายของเขตเมือง (urban expansion) ในคาบเวลา 2 ปีระหว่างปี พ.ศ. 2549 ถึง 2557 
พบว่า ในเขตเมืองเก่า แนวโน้มการเพิ่มข้ึนของการเปล่ียนแปลงระดบัอุณหภูมิน้อยกว่าแนวโน้ม
การลดลงเกือบทุกคาบเวลา ยกเวน้ ระหวา่งปี พ.ศ. 2553 ถึง 2555 และ 2559 ถึง 2561 ในทางตรงกนั
ข้าม ในพื้นท่ีการขยายของเขตเมือง แนวโน้มการเพิ่มข้ึนของการเปล่ียนแปลงระดับอุณหภูมิ
มากกวา่แนวโนม้การลดลงเกือบทุกคาบเวลา ยกเวน้ ระหวา่งปี พ.ศ. 2563 ถึง 2565 
 จากผลการศึกษาสรุปได้ว่า สามารถน าการวิเคราะห์ปัจจัย (factor analysis) มาใช้เป็น
เคร่ืองมือในการคน้หาปัจจยัท่ีมีอิทธิพลอยา่งมีนยัส าคญัต่อรูปแบบของอุณหภูมิของประเทศไทยได้
อยา่งมีประสิทธิภาพ นอกจากน้ี สามารถน าดชันี WAI URI และ TGCI มาใชป้ระเมินและคาดการณ์
ปรากฏการณ์เกาะความร้อนในเขตเมืองของกรุงเทพมหานครและปริมณฑลไดอ้ยา่งมีประสิทธิผล 
โดยอาศยัการสกดัและคาดการณ์ขอ้มูลอุณหภูมิพื้นผิวดินและพื้นท่ีเขตเมืองและมิใช่เขตเมืองจาก
ขอ้มูลดาวเทียม 
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In Thailand, applications of satellite-based LST data to advanced research on 

urban heat island (UHI) are still relatively low. Most of LST data are applied to study 

UHI, air-quality assessment, and to detect active forest fire hotspots. Thus, systematic 

research scheme on spatial evaluation and prediction of urban heat island phenomena 

was here conducted in more details in this study. Main objectives of the study are (1) 

to determine local principal influential factors on temperature pattern of Thailand, (2) 

to identify an optimum geostatistical method for in situ mean temperature interpolation, 

(3) to extract and predict land surface temperature from thermal band of Landsat data 

for UHI phenomena study, and (4) to evaluate and predict UHI phenomena and their 

changes during 2006 to 2026. Main components of research methodology consisted of 

data collection and preparation, influential factors on temperature pattern identification, 

optimum geostatiscal method for mean temperature interpolation, satellite-based LST 

extraction and prediction, and UHI phenomena evaluation and prediction.  

As results of the local influential factors on temperature pattern, the significant 

influential factors on temperature pattern in Thailand consisted of biophysical (NDVI, 

NDBI, elevation, and MNDWI) and environmental (PM10, CO, and SO2) factors. The 
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most suitable method for monthly mean temperature interpolation in Thailand from 

TMD data was Universal kriging (UK). Meanwhile, results of UHI phenomena 

evaluation and prediction showed that urban areas of Bangkok Metropolitan and its 

vicinity had been continuously increased. Weighted Average Heat Island Intensity 

(WAI) were very strong between 2006 and 2022 and became strong between 2024 and 

2026. Meanwhile, Urban Heat Island Ratio Index (URI) as degree of UHI development 

increased in 2010 and 2016 and suddenly decreased in 2018 and continuously increased 

between 2020 and 2026. In addition, overall change of Temperature Grade Change 

Index (TGCI) in old urban and urban expansion of 2 years period between 2006 and 

2026 showed that increasing trend of temperature grade change was weaker than 

decreasing trend in old urban in almost periods, except during 2010 to 2012 and 2016 

to 2018. On contrary, increasing trend of temperature grade change was stronger than 

decreasing trend in urban expansion in almost period, except during 2020 to 2022. 

In conclusion, it appears that factor analysis can be used as an efficiently tools 

to extract significant local influential factors on temperature pattern for Thailand. In 

addition, WAI, URI, and TGCI can be effectively used to evaluate and predict UHI 

phenomena of Bangkok Metropolitan and its vicinity based on extracted and predicted 

satellite-based LST data and urban and non-urban areas. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background problem and significance of the study 

Land surface temperature (LST) is an important parameter that is typically used 

an indicator of thermal radiation intensity over an area. Knowledge of LST data is 

crucial for the research and study in many fields, such as, meteorology, climatology, 

hydrology, natural hazard/disaster observation and monitoring (e.g. forest fire or 

volcanic eruption detection/monitoring) (Li et al., 2013 and Land Surface Analysis 

Satellite Applications Facility, Online, 2015). At present, the LST has also played a 

critical role in the analysis of global climate change called global warming phenomenon 

which has become a highly concerned environmental issue for scientific community 

and governments worldwide (Chiras, 2014).  

According to several reports published by the Intergovernmental Panel on 

Climate Change (IPCC), the observed global average near-surface air temperature has 

increased faster in recent decades than the natural changes found in previous millennia 

due to the dramatic increase of greenhouse gas concentration in lower atmosphere from 

human activities (from the anthropogenic source), especially carbon dioxide (CO2) 

(IPCC, Online, 2002). Associated impacts of the global warming effect on human and 

nature as a whole expect to be immense but varying from region to region. These 

include, for examples, sea level rise, intense melting of snow/ice, more humidity, 

change in occurrence pattern of precipitation, and earlier arrival of spring events, e.g., 

http://en.wikipedia.org/wiki/Current_sea_level_rise
http://en.wikipedia.org/wiki/Specific_humidity
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the flowering of plants. Other anticipated effects include more frequency of the extreme 

weather events e.g. heat waves, droughts, heavy rainfall/snowfall. Notable effects to 

humans include, for examples, threat to food security, more prevalent of warm-climate 

diseases, and changes in quantity and quality of the natural ecosystem (Lake et al., 

2012). 

Through, information of the LST data is well acknowledged and required for 

research in many fields as stated earlier.  However, the availability of these data in the 

past was still limited due to low number of the in situ ground-based measuring stations 

that can generate the accurate LST mapping (Puangporn Puntumakoop, 2001). Contrary 

to the ground- based measurements that mostly record the near surface air temperature 

data, the satellite-based thermal radiometers are able to detect LST data at larger spatial 

coverage (but with less temporal frequency) than typical in-situ measurements. Notable 

examples of these devices are the thermal infrared (TIR) sensors operating on Landsat 

satellites and those working as part of MODIS instruments abroad NASA’ s Terra and 

Aqua satellites.  These measurements can give better spatial LST characterization over 

an area of interest and provide a continuous and simultaneous view of the whole region 

which is of prime importance for the detailed investigation of LST variation both in 

space and time at every considered spatial scale from local to global level (Mendelsohn, 

Kurukulasuriya, Basist, Kogan, and Williams, 2007). 

In Thailand, applications of satellite- based LST data to advanced research are 

still relatively low. Most of LST data are applied to analyze the urban heat island (UHI) 

phenomenon in crowded cities (like Bangkok, and Chiang Mai), air-quality assessment 

between LST and impervious surface, and the detection/ mapping of active forest fire 

hotspots (Chowdhury and Hassan, 2015, Pathompong Sukthong, 2008, Potapov, 

http://en.wikipedia.org/wiki/Flowering
http://en.wikipedia.org/wiki/Extreme_weather
http://en.wikipedia.org/wiki/Extreme_weather
http://en.wikipedia.org/wiki/Heat_wave
http://en.wikipedia.org/wiki/Drought
http://en.wikipedia.org/wiki/Rainfall
http://en.wikipedia.org/wiki/Snowfall
http://en.wikipedia.org/wiki/Climate_change_and_agriculture
http://www.riclib.nrct.go.th/login.php?page=search&topic=author&search_input=Puangporn%20Puntumakoop
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Hansen, Stehman, Loveland, and Pittman, 2008) .  Therefore, systematic research 

scheme is here conducted in more details since the great advance of the TIR sensors 

and more availability of their archival data for public uses. In this study, local influential 

factors on temperature pattern of Thailand is firstly examined using factor analysis and 

spatial regression analysis, and three primary influential factors on temperature pattern 

are further examined with Co-Kriging geostatistical methods for mean temperature 

interpolation. Meanwhile, series data of Landsat thermal band during 2006 to 2016 are 

used to extract LST data for UHI phenomena evaluation using Weighted Average Heat 

Island Intensity ( WAI)  and Urban Heat Island Ratio Index ( URI) .  In addition, future 

UHI phenomena during 2018 to 2026 are predicted using CA- Markov model. 

Additionally, Brightness Temperature Grade Change Index ( TGCI)  are also extracted 

to reveal the overall change in temperature in different periods during 2006-2026. 

 

1.2 Research objectives 

Two main goal of the study are to identify significant influential biophysical, 

demographic and environmental factors on temperature pattern in Thailand and to 

evaluation and prediction of urban heat island effect in Bangkok and its vicinity using 

geoinformatics technology. The specific research objectives of the study are as follows: 

1.2.1 To determine local principal influential factors on temperature pattern of 

Thailand, 

1.2.2 To identify an optimum geostatistical method for in situ mean temperature 

interpolation, 

1.2. 3 To extract and predict land surface temperature from thermal band of 

Landsat data for UHI phenomena study, 
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1.2.4 To evaluate and predict UHI phenomena and their changes during 2006 to 

2026. 

 

1.3 Scope of the study 

1.3.1 Significant biophysical, demographic and environmental factors on mean 

temperature pattern, which include (1) elevation, (2) aspect, (3) slope, (4) insolation, 

(5) wind speed, (6) distance to the sea, (7) NDVI, (8) NDBI, (9) MNDWI, (10) 

population density at district level, (11) household density at distric level, and (12) air 

pollutants (PM10, CO, NO2, SO2, and O3), are identified using factor analysis and spatial 

regression analysis. Herein, factor analysis is firstly applied to create influential factors 

map and then compared with LST pattern map of MODIS data to identify significant 

factors (components) on mean temperature pattern using spatial regression analysis. 

1.3.2 Standard geostatistical method of univariate (OK, SK, and UK) and 

multivariate (SCK, OCK, and UCK) methods are here examined to identify an optimum 

geostatistical method based on model-based inference method for monthly mean 

temperature interpolation (November, December, January, February, March and April) 

from 2015/16. 

1.3.3 LST data from thermal band of Landsat data during November to April 

between 2006 and 2016 are firstly extracted using standard conversion method and then 

refined with in situ mean temperature of TMD stations over Bangkok and its vicinity 

using simple linear regression analysis. 

1.3.4 Development of urban and built-up areas series data are extracted based 

on Built-Up index (BUI) which is derived from corresponding Landsat data with 

relative radiometric correction. 
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1.3.5 The WAI and URI and its change during 2006 to 2026, which are spatially 

extracted and predicted using CA-Markov model, are here applied to characterize UHI 

phenomena in Bangkok and its vicinity. 

1.3.6 The TGCI of Bangkok and its vicinity during 2006 to 2026 are extracted 

to quantify the overall change in temperature (increase or decrease) in different periods. 

 

1.4 Limitation of the study 

1.4.1 Availability of Landsat 5, Landsat 7 and 8 data during November to April 

from 2006, 2008, 2010, 2012, 2014, and 2016 depends on downloadable data and 

percent of cloud cover under USGS’s service. 

1.4.2 Because no Landsat data exist between 2018 and 2026 for UHI study, 

Trend Analysis function of MS Excel and ASCII to Image function of ERDAS Imagine 

software are here applied for creating the predicted LST during 2018 to 2026. 

 

1.5 Study area 

Thailand and Bangkok Metropolitan and its vicinity include Nakhon Pathom, 

Nonthaburi, Pathumthani, Sumut Prakarn, and Samut Sakhon provinces are selected as 

two study sites. The whole Thailand territory is used as study area for influential factors 

on temperature pattern investigation (objective 1 and 2) meanwhile Bangkok 

Metropolitan and its vicinity was selected as study area for UHI phenomena study 

(objective 3 and 4). Location map with DEM of two study sites are separately displayed 

in Figure 1.1 and 1.2. 
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Figure 1.1 In situ station and terrain characteristic of Thailand. 
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Figure 1.2 Location map and terrain characteristic of Bangkok Metropolitan and its 

vicinity. 
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1.6 Benefits of the Study 

 The specific benefits of the study are as follows:  

1.6.1 Top three dominate influential factors on temperature pattern. 

1.6.2 Optimumum geostatistical method for monthly mean temperature 

interpolation. 

1.6.3 Series of LST data during November to April from 2006, 2008, 2010, 

2012, 2014 and 2016. 

1.6.4 Monthly UHI intensity and its change during 2006-2026. 

1.6.5 Monthly UHI severity and its change during 2006-2026. 

1.6.6 Series of brightness temperature grade change by TGCI during 2006-

2026. 

 

1.7 Outline of the thesis 

The thesis is structured in two parts and it follows a hierarchical organization as 

shown in Figure 1.3. Key information of each chapter in each part is summarized in the 

following section. 

The first part includes Chapters I “Introduction”, Chapter II “Basic Concepts 

and Literature Reviews” and Chapter III “Research Methodology”. Chapter I contains 

background problem and significance of the study, research objectives, scope of the 

study, limitations of the study, study area, benefits of the study and outline of the thesis. 

Chapter II consists of local influential factor on temperature, geostatistics methods for 

spatial interpolation, conversion of LST from satellite data, UHI phenomena and 

relevant literatures. Meanwhile, Chapter III presents details of research methodology 
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including (1) data collection and preparation, (2) influential factors on temperature 

pattern identification, (3) optimum geostatiscal method for mean temperature 

interpolation, (4) satellite- based LST extraction, and (5) UHI phenomena evaluation 

and prediction. 

The second part consists of four chapters of the results with discussion, which 

separately describe according to objectives and one chapter presents conclusion and 

recommendation. Chapter IV “Local Principal Influential Factors on Temperature 

Pattern” contains (1) local principal influential factors on temperature by factor analysis 

and (2) top three influential factors on temperature pattern using spatial linear 

regression analysis. Chapter V “Optimum Geostatistical Method for In Situ Mean 

Temperature Interpolation” consists of (1) optimum univariate geostatistical method 

for monthly mean temperature interpolation, (2) optimum multivariate geostatistical 

method for monthly mean temperature interpolation and (3) optimum geostatistical 

method for monthly mean temperature interpolation. Meanwhile, Chapter VI “Land 

Surface Temperature Extraction for UHI Phenomena Evaluation and Prediction” 

contain (1) satellite-based LST extraction, (2) urban and non-urban area extraction, (3) 

urban and non-urban area prediction, (4) LST prediction, and (5) temperature grade 

classification for UHI evaluation, (6) calculation of heat island intensity and severity, 

and (7) quantitative analysis of UHI. Chapter VII “Conclusion and Recommendation” 

comprises conclusion of the study and recommendation. 
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Figure 1.3 Structure of the thesis. 

 

Chapter IV 

Local Principal Influential Factors on 

Temperature Pattern 

Chapter V 
Optimum Geostatistical Method for In Situ 

Mean Temperature Interpolation 

Chapter VI 
Land Surface Temperature Extraction for UHI 

Phenomena Evaluation and Prediction 

Chapter I 

Introduction 

Chapter II 

Basic Concepts and Literature Reviews 

Chapter III 

Research Methodology 

Chapter IX 
Conclusion and Recommendations 



 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

Under this chapter, basic concepts and theories related to the research including 

(1) local influential factor on temperature, (2) geostatistics methods for spatial 

interpolation, (3) conversion of LST from satellite data, (4) UHI phenomena: definition, 

cause, consequence and mitigation and (5) literature reviews are here summarized. 

 

2.1 Local influential factor on temperature 

Ambient air temperature over a particular area on the Earth can dramatically 

vary in a short period (e.g. during a day/night cycle) but its mean temperature on long-

term basis depends on several factors. The most prominent factors typically include 

amount of the solar radiation, geographic location (latitude, proximity from sea or 

ocean), topography (altitude and aspect), effects of the ocean current (warm/cold) and 

prevailing wind, and land surface characteristics. Comprehensive details of each factor 

and its influence are summarized in the following section. 

2.1.1 Latitude or insolation  

The surface air temperature on the Earth is a direct result of heat budget 

at each location that varies over time (e.g. day/night). Some factors might positively 

influence the budget by increasing heat (converted from the input energy) and 
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temperature. However, some act to reduce temperature by decreasing the input of heat 

energy, or by taking away heat energy from the atmosphere. Among the positive 

factors, the most important one is solar radiation input to the Earth’s atmosphere whose 

amount is largely controlled by intensity and duration of the insolation. As the result of 

these two elements, the quantity of incoming solar radiation available at the surface 

varies annually with latitude (Figure 2.1). Typically, day length and incidence angle 

become greater with increasing latitude, which makes the seasonal changes in surface 

air temperature also become more extreme when it approachs the poles (Figure 2.2). 

Highest temperatures tend to occur in summer when day lengths are longest and sun 

angles are maximum. With shortest day-length and minimum sun angles (in winter), 

the lowest temperatures occur. Places near equator have only small variations in solar 

input annually because seasonal changes in day length and incidence angle are 

relatively low (Figure 2.3). Consequently, variations in temperature over period of one 

calendar year also are minor (Aguiar, Oliveira, and Goncalves, 2002). Solar radiation 

and LST are important parameters for analysis of urban thermal behavior.  

2.1.2 Altitude or elevation 

Surface air temperatures tend to cool gradually with altitude, which is well 

known to anyone living in a mountainous region.  Temperature is usually higher at the 

mountain’ s base and decreasing with height above ground.  Above this boundary, 

temperatures are cold enough to maintain snow and ice in a frozen state ( subzero 

temperature). Below the snow line, average temperatures are above freezing. 

Figure 2.4 shows monthly mean temperatures for four locations in 

equatorial Columbia with similar latitudes but different elevations from which rate of 

temperature was found to be about 6.1°C per 1,000 m (3.3°F per 1,000 ft.). This drop 
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in temperature is related to the fact that the atmosphere becomes less dense with 

altitude.  In general, the elevation of land above the sea level has also a great influence 

on the temperature, which decreases about 1°F for every 300 ft of ascent ( Ahrens and 

Henson, 2015). 

 
Source: Pidwirny (Online, 2014). 

Figure 2.1 Daily insolation at the top of the atmosphere in Wm-2 for three locations: 

equator, 50°N, and 90°N.  At the Equator, little annual variation in insolation occurs 

because of consistent 12- hour days and relatively high Sun angles all year long.  90°N 

experiences six months of darkness from the September equinox to the March equinox. 

A location at 50°N would show large seasonal variations in insolation that peak in the 

June solstice. Lowest quantities of insolation are received during the December solstice.  
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Source: Pidwirny (Online, 2014). 

Figure 2.2 Examples of latitude influence on mean monthly temperature as seen on the 

mean monthly temperatures of five Northern Hemisphere locations with different 

latitudes. 

 

Source: Pidwirny (Online, 2014). 

Figure 2.3 Relationship between mean monthly net radiation and surface air 

temperature for Singapore.  The air temperature data were for period 1877 to 1988. 

Average mean monthly net radiation data were from the Global Energy Balance 

Archive (GEBA).  
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Source: Pidwirny (Online, 2014). 

Figure 2.4 Elevation influence on mean monthly temperature.  Comparison of mean 

monthly temperature patterns for four locations in Columbia with different elevations: 

Girardot (286 m, 938 ft.), Chinchina (1,310 m, 4,298 ft.), Tibacuy (1,525 m, 5,003 ft.), 

and Bogota (2,556 m, 8,386 ft.). These locations are founds within 200 kilometers (125 

miles) of each other at a latitude of about 5° north of the equator. 

 

The density of air influences both the heating and cooling of the 

atmosphere near the Earth’s surface. At high elevation, less of the incoming shortwave 

radiation is absorbed and reflected by particles in the atmosphere lying overhead. This 

results in more incoming radiation available for conversion into heat energy. The most 

obvious outcome of having more heat energy available is a rather rapid rise in daytime 

air temperature in high elevation locations.  A thin atmosphere also causes less of the 

outgoing longwave radiation to be reradiated back to Earth’ s surface where it can be 

converted into heat energy again.  This greenhouse effect is dependent on the 

availability of water and other greenhouse gases.  When the air becomes thinner, the 

quantity of these atmospheric substances declines.  The net effect of a weaker 
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greenhouse effect is a rapid and intense nighttime cooling. Magnitude of this nighttime 

cooling is usually greater than the additional heat created by more intense solar 

radiation. Therefore, daily, monthly, and annual mean temperatures generally decrease 

as altitude increases (Ahrens and Henson, 2015). 

2.1.3 Land use and land cover (LULC)  

Characteristics of the land surface itself can also dictate the appearance of 

local temperature over the area due mainly to the differences in some properties of the 

surface material, like absorption/ reflection ability, and LULC aspect of an area.  For 

instance, the crowded urban area is normally having higher temperature than the 

surrounding green or agricultural area nearby due to their difference in prime LULC 

components ( building/ street/ residence for urban area and tree/ plant/ water for 

agriculture area) and the differences in their absorption/reflection ability (EPA, Online, 

2008). 

Recent investigations have also shown that climate forcing from LULC 

change also significantly impacts the temperature trends (Wichansky, Steyaert, Walko, 

and Weaver, 2008, Roy et al., 2007). Consequently, attention has been increasingly 

given to impact of LULC change on climate. For example, it has been reported that land 

use changes due to agriculture lead to the decrease in surface temperatures (Lobell and 

Bonfils, 2008). LULC change can greatly influence climatological variables such as 

maximum, minimum and diurnal temperature range (Hale, Gallo, and Loveland, 2008). 

Figure 2.5 shows examples of LULC pattern and LST distribution in the China’s Pearl 

River Delta region on November 1, 2000. 
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Source: Chen, Zhao, Li, and Yin (2006). 

Figure 2.5 LULC pattern and LST distribution in the China’s Pearl River Delta region 

on November 1, 2000 (based on Landsat TM and ETM+ data). 

 

LULC pattern is regarded as an important determinant of ecosystem 

function, and can be considered as the representative of landscape pattern in in situ area 

( Bain and Brush, 2004) .  LULC categories are linked to distinct behaviors of urban 

thermal environment (Voogt and Oke, 1997).  

Positive correlation between LST and impervious surface clearly indicates 

temperature increase in the sprawled area (Bhatta, 2010). 

The severity of the intensity of urban heat depends on a city’s location and 

characteristics ( Mirzaei and Haghighat, 2010) .  Typically, individual characteristics 

include size and density of population, level of industrialization, seasonality of the 

climate, and traffic pattern and density. 

2.1.4 Proximity to sea (distance to the sea) 

Temperature changes with distance from the sea as the sea makes coastal 

climates temperature. The oceans heat up and cool down much more slowly than land. 

This means that coastal locations tend to be cooler in summer and warmer in winter 
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than places inland at the same latitude and altitude (Price, Michaelides, Pashiardis, and 

Alpert, 1999) (see Figures 2.6 and 2.7 for example).  

 

 

Source: http://www.slideshare.net/maggiesalgado/factors-affecting-temperatures. 

Figure 2.6 Temperature change with distance to the sea in summer and winter season. 

 

 

Source: Parinya Chayapong (2010). 

Figure 2.7 Variation of the average LST data with distances from the Thai Gulf. 
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During summer, the sea or ocean water gets heat and cools down more slowly 

in comparison to land. In comparison with water, land gets heat faster and cools down 

fast.  As the distance to the sea or ocean increases, the temperature increases.  During 

winter, with less insolation, the water shall absorb more sun heat than land. Therefore, 

when distance to the sea or ocean increases, the temperature gradually decreases as land 

cools down fast (ECN, Online, 2016). 

2.1.5 Ocean current/prevailing wind 

The inherent temperature of major ocean currents is also regarded as being 

crucial factor in controlling land temperature nearby whereas the warm current from 

the equator (e.g., the Gulf Stream) can substantially warm up the proximate coastal land 

when passing by meanwhile cold current (like the Peruvian) shall induce opposite 

outcome (ECN, Online, 2016). Figure 2.8 illustrates major ocean currents known 

nowadays. Similarly, strong prevailing wind with distinctive nature of its temperature 

(cold/warm) can greatly affect local temperature of the associated land while it is 

moving over.  

 

Source: Lutgens and Tarbuck (1998). 

Figure 2.8 Major ocean currents at present (warm/cold).  



20 

2.1.6 Habitat 

In the recent time, the movement of people from rural to urban area within 

the country (internal migration) is most significant. According to the United Nations 

report (United Nation, 2006), the number and proportion of urban dwellers will 

continue to rise quickly in Figure 2.9. Urban global population will grow to 4.9 billion 

by 2030. At the global level, all future population growth will thus be in towns and 

cities; most of which will be in developing countries. The urban population of Africa 

and Asia is expected to be double between 2000 and 2030 (United Nation, 2006). 

Although very insignificant comparing the movement of people within the country, 

international migration is also increasing. In general, cities are perceived as places 

where one could have a better life, because of better opportunities, higher salaries, 

better services, and better lifestyles. The perceived better conditions attract poor people 

from rural areas. People move into urban areas mainly to seek economic opportunities. 

International migration includes labour migration, refugees and undocumented 

migrants. Both internal and international migrations contribute to urban growth. The 

number of habitant is decisive factor conditioning the occurrence of urban heat island. 

Figure 2.10 show increased city size (represented by circles) with increasing number of 

habitants is responsible for increasing urban temperature (Bhatta, 2010). 

Previously, Arnfield (2003) noted that study on UHI has focused on single 

season analysis due to lack of multi-temporal data. However, multi-seasonal monitoring 

of urban heat remains a relevant requisite to understanding the implication of LULC 

types to yearlong urban heat and energy balance. 

The relationship between LST and population from the main campus area 

of Prince of Songkla University on the eastern part of the city, a large part of which is 
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still covered by plants, the LST distribution tends to follow the population density. The 

relationship between communities and LST distribution in Figure 2.11 shows that more 

than 88.5% of the 139 communities in Hat Yai face high temperature. 
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Figure 2.9 Urban and rural population of the world, 1950-2030. 
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Figure 2.10 Increased city size and number of habitants cause increase in temperature. 
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Surce:  Poonyanuch Ruthirako, Rotchanatch Darnsawasdi, and Wichien Chatupote, 

2014. 

Figure 2.11 The densely populated zone compared the LST pattern. 

 

2.1.7 Air pollutants 

Air pollutant can be found in every big city. The uniqueness of tropical 

cities is probably the relatively high ambient air temperature and relative humidity 

throughout the year. It is believed that atmospheric pollutant can be aggravate by the 

accumulation of smog that is relate to the combination of the higher temperature and 

the presence of air pollutants (Wong and Chen, 2009). 

In general, six standard air pollutants that have been extensively studied 

in urban populations are sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), 

carbon monoxide (CO), fine particulate matter (PM2.5), and particulates (PM10). The 

impact of some air pollutants on health is more evident during the summer or during 

high temperatures (Castellsague, Sunyer, Saez, and Anto, 1995; Bobak and Roberts, 

1997; Hajat, Haines, Goubet, Atkinson, and Anderson, 1999).  

In addition, surface temperature inversions play a major role in air quality, 

especially during the winter when these inversions are the strongest. The warm air 
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above cooler air acts like a lid, suppressing vertical mixing and trapping the cooler air 

at the surface. As pollutants from vehicles, fireplaces, and industry are emitted into the 

air, the inversion traps these pollutants near the ground, leading to poor air quality. The 

strength and duration of the inversion will control AQI levels near the ground. A strong 

inversion will confine pollutants to a shallow vertical layer, leading to high AQI levels, 

while a weak inversion will lead to lower AQI levels. A large contributor to poor air 

quality during the winter is residential wood burning. Wood smoke contains much 

higher amounts of particulate pollution than smoke from oil- or gas-fired furnaces 

(CIESE, 2017). Cold air is heavier than warm air, so temperature inversions limit 

vertical mixing and trap pollutants near Earth's surface. Such conditions are often found 

at night and during the winter months. Stagnation events characterized by weak winds 

are frequent during summer and can lead to accumulation of pollutants over several 

days (Annenberg Foundation, 2017). 

SO2 is a gas formed when sulfur is exposed to oxygen at high temperatures 

during fossil fuel combustion, oil refining, or metal smelting. SO2 is toxic at high 

concentrations, but its principal air pollution effects are associated with the formation 

of acid rain and aerosols. SO2 dissolves in cloud droplets and oxidizes to form sulfuric 

acid (H2SO4), which can fall to Earth as acid rain or snow or form sulfate aerosol 

particles in the atmosphere (Murphy, 2005). The relationship between SO2 and total 

and cardiovascular mortality in Valencia (Ballester, Corella, Pérez Hoyos, and Hervás, 

1996) and Rome, Italy (Michelozzi, Forastiere, Fusco, Tobias, and Anto, 1998), was 

found to be stronger during hot periods than during winter. However, Moolgavkar, 

Luebeck, Hall, and Anderson (1995) stated that SO2 had the strongest health effects in 

spring, autumn, and winter in Philadelphia. 
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O3 is the major pollution in tropical cities and it can be easily formed 

through a photochemical reaction of nitrogen oxides and volatile organic compounds 

(VOC) (Wong and Chen, 2009). High temperatures on sunny days makes ground-level 

O3 (a major component of smog) form much more readily. An EPA study looking at 

more than 20 years of measurements across most of the rural areas in the eastern U.S. 

found that harmful O3 concentrations increased nearly linearly as temperatures 

increased. Also of concern are days with stagnant air that allow air pollutants to build 

up and not be flushed out of an area by wind. Stagnant air has been shown to drive up 

concentrations of both O3 and particulate matter, unlike temperature, which only 

directly affects ozone (Climate central, 2017). Touloumi et al. (1997) mentioned that 

increases in daily mortality and morbidity (indicated by hospital admissions) are 

associated with high O3 levels on hot days in many cities. 

Nitrogen oxides (NO) and NO2, referred together as NOx are highly 

reactive gases formed when oxygen and nitrogen react at high temperatures during 

combustion or lightning strikes. Nitrogen presents in fuel can also be emitted as NOx 

during combustion. Emissions are dominated by fossil fuel combustion at northern mid-

latitudes and by biomass burning in the tropics. In the atmosphere, NOx reacts with 

VOCs and carbon monoxide to produce ground-level O3 through a complicated chain 

reaction mechanism. It is eventually oxidized to nitric acid (HNO3). Like sulfuric acid, 

nitric acid contributes to acid deposition and to aerosol formation (Annenberg 

Foundation, 2017).  

CO is an odorless, colorless gas formed by incomplete combustion of 

carbon in fuel. The main source is motor vehicle exhaust, along with industrial 

processes and biomass burning. It binds to hemoglobin in red blood cells, reducing their 
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ability to transport and release oxygen throughout the body. Low exposures can 

aggravate cardiac ailments, while high exposures cause central nervous system 

impairment or death. It also plays a role in the generation of ground-level ozone 

(Annenberg Foundation, 2017). 

In addition to gases, the atmosphere contains solid and liquid particles that 

are suspended in the air. These particles are referred to as aerosols or particulate matter 

(PM). Aerosols in the atmosphere typically measure between 0.01 and 10 micrometers 

in diameter, a fraction of the width of a human hair. Most aerosols are found in the 

lower troposphere, where they have a residence time of a few days. They are removed 

when rain or snow carries them out of the atmosphere or when larger particles settle out 

of suspension due to gravity. Large aerosol particles (usually 1 to 10 micrometers in 

diameter) are generated when winds blow sea salt, dust, and other debris into the 

atmosphere. Fine aerosol particles with diameters less than 1 micrometer are mainly 

produced when precursor gases condense in the atmosphere. Major components of fine 

aerosols are sulfate, nitrate, organic carbon, and elemental carbon. Sulfate, nitrate, and 

organic carbon particles are produced by atmospheric oxidation of SO2, NOx, and 

VOC. Elemental carbon particles are emitted by combustion, which is also a major 

source of organic carbon particles (Annenberg Foundation, 2017). 

One important research challenge is learning more about organic aerosols, 

which typically account for a third to half of total aerosol mass. These include many 

types of carbon compounds with diverse properties and environmental impacts. 

Organic aerosols are emitted to the atmosphere directly by inefficient combustion. 

Automobiles, wood stoves, agricultural fires, and wildfires are major sources in the 

United States. Atmospheric oxidation of VOCs, both anthropogenic and biogenic, is 
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another major source in summer. The relative importance of these different sources is 

still highly uncertain, which presently limits our ability to assess anthropogenic 

influence and develop strategies for reducing concentrations (Annenberg Foundation, 

2017). 

 

2.2 Geostatistics methods for spatial interpolation 

Spatial interpolation methods including geostatistics have been developed and 

applied to various disciplines.  They are data-specific or even variable-specific.  Many 

factors including sample size, sampling design and data properties affect the 

estimations of the methods.  In geostatistics, the methods that are capable of using 

secondary information are often referred to as “ multivariate” , while the methods that 

do not use the secondary information are called “ univariate”  methods.  Geostatistics 

includes several methods that use kriging algorithms for estimating continuous 

attributes (Li and Heap, 2014).  

In general, geostatistics methods can categorized into two groups:  univariate 

and multivariate methods.  Method accounting for a single variable:  Ordinary Kriging 

(OK) , Simple Kriging (SK) , and Universal Kriging (UK) , is univariate while method 

accounting for secondary information:  Simple Co- Kriging ( SCK) , Ordinary Co-

Kriging (OCK), and Universal Co-Kriging (UCK), is multivariate (Li and Heap, 2014). 

Kriging interpolation starts with the recognition that the spatial variation of a 

continuous attribute is often too irregular to be modelled by a simple function.  The 

variation can be better described by a stochastic surface with an attribute known as a 

regionalized variable. 
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The regionalized variable theory assumes that the value of a random variable Z 

at (x) 

εxεxmxZ  )()()(  (2.1) 

 Where )(xm is a deterministic function describing a structural component of Z 

at x, )(xε   is a random spatially correlated component and ε    is a residual non-

spatially correlated term, or noise (Nugget variance). 

When structural effects have been accounted for and the variation is 

homogenous in its variation, the semivariance γ (h) can be estimated as: 
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Where n is number of pairs of sample points of observations of the values of attribute z 

separated by distance h. 

A plot of )(hγ  against h is called a semivariogram and it gives a quantitative 

description of the regionalized variation ( see Figure 2.12) .  An important factor of the 

variogram is the range, which describes the distance when the data points become 

spatially independent.  The variogram can be used to estimate the optimal weights i 

needed for interpolation.  The value )(ˆ xZ  for an unsampled point is then calculated 

with following equation: 
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 (2.3) 

The principle is show in Figure 2.13 (Burrough and McDonnell, 1998). 

In general, Kriging is a relatively fast interpolator that is flexible with input and 

output data: many outputs can be generated besides the prediction maps like predictions 
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errors and probabilities.  Drawback of the flexibility is that it may require a lot of 

decision-making.  Measure of success is through the prediction errors or through cross 

validation. 

Characteristics of each sub- type of univariate and multivariate methods are 

summarized based on Sluiter (2009) as belows. 
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Source: Burrough and McDonnell (1998). 

Figure 2.12 Variogram example. 
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Source: Burrough and McDonnell (1998). 

Figure 2.13 The principle of Kriging. 
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2.2.1 Ordinary kriging 

Ordinary kriging (OK) is the basic form of kriging. The prediction by OK 

is a linear combination of the measured values. The spatial correlation between the data, 

as described by variogram, determines the weights.  As the mean is unknown, fewer 

assumptions are made.  The method assumes intrinsic stationary, unfortunately 

meteorological variables are often not stationary.  In some case, this problem can be 

eliminated by using different sizes and shapes of the search nieghbourhood.  OK is 

frequently applied in meteorology. 

2.2.2 Simple kriging 

Simple Kriging (SK)  is OK with a known mean.  Therefore, it is slightly 

more powerful than OK, however the mean is often difficult to derive. 

2.2.3 Universal kriging 

Universal Kriging (UK)  is also known as “Kriging with a trend/external 

drift”. It uses a regression model as part of the kriging process to model the mean value 

expressed as a linear or quadratic trend. 

2.2.4 Co-Kriging 

Co-Kriging (CK) is an extension of standard Kriging using a multivariate 

variogram or covariance model and multivariate ( ancillary)  data.  With CK, the 

estimations on a location are based on a linear weighted sum of all examined variables. 

When more than one co- variable is considered, the method may become highly 

complex. 

In meteorology, CK is often applied. Schuurmans, Bierkens and Pebesma 

(2007) used CK to combine station data with precipitation radar data (as well as Kriging 

with an external drift). 
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In general, CK gives better results when the number of covariables are 

( much)  higher that the variable of interest and when the spatial correlation between 

variables and covariables is high. The assumptions are the same as for ordinary Kriging 

plus assumptions with respect to cross-variogram model estimation. 

 

2.3 Conversion of LST from satellite data 

The Landsat 8 satellite is the near-polar, sun-synchronous, 705 km circular orbit 

and in position as the recently decommissioned Landsat 5 satellite.  Landsat 8 data are 

acquired in 185 km swaths and segmented into 185 × 180 km scenes using the second 

World- wide Reference System ( WRS- 2)  with path ( ground track parallel)  and row 

( latitude parallel)  as same as Landsat 4, 5, and 7 satellites ( Arvidson, Gasch, and 

Goward, 2001) .  Landsat 8 has a 16 day repeat cycle, each WRS- 2 path/ row is 

overpassed every 16 days and may be acquired a maximum of 22 or 23 times per year 

for any scene. Combined, the Landsat 8 and 7 sensors provide the capability to acquire 

any WRS-2 path/row every 8 days at the Equator and more frequent coverage at higher 

latitudes due to the pole ward convergence of the Landsat orbits ( Kovalskyy and Roy, 

2013).  

Prior to Landsat 8, the LST from Landsat can be derived without use of ancillary 

data from only one thermal wavelength band. The two thermal TIRS bands of Landsat 

8 are spectrally similar to two thermal bands of MODIS and enable, for the first time, 

atmospheric correction of Landsat thermal imagery using split-window technique. This 

provides simpler and more accurate retrieval of surface temperature and emissivity than 

was possible with previous Landsat sensor data.  Landsat 8 instruments represent an 

evolutionary advance in technology.  Operational Land Imager (OLI)  improves on the 
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past Landsat sensors using a technical approach demonstrated by a sensor flown on 

NASA’ s experimental EO- 1 satellite.  OLI is a pushbroom sensor with a four- mirror 

telescope and 12-bit quantization. OLI collects data for visible, near infrared, and short 

wave infrared spectral bands as well as a panchromatic band.  It has a five-year design 

life.  Figure 2.14 compares the OLI spectral bands to Landsat 7′s ETM+  bands.  OLI 

provides two new spectral bands, one tailored especially for detecting cirrus clouds and 

the other for coastal zone observations.  Additionally, the bandwidth has been refined 

for six of the heritage bands.  The Thermal Instrument ( TIRS)  carries two additional 

thermal infrared bands. Table 2.1 compares spectral characteristic of Landsat 7 and 8. 

 

Source: http://landsat.gsfc.nasa.gov/?p=3186. 

Figure 2.14 Bandpass wavelengths for Landsat 8 OLI and TIRS sensor, compared to 

Landsat 7 ETM+ sensor. 
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Table 2.1 Comparison of Landsat 5, Landsat 7 and 8 specifications. 

Landsat 5 Landsat 7 Landsat 8 

Band 
Wavelength 

(μm) 

Resolution 

(m) 
Band 

Wavelength 

(μm) 

Resolution 

(m) 
Band 

Wavelength 

(μm) 

Resolution 

(m) 

    Band 1 – Cosstal/Aerosol 0.43-0.45 30 

Band 1 - Blue 0.450-0.515 30 Band 1 - Blue 0.441-0.514 30 Band 2 - Blue 0.45-0.51 30 

Band 2 - Green 0.525-0.605 30 Band 2 - Green 0.519-0.601 30 Band 3 - Green 0.53-0.59 30 

Band 3 - Red 0.630-0.690 30 Band 3 - Red 0.631-0.692 30 Band 4 - Red 0.64-0.67 30 

Band 4 - NIR 0.750-0.900 30 Band 4 - NIR 0.772-0.898 30 Band 5 - NIR 0.85-0.88 30 

Band 5 - SW-1IR 1.55-1.75 30 Band 5 - SW-1IR 1.547-1.749 30 Band 6 – SWIR-1 1.57-1.65 30 

Band 7 - SWIR-2 2.08-2.35 30 Band 7 - SWIR-2 2.064-2.345 30 Band 7 – SWIR-2 2.11-2.29 30 

Band 8 - Pan 0.52-0.90 15 Band 8 - Pan 0.515-0.896 15 Band 8 - Pan 0.50-0.68 15 

    Band 9 - cirrus 1.36-1.38 30 

Band 6 - TIR 10.4-12.5 60 Band 6 - TIR 10.31-12.36 60 
Band 10 - TIR-1 10.60-11.19 100 

Band 11 - TIR-2 11.50-12.51 100 

 

Source: http://landsat.gsfc.nasa.gov/?p=3186. 
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In pactice, the conversion of brightness value to LST from thermal band 

Landsat-8 divides into three basic steps:  

(1) Conversion to TOA Radiance 

The digital number (DN) of thermal band (Band 6 for Landsat-5 and Landsat-

7, and Band 10 for Landsat 8)  are converted to spectral radiance at top of atmosphere 

(TOA) with metadata file using following equation (USGS, Online, 2016). 

LcalL AQML 
λ  (2.4) 

Where λ
L  is TOA spectral radiance ( watts/ ( m2• srad• μm) ) , LM  is band specific 

multiplicative rescaling factor from the metadata, LA  is band specific additive 

rescaling factor from the metadata and calQ  is quantized and calibrated standard 

product pixel values (DN). 

(2) Conversion to at satellite brightness temperature 

The derived spectral radiance at TOA is coverted to brightness temperature 

(BT) based on uniform emissivity () assumption with constant value given in metadata 

file using following equation (USGS, Online, 2016) 

)1ln( 1

2





λL

K

K
BT  (2.5) 

Where BT = At – Satellite brightness temperature in Kelvin (K) 

 λL  = TOA spectral radiance (watts/ (m2•ster•μm)) 

 21, KK = Band specific thermal conversion from the metadata (See Table 2.2). 
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Table 2.2 Thermal constant of K1, K2 value. 

Thermal constant 
Landsat 8 Landsat 7 Landsat 5 

Band 10 Band 11 Band 4 Band 6 

K1 774.89 480.89 666.09 607.76 

K2 1321.08 1201.14 1282.71 1260.56 

 

(3) Correction for spectral emissivity 

The temperature values obtained above are referenced to a black body. 

Therefore, corrections for spectral emissivity ( ε)  became necessary according to the 

nature of land cover.  The emissivity corrected land surface temperatures ( LST)  were 

computed as follows (Artis and Carnahan, 1982): 

ερBTλ ln)/(1

BT
  LST


  (2.6) 

Where λ is wavelength of emitted radiance, ρ is hc/σ (1.438x10
-2 

m K), σ is Boltzmann 

constant (1.38x10
-23 

J/K), h is Planck’s constant (6.626x10
-34 

J s), and c is velocity of 

light (2.998x10
8 

m/s). 

 

In this study, Band 6 of Landsat 5, Band 6 of Landsat 7 and Band 10 of Landsat 

8 are used to calculate LST. Acording to Yu, Guo, and Wu (2014), Band 10 of Landsat 

8 can provide accuracy in term of RMSE higher than Band 11 when LST was inverted 

from the radiative transfer equation-based method. 
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2.4 UHI phenomena: Definition, cause, consequence and mitigation 

2.4.1 Definition of UHI 

The UHI is created when naturally, vegetated surfaces e.g. grass and trees 

are replaced with non-reflective, water-resistant impervious surfaces that absorb a high 

percentage of incoming solar radiation (Taha, 1997). Magee, Curtis and Wendler 

(1999) defined the UHI is the temperature found at a given location within the city 

subtracted from the temperature that would be measured at that same location without 

the presence of the city. While, Roth (2013) defined the UHI is a phenomenon whereby 

urban regions experience warmer temperatures than their rural, undeveloped 

surroundings. Likewise, EPA (Online, 2016) defined the UHI describes built up areas 

that are hotter than nearby rural areas. Like, Voogt (2002) defined the UHI refers to the 

observed temperature difference between urban environments and the surrounding rural 

areas. 

Parinya Chayapong ( 2010)  claimed that the UHI is a phenomenon that 

has been known for long time by the climatologists in western countries and being 

evidenced globally at present, especially over large and crowded megacities. 

Outstanding feature of this incidence is a notable increase of the urban temperatures 

compared to those of the surrounding rural/ suburban area that makes the obvious 

temperature gap between the two areas. 

Figures 2.15 displays the typical temperature profile represents the UHI 

phenomenon. 
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Source: http://www.eoearth.org/article/Heat_island. 

Figure 2.15 Typical temperature profile represents the UHI phenomenon. 

 

2.4.2 Cause of UHI 

Main cause of the UHI is strong absorption of sunlight by buildings and 

other hard surfaces, like road or open paved space, during daytime. Part of this absorbed 

heat shall then be released back to the atmosphere afterwards through the thermal 

radiation process, which can substantially increase local ambient temperature 

experienced in the urban area.  This process shall keep urban lands warmer than 

surrounding areas during both daytime and nighttime (see Figure 2.16). Intensity of the 

UHI incidence (∆T) is commonly measured by amount of the temperature differences 

between referred urban locations and some refereed rural sites, or, 

)()( referenceruralurban TTTIntensityUHI   (2.7) 

The UHI are persistent zones with above average LST ( Senanayake, 

Welivitiya, and Nadeeka, 2013) .  The intensity of the UHI is defined by the difference 
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between average temperature of UHI areas and that of rural areas ( Ma, Kuang, and 

Huang, 2010) by the following condition equations: 

σμLST  5.0  (2.8) 

This phenomenon represents UHI area exists in the study area. 

On contrary, 

σμLST  5.00  (2,9) 

This phenomenon represents non-UHI area exists in the study area. 

Where, µ is mean temperature in the study area and  is standard deviation of 

temperature in the study area. 

It is well known that the progressive replacement of natural surfaces by 

built surfaces, through urbanization, constitutes the main cause of the UHI formation. 

Natural surfaces are often composed of vegetation and moisture- trapping soils. 

Therefore, they utilize a relatively large proportion of the absorbed radiation in the 

evapotranspiration process and release water vapour that contributes to cool the air in 

their vicinity.  In contrast, built surfaces are composed of a high percentage of non-

reflective and water- resistant construction materials.  As consequence, they tend to 

absorb a significant proportion of the incident radiation, which is released as heat. 
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Source: Oke (1987). 

Figure 2.16 Typical diurnal variations of air temperature under calm/clear air: (a) air 

temperature in urban/rural area and (b) the resulting heat island intensity (ΔTu-r) under 

ideal weather conditions. 

 

Vegetation intercepts radiation and produces shade that also contributes 

to reduce urban heat release.  The decrease and fragmentation of large vegetated areas 

such as parks, not only reduces these benefits, but also inhibits atmospheric cooling due 

to horizontal air circulation generated by the temperature gradient between vegetated 

and urbanized areas (i.e. advection), which is known as the park cool island effect. On 

the other hand, the narrow arrangement of buildings along the city’s streets form urban 

canyons that inhibit the escape of the reflected radiation from most of the three-

dimensional urban surface to space.  This radiation is ultimately absorbed by the 

building walls ( i. e.  reduced sky view factor) , thus enhancing the urban heat release. 

Additional factors, which include the scattered and emitted radiation from atmospheric 

pollutants to the urban area, the production of waste heat from air conditioning and 
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refrigeration systems, industrial processes and motorized vehicular traffic                               

(i.e. anthropogenic heat), and the obstruction of rural air flows by the windward face of 

the built- up surfaces, have been recognized as additional causes of the UHI effect 

(Kumar, Bhaskar, and Padmakumari, 2012). 

2.4.3 Impacts of UHI 

Yamamoto (2006) described the UHI impact according to season: winter 

and summer.  Winter impact, inversion layers form by radiative cooling on clear, calm 

winter nights.  Ascending air currents created by warm urban areas are trapped under 

inversion layers, forming mixed layers (dust domes)  that exacerbate air pollution (see 

Figure 2.17) .  Meanwhile, summer impacts, urban areas are becoming uncomfortable 

places to live because of higher temperatures during daytime and an increasing number 

of sweltering nights. Higher temperatures boost demand for air conditioning, resulting 

in increased energy consumption.  They also contribute to localized torrential 

downpours and the production of photochemical oxidants. 

 

Source: Yamamoto (2006). 

Figure 2.17 Atmospheric conditions inside and outside urban area in winter.  
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Giguère ( Online, 2009)  stated that the UHI can have adverse impacts on 

( 1)  the environment and ( 2)  on health during the summer.  For impacts on the 

environment, the impact of the UHI on air quality arises due to increased temperatures 

as well as through the indirect effects that greater energy demand has on increasing 

emissions. Increased temperatures have been correlated with the elevated production of 

ground level ozone (O3), also referred to as photochemical smog. Ozone is a respiratory 

irritant and is known to exacerbate a number of cardiopulmonary diseases including 

asthma and chronic bronchitis. Studies have also linked ozone to impaired lung function 

and development in children ( Chan, Lebedeva, Otero, and Richardson, Online, 2007) . 

The UHI can also indirectly contribute to poor air quality by increasing cooling demand 

and air-conditioning use. In addition, warmer surface and air temperatures during both 

the day and evening create an increased demand for energy.  This demand is further 

increased by construction of urban environments with high albedo surfaces that increase 

the absorption of solar radiation by buildings (Forkes, Online, 2010). Increased energy 

demand results from the subsequent increase in air- conditioning use in order to keep 

buildings at safe and comfortable temperatures.  While the warmer temperatures also 

lower requirements for heating in the winter months, it has been demonstrated that in 

cities with warm summers, the high- energy requirements for cooling outweigh the 

winter heating savings (Yow, 2007) .  It has been estimated that 5-10% of community 

electricity demand results from the need to compensate for the UHI effect ( EPA, 

Online, 2008). Especially, greater air-conditioning use is concerning as it corresponds 

to increased peak energy demand. Peak energy demand describes the point within a 24-

hour period where the demand for electricity is highest.  Increases in peak energy 
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demand may compromise the security and stability of power supplies during extreme 

heat events.  This may result in reduced transmission efficiency or compromise the 

power supply entirely, leading to temporary blackouts. Additionally, heat islands likely 

cause an increase in demand for potable water, for cooling ( e. g.  swimming pools and 

fountains) or for watering plants (Balling, Gober, and Jones, 2008). 

Meanwhile, for impacts on health, periods of high temperatures, the 

effects of which are magnified by UHI, can cause heat stress for the population.  Some 

individuals may be more vulnerable to the effects of UHI, such as people with chronic 

diseases, people who are socially isolated, very young children, outdoor workers, 

persons of low socioeconomic status, people who engage in strenuous outdoor exercise 

and the mentally ill (EPA, Online, 2008). However, more severe illnesses may develop 

as bodies lose water and vital minerals. These illnesses include heat cramps, heat rash, 

heat edema, fainting, heat exhaustion, and heat stroke (Forkes, Online, 2010). 

In addition, the periods of high temperatures associated with the UHI can 

cause discomfort, weakness, disturbances of consciousness, cramps, fainting, heat 

stroke, and even exacerbate pre- existing chronic diseases such as diabetes, respiratory 

failure, and cardiovascular, cerebrovascular, neurological and renal diseases, to the 

point of causing death ( Luber and McGeehin, 2008) .  On the recommendation of the 

World Health Organization, health agencies around the world, including in Québec, 

have instituted various programs to mitigate the effects of intense heat and prevent the 

UHI. 
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2.4.4 Mitigation Strategies for UHI Effects 

Sailor ( Online, 2006)  reviewed the current and possible the future UHI 

mitigation strategies, including albedo modifications, tree planting, and “ecoroofs”. As 

in other reports on eco or green roofs, this one described the benefits for urban 

hydrology and energy use in the building with the roof without being able to say much 

about the effect of green roofs on general urban climate.  Sailor also described the 

functions of U. S.  national governmental and nonprofit organizations, as well as 

activities on mitigating UHIs in other countries. 

The UHI mitigation strategies have an impact on both local and global 

climates. In addition to environmental benefits, these mitigation strategies also help in 

reducing the energy consumption for cooling and increase the thermal comfort of the 

poor people who suffer most in the heating summers. To counterbalance the impact of 

the phenomenon, important research has been carried out to develop proper mitigation 

technologies able to decrease ambient and surface temperatures in cities. Mitigation of 

the UHI leads to energy and energy expenditure savings, improves urban air quality 

and ambient conditions, and help to counter global warming.  Many implementation 

technologies exist and are used in parallel, many scientific and administrative activities 

support the implementation of the UHI mitigation technologies (Moriyama and Tanaka, 

2012).  

Generally, the UHI intensity depends on the city size.  The UHI 

phenomenon means the air temperature boundary layer covered over a city. Moriyama 

and Tanaka (2012) suggested that there are four methods to reduce the intensity of the 

boundary layer over the city as shown in Figure 2.18. 
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(1)  Reduction of UHI Intensity by means of creating green spaces, cool 

roofs and cool pavements. 

(2)  Dividing of UHI boundary layer by means of green belts or water 

surfaces such as rivers, and lakes. 

(3)  Disappearance of UHI phenomenon by the combination of high- rise 

buildings and the natural earth surface at the ground level. 

(4) Reduction of UHI phenomenon by means of the wind caused by local 

wind circulation system. 

 

Source: Moriyama and Tanaka (2012). 

Figure 2.18 Concept of countermeasures to UHIs.  
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2.5 Literature review 

Relevant literature reviews that are directly related with main research 

objectives are reviewed and summarized into two groups, namely, geostatistical method 

and satellite-based LST and UHI effect. 

2.5.1 Geostatistical interpolation method 

Chang, Dai, and Chen ( 2004)  applied the Kriging interpolation, a 

geostatistic method, to meteorology. They compare the interpolation technique between 

Inverse Distance to a Power ( IDP) , Spline and OK and UK.  The accuracy of the IDP 

method would be almost the same as the Kriging’ s if four sampling points around the 

points to be estimated. This result showed that there are the same interpolation weights 

for the Kriging and IDW method.  When using the whole sampling points of the field 

instead of only eight sampling points to interpolation, the accuracy of UK method is 

not as good as that of spline.  It is due to the complexity of the global drift that cannot 

be expressed by a second- order polynomial function.  The interpolation of the OK 

method may be improved and is better than the UK method for most cases studies if the 

drift is removed by some preprocess, but it must remember that the improvement 

depends on the preproces and the property of the field to be interpolated.  

Tewolde, Beza, Costa, and Painho (2010) stated that the selection of the 

best interpolation technique for each particular situation is a key factor.  The major 

objective of the study is to assess the spatial variability of annual average temperature 

in the southern region of Eritrea by comparing different interpolation procedures.  The 

temperature data were interpolated using a deterministic method (Inverse square 

distance) and three geostatistical methods (OK, UK and SK).  The performance of the 
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different techniques was compared through error statistics computed using Jackknife 

cross- validation.  The error statistics of the different interpolation methods reveal that 

all techniques have a similar performance.  IDW is slightly less accurate and more 

biased than the kriging methods as expectation. 

Relevant previous work of geostatistics methods comparison for spatial 

interpolation is summarized in Table 2.3. 
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Table 2.3 Summary of geostatistics methods comparison for spatial interpolation. 

No Methods compared Result Reference 

1 IDS, OK, OCK & OK combined with LMR OK combined with LMR the best. Li, Cheng, and Lu, 2005 

2 IDW, Spline, Kriging-exponential, Kriging-

spherical and Kriging-Gaussian, 

Kriging-exponential and Kriging spherical 

have the best interpolation precision 

Cao, Hu, and Yu, 2009. 

3 IDW, GPI, LPI, RBF, OK, OCK, UK, UCK, 

SK, SCK, DK, DCK 

For mean monthly temperature all 

Co-Kriging technique have more 

effectiveness than other interpolation 

techniques 

Yaowaret Jantakat and Suwit 

Ongsomwang, 2010. 

4 IDW, TPS ,GP, LP OK, and UK OK and UK the best Eldrandaly, and Abu-Zaid, 2011 

5 IDW, OK Ok better Panudda Tiengrod and Waranyu 

Wongseree, 2013 

Note: 

Simple Kriging (SK) Simple Co-Kriging (SCK) Thin-Plate Spline (TPS) 

Ordinary Kriging (OK)  Ordinary Co-Kriging (OCK) Global Polynomial (GP) 

Disjunctive Kriging (DK) Disjunctive Co-Kriging (DCK) Local Polynomial (LP) 

Universal Kriging (UK) Universal Co-Kriging (UCK) Temperature Lapse Rate method (TLR) 

Global Polynomial Interpolation (GPI) Local Polynomial Interpolation (LPI) Radial Basic Function (RBF) 

Inverse Distance Weigth (IDW), linear model of regionalization (LMR)  
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2.5.2 Satellite-based LST extraction and UHI effect 

Thanakrit Teanmanee (2002) examined the UHI and physical 

environment. High temperature and UHI phenomena particularly appear on areas 

highly dense with complex constructions and human activities. These areas included of 

living areas, business areas, locations of commercial activities and areas with heavy 

traffic. Low temperature appeared on areas with low density and on public park area 

with green areas as predominant characteristics. These findings further suggested that 

in order to avoid the UHI phenomena, direction of regional wind should be taken into 

a careful consideration and long successive blocks of buildings should be discouraged 

to allow continuous flow of wind. 

Chen, Zhao, Li, and Yin (2006) had investigated relationship between 

UHI and land use/cover changes based on the found relationships between temperature 

and several LULC indices, including NDVI, NDWI, NDBaI and NDBI. It was 

concluded that correlations between NDVI, NDWI, NDBaI and temperature are 

negative when NDVI is limited in range, but positive correlation is shown between 

NDBI and temperature. 

Kanokwan Komonveeraket (2008) analyzed effects of land cover on UHI 

in Bangkok Metropolis. Surface radiant temperature, the Transformed Vegetation 

Index (TVI), and LULC type derived from Landsat-TM data were introduced for UHI 

assessment throughout Bangkok Metropolis. Results showed an inverse relationship 

between TVI and surface temperature and the variation of these values on different land 

surface properties. The high TVI and low surface temperature corresponded to 

vegetation area, while the low TVI and high surface temperature corresponded to the 
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built up surface and bare soil. The study showed that the presence of vegetation could 

cool down the surface temperature in such land covers type. The decreasing of 

vegetation and the extension of built-up area can raise surface temperature when 

considered difference between TVI and surface temperature with respect to urban and 

rural area. 

Pathompong Sukthong (2008) applied thermal remote sensing on UHI 

study at Pathumthani urban areas. The result indicated that there is a strong linear 

relationship between thermal infrared (band 12) of TERRA (ASTER) digital data and 

the in-situ surface temperature. It was found that the UHI phenomenon in Pathumtani 

urban area differs from other cities or metropolis because of its unique urban land use 

pattern, whereas the urbanized area is intermittently separated with scattered 

agricultural plots. Occurrence of UHI phenomenon is directly related to the urban land 

use pattern such as commercial and industrial areas. 

Xiao et al. (2008) identify quantification of statistical relationship 

between LST and land use land cover parameters as a relatively neglected field of 

research in the field of thermal remote sensing. They quantitatively analyzed LST 

variations in context of biophysical and demographic variables. It was found that LST 

is positively correlated with built up area and population density, while negative 

association exists between LST and percentage of forest, farmland and water bodies. 

Positive relationship between LST and fraction of impervious surface, and negative 

association between LST and fraction of green vegetation cover has been collaborated 

by the findings of Weng, Liu, and Lu (2007), Buyantuyev and Wu (2010), and Li et al. 

(2014). 
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Parinya Chayapong (2010) analyzed spatial analysis of UHI phenomenon 

and its relationship to LULC and electrical energy consumption in Bangkok 

metropolitan area (BMA). Information from the derived LST maps indicated strong 

UHI phenomenon over BMA region. In central Bangkok, only Bang Krajao sub-district 

is still not experienced much of the severe UHI. Negative correlation was seen between 

LST data and their corresponding NDVI data at pixel scale (R2 of 0.408) while strong 

positive correlations were found between LST and percent of impervious surface cover 

(ISC) or NDBI (with R2 of 0.836 and 0.734, respectively). The strong positive 

correlation between percent of ISC and NDBI was also found (R2 of 0.922). all three 

chosen public parks expressed different degrees of influences on ambient temperature 

data from which the largest park generated most obvious impact with temperature 

dropping of about 4C over the distance of about 1.6 km away from the its center. 

Strong positive correlation was evidenced between monthly electrical loading data and 

mean air temperature over the BMA region, especially for the residential and small 

general service sections (with R2 of 0.937 and 0.843, respectively). 

Ma, Kuang, and Huang (2010) applied coupling urbanization analyses to 

explore urban thermal environment and its interplay with biophysical one. Results 

indicated that area ratio of impervious surface in Guangzhou significantly increased; 

however, the intensity of the UHI was not always enlarged in observed years. In 

addition, geostatistical analyses showed that the mean-center of the impervious surface 

was moving towards the northwest during 1990-2005. While, correlation analyses 

revealed that, at the pixel-scale, the association of LSTs to other two variables 

(vegetation abundance and percent of impervious surface) was not straightforward, 
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while LSTs had strong positive correlation with percent of impervious surfaces and 

negative correlation with vegetation abundances at the regional-scale, respectively. 

Dan, Xu, Xue, He, and Dan (2010) had conducted research on the 

comparison and analysis of research method for UHI effects based on Landsat TM band 

6, at Guang’an and Nanchong in the middle of Sichuan Basin. They compared and 

analyzed five methods including the highest and lowest temperature, average 

temperature urban and rural, difference of highest and lowest temperature in urban and 

rural area, heat island area and low temperature area, and heat island area index. They 

concluded that (1) Mean-Standard Deviation method can classify the grade of 

temperature and avoid the difference in different time phases; (2) the heat island index 

method that was based on “Mean-Standard Difference Classification” has strong 

applicability. Comparison of urban and rural average temperature was second to it. 

Comparison of highest and lowest temperature is the worst.  

Jaruwan Thongmeesang (2011) studied the UHI phenomenon in Chiang 

Mai city. Air temperature measuring stations comprising stationary and mobile units 

were installed to collect temperature variations and compared in 3 areas, including 

Suthep, Chang Khlan, and Nimmanhaemin Roads compared with Hang Dong as 

reference station during the summer (March-May 2011) and winter (February). The 

results showed that the city has a risk level of the UHI in terms of the UHI intensity 

(UHII). UHII average temperature of 2.8°C and mean UHII temperature of 3.23°C, 

which can be primarily concluded that the city has heat island phenomena. It was also 

discovered that high traffic congestion, consumption of electricity, population density, 
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and dense construction area are major sources of higher air temperature. These 

parameters are interrelated and affect heat island phenomena. 

Li, Zhanga, and Kainz (2012) studied patterns of the UHI of the fast-

growing Shanghai Metropolis, China using time-series of Landsat TM/ETM + data. 

The results showed that dramatic changes in LULC had occurred, with loss of cropland, 

forest and shrub to urban use that made the built-up land increased by 219.50%. In 

contrast, bare land, cropland, fallow land, forest and shrub were decreased. 

Consequently, these drastically altered the land surface characteristics and 

spatiotemporal patterns of UHI. 

Xu, Chen, Dan, and Qiu ( 2011)  demonstrated about how to use multi-

temporal thermal infrared remote sensing data and dynamically monitor and evaluate 

UHI.  This reseach took Luzhou City in Sichuan Province, China as an example and 

explored methods to monitoring and evaluating UHI based on Landsat- 5 TM data and 

Landsat-7 ETM+ data. The main conclusions are as following 

1)  It is feasible to dynamically monitor and evaluate UHI Effects 

using thermal infrared remote sensing data.  

2)  In Luzhou City, WAI increased 0. 34C the increase rate was 

not large.  The proportion of URI declined, which demonstrate that the development 

degree of heat island has reduced.  

3)  In old urban region, from 1988 to 2002, the area of the region 

that BT grade do not change was 710. 37 hectares, and accounted for 87. 50%  of old 

urban region.  
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4) In urban expansion region, the area of the region that brightness 

temperature grade increased was 810.27 hectares, and accounted for 64.68% of urban 

expansion region.  

5) TGCI in urban expansion region was 0. 938, which 

demonstrated that UHI enhanced in1988- 2002.  This was because this part region 

evolved from suburbs into urban region.  TGCI in old urban region was 0. 043, which 

demonstrated that UHI slightly increased in1988- 2002, which was consistent with 

calculation results of WAI. 

Qiu, Xu, and He (2014) studied on the difference of the UHI defined by 

BT and LST retrieved by remote sensing technology. The result showed the UHI 

intensity defined by LST was slightly higher than that was define by BT and the 

intensity value was determined by the heat island area index method or WAI. 

Kachar, Vafsian, Modiri, Enayati, and Safdari Nezhad (2015) evaluated 

the spatial and temporal distribution changes of LST using Landsat 7 and 8 satellite 

images to analysis the changes in Tehran, Iran. The NDVI threshold method was applie 

to extract the LST; then the changes in spatial and temporal distribution of LST over 

the period 1999 to 2014 were evaluated by URI. It can reveal the intensity of the UHI 

within the urban area. The calculation of the index was based on the ratio of the UHI 

area to urban area. The greater the index, the more intense the UHI was. 



 

 

 

CHAPTER III 

RESEARCH METHODOLOGY 

 

The research methodology framework according to the research objectives 

consists of data collection and preparation and four main components including (1) 

influential factors on temperature pattern identification, (2) optimum geostatiscal 

method for mean temperature interpolation, component, (3) satellite-based LST 

extraction and prediction, and (4) UHI phenomena evaluation and prediction ( Figure 

3.1) .  Details of each component with major tasks are separately described in the 

following sections. 

 

3.1 Data collection and preparation 

The list of data collection and preparation of each component is summarized in 

Table 3.1. 
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Figure 3.1 Overview of methodology framework according to objectives. 

Influential factors on temperature pattern identification 

Factor analysis and spatial linear regression analysis 

Top three dominate influential factors on temperature pattern 

Biophysical, demographic and environmental factors on temperature pattern and 

LST pattern of MODIS 

Optimum geostatistical method for mean temperature interpolation 

Univariate and multivariate geostatistical method and accuracy assessment with 

RMSE. MAE, MRE, and AIC 

Optimum geostatistical method for monthly mean temperature interpolation 

In situ monthly mean temperature and top three dominate influential factors 

Satellite-based LST extraction and prediction 

LST conversion, Simple linear regression analysis, Trend Analysis 

Series of LST data during November to April from 2006, 2008, 2010, 2012, 

2014 and 2016 

Thermal band of Landsat 5, 7, and 8 and in situ mean temperature of TMD 

UHI phenomena evaluation and prediction 

Urban and non-urban extraction using BUI with accuracy assessment 

WAI and URI evaluation and prediction 

TGCI extraction 

Monthly UHI intensity and its change during 2006 to 2026 

Monthly UHI severity and its change during 2006 to 2026 

Series of BT grade change by TGCI during 2006 to 2026 

Landsat data and satellite-based LST data 
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Table 3.1 List of data collection and preparation of each component. 

Component Data collection Data preparation Scale Source 

1 DEM Compleateness Check 1 km resolution USGS 

Elevation (m) Reading from DEM 1 km resolution USGS 

Aspect (degrees) Extract from DEM 1 km resolution USGS 

Slope (degrees) Extract from DEM 1 km resolution USGS 

Insolation (WH/m2) Extract from DEM 1 km resolution USGS 

Wind speed (km/hours) Interpolate from TMD stations 1 km resolution TMD 

Distance to the sea (m) Euclidean distance calculation 1 km resolution RTSD 

NDVI Extract from MODIS data 1 km resolution USGS 

NDBI Extract from MODIS data 1 km resolution USGS 

MNDWI Extract from MODIS data 1 km resolution USGS 

PM10 (microgram/ m3) Interpolate from PCD station using Simple Cokring with elevation 1 km resolution PCD 

CO (ppm) Interpolate from PCD station using Simple Cokring with elevation 1 km resolution PCD 

NO2 (ppb) Interpolate from PCD station using Simple Cokring with elevation 1 km resolution PCD 

SO2 (ppb) Interpolate from PCD station using Simple Cokring with elevation 1 km resolution PCD 

O3 (ppb) Interpolate from PCD station using Simple Cokring with elevation 1 km resolution PCD 

Population density (people/sq.km) Extract from population data at district level people/sq.km DOPA 

Household density (household/sq.km) Extract from household data at district level Houses/sq. km DOPA 

LST data of MODIS Download from USGS website 1 km resolution USGS 

2 In situ mean temperature Convert ASCII data to Shape file (point data) none TMD 

Top three influential factors Derived top three influential factor from Component 1   
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Table 3.1 (Continued). 

 
Component Data collection Data preparation Scale Source 

3 Band 6 of Landsat 5: in 2006 LST conversion in Celsius 90 m resolution USGS 

Band 6 of Landsat 7: in 2008, 2010, and 2012 LST convesion in Celsius 90 m resolution USGS 

Band 10 of Landsat 8: in 2014 and 2016 LST convesion in Celsius 90 m resolution USGS 

In situ mean temperature 
Convert ASCII data to spreadsheet file for 

linear regression analysis 
none TMD 

4 NDBI Extract from Landsat data 90 m resolution  

NDVI Extract from Landsat data 90 m resolution  

Built-up area and outskirt area Extract from NDBI and NDVI 90 m resolution  

Band 6 of Landsat 5: in 2006 Derived LST pattern from Component 3 90 m resolution  

Band 6 of Landsat 7: in 2008, 2010, and 2012 Derived LST pattern from Component 3 90 m resolution  

Band 10 of Landsat 8: in 2014 and 2016 Derived LST pattern from Component 3 90 m resolution  

Temperature grade classification 

Classify based on average (µ) and standard 

deviation () values from the derived LST 

pattern from Component 3 

90 m resolution  

 

Note: DOPA department of Provincial Administration, PCD, Pollution Control Department, RTSD, Royal Thai Survey Department, TMD, Thai Meteorological 

Department, USGS United State Geological Survey 
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3.2 Influential factors on temperature pattern identification 

Workflow of the influential factors on temperature pattern identification is 

schematically displayed in Figure 3.2.  Under this component, the selected influential 

factors on temperature pattern in raster format with cell size of 1 km including ( 1) 

elevation, (2)  aspect, (3)  slope, (4)  insolation, (5)  wind, (6)  distance to the sea, (7) 

NDVI, (8) NDBI, (9) MNDWI, (10) population density at district level, (11) number 

of household at district level, and (12) air pollutants (PM10, CO, NO2, SO2, and O3), 

were firstly normalized any particular value (X) into a standardized normal distribution 

with Z-score based on Mean (µ) and Standard deviation () as: 

σμXZ /)(    (3.1) 

Then, all normalized influential factors were converted into ASCII file for factor 

analysis under SPSS statistics software. In principle, factor analysis attempts to explain 

the covariance (or correlation) among a large number of variables in terms of a smaller 

number of factors ( Mukhopadhyay, 2009) .  In practice, major steps of factor analysis 

are as follows:  

3.2.1 Variables selection of factor analysis 

The test of data appropriation for factor analysis includes Bartlett’ s test 

of sphericity (measuring of sampling adequacy and anti-image correlation matrix) and 

the Kaiser-Meyer-Olkin (KMO) (measure of sampling adequacy) were firstly applied 

in this study (Habing, Online, 2003; Friel, Online, 2010). 

For Bartlett’ s test of sphericity, the process started by calculating the 

determinant of the matrix of sums of products and cross- products ( S)  from which the 

inter- correlation matrix is derived.  After that, the determinant of the matrix, S was 
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converted to a chi-square statistic and testes for significance. The null hypothesis is that 

the inter- correlation matrix comes from a population in which the variables are non-

collinear (Friel, Online, 2010). Li and Weng (2007) suggested that the significant level 

of Bartlett’s test should be less than 0.1. 

Meanwhile, Kaiser-Meyer-Olkin (KMO) is the one method of orthogonal 

factor rotation that is often called as varimax rotation. This is based on the assumption 

that the interpretability of factor j can be measured by the variance of the square of its 

factor loadings, i.e. , the variance of 22

2

2

1
,...,,

pjjj
aaa .  If this variance is large then the 

2

ij
a

values tend to be either close to zero or close to unity.  Varimax rotation therefore 

maximizes the sum of these variances for all the factors. 

Friel (2010) described the interpretation of the KMO as characterized by 

Kaiser, Meyer and Olkin as follows: 

• KMO value was 0. 90- 1. 00 that degree of common variance is 

“Marvelous (excellent)” 

• KMO value was 0. 80- 0. 89 that degree of common variance is 

“Meritorious (good)” 

• KMO value was 0. 70- 0. 79 that degree of common variance is 

“Middling (intermediate)” 

• KMO value was 0. 60- 0. 69 that degree of common variance is 

“Mediocre (average)” 

• KMO value was 0. 50- 0. 59 that degree of common variance is 

“Miserable (Despondent)” 
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• KMO value was 0. 00- 0. 49 that degree of common variance is 

“Don’t Factor” 

Secondly, communality of variables was reiterately computed by taking 

the sum of the squared loadings for all variables. In fact, communality value varies 

between 0 and 1 and appropriate variables should have communality value more than 

0.5 (Field, Online, 2005). 

3.2.2 Component extraction of factor analysis 

The number of the selected component depends on the percentage of 

variance explained by each component.  There are different component extraction 

methods.  The principal component analysis ( PCA)  that is one of favorite method of 

factor analysis (Li and Weng, 2007) was applied in this study. Components which has 

eigenvalues greater than 1 were here firstly extracted, then rotation of initial solution 

factors was applied using Varimax to clarify the component pattern in order to better 

interpret the nature of the components.  Each component is explained by percentage of 

variance and factor loading values. 

3.2.3 Development of local influential factor on temperature 

In principle, each component that consists of number of significant 

variables can be viewed as one aspect on temperature pattern such as biophysical, 

demographic or environmental component. In practice, influential factor map on 

temperature pattern from each principal component was firstly constructed based on 

factor scores, which are derived from factor analysis.  Then, pattern of each influential 

factor map was spatially compared with LST pattern of MODIS for identifying 

correlation coefficient using spatial linear regression analysis.  The top three variables 
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from n component, which provide the highest correlation value, were identified as top 

three dominant factors on tempearture pattern for mean temperature interpolation under 

multivariate geostatistic method in the next component. 

 

Figure 3.2 Workflow of influential factors on temperature pattern identification. 

 

 

 

Biophysical, demographic, and environmental 
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Details of influential factors on temperature pattern are summarized as belows. 

(1) Elevation 

The Digital Elevation Model (DEM), which is downloaded from USGS 

web site (www.earthexplorer.usgs.gov) is applied to represent elevation of terrain. 

The DEM is created forn Shuttle Radar Topographic Mission (SRTM) with resolution 

of 30 m. 

(2) Aspect 

Aspect that identifies the slope direction in compass degrees is extracted 

based on a 3 x 3 grid neighborhood from the DEM.  Aspect is measured clockwise in 

degrees from zero ( due north)  to 360.  The value of each cell in an aspect dataset 

indicates the direction the cell's slope faces.  Flat areas having no downslope direction 

are given a value of -1. 

(3) Slope  

The slope function calculates the maximum rate of change from every 

cell to its neighbors.  The function is calculate over a 3 x 3 set of cells and can yield 

slope in angular degrees ( 0- 90)  or in percent, which is a measure of vertical rise over 

horizontal run and it is created from the DEM. 

(4) Insolation 

Insolation or incoming solar radiation is the primary driving force for 

temperature change.  The insolation is derived using DEM based on Area Solar 

Radiation function in ESRI ArcGIS as shown in Figure 3.3. The derived monthly 

insolation in raster format has measurement unit in WH/m2. 
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Figure 3.3 Flow diagram for insolation extraction under function of Area Solar 

Radiation. 

 

(5) Wind speed 

In general, wind station of TMD records observation values of wind 

speed and direction. In this study, wind speed is interpolated using the Ordinary Kriging 

under ESRI ArcGIS software. 

(6) Distance to the sea   

The sea affects the climate of a place. Coastal areas are cooler and wetter 

than inland areas. Clouds form when warm air from inland areas meets cool air from 

the sea. Herein, distance to the sea is calculated using Euclidean Distance from the 

coastal area of Thailand and neighboring country, namely, Myanmar, Laos, Cambodia 

and Vietnam. 

(7) Derivation of NDVI 

The normalized difference vegetation index ( NDVI)  is used to identify 

vegetation in the study area. The NDVI is a measure of the amount of vegetation at the 
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surface.  The value of NDVI varied between - 1 and + 1.  NDVI that were obtained as 

equation: 

REDNIR

REDNIR
NDVI




  (3.2) 

Where RED is red color bands and NIR is Near Infrared Reflectance. 

(8) Derivation of NDBI 

The normalized difference built- up index ( NDBI)  is used to identify 

built-up areas. The NDBI is sensitive to the built-up area and it is calculated as: 

NIRMIR

NIRMIR
NDBI




  (3.3) 

Where NIR is Near Infrared Reflectance and MIR is Mid Infrared Reflectance. 

(9) Derivation of MNDWI 

The modified normalized difference water index ( MNDWI)  is used to 

enhance open water features while efficiently suppessing and even removing built up 

area noise.  The MNDWI is more suitable for enhancing and extracting water 

information for a water region with a background dominated by built-up areas because 

of its advantage in reducing and even removing built- up land noise over the NDWI 

(Hanqiu Xu, 2006) and it is determined as equation: 

MIRGREEN

MIRGREEN
MNDWI




  (3.4) 

Where MIR is mid infrared reflectance and GREEN is green color bands. 

(10) Population density  

The monthly population density (people/sq. km) at district level of 

Thailand are extracted from the official report of the DOPA. 
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(11) Number of household 

The monthly household density (household/sq. km) at district level of 

Thailand are extracted from the official report of the DOPA.  

(12) Air pollutants 

The monthly air pollutants data from the PCD ground station, which 

include PM10, CO, NO2, SO2, and O3 are interpolated using the Ordinary Kriging under 

ESRI ArcGIS software. 

 

3.3 Optimum geostatiscal method for mean temperature 

interpolation 

Workflow of optimum geostatiscal method for mean temperature interpolation 

is schematically displayed in Figure 3.4. Under this component, standard geostatistical 

methods of univariate (OK, SK, and UK) and multivariate (SCK, OCK, and UCK) were 

here examined to identify an optimum method for in situ mean temperature 

interpolation from ground stations of the TMD. 

In this study, average monthly temperature data in November, December 2015 

and January, February, March, and April 2016 were firstly interpolated using univariate 

geostatistic methods (OK, SK, and UK) with cell size of 1 km. At the same time, those 

average mean temperature data were also interpolated using multivariate geostatistic 

methods (SCK, OCK, and UCK) with the derived top three influential factors on 

temperature pattern from the previous component. Then, accuracy assessment based on 

model-based inference method, which is automatically reported with standard 

measurement: Root Mean Squared Error (RMSE), Mean Relative Error (MRE) and 
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Mean Absolute Error (MAE) were applied to identify an optimum method of univariate 

and multivariate geostatistic method. Basic characteristic and its equation of standard 

measurement of accuracy are summarized as below: 

(1) Root Mean Square Error (RMSE). RMSE provides a measure that is 

sensitive to outliers as: 

2

1
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1
 


n

i
measuredpredicted yy

n
RMSE  (3.5) 

Where n is the number of observations, i is the observation number and y is the 

concerned factor (air temperature in this study) 

( 2)  Mean Relative Error ( MRE) .  MRE provides a measure of how far 

the estimate can be in error relative to the measured mean as: 
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Where xi,j denotes the experimental time series data for the i-th at time point j, yi,j is the 

simulation data for the i- th given by the model at time point j, n is the total number of 

genes, and t is the number of samples in the time series data. 

(3) Mean Absolute Error (MAE). MAE measures of accuracy between 

predicted and observed temperature for a particular dataset by ignoring its sign as: 
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 (3.7) 

 Where Pi, Pi
*and Mtotal are exact values, predicted values and total number of 

the test data respectively. 
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Moreover, the best method of kriging and cokriging were here again considered 

by Akaike Information Criterion ( AIC) .  It is a measure of the relative goodness of fit 

of a statistical model (Akaike, 1974) and is calculated using the following equation: 

kθLAIC 2)ˆ(log2   (3.8) 

 Where )ˆ(θL is the maximized likelihood function and k is the number of free 

parameters in the model. The geostatistical method with minimum AIC value is chosen 

as the best method to interpolate mean temperature. 

 

 

Figure 3.4 Workflow of optimum geostatistical method for mean temperature 

interpolation. 
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3.4 Satellite-based LST extraction and prediction 

Workflow of satellite- based LST extraction for UHI phenomena study is 

schematically presented in Figure 3.5.  Herein, series of Landsat LST data during 

November, December, January, February, March, and April between 2006 and 2016 

were extracted using standard concersion method: Equations 2.4, 2.5, and 2.6 that were 

mentioned in Section 2.3 in Chapter II.  After that, the derived LST data were refined 

using simple linear regression analysis between in situ mean temperature data of the 

TMD stations in Bangkok Metropolitan and its vicinity as independent variable and the 

derived LST data as dependent variable. The refinement of monthly satellite-based LST 

data between 2006 and 2016 were further used to predict LST between 2018 and 2026 

using Trend analysis function of MS-Excel and Image conversion function of ERDAS 

Imagine software for UHI phenomena study in the next component. 
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Figure 3.5 Workflow satellite-based LST extraction and LST prediction. 
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3.5 UHI phenomena evaluation and prediction 

Workflow of UHI phenomena evaluation and prediction is schematically 

displayed in Figure 3.6. Under this component, urban and non-urban area between 2006 

and 2016 were firstly extracted using BUI based on NDBI and NDVI, then the derived 

results were accessed accuracy using Google Earth data. Afterthat the extracted urban 

and non-urban areas area between 2006 and 2016 were further used to predict urban 

and non-urban areas between 2018 and 2026. Finally, the derived LST between 2006 

and 2026 from the previous component and the extracted urban and non-urban areas in 

the same period were applied to evaluate UHI phenomena including UHI intensity 

extraction by WAI, degree of urban heat island development by URI and overall change 

in temperature by TGCI. Details of major processes are separately described in the 

following sections. 

3.5.1 Urban and non-urban extraction 

In the study, series of Landsat data during November to April between 

2006 and 2016 were applied to calculate NDBI and NDVI to extract urban area based 

on a built-up index (BUI) as suggested by Zha, Gao, and Ni (2003) by using following 

equation:  

NDVINDBIBUIIndexUpBuilt  )(  (3.9) 

Zha, Gao, and Ni (2003) reported that the accuracy of extracting urban 

areas based on the difference between NDBI and NDVI was approximately 92.6%. In 

this study, urban areas consists of city, town, commercial, village, institutional, 

transportation, communication and utilities, industrial land, and bare land while non-

urban areas include agricultural land, forest land and parks.  
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Figure 3.6 Workflow of UHI phenomena evaluation and prediction. 
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The extracted urban and non-urban data between 2006 and 2016 were 

assessed accuracy using stratified random sampling scheme with very high spatial 

resolution image of Google Earth.  

3.5.2 Urban and non-urban prediction 

The derived urban and non-urban areas between 2006 and 2016 were 

applied to predict urban and non-urban areas between 2018 and 2026 using CA-Makov 

model. Herein, pairwise of input data for urban and non-urban areas prediction between 

2018 and 2026 is presented in Table 3.2. 

 

Table 3.2 Pairwise of input data for urban and non-urban areas prediction between 2018 

and 2026. 

No. 
Pairwise of input data Output prediction 

date First date Second date 

1 2014 2016 2018 

2 2012 2016 2020 

3 2010 2016 2022 

4 2008 2016 2024 

5 2006 2016 2026 

 

3.5.3 Urban BT grade classification 

Urban brightness temperature (BT) series data between 2006 and 2026 

that were converted from Landsat data and predicted using Trend Analysis were 

classified into 5 temperature grades using Mean-Standard deviation method, which is 

an ideal method to temperature grade classification (Xu, Chen, Dan, and Qiu, 2011). 

Standard deviation reflects the deviation value for average temperature. Herein, 

temperature grade classification of urban BT consists of (1) low temperature area, (2) 
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secondary low temperature area, (3) medium temperature area, (4) secondary high 

temperature area, and (5) high temperature area according to average (mean) 

temperature (µ) and its standard deviation () of BT and Ts using the following 

conditions:  

 (1) Low temperature area σμTs   

 (2) Secondary low temperature area σμTσμ s 5.0  

 (3) Medium temperature area σμTσμ s 5.05.0   

 (4) Secondary high temperature area σμTσμ s  5.0  

 (5) High temperature area σμTs   

 The derived BT grade classification were further used to extract area and 

percentage of BT grade in urban areas, to calculate average BT in non- urban area, and 

to detect change of BT grade as transition change matrix. 

3.5.4 UHI phenomena evaluation and prediction 

The selected UHI indices included WAI, URI, and TGCI were here 

applied to evaluate UHI phenomena of Bangkok and its vicinity between 2006 and 

2026. 

The WAI which is an index for describing heat island intensity (Dan, Xu, 

Xue, He, and Dan, 2010) by sum of products between the difference five grade 

temperature in built-up area (Tiavg) with average temperature in outskirt area (Toavg) and 

percent of temperature grade area (Ai) as shown in the following equation: 

i
i

oavgiavg ATTWAI  


5

1

)(  (3.10) 
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Where Tiavg represents average temperature of different temperature grade 

from high to low respectively, Toavg is the average temperature in outskirt area and Ai 

represents the percentage of different temperature grade from high to low. 

Meanwhile, the URI, which is used to depict development degree of heat 

island (Xu and Chen, 2004) was also extracted using the following equation. 




n

i
ii pw

m
URI

1100

1
 (3.11) 

Where m is the number of BT grade, i represents temperature grade that in 

urban region is higher than in suburbs, n is the number of temperature grade that in urban 

region is higher than in suburbs, w is weighted value, it takes the value of temperature 

grade as result, and p is area percentage. The greater URI is the more severe the heat 

island phenomenon. 

In addition, the TGCI that reflects the overall change in temperature is 

decreased or increased ( Xu, Chen, Dan, and Qiu, 2011)  was extracted based on 

transition matrix of BT grade between two dates using the following equation: 

i

n

i
i GBwTGCI 

1

 (3.12) 

Where n is the number of BT grade change types that has twenty- five 

types in theory, GB is grade change series of temperature brightness.  If grade change 

become decreasing, GB is negative, while if grade changes become increasing, GB is 

positive and w is the area percentage ((Xu, Chen, Dan, and Qiu, 2011) .  As a result, if 

TGCI > 0, it shows that increasing trend is greater than decreasing trend, and change 

trend performances overall increasing. If TGCI < 0, it shows that increasing trend is 

weaker than decreasing trend, and change trend performances overall decreasing. 



 

CHAPTER IV 

LOCAL PRINCIPAL INFLUENTIAL FACTORS 

ON TEMPERATURE PATTERN 

 

Major results under this chapter consist of (1) local principal influential factors 

on temperature by factor analysis and (2) top three influential factors on temperature 

pattern using spatial linear regression analysis. Details of each major result are 

separately explained and discussed in the following sections. 

 

4.1 Local principal influential factors on temperature by factor 

analysis 

The local principal influential factors on temperature, which include (1) 

biophysical: elevation, aspect, slope, insolation, wind speed, distance to the sea, NDVI, 

NDBI, and MNDWI; (2)  demographic: population density at district level and 

household density at district level; and (3) environmental: PM10, CO, NO2, SO2, and 

O3, was examined using factor analysis. The input data of biophysical factors including 

elevation, slope, aspect, and distance to the sea were here considered as static data 

which other factors including insolation, wind speed, NDVI, NDBI, and MNDWI were 

considered as dynamic data. Both static and dynamic factors are displayed in Figures 

4.1 to 4.6, respectively. Meanwhile the input data of demographic factor as static data 
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is displayed in Figure 4.7 and the input data of environmental factor (PM10, CO, NO2, 

SO2, and O3) as dynamic data is displayed in Figures 4.8 to 4.12, respectively.  

  

(a) (b) 

  

(c) (d) 

Figure 4.1 Biophysical factors as static data in 2014: (a) elevation, (b) slope, (c) aspect, 

and (d) Distance to the sea.   
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.2 Average monthly insolation during November 2015 to April 2016:  

(a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, (e) 

March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.3 Average monthly wind speed during November 2015 to April 2016:  

(a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, (e) 

March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.4 NDVI during November 2015 to April 2016: (a) November 2015,  

(b) December 2015, (c) January 2016, (d) February 2016, (e) March 2016, and (f) April 

2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.5 NDBI during November 2015 to April 2016: (a) November 2015,  

(b) December 2015, (c) January 2016, (d) February 2016, (e) March 2016, and (f) April 

2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.6 MNDWI during November 2015 to April 2016: (a) November 2015,  

(b) December 2015, (c) January 2016, (d) February 2016, (e) March 2016, and (f) April 

2016. 
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(a) (b) 

Figure 4.7 Demographic factors as static data in 2015: (a) population density,  

(b) household density.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.8 Average monthly particulate matter (PM10) during November 2015 to April 

2016: (a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, 

(e) March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.9 Average monthly carbon monoxide (CO) during November 2015 to April 

2016: (a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, 

(e) March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.10 Average monthly nitrogen dioxide (NO2) during November 2015 to April 

2016: (a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, 

(e) March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.11 Average monthly sulfur dioxide (SO2) during November 2015 to April 

2016: (a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, 

(e) March 2016, and (f) April 2016. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.12 Average monthly ozone (O3) during November 2015 to April 2016:  

(a) November 2015, (b) December 2015, (c) January 2016, (d) February 2016, (e) 

March 2016, and (f) April 2016. 

 

The main results of local principal influential factors on temperature by factor 

analysis are summarized according to major steps of factor analysis in the following 

section. 
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4.1.1 Standardization of variable values for factor analysis 

As the values of the selected 16 variables for factor analysis on monthly 

temperature have different ranges and units among them (Table 4.1). Consequently, it 

is necessary to normalize these values before variable selection for factor analysis. So 

the original value of each variable was normalized using a standardized normal 

distribution with Z-score based on Mean (µ) and Standard deviation () using Equation 

3.1 as mentioned in Section 3.2 in Chapter III. The descriptive statistical data of 16 

factors after normalization is summarized in Table 4.2. 

As results, it can be observed that the interpolated environmental 

variables including CO, NO2, O3, and PM10 using simple cokriging with elevation 

generates unexpected minus value in some months (see Table 4.1). However, number 

of unexpected value are very low when they compared with corrected value. This 

finding shows the effect of interpolation technique. 
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Table 4.1 Descriptive statistical data of 16 variables before normalization. 

Variables Minimum Maximum Mean 
Std. 

Deviation 
Unit 

Elevation 0.00 2539.00 289.35 288.63 Meter 

Slope 0.00 29.03 1.86 2.65 Degree 

Aspect -1.00 359.95 171.18 101.84 Degree 

Distance to the sea 0.00 429.84 194.16 119.41 Meter 

Population 0.00 20370.31 128.37 302.28 Person/sq.km 

Number of household 0.00 8585.34 48.24 149.53 Household/sq.km 

Insolation 

2015_11 75521.42 151067.67 110985.07 4224.35 

WH/m2 

2015_12 55551.77 113382.05 82309.95 3216.24 

2016_01 73927.31 155448.13 112219.14 4430.26 

2016_02 90073.61 159529.39 122273.76 4194.88 

2016_03 127094.24 191563.81 152062.75 4469.96 

2016_04 148153.23 196081.45 159458.46 4358.67 

CO 

2015_11 0.04 0.63 0.41 0.13 

parts per million 

(ppm) 

2015_12 -0.72 1.14 0.50 0.41 

2016_01 0.30 2.04 0.59 0.10 

2016_02 0.30 0.62 0.53 0.05 

2016_03 -1.39 2.07 0.56 0.55 

2016_04 -0.58 2.61 0.49 0.36 

NO2 

2015_11 -6.08 21.47 9.63 5.76 

Parts per Billion 

(ppb) 

2015_12 -2.49 20.69 10.13 5.74 

2016_01 0.17 16.37 10.40 3.57 

2016_02 0.17 19.93 12.64 4.52 

2016_03 -2.54 46.50 11.51 4.76 

2016_04 0.38 34.89 7.74 0.39 

O3 

2015_11 1.50 17.90 14.74 2.14 

Parts per Billion 

(ppb) 

2015_12 -3.48 27.20 20.02 5.49 

2016_01 18.29 27.98 21.53 1.73 

2016_02 21.90 45.31 30.25 4.17 

2016_03 3.69 71.61 29.62 12.13 

2016_04 0.94 96.43 27.16 13.74 

SO2 

2015_11 0.00 1.60 0.99 0.32 

Parts per Billion 

(ppb) 

2015_12 0.84 1.87 1.07 0.15 

2016_01 0.97 1.26 1.14 0.04 

2016_02 0.92 1.36 1.16 0.05 

2016_03 0.70 1.17 1.03 0.08 

2016_04 0.56 1.63 0.86 0.15 
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Table 4.1 (Continued). 

Variables Minimum Maximum Mean 
Std. 

Deviation 
Unit 

PM10 

2015_11 -3.73 49.20 32.58 9.67 

Microgram/cubic 

meter 

2015_12 7.26 57.52 41.99 9.20 

2016_01 33.27 46.98 43.46 2.14 

2016_02 44.39 96.02 60.10 8.47 

2016_03 7.46 172.25 62.21 30.65 

2016_04 1.77 328.59 52.63 30.19 

Wind speed 

2015_11 5.64 23.75 17.46 3.65 

km/h 

2015_12 6.54 24.71 17.54 3.26 

2016_01 6.89 26.38 17.48 3.39 

2016_02 6.44 29.33 19.26 4.10 

2016_03 7.62 26.29 19.29 3.01 

2016_04 21.73 22.66 22.01 0.17 

NDVI 

2015_11 -0.80 0.88 0.61 0.14 

Unit less 

2015_12 -0.81 0.89 0.58 0.16 

2016_01 -0.68 0.89 0.55 0.16 

2016_02 -1.00 0.90 0.48 0.17 

2016_03 -1.00 0.93 0.47 0.17 

2016_04 -1.00 0.99 0.88 0.04 

NDBI 

2015_11 -1.00 0.99 0.67 0.05 

Unit less 

2015_12 -1.00 0.99 0.70 0.04 

2016_01 -1.00 1.00 0.70 0.04 

2016_02 -1.00 1.00 0.72 0.06 

2016_03 -1.00 1.00 0.71 0.06 

2016_04 -0.60 1.00 -0.01 0.02 

MNDWI 

2015_11 -0.97 1.00 -0.90 0.04 

Unit less 

2015_12 -0.98 1.00 -0.91 0.03 

2016_01 -0.98 1.00 -0.90 0.03 

2016_02 -0.97 1.00 -0.89 0.03 

2016_03 -0.99 1.00 -0.88 0.04 

2016_04 -0.97 -0.53 -0.88 0.03 
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Table 4.2 Descriptive statistical data of 16 variables after normalization. 

Variables Minimum Maximum Mean Standard Deviation 

Elevation -1.00 7.79 0.00 1.00 

Slope -0.70 10.25 0.00 1.00 

Aspect -1.69 1.85 0.00 1.00 

Distance to the sea -1.63 1.97 0.00 1.00 

Population -0.42 66.96 0.00 1.00 

Number of household -0.32 57.09 0.00 1.00 

Insolation 

2015_11 -8.40 9.49 0.00 1.00 

2015_12 -8.32 9.66 0.00 1.00 

2016_01 -8.64 9.76 0.00 1.00 

2016_02 -7.68 8.88 0.00 1.00 

2016_03 -5.59 8.84 0.00 1.00 

2016_04 -2.59 8.40 0.00 1.00 

CO 

2015_11 -2.77 1.65 0.00 1.00 

2015_12 -2.95 1.56 0.00 1.00 

2016_01 -3.11 15.02 0.00 1.00 

2016_02 -4.14 1.68 0.00 1.00 

2016_03 -3.54 2.74 0.00 1.00 

2016_04 -2.94 5.87 0.00 1.00 

NO2 

2015_11 -2.73 2.05 0.00 1.00 

2015_12 -2.20 1.84 0.00 1.00 

2016_01 -2.86 1.67 0.00 1.00 

2016_02 -2.76 1.61 0.00 1.00 

2016_03 -2.95 7.36 0.00 1.00 

2016_04 0.39 69.91 0.00 1.00 

O3 

2015_11 -6.20 1.48 0.00 1.00 

2015_12 -4.28 1.31 0.00 1.00 

2016_01 -1.88 3.73 0.00 1.00 

2016_02 -2.00 3.61 0.00 1.00 

2016_03 -2.14 3.46 0.00 1.00 

2016_04 -1.91 5.04 0.00 1.00 

SO2 

2015_11 -3.14 1.95 0.00 1.00 

2015_12 -1.51 5.27 0.00 1.00 

2016_01 -3.96 3.00 0.00 1.00 

2016_02 -4.56 3.82 0.00 1.00 

2016_03 -3.99 1.72 0.00 1.00 

2016_04 -1.95 4.98 0.00 1.00 
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Table 4.2 (Continued). 

Variables Minimum Maximum Mean Standard Deviation 

PM10 

2015_11 -3.75 1.72 0.00 1.00 

2015_12 -3.77 1.69 0.00 1.00 

2016_01 -4.77 1.65 0.00 1.00 

2016_02 -1.85 4.24 0.00 1.00 

2016_03 -1.79 3.59 0.00 1.00 

2016_04 -1.68 9.14 0.00 1.00 

Wind speed 

2015_11 -3.24 1.72 0.00 1.00 

2015_12 -3.37 2.20 0.00 1.00 

2016_01 -3.12 2.62 0.00 1.00 

2016_02 -3.13 2.46 0.00 1.00 

2016_03 -3.88 2.32 0.00 1.00 

2016_04 -1.69 3.87 0.00 1.00 

NDVI 

2015_11 -10.27 1.96 0.00 1.00 

2015_12 -8.76 1.94 0.00 1.00 

2016_01 -7.63 2.12 0.00 1.00 

2016_02 -8.78 2.50 0.00 1.00 

2016_03 -8.61 2.72 0.00 1.00 

2016_04 -42.14 2.60 0.00 1.00 

NDBI 

2015_11 -33.88 6.57 0.00 1.00 

2015_12 -38.65 6.75 0.00 1.00 

2016_01 -38.77 6.68 0.00 1.00 

2016_02 -30.90 5.02 0.00 1.00 

2016_03 -30.21 5.17 0.00 1.00 

2016_04 -32.49 55.92 0.00 1.00 

MNDWI 

2015_11 -2.03 51.33 0.00 1.00 

2015_12 -2.50 65.39 0.00 1.00 

2016_01 -2.52 63.14 0.00 1.00 

2016_02 -2.16 54.23 0.00 1.00 

2016_03 -2.78 51.07 0.00 1.00 

2016_04 -3.07 12.09 0.00 1.00 
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4.1.2 Variables selection for factor analysis 

For variable selection of factor analysis, two statistic methods: Kaiser-

Meyer-Olkin (KMO) of sampling adequacy and Bartlett’s test of sphericity were firstly 

applied for testing of data appropriation based on correlation coefficient among 

variables. Then, communality of variables was computed to identify the suitable 

variables for factor analysis (see detail in Section 3.2.1 in Chapter III). In this study, 

sixteen variables of each month: November 2015, December 2015, January 2016, 

February 2016, March 2016, and April 2016 were used to select suitable variables for 

each month under factor analysis.  

It reveals that five variables, except February 2016 are dropped one or 

two variables for factor analysis after applying Kaiser-Meyer-Olkin (KMO) of 

sampling adequacy and Bartlett’s test of sphericity and communality of variables 

extraction on correlation matrix among 16 variables. Summary of suitable variable 

selection of six months datasets for factor analysis with statistical test data is displayed 

in Table 4.3. As results, it can be observed that aspect variables from biophysical factor 

is least suitable for factor analysis and all variables of demographic and environmental 

factors are selected for factor analysis. Details of variables selection of six months are 

systematically reported in Appendix A.  
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Table 4.3 Summary of suitable variable selection of six months datasets for factor 

analysis. 

Influential 

factor 

Statistical test November December January February March April 

KMO 0.677 0.724 0.789 0.738 0.742 0.744 

Baelette’s test 0.000 0.000 0.000 0.000 0.000 0.000 

Communality 14** 14** 15** 16* 14*** 15** 

Biophysical 

Elevation       

Slope       

Aspect X X X  X  

Distance to the sea X X    X 

Insolation       

Wind speed       

NDVI       

NDBI       

MNDWI     X  

Demographic 
Population Density       

Household Density       

Enviromental 

PM10       

CO       

NO2       

SO2       

O3       

Note * One iteration for Communality value extraction 

 ** Two iterations for Communality value extraction 

 *** Three iterations for Communality value extraction 

 

4.1.3 Component extraction by factor analysis 

To extract an initial solution for factor loading, principal component 

analysis was firstly applied. Herein, component whose has eigenvalues greater than 1 

is extracted. Then, rotation of initial solution component was applied using Varimax to 

clarify the component pattern in order to better interpret the nature of the components. 

Major results of component extraction by factor analysis of suitable variable datasets 

from six months datasets for temperature pattern and its interpretation are here 

separately describes in the following sections. 
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4.1.3.1 Component extraction of November 2015 dataset 

The result of factor analysis of November 2015 dataset in form 

of factor loading matrix is presented in Table 4.4. In principle, each component is 

explained by percentage of variance with factor loading of each variable. Herein, the 

first component can explain the variance of dataset about 50.519% and five components 

can explain the variance of dataset as cummuative variance about 94.112%. The derived 

component with its score is further used to construct factor map for representation 

dominant variables on temperature. Each factor map is further used in spatial 

regregression analysis for identifying top three influcial factors on temperature pattern 

with MODIS LST data. 

 

Table 4.4 Factor loading matrix by factor analysis of November 2015 dataset. 

Variables 
Component 

1 2 3 4 5 

Elevation -.377 .870 -.040 -.058 .035 

Slope -.128 .791 -.039 -.090 -.109 

Population .138 -.054 .982 .023 .032 

Household .115 -.034 .986 .011 .025 

NDVI_1511 -.150 .167 -.029 -.915 -.307 

NDBI_1511 -.074 -.052 .050 -.012 .988 

MNDWI_1511 .198 -.003 .009 .896 -.373 

SO2_1511 .965 -.194 .097 .093 -.029 

PM10_1511 .964 -.219 .081 .102 -.032 

O3_1511 .946 -.231 .072 .106 -.026 

CO_1511 .963 -.207 .081 .097 -.024 

NO2_1511 .959 -.182 .101 .088 -.043 

Inso_1511 -.309 .827 -.029 -.023 .020 

Wind_1511 .958 -.226 .080 .121 -.032 

Initial eigenvalues 7.073 1.883 1.623 1.507 1.089 

% of variance 50.519 13.453 11.594 10.764 7.782 

Cumulative % 50.519 63.973 75.566 86.330 94.112 
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Based on Comrey and Lee (1992), a range of values to interpret 

the strength of the relationships between variables and components using factor loading 

are as follows: 

Factor loading of 0.71 and higher are considered as excellent relationship;  

Factor loading between 0.63-0.70 is considered as very good relationship; 

Factor loading of 0.55-0.62 is considered as good relationship; 

Factor loading of 0.45-0.54 is considered as fair relationship and;  

Factor loading of 0.32-0.44 is considered as poor relationship.  

The result of factor analysis in Table 4.4 can explain the 

influence of variables on temperature in term of strengthen of relationship between 

variables and component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature. They are five significant environmental variables 

including SO2, PM10, CO, NO2, and O3 that have excellent relationship with 

temperature. One biophysical factor, wind speed, has excellent relationship with 

temperature. The representation map of this component based on the derived factor 

scored with regression method is displayed in Figure 4.13(a). This map is here assumed 

as the representation of SO2 because it provides the highest factor loading in 

Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, slope, and insolation that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 
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4.13(b). This map is here assumed as the representation of elevation because it provides 

the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

demographic factor on temperature. They are population and household densities that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.13(c). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 3. 

Component 4: This component represents the influence of 

biophysical factor on temperature. They are two significant biophysical variables 

including NDVI and MNDWI that have excellent relationship with temperature. The 

representation map of this component based on the derived factor scored with 

regression method is displayed in Figure 4.13(d). This map is here assumed as the 

representation of NDVI because it provides the highest factor loading in Component 4. 

Component 5: This component represents the influence of 

biophysical factor on temperature. The most significant biophysical variable is NDBI 

that has excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.13(e). This map is here assumed as the representation of NDBI because it 

provides the highest factor loading in Component 5. 
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(a) (b) (c) 

  

(d) (e) 

Figure 4.13 Factor map of November 2015 dataset by factor analysis (a) Component 

1, (b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 

 

4.1.3.2 Component extraction of December2015 dataset 

The result of factor analysis of December 2015 dataset in form 

of factor loading matrix is presented in Table 4.5. Herein, the first component can 

explain the variance of dataset about 50.307% and five components can explain the 

variance of dataset as cummuative variance about 93.351%. The derived component 
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with its score is further used to construct factor map for representation dominant 

variables on temperature.  

 

Table 4.5 Factor loading matrix by factor analysis of December 2015 dataset. 

Variables 
Component 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Elevation -.385 .857 -.041 -.157 .031 

Slope -.140 .750 -.040 -.220 -.124 

Population .133 -.049 .983 .035 .024 

Household .108 -.034 .987 .004 .018 

NDVI_1512 -.100 .305 -.026 -.821 -.444 

NDBI_1512 -.104 -.051 .036 .009 .985 

MNDWI_1512 .180 -.182 .022 .932 -.213 

SO2_1512 -.965 .210 -.080 -.086 .017 

PM10_1512 .969 -.203 .090 .078 -.027 

O3_1512 .943 -.223 .066 .098 -.007 

CO_1512 .957 -.191 .081 .081 -.011 

NO2_1512 .958 -.185 .099 .064 -.035 

Inso_1512 -.311 .836 -.030 -.075 .007 

Wind_1512 .920 -.219 .069 .109 -.109 

Initial eigenvalues 7.043 2.061 1.874 1.087 1.005 

% of variance 50.307 14.718 13.386 7.764 7.177 

Cumulative % 50.307 65.025 78.411 86.174 93.351 

 

The result of factor analysis in Table 4.5 can explain the 

influence of variables on temperature in term of strengthen of relationship between 

variables and component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature. There are five significant environmental variables 

including PM10, N02, CO, O3, and SO2 that have excellent relationship with 

temperature. One biophysical factor, wind speed, has excellent relationship with 
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temperature. The representation map of this component based on the derived factor 

scored with regression method is displayed in Figure 4.14(a). This map is here assumed 

as the representation of PM10 because it provides the highest factor loading in 

Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, slope, and insolation that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.14(b). This map is here assumed as the representation of elevation because it provides 

the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

demographic factor on temperature. They are household and population densities that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.14(c). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 3. 

Component 4: This component represents the influence of 

biophysical factor on temperature including MNDWI and NDVI that have excellent 

relationship with temperature. The representation map of this component based on the 

derived factor scored with regression method is displayed in Figure 4.14(d). This map 

is assumed as the representation of MNDWI because it provides the highest factor 

loading in Component 4. 

Component 5: This component represents the influence of 

biophysical factor on temperature. The most significant biophysical variables is NDBI 
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that has excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.14(e). This map is here assumed as the representation of NDBI because it 

provides the highest factor loading in Component 5. 

 

      

(a) (b) (c) 

   

(d) (e) 

Figure 4.14 Factor map of December 2015 dataset by factor analysis (a) Component 1, 

(b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 
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4.1.3.3 Component extraction of January 2016 dataset 

The result of factor analysis of January 2016 dataset in form of 

factor loading matrix is presented in Table 4.6. Herein, the first component can explain 

the variance of dataset about 46.010% and five components can explain the variance of 

dataset as cummuative variance about 89.649%. The derived component with its score 

is further used to construct factor map for representation dominant variables on 

temperature.  

 

Table 4.6 Factor loading matrix by factor analysis of January 2016 dataset. 

Variables 
Component 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Elevation -.346 .873 -.037 -.140 .015 

Slope -.142 .671 -.039 -.344 -.098 

Distance -.301 .277 -.077 .645 .289 

Population .129 -.058 .983 .014 .025 

Household .105 -.045 .987 -.020 .022 

NDVI_1601 -.099 .364 -.032 -.820 -.285 

NDBI_1601 -.073 -.052 .050 .120 .956 

MNDWI_1601 .154 -.320 .021 .792 -.395 

SO2_1601 .961 -.226 .073 .021 -.026 

PM10_1601 .963 -.239 .087 .017 -.042 

O3_1601 -.962 .238 -.098 .008 .048 

CO_1601 -.941 .270 -.067 -.019 .045 

NO2_1601 .952 -.258 .094 .008 -.049 

Inso_1601 -.265 .828 -.021 -.059 -.043 

Wind_1601 .467 -.779 .099 -.108 -.160 

Initial eigenvalues 6.902 2.363 1.876 1.243 1.063 

% of variance 46.101 15.755 12.508 8.289 7.087 

Cumulative % 46.010 61.765 74.273 82.562 89.649 
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The result of factor analysis in Table 4.6 can explain the 

influence of variables on temperature in term of strengthen of relationship between 

variables and component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature including PM10, SO2, NO2, CO, and O3 that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.15(a). This map is here assumed as the representation of PM10 because it provides 

the highest factor loading in Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, insolation, and wind speed that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.15(b). This map is here assumed as the representation of elevation because it provides 

the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

demographic factor on temperature. They are household and population densities that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.15(c). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 3. 

Component 4: This component represents the influence of 

biophysical factor on temperature including NDVI and MNDWI that have excellent 

relationship with temperature. The representation map of this component based on the 
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derived factor scored with regression method is displayed in Figure 4.15(d). This map 

is here assumed as the representation of NDVI because it provides the highest factor 

loading in Component 4. 

Component 5: This component represents the influence of 

biophysical factor on temperature. The most significant biophysical variables is NDBI 

that has excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.15(e). This map is here assumed as the representation of NDBI because it 

provides the highest factor loading in Component 5  
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(a) (b) (c) 

  

(d) (e) 

Figure 4.15 Factor map of January 2016 dataset by factor analysis (a) Component 1, 

(b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 

 

4.1.3.4 Component extraction of February 2016 dataset 

The result of factor analysis of February 2016 dataset in form of 

factor loading matrix is presented in Table 4.7. Herein, the first component can explain 

the variance of dataset about 43.783% and five components can explain the variance of 

dataset as cummuative variance about 83.508%. The derived component with its score 
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is further used to construct factor map for representation dominant variables on 

temperature.  

 

Table 4.7 Factor loading matrix by factor analysis of February 2016 dataset. 

Variables 
Component 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Elevation .347 .863 -.047 .078 -.058 

Slope .139 .724 -.051 -.115 -.080 

Aspect .068 -.063 -.028 .011 .855 

Distance .323 .038 -.073 .652 .031 

Population -.139 -.061 .981 -.003 -.018 

Household -.114 -.035 .986 -.020 -.008 

NDVI_1602 .108 .624 .001 -.580 .330 

NDBI_1602 .049 .103 .044 .868 .066 

MNDWI_1602 -.144 -.631 -.036 -.133 -.462 

SO2_1602 .880 .236 -.102 .087 .065 

PM10_1602 .955 .237 -.088 .106 .043 

O3_1602 .955 .231 -.093 .115 .043 

CO_1602 -.953 -.248 .077 -.091 -.044 

NO2_1602 -.941 -.266 .079 -.100 -.046 

Inso_1602 .305 .800 -.040 .072 -.059 

Wind_1602 -.457 -.719 .072 -.362 -.016 

Initial eigenvalues 7.005 2.127 1.838 1.368 1.023 

% of variance 43.783 13.294 11.489 8.547 6.395 

Cumulative % 43.783 57.077 68.566 77.113 83.508 

 

The result of factor analysis in Table 4.7 can explain the 

influence of variables on temperature in term of strengthen of relationship between 

variables and component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature including PM10, O3, SO2, CO, and NO2 that have 

excellent relationship with temperature. The representation map of this component 
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based on the derived factor scored with regression method is displayed in Figure 

4.16(a). This map is here assumed as the representation of PM10 because it provides the 

highest factor loading in Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, insolation, slope and wind speed 

that have excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.16(b). This map is here assumed as the representation of elevation because it 

provides the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

demographic factor on temperature. They are household and population densities that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.16(c). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 3. 

Component 4: This component represents the influence of 

biophysical factor on temperature. The most significant biophysical variable is NDBI 

that has excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.16(d). This map is here assumed as the representation of aspect because it 

provides the highest factor loading in Component 4. 

Component 5: This component represents the influence of 

biophysical factor on temperature. The most significant biophysical variables is aspect 

that has excellent relationship with temperature. The representation map of this 
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component based on the derived factor scored with regression method is displayed in 

Figure 4.16(e). This map is here assumed as the representation of aspect because it 

provides the highest factor loading in Component 5. 

 

      

(a) (b) (c) 

  

(d) (e) 

Figure 4.16 Factor map of February 2016 dataset by factor analysis (a) Component 1, 

(b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 
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4.1.3.5 Component extraction of March 2016 dataset 

The result of factor analysis of March 2016 dataset in form of 

factor loading matrix is presented in Table 4.8. Herein, the first component can explain 

the variance of dataset about 49.233% and four components can explain the variance of 

dataset as cummuative variance about 87.979%. The derived component with its score 

is further used to construct factor map for representation dominant variables on 

temperature.  

 

Table 4.8 Factor loading matrix by factor analysis of March 2016 dataset. 

Variables 
Component 

Factor 1 Factor 2 Factor 3 Factor 4 

Elevation -.327 .914 -.035 -.004 

Slope -.089 .773 -.040 -.153 

Distance -.415 .037 -.071 .571 

Population .129 -.067 .982 .005 

Household .110 -.044 .987 -.007 

NDVI_1603 -.042 .400 -.019 -.846 

NDBI_1603 -.042 .158 .029 .844 

SO2_1603 .948 -.262 .085 -.046 

PM10_1603 -.933 .291 -.069 .084 

O3_1603 -.945 .221 -.111 .106 

CO_1603 .957 -.242 .103 -.067 

NO2_1603 .956 -.244 .077 -.065 

Inso_1603 -.323 .870 -.031 .011 

Wind_1603 .483 -.793 .092 -.171 

Initial eigenvalues 6.893 2.213 1.866 1.345 

% of variance 49.233 15.810 13.329 9.607 

Cumulative % 49.233 65.043 78.371 87.979 
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The result of factor analysis in Table 4.8 can explain the 

influence of variables on temperature in term of strengthen of relationship between 

variables and component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature including CO, NO2, SO2, O3, and PM10 that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.17(a). This map is here assumed as the representation of CO because it provides the 

highest factor loading in Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, insolation, slope, and wind speed 

that have excellent relationship with temperature. The representation map of this 

component based on the derived factor scored with regression method is displayed in 

Figure 4.17(b). This map is here assumed as the representation of elevation because it 

provides the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

demographic factor on temperature. They are household and population densities that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.17(c). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 3. 

Component 4: This component represents the influence of 

biophysical factor on temperature including NDVI and MNDWI that have excellent 

relationship with temperature. The representation map of this component based on the 
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derived factor scored with regression method is displayed in Figure 4.17(d). This map 

is here assumed as the representation of NDVI because it provides the highest factor 

loading in Component 4.  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.17 Factor map of March 2016 dataset by factor analysis (a) Component 1,  

(b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 
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4.1.3.6 Component extraction of April 2016 dataset 

The result of factor analysis of April 2016 dataset in form of 

factor loading matrix is presented in Table 4.9. Herein, the first component can explain 

the variance of dataset about 44.878% and four components can explain the variance of 

dataset as cummuative variance about 86.024%. The derived component with its score 

is further used to construct factor map for representation dominant variables on 

temperature.  

 

Table 4.9 Factor loading matrix by factor analysis of April 2016 dataset. 

Variables 
Component 

Factor 1 Factor 2 Factor 3 Factor 4 

Elevation .317 .909 -.151 -.038 

Slope .110 .679 -.341 -.046 

Distance .327 .272 .686 -.063 

Population -.126 -.060 .017 .984 

Household -.105 -.047 -.013 .987 

NDVI_1604 .099 .315 -.898 -.014 

NDBI_1604 .024 -.130 .867 .028 

MNDWI_1604 -.178 -.377 .769 .008 

SO2_1604 .937 .274 -.008 -.084 

PM10_1604 .914 .301 -.026 -.060 

O3_1604 .932 .285 .051 -.097 

CO_1604 -.938 -.262 -.040 .100 

NO2_1604 -.787 -.100 .049 .058 

Inso_1604 .325 .885 -.119 -.035 

Wind_1604 .434 .858 -.028 -.071 

Initial eigenvalues 6.732 3.040 1.853 1.279 

% of variance 44.878 20.266 12.352 8.528 

Cumulative % 44.878 65.144 77.497 86.024 
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The result of factor analysis in Table 4.9 can explain the influence 

of variables on temperature in term of strengthen of relationship between variables and 

component as following.  

Component 1: This component represents the influence of 

environmental factor on temperature including SO2, O3, PM10, CO, and NO2 that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.18(a). This map is here assumed as the representation of CO because it provides the 

highest factor loading in Component 1. 

Component 2: This component represents the influence of 

biophysical factor on temperature. They are elevation, insolation, and wind speed that 

have excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 

4.18(b). This map is here assumed as the representation of elevation because it provides 

the highest factor loading in Component 2. 

Component 3: This component represents the influence of 

biophysical factor on temperature including NDVI, NDBI, and MNDWI that have 

excellent relationship with temperature. The representation map of this component 

based on the derived factor scored with regression method is displayed in Figure 4.18 

(c). This map is here assumed as the representation of NDVI because it provides the 

highest factor loading in Component 3. 

Component 4: This component represents the influence of 

demographic factor on temperature. They are household and population densities that 

have excellent relationship with temperature. The representation map of this component 
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based on the derived factor scored with regression method is displayed in Figure 

4.18(d). This map is here assumed as the representation of household density because 

it provides the highest factor loading in Component 4. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.18 Factor map of April 2016 dataset by factor analysis (a) Component 1, 

(b) Component 2, (c) Component 3, (d) Component 4, and (e) Component 5. 
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In summary, local influential factors (environmental, biophysical, 

demographic) on temperature can be overall interpreted based on factor loading values 

and percent of variance of six months as summary in Table 4.10.  

 

Table 4.10 Highest significant variable in each component with percent of variance and 

cumulative percent of variance in each month (November to April). 

Month/ 

Statistic data 

Components 

1 2 3 4 5 

November Environmental Biophysical Demographic Biophysical Biophysical 

Dominant variable SO2 Elevation Household NDVI NDBI 

Factor loading 0.965 0.870 0.986 -0.915 0.988 

% of variance 50.519 13.453 11.594 10.764 7.782 

December Environmental Biophysical Demographic Biophysical Biophysical 

Dominant variable PM10 Elevation Household MNDWI NDBI 

Factor loading 0.969 0.857 0.987 0.932 0.985 

% of variance 50.307 14.718 13.386 7.764 7.177 

January Environmental Biophysical Demographic Biophysical Biophysical 

Dominant variable PM10 Elevation Household NDVI NDBI 

Factor loading 0.963 0.873 0.987 -0.820 0.956 

% of variance 46.101 15.755 12.508 8.289 7.087 

February Environmental Biophysical Demographic Biophysical Biophysical 

Dominant variable PM10 Elevation Household NDBI Aspect 

Factor loading 0.955 0.863 0.986 0.868 0.855 

% of variance 43.783 13.294 11.489 8.547 6.395 

March Environmental Biophysical Demographic Biophysical n.a. 

Dominant variable CO Elevation Household NDVI n.a. 

Factor loading 0.957 0.914 0.987 -0.846 n.a. 

% of variance 49.233 15.810 13.329 9.607 n.a. 

April Environmental Biophysical Biophysical Demographic n.a. 

Dominant variable CO Elevation NDVI Household n.a. 

Factor loading -0.938 0.909 -0.898 0.987 n.a. 

% of variance 44.878 20.266 12.352 8.528 n.a. 

 

As a result, it reveals that the most significant local influential factor on 

temperature in the study area (Thailand) according percent of variance of the derived 

components is environmental factor including SO2, PM10. CO, NO2, and O3. The 

derived percent of variance, which shows relative important among components in each 
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month, varies between 43.783% in February and 50.519% in November. The most 

dominant variable of environmental factor according to factor loading value is PM10 

that provides the highest value in December, January, and February. Likewise, CO 

provides the highest factor loading value in March and April while SO2 is dominate in 

November. The major causes of air polluants during winter season in Thailand are 

burning of agricultural debris, forest fire, mining, and transporation. 

Meanwhile the secondary dominant factor on temperature in this study is 

(bio)physical factor including elevation, slope, insolation, and wind speed. The derived 

percent of variance of the component varies between 13.294% in February and 

20.266% in April. Elevation and insolation show excellent relationship with 

temperature in all six months.  

Likewise, the third important factor on temperature is demographic factor 

including household density and population density at sub-district level. The derived 

percent of variance of the component varies between 8.528% in April and 13.386% in 

December. Both variables show excellent relationship with temperature in all six 

months. 

The fourth important factor on temperature is biophysical factor including 

NDVI, NDBI, and MNDWI. The derived percent of variance of the component varies 

between 6.395% in February and 13.329% in March. Herein, NDBI variable shows 

excellent relationship with temperature in all six months. This is true, because NDBI 

characterizes urban and built-up areas that are directly relate with temperature. 

Meanwhile NDVI variable shows excellent relationship with temperature in five 

months, except Februry. Because most deciduous forest and rubber trees in Thailand is 
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shed-off and rainfed paddy fields is off-farm activities. Likewise, MNDWI only 

provides excellent relationship in four months, except Februry and March. 

 

4.2 Top three influential factors on temperature pattern using 

spatial simple linear regression analysis  

The selected representative of factor map of each component in each month 

(November and April) were further analyzed spatial linear relationship with MODIS 

LST pattern (Figure 4.19) under IDRISI software. Results of spatial simple relationship 

analysis include correlation coefficient (R) and coefficient of determination (R2) from 

each month is first seperately considered to identify top three influential factors. Then 

they are considered together to finally justify top three influential factors on 

temperature pattern in the study area (Thailand). Results and discussion are firstly 

separately described by month and then summarized for all six months in the following 

sections. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.19 Monthly MODIS LST during November 2015 to April 2016: (a) November 

2015, (b) December 2015, (c) January 2016, (d) February 2016, (e) March 2016, and 

(f) April 2016. 
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4.2.1 Top three influential factors on temperature pattern in November 

According to spatial simple linear analysis between the factor map of 

each component from factor analysis and MODIS LST data, it reveals that top three 

influential factors on temperature pattern in November are NDBI, SO2, and NDVI. 

They provide the correlation coefficient (R) and coeficient of determination (R2) values 

of 0.971, 0.955, and 0.858, and 94.18%, 91.17%, and 73.68%, respectively. Details of 

spatial linear regression analysis and its equation is displayed in Table 4.11.  

As a result, top three influential factors have highly correlation with 

MODIS LST pattern. Simple linear equations of SO2, household density, and NDBI 

provide positive correlation with LST data. This finding infers that when air pollutant, 

household density and urban and built-up area increase, LST increase. However, simple 

linear equation of NDVI and elevation show an unexpected result. In principal, NDVI 

and elevation should have negatively correlation with LST. In other words, when NDVI 

and elevation increase, LST shoud decrease. The possible reason could be here 

mentioned because both variables do not have perfectly relationship with the LST as 

linear form as suggested by Wu, Lord, and Zou (2015). 
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Table 4.11 Spatial regression analysis between factor map from November 2015 and 

MODIS LST data. 

Component R R2 Simple linear equation 
Representative 

variable 
Ranking 

1 0.955 91.17 Y = 1.817735 + 0.834161X SO2 2 

2 0.697 48.54 Y = 21.605912 + 2.231662X Elevation 4 

3 0.528 27.90 Y = 37.089022 + 13.993639X Household 5 

4 0.858 73.68 Y = 11.744174 + 6.722074X NDVI 3 

5 0.971 94.18 Y = -0.004057 + 0.701614X NDBI 1 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

4.2.2 Top three influential factors on temperature pattern in December 

According to spatial linear analysis between the factor map from each 

component and MODIS LST data, it shows that top three influential factors on 

temperature pattern in December are NDBI, PM10, and MNDWI. They provide R and 

R2 values of 0.960, 0.952, and 0.905, and 92.24%, 90.57%, and 81.92%, respectively. 

Details of spatial linear regression analysis and its equation is displayed in Table 4.12. 

As a result, top three influential factors have highly correlation with 

MODIS LST pattern. Simple linear equations of PM10, household density, and NDBI 

provide positive correlation with LST data. This finding implies that when air pollutant, 

household density, and urban and built-up area increase, LST increase. However, 

simple linear equation of MNDWI and elevation show an unexpected result again as 

mentioned reason earlier. 
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Table 4.12 Spatial regression analysis between factor map from December 2015 and 

MODIS LST data. 

Component R R2 Simple linear equation 
Representative 

variable 
Ranking 

1 0.952 90.57 Y = 1.635523 + 0.849440X PM10 2 

2 0.731 53.49 Y = 17.829869 + 2.308643X Elevation 4 

3 0.489 23.91 Y = 38.407127 + 13.078967X Household 5 

4 0.905 81.92 Y = 7.792990 + 10.112169X MNDWI 3 

5 0.960 92.24 Y = -0.030131 + 0.668788X NDBI 1 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

4.2.3 Top three influential factors on temperature pattern in January 

According to spatial linear analysis between the factor map from each 

component and MODIS LST data, it reveals that top three influential factors on 

temperature pattern in December are NDBI, PM10, and MNDWI. They provide R and 

R2 values of 0.960, 0.952, and 0.905, and 92.24%, 90.57%, and 81.92%, respectively. 

Details of spatial linear regression analysis and its equation is displayed in Table 4.13. 

As a result, top three influential factors have highly positively correlation 

with MODIS LST pattern. Simple linear equations of PM10, household density and 

NDBI provide positive correlation with LST data. This finding infers that when air 

pollutant, household density and urban and built-up area increase, LST increase. 

However, simple linear equation of NDVI and elevation show an unexpected result as 

same as the previous result of November. 
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Table 4.13 Spatial regression analysis between factor map from January 2016 and 

MODIS LST data. 

Component R R2 Simple linear equation 
Representative 

variable 
Ranking 

1 0.941 88.51 Y = 2.394700 + 0.817305X PM10 2 

2 0.805 64.79 Y = 10.622481 + 1.546708X Elevation 4 

3 0.456 20.75 Y = 35.826481 + 11.179417X Household 5 

4 0.941 88.51 Y = 3.709378 + 5.682263X NDVI 3 

5 0.955 91.75 Y = 0.013411 + 0.574897X NDBI 1 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

4.2.4 Top three influential factors on temperature pattern in February 

According to spatial linear analysis between the factor map from each 

component and MODIS LST data, it reveals that top three influential factors on 

temperature pattern in February are NDBI, aspect, and elevation. They provide R and 

R2 values of 0.963, 0.958, and 0.940, and 92.67%, 91.81%, and 88.33%, respectively. 

Details of spatial linear regression analysis and its equation is displayed in Table 4.14. 

As a result, top three influential factors have highly positively correlation 

with MODIS LST pattern. Simple linear equations of PM10, household density and 

NDBI provide positive correlation with LST data. This find suggests that when air 

pollutant, household density, and urban and built-up area increase, LST increase. 

However, simple linear equation of elevation and aspect show an unexpected result like 

November. 
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Table 4.14 Spatial regression analysis between factor map from February 2016 and 

MODIS LST data. 

Component R R2 Simple linear equation 
Representative 

variable 
Ranking 

1 0.849 72.04 Y = 9.7980115 + 2.249889X PM10 4 

2 0.940 88.33 Y = 1.225340 + 0.831356X Elevation 3 

3 0.842 10.86 Y = 11.923806 + 12.825096X Household 5 

4 0.963 92.67 Y = -0.101158 + 0.737434X NDBI 1 

5 0.958 91.81 Y = 0.102959 + 0.632142X Aspect 2 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

4.2.5 Top three influential factors on temperature pattern in March 

According to spatial linear analysis between the factor map from each 

component and MODIS LST data, top three influential factors on temperature pattern 

in March are NDVI, CO and elevation. They provide R and R2 values of 0.945, 0.906, 

and 0.856, and 89.34%, 82.03%, and 73.32%, respectively. Details of spatial linear 

regression analysis and its equation is displayed in Table 4.15.  

As a result, top three influential factors have highly positively correlation 

with MODIS LST pattern. Simple linear equations of CO and household density 

provide positive correlation with LST data. This finding deduces that when air 

pollutant, household density and urban and built-up area increase, LST increase. 

However, simple linear equation of NDVI and elevation show an unexpected result like 

November. 
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Table 4.15 Spatial regression analysis between factor map from March 2016 and 

MODIS LST data. 

Component R R2 Simple linear equation 
Representative 

variable 
Ranking 

1 0.906 82.03 Y = 2.692976 + 0.759534X CO 2 

2 0.856 73.32 Y = 4.823312 + 1.047704X Elevation 3 

3 0.420 17.67 Y = 34.889460 + 10.134904X Household 4 

4 0.945 89.34 Y = -.0477975 + 0.730667X NDVI 1 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

4.2.6 Top three influential factors on temperature pattern in April 

According to spatial linear analysis between the factor map from each 

component and MODIS LST data, it reveals that top three influential factors on 

temperature pattern in April are NDVI, CO and elevation. They provide R and R2 values 

of 0.960, 0.930, and 0.867, and 92.22%, 86.55%, and 75.13%, respectively. Details of 

spatial linear regression analysis and its equation is displayed in Table 4.16.  

As a result, top three influential factors have highly positively correlation 

with MODIS LST pattern. Simple linear equations of CO and household density 

provide positive correlation with LST data. This finding deduces that when air 

pollutant, household density and urban and built-up area increase, LST increase. 

However, simple linear equation of NDVI and elevation show an unexpected result like 

November. 
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Table 4.16 Spatial regression analysis between factor map from April 2016 and 

MODIS LST data. 

Component R R2 Linear regression equation 
Representative 

variable 
Ranking 

1 0.930 86.55 Y = 0.323175 + 0.762009X CO 2 

2 0.867 75.13 Y = 5.173589 + 1.725510X Elevation 3 

3 0.960 92.22 Y = -0.941957 + 2.186806X NDVI 1 

4 0.558 30.61 Y = 30.058627 + 12.879790X Household 4 

Note X is factor map of each component as independent variable 

 Y is temperature pattern from MODIS LST as dependent variable 

 

In summary, top three significant influential factors on temperature 

pattern of MODIS LST data form six month is comparatively displayed in Table 4.17 

again.  

As a result, it can be here concluded that significant influential factors in 

the study area (Thailand) consists NDVI, NDBI, elevation, and MNDWI as of 

biophysical factor and PM10, CO, and SO2 as environmental factor. In addition, it can 

be here observed that all significant influential factors show positively correlate with 

LST. Herewith, NDVI, MNDWI, and elevation provide an unexpected result while 

NDBI, PM10, CO, and SO2 show an expected result as mentioned in the literature 

reviews.  

These findings show similar and dissimilar results with the previous work 

of Liu and Zhang (2011), El-Magd, Ismail, and Zanaty (2016) and Peng, Zhou, Wen, 

Xue, and Dong (2016) who suggested that LST had medium to very high negative 

correlation with NDVI and MNDWI while NDBI was a medium to highly significant 

positive correlation with LST. 
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The identified top three influential factors from each month are further 

applied to identify an optimum multivariate geostatistical method for monthly mean 

temperature interpolation in the next Chapter. 

 

Table 4.17 Monthly top three significant influential factors on temperature pattern of 

MODIS data. 

Influential factor Nov Dec Jan Feb Mar Apr 

1 NDBI NDBI NDBI NDBI NDVI NDVI 

2 SO2 PM10 PM10 Aspect CO CO 

3 NDVI MNDWI NDVI Elevation Elevation Elevation 

 



 

CHAPTER V 

OPTIMUM GEOSTATISTICAL METHOD FOR IN SITU 

MEAN TEMPERATURE INTERPOLATION 

 

Under this chapter, there are two standard geostatistical methods for monthly 

mean temperature interpolation include univariate (OK, SK, and UK) and multivariate 

(SCK, OCK, and UCK) are here examined to identify an optimum geostatistical method 

for mean temperature of TMD interpolation.  

In practice, monthly mean temperature data of TMD were directly applied to 

interpolate surface monthly mean temperature with univariate geostatistical methods 

(OK, SK, and UK) and then their results were assessed accuracy using RMSE, MRE 

and MAE for identifying an optimum univariate method. Meanwhile, top three 

influential factors on temperature pattern of MODIS LST data in each month 

(November to April) from the previous chapter were here applied with monthly mean 

temperature data of TMD under multivariate geostatistical methods (SCK, OCK, and 

UCK) to interpolate surface monthly mean temperature. Then their results were also 

assessed accuracy using RMSE, MRE, and MAE to identify an optimum multivariate 

method. Finally, results of univariate and multivariate geostatistical method were 

simultaneously considered to identify an optimum method for monthly mean 

temperature interpolation using Akaike Information Criterion (AIC). 
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5.1 Optimum univariate geostatistical method for monthly mean 

temperature interpolation 

Results of monthly mean temperature interpolation using OK, SK, and UK are 

displayed in Figures 5.1 to 5.3, respectively. The basic statistical data of the interpolated 

monthly mean temperature of three methods are compared in Table 5.1. 

Acording to basic statistical data of three methods, it can be observed that the 

interpolated mean temperature of three methods are not so much different. However, 

the minimum and maximum values of SK method are significantly different from OK 

and UK methods. The minimum and maximum values of OK and UK are equal. 

 

Table 5.1 Basic statistical data of the interpolated monthly mean temperature of 

univariate methods. 

Method OK SK UK 

Month Min. Max. Mean Min. Max. Mean Min. Max. Mean 

November 25.44 29.63 27.85 22.43 30.44 27.92 25.44 29.63 27.85 

December 22.13 28.73 26.19 20.47 30.96 26.31 22.13 28.73 26.19 

January 18.66 30.26 25.30 20.66 28.94 25.24 18.66 30.26 25.30 

February 21.66 29.52 25.44 22.23 29.17 25.54 21.66 29.52 25.44 

March 21.07 31.29 29.30 28.29 30.96 29.74 21.07 31.29 29.30 

April 22.14 34.30 32.05 29.68 34.00 32.50 22.14 34.30 32.05 

 

In addition, the pattern of monthly mean temperature of SK method is also 

different from OK and UK methods while the pattern of monthly mean temperature of 

OK and UK are similar. The correlation coefficient of monthly mean temperature 

among three methods based on interpolated values at selected thirty-six TMD station is 

reported in Table 5.2. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.1 Monthly mean temperature interpolation using OK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.2 Monthly mean temperature interpolation using SK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.3 Monthly mean temperature interpolation using UK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 

 

  



132 

Table 5.2 Correlation coefficient (R) of monthly mean temperature among three 

univariate methods. 

Month OK and SK SK and UK UK and OK 

November 0.916 0.916 1.00 

December 0.939 0.939 1.00 

January 0.979 0.979 1.00 

February 0.986 0.986 1.00 

March 0.543 0.543 1.00 

April 0.710 0.710 1.00 

 

As a result, it reveals that the R values between the interpolated monthly mean 

temperature data of OK and UK method equals 1.00. This implies that pattern of the 

interpolated monthly mean temperature data of OK and UK method is the same. 

Meanwhile, the interpolated monthly mean temperature data in November, December, 

January, and February of SK method have highly correlation with the interpolated data 

of OK and UK method. The R values range between 0.916 in November and 0.986 in 

February. Meanwhile, the interpolated monthly mean temperature data in March and 

April of SK method have low correlation with the interpolated data of OK and UK 

method. The R values range between 0.543 in March and 0.710 in April. This finding 

implies that pattern of the interpolated monthly mean temperature data between 

November and February of SK method is quite similar with the pattern of the OK and 

UK methods. In constrast, pattern of the interpolated monthly mean temperature data 

in March and April is dissimilar with the pattern of the OK and UK methods. However, 

the interpolated monthly mean temperature data of SK method appears more 

smoothness than OK and UK methods. 
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Meanwhile, results of accuracy assessment among univariate geostatistical 

methods for monthly mean temperature interpolation based on the reference data from 

thirty-six TMD ground stations data is summarized in Table 5.3. 

 

Table 5.3 Accuracy assessment of monthly mean temperature interpolation by 

univariate geostatistical method using MAE, MRE, and RMSE. 

Month Methods MAE (C) MRE (C) RMSE (C) Optimum method 

November 

OK 0.79981 0.03145 1.314963 

OK or UK SK 0.82957 0.03278 1.35811 

UK 0.79981 0.03145 1.314963 

December 

OK 0.81257 0.0345 1.263644 

OK or UK SK 0.75003 0.03241 1.303698 

UK 0.81257 0.0345 1.263644 

January 

OK 0.77461 0.03493 1.274243 

OK or UK SK 0.8791 0.03894 1.3267 

UK 0.77461 0.03493 1.274243 

February 

OK 0.8674 0.03643 1.257532 

OK or UK SK 0.80442 0.03418 1.27582 

UK 0.8674 0.03643 1.257532 

March 

OK 0.4219462 0.0149782 0.5486517 

OK or UK SK 0.8941896 0.0323609 1.3238691 

UK 0.4219462 0.0149782 0.5486517 

April 

OK 0.3550634 0.011481 0.4762094 

OK or UK SK 0.523358 0.017056 0.7019973 

UK 0.3550634 0.011481 0.4762094 

 

As results, it reveals that optimum method of univariate geostatistics for mean 

temperature interpolation is OK or UK method. Both methods provide MAE, MRE, 
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and RMSE with same value in each month. However, Detail of input data and its 

comparison is show in Appendix B. 

 

5.2 Optimum multivariate geostatistical method for monthly mean 

temperature interpolation 

Results of monthly mean temperature interpolation using Ordinary CoKriging 

(OCK), Simple CoKriging (SCK) and Universal CoKriging (UCK) with top three 

influential factors on temperature pattern from each month are displayed in Figures 5.4 

to 5.6, respectively. The basic statistical data of the interpolated monthly mean 

temperature of three methods are compared in Table 5.4. 

Acording to basic statistical data of three methods, it can be observed that the 

interpolated mean temperature of three methods are not so much different. However, 

the minimum and maximum values of SCK method are significantly different from 

OCK and UCK methods. The minimum and maximum values of OCK and UCK are 

equal. 

 

Table 5.4 Basic statistical data of the interpolated monthly mean temperature of 

multivariate methods. 

Method OCK SCK UCK 

Month Min. Max. Mean Min. Max. Mean Min. Max. Mean 

November 25.42 29.63 27.85 9.71 31.24 27.76 25.42 29.63 27.85 

December 20.70 29.82 26.24 13.10 29.89 26.44 20.70 29.82 26.24 

January 19.03 29.65 25.14 12.08 29.37 25.55 19.03 29.65 25.14 

February 20.32 30.47 25.50 20.11 29.33 25.63 20.32 30.47 25.50 

March 25.43 30.99 29.20 21.80 33.55 29.70 25.43 30.99 29.20 

April 26.78 33.62 31.92 -0.17 34.67 31.69 26.78 33.62 31.92 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.4 Monthly mean temperature interpolation using OCK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.5 Monthly mean temperature interpolation using SCK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.6 Monthly mean temperature interpolation using UCK: (a) November, (b) 

December, (c) January, (d) February, (e) March, and (f) April. 

 

In addition, pattern of monthly mean temperature of SCK method is also 

different from OCK and UCK methods while pattern of monthly mean temperature of 

OCK and UCK are similar. The correlation coefficient of monthly mean temperature 

among three methods based on interpolated values at selected thirty-six TMD station is 

reported in Table 5.5. 
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Table 5.5 Correlation coefficient (R) of monthly mean temperature among three 

multivariate methods. 

Month OCK and SCK SCK and UCK UCK and OCK 

November 0.833 0.833 1.00 

December 0.869 0.869 1.00 

January 0.923 0.923 1.00 

February 0.869 0.869 1.00 

March 0.112 0.112 1.00 

April 0.626 0.626 1.00 

 

As a result, it reveals that the R value between the interpolated monthly mean 

temperature data of OCK and UCK method equal 1.00. This implies that pattern of the 

interpolated monthly mean temperature data of OCK and UCK method is the same. 

Meanwhile the interpolated monthly mean temperature data in November, December, 

January, and February of SCK method have high correlation with the interpolated data 

of OCK and UCK method. The R values range between 0.833 in November and 0.923 

in January. Meanwhile, the interpolated monthly mean temperature data in March of 

SCK method shows relatively low correlation with the interpolated data of OCK and 

UCK method with the R value of 0.112. While, the interpolated monthly mean 

temperature data in April of SCK method shows moderate correlation with the 

interpolated data of OCK and UCK method with the R value of 0.626. This finding 

implies that pattern of the interpolated monthly mean temperature data between 

November and February of SCK method is quite similar with the pattern of the OCK 

and UCK methods. On contrary, pattern of the interpolated monthly mean temperature 

data in March and April is dissimilar with the pattern of the OCK and UCK methods. 
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However, the interpolated monthly mean temperature data of SCK method appears 

more smoothness than OCK and UCK methods. 

Furthermore, results of accuracy assessment among multivariate geostatistical 

methods for monthly mean temperature interpolation using thirth-six TMD ground 

station data is summarized in Table 5.6.  

As results, it was found that an optimum multivariate geostatistical method for 

mean temperature interpolation is different among six months. SCK method is optimum 

method for mean temperature interpolation in four months: November, December, 

February, and March. Meanwhile OCK method is an optimum method for mean 

temperature interpolation in three months include November, December and March 

while OCK or UCK method is an optimum method for mean temperature interpolation 

in January and April. Detail of input data and its comparison is shown in Appendix B. 
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Table 5.6 Accuracy assessment of monthly mean temperature interpolation by 

multivariate geostatistical method using MAE, MRE, and RMSE. 

Month Methods MAE (C) MRE (C) RMSE (C) Optimum method 

November 

OCK 0.79916 0.03142 1.31235 

SCK SCK 0.77825 0.02904 0.984834 

UCK 0.79916 0.03142 1.31235 

December 

OCK 0.74548 0.03207 1.24431 

SCK SCK 0.80899 0.03145 1.011759 

UCK 0.74548 0.03207 1.24431 

January 

OCK 0.77126 0.03376 1.111951 

OCK and UCK SCK 0.94349 0.04034 1.19473 

UCK 0.77126 0.03376 1.111951 

February 

OCK 0.85718 0.036 1.233957 

SCK SCK 0.87359 0.03615 1.146758 

UCK 0.85718 0.036 1.233957 

March 

OCK 1.57683 0.05595 2.12639 

SCK SCK 1.10119 0.0394 1.453363 

UCK 1.57683 0.05595 2.12639 

April 

OCK 1.63154 0.05266 2.182241 

OCK or UCK SCK 2.30285 0.07525 3.3511 

UCK 1.63154 0.05266 2.182241 
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5.3 Optimum geostatistical method for monthly mean temperature 

interpolation 

Results of monthly mean temperature interpolation data from optimum 

univariate and multivariate geostatistical method as conclusion in two previous 

Sections: 5.1 and 5.2 were here calculated AIC to justify an optimum geostatistical 

method for monthly mean temperature interpolation. The result of AIC calculation is 

summarized in Table 5.7.  

According to AIC values, it reveals that an optimum geostatistical method for 

mean temperature interpolation is different among six months. Univariate geostatistical 

method (OK or UK), is optimum method for mean temperature interpolation in four 

months: November, December, January, and April. Meanwhile multivariate 

geostatistical method, SCK is an optimum method for mean temperature interpolation 

in two months include February and March. Herein, it can be observed that AIC value 

of SCK method and OCK or UCK is very slightly different for mean temperature 

interpolation in March. 

As results, it can be here suggested that OK and UK methods are suitable for 

monthly mean temperature interpolation from TMD data. This finding is consistent 

with the previous work of Eldrandaly and Abu-Zaid (2011) who suggested that the OK 

and UK were the most optimal methods for interpolating mean monthly air temperature 

in westen Saudi Arabia. In addition, Goovaerts (1997) stated that the OK and UK 

methods yield similar interpolating estimates. In practice, the OK method with local 

search neighbourhoods is preferred in interpolations because it provides results similar 

to UK estimate and it is easier to implement. In addition, the UK method may yield 

aberrant extrapolation estimates (Li and Heap, 2008). However, Attorre, Alfo, Sanctis, 
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Francesconia and Bruno (2007) and Sluiter (2009) suggested that UK is a very common 

method in meteorology.  

In conclusion, it can be here concluded that UK method is the most suitable 

method for monthly mean temperature interpolation from TMD data since it fits with 

UHI phenomena studies in this research. 

 

Table 5.7 Accuracy assessment of monthly mean temperature interpolation basded on 

geostatistical method using AIC. 

Month Geostatistical method Optimum method AIC Choose method 

November 
Univariate 

OK 0.927951274 

OK or UK UK 0.927951274 

Multivariate SCK 37.23661628 

December 
Univariate 

OK 42.50793936 

OK or UK UK 42.50793936 

Multivariate SCK 61.1314764 

January 

Univariate 
OK 66.02799422 

OK or UK 
UK 66.02799422 

Multivariate 
OCK 71.24537358 

UCK 71.24537358 

February 
Univariate 

OK 53.80055395 

SCK UK 53.80055395 

Multivariate SCK 53.10870971 

March 
Univariate 

OK 32.03681717 

SCK UK 32.03681717 

Multivariate SCK 5.230276734 

April 

Univariate 
OK 33.32462093 

OK or UK 
UK 33.32462093 

Multivariate 
OCK 38.00534536 

UCK 38.00534536 

 



 

CHAPTER VI 

LAND SURFACE TEMPERATURE EXTRACTION AND 

PREDICTION 

 

Results of the third objective which consist of (1) satellite-based LST extraction 

and (2) land surface temperature prediction of Bangkok Metropolitan and its vicinity 

are presented under this chapter. Details of each major result are separately explained 

and discussed in the following sections. 

 

6.1 Satellite-based LST extraction 

The selected Landsat data during November to April between 2006 and 2016 

covering Bangkok and its vicinity were used to extract LST based on standard method 

(Equations 2.4 - 2.6) that was mentioned in Section 2.3 Conversion of LST from 

satellite data. After that, the derived LST data were refined based on their relationships 

with in situ mean temperature data of eight TMD stations of Bangkok Metropolitan and 

its vicinity using simple linear regression analysis.  
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6.1.1 Conversion of LST 

Representative of Landsat LST data during November to April between 

2006 and 2016 covering Bangkok and its vicinity were selected based on percent of 

cloud cover as summary in Table 6.1. 

 

Table 6.1 List of selected Landsat data for LST extraction over Bangkok and its 

vicinity. 

Satellite  Path/row Year Month Date Scene Cloud Cover 

Landsat 5 
12950 

2006 January 27 
2.62 

12951 0.00 

Landsat 7 

12950 
2008 January 9 

0.06 

12951 0.02 

12950 
2010 November 14 

25.04 

12951 0.71 

12950 
2012 February 21 

0.00 

12951 0.00 

Landsat 8 

12950 
2014 November 17 

3.14 

12951 9.67 

12950 
2016 April 12 

4.49 

12951 1.33 

 

Results of satellite-based LST extraction for UHI phenomena in 2006, 2008, 

2010, 2012, 2014, and 2016 are displayed in Figures 6.1 to 6.6, respectively. 

Meanwhile, basic statistic of LST data is summarized in Table 6.2. 
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Figure 6.1 Land surface temperature from Landsat-5 in January 2006. 

 

 

Figure 6.2 Land surface temperature from Landsat-7 in January 2008. 
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Figure 6.3 Land surface temperature from Landsat-7 in November 2010. 

 

 

Figure 6.4 Land surface temperature from Landsat-7 in February 2012. 
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Figure 6.5 Land surface temperature from Landsat-8 in November 2014. 

 

 

Figure 6.6 Land surface temperature from Landsat-8 in April 2016.  
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Table 6.2 Basic statistical data of LST. 

Month Year 
LST (C) 

Minimum Maximum Mean Standard Deviation 

January 2006 14.38 42.25 27.56 2.58 

January 2008 17.54 44.32 26.51 1.75 

November 2010 16.01 34.55 23.24 1.61 

February 2012 12.63 41.69 27.16 2.15 

November 2014 17.10 37.93 27.08 1.84 

April 2016 20.23 42.36 32.35 2.08 

 

As results, it can be observed that the representative LST data in 2016, acquired 

date 12 April 2016 shows the highest average LST while the representative LST data 

in 2010, acquired date 14 November 2010 shows the lowest average LST. This 

information presents variation of the representative LST in between 2006 and 2016 due 

to seasonal change. Ideally, the representative LST data between 2006 and 2016 should 

be extracted from Landsat data acquired from the same month. However, due to 

variation of percentage cloud covering during November to April over Bangkok and its 

vicinity between 2006 and 2016, Landsat data between 2006 and 2016 for LST 

extraction could not be selected from the same month. 

 

6.1.2 Refinement of LST using simple regression analysis. 

The extracted LST data between 2006 and 2016 from thermal band of 

Landsat data as dependent variable were simple linear regressed with the mean 

temperature data of 8 TMD stations (Table 6.3 and Figure 6.7). Independent and 

dependent variables for simple linear regression analysis is summarized in Table 6.4. 
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Table 6.3 Temperature station in the study area from TMD. 

No. Name Province 

1 Pathumthani meteorological station Pathumthani 

2 Nakhon Pathom meteorological station Nakhon Pathom 

3 Bangkok meteorological station 

Bangkok 
4 Chaloemprakiet meteorological station 

5 Bang na agrometeorological station 

6 Don muang (airport) meteorological station 

7 Suvarnabhumi airport  meteorological station 
Samutprakan 

8 Samutprakan meteorological station 

 

 

Figure 6.7 Distribution of TMD location over Bangkok and its vicinity. 

 

Results of simple linear regression between the extracted satellite-based 

LST data and in situ mean temperature of TMD data is presented in Table 6.5 and 

Figure 6.8.  
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Table 6.4 Independent and dependent variables for simple linear regression analysis. 

Month Station ID (°C) 

Source 

Year 1 2. 3. 4. 5. 6. 7. 8. 

January 27.60 25.25 28.25 28.35 27.10 28.05 - - TMD 

2006 27.32 24.83 27.32 27.58 26.34 28.28 - - Landsat 5 

January 27.30 28.25 27.50 27.85 27.10 27.85 25.50 28.50 TMD 

2008 27.73 28.75 27.77 27.75 27.77 27.70 25.26 28.22 Landsat 7 

November 28.00 26.15 28.60 28.90 28.45 27.90 - 27.85 TMD 

2010 27.37 25.85 28.37 27.88 28.36 27.88 - 27.38 Landsat 7 

February 28.75 29.24 28.73 28.22 28.73 - 27.22 29.14 TMD 

2012 28.75 29.24 28.73 29.22 28.73 - 28.22 29.14 Landsat 7 

November 29.50 29.85 29.55 28.95 29.25 29.30 27.45 30.15 TMD 

2014 29.06 29.72 28.98 28.10 28.66 29.79 27.05 30.68 Landsat 7 

April 33.35 32.75 32.65 32.45 32.90 33.00 30.95 32.25 TMD 

2016 33.07 32.64 32.57 32.52 32.31 33.52 30.10 32.47 Landsat 8 

 

Table 6.5 List of linear equations and its R and R2 coefficients values of simple linear 

regression analysis. 

No Date Equation R R2 

1 January 2006 Y = 0.9022X +3.1222 0.9357 0.8756 

2 January 2008 Y = 0.8454X +4.1313 0.9308 0.8663 

3 November 2010 Y = 0.9567X +1.5897 0.9230 0.852 

4 February 2012 Y = 0.4383X +16.74 0.8424 0.7096 

5 November 2014 Y = 0.6643X +9.9818 0.9078 0.8241 

6 April 2016 Y = 0.6643X +11.017 0.9239 0.8535 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6.8 Simple linear regression analysis between LST extraction from Landsat data 

and TMD station during 2006 to 2016: (a) January 2006, (b) January 2008, (c) 

November 2010, (d) February 2012, (e) November 2014, and (f) April 2016. 

 

As results, it was found that satellite LST temperature data show positive 

highly correlation with in situ mean temperature of TMD data. The R values vary 

between 0.8424 and 0.9357 and the R2 values vary between 0.7096 and 0.8756.  
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The derived equations were applied to correct satellite-based LST data as 

result shown in Figures 6.9 to 6.14. Basic statistic of refinement LST data is 

summarized in Table 6.6. These information are further applied to evaluate and predict 

UHI phenomena in the following sections. 

 

 

Figure 6.9 Refinement of land surface temperature in January 2006. 
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Figure 6.10 Refinement of land surface temperature in January 2008. 

 

 

Figure 6.11 Refinement of land surface temperature in November 2010. 
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Figure 6.12 Refinement of land surface temperature in February 2012. 

 

 

Figure 6.13 Refinement of land surface temperature in November 2014. 
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Figure 6.14 Refinement of land surface temperature in April 2016. 

 

Table 6.6 Basic statistical data of LST refinement with masking cloud. 

Year 
LST (C) 

Minimum Maximum Mean Standard Deviation 

2006 21.00 39.48 27.56 2.12 

2008 21.01 40.74 26.51 1.70 

2010 19.01 31.81 23.24 1.57 

2012 21.02 38.23 27.16 2.09 

2014 17.14 36.46 27.08 1.83 

2016 21.23 42.33 32.35 2.06 
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6.2 LST prediction 

The refined LST data between 2018 and 2026 were here extrapolated using 

Trend Analysis function of MS Excel spreadsheet software and Image conversion 

function of ERDAS Imagine software. Distribution of predicted LST between 2018 and 

2026 are displayed in Figures 6.15 to 6.19. The basic statistic data of predicted LST 

between 2018 and 2026 is presented in Table 6.7 

 

 

Figure 6.15 Distribution of predicted LST in 2018. 
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Figure 6.16 Distribution of predicted LST in 2020. 

 

 

Figure 6.17 Distribution of predicted LST in 2022. 
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Figure 6.18 Distribution of predicted LST in 2024. 

 

 

Figure 6.19 Distribution of predicted LST in 2026. 
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Table 6.7 Basic statistical data of predicted LST between 2018 and 2026 with masking 

cloud. 

Year Minimum Maximum Mean Standard Deviation 

2018 17.63 40.13 27.81 1.79 

2020 15.38 42.95 28.35 1.94 

2022 12.90 45.77 28.88 2.11 

2024 10.41 48.58 29.42 2.30 

2026 7.92 51.40 29.96 2.50 

 

In summary variation of basic statistical data include minimum, mean, and 

maximum data of temperature between 2006 and 2016 as historical data and between 

2016 and 2026 as extrapolate data can be compared as shown in Figure 6.20. 

 

 

Figure 6.20 Comparison of basic statistical data of LST between 2006 and 2026. 
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CHAPTER VII 

UHI PHENOMENA EVALUATION AND PREDICTION 

 

Results of the fourth objective which consist of (1) urban and non-urban area 

extraction, (2) urban and non-urban area prediction, (3) temperature grade 

classification, (4) urban heat island intensity and its severity, (5) quantitative analysis 

of UHI, are presented under this chapter. Details of each major result are separately 

explained and discussed in the following sections. 

 

7.1 Urban and non-urban area extraction 

Urban and non-urban areas were here extracted using BUI equation (Equation 

3.9) based on NDBI and NDVI that was mentioned in Section 3.5 UHI phenomena 

evaluation and prediction in Chapter III. In practice, NDVI and NDBI data were firstly 

calculated from Landsat data using Equation 3.2 and 3.3, respectively and the derived 

NDVI and NDBI were recoded with 254 for all pixel having positive indices and 0 for 

all remaining pixels of negative indices to extract urban and built-up area as summary 

in Table 7.1 and displaying in Figures 7.1 to 7.6. Herein, urban areas consisted of city, 

town, commercial, village, institutional, transportation, communication and utilities, 

industrial land, and bare land while non-urban areas are comprised of agricultural land, 

forest land and parks and water bodies. 
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Table 7.1 Pixel value of representative land covers. 

Indices 

Urban and 

built-up Bare land 

Forest land 

and parks 

Agriculture 

land Rivers Lakes 

NDVI 0 0 254 254 0 0 

NDBI 254 254 254 or 0 254 or 0 0 0 

NDBI-NDVI 254 254 0 or -254 0 or -254 0 0 

 

The derived urban and non-urban areas were assessed accuracy with sampling 

points of 426 points based on binomial probability theory. Herein, the expected 

accuracy is 80% and the allowable error of sampling is 5%. The overall accuracy of the 

extracted urban and non-urban areas from 2006, 2008, 2010, 2012, 2014, and 2016 

based on Google Earth data are 81.46%, 85.21%, 87.56%, 87.79%, 88.97%, and 

91.08%, respectively. Details of accuracy assessment are summarized in Tables 7.2 to 

7.7. Distribution of sampling points for accuracy assessment of urban and non-urban 

areas between 2006 and 2016 is displayed in Figure 7.7 

 

 

Figure 7.1 Distribution of urban and non-urban areas in 2006. 



162 

 

Figure 7.2 Distribution of urban and non-urban areas in 2008. 

 

 

Figure 7.3 Distribution of urban and non-urban areas in 2010. 
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Figure 7.4 Distribution of urban and non-urban areas in 2012. 

 

 

Figure 7.5 Distribution of urban and non-urban areas in 2014. 
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Figure 7.6 Distribution of urban and non-urban areas in 2016. 

 

Table 7.2 Accuracy assessment of urban and non-urban areas in 2006. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 93 68 161 

Non-urban 11 254 265 

Total 104 322 426 

Overall accuracy 81.46% 

 

Table 7.3 Accuracy assessment of urban and non-urban areas in 2008. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 258 55 313 

Non-urban 8 105 113 

Total 266 160 426 

Overall accuracy 85.21% 
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Table 7.4 Accuracy assessment of urban and non-urban areas in 2010. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 258 45 303 

Non-urban 8 115 123 

Total 266 160 426 

Overall accuracy 87.56% 

 

Table 7.5 Accuracy assessment of urban and non-urban areas in 2012. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 248 46 294 

Non-urban 6 126 132 

Total 254 172 426 

Overall accuracy 87.79% 

 

Table 7.6 Accuracy assessment of urban and non-urban areas in 2014. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 263 40 303 

Non-urban 7 116 123 

Total 270 156 426 

Overall accuracy 88.97% 

 

Table 7.7 Accuracy assessment of urban and non-urban areas in 2016. 

BUI Extraction 
Reference 

Urban Non-urban Total 

Urban 236 29 265 

Non-urban 9 152 161 

Total 245 181 426 

Overall accuracy 91.08% 
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(a) 2006 (b) 2008 

  

(c) 2010 (d) 2012 

  

(e) 2014 (f) 2016 
 

Figure 7.7 Distribution of sampling points for accuracy assessment of urban and non-

urban area in: (a) 2006, (b) 2008, (c) 2010, (d) 2012, (e) 2014, and (f) 2016, 
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7.2 Urban and non-urban area prediction 

The extracted urban and non-urban areas between 2006 and 2016 were here 

applied to predict urban and non-urban areas between 2018 and 2026 using CA-Markov 

model as results shown in Figures 7.8 to 7.12.  

 

 

Figure 7.8 Distribution of predicted urban and non-urban areas in 2018. 
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Figure 7.9 Distribution of predicted urban and non-urban areas in 2020. 

 

 

Figure 7.10 Distribution of predicted urban and non-urban areas in 2022. 
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Figure 7.11 Distribution of predicted urban and non-urban areas in 2024. 

 

 

Figure 7.12 Distribution of predicted urban and non-urban areas in 2026. 
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As results of urban and non-urban areas extraction and prediction between 2006 

and 2026, it was found that urban areas had been continuously increased while non-

urban areas had been continuously decreased as summarized in Table 7.8 and as shown 

in Figure 7.13.  

In addition, it was found reveals that urban growth areas of Bangkok 

Metropolitan and its vicinity during 2006 and 2016 as historical period increase about 

1,160 sq.km with annual growth rate of 116 sq. km. Meanwhile, urban growth areas of 

Bangkok Metropolitan and its vicinity during 2016 and 2026 as future trend will 

increase about 932.64 sq.km with annual growth rate of 93.26 sq. km. This finding 

shows the limitation of land for urban expansion. In addition, pattern of urban 

distribution is more allocated in vertical direction due to land price. 

 

Table 7.8 Area and percentage of urban and non-urban area between 2006 and 2026. 

Year 
Area (square kilometer) Area (Percent) 

Urban Non-urban Total Urban Non-urban Total 

2006 1735.64 5918.65 7654.29 22.68 77.32 100.00 

2008 2038.75 5615.54 7654.29 26.64 73.36 100.00 

2010 2209.45 5444.84 7654.29 28.87 71.13 100.00 

2012 2379.52 5274.77 7654.29 31.09 68.91 100.00 

2014 2638.47 5015.82 7654.29 34.47 65.53 100.00 

2016 2895.61 4758.68 7654.29 37.83 62.17 100.00 

2018 3139.58 4514.71 7654.29 41.02 58.98 100.00 

2020 3361.20 4293.09 7654.29 43.91 56.09 100.00 

2022 3495.29 4159.00 7654.29 45.66 54.34 100.00 

2024 3621.76 4032.53 7654.29 47.32 52.68 100.00 

2026 3828.25 3826.04 7654.29 50.01 49.99 100.00 
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Figure 7.13 Urban and non-urban areas change between 2006 and 2026. 

 

7.3 Temperature grade classification 

The extracted and predicted LST data between 2006 and 2026 as reported in 

Chapter 6 were here firstly normalized with value between 0 and 1 to eliminate the 

impact of the imaging time and make the UHI effect more comparable before 

temperature grade classification. The normalization result of the extracted and predicted 

LST data between 2006 and 2026 is summarized in Table 7.9 and displaying in Figure 

7.14. Later, the normalized data of LST in urban areas were extracted as summary in 

Table 7.10. This data were further used to classify brightness temperature grade of 

urban areas using Mean-Standard deviation method into 5 classes as suggested by Xu, 

Chen, Dan, and Qiu (2011) as follows: 

 (1) Low temperature area σμTs   

 (2) Secondary low temperature area σμTσμ s 5.0  

 (3) Medium temperature area σμTσμ s 5.05.0   

 (4) Secondary high temperature area σμTσμ s  5.0  

 (5) High temperature area σμTs   
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 Distribution of brightness temperature grade classification of urban areas in 

Bangkok and its vicinity between 2006 and 2026 are displayed in Figures 7.15 to 7.25. 

Area and percentage of brightness temperature grade of urban areas between 2006 and 

2026 is summarized in Table 7.11 and Table 7.12, respectively while dynamic change 

of proportional area of brightness temperature grade is displayed in Figure 7.26. 

 

Table 7.9  Basic statistics of normalized LST data in Bangkok Metropolitan and its 

vicinity between 2006 and 2026. 

Year 
Normalized LST data 

Minimum Maximum Mean 

2006 0.45 1.00 0.64 

2008 0.28 1.00 0.48 

2010 0.22 0.90 0.44 

2012 0.49 1.00 0.67 

2014 0.18 1.00 0.58 

2016 0.00 1.00 0.53 

2018 0.20 0.86 0.50 

2020 0.17 0.86 0.49 

2022 0.15 0.85 0.49 

2024 0.13 0.85 0.49 

2026 0.12 0.84 0.48 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.14 Normalized LST data: (a) 2006, (b) 2008, (c) 2010, (d) 2012, (e) 2014, and 

(f) 2016. 
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(g) (h) 

  

(i)  (j) 

 

(k) 

Figure 7.14 (Continued) (g) 2018, (h) 2020, (i) 2022, (j) 2024, and (k) 2026. 
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Table 7.10 Basic statistics of normalized LST data in urban areas of Bangkok 

Metropolitan and its vicinity between 2006 and 2026. 

Year 
Normalized LST data 

Minimum Maximum Mean SD 

2006 0.45 1 0.71 0.07 

2008 0.28 0.85 0.53 0.06 

2010 0.22 0.90 0.49 0.10 

2012 0.49 1 0.71 0.07 

2014 0.13 0.96 0.62 0.09 

2016 0.08 1 0.56 0.09 

2018 0.20 0.87 0.52 0.06 

2020 0.17 0.86 0.51 0.05 

2022 0.15 0.85 0.51 0.45 

2024 0.13 0.85 0.50 0.04 

2026 0.11 0.84 0.50 0.04 

 

 

Figure 7.15 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2006. 
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Figure 7.16 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2008. 

 

 

Figure 7.17 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2010. 
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Figure 7.18 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2012. 

 

 

Figure 7.19 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2014. 
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Figure 7.20 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2016. 

 

 

Figure 7.21 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2018. 
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Figure 7.22 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2020. 

 

 

Figure 7.23 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2022. 
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Figure 7.24 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2024. 

 

 

Figure 7.25 Distribution brightness temperature grade classification of Bangkok and 

its vicinity in 2026. 
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Table 7.11 Area of brightness temperature grade in Bangkok and its vicinity between 

2006 and 2026. 

Year Low 2nd Low Medium 2nd High High Total 

2006 268.09 279.88 645.91 270.79 270.97 1,735.64 

2008 356.76 274.85 747.70 344.55 314.89 2,038.75 

2010 420.85 348.16 667.13 368.10 405.20 2,209.45 

2012 454.06 357.65 763.62 385.27 418.92 2,379.52 

2014 487.64 465.35 798.67 378.86 507.95 2,638.47 

2016 474.81 329.15 1,169.11 518.81 403.73 2,895.61 

2018 537.36 494.23 1,067.94 517.93 522.12 3,139.58 

2020 548.14 510.83 1,209.65 553.45 539.13 3,361.20 

2022 547.87 518.34 1,316.78 571.92 540.38 3,495.29 

2024 549.14 529.47 1,416.86 585.52 540.76 3,621.75 

2026 562.88 559.59 1,547.47 603.85 554.46 3,828.25 

 

Table 7.12 Percent of brightness temperature grade in Bangkok and its vicinity between 

2006 and 2026. 

Year Low 2nd Low Medium 2nd High High Total 

2006 15.6121 15.6018 37.2146 16.1255 15.4460 100 

2008 15.4451 16.9000 36.6745 13.4812 17.4991 100 

2010 18.3395 16.6604 30.1944 15.7578 19.0478 100 

2012 17.6054 16.1910 32.0913 15.0302 19.0821 100 

2014 19.2517 14.3591 30.2701 17.6372 18.4818 100 

2016 13.9428 17.9169 40.3753 11.3673 16.3977 100 

2018 16.6302 16.4968 34.0155 15.7419 17.1157 100 

2020 16.0397 16.4658 35.9888 15.1980 16.3077 100 

2022 15.4601 16.3627 37.6731 14.8295 15.6745 100 

2024 14.9310 16.1669 39.1207 14.6192 15.1622 100 

2026 14.4834 15.7735 40.4225 14.6174 14.7033 100 
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Figure 7.26 Dynamic change of proportional area of brightness temperature grade in 

Bangkok and its vicinity between 2006 and 2026. 

 

As results, it reveals that pattern of BT grade classification between 2006 and 

2026 cannot be compared together because BT grade class in each year depends on 

average and standard deviation values of LST (Table 7.10). For example, BT grade 

class of central business district (CBD) of Bangkok Metropolitan in 2014 was high 

temperature area but this area became medium temperature area in 2016. On contrary, 

pattern of BT grade class is consistent with pattern of LST (Figure 7.27) 
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Pattern of BT grade classification in 2014 Pattern of BT grade classification in 2016 

  

Pattern of LST in 2014 Pattern of LST in 2016 

  

Figure 7.27 Comparison of BT grade classification pattern and LST pattern in 2014 

and 2016. 

 

In addition, it should be here mentioned that the limitation of Landsat data due 

to cloud cover directly effects on LST data which are related with BT grade 

classification. In this study, LST data between 2006 and 2016 were converted from 

different months (See Table 6.1). Therefore, comparison of BT grade classification 

between 2006 and 2026 is not appropriate. Ideally, Landsat data should be acquired 

based on anniversary dates to ensure seasonal agreement of temperature conditions 

among multi-dates data.   
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7.4 Urban heat island intensity and its severity 

The WAI, which is an index for describing UHI intensity by sum of products 

between the difference five grade temperature in built-up area (Tiavg) with average 

temperature in outskirt area (Toavg) and percent of temperature grade area (Ai), was here 

calculated using Equation 3.10. Meanwhile, URI, which is used to depict development 

degree of UHI was also extracted over Bangkok and its vicinity between 2006 and 2026 

using Equation 3.11. Result of WAI and URI are represented in Table 7.13. 

As results, it was found that WAI as UHI intensity continuously decreases from 

historical to present record (between 2006 and 2016) except in 2010 and 2016 and it 

gradually continuously decreases in the future (between 2018 and 2026) as shown in 

Figure 7.28. Furthermore, according to standard classification of WAI as UHI intensity 

of Dan et al. (2010) as shown in Table 7.14, the UHI intensity between 2006 and 2016 

as historical record shows very strong intensity while UHI intensity in the future shows 

very strong intensity between 2018 and 2022 and it will decline to strong intensity 

between 2024 and 2026. 

Meanwhile, URI for describing degree of UHI development reveals that degree 

of UHI development increases in 2010 and 2016 during 2006 to 2016 as historical 

record and it will suddenly decrease in 2018 and continuously increases between 2020 

and 2026 in the future as shown in Figure 7.29. Based on this finding, it should be here 

mentioned that UHI phenomena of Bangkok Metropolitan and its vicinity should be 

seriously considered to mitigate its effect in near future. 
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Table 7.13 WAI and URI calculation of Bangkok and its vicinity between 2006 and 2026. 

Year 
Average Temp. (Tiavg) Average Temp. 

outskirt (Toavg) 

% Area (Ai) 
WAI URI 

High 2nd High Medium 2nd Low Low High 2nd High Medium 2nd Low Low 

2006 0.8065 0.7554 0.7078 0.6594 0.6099 0.6267 15.6121 15.6018 37.2146 16.1255 15.4460 8.1009 0.5996 

2008 0.6282 0.5798 0.5352 0.4862 0.4377 0.4651 15.4451 16.9000 36.6745 13.4812 17.4991 6.8334 0.5986 

2010 0.6396 0.5700 0.4932 0.4188 0.3534 0.4196 18.3395 16.6604 30.1944 15.7578 19.0478 7.4892 0.5990 

2012 0.8120 0.7620 0.7107 0.6576 0.6119 0.6525 17.6054 16.1910 32.0913 15.0302 19.0821 5.7506 0.5964 

2014 0.7458 0.6842 0.6173 0.5530 0.5002 0.5640 19.2517 14.3591 30.2701 17.6372 18.4818 5.4662 0.5965 

2016 0.6945 0.6280 0.5660 0.4961 0.4150 0.5054 13.9428 17.9169 40.3753 11.3673 16.3977 5.6919 0.6033 

2018 0.6048 0.5643 0.5240 0.4818 0.4412 0.4836 16.6302 16.4968 34.0155 15.7419 17.1157 3.9671 0.5996 

2020 0.5851 0.5489 0.5129 0.4759 0.4373 0.4780 16.0397 16.4658 35.9888 15.1980 16.3077 3.4456 0.6015 

2022 0.5735 0.5393 0.5062 0.4720 0.4345 0.4755 15.4601 16.3627 37.6731 14.8295 15.6745 3.0210 0.6022 

2024 0.5652 0.5318 0.5005 0.4683 0.4317 0.4726 14.9310 16.1669 39.1207 14.6192 15.1622 2.7482 0.6022 

2026 0.5597 0.5262 0.4961 0.4652 0.4295 0.4696 14.4834 15.7735 40.4225 14.6174 14.7033 2.6150 0.6014 
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Figure 7.28 Dynamic change of WAI between 2006 and 2026.  

 

Table 7.14 Classification of heat island intensity based on WAI. 

Temperature range (WAI) Intensity Definition 

 0.5 C very weak 
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> 3.0 C very strong 

 

8.1009

6.8334

7.4892

5.7506
5.4662

5.6919

3.9671

3.4456

3.0210
2.7482 2.6150

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

YEAR

WAI



187 

 

 

Figure 7.29 Dynamic change of URI between 2006 and 2026.  

 

In addition, it should be here mentioned that the dynamic change of URI directly 

relate with the results of extraction and prediction urban and non-urban area using BUI 

and CA-Markov model. At the same time, LST data, that was converted from Landsat 

data and predicted by Trend Analysis, also plays an important role on dynamic change 

of URI in this study. 

 

7.5 Quantitative analysis of UHI 

Two methods for quantitative analysis are here reported and discussed include 

(1) quantitative analysis of UHI in different urban regions and (2) overall analysis of 

UHI change. 

7.5.1 Quantitative analysis of UHI in different urban regions 

Transitional area change of brightness temperature grade in old urban 

area and urban expansion in each period are here extracted to describe quantitative 
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change in three aspects: unchanged, increase and decrease of brightness temperature 

grades. Results of transitional area change of brightness temperature grade in old urban 

area and urban expansion in 2006-2008, 2008-2010, 2010-2012, 2012-2014, 2014-

2016, 2016-2018, 2018-2020, 2022-2024, and 2024-2026 periods in details are describe 

as matrix form in Tables 7.15 to 7.34, respectively. The summary area and percentage 

of unchanged, increase and decrease of BT temperature grades in old urban in each 

period is presented in Table 7.35 and Figure 7.30 while the summary area and 

percentage of unchanged, increase and decrease of BT temperature grades in urban 

expansion in each period is presented in Table 7.36 and Figure 7.31. Distribution of 

unchanged, increase and decrease areas of BT temperature grades in old urban and 

urban expansion in each period are displayed in Figures 7.32 to 7.41. 

 

Table 7.15 Transition matrix of difference BT grade in old urban areas in 2006-2008. 

Old urban in 2006-2008 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 670.87 115.05 63.92 9.23 5.95 

2nd High 90.74 96.78 95.92 16.73 7.33 

Medium 49.31 62.22 222.03 85.33 46.00 

2nd Low 4.33 4.60 22.21 18.30 13.30 

Low 4.68 3.16 13.98 8.25 5.40 
 

Table 7.16 Transition matrix of difference BT grade in urban expansion region in 2006-

2008. 

Urban expansion in 2006-2008 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 50.61 12.79 3.87 0.11 0.07 

2nd High 16.43 16.36 10.41 0.33 0.19 

Medium 22.76 23.68 57.64 7.84 1.01 

2nd Low 8.80 6.90 23.75 8.08 2.11 

Low 7.71 4.92 11.83 3.35 1.55 
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Table 7.17 Transition matrix of difference BT grade in old urban region in 2008-2010. 

Old urban in 2008-2010 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 697.09 80.94 90.42 32.23 25.58 

2nd High 114.96 84.53 102.03 28.83 16.12 

Medium 32.29 66.86 256.43 108.30 61.68 

2nd Low 2.06 4.63 55.66 51.21 44.00 

Low 1.12 1.81 20.24 22.44 37.29 
 

Table 7.18 Transition matrix of difference BT grade in urban expansion region in 2008-

2010. 

Urban expansion in 2008-2010 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 24.20 3.09 2.28 0.80 0.74 

2nd High 9.23 4.65 3.99 0.95 0.79 

Medium 9.19 10.08 22.10 5.61 3.43 

2nd Low 3.92 4.54 15.41 5.61 3.30 

Low 2.79 3.43 19.49 6.33 4.75 
 

Table 7.19 Transition matrix of difference BT grade in old urban region in 2010-2012. 

Old urban in 2010-2012 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 772.07 92.23 24.31 3.89 4.35 

2nd High 64.16 114.53 69.93 8.46 7.49 

Medium 33.15 90.12 329.35 83.41 52.03 

2nd Low 14.73 14.72 104.15 85.89 42.80 

Low 6.84 5.33 46.13 69.99 69.40 
 

Table 7.20 Transition matrix of difference BT grade in urban expansion region in 2010-

2012. 

Urban expansion in 2010-2012 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 26.19 4.02 0.76 0.10 0.08 

2nd High 7.93 9.40 4.09 0.23 0.11 

Medium 8.67 13.90 32.40 3.46 0.68 

2nd Low 4.54 4.16 16.78 5.66 0.90 

Low 2.33 2.35 13.10 6.40 1.83 
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Table 7.21 Transition matrix of difference BT grade in old urban region in 2012-2014. 

Old urban in 2012-2014 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 771.23 86.90 49.43 17.67 15.37 

2nd High 88.91 114.69 112.66 21.38 13.11 

Medium 23.71 69.39 333.57 138.39 75.93 

2nd Low 1.95 7.76 82.01 94.34 81.43 

Low 1.50 5.59 53.01 52.82 66.75 
 

Table 7.22 Transition matrix of difference BT grade in urban expansion region in 2012-

2014. 

Urban expansion in 2012-2014 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 26.86 3.48 1.48 0.27 0.18 

2nd High 9.28 8.97 5.15 0.61 0.36 

Medium 7.85 13.39 39.62 9.39 3.24 

2nd Low 2.45 5.05 28.93 16.15 6.66 

Low 1.49 5.90 30.01 22.56 9.63 
 

Table 7.23 Transition matrix of difference BT grade in old urban region in 2014-2016. 

Old urban in 2014-2016 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 314.38 358.22 255.23 4.69 2.71 

2nd High 46.79 74.97 182.44 12.57 4.37 

Medium 113.20 125.58 320.36 116.03 60.72 

2nd Low 67.23 48.63 111.04 71.06 75.60 

Low 48.15 25.98 52.19 43.56 102.78 
 

Table 7.24 Transition matrix of difference BT grade in urban expansion region in 2014-

2016. 

Urban expansion in 2014-2016 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 2.75 1.81 1.79 0.13 0.06 

2nd High 8.79 3.08 2.96 0.21 0.15 

Medium 43.50 22.94 28.93 4.16 1.67 

2nd Low 27.38 21.08 25.15 4.70 1.97 

Low 22.11 11.93 13.86 3.50 2.54 
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Table 7.25 Transition matrix of difference BT grade in old urban region in 2016-2018. 

Old urban in 2016-2018 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 406.06 99.73 154.47 28.82 5.19 

2nd High 350.56 138.02 165.62 33.19 6.83 

Medium 156.39 239.45 447.90 118.26 31.93 

2nd Low 1.00 4.76 108.56 98.80 47.49 

Low 0.11 0.56 23.18 72.35 156.36 
 

Table 7.26 Transition matrix of difference BT grade in urban expansion region in 2016-

2018. 

Urban expansion in 2016-2018 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 26.58 8.72 11.75 1.56 0.28 

2nd High 34.09 15.21 13.49 1.86 0.40 

Medium 18.74 29.52 41.18 8.18 1.47 

2nd Low 0.05 0.32 7.33 6.27 2.27 

Low 0.01 0.06 1.56 4.80 6.98 
 

Table 7.27 Transition matrix of difference BT grade in old urban region in 2018-2020. 

Old urban in 2018-2020 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 898.98 94.59 0.02 0.00 0.00 

2nd High 39.09 422.68 74.57 0.00 0.00 

Medium 0.00 50.59 893.37 31.01 0.06 

2nd Low 0.00 0.00 46.25 305.48 22.36 

Low 0.00 0.00 0.00 13.27 245.93 
 

Table 7.28 Transition matrix of difference BT grade in urban expansion region in 2018-

2020. 

Urban expansion in 2018-2020 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 38.37 3.20 0.00 0.00 0.00 

2nd High 4.52 34.34 3.56 0.00 0.00 

Medium 0.00 5.80 82.63 1.67 0.00 

2nd Low 0.00 0.00 5.75 23.99 1.13 

Low 0.00 0.00 0.00 1.79 13.78 
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Table 7.29 Transition matrix of difference BT grade in old urban region in 2020-2022. 

Old urban in 2020-2022 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 886.26 94.14 0.00 0.00 0.00 

2nd High 37.14 493.96 79.65 0.00 0.00 

Medium 0.00 46.30 1028.70 29.70 0.01 

2nd Low 0.00 0.00 37.01 321.55 18.14 

Low 0.00 0.00 0.00 11.31 271.78 
 

Table 7.30 Transition matrix of difference BT grade in urban expansion region in 2020-

2022. 

Urban expansion in 2020-2022 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 17.80 1.96 0.00 0.00 0.00 

2nd High 1.50 22.32 3.42 0.00 0.00 

Medium 0.00 2.12 53.99 1.58 0.00 

2nd Low 0.00 0.00 1.63 15.28 0.84 

Low 0.00 0.00 0.00 0.44 13.46 
 

Table 7.31 Transition matrix of difference BT grade in old urban region in 2022-2024. 

Old urban in 2022-2024 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 855.23 87.46 0.00 0.00 0.00 

2nd High 31.54 548.78 80.48 0.00 0.00 

Medium 0.00 39.96 1135.43 29.00 0.00 

2nd Low 0.00 0.00 28.96 334.34 16.56 

Low 0.00 0.00 0.00 9.24 294.99 
 

Table 7.32 Transition matrix of difference BT grade in urban expansion region in 2022-

2024. 

Urban expansion in 2022-2024 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 20.35 0.80 0.00 0.00 0.00 

2nd High 1.83 20.10 1.51 0.00 0.00 

Medium 0.00 2.41 54.93 0.70 0.00 

2nd Low 0.00 0.00 1.52 13.49 0.35 

Low 0.00 0.00 0.00 0.46 7.49 
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Table 7.33 Transition matrix of difference BT grade in old urban region in 2024-2026. 

Old urban in 2024-2026 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 908.95 0.00 0.00 0.00 0.00 

2nd High 0.00 699.51 0.00 0.00 0.00 

Medium 0.00 0.00 1302.83 0.00 0.00 

2nd Low 0.00 0.00 0.00 387.24 0.00 

Low 0.00 0.00 0.00 0.00 319.31 
 

Table 7.34 Transition matrix of difference BT grade in urban expansion region in 2024-

2026. 

Urban expansion in 2024-2026 period 
Area of brightness temperature grade in sq.  km 

High 2nd High Medium 2nd Low Low 

High 37.34 0.95 0.00 0.00 0.00 

2nd High 2.19 32.89 1.78 0.00 0.00 

Medium 0.00 2.62 89.85 1.09 0.00 

2nd Low 0.00 0.00 1.85 22.66 0.57 

Low 0.00 0.00 0.00 0.78 11.46 

 

Table 7.35 Area and percentage of unchanged, increase and decrease of BT 

temperature grades in old urban in each period. 

No Period 
Area in sq. km Area in percent 

Unchanged Increase Decrease Total Unchanged Increase Decrease Total 

1 2006-2008 1,013.38 263.48 458.76 1,735.62 58.39 15.18 26.43 100 

2 2008-2010 1,126.55 322.07 590.13 2,038.75 55.26 15.80 28.95 100 

3 2010-2012 1,371.24 449.32 388.90 2,209.46 62.06 20.34 17.60 100 

4 2012-2014 1,380.58 386.65 612.27 2,379.50 58.02 16.25 25.73 100 

5 2014-2016 883.55 682.35 1,072.58 2,638.48 33.49 25.86 40.65 100 

6 2016-2018 1,247.14 956.92 691.53 2,895.59 43.07 33.05 23.88 100 

7 2018-2020 2,766.44 149.20 222.61 3,138.25 88.15 4.75 7.09 100 

8 2020-2022 3,002.25 131.76 221.64 3,355.65 89.47 3.93 6.60 100 

9 2022-2024 3,168.77 109.70 213.50 3,491.97 90.74 3.14 6.11 100 

10 2024-2026 3,617.84 0.00 0.00 3,617.84 100.00 0.00 0.00 100 
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Figure 7.30 Comparison of percentage of unchanged, increase and decrease of BT 

temperature grades in old urban in each period. 

 

Table 7.36 Area and percentage of unchanged, increase and decrease of BT 

temperature grades in urban expansion in each period. 

No Period 

Area in sq. km Area in percent 

Unchanged Increase Decrease Total Unchanged Increase Decrease Total 

1 2006-2008 134.24 130.13 38.73 303.10 44.29 42.93 12.78 100 

2 2008-2010 61.31 84.41 24.98 170.70 35.92 49.45 14.63 100 

3 2010-2012 75.48 80.16 14.43 170.07 44.38 47.13 8.48 100 

4 2012-2014 101.23 126.91 30.82 258.96 39.09 49.01 11.90 100 

5 2014-2016 42.00 200.24 14.91 257.15 16.33 77.87 5.80 100 

6 2016-2018 96.22 96.48 49.98 242.68 39.65 39.76 20.60 100 

7 2018-2020 193.11 17.86 9.56 220.53 87.57 8.10 4.34 100 

8 2020-2022 122.85 5.69 7.80 136.34 90.11 4.17 5.72 100 

9 2022-2024 116.36 6.22 3.36 125.94 92.39 4.94 2.67 100 

10 2024-2026 194.20 7.44 4.39 206.03 94.26 3.61 2.13 100 
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Figure 7.31 Comparison of percentage of unchanged, increase and decrease of BT 

temperature grades in urban expansion in each period. 
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(a) 

 

(b) 

Figure 7.32 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2006 and 2008: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.33 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2008 and 2010: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.34 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2010 and 2012: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.35 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2012 and 2014: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.36 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2014 and 2016: (a) Old urban and (b) 

Urban expansion  
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(a) 

 

(b) 

Figure 7.37 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2016 and 2018: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.38 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2018 and 2020: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.39 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2020 and 2022: (a) Old urban and (b) 

Urban expansion. 
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(a) 

 

(b) 

Figure 7.40 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2022 and 2024: (a) Old urban and (b) 

Urban expansion  
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(a) 

 

(b) 

Figure 7.41 Distribution of unchanged, increase and decrease areas of BT temperature 

grades in old urban and urban expansion between 2024 and 2026: (a) Old urban and (b) 

Urban expansion.  
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As results, a systematic summary of quantitative analysis can be 

separately reported in each period in the following sections.  

During 2006 and 2008, the area of the old urban in 2006 that BT grade 

did not change was 1,013.38 km2 or 58.39% of old urban area. Meanwhile, the area of 

the old urban in 2006 that BT grade increase was 263.48 km2 or 15.18% of old urban 

area and BT grade decrease was 458.76 km2 or 26.43% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 134.24 km2 

or 44.29% of urban expansion. Meanwhile, the area of the urban expansion that BT 

grade increase was 130.13 km2 or 42.93% of urban expansion and BT grade decrease 

was 38.73 km2 or 12.78% of urban expansion. In this period, the area of the urban 

expansion that BT grade increase was taken place in Samut Prakarn province. 

During 2008 and 2010, the area of the old urban in 2008 that BT grade 

did not change was 1,126.55 km2 or 55.26% of old urban area. Meanwhile, the area of 

the old urban in 2008 that BT grade increase was 322.07 km2 or 15.80% of old urban 

area and BT grade decrease was 590.13 km2 or 28.95% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 61.31 km2 or 

35.92% of urban expansion. Meanwhile, the area of the urban expansion that BT grade 

increase was 84.41 km2 or 49.45% of urban expansion and BT grade decrease was 24.98 

km2 or 14.63% of urban expansion. In this period, the area of the urban expansion that 

BT grade increase was taken place in Bangkok province. 

During 2010 and 2012, the area of the old urban in 2010 that BT grade 

did not change was 1,371.24 km2 or 62.06% of old urban area. Meanwhile, the area of 

the old urban in 2010 that BT grade increase was 449.32 km2 or 20.34% of old urban 
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area and BT grade decrease was 388.90 km2 or 17.60% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 75.48 km2 or 

44.38% of urban expansion. Meanwhile, the area of the urban expansion that BT grade 

increase was 80.16 km2 or 43.13% of urban expansion and BT grade decrease was 14.43 

km2 or 8.48% of urban expansion. In this period, the area of the urban expansion that 

BT grade increase was taken place in Nakhon Pathom province. 

During 2012 and 2014, the area of the old urban in 2012 that BT grade did 

not change was 1,380.58 km2 or 58.02% of old urban area. Meanwhile, the area of the 

old urban in 2012 that BT grade increase was 386.65 km2 or 16.25% of old urban area 

and BT grade decrease was 612.27 km2 or 25.73% of old urban area. In the same period, 

the area of the urban expansion that BT grade did not change was 101.23 km2 or 39.09% 

of urban expansion. Meanwhile, the area of the urban expansion that BT grade increase 

was 126.91 km2 or 49.01% of urban expansion and BT grade decrease was 30.82 km2 

or 11.90% of urban expansion. In this period, the area of the urban expansion that BT 

grade increase was taken place in Pathumthani province. 

During 2014 and 2016, the area of the old urban in 2014 that BT grade 

did not change was 883.55 km2 or 33.49% of old urban area. Meanwhile, the area of 

the old urban in 2014 that BT grade increase was 682.35 km2 or 35.86% of old urban 

area and BT grade decreased was 1,072.58 km2 or 40.65% of old urban area. In the 

same period, the area of the urban expansion that BT grade did not change was 42.00 

km2 or 16.33% of urban expansion. Meanwhile, the area of the urban expansion that 

BT grade increase was 200.24 km2 or 77.87% of urban expansion and BT grade 
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decrease was 14.91 km2 or 5.80% of urban expansion. In this period, the area of the 

urban expansion that BT grade increase was taken place in Nakhon Pathom province. 

During 2016 and 2018, the area of the old urban in 2016 that BT grade 

did not change was 1,247.14 km2 or 43.07% of old urban area. Meanwhile, the area of 

the old urban in 2016 that BT grade increase was 956.92 km2 or 33.05% of old urban 

area and BT grade decrease was 691.53 km2 or 23.88% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 96.22 km2 or 

36.65% of urban expansion. Meanwhile, the area of the urban expansion that BT grade 

increase was 96.48 km2 or 39.76% of urban expansion and BT grade decrease was 49.98 

km2 or 20.60% of urban expansion. In this period, the area of the urban expansion that 

BT grade increase was taken place in Bangkok province. 

During 2018 and 2020, the area of the old urban in 2018 that BT grade 

did not change was 2,766.44 km2 or 88.15% of old urban area. Meanwhile, the area of 

the old urban in 2018 that BT grade increase was 149.20 km2 or 4.75% of old urban 

area and BT grade decrease was 222.61 km2 or 7.09% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 193.11 km2 

or 87.57% of urban expansion. Meanwhile, the area of the urban expansion that BT 

grade increase was 17.86 km2 or 8.10% of urban expansion and BT grade decrease was 

9.56 km2 or 4.34% of urban expansion. In this period, the area of the urban expansion 

that BT grade increase was taken place in Nakhon Pathom province. 

During 2020 and 2022, the area of the old urban in 2020 that BT grade 

did not change was 3,002.25 km2 or 89.47% of old urban area. Meanwhile, the area of 

the old urban in 2020 that BT grade increase was 131.76 km2 or 3.93% of old urban 
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area and BT grade decrease was 221.64 km2 or 6.60% of old urban area. In the same 

period, the area of the urban expansion that BT grade did not change was 122.85 km2 

or 90.11% of urban expansion. Meanwhile, the area of the urban expansion that BT 

grade increase was 5.69 km2 or 4.17% of urban expansion and BT grade decrease was 

7.80 km2 or 5.72% of urban expansion. In this period, the area of the urban expansion 

that BT grade increase was taken place in Nakhon Pathom province. 

During 2022 and 2024, the area of the old urban in 2022 that BT grade 

did not change was 3,168.77 km2 or 90.74% of old urban area. Meanwhile, the area of 

the old urban in 2022 that BT grade increase was 109.70 km2 or 3.14% of old urban 

area and BT grade decreased was 213.50 km2 or 6.11% of old urban area. In the same 

period, the area of the urban expansion that the BT grade did not change was 116.36 

km2 or 92.39% of urban expansion. Meanwhile, the area of the urban expansion that 

BT grade increase was 6.22 km2 or 4.94% of urban expansion and BT grade decrease 

was 3.36 km2 or 2.67% of urban expansion. In this period, the area of the urban 

expansion that BT grade increase was taken place in Nakhon Pathom province. 

During 2024 and 2026, the area of the old urban in 2024 that BT grade 

did not change was 3,617.84 km2 or 100% of old urban area. In the same period, the 

area of the urban expansion that BT grade did not change was 194.20 km2 or 94.26% 

of urban expansion. Meanwhile, the area of the urban expansion that BT grade increase 

was 7.44 km2 or 3.61% of urban expansion and BT grade decrease was 4.39 km2 or 

2.13% of urban expansion. 

In summary, between 2006 and 2016 as historical and recent periods, the 

area of the increased change of BT grade in old urban was higher than the area of the 
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decreased change of BT grade occurs only one period during 2010 to 2012. Likewise, 

in the future between 2016 and 2026, the area of the increased change of BT grade in 

old urban was higher than the area of the decreased change of BT grade occurs only 

one period during 2016 to 2018. 

In contrast, in urban expansion the area of the increased change of BT 

grade of all periods between 2006 and 2016 were higher than the area of the decreased 

change of BT grade. Similarly, most of all periods in the future between 2016 and 2026, 

the area of the increased change of BT grade in urban expansion were higher than the 

area of the decreased change of BT grade, except during 2020-2024. 

7.5.2 Overall analysis of UHI change 

According to Tables 7.15 to 7.34 whether in old urban region or urban 

expansion region, the brightness temperature grades in both areas change among the 

classes. In order to reflect the overall change in temperature is increased or decreased, 

the Temperature Grade Change-Index (TGCI) as suggested by Xu, Chen, Dan, and Qiu 

(2011) is here calculated using Equation 3.12. 

The TGCI values of overall change in temperature in old urban and urban 

expansion in each period is presented in Table 7.37 and Figure 7.42. 
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Table 7.37 TGCI value of overall change in temperature in old urban and urban 

expansion in each period. 

Year Old urban Expansion urban 

2006-2008 -0.159 0.586 

2008-2010 -0.272 0.607 

2010-2012 0.043 0.648 

2012-2014 -0.158 0.591 

2014-2016 -0.076 1.572 

2016-2018 0.051 0.196 

2018-2020 -0.023 0.038 

2020-2022 -0.027 -0.016 

2022-2024 -0.030 0.023 

2024-2026 0.000 0.015 

 

As results, most of all periods between 2006 and 2016 as historical and 

recent periods for old urban it shows that increasing trend of temperature grade change 

is weaker than decreasing trend, except during 2010 to 2012 and change trend of 

temperature grade change performances overall decreasing. Likewise, most of periods 

between 2016 and 2026 as future periods for old urban it reveals that increasing trend 

of temperature grade change is also weaker than decreasing trend, except during 2016 

to 2018 and change trend of temperature grade change performances overall decreasing. 

On contrary, all periods between 2006 and 2016 for urban expansion it 

shows that increasing trend of temperature grade change is stronger than decreasing 

trend, and change trend of temperature grade change performances overall increasing. 

Likewise, most of all periods between 2016 and 2026 for urban expansion it reveals 

that increasing trend of temperature grade change is also greater than decreasing trend, 
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except during 2020 to 2022 and change trend of temperature grade change 

performances overall increasing. 

 

 

(a) 

 

(b) 

Figure 7.42 Dynamic TGCI value of overall change in temperature in old urban (a) 

and urban expansion (b) in each period. 
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CHAPTER VIII 

CONCLUSION AND RECOMMENDATION 

 

Under this chapter, major results according to objectives of the study, which 

were reported in Chapters IV to VII, are here separately concluded and 

recommendations for future research and development are suggested. 

 

8.1 Conclusion 

8.1.1 Local principal influential factors on temperature pattern 

According to factor analysis and spatial linear analysis, top three 

significant influential factors on temperature pattern Thailand consisted of biophysical 

factor (NDVI, NDBI, elevation, and MNDWI) and environmental factor (PM10, CO, 

and SO2). 

8.1.2 Optimum geostatistical method for in situ mean temperature 

interpolation 

An optimum univariate geostatistics method for mean temperature 

interpolation from in situ data of TMD over Thailand was OK or UK. Both methods 

provided MAE, MRE and RMSE with same value in each month. Meanwhile, an 

optimum multivariate geostatistical method for mean temperature interpolation from in 

situ data of TMD was SCK method. In addition, according to AIC evaluation, an 

optimum geostatistics method for mean temperature interpolation from in situ data of 
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TMD over Thailand was OK or UK. Finally, it can be further concluded that UK 

method is the most suitable method for monthly mean temperature interpolation from 

TMD data since it fits with UHI phenomena studies in this research. 

8.1.3 Land surface temperature extraction and prediction 

LST data between 2006 and 2016 of Bangkok Metropolitan and its 

vicinity were successfully extracted using single channel method and the extracted LST 

were refined using simple linear regression analysis based on in situ mean temperature 

of TMD. Herewith, satellite-based LST data in this period showed positively 

correlation with in situ mean temperature data with R values between 0.8424 and 

0.9357 and R2 values between 0.7096 and 0.8756. This refined LST data were further 

applied to predict LST data between 2018 and 2026 using Trend Analysis function of 

MS Excel spreadsheet software and Image conversion function of ERDAS Imagine 

software. 

8.1.4 UHI phenomena evaluation and prediction 

Urban and non-urban areas between 2006 and 2016 of Bangkok 

Metropolitan and its vicinity were successfully extracted based on BUI value with 

overall accuracy between 81.46% and 91.08%. The extracted data were further applied 

to predict urban and non-urban areas between 2018 and 2026 using CA-Markov model. 

As a result, urban areas in both periods had been continuously increased. Based on 

urban and non-urban areas and LST data between 2006 and 2026 of Bangkok 

Metropolitan and its vicinity, quantitative analysis of UHI phenomena were 

successfully implemented using WAI, URI, and TGCI.  

As results, the WAI as UHI intensity were very strong between 2006 and 

2022 and became strong between 2024 and 2026. Meanwhile, URI as degree of UHI 
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development increased in 2010 and 2016 and suddenly decreased in 2018 and 

continuously increased between 2020 and 2026. In addition, TGCI values of overall 

change in temperature in old urban and urban expansion of 2 years period between 2006 

and 2026 showed that increasing trend of temperature grade change was weaker than 

decreasing trend in old urban in almost period, except during 2010 - 2012 and 2016 - 

2018. On contrary, increasing trend of temperature grade change was stronger than 

decreasing trend in urban expansion in almost period, except during 2020 - 2022. 

In conclusion, it appears that factor analysis can be used as an efficiently tools 

to extract significant local influential factors on mean temperature pattern of Thailand. 

In addition, WAI, URI, and TGCI can be used as UHI indices to evaluate and predict 

UHI phenomena of Bangkok Metropolitan and its vicinity based on extracted and 

predicted satellite-based LST data and urban an non-urban areas. 

 

8.2 Recommendation 

Many objectives were here investigated and implemented, the possibly expected 

recommendations could be made for further studies as following. 

8.2.1 Influential factors on mean temperature pattern should be tested in another 

area for verification and validation of the influential factors. Particularly, MNDWI, 

NDVI, elevation, and aspect that showed positively correlation with LST in simple 

linear equations should be examined in form of multiple linear equation or simple non-

linear equation. Because the relationship between these factors with LST should be 

negatively correlation. 

8.2.2 Due to variation of percentage cloud covering during November to April 

over Bangkok and its vicinity between 2006 and 2016, representative Landsat data 
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between 2006 and 2016 for LST extraction could not be selected from the same month. 

Therefore, subset areas of Landsat data that were acquired from the same month over 

Bangkok and its vicinity are recommended to extract LST for UHI phenomena study. 

8.2.3 The impact of UHI on illness and mortality of people should be 

investigated using regression analysis based on UHI indices (WAI, URI, and TGCI) 

and number of illness and mortality. Jianguo et al. (2010) stated that extreme UHI effect 

respiratory system of human. 
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Table A1   Correlation matrix of 16 variables before variable selection of factor analysis in November, 2015. 

November 

(2015) 
Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.00 0.636 0.037 0.182 -0.138 -0.113 0.253 0.004 -0.144 -0.537 -0.56 -0.563 -0.547 -0.527 0.842 -0.567 

Slope 0.636 1.00 0.038 -0.074 -0.104 -0.078 0.25 -0.098 -0.058 -0.299 -0.318 -0.326 -0.313 -0.283 0.472 -0.32 

Aspect 0.037 0.038 1.00 0.023 -0.03 -0.026 0.046 0.022 -0.043 -0.083 -0.084 -0.083 -0.082 -0.084 0.042 -0.084 

Distance 0.182 -0.074 0.023 1.00 -0.095 -0.119 0.084 0.122 -0.267 -0.386 -0.36 -0.313 -0.356 -0.428 0.171 -0.385 

Population -0.138 -0.104 -0.03 -0.095 1.00 0.975 -0.091 0.072 0.044 0.239 0.226 0.216 0.225 0.241 -0.116 0.225 

Household -0.113 -0.078 -0.026 -0.119 0.975 1.00 -0.069 0.068 0.034 0.213 0.198 0.187 0.197 0.217 -0.095 0.196 

NDVI 0.253 0.25 0.046 0.084 -0.091 -0.069 1.00 -0.282 -0.72 -0.255 -0.268 -0.274 -0.264 -0.24 0.209 -0.285 

NDBI 0.004 -0.098 0.022 0.122 0.072 0.068 -0.282 1.00 -0.381 -0.087 -0.092 -0.086 -0.085 -0.098 -0.032 -0.09 

MNDWI -0.144 -0.058 -0.043 -0.267 0.044 0.034 -0.72 -0.381 1.00 0.288 0.295 0.289 0.287 0.29 -0.106 0.312 

SO2 -0.537 -0.299 -0.083 -0.386 0.239 0.213 -0.255 -0.087 0.288 1.00 0.986 0.967 0.995 0.984 -0.457 0.982 

PM10 -0.56 -0.318 -0.084 -0.36 0.226 0.198 -0.268 -0.092 0.295 0.986 1.00 0.986 0.987 0.981 -0.476 0.996 

O3 -0.563 -0.326 -0.083 -0.313 0.216 0.187 -0.274 -0.086 0.289 0.967 0.986 1.00 0.97 0.945 -0.478 0.977 

CO -0.547 -0.313 -0.082 -0.356 0.225 0.197 -0.264 -0.085 0.287 0.995 0.987 0.97 1.00 0.972 -0.464 0.986 

NO2 -0.527 -0.283 -0.084 -0.428 0.241 0.217 -0.24 -0.098 0.29 0.984 0.981 0.945 0.972 1.00 -0.449 0.978 

Insolation 0.842 0.472 0.042 0.171 -0.116 -0.095 0.209 -0.032 -0.106 -0.457 -0.476 -0.478 -0.464 -0.449 1.00 -0.482 

Wind -0.567 -0.32 -0.084 -0.385 0.225 0.196 -0.285 -0.09 0.312 0.982 0.996 0.977 0.986 0.978 -0.482 1.00 
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Table A-2 KMO and Bartlett’s Test with 16 variables in November, 2015. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.682 

Bartlett's Test of Sphericity 

Approximate Chi-Square 16169097.16 

Degree of freedom 120 

Significant 0.000 

 

Table A-3 Selection of variables based on communality values in November, 2015. 

Variables Description First Communality 16 variables Second Communality 14 variables 

Elevation  .893 .904 

Slope  .686 .664 

Aspect  .012  

Distance Distance to the sea (m) .332  

Population Population density (person/km2) .986 .988 

Household Household density (household/ km2) .988 .988 

NDVI_1511 Normalized Difference Vegetation Index (NDVI) in November, 2015 .983 .983 

NDBI_1511 Normalized Difference Built-up Index (NDBI) in November, 2015 .931 .987 

MNDWI_1511 Normalized Difference Water Index (NDWI) in November, 2015 .976 .982 

SO2_1511 Sulfur dioxide (SO2) in November, 2015 .985 .989 

PM10_1511 Particulates Matter (PM10) in November, 2015 .989 .996 

O3_1511 Ozone (O3) in November, 2015 .954 .965 

CO_1511 Carbon monoxide (CO) in November, 2015 .979 .987 

NO2_1511 Nitrogen dioxide (NO2) in November, 2015 .975 .972 

Inso_1511 Insolation in November, 2015 .764 .782 

Wind_1511 Wind speed in November, 2015 .987 .991 
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Table A-4 Correlation matrix of 14 Variables after variable selection of factor analysis in November, 2015. 

November (2015) Elevation Slope Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 -.138 -.113 .253 .004 -.144 -.537 -.560 -.563 -.547 -.527 .842 -.567 

Slope .636 1.000 -.104 -.078 .250 -.098 -.058 -.299 -.318 -.326 -.313 -.283 .472 -.320 

Population -.138 -.104 1.000 .975 -.091 .072 .044 .239 .226 .216 .225 .241 -.116 .225 

Household -.113 -.078 .975 1.000 -.069 .068 .034 .213 .198 .187 .197 .217 -.095 .196 

NDVI .253 .250 -.091 -.069 1.000 -.282 -.720 -.255 -.268 -.274 -.264 -.240 .209 -.285 

NDBI .004 -.098 .072 .068 -.282 1.000 -.381 -.087 -.092 -.086 -.085 -.098 -.032 -.090 

MNDWI -.144 -.058 .044 .034 -.720 -.381 1.000 .288 .295 .289 .287 .290 -.106 .312 

SO2 -.537 -.299 .239 .213 -.255 -.087 .288 1.000 .986 .967 .995 .984 -.457 .982 

PM10 -.560 -.318 .226 .198 -.268 -.092 .295 .986 1.000 .986 .987 .981 -.476 .996 

O3 -.563 -.326 .216 .187 -.274 -.086 .289 .967 .986 1.000 .970 .945 -.478 .977 

CO -.547 -.313 .225 .197 -.264 -.085 .287 .995 .987 .970 1.000 .972 -.464 .986 

NO2 -.527 -.283 .241 .217 -.240 -.098 .290 .984 .981 .945 .972 1.000 -.449 .978 

Insolation .842 .472 -.116 -.095 .209 -.032 -.106 -.457 -.476 -.478 -.464 -.449 1.000 -.482 

Wind -.567 -.320 .225 .196 -.285 -.090 .312 .982 .996 .977 .986 .978 -.482 1.000 

 

Table A-5 KMO and Bartlett’s Test with 14 variables in November, 2015. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 
0.677 

Bartlett's Test of Sphericity Approximate Chi-Square 15805766.90 

Degree of freedom 91 

Significant 0.000 
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Table A-6 Correlation matrix of 16 variables before variable selection of factor analysis in December, 2015. 

December (2015) Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.00 .636 .037 .182 -.138 -.113 .424 .014 -.380 .564 -.560 -.567 -.543 -.539 .841 -.567 

Slope .636 1.00 .038 -.074 -.104 -.078 .451 -.108 -.312 .326 -.318 -.336 -.313 -.298 .473 -.298 

Aspect .037 .038 1.00 .023 -.030 -.026 .080 .006 -.080 .083 -.084 -.082 -.080 -.083 .041 -.077 

Distance .182 -.074 .023 1.00 -.095 -.119 -.219 .215 -.019 .326 -.362 -.274 -.349 -.405 .171 -.474 

Population -.138 -.104 -.030 -.095 1.00 .975 -.094 .047 .080 -.220 .228 .205 .218 .233 -.115 .204 

Household -.113 -.078 -.026 -.119 .975 1.00 -.058 .045 .048 -.191 .200 .175 .191 .207 -.095 .173 

NDVI .424 .451 .080 -.219 -.094 -.058 1.00 -.440 -.727 .226 -.211 -.244 -.217 -.187 .357 -.199 

NDBI .014 -.108 .006 .215 .047 .045 -.440 1.00 -.194 .107 -.115 -.098 -.101 -.120 -.034 -.180 

MNDWI -.380 -.312 -.080 -.019 .080 .048 -.727 -.194 1.00 -.295 .291 .298 .286 .278 -.308 .331 

SO2 .564 .326 .083 .326 -.220 -.191 .226 .107 -.295 1.00 -.995 -.989 -.973 -.968 .477 -.936 

PM10 -.560 -.318 -.084 -.362 .228 .200 -.211 -.115 .291 -.995 1.00 .974 .978 .988 -.474 .940 

O3 -.567 -.336 -.082 -.274 .205 .175 -.244 -.098 .298 -.989 .974 1.00 .939 .927 -.479 .920 

CO -.543 -.313 -.080 -.349 .218 .191 -.217 -.101 .286 -.973 .978 .939 1.00 .979 -.459 .918 

NO2 -.539 -.298 -.083 -.405 .233 .207 -.187 -.120 .278 -.968 .988 .927 .979 1.00 -.457 .926 

Insolation .841 .473 .041 .171 -.115 -.095 .357 -.034 -.308 .477 -.474 -.479 -.459 -.457 1.00 -.484 

Wind -.567 -.298 -.077 -.474 .204 .173 -.199 -.180 .331 -.936 .940 .920 .918 .926 -.484 1.00 
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Table A-7 KMO and Bartlett’s Test with 16 variables in December, 2015. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.721 

Bartlett's Test of Sphericity 

Approximate Chi-Square 15838341.55 

Degree of freedom 120 

Significant 0.000 

 

Table A-8 Selection of variables based on communality values in December, 2015. 

Variables Description First Communality 16 variables Second Communality 14 variables 

Elevation  .869 .909 

Slope  .615 .648 

Aspect  .386  

Distance Distance to the sea (m) .468  

Population Population density (person/km2) .986 .988 

Household Household density (household/ km2) .988 .988 

NDVI_1512 Normalized Difference Vegetation Index (NDVI) in December, 2015 .891 .975 

NDBI_1512 Normalized Difference Built-up Index (NDBI) in December, 2015 .874 .985 

MNDWI_1512 Normalized Difference Water Index (NDWI) in December, 2015 .853 .980 

SO2_1512 Sulfur dioxide (SO2) in December, 2015 .983 .990 

PM10_1512 Particulates Matter (PM10) in December, 2015 .989 .995 

O3_1512 Ozone (O3) in December, 2015 .944 .953 

CO_1512 Carbon monoxide (CO) in December, 2015 .961 .966 

NO2_1512 Nitrogen dioxide (NO2) in December, 2015 .967 .967 

Inso_1512 Insolation in December, 2015 .746 .803 

Wind_1512 Wind speed in December, 2015 .933 .923 
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Table A-9 Correlation matrix of 14 Variables after variable selection of factor analysis in December, 2015. 

December (2015) Elevation Slope Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation wind 

Elevation 1.000 .636 -.138 -.113 .424 .014 -.380 .564 -.560 -.567 -.543 -.539 .841 -.567 

Slope .636 1.000 -.104 -.078 .451 -.108 -.312 .326 -.318 -.336 -.313 -.298 .473 -.298 

Population -.138 -.104 1.000 .975 -.094 .047 .080 -.220 .228 .205 .218 .233 -.115 .204 

Household -.113 -.078 .975 1.000 -.058 .045 .048 -.191 .200 .175 .191 .207 -.095 .173 

NDVI .424 .451 -.094 -.058 1.000 -.440 -.727 .226 -.211 -.244 -.217 -.187 .357 -.199 

NDBI .014 -.108 .047 .045 -.440 1.000 -.194 .107 -.115 -.098 -.101 -.120 -.034 -.180 

MNDWI -.380 -.312 .080 .048 -.727 -.194 1.000 -.295 .291 .298 .286 .278 -.308 .331 

SO2 .564 .326 -.220 -.191 .226 .107 -.295 1.000 -.995 -.989 -.973 -.968 .477 -.936 

PM10 -.560 -.318 .228 .200 -.211 -.115 .291 -.995 1.000 .974 .978 .988 -.474 .940 

O3 -.567 -.336 .205 .175 -.244 -.098 .298 -.989 .974 1.000 .939 .927 -.479 .920 

CO -.543 -.313 .218 .191 -.217 -.101 .286 -.973 .978 .939 1.000 .979 -.459 .918 

NO2 -.539 -.298 .233 .207 -.187 -.120 .278 -.968 .988 .927 .979 1.000 -.457 .926 

Insolation .841 .473 -.115 -.095 .357 -.034 -.308 .477 -.474 -.479 -.459 -.457 1.000 -.484 

Wind -.567 -.298 .204 .173 -.199 -.180 .331 -.936 .940 .920 .918 .926 -.484 1.000 

 

Table A-10 KMO and Bartlett’s Test with 14 variables in December, 2015. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 
0.724 

Bartlett's Test of Sphericity Approximate Chi-Square 15805766.90 

Degree of freedom 91 

Significant 0.000 
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Table A-11 Correlation matrix of 16 variables before variable selection of factor analysis in January, 2016. 

January (2016) Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .037 .182 -.138 -.113 .436 .002 -.417 -.539 -.550 .542 .577 -.559 .828 -.815 

Slope .636 1.000 .038 -.074 -.104 -.078 .471 -.098 -.378 -.306 -.315 .304 .330 -.320 .466 -.501 

Aspect .037 .038 1.000 .023 -.030 -.026 .082 .006 -.084 -.082 -.083 .083 .076 -.084 .042 -.052 

Distance .182 -.074 .023 1.000 -.095 -.119 -.330 .236 .118 -.342 -.345 .375 .343 -.360 .168 -.489 

Population -.138 -.104 -.030 -.095 1.000 .975 -.075 .060 .051 .206 .224 -.233 -.205 .230 -.114 .195 

Household -.113 -.078 -.026 -.119 .975 1.000 -.043 .059 .024 .186 .197 -.207 -.177 .202 -.094 .173 

NDVI .436 .471 .082 -.330 -.075 -.043 1.000 -.438 -.730 -.182 -.176 .158 .184 -.177 .361 -.230 

NDBI .002 -.098 .006 .236 .060 .059 -.438 1.000 -.204 -.084 -.101 .104 .103 -.103 -.043 -.127 

MNDWI -.417 -.378 -.084 .118 .051 .024 -.730 -.204 1.000 .242 .246 -.235 -.254 .249 -.330 .315 

SO2 -.539 -.306 -.082 -.342 .206 .186 -.182 -.084 .242 1.000 .986 -.984 -.962 .976 -.450 .622 

PM10 -.550 -.315 -.083 -.345 .224 .197 -.176 -.101 .246 .986 1.000 -.997 -.979 .988 -.459 .646 

O3 .542 .304 .083 .375 -.233 -.207 .158 .104 -.235 -.984 -.997 1.000 .972 -.989 .453 -.651 

CO .577 .330 .076 .343 -.205 -.177 .184 .103 -.254 -.962 -.979 .972 1.000 -.965 .482 -.647 

NO2 -.559 -.320 -.084 -.360 .230 .202 -.177 -.103 .249 .976 .988 -.989 -.965 1.000 -.468 .663 

Insolation .828 .466 .042 .168 -.114 -.094 .361 -.043 -.330 -.450 -.459 .453 .482 -.468 1.000 -.673 

Wind -.815 -.501 -.052 -.489 .195 .173 -.230 -.127 .315 .622 .646 -.651 -.647 .663 -.673 1.000 
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Table A-12 KMO and Bartlett’s Test with 16 variables in January, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.783 

Bartlett's Test of Sphericity 

Approximate Chi-Square 13448159.9927097 

Degree of freedom 120 

Significant 0.000 

 

Table A-13 Selection of variables based on communality values in January, 2016. 

Variables Description First Communality 16 variables Second Communality 15 variables 

Elevation  .899 .904 

Slope  .600 .600 

Aspect  .252  

Distance Distance to the sea (m) .643 .673 

Population Population density (person/km2) .985 .987 

Household Household density (household/ km2) .986 .987 

NDVI_1601 Normalized Difference Vegetation Index (NDVI) in January, 2016 .894 .897 

NDBI_1601 Normalized Difference Built-up Index (NDBI) in January, 2016 .875 .938 

MNDWI_1601 Normalized Difference Water Index (NDWI) in January, 2016 .845 .909 

SO2_1601 Sulfur dioxide (SO2) in January, 2016 .977 .980 

PM10_1601 Particulates Matter (PM10) in January, 2016 .992 .995 

O3_1601 Ozone (O3) in January, 2016 .991 .993 

CO_1601 Carbon monoxide (CO) in January, 2016 .963 .966 

NO2_1601 Nitrogen dioxide (NO2) in January, 2016 .981 .984 

Inso_1601 Insolation in January, 2016 .744 .762 

Wind_1601 Wind speed in January, 2016 .860 .872 
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Table A-14 Correlation matrix of 15 Variables after variable selection of factor analysis in January, 2016. 

January (2016) Elevation Slope Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .182 -.138 -.113 .436 .002 -.417 -.539 -.550 .542 .577 -.559 .828 -.815 

Slope .636 1.000 -.074 -.104 -.078 .471 -.098 -.378 -.306 -.315 .304 .330 -.320 .466 -.501 

Distance .182 -.074 1.000 -.095 -.119 -.330 .236 .118 -.342 -.345 .375 .343 -.360 .168 -.489 

Population -.138 -.104 -.095 1.000 .975 -.075 .060 .051 .206 .224 -.233 -.205 .230 -.114 .195 

Household -.113 -.078 -.119 .975 1.000 -.043 .059 .024 .186 .197 -.207 -.177 .202 -.094 .173 

NDVI .436 .471 -.330 -.075 -.043 1.000 -.438 -.730 -.182 -.176 .158 .184 -.177 .361 -.230 

NDBI .002 -.098 .236 .060 .059 -.438 1.000 -.204 -.084 -.101 .104 .103 -.103 -.043 -.127 

MNDWI -.417 -.378 .118 .051 .024 -.730 -.204 1.000 .242 .246 -.235 -.254 .249 -.330 .315 

SO2 -.539 -.306 -.342 .206 .186 -.182 -.084 .242 1.000 .986 -.984 -.962 .976 -.450 .622 

PM10 -.550 -.315 -.345 .224 .197 -.176 -.101 .246 .986 1.000 -.997 -.979 .988 -.459 .646 

O3 .542 .304 .375 -.233 -.207 .158 .104 -.235 -.984 -.997 1.000 .972 -.989 .453 -.651 

CO .577 .330 .343 -.205 -.177 .184 .103 -.254 -.962 -.979 .972 1.000 -.965 .482 -.647 

NO2 -.559 -.320 -.360 .230 .202 -.177 -.103 .249 .976 .988 -.989 -.965 1.000 -.468 .663 

Insolation .828 .466 .168 -.114 -.094 .361 -.043 -.330 -.450 -.459 .453 .482 -.468 1.000 -.673 

Wind -.815 -.501 -.489 .195 .173 -.230 -.127 .315 .622 .646 -.651 -.647 .663 -.673 1.000 

 

Table A-15 KMO and Bartlett’s Test with 15 variables in January, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.783 

Bartlett's Test of Sphericity Approximate Chi-Square 13438732.6542336 

Degree of freedom 105 

Significant 0.000 
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Table A-16 Correlation matrix of 16 variables before variable selection of factor analysis in February, 2016. 

February (2016) Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .037 .182 -.138 -.113 .443 .130 -.443 .492 .542 .536 -.549 -.561 .881 -.824 

Slope .636 1.000 .038 -.074 -.104 -.078 .383 .045 -.292 .301 .304 .297 -.313 -.322 .488 -.508 

Aspect .037 .038 1.000 .023 -.030 -.026 .078 .005 -.076 .073 .083 .082 -.083 -.084 .042 -.043 

Distance .182 -.074 .023 1.000 -.095 -.119 -.185 .305 -.152 .281 .376 .391 -.351 -.354 .180 -.484 

Population -.138 -.104 -.030 -.095 1.000 .975 -.062 .003 .055 -.247 -.235 -.239 .226 .227 -.121 .171 

Household -.113 -.078 -.026 -.119 .975 1.000 -.033 .008 .028 -.208 -.208 -.214 .198 .199 -.100 .149 

NDVI .443 .383 .078 -.185 -.062 -.033 1.000 -.429 -.638 .206 .204 .197 -.216 -.223 .400 -.295 

NDBI .130 .045 .005 .305 .003 .008 -.429 1.000 -.308 .202 .181 .183 -.180 -.187 .093 -.315 

MNDWI -.443 -.292 -.076 -.152 .055 .028 -.638 -.308 1.000 -.357 -.331 -.328 .336 .345 -.394 .507 

SO2 .492 .301 .073 .281 -.247 -.208 .206 .202 -.357 1.000 .894 .893 -.894 -.883 .437 -.595 

PM10 .542 .304 .083 .376 -.235 -.208 .204 .181 -.331 .894 1.000 .999 -.998 -.986 .482 -.639 

O3 .536 .297 .082 .391 -.239 -.214 .197 .183 -.328 .893 .999 1.000 -.994 -.984 .477 -.639 

CO -.549 -.313 -.083 -.351 .226 .198 -.216 -.180 .336 -.894 -.998 -.994 1.000 .988 -.488 .637 

NO2 -.561 -.322 -.084 -.354 .227 .199 -.223 -.187 .345 -.883 -.986 -.984 .988 1.000 -.498 .653 

Insolation .881 .488 .042 .180 -.121 -.100 .400 .093 -.394 .437 .482 .477 -.488 -.498 1.000 -.723 

Wind -.824 -.508 -.043 -.484 .171 .149 -.295 -.315 .507 -.595 -.639 -.639 .637 .653 -.723 1.000 
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Table A-17 KMO and Bartlett’s Test with 16 variables in February, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.737 

Bartlett's Test of Sphericity 

Approximate Chi-Square 15536767.543 

Degree of freedom 120 

Significant 0.000 

 

Table A-18 Selection of variables based on communality values in February, 2016. 

Variables Description First Communality 16 variables 

Elevation  .876 

Slope  .566 

Aspect  .741 

Distance Distance to the sea (m) .536 

Population Population density (person/km2) .985 

Household Household density (household/ km2) .987 

NDVI_1602 Normalized Difference Vegetation Index (NDVI) in February, 2016 .847 

NDBI_1602 Normalized Difference Built-up Index (NDBI) in February, 2016 .773 

MNDWI_1602 Normalized Difference Water Index (NDWI) in February, 2016 .652 

SO2_1602 Sulfur dioxide (SO2) in February, 2016 .852 

PM10_1602 Particulates Matter (PM10) in February, 2016 .990 

O3_1602 Ozone (O3) in February, 2016 .989 

CO_1602 Carbon monoxide (CO) in February, 2016 .987 

NO2_1602 Nitrogen dioxide (NO2) in February, 2016 .974 

Inso_1602 Insolation in February, 2016 .744 

Wind_1602 Wind speed in February, 2016 .863 
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Table A-19 Correlation matrix of 16 variables before variable selection of factor analysis in March, 2016. 

March (2016) Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .037 .182 -.138 -.113 .370 .115 -.353 -.547 .568 .508 -.531 -.531 .954 -.889 

Slope .636 1.000 .038 -.074 -.104 -.078 .395 .056 -.334 -.310 .318 .264 -.292 -.293 .521 -.568 

Aspect .037 .038 1.000 .023 -.030 -.026 .059 .015 -.072 -.083 .083 .082 -.082 -.082 .040 -.049 

Distance .182 -.074 .023 1.000 -.095 -.119 -.372 .235 .126 -.359 .383 .457 -.402 -.393 .197 -.428 

Population -.138 -.104 -.030 -.095 1.000 .975 -.054 -.003 .035 .228 -.213 -.246 .243 .218 -.130 .198 

Household -.113 -.078 -.026 -.119 .975 1.000 -.034 .011 .016 .201 -.184 -.223 .218 .193 -.108 .179 

NDVI .370 .395 .059 -.372 -.054 -.034 1.000 -.586 -.525 -.099 .082 .037 -.075 -.077 .343 -.202 

NDBI .115 .056 .015 .235 -.003 .011 -.586 1.000 -.046 -.167 .201 .166 -.165 -.168 .105 -.206 

MNDWI -.353 -.334 -.072 .126 .035 .016 -.525 -.046 1.000 .186 -.192 -.142 .168 .172 -.330 .264 

SO2 -.547 -.310 -.083 -.359 .228 .201 -.099 -.167 .186 1.000 -.986 -.953 .993 .991 -.526 .656 

PM10 .568 .318 .083 .383 -.213 -.184 .082 .201 -.192 -.986 1.000 .954 -.977 -.976 .548 -.680 

O3 .508 .264 .082 .457 -.246 -.223 .037 .166 -.142 -.953 .954 1.000 -.977 -.970 .492 -.660 

CO -.531 -.292 -.082 -.402 .243 .218 -.075 -.165 .168 .993 -.977 -.977 1.000 .995 -.512 .660 

NO2 -.531 -.293 -.082 -.393 .218 .193 -.077 -.168 .172 .991 -.976 -.970 .995 1.000 -.512 .657 

Insolation .954 .521 .040 .197 -.130 -.108 .343 .105 -.330 -.526 .548 .492 -.512 -.512 1.000 -.849 

Wind -.889 -.568 -.049 -.428 .198 .179 -.202 -.206 .264 .656 -.680 -.660 .660 .657 -.849 1.000 
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Table A-20 KMO and Bartlett’s Test with 16 variables in March, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.732 

Bartlett's Test of Sphericity 

Approximate Chi-Square 14552691.2839362 

Degree of freedom 120 

Significant 0.000 

 

Table A-21 Selection of variables based on communality values in March, 2016. 

Variables Description First Communality 16 variables Second Communality 15 variables Third Communality 14 variables 

Elevation  .924 .944 .944 

Slope  .612 .630 .631 

Aspect  .877 .029  

Distance Distance to the sea (m) .516 .504 .504 

Population Population density (person/km2) .985 .986 .986 

Household Household density (household/ km2) .987 .988 .988 

NDVI_1603 Normalized Difference Vegetation Index (NDVI) in March, 2016 .912 .878 .877 

NDBI_1603 Normalized Difference Built-up Index (NDBI) in March, 2016 .743 .730 .741 

MNDWI_1603 Normalized Difference Water Index (NDWI) in March, 2016 .473   

SO2_1603 Sulfur dioxide (SO2) in March, 2016 .975 .975 .976 

PM10_1603 Particulates Matter (PM10) in March, 2016 .966 .966 .967 

O3_1603 Ozone (O3) in March, 2016 .965 .964 .965 

CO_1603 Carbon monoxide (CO) in March, 2016 .988 .988 .989 

NO2_1603 Nitrogen dioxide (NO2) in March, 2016 .982 .983 .984 

Inso_1603 Insolation in March, 2016 .845 .863 .863 

Wind_1603 Wind speed in March, 2016 .891 .901 .901 
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Table A-22 Correlation matrix of 14 Variables after variable selection of factor analysis in March, 2016. 

March (2016) Elevation Slope Distance Population Household NDVI NDBI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .182 -.138 -.113 .370 .115 -.547 .568 .508 -.531 -.531 .954 -.889 

Slope .636 1.000 -.074 -.104 -.078 .395 .056 -.310 .318 .264 -.292 -.293 .521 -.568 

Distance .182 -.074 1.000 -.095 -.119 -.372 .235 -.359 .383 .457 -.402 -.393 .197 -.428 

Population -.138 -.104 -.095 1.000 .975 -.054 -.003 .228 -.213 -.246 .243 .218 -.130 .198 

Household -.113 -.078 -.119 .975 1.000 -.034 .011 .201 -.184 -.223 .218 .193 -.108 .179 

NDVI .370 .395 -.372 -.054 -.034 1.000 -.586 -.099 .082 .037 -.075 -.077 .343 -.202 

NDBI .115 .056 .235 -.003 .011 -.586 1.000 -.167 .201 .166 -.165 -.168 .105 -.206 

SO2_1603 -.547 -.310 -.359 .228 .201 -.099 -.167 1.000 -.986 -.953 .993 .991 -.526 .656 

PM10 .568 .318 .383 -.213 -.184 .082 .201 -.986 1.000 .954 -.977 -.976 .548 -.680 

O3 .508 .264 .457 -.246 -.223 .037 .166 -.953 .954 1.000 -.977 -.970 .492 -.660 

CO -.531 -.292 -.402 .243 .218 -.075 -.165 .993 -.977 -.977 1.000 .995 -.512 .660 

NO2 -.531 -.293 -.393 .218 .193 -.077 -.168 .991 -.976 -.970 .995 1.000 -.512 .657 

Insolation .954 .521 .197 -.130 -.108 .343 .105 -.526 .548 .492 -.512 -.512 1.000 -.849 

Wind -.889 -.568 -.428 .198 .179 -.202 -.206 .656 -.680 -.660 .660 .657 -.849 1.000 

 

Table A-23 KMO and Bartlett’s Test with 14 variables in March, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.745 

Bartlett's Test of Sphericity Approximate Chi-Square 14302530.982 

Degree of freedom 91 

Significant 0.000 
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Table A-24 Correlation matrix of 16 variables before variable selection of factor analysis in April, 2016. 

April (2016) Elevation Slope Aspect Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .037 .182 -.138 -.113 .434 -.252 -.477 .550 .578 .539 -.523 -.378 .991 .905 

Slope .636 1.000 .038 -.074 -.104 -.078 .477 -.326 -.464 .316 .333 .290 -.284 -.210 .535 .600 

Aspect .037 .038 1.000 .023 -.030 -.026 .067 -.039 -.071 .081 .082 .083 -.082 -.057 .035 .039 

Distance .182 -.074 .023 1.000 -.095 -.119 -.396 .466 .233 .340 .319 .424 -.413 -.237 .205 .358 

Population -.138 -.104 -.030 -.095 1.000 .975 -.059 .037 .067 -.221 -.198 -.230 .232 .157 -.134 -.175 

Household -.113 -.078 -.026 -.119 .975 1.000 -.027 .019 .037 -.190 -.167 -.205 .206 .155 -.112 -.156 

NDVI .434 .477 .067 -.396 -.059 -.027 1.000 -.790 -.880 .176 .196 .138 -.141 -.133 .405 .342 

NDBI -.252 -.326 -.039 .466 .037 .019 -.790 1.000 .595 -.015 -.028 .018 -.009 .025 -.230 -.140 

MNDWI -.477 -.464 -.071 .233 .067 .037 -.880 .595 1.000 -.259 -.275 -.234 .232 .187 -.454 -.424 

SO2 .550 .316 .081 .340 -.221 -.190 .176 -.015 -.259 1.000 .971 .968 -.973 -.687 .548 .639 

PM10 .578 .333 .082 .319 -.198 -.167 .196 -.028 -.275 .971 1.000 .947 -.930 -.675 .575 .638 

O3 .539 .290 .083 .424 -.230 -.205 .138 .018 -.234 .968 .947 1.000 -.987 -.681 .540 .658 

CO -.523 -.284 -.082 -.413 .232 .206 -.141 -.009 .232 -.973 -.930 -.987 1.000 .694 -.523 -.641 

NO2 -.378 -.210 -.057 -.237 .157 .155 -.133 .025 .187 -.687 -.675 -.681 .694 1.000 -.378 -.440 

Insolation .991 .535 .035 .205 -.134 -.112 .405 -.230 -.454 .548 .575 .540 -.523 -.378 1.000 .893 

Wind .905 .600 .039 .358 -.175 -.156 .342 -.140 -.424 .639 .638 .658 -.641 -.440 .893 1.000 
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Table A-25 KMO and Bartlett’s Test with 16 variables in April, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.747 

Bartlett's Test of Sphericity 

Approximate Chi-Square 13576058.3216348 

Degree of freedom 120 

Significant 0.000 

 

Table A-26 Selection of variables based on communality values in April, 2016. 

Variables Description First Communality 16 variables Second Communality 15 variables 

Elevation  .948 .951 

Slope  .589 .591 

Aspect  .063  

Distance Distance to the sea (m) .646 .655 

Population Population density (person/km2) .987 .987 

Household Household density (household/ km2) .988 .988 

NDVI_1604 Normalized Difference Vegetation Index (NDVI) in April, 2016 .914 .915 

NDBI_1604 Normalized Difference Built-up Index (NDBI) in April, 2016 .766 .770 

MNDWI_1604 Normalized Difference Water Index (NDWI) in April, 2016 .765 .765 

SO2_1604 Sulfur dioxide (SO2) in April, 2016 .956 .960 

PM10_1604 Particulates Matter (PM10) in April, 2016 .927 .930 

O3_1604 Ozone (O3) in April, 2016 .960 .963 

CO_1604 Carbon monoxide (CO) in April, 2016 .958 .961 

NO2_1604 Nitrogen dioxide (NO2) in April, 2016 .628 .635 

Inso_1604 Insolation in April, 2016 .902 .905 

Wind_1604 Wind speed in April, 2016 .927 .929 
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Table A-27 Correlation matrix of 15 Variables after variable selection of factor analysis in April, 2016. 

April (2016) Elevation Slope Distance Population Household NDVI NDBI MNDWI SO2 PM10 O3 CO NO2 Insolation Wind 

Elevation 1.000 .636 .182 -.138 -.113 .434 -.252 -.477 .550 .578 .539 -.523 -.378 .991 .905 

Slope .636 1.000 -.074 -.104 -.078 .477 -.326 -.464 .316 .333 .290 -.284 -.210 .535 .600 

Distance .182 -.074 1.000 -.095 -.119 -.396 .466 .233 .340 .319 .424 -.413 -.237 .205 .358 

Population -.138 -.104 -.095 1.000 .975 -.059 .037 .067 -.221 -.198 -.230 .232 .157 -.134 -.175 

Household -.113 -.078 -.119 .975 1.000 -.027 .019 .037 -.190 -.167 -.205 .206 .155 -.112 -.156 

NDVI .434 .477 -.396 -.059 -.027 1.000 -.790 -.880 .176 .196 .138 -.141 -.133 .405 .342 

NDBI -.252 -.326 .466 .037 .019 -.790 1.000 .595 -.015 -.028 .018 -.009 .025 -.230 -.140 

MNDWI -.477 -.464 .233 .067 .037 -.880 .595 1.000 -.259 -.275 -.234 .232 .187 -.454 -.424 

SO2 .550 .316 .340 -.221 -.190 .176 -.015 -.259 1.000 .971 .968 -.973 -.687 .548 .639 

PM10 .578 .333 .319 -.198 -.167 .196 -.028 -.275 .971 1.000 .947 -.930 -.675 .575 .638 

O3 .539 .290 .424 -.230 -.205 .138 .018 -.234 .968 .947 1.000 -.987 -.681 .540 .658 

CO -.523 -.284 -.413 .232 .206 -.141 -.009 .232 -.973 -.930 -.987 1.000 .694 -.523 -.641 

NO2 -.378 -.210 -.237 .157 .155 -.133 .025 .187 -.687 -.675 -.681 .694 1.000 -.378 -.440 

Insolation .991 .535 .205 -.134 -.112 .405 -.230 -.454 .548 .575 .540 -.523 -.378 1.000 .893 

Wind .905 .600 .358 -.175 -.156 .342 -.140 -.424 .639 .638 .658 -.641 -.440 .893 1.000 

 

Table A-28 KMO and Bartlett’s Test with 15 variables in April, 2016. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.747 

Bartlett's Test of Sphericity Approximate Chi-Square 13568913.695 

Degree of freedom 105 

Significant 0.000 
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Table B-1 Detail of monthly mean temperature from TMD station compare with geostatistical method in November. 

No. ID NAME Long. Lat. 1511 

2015/11 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 26.60 26.65 27.63 26.65 26.64 28.13 26.64 

3 303201 Chiangrai meteorological station 100.8133 19.12316 25.50 25.49 24.60 25.49 25.48 24.64 25.48 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 19.25 25.65 25.96 25.65 25.64 21.25 25.64 

8 328201 Lampang meteorological station 99.14025 16.87998 27.70 27.37 26.62 27.37 27.37 26.73 27.37 

12 330201 Phrae meteorological station 100.2766 16.7961 28.20 27.58 28.46 27.58 27.58 27.97 27.58 

13 331201 Nan meteorological station 101.1518 16.43447 27.45 26.79 27.24 26.79 26.79 27.05 26.79 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 26.70 26.67 26.99 26.67 26.67 27.39 26.67 

18 352201 Nong khai  meteorological station 100.5302 15.34964 28.45 27.50 27.87 27.50 27.49 27.88 27.49 

20 353301 Loei  agrometeorological station 100.1916 15.15823 26.80 28.15 28.44 28.15 28.15 28.41 28.15 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 26.60 27.70 28.10 27.70 27.70 28.10 27.70 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 29.45 28.15 28.86 28.15 28.15 28.88 28.15 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 25.35 27.44 26.78 27.44 27.42 26.89 27.42 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 28.25 27.88 27.75 27.88 27.89 27.64 27.89 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 29.25 28.59 28.93 28.59 28.59 29.24 28.59 

47 402301 Chainat meteorological station 102.1644 14.73959 29.05 29.02 28.90 29.02 29.02 29.59 29.02 

49 405201 Roi et  meteorological  station 103.4487 14.89255 28.30 27.60 27.52 27.60 27.60 27.55 27.60 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 28.65 27.76 28.15 27.76 27.76 28.51 27.76 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 28.75 27.75 28.17 27.75 27.75 28.76 27.75 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 28.35 27.68 28.25 27.68 27.68 28.44 27.68 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 28.70 29.15 29.14 29.15 29.15 29.57 29.15 
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Table B-1 (Continued). 

No. ID NAME Long. Lat. 1511 

2015/11 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 28.50 29.21 29.13 29.21 29.21 29.37 29.21 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 29.45 28.66 28.72 28.66 28.65 29.14 28.65 

78 450401 Thong pha phum meteorological station 102.1039 12.61006 28.80 27.96 27.97 27.96 27.94 28.96 27.94 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 28.50 29.36 29.47 29.36 29.36 29.90 29.36 

82 455301 Bang na agrometeorological station 99.81048 11.83503 29.90 29.56 30.40 29.56 29.57 30.40 29.57 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 30.35 29.42 29.19 29.42 29.42 29.48 29.42 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 28.60 29.16 29.38 29.16 29.16 29.46 29.16 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 29.15 29.08 28.74 29.08 29.08 29.73 29.08 

93 480301 Pluei meteorological station 98.59297 9.785049 28.25 29.04 29.51 29.04 29.04 29.71 29.04 

95 500202 Hua hin meteorological station 100.0333 9.451267 28.85 28.78 28.12 28.78 28.78 28.60 28.78 

100 532201 Ranong meteorological station 99.93965 8.546084 27.90 27.39 27.76 27.39 27.40 27.60 27.40 

101 551201 Surat thani  meteorological station 99.50348 8.426408 27.25 27.15 27.26 27.15 27.15 28.24 27.15 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 28.40 27.79 28.04 27.79 27.80 28.71 27.80 

118 568502 Hatyai meteorological station 98.30754 8.104029 27.50 27.64 27.61 27.64 27.64 27.62 27.64 

119 570201 Satun  meteorological station 98.97984 8.100011 28.55 27.77 27.96 27.77 27.78 29.37 27.78 

122 583201 Narathiwat meteorological station 100.6041 7.184278 26.75 27.78 27.82 27.78 27.79 29.46 27.79 
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Table B-2 Detail of monthly mean temperature from TMD station compare with geostatistical method in December. 

No. ID NAME Long. Lat. 1512 

2015/12 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 24.60 24.02 26.29 26.65 24.72 26.05 24.72 

3 303201 Chiangrai meteorological station 100.8133 19.12316 22.65 22.34 21.96 25.49 22.12 22.75 22.12 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 16.75 22.72 23.28 25.65 22.87 17.70 22.87 

8 328201 Lampang meteorological station 99.14025 16.87998 24.95 24.80 23.87 27.37 24.17 24.68 24.17 

12 330201 Phrae meteorological station 100.2766 16.7961 25.40 24.79 25.41 27.58 25.00 26.23 25.00 

13 331201 Nan meteorological station 101.1518 16.43447 24.20 23.61 23.68 26.79 23.55 25.29 23.55 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 23.25 23.47 23.46 26.67 23.38 25.57 23.38 

18 352201 Nong khai  meteorological station 100.5302 15.34964 25.45 24.63 25.13 27.50 24.93 25.85 24.93 

20 353301 Loei  agrometeorological station 100.1916 15.15823 24.30 25.51 24.68 28.15 24.69 24.79 24.69 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 24.15 25.25 25.45 27.70 25.43 25.46 25.43 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 26.90 25.95 26.59 28.15 26.50 26.76 26.50 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 23.45 25.39 23.98 27.44 25.46 24.73 25.46 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 26.35 26.00 25.80 27.88 25.88 26.07 25.88 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 27.40 26.81 27.10 28.59 27.02 28.30 27.02 

47 402301 Chainat meteorological station 102.1644 14.73959 27.25 27.39 27.13 29.02 27.38 28.48 27.38 

49 405201 Roi et  meteorological  station 103.4487 14.89255 26.55 25.77 25.94 27.60 25.89 26.02 25.89 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 27.15 26.19 26.99 27.76 26.21 27.66 26.21 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 27.35 26.05 27.01 27.75 26.35 27.40 26.35 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 26.70 26.13 27.03 27.68 26.44 26.91 26.44 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 27.75 28.08 28.45 29.15 28.03 28.94 28.03 
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Table B-2 (Continued). 

No. ID NAME Long. Lat. 1512 

2015/12 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 26.90 27.94 27.83 29.21 27.85 28.67 27.85 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 28.65 27.75 28.07 28.66 28.08 28.32 28.08 

78 450401 Thong pha phum meteorological station 102.1039 12.61006 27.55 26.41 26.33 27.96 26.89 27.29 26.89 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 26.75 28.22 28.46 29.36 28.20 29.03 28.20 

82 455301 Bang na agrometeorological station 99.81048 11.83503 28.90 28.58 29.20 29.56 29.20 29.20 29.20 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 29.15 28.58 28.56 29.42 28.56 28.49 28.56 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 28.20 28.37 28.92 29.16 28.77 28.83 28.77 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 28.00 28.14 28.00 29.08 27.98 28.17 27.98 

93 480301 Pluei meteorological station 98.59297 9.785049 27.45 28.29 28.73 29.04 28.59 28.97 28.59 

95 500202 Hua hin meteorological station 100.0333 9.451267 28.10 27.92 27.44 28.78 27.48 27.86 27.48 

100 532201 Ranong meteorological station 99.93965 8.546084 27.85 27.38 27.68 27.39 27.56 28.51 27.56 

101 551201 Surat thani  meteorological station 99.50348 8.426408 27.50 27.32 27.71 27.15 27.33 29.20 27.33 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 28.50 28.24 29.15 27.79 28.30 29.39 28.30 

118 568502 Hatyai meteorological station 98.30754 8.104029 27.50 27.95 27.73 27.64 27.81 27.87 27.81 

119 570201 Satun  meteorological station 98.97984 8.100011 28.85 28.11 28.15 27.77 28.04 29.23 28.04 

122 583201 Narathiwat meteorological station 100.6041 7.184278 26.95 27.88 27.32 27.78 27.66 28.41 27.66 
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Table B-3 Detail of monthly mean temperature from TMD station compare with geostatistical method in January. 

No. ID NAME Long. Lat. 1601 

2016/01 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 21.95 21.48 22.18 21.48 21.41 24.34 21.41 

3 303201 Chiangrai meteorological station 100.8133 19.12316 20.05 19.68 20.71 19.68 19.38 20.54 19.38 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 15.20 20.87 21.07 20.87 19.82 18.08 19.82 

8 328201 Lampang meteorological station 99.14025 16.87998 22.45 21.41 22.14 21.41 22.46 23.36 22.46 

12 330201 Phrae meteorological station 100.2766 16.7961 23.05 22.79 22.29 22.79 22.63 24.74 22.63 

13 331201 Nan meteorological station 101.1518 16.43447 22.00 22.24 21.36 22.24 21.26 23.42 21.26 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 21.10 21.99 21.24 21.99 21.07 24.05 21.07 

18 352201 Nong khai  meteorological station 100.5302 15.34964 24.10 24.18 23.27 24.18 23.01 23.31 23.01 

20 353301 Loei  agrometeorological station 100.1916 15.15823 23.00 23.24 23.80 23.24 23.98 23.54 23.98 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 23.70 24.10 24.40 24.10 24.14 23.77 24.14 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 24.95 24.60 23.92 24.60 24.37 26.52 24.37 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 21.30 24.67 24.04 24.67 23.38 22.88 23.38 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 25.25 25.00 24.91 25.00 25.19 25.46 25.19 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 26.50 25.13 25.51 25.13 26.00 27.14 26.00 

47 402301 Chainat meteorological station 102.1644 14.73959 26.45 26.02 26.21 26.02 26.65 27.37 26.65 

49 405201 Roi et  meteorological  station 103.4487 14.89255 25.85 25.30 24.89 25.30 25.15 25.43 25.15 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 26.95 25.96 25.40 25.96 25.86 27.28 25.86 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 26.95 26.14 25.42 26.14 25.80 26.93 25.80 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 26.60 26.40 25.45 26.40 25.79 26.75 25.79 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 27.20 27.39 27.18 27.39 27.38 28.08 27.38 
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Table B-3 (Continued). 

No. ID NAME Long. Lat. 1601 

2016/01 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 26.40 27.10 26.92 27.10 27.19 27.84 27.19 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 28.10 26.98 26.90 26.98 27.17 27.60 27.17 

78 450401 Thong pha phum meteorological station 102.1039 12.61006 26.40 26.24 25.40 26.24 24.60 25.90 24.60 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 26.25 27.41 27.20 27.41 27.48 28.14 27.48 

82 455301 Bang na agrometeorological station 99.81048 11.83503 28.05 28.25 27.41 28.25 27.68 27.38 27.68 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 28.10 27.56 27.42 27.56 27.66 27.42 27.66 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 27.40 27.73 27.27 27.73 27.52 27.12 27.52 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 27.20 27.56 27.24 27.56 27.41 26.39 27.41 

93 480301 Pluei meteorological station 98.59297 9.785049 26.85 27.89 27.40 27.89 27.66 28.52 27.66 

95 500202 Hua hin meteorological station 100.0333 9.451267 27.30 27.21 27.16 27.21 27.37 27.44 27.37 

100 532201 Ranong meteorological station 99.93965 8.546084 28.30 27.57 27.48 27.57 27.76 28.75 27.76 

101 551201 Surat thani  meteorological station 99.50348 8.426408 27.70 27.61 27.73 27.61 27.64 28.76 27.64 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 29.60 28.57 28.70 28.57 28.96 29.12 28.96 

118 568502 Hatyai meteorological station 98.30754 8.104029 27.50 27.97 28.24 27.97 28.41 28.63 28.41 

119 570201 Satun  meteorological station 98.97984 8.100011 29.60 28.65 28.33 28.65 28.63 28.95 28.63 

122 583201 Narathiwat meteorological station 100.6041 7.184278 27.25 27.99 27.79 27.99 28.24 28.01 28.24 

 

 



2
5
8
 

 

 

Table B-4 Detail of monthly mean temperature from TMD station compare with geostatistical method in February. 

No. ID NAME Long. Lat. 1602 

2016/02 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 23.90 24.01 24.68 24.01 24.84 25.16 21.70 

3 303201 Chiangrai meteorological station 100.8133 19.12316 22.40 22.10 22.52 22.10 21.84 22.67 22.27 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 17.70 22.84 23.42 22.84 22.95 21.18 22.49 

8 328201 Lampang meteorological station 99.14025 16.87998 24.55 24.70 24.69 24.70 24.06 24.70 23.13 

12 330201 Phrae meteorological station 100.2766 16.7961 25.00 24.41 24.38 24.41 24.80 25.34 26.28 

13 331201 Nan meteorological station 101.1518 16.43447 23.85 23.09 22.95 23.09 23.14 23.84 25.36 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 22.65 22.96 22.84 22.96 22.98 23.31 24.69 

18 352201 Nong khai  meteorological station 100.5302 15.34964 23.45 22.73 23.41 22.73 23.01 24.70 27.59 

20 353301 Loei  agrometeorological station 100.1916 15.15823 22.75 24.11 24.01 24.11 23.24 24.00 27.84 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 21.60 22.59 23.09 22.59 22.78 23.91 25.45 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 26.05 25.58 25.55 25.58 26.00 26.44 24.97 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 22.15 25.01 24.51 25.01 24.89 23.78 27.84 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 24.20 23.96 23.90 23.96 23.83 24.51 27.59 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 27.90 26.80 27.04 26.80 27.35 27.80 26.11 

47 402301 Chainat meteorological station 102.1644 14.73959 27.15 27.46 27.63 27.46 27.82 28.18 25.63 

49 405201 Roi et  meteorological  station 103.4487 14.89255 24.30 23.59 23.61 23.59 23.52 24.24 24.28 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 25.20 24.32 25.18 24.32 24.41 26.73 24.18 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 25.50 24.02 25.04 24.02 24.44 26.69 27.06 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 24.75 24.23 24.80 24.23 24.55 26.13 27.62 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 27.05 27.44 27.34 27.44 27.30 28.00 28.05 
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Table B-4 (Continued). 

No. ID NAME Long. Lat. 1602 

2016/02 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 27.00 27.82 27.73 27.82 27.65 28.09 28.25 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 28.05 27.16 27.56 27.16 27.57 27.88 27.13 

78 450401 Thong pha phum meteorological station 102.1039 12.61006 27.50 25.69 25.83 25.69 26.32 26.05 27.51 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 26.60 27.91 27.91 27.91 27.80 28.29 27.20 

82 455301 Bang na agrometeorological station 99.81048 11.83503 28.00 27.90 28.00 27.90 28.85 28.23 27.07 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 28.50 27.82 27.77 27.82 27.48 27.94 27.33 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 27.45 27.35 27.22 27.35 27.03 27.44 28.37 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 27.55 27.23 27.12 27.23 27.08 27.76 26.89 

93 480301 Pluei meteorological station 98.59297 9.785049 26.85 27.70 27.77 27.70 28.17 28.28 27.46 

95 500202 Hua hin meteorological station 100.0333 9.451267 27.30 27.02 26.68 27.02 26.54 27.30 26.83 

100 532201 Ranong meteorological station 99.93965 8.546084 28.35 27.56 27.39 27.56 27.47 28.29 27.09 

101 551201 Surat thani  meteorological station 99.50348 8.426408 27.35 27.43 27.28 27.43 27.29 28.06 27.57 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 29.55 28.81 28.82 28.81 28.88 28.89 29.12 

118 568502 Hatyai meteorological station 98.30754 8.104029 27.20 28.30 28.26 28.30 28.08 28.46 29.01 

119 570201 Satun  meteorological station 98.97984 8.100011 29.85 28.56 28.23 28.56 28.31 28.70 28.62 

122 583201 Narathiwat meteorological station 100.6041 7.184278 27.30 27.97 27.41 27.97 27.72 28.52 27.95 
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Table B-5 Detail of monthly mean temperature from TMD station compare with geostatistical method in March. 

No. ID NAME Long. Lat. 1603 

2016/03 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 28.10 28.34 29.22 28.34 29.72 29.48 29.72 

3 303201 Chiangrai meteorological station 100.8133 19.12316 26.65 27.33 26.46 27.33 28.57 28.76 28.57 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 22.25 28.37 27.51 28.37 28.59 25.72 28.59 

8 328201 Lampang meteorological station 99.14025 16.87998 29.45 28.60 29.40 28.60 29.21 29.69 29.21 

12 330201 Phrae meteorological station 100.2766 16.7961 30.05 29.18 29.14 29.18 29.39 29.77 29.39 

13 331201 Nan meteorological station 101.1518 16.43447 28.55 28.42 27.11 28.42 28.99 29.46 28.99 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 27.20 28.34 26.90 28.34 28.99 28.15 28.99 

18 352201 Nong khai  meteorological station 100.5302 15.34964 29.05 29.14 28.35 29.14 29.00 30.30 29.00 

20 353301 Loei  agrometeorological station 100.1916 15.15823 28.15 29.26 29.01 29.26 29.56 29.27 29.56 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 28.00 29.15 28.61 29.15 29.33 30.66 29.33 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 30.50 30.51 30.30 30.51 29.99 30.44 29.99 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 25.25 29.57 29.78 29.57 30.47 29.04 30.47 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 30.10 29.48 29.17 29.48 29.12 30.20 29.12 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 32.15 30.06 30.65 30.06 30.28 30.56 30.28 

47 402301 Chainat meteorological station 102.1644 14.73959 30.95 30.82 30.84 30.82 30.69 30.53 30.69 

49 405201 Roi et  meteorological  station 103.4487 14.89255 30.10 29.22 28.96 29.22 29.56 29.73 29.56 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 29.90 29.16 29.21 29.16 28.97 29.23 28.97 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 30.45 29.60 29.22 29.60 29.45 29.74 29.45 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 30.05 29.51 29.32 29.51 29.48 29.89 29.48 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 29.95 29.99 30.05 29.99 29.97 30.37 29.97 
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Table B-5 (Continued). 

No. ID NAME Long. Lat. 1603 

2016/03 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 30.75 30.80 30.61 30.80 28.61 30.70 28.61 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 31.75 30.46 29.81 30.46 28.49 30.67 28.49 

78 450401 Thong pha phum meteorological station 102.1039 12.61006 30.20 29.94 29.89 29.94 29.71 29.83 29.71 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 30.10 30.70 30.50 30.70 28.66 30.08 28.66 

82 455301 Bang na agrometeorological station 99.81048 11.83503 30.80 30.45 29.80 30.45 26.57 30.25 26.57 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 30.90 25.55 29.33 25.55 27.20 30.67 27.20 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 29.25 23.49 28.48 23.49 27.68 30.62 27.68 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 29.95 29.63 29.11 29.63 27.56 31.41 27.56 

93 480301 Pluei meteorological station 98.59297 9.785049 28.30 29.52 29.32 29.52 25.44 29.80 25.44 

95 500202 Hua hin meteorological station 100.0333 9.451267 29.00 29.12 28.42 29.12 27.43 30.55 27.43 

100 532201 Ranong meteorological station 99.93965 8.546084 29.90 28.53 27.93 28.53 28.80 27.68 28.80 

101 551201 Surat thani  meteorological station 99.50348 8.426408 28.90 28.66 27.78 28.66 28.92 29.10 28.92 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 30.25 29.83 29.42 29.83 29.41 28.11 29.41 

118 568502 Hatyai meteorological station 98.30754 8.104029 28.50 29.38 28.90 29.38 29.37 29.33 29.37 

119 570201 Satun  meteorological station 98.97984 8.100011 31.10 29.68 29.07 29.68 29.49 30.13 29.49 

122 583201 Narathiwat meteorological station 100.6041 7.184278 27.70 28.79 28.98 28.79 28.66 30.15 28.66 
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Table B-6 Detail of monthly mean temperature from TMD station compare with geostatistical method in April. 

No. ID NAME Long. Lat. 1604 

2016/04 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

2 300202 Mae sariang  meteorological station 97.97265 19.30007 32.80 31.83 32.95 32.95 33.08 32.84 33.08 

3 303201 Chiangrai meteorological station 100.8133 19.12316 30.15 30.97 29.40 29.40 32.30 32.19 32.30 

6 327202 Chiangmai(doi angkhang) meteorological station 104.0566 17.12527 25.95 32.18 31.13 31.13 32.25 33.64 32.25 

8 328201 Lampang meteorological station 99.14025 16.87998 33.65 32.27 33.25 33.25 32.78 32.97 32.78 

12 330201 Phrae meteorological station 100.2766 16.7961 34.00 32.87 32.94 32.94 32.87 32.96 32.87 

13 331201 Nan meteorological station 101.1518 16.43447 31.95 32.07 31.14 31.14 32.56 32.02 32.56 

14 331301 Nan meteorological station (agromet) 101.2453 16.77397 30.60 31.98 30.89 30.89 32.56 31.43 32.56 

18 352201 Nong khai  meteorological station 100.5302 15.34964 33.00 32.83 32.06 32.06 32.59 32.51 32.59 

20 353301 Loei  agrometeorological station 100.1916 15.15823 31.60 32.74 32.72 32.72 32.92 32.78 32.92 

25 357301 Nakhon phanom  agrometeorological station 105.0196 15.2406 31.35 32.80 32.39 32.39 32.96 32.08 32.96 

27 373201 Sukhothai  meteorological  station 104.3271 15.08686 34.05 33.98 33.79 33.79 33.21 33.18 33.21 

33 376401 Umphang hydrometeorological station 100.7249 14.53488 28.10 32.42 32.93 32.93 33.17 32.93 33.17 

43 387401 Maha sarakham  meteorological  station 99.86128 14.30522 33.45 33.03 32.89 32.89 32.60 32.71 32.60 

45 400201 Nakhonsawan meteorological station 101.1875 15.26634 34.95 32.72 33.50 33.50 32.99 32.03 32.99 

47 402301 Chainat meteorological station 102.1644 14.73959 33.30 33.34 33.47 33.47 33.28 32.03 33.28 

49 405201 Roi et  meteorological  station 103.4487 14.89255 33.65 32.86 32.77 32.77 33.01 32.66 33.01 

51 407301 Ubonratchathani  agrometeorological station 103.6765 15.31786 33.35 31.94 32.60 32.60 32.09 32.13 32.09 

52 407501 Ubonratchathani meteorological station 102.5043 13.68894 33.85 32.27 32.63 32.63 32.56 32.28 32.56 

53 409301 Sri saked   agrometeorological station 99.97002 14.01186 33.20 31.96 32.69 32.69 32.49 32.95 32.49 

57 424301 Ratchaburi meteorological station 100.5599 13.72639 32.35 32.10 32.22 32.22 31.91 30.97 31.91 
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Table B-6 (Continued). 

No. ID NAME Long. Lat. 1604 

2016/04 

Univariate Multivariate 

OK SK UK OCK SCK UCK 

59 425301 U-thong agrometeorological station 100.5942 13.90931 33.25 32.94 33.06 33.06 30.77 30.66 30.77 

75 440201 Aranya prathet  meteorological station 101.1356 12.73402 33.40 32.31 31.04 31.04 30.36 31.13 30.36 

8 450401 Thong pha phum meteorological station 102.1039 12.61006 32.80 32.53 32.65 32.65 32.15 31.59 32.15 

79 451301 Nakhon pathom meteorological station 102.1696 12.51067 32.75 32.70 32.73 32.73 30.59 30.34 30.59 

82 455301 Bang na agrometeorological station 99.81048 11.83503 32.90 32.21 31.21 31.21 28.14 31.83 28.14 

84 459201 Chonburi  meteorological  station 99.73467 12.58927 32.75 26.74 30.03 30.03 28.72 30.73 28.72 

86 459203 Pattaya  meteorological  station 102.8783 11.78024 30.90 24.78 28.99 28.99 29.23 29.18 29.23 

89 465201 Phetchaburi meteorological station 99.18846 10.49897 31.80 31.45 30.73 30.73 29.26 30.67 29.26 

93 480301 Pluei meteorological station 98.59297 9.785049 29.35 30.80 29.85 29.85 26.81 20.42 26.81 

95 500202 Hua hin meteorological station 100.0333 9.451267 30.90 30.93 29.56 29.56 29.04 31.34 29.04 

100 532201 Ranong meteorological station 99.93965 8.546084 30.90 29.98 27.83 27.83 30.34 25.63 30.34 

101 551201 Surat thani  meteorological station 99.50348 8.426408 31.15 30.20 27.54 27.54 30.43 23.86 30.43 

112 566201 Ko lanta  meteorological station 98.39202 7.88416 30.70 31.09 29.79 29.79 30.76 21.71 30.76 

118 568502 Hatyai meteorological station 98.30754 8.104029 30.15 30.66 29.60 29.60 30.74 29.65 30.74 

19 570201 Satun  meteorological station 98.97984 8.100011 31.10 30.82 29.75 29.75 30.80 29.57 30.80 

122 583201 Narathiwat meteorological station 100.6041 7.184278 29.25 30.61 30.23 30.23 30.29 24.57 30.29 
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