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CHAPTER I

INTRODUCTION

This chapter introduces a background problem in packet forwarding

cooperation in multi-domain wireless sensor networks (WSNs) and highlights the

significance of resource allocation using game theoretic reinforcement learning

(GTRL) technique. It also presents the motivation for applying GTRL technique to

achieve the best mutual policy for all network domains which is the main focus of this

thesis.

1.1 Significance of the problem

Wireless Sensor Networks (WSNs) have increasingly attracted much interest

in a wide range of application scenarios in recent years (Mattern et al., 2010; Fadel et

al., 2015; Rashid et al., 2016). For certain applications, it is possible that multiple

sensor networks which are controlled by different authorities can coexist

independently within a region of interest. These networks may even be physically

overlapping and their sensor nodes may be interleaved. Such networks are referred to

as multi-domain WSNs. The networks perform different tasks and measure different

data within the same area. Examples of multiple networks co-located deployments can

be found in environmental monitoring with forest fire, earthquake, wildlife tracking

and landslide detection sensors, and in animal monitoring with each herd belongs to a

different owner.
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Normally, WSNs consists of distributed autonomous sensor nodes that are

often deployed in remote or hostile environments to collect and send data packet

through multi-hop wireless communication to a sink in its own domain. However,

these sensor nodes usually have limitation in memory size, computational capabilities

and energy capacity. Since the most common energy storage device used in a sensor

node is a battery which is an energy constraint, changing new battery or sensor nodes

may be difficult to do in many applications. In such situations, cooperation among

sensor nodes belonging to different network authorities could potentially gain certain

benefits. Such benefits include alternative routing paths and reduced energy

consumption, which can prolong their network lifetime and enhance reliability of

packet delivery. These benefits lead to development of a new protocol with features

needed in a short duration and implementation with a small cost.

However, a significant amount of energy is also lost when sensor nodes within

the multi-domain WSN cooperatively process and forward the data for other

networks. As energy consumption is a critical issue for such networks, reducing

energy consumption and prolonging the network lifetime are important targets as

shown in the following researches.

1.1.1 Cooperative routing among multi-domain WSNs

With several advantages to be gained from cooperative routing in

multi-domain networks, many routing approaches have been proposed to achieve

optimized energy usage in multi-domain WSNs. Most existing researches consider

resource allocation problem in a fully cooperative situation, meaning that, the

authorities have to agree on sharing or providing a common resource in order to
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increase certain benefits for their networks. In (Bicakci et al., 2013 and Bicakci et al.,

2010), the potential benefits of cooperation in multiple WSNs are investigated. Linear

programming is employed to find an energy efficient path in order to prolong their

network lifetime. However, energy efficient routing selection is not always

guaranteed to prolong the network lifetime. Sensor nodes belonging to energy

efficient path tend to have higher traffic load and consume more energy than other

nodes. As a result, such nodes tend to die earlier. In order to avoid heavy loaded

situations, Nagata et al. (2012) proposed cooperation between multi-domain WSNs by

balancing the communication load. Routes with the maximum value of bottleneck

were selected. By doing this, the network lifetime can be extended among multiple

domains within the same geographic area. Kinoshita et al. (2016) proposed a fair

cooperative routing method for heterogeneous overlapped WSNs called pool-based

selecting method. An energy pool was introduced to maintain the total amount of

energy consumption used in cooperative forwarding. Their simulation results showed

that the proposed method was able to balance the energy consumption and prolong the

network lifetime. Ref. (Jelicic et al., 2014; Singhanat et al., 2015) showed benefits of

node collaboration in multi-domain WSNs under practical implementation. The

results showed that cooperation with co-located sensor devices in different networks

can indeed increase the network lifetime.

However, Vaz et al., (2008) and Ze et al., (2012) showed that

cooperation between different networks that are deployed in the same region may not

always be beneficial to every network. It is possible that some WSNs can prolong

their network lifetime but shorten lifetimes of other WSNs. In Ze et al., (2012), it has

been reported that the presence of only a few selfish nodes can degrade the
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performance of an entire system. Thus, encouraging nodes to be cooperative and

helpful in detecting selfish nodes in packet transmission is critical to ensure the proper

functioning of multi-domain WSNs. Vaz et al., (2008) showed that cooperation

between two authorities in co-located areas may not always be beneficial to any

network, because whether or not each authority will cooperate depends on the

configuration of each network. Their results showed that there are four factors which

affect node cooperation, i.e. the density of the network, the data collection rate, the

path loss exponent and the routing algorithm. Hence, node cooperation between

different authorities in multi-domain WSNs is not straight forward.

Furthermore, multi-domain WSNs also consider fair cooperative

packet forwarding for each authority in order to efficiently decide whether to

cooperate with each other or not. This is of particular significance in a non-

cooperative environment in order to provide fairness and benefits to all co-located

networks.

1.1.2 Fair routing in multi-domain WSNs

Many researches try to find a routing algorithm which can rationally

decide to select the best routing policy in presence of non-cooperative behavior of

sensor node in multi-agent WSNs. The tools which are usually employed to select

suitable strategies for sensor node in WSNs are non-cooperative game algorithm

(Lasaulce and Tembine, 2011) and reinforcement learning (Sutton and Barto, 1998).

1.1.2.1 Non-cooperative game theory

A well-known technique to encourage cooperation among

selfish nodes is non-cooperative game theory. Non-cooperative game theory is a

branch of game theory which involves interactive decision situations in which
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multiple decision makers, each one with its own objectives, jointly determine the

outcome. Game theory can be used to analyze the agent interaction and determine a

set of strategies among rational agents, where each agent uses available information to

decide its behavior. The major advancement that has driven much of the development

of game theory is the concept of Nash equilibrium (NE) which is used to determine a

suitable and fair strategy for all agents. NE is a set of strategies for each of the agents

such that each agent’s strategy is the best-response to the other agents’ strategies.

Many researches focus on the problem of stimulating cooperation. Ref. (Wu and Shu,

2005) applied game theory to routing problem in multi-domain WSNs. They assumed

multiple sensor networks under the control of different authorities and used incentive

mechanisms to motivate cooperation between sensor nodes. Their approach can be

applied in routing and aggregation problems for optimizing the power usage and

lifetime of the network. On the other hand, Felegyhazi et al., (2005) applied the Non-

cooperative game algorithm to describe a situation that cooperation can exist in multi-

domain WSNs without incentive mechanisms. They formulate a packet forwarding

game into a non-cooperative resource allocation problem. The authors show that the

Non-cooperative game algorithm is a suitable framework which can determine

equilibrium strategy for their problem. However, one drawback of these approaches is

that obtaining a strategy needs significant amount of computational time to compute

the utility for all possible actions of sensor nodes. Similarly, Yang and Brown, (2007)

considered co-existing WSNs with two source nodes along with two corresponding

destination nodes.  A non-cooperative game algorithm is used to analyze the effect of

selfishness of sensor nodes on energy efficiency. In their game, each source node acts

as agent in a relaying game to send packets to its destination. Each source node
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decides to ask or not ask the other source to help relay packets. Their payoff is the

amount of energy saved. The results showed that natural cooperation without external

incentive mechanisms can occur and can achieve an energy efficiency path selection

policy in both fading and non-fading channel. However, their experiment investigated

a small network with two sensors and two separate sinks. Moreover, both (Felegyhazi

et al., 2005) and (Yang and Brown, 2007) are operated in a centralized manner which

are not scalable.

1.1.2.2 Reinforcement learning

In this thesis, we introduce the application of multi-agent

reinforcement learning (MARL), another technique to address the issue of resource

allocation problem in WSNs. MARL is suitable for distributed routing problems. In

the context of reinforcement learning (RL) framework, an agent systematically learns

correct behaviors online through trial-and-error interaction with other agent in a

dynamic environment in order to achieve a particular goal. There are several recent

researches which employ RL to solve routing problems in WSNs (Kulkarni et al.,

2011 and Al-Rawi et al., 2015). Each sensor node is assumed to be an agent.

Therefore, WSNs with multiple independent decision-making agents can be

considered as a in multi-agent reinforcement learning (MARL) system. A standard RL

method called, Q-learning has been proposed to determine best routing strategies

when critical network conditions are allowed to vary dynamically. In (Yang et al.,

2013), a MARL-routing approach was proposed to handle sink mobility and enable

direct interactions between WSN and vehicles. Reward functions including time

delay, network lifetime and reliability was designed for MARL routing. Simulation

results show that their proposed approach achieved better time delay, energy
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distribution and delivery rate than often compared routing approaches. Refs. (Hu et

al., 2010, Xu et al., 2015 and Debowski et al., 2016) presented a load-balancing multi-

path routing approach. A MARL technique was employed to learn the best path to

forward packet which considered the number of hops, residual energy and energy

consumption of sensor nodes. Results showed that their approach can balance the

workload among sensor nodes and prolong the network lifetime. However, these

solutions were directly applied to single-domain WSNs.

There are only a few researches which focus on MARL

technique in multi-domain WSNs. Ref. (Rovcanin et al., 2014) applied Q-learning to

solve routing problem for cognitive networks such networks were co-located

heterogeneous WSNs which were fully cooperative and operating in a centralized

manner. MARL in a centralized manner was also proposed in (Singsanga et al., 2010),

by extending Q-routing to cater a non-cooperative multi-agent in a packet forwarding

problem. The authors applied an existing algorithm called Nash Q-learning (NashQ)

(Hu and Wellman, 2003) to attain the best mutual policy for all agents in a packet

forwarding game. Each agent attempts to learn its Nash equilibrium (NE) online.

Their results suggest that NashQ can adaptively learn and determine suitable packet

forwarding policy in varying network conditions. However, to the best of our

knowledge none of the existing MARL researches take into consideration of fair

routing selection in multi-domain WSNs under distributed manner. Since a

centralized packet forwarding rely on single computational node to receive and

process all sensor data, such operation creates a large amount of overhead rendering it

impractical for actual WSN applications (Li et al., 2011). Hence, there is a need for
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decentralized or distributed packet forwarding algorithms that allow sensors to

estimate their information locally to reduce the amount of overhead used.

This thesis therefore studies the cooperative fair routing

problem between multi-domain WSNs which are controlled by different authorities in

a distributed manner. The problem of how non-cooperative nodes belonging to

different network domains can locally decide to establish cooperative sharing path

with other networks without any external incentive mechanisms are taken into

consideration. This thesis also studies parameters that effect cooperation between

different network authorities and fairness of benefits that the networks can achieve.

For this purpose, this thesis focuses on applying MARL and non-cooperative game

theory to determine a fair packet forwarding strategy for all network authorities. The

underlying aim of this thesis is to propose a routing algorithm to cater a non-

cooperative multi-agent and to achieve the best mutual policy and improve the

network performance in distributed multi-domain WSNs. In order to achieve the aim,

this thesis firstly proposes a suitable payoff matrix for packet forwarding game. The

payoff matrix is then applied to the proposed Non-cooperative game algorithm based

on Lemke Howson method (NCG-LH) algorithm to conceptually show that non-

cooperative game theory can determine fair packet forwarding strategy and improve

the network performance in distributed multi-domain WSNs under common sink

(Chapter 3) and separate sink scenario (Chapter4). This thesis then extends the non-

cooperative game theory by adding learning mechanism based on game theoretic

reinforcement learning (GTRL). In particular, the thesis proposes two routing

algorithms (Chapter 5). The first algorithm is the discrete state Nash Q-learning (D-

NashQ) which is an extension of discrete state NashQ in centralized routing in
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(Singsanga et al., 2010) to cater a distributed multi-domain WSNs by using the

derived payoff matrix as a reward function. The other algorithm is the continuous

state Nash Q-learning (C-NashQ), that considers the state space in the framework as

continuous state, which is a suitable representation of the continuous state of the

remaining battery energy in the sensor nodes. This thesis also evaluates the proposed

algorithms by comparing them to existing algorithms and discusses the network

performance. The results show that the proposed algorithms can provide efficient and

fair packet forwarding policy that increase the network lifetime and reliability of

packet delivery ratio.

To conclude, the main contributions of this thesis are six-fold:

1) Identification of parameters that effect cooperation between multiple

co-located networks and fairness of benefits that the networks can achieve.

2) Design of payoff matrix for non-cooperative packet forwarding game

in distributed multi-domain WSNs

3) A non-cooperative game algorithm (NCG-LH) is proposed to

distributed packet forwarding scheme in non-cooperative multi-domain WSNs under

common sink and separate sink scenarios.

4) Proposal of two distributed routing algorithms (D-NashQ and C-

NashQ) and their application to the packet forwarding problems in multi-domain

WSNs under separate sink scenario.

5) Derivation of feature function that suitable for continuous state Nash

Q-learning.
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6) Fairness comparison in cooperative routing between routing algorithm

based on load balancing technique, non-cooperative game theory technique and game

theoretic reinforcement learning technique.

1.2 Research objectives

1.2.1 To identify the parameters that effect cooperation between multiple co-

located networks and fairness of benefits that the networks can achieve.

1.2.2 To apply non-cooperative game theory to allocate packet forwarding

problem in distributed multi-domain WSNs based on common sink and separate sink

scenarios.

1.2.3 To obtain a routing scheme which can achieve the best mutual packet

forwarding strategy in non-cooperative multi-domain WSNs in a distributed manner

using game theoretic reinforcement learning algorithm.

1.3 Assumptions

1.3.1 Cooperative packet forwarding is beneficial when the network is

sparse or when the environment is hostile.

1.3.2 Game theoretic multi-agent reinforcement learning provides more

efficiently network performance than the Non-cooperative game approach.

1.3.3 Sensor nodes in multi-domain WSNs can communicate with each other

using the same underlying protocol.

1.4 Scope and limitation

1.4.1 Multi-domain wireless sensor network consists of multiple co-located

WSNs.
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1.4.2 Decision methods for choosing the optimal packet forwarding strategy in

multi-domain WSNs will be studied.

1.4.3 Non-cooperative game theory and game theoretic reinforcement learning

(GTRL) methods will be studied and compared to achieve a suitable packet forwarding

strategy in multi-domain wireless sensor networks.

1.4.4 Simulations will be carried out by Visual C++. Six methods will be

compared, namely, 1) AODV non-cooperative routing, 2) AODV cooperative routing,

3) Pool-based routing algorithm (Kinoshita et al., 2016) 4) the proposed method on

Non-Cooperative Game based on Lemke Howson (NCG-LH) method,  and the

proposed method on game theoretic reinforcement learning algorithms namely, 5)

Discrete state Nash Q-learning (D-NashQ); and 6) Continuous state Nash Q-learning

(C-NashQ). The experimental results will be analyzed to find the suitable and fair

packet forwarding strategy.

1.5 Expected usefulness

1.5.1 A game theoretic multi-agent reinforcement learning algorithm can be

applied to find the best mutual policy for packet forwarding in non-cooperative multi-

domain WSNs.

1.5.2 An optimal and fair packet forwarding strategy for non-cooperative

multi-domain wireless sensor networks.

1.6 Synopsis of thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the

theoretical background which is the foundation for the contributions of this thesis.

Firstly, the concept of non-cooperative game theory formulation and NCG-LH
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algorithm are introduced. Secondly, the concept of the Markov decision process

formulation is reviewed. Next, game theoretic reinforcement learning technique used

for solving the packet forwarding problem called D-NashQ and C-NashQ algorithms

are introduced.

Chapter 3 presents a suitable payoff metric for packet forwarding game and

conceptually show that NCG-LH algorithm can be applied to allocate packet

forwarding problem in distributed multi-domain WSNs based common sink scenario.

In Chapter 4, the packet forwarding game is formulated and solved by the

NCG-LH algorithm for resource allocation problem between multi-domain WSNs in

separate sink scenario.

Chapter 5 proposes the game theoretic reinforcement learning techniques

called D-NashQ and C-NashQ algorithms in multi-domain WSNs. The packet

forwarding game was formulated and solved by D-NashQ and C-NashQ algorithms.

Finally, Chapter 6 summarizes all the original findings and contributions in

this thesis and points out possible future research directions.
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CHAPTER II

BACKGROUND THEORY

2.1 Introduction

This thesis studies the cooperative fair routing problem in multi-domain

wireless sensor networks (WSNs). An important usage for multi-domain WSNs is

resource sharing between different authorities which can prolong their lifetime.

However, cooperative behavior between sensor nodes belonging to different

authorities may not always be readily available because sensor nodes may act

selfishly to conserve their energy. Furthermore, there is no guarantee that node

cooperation will be beneficial to all WSNs. Therefore, it is necessary to find an

algorithm for each authority to decide whether to cooperate with each other or not in a

non-cooperative multi-domain WSN.

This thesis applies non-cooperative game theory and reinforcement learning

(RL) to address the issue of non-cooperative resource allocation problem in multi-

domain WSNs. Non-cooperative game theory (Shoham and Brown, 2009) analyzes

the interaction and determine a set of strategies among rational selfish agents, where

each agent uses available information to decide its behavior for a given outcome. On

the other hands reinforcement learning (RL) (Sutton and Barto, 1998) is a machine

learning scheme to provide a framework in which an agent learn the optimal policy

based on the agents’ past experiences without full information about the model of the
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environment. Non-cooperative game theory and RL thus are employed to encourage

cooperative fair routing between sensor nodes in multi-domain WSNs.

Therefore, this chapter serves as an introductory to important concepts of

game theory and then the fundamental theory of reinforcement learning which are the

basis of the contribution of this thesis.

2.2 The Agent definition

This thesis focus on the problem of packet forwarding cooperation in multi-

domain WSNs. In particular, a packet forwarding game is formulated into a non-

cooperative resource allocation problem. The term ‘agent’ in this thesis represents a

decision maker which decides an optimal route to forward the data packet. We assume

that the agent is rational, if given what the agent knows so far, the agent will always

choose a strategy which optimizes some performance measure.

In this thesis, the source node takes a role as an agent. The source node is

randomly selected from the set of sensor nodes in the WSN to send packets to the

base station (or sink node). The source node needs to decide which route obtains the

best benefit for its network domain. This thesis models a packet forwarding game as a

two-agent game. The example of the game is shown in Figure 2.1.  From the figure,

source node 1
1n , which is randomly selected from sensor nodes in network domain1, is

modeled as an agent in the game. The agent 1
1n must decide whether to use the non-

cooperative route which uses nodes in its own domain or the cooperative route that

consists of nodes from the other domain. To make a decision, the agent 1
1n assumes

that neighbor node 1
2n , which is a sensor node in a different network domain
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(domain2) belonging to cooperative route, as the other agent in game. The other

agent’s behaviors is expected to act rationlly.

Figure 2.1 Example of packet forwarding game

The optimal packet forwarding route is chosen by the source node depending

on strategy decision obtained from the proposed algorithms described in Chapter 3, 4

and 5.

2.3 Non-cooperative game

In recent years, game theory has gained much gaining attention in wireless

network researches because as it is powerful to analyze rational agent (or player)

behavior (Lasaulce and Tembine, 2011). Game theory has been successfully applied

in a wide range of problems spaces such as data routing (Fan et. al., 2016), power

control (Al-Zahrani et. al., 2016), wireless security system (Wang et. al., 2014) and

intrusion detection (Moosavi and Bui, 2014). Non-cooperative game theory is a

branch of game theory which involves interactive decision situations in which
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multiple decision makers, each one with its own objectives, jointly determine the

outcome of the decision.

In this thesis, Non-cooperative game theory has been applied in cooperative

routing problems, which is usually referred to as packet forwarding game, for multi-

domain WSNs. The idea behind the employment of non-cooperative game theory in

routing area is that the agents, e.g., sensor nodes in WSNs, which have a rational

selfish behavior, attempt to benefit themselves first when they are making packet

forwarding decisions. Thus, these selfish sensor node may prefers to drop a packet

from other different network domain rather than help to forward for conserving

limited energy resources since each data packet transmission has a cost for each

sensor node that participates in the route. The cooperative routing between multi-

domains can be broken if all nodes in different domain adopt this strategy. Under such

scenario, each agent needs to consider other agents' benefits while optimizing its own

benefits in making decisions in order to avoid failure in cooperation. Non-cooperative

game theory is capable of providing a set of mathematical tool to analyze such

complex interactions among rational selfish agents.

2.3.1 Game strategic form

Strategic form (or normal form) is a basic component in game theory,

which is defined by the tuple, ( , , )I A u where

 I denotes the set of agents, ,i I 1,...,i I

 1 ... IA A A   , where iA is the set of actions available to agent i , and tuple

1( ,..., )Ia a A is called an action profile, which describes the action each

agent has chosen.
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 1( ,..., )Iu u u , where iu is a real-valued payoff function for agent i .

This thesis refers agent i ’s opponents as “-i”. Note that we consider strategic

games with complete information, meaning that each agent has knowledge about all

the other agents’ payoff functions.

Appropriate strategies for the game can be determined by the

application of solution concepts, which determine. In other words, solution concepts

can determine what strategies for agents are suitable to adopt in the game. The most

widely used solution concept is Nash Equilibrium (NE). The next section, we will

describe concept of NE and method to find NE.

2.3.2 Nash equilibrium concept

In game theory, the Nash equilibrium (NE) is a solution concept of a

non-cooperative game which is used to determine a suitable and fair strategy for all

agents. NE is a set of strategies for each of agent such that each agent can correctly

expect about of the other agent’s behaviors, and acts rationally to this expectation.

Acting rationally signifies that the agent’s strategy is the best response to the other

agents’ strategies. For any game, NE is at least one solution exists in pure or mixed

strategies (Sutton and Barto, 1998). Given a set of strategies, if the agents choose to

take their action with probability 1, this implies that the agent is playing in a pure

strategy. On the other hand, a mixed strategy is a probability distribution over pure

strategies. The agents need to select their action according to some probability.

In pure strategy NE, an agent selects an action which achieves the best

response to the other agent’s choice. In other words, a pure strategy NE is a point of

joint strategy in the stage game which every agent receives its highest payoff at this

point, and a change in strategies by any one of them would result in lower gains for
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that agent than the current strategy. Mathematically, the strategy profile * *
1 ,..., Ia a is a

NE if for all agent i, *
ia is the best response to the other agents’ choices *

ia

* * *( , ) ( , )i i i i i iu a a u a a  (2.1)

where ( , )i i iu a a is payoff for agent i received after choose joint action ( , )i ia a and

i ia A

In general, the existence of a pure NE for the game cannot be

guaranteed. However, a mixed strategy NE always exists in finite games. Therefore, it

is necessary to extend the concept of NE to include mixed strategy NE in order to

analyze for solutions.

2.3.3 Generating Nash equilibrium using Lemke-Howson method

In this section, we will consider mixed strategy NE, which exists for

every finite game. A mixed strategy is a strategy in which an agent performs its

available pure strategies with certain probabilities. A mixed strategy NE profile

* *
1 ,..., I  is a NE if for every agent i, *

i is the best response to the other agents’

choices *
i ,

* * *( , ) ( , )i i i i i iu u     (2.2)

for each i i   ,when i is the probability distribution over agent i’s pure strategies.

In this thesis, the Lemke-Howson (LH) method (Sutton and Barto,

1998) is employed to calculate the probability to achieve the NE in a Non-cooperative

game. The LH method is the best known method to solve for mixed-strategy NE

between two agents. The advantage of LH method is that it is guaranteed to find at
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least one NE point. More details about using LH method to finds NE is shown in

Appendix A.

2.4 Multi-agent online learning approach

Reinforcement learning (RL) (Sutton and Barto, 1998) is a machine learning

scheme in which an agent learns the optimal policy from the agents’ past experiences

without prior information about the model of the environment. Convergence of RL

relies on the assumption that the dynamics of environment satisfies a Markov

Decision Process (MDP). Therefore, this section start with a theoretical background

on MDP theory follow by a description of reinforcement learning and Nash Q-

learning.

2.4.1 Markov decision process theory

A Markov decision process (MDP) is the foundation for single-agent

reinforcement learning. MDP provides a framework for modelling that consists of a

decision-maker interacting synchronously with a signal from the environment called

the environment’s state. If the decision-maker sees the environment’s true state, it is

referred as a completely observable Markov decision process. The foundation of MDP

is presented as follows.

2.4.1.1 Markov property

The Markov property states that anything that has happened so

far can be summarized by the current state. Thus, the probability of being in the next

state at time t+1 based on the past history of state changes can be defined simply as

the conditional probability based on the current state at time t,
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1 1 0 0 1 1( | ,..., ) ( | ).t t t t t t t tP S s S s S s P S s S s         (2.3)

This equation is referred to as the Markov property. A state refers to information on

the environment that may be useful in making a decision. If the state has the Markov

property, then the environment’s state at time t+1 depends only on the state

representation at time t.

2.4.1.2 Markov Decision Process

A MDP is a discrete-time random decision process defined by a

set of states, actions and the one-step dynamics of environment. Given any state s and

action a, the probability of occurrence of each possible next state 1ts s  is

1( | , ) ( | , ).t t tP s s a P S s S s a a     (2.4)

This equation is called the state transition probability.

Similarly, given any current state and action, s and a, together with any next state, ,s

the expected value of the incurred reward is

1 1( , , ) [ | , , ],t t t tR s a s E r S s a a S s      (2.5)

where [ ]E  is the expectation operator and 1tr  is the reward received at time t +1.

Equation (2.4) and (2.5) completely specify the most important aspects of the

dynamics of the MDP. A MDP model is shown in Fig. 2.2.

Figure 2.2 A MDP model.
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A tuple (S, A, P, R) is used to describe the MDP characteristics,

where S is the discrete set of environment states, A is the discrete set of possible

actions. In each time step t, the agent will observe the current state ts s S and

select an action .ta a A After taking action, the environment makes a transition

into a new state 1ts s S   according to the state transition probability

( | , )P s s a P  and then receives a feedback tr R which is a function of the reward

expected from the environment as a result of taking action a A . Let  be defined as

a mapping of the state space to the action space, : [ ]S P A  , where P[A] is the

distribution over the action space. The objective of solving a MDP is to find a policy

 that maximizes (or minimizes) some desired objective function. Such objective

function is defined as follows. Let ( , )tQ s a be defined as the action-value function of

a given policy  which associates state-action pair ( , )s a with an expected reward for

performing action a in state s at time step t and following  thereafter;

1

0

( , ) [ | , ]

             [ | , ],

t t t

t k t t

k

Q s a E R s s a a

E r s s a a

 

 


 



  

   (2.6)

where 1 2 2 3 1

0

...t t t t k t k

k

R r r r r  


    



      is the expected discounted return of

the agent,  is the discount factor and [ ]E  is the expectation operator under policy

 .

The objective of MDP is to find a policy to select actions at a

given state such that the long term average reward is maximized. To achieve this,

particularly in scenarios where the dynamics of the environment is difficult to model
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(such as in WSNs), a technique called reinforcement learning can be used to solve

MDPs.

2.4.2 Reinforcement learning

Reinforcement learning (RL) is a computational approach which

identifies how a system in a dynamic environment can learn to choose optimal actions

to achieve a particular goal. The learner is not taught which action to take, as in most

forms of machine learning, but instead must discover which actions yield the most

reward by trial-and-error interactions with its environment (Sutton and Barto, 1998).

In RL model, the learner or decision maker is called the agent.

Everything outside the agent is called environment. It uses a formal framework

defining the interaction between a learning agent and its environment in terms of

states ( ts ), actions ( ta ) and rewards ( tr ). The agent selects actions and the

environment responds to those actions. Furthermore, the environment also feed backs

to the agent rewards, as a consequence of the action selection at a given state, which

the agent tries to maximize over time. More specifically, the agent and environment

interact with each other in a sequence of discrete time steps. At each time step (t), the

agent receives some representation of the environment’s state ( ts ) and selects an

action ( ta ). One time step later, the agent receives a numerical reward ( 1tr  ) and finds

itself in a new state ( 1ts  ). Figure 2.3 shows the agent-environment interaction in

reinforcement learning.
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Figure 2.3 Diagram of agent-environment interaction in reinforcement learning.

2.4.2.1 The value function

Reinforcement learning algorithms are based on estimating

value functions. A value function is the expected sum of rewards received from

starting in state s. The value functions evaluate the performance of the decision which

the learner has taken at a given state. Since the rewards received in the future by the

learner depend on the actions which are taken, value functions are defined with

respect to each particular policy. Therefore, we can define the value function of a state

under a policy , ( ),V s as

( ) [ | ]t t
V s E R s s

  

1

0

               [ | ],k t k t

k

E r s s 


 



  (2.7)

where [ ]E  is the expectation operator under policy  . We call function V  the

state-value function.
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In RL, the agent attempts to improve its decision-making policy over time

in order to learn an optimal policy * ( )s for each state s, which is maximize the total

expected discounted reward over the long run. The optimal state-value function,

denoted as *( )V s , would therefore be the state value function which is maximum over

all possible policies at state s.

*( ) ( )V s V s 

max ( )V s


 (2.8)

1

0

max [ | ]k t k t

k

E r s s





 



 

1 2

0

max [r | ]t k t k t

k

E r s s


 


  



  

1 * 1max [ ( ) | ]t t tE r V s s s


   

*max ( | , )[ ( , , ) ( )]
a

s

P s s a R s a s V s


   

*max ( , ) ( | , ) ( )
a

s

R s a P s s a V s


    
 

 ,                      (2.9)

where ( | , )P s s a is the probability of transiting to next state s after taking action a at

state s. The quantity ( , )R s a is the expected next reward given the current state and

action, that is 1( , ) [ | s , ],t t tR s a E r s a a   and is related to ( , , )R s a s by

( , ) ( | , ) ( , , )
s

R s a P s s a R s a s


   . Equation (2.9) is called the Bellman optimality

equation for V  . This equation is also known as iterative policy evaluation

(Puterman, 1994).
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However, in many situations the state transition probability and reward

model in (2.9) is unknown. Therefore, such models can be learnt directly by an agent

interacting directly with the environment. Such approach is called model-free

reinforcement learning. One popular model free reinforcement learning technique

used in this thesis is presented next.

2.4.2.2 Q-learning

Q-learning (Sutton and Barto, 1998) defines a learning method

within a MDP that is employed in single-agent RL systems. Q-learning is an

algorithm that does not need a model about the state transition probability and can

directly approximate the optimal action-value function (Q-value) through online

learning. We can define the right-hand side of Eq. (2.9) by

*( , ) ( , )Q s a Q s a 

( , ) ( | , ) ( )
s

R s a P s s a V s 



    (2.10)

where ( , )Q s a is the total discounted reward of taking action a at state s. Then, we

obtain

*( ) max ( , ).
a

V s Q s a   (2.11)

It can be seen that the optimal value function ( )V s is substituted into (2.10), we can

write the ( , )Q s a as a function of ( , )Q s a   as follows.

( , ) ( , ) ( | , ) max ( , )
a

s

Q s a R s a P s s a Q s a 



     (2.12)

Eq. (2.12) is called Bellman optimality equation for .Q 

In Q-learning, the agent tries to find the optimal ( , )Q s a by

iteratively updating the estimate ( , )Q s a . The basic idea in Q-learning is to estimate
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Q-value for actions based on feedback (reward) and agent’s Q-value function using

the observed information , , , .ts a r s  The update rule is based on temporal-difference

(TD) learning, which using Q-values and the Q-learning estimated from the next state

in order to update ( , )tQ s a to 1( , )tQ s a . Q-learning provides a simple updating

process, in which the agent starts with an arbitrary initial Q-value ( , )tQ s a for all

,s S a A  . After executing action a at state s, the agent receives an immediate

reward r and then transits to a new state s and updates the new Q-value at time step

t+1 as follows :

1( , ) ( , ) [ max ( , ) ( , )]t t t t t t

a
Q s a Q s a r Q s a Q s a 


    

(1 ) ( , ) [ max ( , )],t t t t
t

a
Q s a r Q s a  


     (2.13)

where  [0,1)t  is the learning rate and  [0,1)  is the discount factor. The process

is repeated so that the agent can learn its own optimal policy. Note that the Q-value in

equation (2.13) can converge to *( , )Q s a under the assumption that all states and

actions have been visited infinitely often. The optimal policy is given by

( ) max ( , ).
a

s Q s a   (2.14)

It can be seen that Q-learning provides a simple procedure to

learn optimal policy in single-agent RL systems.

2.5 Multi-agent in non-cooperative game

Multi-agent systems differ from single-agent systems in that there are many

different agents that are supposed to learn a task and that all of the agents’ actions
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affect the environment. Thus, each agent needs to maintain observation of its

environment and as well as the other agents in order to learn the optimal policy.

Therefore, the Q-learning algorithm for single agent is extended to consider other

agent’ actions as well.

The author in (Hu and Wellman, 2003) proposed the Nash Q-learning (NashQ)

algorithm, by extending Q-learning to a non-cooperative situation where each agent

can rationally decide its action whether it will cooperate with other agents or not by

considering both its own and other agents’ information as well.

2.5.1 The action-value function

Instead of finding an optimal action to maximize one single agent’s

reward as the single-agent Q-learning, NashQ seeks joint actions that yield the best

possible reward for all agents. For a two-agent system, the action-value function for

agent i becomes 1 2( , , )i iQ s a a , where i=1,2.

The objective of the agents in the NashQ algorithm is to learn their

best mutual response policy, which is defined by the Q-values received from Nash

equilibrium (NE). NE is not only used to decide the agent’s own action policy, but

also predict the other agent’s action, given by 1 1 2 2( ), ( )s s   where ( )i s  is agent i’s

distribution over the set of actions at state s . NashQ then calculates a NE for the

stage game 1 2( ( ), ( ))t tQ s Q s  and updates its Q-values according to

1
1 2 1 2 1 2( , , ) (1 ) ( , , ) [ ( , , )],t t t t t t

i i i i i i iQ s a a Q s a a r NashQ s a a         (2.14)
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where 1 2( , )a a is a joint action, t
ir is an immediate reward for agent i in the state s

under this joint action and 1 2( , , )t
i iNashQ s a a   is the Q-value of agent i in the next state

is for selecting joint action received from Nash equilibrium, which is defined by

1 2 1 1 1 2 2 2( , , ) ( ) ( , , ) ( )t i
i i t iNashQ s a a s Q s a a s           (2.15)

In order to calculate the Nash equilibrium, agent i must observe the

other agent’s immediate reward and previous actions and updates its conjectures on

the other agent’s Q-value, by maintaining its own update on the other agent’s Q-

value:

1
1 2 1 2

1 2

( , , ) (1 ) ( , , )

                                   [ ( , , )],    .

t t t
j j j j

t t t
j j j

Q s a a Q s a a

r NashQ s a a j i


 

  
    

(2.16)

NE can be found in a pure-strategy equilibrium, where an agent is able

to achieve the best response to the other agent’s choice. However, not all games have

pure-strategy equilibrium (Daskalakis et. al., 2009). Under this circumstance, the

agents need to select their strategies randomly according to some probability

calculated from the Lemke-Howson method (Shoham and Brown, 2009) to achieve

the NE. Such equilibrium is called mixed-strategy equilibrium (see Appendix A for

more details).
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Figure 2.3 The Nash Q-learning algorithm (Hu and Wellman, 2003).

2.5.2 Convergence

NashQ requires two conditions in a stage game during learning to

converge (Hu and Wellman, 2003).

1) The stage games encountered during learning have a global optimal

point, which is defined as a point of joint strategy in the stage game which every

agent receives its highest payoff at this point, or

2) They all have a saddle point which is defined as a point of joint

strategy in the stage game which is a NE point, and each agent would receive a higher

payoff when at least one of the other agents deviates.

However, both the global and saddle points may not always be

satisfied for these conditions because of both points may not exist in every stage

game. Another limitation is that in selecting NE under a mixed strategy, NashQ

algorithm resorts to a mixed strategy selection where the Nash equilibrium is
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probabilistically selected according to the Lemke Howson method (Shoham and

Brown, 2009). Their algorithm showed that convergence can still be established with

such relaxed convergence conditions.

2.6 Summary

In this chapter, an overview of the non-cooperative game theory and the multi-

agent Q-learning algorithm called NashQ are given. Both algorithms are used to

determine the packet forwarding strategies in non-cooperative multi-domain WSNs in

this thesis. By considering joint actions, the agents can rationally determine the best

mutual policy and receive fair benefit for all agents in multi-domain WSNs.

In the next chapter, a packet forwarding formulation in non-cooperative multi-domain

WSNs is presented. Non-cooperative game theory based Lemke Howson method is

used to study the conditions which equilibriums can exist and its performance is

evaluated under common sink scenario.
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CHAPTER III

PACKET FORWARDING IN COMMON SINK MULTI-

DOMAIN WIRELESS SENSOR NETWORKS USING

NON-COOPERATIVE GAME

3.1 Introduction

Routing has been a challenging issue addressed in wireless sensor networks

(WSNs) mainly due to the scarcity of energy and on-board resources. In recent years,

applications of large scale WSNs are becoming a reality. Examples include smart

grids (Zaballos et. al., 2011; Fadel et. al., 2015), the Internet of Things (Mattern et.

al., 2011; Mulligan 2010) and Machine-to-Machine (M2M) communications networks

(Fan et. al., 2011; Niyato et. al., 2011). It is possible that multiple sensor networks can

coexist independently within a region of interest without conflicting each other. These

networks may even be physically overlapping and their sensor nodes may be

interleaved. Such networks are referred to as multi-domain wireless sensor networks

(WSNs). These networks could potentially gain certain benefits, such as alternative

routing paths and reduced energy consumption, if their sensor nodes share resources

which can prolong their lifetime. Many existing works consider resource allocation

problems in multi-domain WSNs (Shamani et al., 2013; Jelicic et al., 2014; Singhanat

et al., 2015; Kinoshita et al. 2016). All of these works showed that resource sharing

and fully cooperation between multiple different networks, result in reduced energy
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consumption and increased network lifetime. However, because of possible selfish

behaviors among sensor nodes to conserve their energy, cooperation between sensor

nodes belonging to different network authorities may not always be readily available.

Furthermore, it is also possible that, under certain situations, node cooperation will

not be beneficial to any network in the multi-domain WSN. Vaz et al., (2008) and Ze

et al., (2012) showed that cooperation between two different networks that are

deployed in the same region may not always be beneficial to both networks. This is

because whether or not each agent will cooperate depends on the configuration of

each network, network connectivity and how hostile the environment is. Previous

works have proposed a centralized packet forwarding scheme in Non-cooperative

multi-domain WSNs. However, the centralised operation is not scalable. In this thesis,

our focus is thus on determining a distributed resource allocation scheme for Non-

cooperative sensors in multi-domain WSNs which allow each individual sensor to

decide its packet forwarding strategy in a distributed manner allowing a more scalable

implementation.

In this chapter, we introduce the application of game theory to address the

issue of Non-cooperative distributed resource allocation problem in multi-domain

WSNs. In particular, game theory can be used to analyse the interaction and

determine a set of strategies among rational agents, where each agent uses available

information to decide its behaviour. The major advancement that has driven much of

the development of game theory is the concept of Nash equilibrium (NE) which is

used to determine a suitable and fair strategy for all agents (AlSkaif et. al., 2015).  NE

is a set of strategies for each of the agents such that each agent’s strategy is the best-

response to the other agents’ strategies. In a game where there is only a single unique
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NE, the game is said to have a pure strategy form. However, there are games where

no pure NE exists. In such games, there may not be any pure strategy that provides the

maximum payoff for all agents (i.e., an agent always attains higher payoff than other

agents). Therefore, in such games, each agent can choose its pure strategy with a

certain probability, which results in a (probabilistic) mixed strategy equilibrium.

Many researches focus on the problem of stimulating cooperation between

WSNs. Ref. Wu et al. (2005) and Miller et al. (2005) applied game theory to packet

forwarding in multi-domain WSNs problems by using incentive mechanisms to

motivate cooperation between sensor nodes. Incentive mechanism such as using trust

values are used to encourage cooperation packet forwarding among nodes. On the

other hand, (Felegyhazi et al., 2005) and (Yang et al., 2007) applied the Non-

cooperative game algorithm to determine a situation which cooperation can exist in

multi-domain WSNs without any incentive mechanisms. Cooperation may exist only

when it achieves mutual benefits for every network. The rational for this is that

cooperation is advantageous in certain situations when the payoff exceeds the actual

costs of cooperation. Therefore, there is no need to use incentives to cooperate in

every situation. Ref. (Felegyhazi et al., 2005) formulated a packet forwarding game as

a Non-cooperative resource allocation problem. They showed that the Non-

cooperative game algorithm is a suitable framework to determine an equilibrium

strategy for their problem. However, this algorithm requires a centralised operation to

determine the packet forwarding strategy for each agent (in a centralized operation, an

agent refers to the cluster head in each network). Moreover, due to sensor nodes’

communication and energy constraints, a centralized payoff estimation, in which a

single computational node receives all sensor data, is inefficient and not scalable. The
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global information maintained by each agent creates a large amount of overhead.

Hence, a decentralized or distributed algorithms that allow sensor nodes to estimate

their payoff locally to reduce the amount of overhead used would be more practical.

Ref. (Yang et al., 2007) considers the problem of relay selection in a packet

forwarding problem in multi-domain WSNs with selfishly behaving nodes. A payoff

matrix is implemented to compare the amount of energy a node can save. A NE

strategy is then selected based on the payoff matrix. Although their results show that

NE can indeed achieve cooperation, their work is based on a small network with a

single relay node in each network. In practice, a network consists of several tens,

hundreds or even thousands of sensor nodes. Furthermore, the payoff matrix used in

(Yang et al., 2007) did not take into consideration the packet receiving rate (PRR)

despite the fact that their relays must satisfy SNR constraints.

This chapter therefore studies packet forwarding problem between sensor

nodes belonging to multi-domain under Non-cooperative and hostile conditions. For

this purpose, we propose a novel payoff matrix and propose the Non-cooperative

game algorithm to determine the best packet forwarding strategy for all network

authorities in the system. It is worth noting that this thesis considers a localised

distributed approach, as opposed to the centralised approach in (Felegyhazi et al.,

2005), to reduce the amount of communication overhead and achieve scalability. The

proposed payoff matrix in this thesis differs from (Yang et al., 2007) in that it takes in

to consideration of successful packet delivery in terms of the packet reliability ratio,

in addition to the energy savings.
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The underlying objective of this chapter is propose a novel payoff matrix to

determine a mutual strategy for the packet forwarding problem in a Non-cooperative

multi-domain WSNs which enables cooperation in necessary network environments

to achieve packet reliability and to prolong network lifetime as mutual benefits for all

domains. Non-cooperative game algorithm is applied to decide a suitable course of

action for the agents in the packet forwarding game. This chapter will also study the

NE conditions of the packet forwarding strategies in multi-domain WSN and fairness

issues in terms of the energy usage in each domain. In situations where there is no

pure strategy, the well-known Lemke Howson method is used to determine a mixed

strategy for games with two agents (Shoham and Brown, 2009). To evaluate the

performance of Non-cooperative game algorithm, we divide the experiment into two

parts. In the first part, we formulate our packet forwarding game into uniform random

topology framework in order to show that Non-cooperative game theory can be

applied to obtain the best mutual policy in small scale WSNs. The second part extends

the study to a more realistic scenario by replacing Non-cooperative game theory to

tree topology WSNs.

The main contribution of this chapter is three-fold: 1) the distributed packet

forwarding scheme in Non-cooperative multi-domain WSNs; 2) identification of

parameters that effect cooperation between multi-domain networks and fairness of

benefits that the networks can achieve; 3) a novel payoff matrix to be used in packet

forwarding in Non-cooperative multi-domain WSNs.
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3.2 Non-cooperative game

3.2.1 Game theoretic framework

Non cooperative games are game situations consisting of at least two

agents whereby the decision making of an agent involves knowledge of the

interactions or strategies from other agents in the game. Each agent is considered

rational which would undertake actions to gain its own maximum benefits or payoffs.

Each agent independently selects its own action without any prior negotiation which

makes it suitable for non-cooperative behavior in multi-domain WSNs. If a sensor

node has a packet to send to the sink node, that sensor node becomes a source node.

Each source node takes a role of an agent in the game which acts selfishly to conserve

their limited energy supply. Each agent makes its own decision for the maximum

benefit or payoff for its own network.

3.2.2 Packet forwarding game using Non-cooperative game approach

In Non-cooperative Game, each agent can independently decide to

interact with the other agents without any prior agreement or collaborative conditions.

Therefore, it is necessary for each agent to predict actions of other agent in order to

determine its own action, relative to the others. The Non-cooperative game algorithm

(Lasaulce and Tembine, 2011), is a branch of game theory applied exclusively to the

situation where the interests of multiple agents conflict. Such situation may arise in a

multi-domain WSNs, where sensor nodes may wish to forward packets using nodes

from the other domain to conserve their own energy. A basic component in non-

cooperative game is defined by the tuple, ( , , ),I A u where I denotes the set of agents, A

denotes the set of actions (i.e. policies) and u denotes a set of payoff functions. The

solution in the Non-cooperative game algorithm is based on Nash equilibrium (NE)
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which attains the best mutual policy for all agents in the game. The following

notations are defined for a game:

1) Agents refer to source nodes in each network. The source nodes must make

decisions selecting a route to forward a packet to the base station.

2) Action refers to the set of possible actions which can be selected by the agents.

In this research, there are two actions which agents (source) nodes can select, i.e., a

Non-cooperative route or a cooperative route. A Non-cooperative route comprises

nodes with in the same domain only whereas a cooperative route consists of nodes

from other domains as well. Source nodes make their decisions upon the NE from a

matrix of payoff functions which each sensor node maintains.

3) Payoff function is the outcome resulting from the agents’ interaction according

to the selected action. It can be defined in terms of energy savings, energy

consumption or packet delivery.

This chapter proposes a payoffs matrix by improving that in (Yang and

Brown, 2007) by not only considering energy savings for each strategy, but also

taking into consideration the packet receiving rate (PRR) or the packet delivery rate

(Ahmed and Fisal, 2008). The payoff matrix is then used in the Non-cooperative

game presented in the following section.

3.3 Problem formulation

In this section, Non-cooperative game algorithm is formally introduced in

order to find the best mutual policy for packet forwarding in multi-domain WSNs.
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3.3.1 Packet forwarding game

In our model, we assume that there are two different networks in the

multi-domain WSN. Let be the set of nodes in each network such that= { , , … , }, where v is the number of sensor nodes in network i. We assume

that the system operates as a distributed system whereby a source node in each WSN

determines its own behaviour and decides its packet forwarding strategy

independently. The role of each sensor node in multi-domain WSNs is to send its data

measurements (i.e., packets) to neighbouring nodes through multi-hop communication

to a common base station. We assume that two sensor nodes are able to communicate

when they are within transmission range. Even if sensor nodes belong to a different

network, interactions between the agents are assumed. It is also assumed that in each

network, an AODV path discovery scheme is used. When there is a packet to be sent

to the common base station, the source node broadcasts a RREQ message to its

neighbouring sensor nodes in the same domain, which will in turn broadcast the

message to their neighbours until non-cooperatives route to the sink are discovered. In

a similar manner, the source node also discovers cooperative routes by broadcasting

RREQ messages to sensor nodes belonging to the other domain as well. Therefore,

each agent maintains two different routing tables, one for routing within their own

network and the other for routing through coordinated paths with the other network.

The shortest route in the two tables are selected as the action for the source node (i.e.,

the Non-cooperative and cooperative route). Each route incurs an energy cost

associated to it described as follows (as shown in Figure 3.1). From the figure, let a

sensor node from network domain 1, , where j=1,2,..v, be a source node taking a

role as an agent in the game which has a packet to send to its sink1. Suppose has to
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make a decision whether to use the action that uses the non-cooperative route in its

own domain or the action that uses the cooperative route that consists of nodes from

the other domain (i.e. forward its packet to , where k=1,2,..v). The decision to

select which action is based on the energy model in section 3.3.2 and the strategy

decision model in section 3.3.3

Figure 3.1 System model for common sink
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from the radio model in (Naruephiphat and Usaha, 2008).  The radio model for the
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other network depending on action selected by the agent. The strategy decision is

presented next.

3.3.3 Action decision

In the Non-cooperative game, each agent can independently decide its

own action whether or not to cooperate with the other agent.  A set of actions, which

include all the possible joint actions available in the game, is defined by = { , }
where the shorthand notations refer to the following:

D: The agent does not forward its packet to the other network (i.e. agent chooses

the non-cooperative route) and drops all packets from other network if asked for help

to forward the packets.

F: The agent forwards its packet to the other network (i.e. agent chooses the

cooperative route) and in turn forwards all packets if the other network asked for help

to forward the packets.

Each of the joint actions incurs some cost and payoff associated to it.

In this chapter, we propose a payoff function according to the payoff matrix in Table

3.1.

Table 3.1: Payoff matrix of interaction between sensor nodes in different domains

The physical interpretation is as follows. Suppose that both domains

choose the action {D,D} where each domain denies cooperating with the other domain

= D = F= D , 0 , −= F − , 0 +( − ) , +( − )
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to forward the other domain’s packets, the there is no energy cost in helping the other

domain. The only payoff is the packet received rate (PRR), , for domain = 1,2
which is the average ratio of correctly received packets at a sink in such path. For a

transmission of a data packet of length b bits, PRR can be expressed as

= (1 − ) , (3.1)

where is the bit error probability for one hop communication using OQPSK

modulation for Zigbee devices operating at 2.4GHz (Ahmed and Fisal, 2008). The

PRR ranges between 0-1 and reflects the benefits in terms of the reliability of the

route. If either agents decides to help the other domain forward its packets, while the

other domain declines to cooperate, the action would be {D,F} or {F,D}. In this case,

the cost of cooperation would be the energy the domain i uses to help forward the

(domain -i) packets to the sink (− ). The minus sign depicts the energy consumed

perceived as a cost of cooperation. The other domain is zero since it does not incur

cost (as it refuses to cooperate) but does not enjoy any benefits of increased PRR. If

both agents agree to cooperate, the action would be {F,F} and the associated payoff is

the PRR ( ) and the net gain in energy savings. The energy saving is determined

from the energy consumption on Non-cooperative path ( ) subtracted by the energy

consumption on cooperative path ( ). Note that a positive net energy gain ( − )

from cooperation and high PRR will result in both agents selecting the cooperative

action {F,F}.

The decision to select a joint action in this Non-cooperative game

depends on the NE with respect to the payoff matrix in Table 3.1.  A joint action of
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the stage game is Nash equilibrium point if every agent receives its highest payoff at

this point. Let ( , ) be a joint action of agents in both domains where ∈ . A

joint action ( ∗ , ∗) is said to be a NE if agent i selecting action ∈ gives the

highest payoff when its opponent selects its best action ∗ where ∈ is an

action of the agent ’s opponent (− ). The NE can be presented as

( ∗, ∗ ) ≥ ( , ∗ ) (3.2)

where ( , ∗ ) is the value of the payoff function under joint action ( , ∗ ) of

agent i.

Typically NE corresponds to a pure-strategy equilibrium, which is a

condition that an agent can choose with certainty an action which achieves the best

response to the other agent’s choice. However, not all games have pure-strategy

equilibrium. Under this circumstance, the agents need to select their actions randomly

according to some probability to achieve the NE. Such equilibrium is called a mixed-

strategy equilibrium. The Lemke Howson method (LH), is the best known method to

solve for mixed-strategy NE between two agents (Shoham and Brown, 2009). The

advantage of LH method is that it is guaranteed to find at least one NE point. In this

thesis, the LH method is therefore used in the Non-cooperative game when there are

multiple NE or when pure strategy NE does not exist. The pseudo code of NCG-LH is

shown in Figure 3.2.

3.3.4 Compared algorithms

In order to evaluate the performance of Non-cooperative game routing

using LH algorithm (NCG-LH) for packet forwarding in multi-domain WSNs, we

compared it with a variations of the AODV routing protocol which is  used in IEEE
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standard 802.15.4 ZigBee protocol stack. In particular, there are two variations of the

AODV scheme compared in this experiment: is the Non-cooperative AODV routing

(No cooperation routing) and the cooperative AODV routing (All cooperation

routing). The Non-cooperative AODV routing uses AODV to discover the least

energy consumption route consisting of nodes within the same domain. On the other

hand, the cooperative AODV routing discovers the least energy consumption route

which consist of nodes from the other domain.

3.4 Experiment results

In this section, we evaluate the performance of the proposed NCG-LH

algorithm and investigate the cooperative conditions of the packet forwarding

BEGIN

for topology 1:100

Initialize energy for each node to full battery level
Let t=0

do
Random source node to create data packet
Establish two routing tables using AODV routing protocol
(one table for paths in own network and another one for paths in cooperative networks)
Calculate payoff value for all available action following Table 3.1
Determine strategy using NE and LH method
Sent data packet to sink following its strategy

Let t=t+1
while (at least one node run out of battery )

endfor

END

Figure 3.2 Pseudo code of NCH-LH algorithm
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strategies in multi-domain WSNs. We study its performance under the uniform

random topology and tree topology models.

We consider two WSNs co-existing in the same area, which are deployed in a

multi-domain WSN. In each WSN, the source nodes act as individual agents, which

make their own decisions which route to forward their packets to. Then all immediate

nodes belonging the chosen route act according to the source nodes decision. The goal

of each agent is to maximize the packet delivery within its network to the sink by

based on the energy payoff matrix in Table 3.1. We investigate two scenarios,

uniform random topology and tree topology scenarios. The purpose of studying the

random topology scenario is to investigate how the unguaranteed connectivity

between sensor nodes and the common sink affects cooperation. On the other hand,

the tree topology scenario is studied to study the effect of guaranteed connectivity on

node cooperation. Simulation results are carried out over 100 randomly generated

topologies to avoid performance bias based on a particular topology.

To study the effect of cooperation between nodes in multi-domain WSNs, the

following performance metrics are measured:

1) Cooperation: the ratio of the number of routes using nodes from both domains

to the total number of routes discovered.

2) Packet delivery ratio (PDR): the ratio of the number of data packets received

over the number of data packets sent out.

3) Network lifetime: the time at which the first network node runs out of energy.

4) Fairness: the difference in average energy consumed along a forwarding path

in domain 1 and 2 is used to evaluate the fairness of the algorithms. The discrepancy

in energy usage between the two domains indicates some degree of unfair resource
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allocation between the domains as one domain is utilized more than the other.

Therefore, fairness is achieved when this discrepancy is reduced to zero indicating

that energy in both networks are equally used.

The metrics compared are averaged from the measurements obtained from

both networks.

3.4.1 Uniform random topology

We consider two WSNs co-existing in the same area, which are

deployed in a 500x500 in multi-domain WSNs as shown in Figure 3.3. The

simulation parameters are shown in Table 3.2.

Figure 3.3 Uniform random topology for 100 nodes per domain
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3.4.1.1 Effect of density

In order to identify the parameters which affect cooperation in

multi-domain WSNs, we varied the node density by increasing the number of sensors

in each domain as well as network connectivity (i.e. unguaranteed and guaranteed

connectivity)

Figure 3.4-3.7 presents the performance comparison of NCG-

LH routing algorithm at different node density under uniform random topology.

Figure 3.4 shows the average proportion of cooperation with varying number of

sensor nodes per domain which represents the density of each network. In this figure,

results of only NCG-LH algorithms because All cooperation (which only uses routes

consisting of nodes from both domains) and No cooperation (which only uses routes

consisting of nodes from the same domain) always have a proportion of cooperation

Table 3.2: Parameter setting for uniform random topology
Parameter Value

Number of domains 2

Number of sensors per domain 20, 40, 60, 80, 100

Area size 500x500 m2

Sink position (250,250)

Number of maximum hop 5 hops

Transmission range 100 m

Data load per packet, b 100 bytes

Path loss exponent, σ 2, 4

Number of failed nodes 12-48

Routing protocol AODV routing

Distribution of the sensors Uniform random topology

Random Topology 100
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100% and 0%, respectively. Contrary to the two former algorithms, NCG-LH neither

commits nor declines to cooperate entirely, but NCG-LH rather chooses its action to

cooperate only when both networks can both attain benefits from the NE in the payoff

matrix. Results show that in the case of unguaranteed connectivity, the proportion of

cooperation NCG-LH algorithm is lower when the density of sensor nodes is high.

Thus, when sensor nodes are densely deployed in the area, various paths are available

for their sensors to send packets to the sink, hence, cooperation between both agents is

not necessary. This explains the reduction of cooperative equilibrium as the network

density increases.  As for the guaranteed connectivity case, NCG-LH algorithm

exhibits a rather constant percentage of cooperation as connection and thus a route is

always guaranteed to be discovered. Therefore node density has no clear effect in this

case. This suggests that cooperation is only needed in sparse networks where

connectivity is not guaranteed.

Figure 3.4 Average proportion of cooperation at different node

density under uniform random topology
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Figure 3.5 presents the average successful packet delivery ratio.

From the figure, All cooperation algorithm can deliver packets to the sink with PDR

by 100% for both unguaranteed and guaranteed connectivity. No cooperation

algorithm on the other hand can maintain 100% PDR only when connectivity is

guaranteed. However, in unguaranteed connectivity case, PDR drops significantly

when the network is sparse (20-60 nodes) but increases to 100% as the network

becomes more dense. The proposed NCG-LH did not cooperate entirely but it is able

to maintain 100% PDR for both guaranteed and unguaranteed connectivity cases

under all network densities.

Figure 3.6 depicts the network lifetime. The NCG-LH longer

network lifetime than No cooperation and All cooperation routing algorithms by 9.1

and 16.7% on average, respectively, at 100 nodes per domain without any guaranteed

network connectivity. While No cooperation routing algorithm can has the longer

Figure 3.5 Average packet delivery ratio at different node density under

uniform random topology
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network lifetime than All cooperation routing algorithm when the network density

increases without any guaranteed network connectivity. However, this comes at a

tradeoff of low PDR (Figure 3.5), i.e. with few packets being delivered the energy

used is less and thus the network lives longer (albeit low PDR). In the guaranteed

connectivity case, NCG-LH has a network lifetime comparable to No cooperation

algorithm, and exceeds that of All cooperation by 24% on average. This suggests that

when the routes are guaranteed, cooperation is unnecessary and would result in

wasted energy consumption and reduced network lifetime.

Figure 3.7 displays the fairness of NCG-LH and All

cooperation algorithms. Note that No cooperation algorithm is not shown here as

there is no cooperation among the nodes thus fairness is irrelevant. Figure 3.7

illustrates that the NCG-LH consistently attains better fairness than All cooperation

algorithm by obtaining lower difference in energy consumption between the two

Figure 3.6 Average network lifetime at different node density under

uniform random topology
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domains. NCG-LH decides action based on NE whereas All cooperation always

relies on the other domain to forward its packets despite certain situations where

cooperation may be unnecessary.

3.4.1.2 Effect of hostile environments

We then investigate sensor nodes behaviour in more realistic

environments with various node failure and path loss scenarios. Since WSNs may be

deployed in uncontrollable and hostile environments, they are subject to node failure

which could decrease the reliability of WSNs. Therefore, it is important to study the

effect of node failure in WSNs. Moreover, the effect of hostile environments with

increasing of path loss exponent (PLE) is also evaluated. The node density is fixed at

80 nodes per domain which is a dense network so that the network has high

availability of routes within its own domain.

Figure 3.7 Average difference in energy consumption at different node

density under uniform random topology
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Figure 3.8-3.11 shows the performance comparison of NCG-

LH algorithms under failure prone and hostile environments for uniform random

topology.  Figure 3.8 depicts the proportion of cooperation. The results show that the

proportion of cooperation by NCG-LH algorithm is higher when node failure and path

loss exponent is increased.  This suggests that cooperation is imperative in harsh

environments.
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Figure 3.8 Average proportion of cooperation in hostile environment under

uniform random topology

Figure 3.9 Average packet delivery ratio in hostile environment under uniform

random topology
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Figure 3.9 shows the average successful packet delivery ratio.

In case of free space with 0-12 failed nodes, the figure shows that the PDR of all three

algorithms are comparable. However, when the number of node failures increases to

24, 36 and 48, the PDR of No cooperation algorithm gradually drops to 80%. On the

other hand, NCG-LH and All cooperation algorithms can maintain their PDR at

100%. The reason is because the cooperation between the two domains which permits

alternative routes to avoid the failed nodes. This clearly shows that cooperation is

necessary when network is prone to node failure. As the path loss exponent increases,

the figure demonstrates that the proposed NCG-LH algorithm can perform as well as

All cooperation algorithm by maintaining PDR at 90% on average. Moreover, NCG-

LH algorithm outperforms No cooperation algorithm by over 24% PDR when the path

loss exponent is 4. Hence, No cooperation cannot maintain acceptable PDR in the

presence of failed nodes and higher PLE. On the other hand, NCG-LH cannot only

maintain high PDR but also in an energy efficient manner as illustrated by the longer

network lifetime than All cooperation algorithm in Fig 3.10. In particular, NCG-LH

can attain an average of 14.8% and 22.5% longer network lifetime than All

cooperation algorithm at PLE 2 (free space) and 4, respectively.
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Figure 3.11 Average difference in energy consumption in hostile environment

under uniform random topology

Figure 3.10 Average network lifetime in hostile environment under

uniform random topology
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Figure 3.11 show that NCG-LH can also attain more fairness

by attaining lower difference in energy consumption between the two domains than

All cooperation algorithm. Moreover, it can be seen that in case of PLE 4 there is

more difference in energy consumption than in the free space case. This because PLE

4 case consumes more energy than in the free space case as seen in the transmission

cost of agent,
,

( , ) ( )
i TX

j
elec ampE b d E b b d      , where  is path loss exponent.

The results obtained from the uniform random topology suggest

that cooperation in multi-domain WSNs are not always be beneficial to any network

and may even waste energy and reduce network lifetime. Cooperation between

networks are beneficial if 1) the networks are sparse and have no guaranteed

connectivity; 2) the networks is prone to faulty nodes which may cause disconnected

routes; 3) in presence of hostile network environment (high path loss). In such

scenarios where cooperation is required, NCG-LH has shown to select suitable actions

giving rise to high PDR and longer network lifetime than algorithms which always

cooperate (All cooperation) and do not cooperate at all (No cooperation).

3.4.2 Tree topology

In this section, we present results of another realistic topology of WSN

deployment for many applications in recent years. In the previous section, the uniform

random topology was more suitable for random deployments such as scattered sensor

placements in a large area (e.g., forests, farm land). There are other applications

which required structured tree topologies which also ensure guaranteed connectivity

in large coverage areas (Guizani et al., 2015).
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Therefore this section, the tree topology for multi-domain WSNs is

investigated. We consider two WSNs co-existing in the same area, which are

deployed in a 3000x3000 as shown in Figure 3.12. The simulation parameters are

shown in Table 3.3. Because tree topology requires guaranteed connectivity, we

therefore consider only this scenario in this section.

Figure 3.12 Tree topology for 100 nodes per domain
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3.4.2.1 Effect of density

The performance of all algorithms in guaranteed connectivity

scenario at different node density under tree topology are shown in Figure 3.13-3.16.

Figure 3.13 shows that the proportion of cooperation obtained from NCG-LH remains

between 40-45% as the network density increases suggesting that node density has

little effect on cooperation when connectivity to the sink is guaranteed. The observed

cooperation between nodes is due to the energy savings only, not from the presence of

node density in the network.

Table 3.3: Parameter setting for tree topology

Parameter Value

Number of domains 2

Number of sensors per domain 20, 40, 60, 80, 100

Area size 3000x3000 m2

Sink position (1500,1500)

Number of maximum hop 10 hops

Transmission range 100 m

Data load per packet, b 100 bytes

Path loss exponent, σ 2, 4

Number of failed nodes 1-4

Routing protocol AODV routing

Distribution of the sensors Tree topology

Random Topology 100
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Figure 3.14 presents the average successful packet delivery

ratio. All algorithms can successfully transmit packets to the sink due to the

guaranteed connectivity of the tree topology. Figure 3.15 presents the network

lifetime.   The NCG-LH algorithm can achieve a longer network lifetime than All

cooperation algorithm as the network density increases, while No cooperation

algorithm achieves highest network lifetime. This suggests that at in case of

guaranteed connectivity in tree topology, cooperation between networks is not

necessary. This is because the energy required to cooperate with the other domain is

wasted unnecessarily and will shorten the network lifetime. Figure 3.16 illustrates the

fairness of the best mutual action. It should be emphasized that our proposed

algorithm is still fairer than All cooperation algorithm.

Figure 3.13 Average proportion of cooperation at different node density under

tree topology
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algorithm.

Figure 3.15 Average network lifetime at different node density under tree

topology

Figure 3.14 Average packet delivery ratio at different node density under

tree topology
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3.4.2.2 Effect of hostile environments

To evaluate the performance when the networks are subject to

faulty nodes and path loss exponent with tree topology, we fix the network density to

80 nodes per domain similar to the uniform random topology case. However, the

faulty nodes is limited to a maximum of 4 nodes per domain. This is because of the

specific structure of the tree topology which a failed node is connected close to the

common sink is sufficient to disconnect the rest of the tree.

Figure 3.17-3.20 presents the performance comparison under

hostile environments for tree topology. Fig 3.17 illustrates the proportion of

cooperation. The results show that as node failure and PLE increases, 78% and 83%

of the routes require cooperation for PLE 2 and 4 from NCG-LH algorithm,

respectively. This suggests that cooperation is imperative in failure prone situations

and even more so in hostile environments with increasing path loss exponent. This

Figure 3.16 Average difference in energy consumption at different node

density under tree topology
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because in PLE case, not only may the forwarding route be damaged by failed node

but also significant amount of energy is consumed during packet transmission.

Therefore, interleaving nodes from other domain may help forward their packets.

Figure 3.18 shows the average successful packet delivery ratio.

In case of free space, the figure shows that that NCG-LH algorithm can deliver

packets 100% to the sink as well as All cooperation algorithm when the number of

failed nodes increase. On the other hand, No cooperation algorithm shows a reduced

packet delivery ratio to 63% PDR when the number of failed nodes increases to 4

nodes per domain. When path loss exponent is increased to 4, NCG-LH and All

cooperation algorithms outperform No cooperation algorithm by maintaining 87%

PDR on average, whereas No cooperation can only obtain 56% PDR. This results

suggest that the NCG-LH algorithm can maintain PDR better than No cooperation

algorithm. NCG-LH can also achieve longer network lifetime than All cooperation

Figure 3.17 Average proportion of cooperation at hostile environment

under tree topology
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algorithm by 15.2% when there are 4 failed nodes, and 8.8% when the PLE is 4 as

shown in Figure 3.19.

Figure 3.19 Average network lifetime at hostile environment under

tree topology

Figure 3.18 Average packet delivery ratio at hostile environment under

tree topology
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Figure 3.20 depicts the difference between energy consumption

between the two domains. Results show that NCG-LH algorithm can consistently

attain better fairness than All cooperation algorithm. However, such gain becomes

marginal as the number of failed nodes and PLE increases because NCG-LH

increasingly prefers cooperative routes. Therefore, we observe a NCG-LH

performance approaching that of All cooperation algorithm.

From the results under the tree topology, node density has no

significant effect on cooperation between domains. This owes to the guaranteed

connectivity among the sensor nodes and the common sink despite the varied node

density. However, if the tree topology is prone to failed nodes or harsh path loss

environments, cooperation among nodes can indeed maintain PDR and prolong

network lifetime. NCG-LH can prolong longer network lifetime than All cooperation.

Figure 3.20 Average difference in energy consumption at

hostile environment under tree topology
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However, in harsher environments, cooperation becomes a necessity and NCG-LH

selects its actions to increase cooperation among nodes.

3.5 Summary

In this chapter, we apply the distributed Non-cooperative game algorithm

based on Lemke Howson method to the packet forwarding game for a multi-domain

WSN to determine the best actions to attain mutual benefits for both networks. The

contribution of this chapter is three-fold; 1) we show that NCG-LH algorithm can be

applied to achieve the best mutual packet forwarding policy in Non-cooperative

multi-domain WSNs in a distributed manner; 2), we evaluate NCG-LH algorithm and

identify parameters that affect cooperation between networks and fairness of benefits

that the networks can achieve; 3) we propose a novel payoff matrix for packet

forwarding game in Non-cooperative multi-domain WSNs.

Results have been evaluated in both the uniform random (unguaranteed and

guaranteed connectivity) and tree topologies (guaranteed connectivity), under varied

node density, failed nodes and path loss exponents. It was found that cooperation was

not always necessarily beneficial to all networks. In particular cooperation is

beneficial is required when 1) the network is sparse and connectivity is not

guaranteed; 2) the network is prone to failed sensor nodes which affect reliability of

the routes; 3) the network is deployed in harsh environments with path high loss.

Under such scenarios, cooperation among nodes permits use of diverse routes which

enhance reliability and prolong network lifetime for all networks. On the other hand,

in networks with guaranteed connectivity, results suggest that cooperation is

unnecessary and can result in shortened network lifetime.
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Results show that the NCG-LH algorithm is able to select appropriate actions

to forward the packets. NCG-LH action selection has the adaptability to various

network configuration (network connectivity, node density, failed nodes and path loss

exponent) resulting in high PDR, prolonged network lifetime and fair energy

consumption among the domains. This is due to the selection of NE and the Lemke

Howson method in the NCG-LH framework based on the payoff matrix which takes

into consideration the benefits of all domains.
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CHAPTER IV

FAIR ROUTE SELECTION IN MULTI-DOMAIN WSNS

USING NON-COOPERATIVE GAME THEORY UNDER

SEPARATE SINK SCENARIO

4.1 Introduction

In recent years, multiple WSNs have been constructed within the same

interesting region (Fadel et al., 2015; Rashid et al., 2016).  For such cases, researchers

have been investigating cooperation among sensor nodes belonging different network

authorities which could potentially gain certain benefits. Such benefits include

alternative routing paths and reduced energy consumption, which can prolong their

network lifetime and enhance reliability of packet delivery. Some routing protocols

for multi-domain WSNs have been proposed under common sink scenario

(Felegyhazi et al., 2005;Wu et al., 2005; Vaz et al., 2008; Singsanga et al., 2010). The

sink node is shared by the multiple networks, and located at the center of the area of

interest. The previous chapter introduced the application of non-cooperative game

theory to address cooperation problem in multi-domain WSNs and proposed a routing

algorithm named Non-cooperative game algorithm based on Lemke Howson method

(NCG-LH) algorithm. The performance of the proposed algorithm was evaluated in a

common sink scenario in order to conceptually show that non-cooperative game

theory can be applied to solve the non-cooperative packet forwarding problem in



67

distributed multi-domain WSNs. The algorithm was shown to determine a suitable

packet forwarding strategy between multiple domains that can extend the network

lifetime and enhance reliability by using Nash equilibrium (NE) and Lemke Howson

method. However, in the previous chapter, the common sink scenario was

investigated to analysis the solution. In real world WSN applications, each network

normally has its own sink. There are several recent researches solve routing problems

in multi-domain WSNs under separate sink scenario for more realistic formulation

(Yang et al., 2007; Bicakci et al., 2013; Rovcanin et al., 2014; Singhanat et al., 2015;

Kinoshita et al., 2016). Therefore, to evaluate the proposed NCG-LH algorithm in a

more realistic sink scenario is needed.

In this chapter, NCG-LH algorithm in Chapter 3 is evaluated in a multi-

domain WSN with separate sink scenario. Similar to Chapter 3, the parameters that

effect cooperation between multiple co-located WSNs are also studied in this chapter

i.e. network density, node failure, path loss exponent and network connectivity. This

chapter additionally investigated the other parameters that effect cooperation i.e. the

difference in node density in each domain and sink positions. The performance is

compared with 3 existing algorithms including variations of the AODV routing

protocol i.e. 1) the AODV routing with no cooperation, 2) the cooperative AODV

routing 3) an existing algorithm called pool-based routing algorithm (Kinoshita et al.,

2016). While the first two algorithms was adopted from Chapter 3, the last algorithm

takes into account of fair route selection in multi-domain WSNs. The simulation

results are evaluated in uniform random topology only. This is because the proposed

algorithm can distinctly provide the best performance in uniform random topology.

The environment setting, configuration and network model are all the same as



68

Chapter 3 except number of sinks and their positions. The results show that by using

the proposed algorithm which provides fair route selection, all networks can gain

longer network lifetime.

The main contributions of this chapter are three-fold: 1) The non-cooperative

game algorithm (NCG-LH) is applied to a non-cooperative multi-domain WSN under

a separate sink scenario; 2) Investigation of fairness in terms of the difference in

energy consumption between domains and comparison between a game theoretic

approach (NCG-LH); and non-game theoretic technique (Pool-based method); 3)

Identification of parameters that effect cooperation between multiple co-located

networks and fairness.

4.2 Simulation results

In this section, we provided the simulation results of the proposed NCG-LH

algorithm performed in Visual C++ environment and investigate the cooperative

conditions of the packet forwarding strategies in multi-domain WSNs under separate

sink scenario. We consider two different WSNs, iN , 1,2i  , co-existing in a multi-

domain WSN. Each WSN domain deployed randomly v sensor nodes, ={ , , … , }, and one sink. The simulation environment is set to be a square area of

2500 m2.  In each time step, each WSN chooses randomly a source node to send data

packet to its sink. Source node acts as an agent of the packet forwarding game to

determine a fair routing policy by using Nash equilibriums (NE) to achieve a policy in

order to prolong the network lifetime by using the proposed algorithm.

Similarly to Chapter 3, simulations in this chapter are then carried out under

varying number of nodes, number of failed node and path loss exponent as well as
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network connectivity (i.e. unguaranteed and guaranteed connectivity). This is because

these factors can cause connectivity problems which create failure in the forwarding

path thereby reducing the reliability of WSN. Under such scenarios, NCG-LH

exhibits the ability to allocate resource sharing between multiple networks and

determine a fair routing for packet forwarding to eliminate connectivity weakness and

prolong network lifetime.

We compare the proposed NCG-LH algorithm with 3 existing algorithms in 3

metrics including:

 Proportion of cooperation: the ratio of the number of cooperative

routes to the total number of routes discovered.

 Network lifetime: The lifetime of each network. Since each time step, a

packet is transmitted, this thesis thus measures the network lifetime in terms of the

total number of time steps that data packet transmitted at the sink node until the first

node dies.

 Fairness: the difference in average energy consumed along a

forwarding path between network domain and . From a fairness point-of-view,

energy in different network domain should be consumed equally. If one domain uses

more energy than the other domain, there will be a discrepancy in energy

consumption between domain 1 and domain 2.

The simulation results are divided into 3 scenarios. The simulation parameters

are shown in Table 4.1. The other environments and configurations are similar to

Chapter 3. Simulation results are carried out over 100 randomly topologies. The
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experimental results are shown in this section obtained from average results from both

domains.

Figure 4.1 Uniform random topology for 100 nodes per domain

Table 4.1: Parameter Setting

Parameter
Value

Scenario 1 Scenario 2 Scenario 3
Area size 500x500 m2

Number of domains 2
Number of sensors per domain 20 - 100 80- 240 80- 240
Sink position of [125,250] [125,250] [0,0]
Sink position of [375,250] [375,250] [500,500]
Distribution of the sensors Uniform random
Number of maximum hop 5 hops
Transmission range 100 m
Data load per packet, b 100 bytes
Path loss exponent, σ 2, 4
Number of failed nodes 4-48
Routing protocol AODV routing
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4.2.1 Scenario 1: Cooperation in multi-domain WSNs with separate sink

In this scenario, it is assumed that two different WSNs with the same

configurations are deployed in the same area (see Figure 4.1).  Each network has one

sink. We set a position at (125, 250) for the sink of domain and at (375, 250) for

the sink of domain . Sensor nodes are deployed randomly over the region being

observed.

We first investigate the effect of node density on different routing

algorithms in multi-domain WSNs under separate sink scenario as shown in Figure

4.2-4.4. Figure 4.2 shows the average proportion of cooperation with varying number

of sensor nodes per domain which represents the density of each network. This figure

only show results of NCG-LH and Pool-based algorithms because All cooperation

and No cooperation routing algorithms always have 100% and 0% proportion of

cooperation, respectively. In the case of unguaranteed connectivity, we can observe

Figure 4.2 Average proportion of cooperation at different node density
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that when the node density is increased, NCG-LH tends to demote cooperation

between two different domains from 80% to 40%. It is because the higher the node

density, more paths will be available for sensors to send packets to the sink. So

cooperation between both agents is not necessary. This suggests that cooperation is

required if the density of sensors is low. Moreover, it can be seen that Pool-based

algorithm is comparable to NCG-LH when network density is low. But when network

density is enough to provide multiple paths to send packets to the sink, the proportion

of cooperation from Pool-based is always 50%. It is because Pool-based algorithm

always balances the load between cooperative path and path with no cooperation. In

the case of guaranteed connectivity, the figure shows that the proportion of

cooperation of both NCG-LH and Pool-based routing algorithms are almost constant

as node density increases. This because each network has high connectivity, thus the

cooperation is not required. However, NCG-LH requires 15% less proportion of

cooperation than Pool-based algorithm on average as node density increases to 100

nodes per domain.
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The different cooperation policy in different routing algorithms result

in different network lifetimes are shown in Figure 4.3. In Figure 4.3 (a), it can be seen

that NCG-LH achieves longer network lifetime than Pool-based, All cooperation and

No cooperation routing algorithms by 5.1%, 18.14% and 30.4% on average,

(a) unguaranteed connectivity

(b) guaranteed connectivity

Figure 4.3 Average network lifetime at different node density
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respectively, at 100 node per domain. Moreover, All cooperation provides longer

network lifetime than No cooperation in this case. This suggests that cooperative

route sharing is necessary in separate sink, as it helps all domains improve their

network lifetime. Similarly, Figure 4.3 (b) depicts that NCG-LH achieves longer

network lifetime than Pool-based, All cooperation and No cooperation routing

algorithms by 6.9%, 35.7% and 17.3% on average, respectively, at 100 node per

domain. Thus, we concluded that NCG-LH which promotes cooperation when

necessary can outperform the other algorithms in terms of network lifetime

unguaranteed and guaranteed network connectivity. In addition, when network

connectivity is guaranteed, fully cooperative route sharing may not always result in

lower network lifetime than No cooperation algorithm.

Another parameter which affects routing algorithm efficiency is

fairness of nodes energy consumption as shown in Figure 4.4. From the figure, NCG-

Figure 4.4 Average difference in energy consumption at different node density
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LH uses NE to determine fair packet forwarding strategies allowing it to achieve fair

route selection in terms of energy consumption. NCG-LH outperforms All

cooperation algorithms and attains a comparable energy consumption as Pool-based

algorithm.

We then investigate the effect of hostile environment in terms of the

number of failed nodes and path loss exponent in multi-domain WSNs under separate

sink scenario as shown in Figures 4.5-4.7. These factors can cause failure along the

forwarding route and can reduce the reliability of WSNs. The experiment is

conducted by fixing density at 80 nodes per domain which is considered a densely

deployed area. The number of failed nodes and path loss exponent (PLE) are varied.

PLE is in the range of 2 to 4 where 2 is for propagation in free space, 4 is for

relatively lossy environments.

Figure 4.5 Average proportion of cooperation in various node failures under

different path loss exponents
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Figure 4.5 shows the average proportion of cooperation by varying the

number of failed nodes per domain with PLE in the range of 2 to 4. The figure depicts

that both algorithms provide more cooperative strategy when number of failed nodes

and PLE increase in order to avoid disconnectivity. However, NCG-LH can prolong

network lifetime than Pool-based algorithm as shown in Figure 4.6. In free space,

NCG-LH achieves longer network lifetime than Pool-based, All cooperation and No

cooperation routing algorithms by 4.3%, 16% and 25.5%, respectively, on average as

the number of failed nodes increases. With PLE 4, a similar trend is found in free

space with NCG-LH obtaining longer network lifetime than Pool-based, All

cooperation and No cooperation routing algorithms by 9%, 19.6% and 31.2%,

respectively, on average as the number of failed nodes increases. Note that, in case of

PLE 4, NCG-LH attains longer network lifetime than free space case when compared

with existing algorithms. This because NCH-LH takes the path loss exponent

parameter into account in the calculation of energy consumption, then chooses the

action with the maximum energy saves whereas the other existing algorithms do not.

NCG-LH therefore chooses suitable actions that can prolong network lifetime better

than other algorithms.

Figure 4.7 shows average fairness in energy consumption with a

varying number of failed nodes under different PLE.  It can be seen that, even though

NCG-LH and Pool-based algorithms provide different fair packet forwarding policy,

NCG-LH can provide an average energy consumption close to that of Pool-based

algorithm. Moreover, NCG-LH also achieves low discrepancy in energy consumption

compared to All cooperation routing algorithm. This suggest that sharing resources is

not always a fair strategy for both networks.
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(a) free space

(b) PLE 4

Figure 4.6 Average network lifetime in various node failures under different

path loss exponents
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The next section considers the case where node density of both

networks are different. In this scenario, the node density of network is varied

whereas that of network is kept constant.  We investigate the relationship between

cooperative packet forwarding policy and the difference in node density in each

domain.

4.2.2 Scenario 2: Effect of difference in node density in each domain

In real world WSN applications, it is difficult to control equal node

density in each network domain. In some regions, small-scale WSN may be deployed

in the same area with a large-scale WSN. The objective of this scenario is to show the

resource allocation ability of NCG-LH in presence of different node densities in

Figure 4.7 Average difference in energy consumption in various node failures

under different path loss exponents
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multi-domain WSNs. To deal with this issue, simulation is conducted by varying the

density of network 1N from 80 to 240 nodes and fixing density of network 2N at 80

nodes.

Figure 4.8 shows the average proportion of cooperation with varying

number of sensor nodes in . In the case of unguaranteed connectivity, it can be seen

that NCG-LH reduces proportion of cooperation between the two networks as the

network size of network domain increase. It is found that lower cooperation is

attained than the NCG-LH when compared to the case when and have equal

network density at 80 sensors (see Figure 4.2). This is due to high availability of

nodes and routes in domain 1N alone, therefore, there is no need to cooperate with

domain 2 .N In the case of guaranteed connectivity, it can be seen that the average

proportion of cooperation of NCG-LH is relatively constant at 30-32%. This because

Figure 4.8 Average proportion of cooperation at different node density of

network
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each network has strong connectivity, thus cooperation is not required as the network

density of 1N increases. However, Pool-based algorithm shows a constant average

proportion of cooperation at 50% on average for both unguaranteed and guaranteed

connectivity cases. This is because high density in each domain implies strong

connectivity, Pool-based only balances the load by equally using both cooperative

path and non-cooperative path.

(a) unguaranteed connectivity
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Figure 4.9a depicts results unguaranteed connectivity. The figure

shows that NCG-LH has longer network lifetime than Pool-based, All cooperation

and No cooperation routing algorithms by 6.2%, 26.6% and 34% on average,

respectively. Similarly, in the case of guaranteed connectivity in Figure 4.9b, NCG-

LH also attains longer network lifetime than Pool-based, All cooperation and No

cooperation routing algorithms by 10%, 34.8% and 22% on average, respectively.

Moreover, NCG-LH can achieve fair route selection in energy consumption by

outperforming All cooperation routing algorithms and a comparable energy

consumption with Pool-based algorithm as shown in Figure 4.10.

(b) guaranteed connectivity

Figure 4.9 Average network lifetime at different node density of network
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We also investigate the effect of hostile environment in terms of the

number of failed nodes and path loss exponent in multi-domain WSNs under separate

sink scenario as shown in Figure 4.11-4.13. The experiment is conducted by fixing the

density of network at 160 nodes and fixing density of network at 80 nodes. We

vary only the number of failed nodes and PLE similar to the previous scenario.

Figure 4.10 Average difference in energy consumption at different node density

of network
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Figure 4.11 illustrates the average proportion of cooperation with

varying number of failed nodes per domain under PLE of 2 and 4. It can be seen that

NCG-LH promotes more cooperation between two different domains with increased

failed nodes and higher PLE. Meanwhile, that of Pool-based algorithm is kept

constant at 50% on average. Note that NCG-LH attains less proportion of cooperation

than Pool-based algorithm, yet achieve longer network lifetime than the other

algorithm as shown in Figure 4.12. From the figure, NCG-LH has longer network

lifetime than Pool-based, All cooperation and No cooperation routing algorithms by

3.3%, 22.9% and 34.1% on average, respectively, for free space case. Similarly, when

PLE is 4, NCG-LH still has a longer network lifetime than Pool-based, All

cooperation and No cooperation routing algorithms by 11.8%, 29% and 37.3% on

average, respectively. It can be seen that NCG-LH is more efficient than the others in

terms of network lifetime improvement in PLE case.

Figure 4.11 Average proportion of cooperation in various node failures

under different path loss exponents
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(a) free space

(b) PLE 4

Figure 4.12 Average network lifetime in various node failures and different

path loss exponents
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Figure 4.13 shows the average difference in energy consumption with

varying number of failed nodes under different path loss exponents.  It can be seen

that NCG-LH is still comparable to Pool-based algorithms in terms of the difference

in average energy consumed between both networks. It is because both algorithms

take fair energy consumption into consideration. Thus, both algorithms outperform

All cooperation. routing algorithm.

4.2.3 Scenario 3: Effect of difference of sink position

This section studies the sink positions that affect cooperation between

multi-domain WSNs. The experiment is still conducted with the same parameter

setting (see Section 4.2.2). The sink positions are moved further away from each other

Figure 4.13 Average difference in energy consumption in various node failures

and different path loss exponents
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by setting the sink node of network domain at (0,0) and at (500,500) over a

square region with 500 x 500 m2.

Figure 4.14 shows the average proportion of cooperation with varying

number of sensor nodes of network . Unguaranteed connectivity, it can be seen that

NCG-LH can reduce proportion of cooperation from 66% to 48% as the network size

of network domain increases to 240 nodes. Interestingly, a higher proportion of

cooperation for NCG-LH is attained when compared to the previous scenario which

the sinks were closer (see Table 4.1). This suggests that when the sink positions are

moved further away from other nodes, more cooperation is needed. In the case with

guaranteed connectivity, the average proportion of cooperation of NCG-LH is almost

constant as number of sensor nodes of network increases. This is due to the

Figure 4.14 Average proportion of cooperation at different node density of

network
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existing strong connectivity in the network which did not require additional

cooperation among nodes.

Figure 4.15 presents the network lifetime performance. Unguaranteed

connectivity, NCG-LH achieves longer network lifetime than Pool-based, All

(a) unguaranteed connectivity

(b) guaranteed connectivity

Figure 4.15 Average network lifetime at different node density of network
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cooperation and No cooperation routing algorithms by 4.3%, 20.7% and 39.1% on

average, respectively. Similarly, the guaranteed connectivity case shows that NCG-

LH can achieve longer network lifetime than Pool-based, All cooperation and No

cooperation routing algorithms by 3.7%, 25.6% and 17% on average, respectively.

Figure 4.16 shows the average difference in energy consumption with

varying number of sensor nodes in network .  It can be seen that NCG-LH achieved

the lowest difference followed by Pool-based and All cooperation. routing algorithms.

Thus, it can be concluded that in terms of fairness, NCG-LH performs the best

compared with the existing routing algorithms under both unguaranteed and

guaranteed connectivity when sinks are positioned further apart.

Figure 4.16 Average difference in energy consumption at different node density of

network
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We finally investigate the effect of hostile environment in terms of the

number of failed nodes and PLE in multi-domain WSNs under separate sink scenario

as shown in Figure 4.17-4.19.

Figure 4.17 indicates the average proportion of cooperation with

varying number of failed nodes per domain under PLE of 2 to 4. As All cooperation

and No cooperation have 100% and 0% proportion of cooperation, respectively, their

results are not shown. It can be seen that both NCG-LH and Pool-based algorithms

tend to promote cooperation between two different domains in presence of more

failed nodes and higher PLE. Note that NCG-LH has higher proportion of cooperation

than Pool-based algorithm. From Figure 4.18, NCG-LH has longer network lifetime

than Pool-based, All cooperation and No cooperation routing algorithms by 3.3%,

22.9% and 34.1% on average, respectively, for free space case. When PLE is 4, NCG-

Figure 4.17 Average proportion of cooperation in various node failures under

different path loss exponents
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LH has longer network lifetime than Pool-based, All cooperation and No cooperation

routing algorithms by 11.8%, 29% and 37.3% on average, respectively.

(a) free space

(b) PLE 4

Figure 4.18 Average network lifetime in various node failures under different

path loss exponents
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In Figure 4.19, NCG-LH still shows attains the least difference in

energy consumption between the two domains, thus outperforming Pool-based and

All cooperation algorithms  when the sinks are moved further away.

4.3 Summary

In this chapter, the Non-cooperative game algorithm based on Lemke Howson

method (NCG-LH) algorithm proposed in Chapter 3 is evaluated in multi-domain

WSNs under separate sink scenario. The objective of this chapter is to determine a

fair packet forwarding strategy with the best mutual benefit for all agents and to

investigate parameters that affect cooperation between multi-domain WSNs in

separate sink scenario. The contribution of this chapter is three-fold. First, NCG-LH is

applied to a non-cooperative multi-domain WSNs based separate sink scenario;

Figure 4.19 Average difference in energy consumption in various node failures

under different path loss exponents
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Secondly, investigation of fairness in terms of the difference in energy consumption

between domains and comparison between a game theoretic approach (NCG-LH) and

the non-game theoretic approach (Pool-based method). Finally, identification of

parameters that effect cooperation between multiple co-located networks i.e., network

density, node failure, PLE, network connectivity and sink positions.

The simulation results are divided into three scenarios. The study in scenario 1

is to investigate effect of cooperation in multi-domain WSNs with separate sink. The

results show that when sink node in each WSN is separate, NCG-LH can promote

more cooperation. Moreover, NCG-LH can obtain 4.3%-31.2% longer network

lifetime than the other algorithms as network density, PLE and the number of failed

node increases. Moreover, NCG-LH is comparable to Pool-based routing algorithm

which promotes fair routing selection when compared to All cooperation algorithm.

In scenario 2, the difference in node density in each domain is studied (i.e.

when number of sensors in domain are denser than domain . NCG-LH can

demote cooperation between domains due to the high availability of nodes and routes

in domain 1N . This in turn, helps prolong network lifetime in domain 2N which has

less node density. The results show that NCG-LH obtains 3.3%-37.3% longer network

lifetime than the others as network density, PLE and the number of failed node

increases.

In scenario 3, the effect of sink position is studied. When the sink positions

are moved further away from each other, NCG-LH promotes cooperation between

networks compared to the original position and obtains 2.6%-39.1% longer network

lifetime than the other algorithms as network density, PLE and number of failed node
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increases. In addition, NCG-LH outperforms the other routing algorithms in terms of

fair route selection by attaining the lowest average difference in energy consumption.
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CHAPTER V

FAIR ROUTE SELECTION IN MULTI-DOMAIN

WIRELESS SENSOR NETWORKS USING

CONTINUOUS STATE NASH Q-LEARNING

5.1 Introduction

In multi-domain WSNs, cooperation among sensor nodes belonging different

network authorities could potentially gain certain benefits. Such benefits include

alternative routing paths and reduced energy consumption, which can prolong their

network lifetime and enhance reliability of packet delivery. Most existing works focus

on full cooperation in multi-domain WSNs (Bicakci et al., 2013; Jiang et al., 2013;

Jelicic et al., 2014; Singhanat et al., 2015). All of these works showed that resource

sharing and cooperation between sensor nodes in multiple domains, result in reduced

energy consumption and increased network performance. However, Vaz et al., (2008)

and Ze et al., (2012) showed that cooperation between two different networks that are

deployed in the same region may not always be beneficial to both networks. This is

because whether or not each sensor node will cooperate depends on the configuration

of each network, network connectivity and how hostile the environment is. The

previous chapters introduced the application of non-cooperative game theory to

address this issue and proposed a routing algorithm named Non-cooperative game

algorithm based on Lemke Howson method (NCG-LH) algorithm. The algorithm is
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able to suitably determine packet forwarding strategy between multiple domains by

using Nash equilibrium (NE) and Lemke Howson (LH) method. Note that this

approach determines an action that maximizes only the immediate payoff in the

current time step. An agent’s choice of action results in a feedback (payoff or reward)

and a change of state of system. A series of new actions and state changes thus given

rise to a different accumulation of feedback (see Chapter 2). It is therefore interesting

to investigate what happens if an agent can capture effects of actions beyond the next

time step by maximizing the expected future payoff to get a suitable packet

forwarding strategy in the current time step.

To address this issue, a model free tool called reinforcement learning (RL) has

been introduced. In RL, agent can learn a behavior based on its reward (or payoff)

value in the future time step to achieve the optimal strategy (Sutton and Barto, 1998).

In the context of RL framework, an agent systematically learns correct behaviors

online through trial-and-error interaction with other agents in order to achieve the

action that maximizes its expected future rewards. There are several recent researches

which employ RL to solve routing problems in WSNs (Kulkarni et al., 2011 and Al-

Rawi et al., 2015). Each sensor node is assumed to be an agent. Therefore, WSNs

with multiple independent decision-making agents can be considered as a multi-agent

reinforcement learning (MARL) system. Recent researches applied a standard RL

method called Q-learning to solve resource allocation problems in single domain

WSN i.e. under a single network authority (Yang et al., 2013; Hu et al., 2010, Xu et

al., 2015 and Debowski et al., 2016) formulated using MARL framework. Their

results showed that their approach can maximize their network lifetime. On the

contrary, limited research work have investigated in multi-domain WSNs with
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networks controlled by multiple network authorities. Ref. (Rovcanin et al., 2014)

considered scenarios of fully cooperative agents whereas (Singsanga et al., 2010)

considered non-cooperative agents. However, both (Rovcanin et al., 2014) and

(Singsanga et al., 2010) rely on a centralized operation, in which a single

computational node (e.g. cluster head) receives and processes all sensor data, thus

creating a large amount of overhead rendering it impractical for actual WSN

applications. Hence, there is a need for decentralized or distributed algorithms that

allow sensors to estimate their information locally to reduce the amount of overhead

used.

Therefore, the objective of this chapter is to propose routing algorithms to

deal with a non-cooperative multi-agent packet forwarding in multi-domain WSNs

which is achieved by learning based on the expected future reward. It should be noted

that learning based on future reward is considered in this chapter instead of immediate

reward of NCG-LH from the previous chapter. The proposed algorithm is based on

game theoretic reinforcement learning (GTRL) in order to select fair packet

forwarding routes that can prolong network lifetime and enhance reliability for non-

cooperative multi-domain WSNs in a distributed manner. Two routing algorithms are

proposed in this chapter. The first algorithm is the Discrete state Nash Q-learning (D-

NashQ), which is an extension of a centralized discrete state NashQ in (Singsanga et

al., 2010) to support distributed multi-domain WSNs by using a payoff matrix derived

in chapters 3 and 4 as reward function for the algorithm. The discrete state space is

defined as the set of the actual battery levels of sensor nodes, which is divided into 3

levels. The other algorithm is the Continuous state Nash Q-learning (C-NashQ) that

considers the state space as continuous state, which is suitable for the continuous state
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of the remaining battery energy of sensor nodes. To the best of our knowledge, there

is no existing work on applying GTRL for fair distributed packet forwarding problem

in multi-domain WSNs. This chapter also evaluates the proposed algorithms and

discusses their network performances. The results show that by using the proposed

algorithms which provide fair route selection, all networks can send their packets

more reliably and gain longer network lifetime.

The main contributions of this chapter are four-fold: 1) Derivation of feature

function to represent the continuous state in continuous state Nash Q-learning; 2)

Proposal of two distributed routing algorithms (D-NashQ and C-NashQ) and their

application to the packet forwarding problem in multi-domain WSNs under separate

sink scenario; 3) Comparison of Nash Q-learning performance in discrete state and

continuous state; 4) Performance evaluation and comparison of C-NashQ and existing

routing algorithms.

5.2 Related work

With the increasing use of WSNs technologies to a wide range of application

scenarios, many researches tend to be more interested in resource allocation problem

in multi-domain WSNs. This is due to cooperative resource sharing between multiple

domain belonging different authorities which can reduce energy consumption and

increase network performance.

Most existing researches consider resource allocation problem in a

cooperative situation, meaning that, the network authorities have to agree on sharing

or providing a common resource in order to increase the benefits of their networks. In

ref. (Bicakci et al., 2013 and Bicakci et al., 2010), the potential benefits of
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cooperation in multiple WSNs are investigated. Linear programming was employed to

find energy efficient path in order to prolong their network lifetime. However, energy

efficient route selection does not always guarantee a prolonged the network lifetime.

Sensor nodes belonging to energy efficient paths tend to have higher traffic load and

consume more energy than other nodes. As a result, such nodes tend to die earlier. In

order to avoid heavily loaded situations. Nagata et al. (2012) proposed cooperation

between multi-domain WSNs by balancing the communication load. Routes with the

maximum value of bottleneck was selected. By doing this, network lifetime can be

extended among multiple domains within the same geographic area. Kinoshita et al.

(2016) proposed a fair cooperative routing method for heterogeneous overlapped

WSNs called “Pool-based” selecting method. An energy pool was introduced to

maintain the total amount of energy consumption by cooperative forwarding. Their

simulation results showed that the proposed method was able to balance the energy

consumption and prolong the network lifetime. Ref. in (Jelicic et al., 2014; Singhanat

et al., 2015) showed benefits of node collaboration in multi-domain WSNs under

practical implementation. The results showed that cooperation with co-located sensor

devices in different networks can increase the network lifetime. In order to handle

non-cooperative behaviors among sensor nodes in multi-domain WSNs, Wu and Shu

(2005) applied the concepts from economics and game theory to propose a

mechanism design (MD) approach. This approach is applied to a packet forwarding

problem in multi-domain WSNs by using incentive mechanisms to motivate

cooperation between sensor nodes. On the other hand, some researches employed

non-cooperative game theory to the packet forwarding problem to describe such a

situation that cooperation can exist in multi-domain WSNs without any incentive
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mechanisms was proposed as both centralized algorithms. Ref. (Felegyhazi et al.,

2005) showed that the Non-cooperative game algorithm is a suitable framework to

determine an equilibrium strategy for their problem. However, one drawback of this

approach is that obtaining a strategy needs significant amount of computational time

to compute the utility for all possible actions of sensor nodes. A two-agent relaying

game was analyzed in a centralized non-cooperative game framework under separate

sink scenario was proposed in (Yang and Brown, 2007). However, their experiment

investigated a small network with two sensors and two separate sinks.

In this chapter, we introduce the application of multi-agent reinforcement

learning (MARL), which is another technique to address the issue of resource

allocation problem in WSNs. MARL is suitable for distributed routing problems. A

standard RL method called, Q-learning has been proposed to determine best routing

strategies when critical network conditions are allowed to vary dynamically. In (Yang

et al., 2013), a MARL-routing approach was proposed to handle sink mobility and

enable direct interactions between WSN and vehicles. Reward functions including

time delay, network lifetime and reliability was designed for learning. Simulation

results showed that their proposed approach achieved better time delay, energy

distribution and delivery rate than comparing routing approaches. Refs. (Hu et al.,

2010, Xu et al., 2015 and Debowski et al., 2016) presented a load-balancing multi-

path routing approach. A MARL technique was employed to learn and find out the

best path to forward packet which considers the number of hops, residual energy and

energy consumption of sensor nodes. Results showed that their approaches can

balance the workload among sensor nodes and prolong the network lifetime.

However, these solutions were directly applied in single-domain WSNs. There are
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only a few researches focus on MARL technique in multi-domain WSNs. Ref.

(Rovcanin et al., 2014) applied Q-learning to solve routing problem for cognitive

networks such networks were co-located heterogeneous WSNs which were fully

cooperative operating in a centralized manner. MARL under centralized manner was

also proposed in (Singsanga et al., 2010), by extending Q-routing to cater a non-

cooperative multi-agent in a packet forwarding problem. The authors applied an

existing algorithm called Nash Q-learning (NashQ) previously proposed in (Hu and

Wellman, 2003) to attain the best mutual policy for all agents in a packet forwarding

game framework. Each agent attempts to learn its Nash equilibrium (NE) online.

Their results suggest that NashQ can learn and determine a suitable packet forwarding

policy in varying network conditions. Moreover, both (Rovcanin et al., 2014) and

(Singsanga et al., 2010) rely on a centralized operation, which was impractical for

storage and computing ability of sensor nodes. Therefore, to the best of our

knowledge none of the existing GTRL researches take into consideration of fair

routing selection in multi-domain WSNs in a distributed manner. Because in a multi-

domain environment, lifetime improvement with cooperation may not be fair to all

domains. It is possible that some WSNs can prolong their network lifetime but for

other WSNs, their network lifetime may be reduced. Therefore, for fair cooperative

routing, it is necessary to take into consideration the energy that sensors in each

domain consume in packet forwarding.

This chapter therefore proposes a fair distributed packet forwarding algorithm

in multi-domain WSNs based on GTRL. In particular, D-NashQ and C-NashQ

algorithms are proposed in this chapter in order to learn a fair packet forwarding

policy based on discrete and continuous battery states. The two algorithms are based
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on the game theoretic reinforcement learning (GTRL) technique to support non-

cooperative behaviors of sensor nodes belonging to different networks. An

introduction to GTRL technique is described in the next section.

5.3 Game theoretic reinforcement learning

5.3.1 Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto, 1998) is a machine

learning scheme to provide a framework in which an agent can learn optimal control

policy based on the agents’ past experiences and reward. RL relies on the assumption

that the dynamics of the system follows a Markov Decision Process (MDP) (See

Chapter 2). A MDP models an agent acting in an environment with a tuple (S, A, P,

R), where S is the set of states, A is the set of actions that the agent could take in a

particular state, P is the state transition probability matrix and R is a function of

reward expected from the environment after taking the action a A at state s S and

transiting to next state .s S In MDP, the objective is to find a policy : S A  which

is a mapping of the state set to the action set through interacting with environment to

maximize objective function.

5.3.2 Q-learning

A common RL technique called Q-learning is employed to solve for an

optimal policy in MDPs in single-agent systems. It is a model-free online learning

method that has been applied widely because of its simplicity. It can effectively make

an agent to learn optimal policy through trial and error and can directly converge to

the optimal action-value function (Q-value) through online learning. The key point of

Q-learning is updating Q-value through iteration. An agent takes action a at state s,
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receives reward r, updates the local state with input from the environment, and repeats

the process to learn its own optimal policy. Q-learning provides a simple procedure in

which the agent starts with an arbitrary initial Q-value at time step t=0. The updating

process at time step t+1 is defined as

1
'

' '( , ) (1 ) ( , ) [ max ( , )],t t t t
a

Q s a Q s a r Q s a       (5.1)

where [0,1)  is the learning rate parameter, [0,1)  is the discount factor, tr is

reward at time t and s is the next state that results from taking action a in state s.

Several researches i.e. (Yang et al., 2013; Hu et al., 2010, Xu et al., 2015 and

Debowski et al., 2016) employ Q-learning to solve routing problems in single-domain

WSNs. Each sensor node is modeled as an agent and then the entire wireless sensor

network can be modeled as a multi-agent reinforcement learning (MARL) system. In

order to select the optimal path, each agent selects an optimal neighbor node as its

next hop to forward its data packet to its sink. Their results show that this method can

improve network performances in their system by taking advantage of cooperative

behavior of sensor nodes. However, Q-learning cannot be directly applied to multi-

domain WSNs as cooperative behavior between sensor nodes belonging to different

domains may not always be available. This is due to selfish behavior of sensor nodes

in different networks domain to conserve energy for their own network. Therefore, the

optimal policy for a WSN does not only depend on one domain, but also other

domains located in the same region.

5.3.3 Nash Q-learning

Hu and Wellman (2003) proposed algorithm called Nash Q-learning

(NashQ), an extension of the original Q-learning to a non-cooperative multi-agent
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system. In NashQ algorithm, each agent can rationally decide its own action whether

it will cooperate with other agents or not by considering both its own and other

agents’ information as well. Instead of finding an optimal policy to maximize one

single agent’s reward like the original Q-learning, NashQ looks for joint actions that

yield the best reward for all agents.  The agents attempt to learn their best mutual

policy, which is defined by the Q-values received from Nash equilibrium (NE). NE is

not only used to decide the agent’s own action policy, but also predict the other

agent’s action policy, given by 1( ),..., ( )vs s   where ( )i s  is agent i’s distribution

over its set of actions at state s and v is the number of agents. NE can be found in a

pure-strategy equilibrium, where an agent is able to find the highest mutual utility for

all agents. But in general, not all games have pure-strategy NE. The agents then have

to then decide whether to select their policies randomly according to some calculated

probability to achieve the best response. Such NE behavior is called mixed-strategy

Nash equilibrium. The Lemke-Howson method (LH) is the best known method to

solve for mixed-strategy NE for two agents (Shoham and Brown, 2009). The

advantage of LH method is that it is guaranteed to find at least one NE point.

In this chapter, we thus employ NashQ into packet forwarding problem

in a non-cooperative multi-domain WSNs in order to find the best mutual policy

which provides the best benefits for all agents in the system. The source node, which

is randomly selected from sensor nodes in the WSN, is modeled as an agent. The

entire WSN can thus be modeled as a multi-agent system. In order to select the

optimal packet forwarding path, each agent selects a fair routing obtained from NE.

Two routing algorithms are proposed in this chapter. The first algorithm

is the discrete state Nash Q-learning (D-NashQ), an extension of centralized discrete
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state NashQ in (Singsanga et al., 2010) to support a distributed multi-domain WSNs.

A payoff matrix derived in chapter 3 is used as a reward function. In D-NashQ, Q-

value functions are estimated in tabular forms for each state or state-action pair.

However, many real-world applications have to deal with MDPs with continuous state

spaces. So Q-learning in discrete state may not be feasible. In such cases, another

algorithm called the continuous state Nash Q-learning (C-NashQ) is proposed. C-

NashQ learns policy by using a proposed feature function that is suitable for

continuous state.

This section briefly introduces the application of RL, original Q-learning

and NashQ to address the issue of non-cooperative resource allocation problem in

multi-domain WSNs. The routing problem for multi-domain WSNs is modeled based

on NashQ present in the next section.

5.4 Routing model based on NashQ approach

The objective of using NashQ algorithm in this chapter is to select an online

fair packet forwarding policy in multi-domain WSNs. The proposed algorithm was

then designed by considering communication cost in multiple route paths in order to

provide maximum savings in energy and network lifetime. Furthermore, the residual

energy of sensor node must be taken into account in order to balance the network load

to achieve fairness. The NashQ algorithm can thus efficiently determine packet

forwarding policy to obtain fair energy consumption for all network domains, prolong

the network lifetime and enhance reliability of packet forwarding. D-NashQ and C-
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NashQ routing algorithms are modeled based on GTRL technique which are

presented below.

5.4.1 Network model

Consider two different WSNs, iN , 1,2i  , deployed in a multi-domain

WSN. Each WSN domain consists of v sensor nodes, = { , , … , }, and one

sink. Our model divides the time into discrete time units called time steps. In each

time step, a source node is randomly selected from sensor nodes in each domain to

generate a data packet and send it to its sink. The source node acts as an agent which

decides a route to send the data packet by using the proposed routing algorithms. This

chapter assumes the following characteristic of each sensor node in the multi-domain

WSNs.

 Two sensor nodes are able to communicate with each other if they are within

transmission range.

 Each sensor node must be aware of its location, neighbor location, its sink

location and also neighbors sink location using an on-board GPS receiver.

 There is a pre-established routing mechanism using AODV routing protocol

to determine two routes: 1) a route that contains nodes from the same domain

as source node and 2) another route containing multi-domain nodes.

 The source node is able to calculate the cost of a transmission, which is the

end-to-end distance from source node to sink.

 The total energy consumption of each sensor node are dissipated only for

data transmission and reception.
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The energy consumption required for packet forwarding is computed

from the radio model in (Naruephiphat and Usaha, 2008).  The radio model for the

reception cost of each sensor node is given by,   ,RX elecE b E b  where

50 /elecE nJ bits is the cost in the radio electronics and we assume that b is the size

of the measurement packet transmitted in bytes. The transmission cost is for each

sensor node given by,      ,TX elec ampE b d E b b d     where σ is the path loss

exponent and 210pJ / bit /amp m  is the energy consumed at the output transmitter

antenna for transmission range of one meter.

In a pre-established routing process, AODV routing protocol, which is used in

IEEE standard 802.15.4 ZigBee protocol stack (ZigBee Alliance, 2015), is employed

to establish available route paths. In the route discovery process, source node

broadcasts Route Request (RREQ) packets to its neighbors in the same domain and

also neighbors in difference network domain. The source node then establishes two

different routes with two different routing tables, one for routing within the source

node’s own network and the other for coordinating paths with the other network

domain (as shown in Figure 5.2).
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Figure 5.2 System Model

From the figure, sensor node 1
jn where j=1,2,…,v from network domain 1N is

randomly chosen to be a source node taking a role as an agent in the game at time step

t. When 1
jn has a packet to send to its sink1, 1

jn must decide whether to use the non-

cooperative route in its own domain or the cooperative route that consists of nodes

from the other domain. To make a decision, 1
jn calculates the following energy,

including: 1) the end-to-end energy cost along non-cooperative route,

1 2
1 1 1

nc ncnc    ; 2) the energy required at 1
jn to forward domain 1N ’s packets

through domain 2N ’s node (i.e. forward its packet to sensor node , where

k=1,2,..v) to sink1, 1
s ; and 3) the end-to-end energy used by nodes in domain 1

required to help domain 2N forward domain 2N ’s packets to sink2, 1
c . These

energy values are used to estimate a payoff value that an agent receives in order to

decide which packet forwarding path to choose. The payoff value is used as a reward

function described in section 5.4.2. The optimal packet forwarding path will be
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Figure 5.2 System Model

From the figure, sensor node 1
jn where j=1,2,…,v from network domain 1N is

randomly chosen to be a source node taking a role as an agent in the game at time step

t. When 1
jn has a packet to send to its sink1, 1

jn must decide whether to use the non-

cooperative route in its own domain or the cooperative route that consists of nodes

from the other domain. To make a decision, 1
jn calculates the following energy,

including: 1) the end-to-end energy cost along non-cooperative route,

1 2
1 1 1

nc ncnc    ; 2) the energy required at 1
jn to forward domain 1N ’s packets

through domain 2N ’s node (i.e. forward its packet to sensor node , where

k=1,2,..v) to sink1, 1
s ; and 3) the end-to-end energy used by nodes in domain 1

required to help domain 2N forward domain 2N ’s packets to sink2, 1
c . These

energy values are used to estimate a payoff value that an agent receives in order to

decide which packet forwarding path to choose. The payoff value is used as a reward

function described in section 5.4.2. The optimal packet forwarding path will be
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chosen by the source node depending on strategy decision through D-NashQ and C-

NashQ algorithm, described respectively in section 5.4.3 and 5.4.4.

5.4.2   Action formulation and reward function

For the sake of simplicity, consider a WSN of 2 domains. Let A be an

action space defined as a set of strategies, which include all the possible joint

strategies or actions available in the game. Let the action space for domain iN be is

defined by = { , }, 1,2i  , where the shorthand notations refer to the following:

D: The agent does not forward its packet to the other network (i.e. agent chooses

the non-cooperative route) and drops all packets from other network if asked for help

to forward the packets.

F: The agent forwards its packet to the other network (i.e. agent chooses the

cooperative route) and in turn forwards all packets if the other network asked for help

to forward the packets.

Therefore, the set of joint actions for agent in both domains is {DD,

DF, FD, FF}. The reward function is the feedback from taking a joint action of agent.

The reward function is significant since the objective of learning is to achieve an

optimal policy with the maximum reward. For WSNs, it is a better approach to enable

nodes to not only reduce energy consumption whenever possible, but also transport

the data reliably to a sink. Therefore, reward function can be take energy consumption

and link quality into consideration. A reward function according to the payoff matrix

(derived in Chapter 3) is proposed in Table 5.1. In this table, the agent from domain

1N is the row agent and the agent from domain 2N is the column agent. Thus from

Figure 5.2, 1
jn is the row agent and 2

kn is the column agent. Each agent has two actions
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i.e. to forward (F) or do not forward (D) the packet to the other agent. Each cell of the

matrix contains a pair of values represent the reward of agent 1
jn and 2

kn . The first

value is the reward of agent 1
jn and the second value is the reward of agent 2

kn . For

example, at time step t, if agent 1
jn and 2

kn take action D and D respectively, agent 1
jn

receive reward 1 1
tr  , whereas agent 2

kn receive reward 2 2
tr  .

The parameter is the packet received rate (PRR) (Ahmedand and

Fisal, 2008), which is approximated as the probability of successfully receiving a

packet from source node to sink, and = 1,2.  The higher PRR is, the higher the link

quality is. The PRR can be calculated from the bit error rate (BER) follows:

= (1 − ) , (5.2)

where is the bit error probability for OQPSK (Offset Quadrature Phase Shift

Keying) modulation used in IEEE standard 802.15.4 ZigBee protocol stack at

frequency 2.4 GHz. The other parameters in Table 5.1 refer to Figure 5.2. The

quantity nc s
i i i    denotes the energy reduction obtained from changing from the

non-cooperative route to the cooperative route. The quantity c
i i  is the

Table 5.1 Reward function of interaction between sensor nodes in different domains= D = F= D , 0 , −= F − , 0 +( − ) , +( − )
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cooperative energy required for cooperation. Finally, the quantity i i  is the net

energy gain if the source node chooses the cooperate route. If i i  is a positive

value, it means that the cooperative route consumes less energy than the non-

cooperative route. Otherwise, the cooperative path consumes more energy.

5.4.3 D-NashQ approach

In the context of online learning, each agent decides its state s, gets an

immediate reward r and update the Q-value. In general, the state space usually is

defined as a discrete state. The discrete state, Q-value and the updating of Q-value for

D-NashQ are defined as follows.

5.4.3.1 Discrete state definition

In D-NashQ, the state space is defined as the set of the discrete

battery energy of the sensor nodes. Since the battery energy is continuous, we divide

the range of battery energy of each agent into 3 states given by S = {0, 1, 2}. Initially,

the state of each agent is state, “2” meaning full battery level. The game is repeated

until the any agent reaches state “0”, signifying battery depletion of a sensor node in

its domain and the game then ends.

5.4.3.2 Q-value and Q-updating

Through learning, an agent can updates its Q-value which

represents to the reward of each action in a particular state. The optimal forwarding

path then can be selected by choosing from the best mutual Q-value as follows. At the

beginning, the Q-value functions are initialized to 0
1 2( , , ) 0,i iQ s a a  for all

,  ,  1,  2.i i i is S a A i   Let the learning agent be indexed by i=1. Upon a packet
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transmission, at time step t, agent 1
jn (assumed as source node in domain 1N at that

time step) observes the current discrete state, takes its action by selecting

1  or ,a D F and observes its own reward. It then observes the action, reward at the

other agent and observes the next state 1 1s S  , of both agents. Agent 1
jn then

calculates a NE policy 1 1 2 2( ), ( )s s   , where ( )i is  is distribution of agent in domain

iN over its set of actions at state s , for the stage game 1 1 1 2 2 2 1 2( ( , , ), ( , , ))t tQ s a a Q s a a and

updates its Q-values as follows

1
1 1 1 2 1 1 1 2 1 1 1 1 2( , , ) (1 ) ( , , ) [ ( , , )],t t t tQ s a a Q s a a r NashQ s a a         (5.4)

where 1 1 1 2 1 1 1 1 1 2 2 2( , , ) ( ) ( , , ) ( ).t tNashQ s a a s Q s a a s           (5.5)

1 1 1 2( , , )tNashQ s a a   is agent 1
jn ’s Q-values in state s for the selected NE.

Note that 1 1 1 1 1 2 2 2( ) ( , , ) ( )ts Q s a a s       is a scalar. For any stage game, at least one NE

exists in either pure or mixed strategies. In pure strategy NE, an agent can choose

with certainty join action with highest Q-values for itself and the other agent. The

method for selecting mixed strategy NE is the Lemke-Howson method (see appendix

A).

In order to calculate the NE strategy, agent 1
jn must observe the other

agent’s information (i.e. agent 2
kn , which is the sensor node in a different network

domain belonging to cooperative route as seen in Figure 5.2) that are immediate
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reward and previous actions and updates its conjecture on the other agent’s Q-

function, by maintaining its own update on the other agent’s Q-function

1
2 2 1 2 2 2 1 2 2 2 2 1 2( , , ) (1 ) ( , , ) [ ( , , )],t t t tQ s a a Q s a a r NashQ s a a         (5.6)

where 2 2 1 2 1 1 2 2 1 2 2 2( , , ) ( ) ( , , ) ( ).t tNashQ s a a s Q s a a s           (5.7)

In D-NashQ, we set the learning rate parameter, 0.01  and the discount factor

0.01  (see Appendix B).

It can be seen that the agent in NCG-LH algorithm in chapters 3 and 4 only

seek a strategy that ontained from NE, 1 2

t t

i iNashU U    , where t
iNashU is agent’s

payoff value for the selected NE point and t

iU is a payoff matrix of agent i at time step

t (Table 3.1). On the other hand, the agent in NashQ algorithm learns to get a strategy

based on Q-values in state s for the selected NE, 1 2( , , )t
i iNashQ s a a   . Moreover,

1 2( , , )t
i iNashQ s a a   value is used in improving its own Q-table by updating following

Eq. (5.4) in order to determine a strategy in the next time step.

5.4.3.3 Mutual policy

The Q-learning involves finding a balance between exploration

strategy and exploitation strategy. Each agent uses the -greedy method to select its

action. In this method, each agent selects the NE action with probability 1 (s)t (so

called exploitation) and selects an action randomly with probability (s)t for other

Non-NE action (so called exploration). -greedy probability, (s)t is defined as
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1
( ) ,

1 0.1 ( )
t

t
s

K s
 


(5.8)

where ( )tK s is number of visits to state s at time t of agent i. The pseudo code of D-

NashQ is shown in Figure 5.3.

5.4.4 C-NashQ approach

Most RL routing techniques are often modeled as Markov Decision

Processes (MDPs) with discrete state and action spaces to simplify the use of RL

algorithms to find solutions. However, real world problems may have continuous state

spaces. This chapter defines the state space as the set of actual battery energy of the

BEGIN

for topology 1:100

Initialize energy and initial state s0 for each node to full battery level
Let the learning agent be indexed by i.

Let 1 2( , , ) 0t
i iQ s a a  for i=1,2

Let t=0

do
Random source node to create data packet
Establish two routing tables using AODV routing protocol (one table for paths in own network

and another one for paths in cooperative networks)

Take action 1 2,a a , receive reward 1 2,r r and next state 1 2,s s 

Update
1

1 2( , , )t
i iQ s a a

for i=1,2
1

1 2 1 2 1 2( , , ) (1 ) ( , , ) [ ( , , )]t t t t
i i i i i i iQ s a a Q s a a r NashQ s a a        

Let t=t+1
while (at least one node run out of battery )

endfor

END

Figure 5.3 Pseudo code of D-NashQ algorithm
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sensor nodes. Since the state value is continuous, quantizing continuous values to

discrete values may obtain suboptimal policies during the learning process. To

address this constraint, we extend the original NashQ algorithm to continuous state

spaces context and proposed continuous state Nash Q-learning (C-NashQ). C-NashQ

approach can learn near-optimal packet forwarding policy that maps a continuous

state space to discrete action space. The objective remains the same as D-NashQ,

which is to prolong network lifetime and enhance reliability of packet forwarding and

obtain fair energy consumption for all network domains in multi-domain WSNs with

distributed manner.

5.4.4.1 Continuous state definition

The continuous state is defined by a feature function

1 2:i iS A A   where i=1,2, which maps a state-action pair to a particular function.

Let 1 2[ ( , , )]i is a aΦ be a feature function matrix. Φ is a matrix of 1 2| | | |A A

dimension. Each element of the feature matrix ,Φ 1 2( , , ),i is a a is called a feature. Let

1 2( , , )i is a a be the feature value of agent in domain iN for state-action pair 1 2( , , )is a a

The characteristic of a good feature is that it should be able to represent states that

continuously respond to changing actions. Thus, feature proposed in this chapter is a

function which models the remaining energy after taking an action in the packet

forwarding process, and is expressed by

1 2 1 2
1 2

( , , ) ( , , )
( , , ) ( ) ,t remain i total i

i i
initial

E s a a E s a a
s a a route

E
 

 
  

 
(5.9)

where (∙) is an indicator function which is defined by

1 21  ,      ,
( )

0 , .

if a route associated to a a is available
route

otherwise



 


(5.10)
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The parameter remainE is the remaining battery energy for all nodes in the route, totalE is

the total energy consumption for packet forwarding in the route and initialE is the initial

battery energy of sensor nodes in the route. The quantity

1 2 1 2( , , ) ( , , )remain i total iE s a a E s a a is the remaining energy after taking an action in

packet forwarding process which is normalized by initialE . The quantity (∙) indicates

the route presence for the agent. If the agent has an available route associated to

action 1 2,a a to send its packet, then ( ) 1,route  meaning that the remaining energy

after taking an action can be determined only when such route exists. Otherwise,

( ) 0.route 

5.4.4.2 Q-value and Q-updating

In C-NashQ, Q-values can be approximated as a feature

function (Geramifard et al., 2013):

1 2 1 2( , , ) ( , , ) ,i i i i iQ s a a s a a  (5.11)

where ∈ ℝ is a weight value of agent in domain iN to be adjusted (see Figure 5.4)

in order to achieve a NE point in the action value functions. The action value function

can also be presented in a matrix form given by:

,Q Φ (5.12)

where Φ is the matrix of feature of dimension 1 2| | | |A A .
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At the beginning, the weights of each agent i are initialized to

0 0,i  for all ,  ,  1,  2.i i i is S a A i   Let the learning agent be indexed by i=1. At

time step t, agent 1
jn (assumed as the source node in domain 1N at that time step)

observes the current continuous state, takes its action by choosing a neighboring node

to forward a packet to and observes its own reward. It then observes the action,

reward at the other agent and observes the next state of both agents. Agent 1
jn then

calculates the Nash equilibrium strategy and updates its Q-values as follows

1
1 1 1 2 1 1 1 1 2( , , ) ( , , ),t t tQ s a a r NashQ s a a     (5.13)

where 1 1 1 2 1 1 1 1 1 2 1 2 2( , , ) ( ) ( , , ) ( ).tNashQ s a a s s a a s             (5.14)

It can be seen that, when Q-values in C-NashQ is estimated be

a feature function (Eq. 5.11). In particular, 1 1 1 2( , , )tNashQ s a a   in D-NashQ (Eq.5.5) is

changed to Eq. (5.14). Then, agent 1
jn needs to calculate  , the temporal difference

(TD) error, which is the difference of Q-value in the previous time step and the

current time step

1
1 1 1 1 2 1 1 1 2( , ,  ) ( , ,  ).t t tQ s a a Q s a a   (5.15)

The feature function 1 2( , , ),i is a a calculated from  which is the weight specifying the

contribution of each feature across all state-action pairs.

1
1 1 1 1 1 2 2( , ,  ).t t t t s a a      (5.16)
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Agent 1
jn then observes the other agent’s immediate reward

and previous actions and updates its conjecture on the other agent’s Q-function, by

maintaining its own update on the other agent’s Q-function

1
2 2 1 2 2 2 2 1 2( , , ) ( , , ).t t tQ s a a r NashQ s a a     (5.17)

The temporal difference (TD) error, , can be determined by

1
2 2 2 1 2 2 2 1 2( , ,  ) ( , ,  ).t t tQ s a a Q s a a   (5.18)

The parametric weight,  , can be updated according to

1
2 2 2 2 2 2 2( , ,  ).t t t t s a a      (5.19)

In C-NashQ, we set the learning rate parameter, 0.1  and the discount factor

0.25. 

5.4.4.3 Best mutual policy

Both D-NashQ, C-NashQ also use the ε-greedy method to

select actions for each agent. However, when discrete state is not considerated in this

model, ( )t s (from Eq. 5.8) then changed to ( )t a . Each agent selects the NE action

with probability 1- ( )t a for exploitation, and selects an action randomly with

probability ( )t a for exploration policy. -greedy probability, ( )t a is defined as
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1
( ) ,

1 0.1 ( )
t

t
a

K a
 


(5.20)

where ( )tK a is number of time action a is selected at time t of agent i. The pseudo

code of C-NashQ is shown in Figure 5.4.

5.4.5 Compared algorithms

In order to evaluate the performance of the proposed routing algorithm,

we compared it with 4 routing algorithms which include 1) NCG-LH algorithm which

is proposed in Chapter 3 and 4. NCG-LH is an algorithm that determines packet

forwarding policy by using (non-learning) non-cooperative game theory; 2) Pool-

based routing algorithm (Pool-based) proposed in Kinoshita et al. (2016). This is a

(non-learning) load balancing routing algorithm for multi-domain WSNs; 3) a

classical (non-learning) AODV routing schemes which uses AODV to discover a

route consisting of nodes within the same domain (No cooperation); and 4) a classical

(non-learning) AODV routing schemes which discovers a route that consist of nodes

from the other domain (All cooperation).
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5.5 Simulation results

In this section, we evaluate the performance of two proposed GTRL routing

algorithms, D-NashQ and C-NashQ, and investigate the cooperative conditions of the

packet forwarding strategies in multi-domain WSNs. We use visual C++ to simulate

the proposed routing algorithms. We consider two WSNs existing in the same area

and the simulation environment is set to be a square area with 2500 m2.  Each WSN

domain consists of one sink and 20-100 sensor nodes are deployed randomly. In each

BEGIN

for topology 1:100

Initialize energy for each node to full battery level
Let the agent be indexed by i.
Let t=0

0 Initialize arbitrarityi 

do
Random source node as the agent to create data packet
The agent establish two routing tables using AODV routing protocol
(one table for paths in own network and another one for paths in cooperative networks)

Take action 1 2,a a , receive reward 1 2,r r and next state 1
1 2( , ,  )t

i i is s a a   for i=1,2

Update ,  andi i iQ  
1

1 2 1 2( , , ) ( , , )t t t
i i i i iQ s a a r NashQ s a a    

where 1 2 1 1 1 2 2 2( , , ) ( ) ( , , ) ( )t
i i i i iNashQ s a a s s a a s            

1
1 2 1 2( , ,  ) ( , ,  )t t t

i i i i iQ s a a Q s a a  
1

2 2( , ,  )t t t t
i i i i is a a     

Let t=t+1
while (at least one node run out of battery )

endfor

END

Figure 5.4 Pseudo code of C-NashQ algorithm
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time step, each WSN randomly chooses a source node to send data packets to its sink.

The source node acts as agent of the packet forwarding game. The objective

determine fair routing policy in order to prolong network lifetime and enhance

reliability in distributed multi-domain WSNs by using the proposed algorithms.

Simulations are then carried out under varying number of nodes, number of

failed nodes and path loss exponent. We compare the proposed algorithm with 4

existing algorithms considering 4 metrics including:

• Proportion of cooperation: the ratio of the number of cooperative routes to the

total number of routes discovered.

• Packet delivery ratio (PDR): the ratio of the number of data packets received

over the number of data packets sent out.

• Network lifetime: The lifetime of each network. Since each time step, a packet

is transmitted,  this chapter thus measures the network lifetime in terms of the total

number time steps that data packet is transmitted at the sink node until the first node

dies.

• Fairness: the difference in average energy consumed along a forwarding path

between network domain 1 and 2.

The simulation parameters are shown in Table 5.2. Simulation results were

carried out over 100 randomly topologies. The experimental results are shown in this

section obtained from average results from both domains.
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5.5.1 Discrete state vs continuous state NashQ

We evaluated two proposed methods, D-NashQ and C-NashQ, in terms

of average network lifetime as shown in Figure 5.5. It can be seen that C-NashQ can

achieve 23.3% longer network lifetime than D-NashQ as the network density

increases. This is because D-NashQ divides battery energy which is continuous value

to discrete states which may obtain suboptimal policy in the learning process.

Moreover, D-NashQ requires a large number of steps to visit of each state-action pair

before converging to an optimal policy resulting in slow convergence speed in the

learning process as shown in Figure 5.6 because D-NashQ approaches the maximum

reward approximately 1 lower than C-NashQ. If the number of steps required to visit

the state-action pairs is not enough, this can result in suboptimal policies. This

problem does not occur in C-NashQ because C-NashQ can learn continuous state

though the feature function that is suitable for representing battery energy which is a

Table 5.2: Parameter Settings

Parameter Value
Number of domains 2

Number of sensors per domain 20 - 100

Area size 500x500 m2

Domain1’s sink position (125,250)
Domain2’s sink position (375,250)

Distribution of the sensors Uniform random

Number of maximum hop 5 hops

Transmission range 100 m

Data load per packet, b 100 bytes

Path loss exponent, σ 2, 4

Number of failed nodes 4-48

Routing protocol AODV routing
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continuous value. Furthermore, C-NashQ does not require as many steps as D-NashQ

to visit of each state-action pair before converging to an optimal policy results in

better convergence speed than D-NashQ.

Figure 5.5 Average network lifetime
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Since C-NashQ is more effective than D-NashQ, we henceforth show

only C-NashQ in performance comparison in the following sections.

5.5.2 Effect of density

Connectivity problems occur frequently in WSNs (Kashi and Sharifi,

2013) since most real world applications of WSNs are deployed in wide spread areas.

Furthermore, random deployments of sensors cannot guarantee connectivity coverage

in the area. Connectivity problems are more likely to arise with fewer number of

sensors deployed. C-NashQ showed its ability to allocate resource sharing between

multiple networks and determine fair routing for packet forwarding to alleviate

connectivity issues and prolong network lifetime.

Figure 5.6 Convergence speed
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Figure 5.7 shows the average proportion of cooperation with varying

number of sensor nodes per domain which represents the density of each network. In

this figure, results of C-NashQ, NCG-LH and Pool-based algorithms because All

cooperation and No cooperation routing algorithms always have a proportion of

cooperation 100% and 0%, respectively. It can be seen that all algorithms promote

cooperation at low sensor density and decrease cooperation as the density of sensor

increases. It is because at higher the node density, more the paths will be available for

sensors to send packets to the sink. So cooperation between both agents is not always

necessary. This suggests that cooperation is required if the density of sensors is low.

Moreover, it can be seen that Pool-based algorithm is comparable to C-NashQ when

the network density is low. When network density is enough to provide multiple paths

to send packets to the sink, the proportion of cooperation from Pool-based is always

Figure 5.7 Average proportion of cooperation
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50%. It is because Pool-based algorithm always balances the load between

cooperative paths and non-cooperative paths.

Figure 5.8 shows the average PDR of the algorithms with a varying network

density. It can be seen from the figure, C-NashQ is comparable to NCG-LH, Pool-

based and All cooperation algorithms with 100% packet delivery ratio as the node

density increases. However, No cooperation algorithm is less reliable than other

algorithms by obtaining only 60%-80% packet delivery ratio at low node density. Its

PDR increases to 100% at high node density. This is because at low node density,

sensors cannot cover the whole target area, so connectivity problem can occur. Hence,

without sharing resources with the other network, No cooperative algorithm attains

lower PDR than other routing algorithms. This suggests that cooperation and sharing

resources between networks can enhance packet delivery ratio.

Figure 5.8 Average packet delivery ratio
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Figure 5.9 depicts the average network lifetime with varying network density. It can

be seen that C-NashQ achieves longer network lifetime than NCG-LH, Pool-based,

All cooperation and No cooperation routing algorithms by 20%, 25.1%, 34.5 and

44.3% on average, respectively, at 100 nodes per domain. This because C-NashQ

takes both energy state and energy saving information of each packet forwarding

route into consideration and then chooses the route with best mutual benefit of

expected future reward that results in highest network lifetime improvement.

Another parameter which affects routing algorithm efficiency is the

fairness of node energy consumption as shown in Figure 5.10. From a fairness point-

of-view, energy in different network domains should be consumed equally. If one

domain uses more energy than the other domain, there will be a discrepancy in energy

consumption between domain 1 and 2. As seen from Figure 5.10, C-NashQ is

Figure 5.9 Average network lifetime
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comparable to NCG-LH and Pool-based routing algorithms in fair route selection. On

the other hand, All cooperation algorithm seems unfair. This is because All

cooperation algorithm does not take fairness into consideration but C-NashQ, NCG-

LH and Pool-based routing algorithms do.

5.5.3 Effect of hostile environment

In this section, we study the effect of hostile environment in terms of

the number of failed nodes and path loss exponent. These factors can cause failure

along the forwarding route and can reduce the reliability of WSNs. The experiment is

conducted by fixing the network density at 80 nodes per domain which is a densely

deployed area and varying only the number of failed nodes and path loss exponent.

Figure 5.10 Average difference in energy consumption
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a) free space

b) PLE 4

Figure 5.11 Average proportion of cooperation in various node failures under different

path loss exponents

under different path loss exponents
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Figure 5.11 shows the average proportion of cooperation by varying

number of failed nodes per domain under path loss exponent (PLE). It can be seen

that C-NashQ promotes more cooperation between different domains in presence of

increased failed nodes and higher PLE in order to avoid connectivity problems.

Similar results are observed in NCG-LH and Pool-based routing algorithms for the

same reason.
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a) free space

b) PLE 4

Figure 5.12 Average packet delivery ratio in various node failures under

different path loss exponents
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Figure 5.12 shows the average PDR of the algorithms against a varying

number of failed nodes under different path loss exponents.  In free space, C-NashQ

can maintain 100% PDR which is comparable to NCG-LH, Pool-based and All

cooperation algorithms as the number of failed nodes increases. Meanwhile, No

cooperation routing algorithm can attain 80% PDR at 48 failed nodes per domain.

This is because cooperation by sharing nodes between different networks can provide

alternative routes for transmission of data and can thus improve the packet forwarding

rate. On the contrary, No cooperation routing algorithm has the worst PDR as number

of failed nodes increases. For PLE 4, C-NashQ can maintain 93% PDR comparable to

NCG-LH, Pool-based and All cooperation algorithms as number of failed nodes

increases to 48 nodes. On the other hand, PDR of No cooperation routing algorithm is

only 75%.

Figure 5.13 depicts the average network lifetime with a varying

number of failed nodes under different path loss exponents.  In free space, it can be

seen that C-NashQ achieves longer network lifetime than NCG-LH, Pool-based, All

cooperation and No cooperation routing algorithms by 13.6%, 16.1%, 25.6% and

35.7%, respectively, on average as the number of failed nodes increases. With PLE 4,

similar trends is found as in free space with C-NashQ achieving more network

lifetime than NCG-LH, Pool-based, All cooperation and No cooperation routing

algorithms by 12.3%, 20.6%, 29.6% and 39.8%, respectively, on average as number

of failed nodes increases.

Figure 5.14 shows the average difference in energy consumption with

a varying number of failed nodes under different path loss exponents.  It can be seen

that C-NashQ, NCG-LH and Pool-based have comparable fair energy consumption in
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terms of the difference in average energy consumed along a forwarding path between

both networks.

a) free space

b) PLE 4

Figure 5.13 Average network lifetime in various node failures under

different path loss exponents
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5.6 Summary

In this chapter, two routing algorithms are proposed. The first algorithm is the

discrete state Nash Q-learning (D-NashQ), the extension of discrete state NashQ in

(Singsanga et al., 2010) applying to a distributed multi-domain WSNs by using payoff

matrix derived in chapter 3 as a reward function. The other algorithm is the

continuous state Nash Q-learning (C-NashQ), that considers the state space as

continuous state, which is suitable for the continuous state of the remaining battery

energy of the sensor nodes. We compare the performance between D-NashQ and C-

Figure 5.14 Average difference in energy consumption in various node failures under

different path loss exponents
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NashQ. Results show that C-NashQ can achieve 23.3% longer network lifetime than

D-NashQ as the network density increases.

Moreover, this chapter also evaluated C-NashQ with four existing routing

algorithms in separate sink multi-domain WSNs under uniform random topology. The

results show that C-NashQ can determine suitable packet forwarding policies under

various environment factors by promoting cooperation when the density of sensor is

low or in presence of failed nodes and higher path loss exponents, thus improving the

packet delivery ratio. Finally, C-NashQ can prolong the network lifetime by 12.3%-

44.3% on average when the network density, PLE and number of failed nodes

increases.
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CHAPTER VI

CONCLUSION

6.1 Original contributions and findings

In multi-domain wireless sensor networks (WSNs), resource sharing and

cooperation between sensor nodes belonging to different domain authorities can

prolong the network lifetime and enhance reliability of packet delivery ratio.

However, selfish behaviors of sensor nodes may incur in order to conserve their

energy and such nodes may refuse to cooperate. However, it is possible that

cooperation between sensor nodes belonging to different network authorities may not

always beneficial to any WSN. Hence, the objective of this thesis is 1) to identify the

parameters that effect cooperation between multiple co-located networks and fairness

of benefits that the networks can achieve; 2) to apply non-cooperative game theory to

allocate packet forwarding problem in distributed multi-domain WSNs based on

common sink and separate sink scenarios; 3) to obtain routing schemes which can

achieve the best mutual packet forwarding strategy in non-cooperative multi-domain

WSNs in a distributed manner using game theoretic reinforcement learning algorithm.

The research work carried out in this thesis is divided into three parts: the first

part is designing a payoff matrix that is suitable for non-cooperative packet

forwarding game. A game theory (GT) routing algorithm is proposed in Chapter 3 in

order to select routes in a distributed multi-domain WSN in a common sink scenario.

The second part is applying the GT routing algorithm to a more realistic formulation
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based on a separate sink scenario for a packet forwarding game in multi-domain

WSNs presented in Chapter 4. The last part extends the GT routing algorithm by

adding a learning mechanism based on game theoretic reinforcement learning. New

routing algorithms called D-NashQ and C-NashQ have been proposed in Chapter 5,

which learn policies by taking the expected future payoff into consideration and can

achieve suitable policy in distributed multi-domain WSNs. The original contributions

in this thesis can be summarized as follows.

6.1.1 Chapter 3

The objective of this chapter is

 To conceptually show that non-cooperative game theory can be applied to

the packet forwarding problem in distributed multi-domain WSNs under

the common sink scenario.

This chapter proposes the Non-cooperative game algorithm based on Lemke

Howson method (NCG-LH) algorithm to determine packet forwarding strategy

between multiple domains by using Nash equilibrium (NE). The Lemke Howson (LH)

method is employed to calculate the NE when pure strategy NE does not exist.

 To study parameters that affect cooperation between multiple co-located

WSNs in common sink scenario.

Cooperation by node sharing between multi-domain WSNs may not always

prolong network lifetime for any WSN. The results show that cooperation is

necessary to promote when:

- low network density and without guarantee of network connectivity

- there are failed nodes that can cause failure in forwarding route path
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- hostile environment in terms of higher path loss exponent (PLE)

- uniform random topology without guarantee of network connectivity

Cooperation can provide alternative routes for transmission of data, improve

the packet forwarding rate and prolong the network lifetime. Moreover, the results

suggest that if the networks are dense or have guaranteed of network connectivity

(e.g., tree network topology), a lot of communication cost from collaboration with

other networks can decrease network lifetime. Thus cooperation is not necessary in

this situation.

 To design a suitable payoff matrix for packet forwarding game in

distributed multi-domain WSNs.

A payoff matrix is proposed in NCG-LH algorithm as shown in Table 3.1 in

this chapter. The proposed algorithm was compared with variations of the AODV

routing protocol (i.e. the non-cooperative AODV routing and the cooperative AODV

routing) in distributed multi-domain WSNs under a common sink scenario. The

results show that NCG-LH obtains 12%-24% longer network lifetime than the others

as network density, PLE and number of failed nodes increases in uniform random

topology. Moreover, NCG-LH can achieve 20%-40% more packet delivery ratio than

the non-cooperative AODV routing. Although NCG-LH performances are

comparable to other algorithms in tree topology scenario with a varying network

density, NCG-LH can achieve 16%-18% prolonged network lifetime and achieve

31%-37% of packet delivery ratio more than the others when subject to node failures

and high path loss exponent. Finally, NCG-LH can provide fair energy consumption

to all WSNs in terms of the difference in average energy consumed along a
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forwarding path between both networks. The results show that NCG-LH always

provide less difference of average energy consumed than the other algorithms.

The main contributions of this chapter are three-fold:

1) A non-cooperative game algorithm (NCG-LH) is proposed to distributed packet

forwarding scheme in non-cooperative multi-domain WSNs based on common

sink scenario.

2) Identification of parameters that affect cooperation between multiple co-located

networks and fairness of benefits that the networks can achieve, including,

network density, node failure, path loss exponent, network topology and network

connectivity.

3) Design of payoff matrix for non-cooperative packet forwarding game in

distributed multi-domain WSNs (proposed in Table 3.1).

6.1.2 Chapter 4

The objective of this chapter is

 To study parameters that affect cooperation between multi-domain WSNs

in separate sink scenario.

NCG-LH algorithm in Chapter 3 is evaluated in multi-domain WSNs with

separate sink scenario, which is a more realistic sink scenario. The performance is

compared with 3 existing algorithms include pool-based routing algorithm (Pool-

based) (Kinoshita et al., 2016), which takes into account of fair energy-aware route

selection in multi-domain WSNs and variations of the AODV routing protocol (i.e.

the non-cooperative AODV routing and the cooperative AODV routing). The

simulation results are evaluated in uniform random topology only. This is because the
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proposed algorithm can distinctly provide the best performance in uniform random

topology.

The results show that when the sink node of each WSN is separated, NCG-LH

promotes more cooperation. Moreover, NCG-LH obtains 4.3%-31.2% longer network

lifetime than the others as network density, PLE and number of failed node increases.

 To study parameters that affect cooperation between multi-domain WSNs with

varying densities in separate sink scenario

- The difference in node density in each domain: When number of sensors in

domain 1 are denser than domain 2, NCG-LH can demote cooperation between

domains due to the high availability of nodes and routes in domain 1N . This in turn,

helps prolong network lifetime in domain 2N which has less node density. The results

show that NCG-LH obtains 3.3%-37.3% longer network lifetime than the others as

network density, PLE and the number of failed node increases.

- The difference of sink positions: When the sink positions are moved further

away from each other, NCG-LH promotes cooperation between networks compared

to the original position. NCG-LH obtains 2.6%-39.1% more network lifetime than the

other algorithms as network density, PLE and number of failed node increases.

In addition, NCG-LH outperforms the other routing algorithms in terms of fair

route selection by attaining the lowest average difference in energy consumption.

The main contributions of this chapter are three-fold:

1) The non-cooperative game algorithm (NCG-LH) is applied to a non-cooperative

multi-domain WSNs based on separate sink scenario.
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2) Investigation of fairness in terms of the difference in energy consumption

between domains and comparison between a game theoretic approach (NCG-LH)

and non-game theory technique (Pool-based routing)

3) Identification of parameters that effect cooperation between multiple co-located

networks and fairness of benefits that the networks can achieve. These parameters

include network density, node failure, path loss exponent, network connectivity,

the difference of node density in each domain and sink position.

6.1.3 Chapter 5

The objective of this chapter is

 To extend the non-cooperative game to determine long-term optimal

strategies by learning from the future payoff

In this chapter, NCG-LH is integrated with a learning mechanism i.e. by using

game theoretic reinforcement learning (GTRL) in order to propose an algorithm

which takes into account future (long term) benefits by allowing the agent learn

strategies based on the expected future payoff (or reward). Two routing algorithms are

proposed in this chapter. The first algorithm is the discrete state Nash Q-learning (D-

NashQ), which is an application of the discrete state NashQ in (Hu  and Wellman,

2003)  to packet forwarding problem in a distributed multi-domain WSN by using

payoff matrix derived in chapter 3 as a reward function. The other algorithm is the

continuous state Nash Q-learning (C-NashQ) that considers the state space as

continuous state, which is suitable for the continuous state of the remaining battery

energy of the sensor nodes.
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 To design state space that is suitable for game theoretic reinforcement

learning algorithm.

The state space in this thesis is defined as the set of the actual battery energy

of the sensor nodes. Three discrete state levels are used in D-NashQ, whereas in C-

NashQ, a feature function is proposed for learning with a continuous state. Results

show that C-NashQ can achieve 23.3% longer network lifetime than D-NashQ as the

network density increases.

 To evaluate the proposed algorithm by comparing with existing routing

algorithms.

This chapter evaluates C-NashQ with existing routing algorithms (NCG-LH,

Pool-based, All cooperation and No cooperation) in separate sink multi-domain

WSNs under uniform random topology. The results show that C-NashQ can

determine packet forwarding policy under various environment factors and improve

packet delivery ratio and prolong the network lifetime 12.3%-44.3% on average when

the network density, PLE and number of failed nodes increases.

The main contributions of this chapter are four-fold:

1) Proposal of two distributed routing algorithms (D-NashQ and C-NashQ) and their

application to the packet forwarding problem in multi-domain WSNs under

separate sink scenario.

2) Derivation of feature function to represent the continuous state in continuous

state Nash Q-learning.

3) Comparison of Nash Q-learning performance in discrete state and continuous

state.
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4) Performance evaluation of C-NashQ with existing routing algorithms.

6.2 Recommendation for future work

6.2.1 Extension of n-domain WSNs

In this thesis, two domain WSNs are investigated in packet forwarding

problems in multi-domain WSNs. However, with the recent advancements in WSNs

application in large areas such as Internet of Things (Mattern and Floerkemeier,

2010), smart grid (Fadel et al., 2015), it is possible that multiple WSNs can coexist in

the same area. For this reason, routing algorithms should support resource allocation

in n-domain WSNs.

6.2.2 Node/sink mobility consideration

In this thesis, the sensor nodes and sinks are assumed static. However,

as an extension of WSN capabilities, the device mobility and the network dynamics

provide a new chain of interesting applications such as healthcare WSNs (Lee and

Chung, 2014; Shen et al., 2016), animal and agriculture monitoring (Bapat et al.,

2017), vehicular WSNs (Bitam et al., 2015). In such applications, sensor may

frequently encounter topology changes. Therefore, routing schemes which can

efficiently locate the sensor devices, establish communication paths and determine the

best mutual strategy for all agents in the multi-domain WSNs are needed.

6.2.3 Extension to heterogeneous WSNs

This thesis investigated homogenous sensor nodes so far. However, in

actual WSNs may differ in many aspects such as sensor devices, battery capacity, data

transmission, operation start time, and so on (Kinoshita et al., 2016; Yaqoob et al.,
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2017). These factors should be taken into consideration in order to determine a

suitable resource allocation policy in multi-domain heterogeneous WSNs.

6.2.4 Application to other resource allocation problems

The proposed algorithm in this thesis so far is focused on the packet

forwarding problem. However, this algorithm may be applied to other resource

allocation problems in multi-domain WSNs which may have limitations of energy.

For instance, the problem of cluster head node selection, which is a representative

node in order to send packets to base station in animal monitoring in mountain

pastures (Llaria et al., 2015). Sensor devices may be set up on-body of each animal

(bovines, sheep and horses) in order to know the location of each animal from each

herd in mountain pastures. If each sensors belong in the same area sends the same

data location to sink, it may waste energy. Therefore, the proposed algorithm can be

applied to the cluster head node selection problem. Game theoretic reinforcement

learning algorithm may be applied to determine a suitable cluster head node by taking

the battery energy into consideration in order to prolong the network lifetime in multi-

domain WSNs.

6.2.5 Testbed performance evaluation

The main objective of this thesis is to show that packet forwarding

strategies in non-cooperative multi-domain WSNs can be achieved by using game

theoretic reinforcement learning algorithm. Results are obtained by simulation using

Visual C++ programming. Therefore, an important future direction is to extend the

framework to implement in an actual sensor network testbed.
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THE LEMKE-HOWSON ALGORITHM

In this section we introduce the Lemke-Howson algorithm that finds Nash

equilibrium of general sum bi-matrix game (Shoham & Brown, 2009). Example of the

game is shown in Table A.1

Two tableaux are required for the two agents in order to solve the game. The term ir is

the slack in the constraint 1yA  and js is the slack in the constraint 1T
jx B  , so the

following system is obtained:

1

1T

Ay r

B x s

 

 
(A.1)

Thus, the tableaux required are 1r Ay  , stated as Tableaux A and 1 Ts B  stated as

Tableaux B:

Tableaux A:

1 3

2 4

1

1

r y

r y

 

 
(A.2)

Tableaux B:

3 2

4 1

1               0.15

1 0.125

s x

s x

 

 
(A.3)

Table A.1 Payoff matrix of sample game

B
A

D F

D 1 , 0 0 , 0.125

F 0 , 0.15 1 , 1
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The r terms are the duals of the x’s, while the s’s are the duals of the y terms, also

known as the slack variables in the system.

The pivoting process start with arbitrarily choosing a variable ix from the

tableaux to bring into the basis. Then, a minimum ratio test determines the slack

variable (or dual) to be removed by considering the coefficients of ix , and the

equation for the slack variable just removed is solved. The remaining equations are

then solved in the chosen tableaux. The dual which left the basis determines the

variable to enter the basis next.

Thus, starting with the variable 1x is arbitrarily brought in, so by the minimum

ratio test, 4s leaves the basis, and solving 4s for 1x gives the following equation:

1 48 8x s  (A.4)

The variable 1x is substituted into the remaining equations of Tableaux B, to produce:

3 2

1 4

1 0.15

8 8

s x

x s

 

 
(A.5)

Since 4s is 4y ’s dual, 4y is brought in, and the pivoting process occurs once

more, modifying Tableaux A in the process.

The procedure terminates when the initial variable chosen to enter the basis,

ix , or its dual, leaves. The resulting tableaux from this iterated pivoting are:

Tableaux A:

3 1

4 2

1

1

y r

y r

 

 
(A.6)

Tableaux B:

2 3

1 4

6.67 6.67

8 8

x s

x s

 

 
(A.7)
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To achieve the NE from the tableaux, the slack variables ir and is are set to 0 and the

resulting values in ix and iy are expressed as probabilities, resulting in the final form

of the NE. Thus, Eq. (A.6) becomes:

3

4

1

1

y

y




(A.8)

And Eq. (A.7) becomes:

2

1

6.67

8

x

x




(A.9)

Then, renormalizing the ix and iy to be proper probabilities,

31 2 4

1 2 1 2 3 4 3 4
( , ),( , )

yx x y
NE

x x x x y y y y

 
      

(A.10)

And gets the solution

 (0.545,0.455), (0.5,0.5)NE  (A.11)

Or rewrite in NE policy, which is the probability over the agent’s actions

 
 

1

2

0.545  0.455

0.5  0.5








(A.12)

And can the payoff

 

1 2

1 0 0.5
          0.545  0.455

0 1 0.5

          0.5

NashA A   

   
    

   


(A.13)

 

1 2

0 0.125 0.5
          0.545  0.455

0.15 0 0.5

          0.0682

NashB B   

   
    

   


(A.14)
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APPENDIX B

EFFECT OF LEARNING PARAMETER
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EFFECT OF LEARNING PARAMETER

In this section, we show how to set learning parameters that affect the NashQ

algorithm proposed in Chapter 5. In NashQ algorithm, each agent has to update its

new Q-value at time step t+1 as follows :

1
1 2 1 2 1 2( , , ) (1 ) ( , , )) [ ( , , )],t t t t t t

i i i i i i iQ s a a Q s a a r NashQ s a a         (B.1)

From the equation, it can be seen that the two learning parameters used in the

Q-value update process are:

 Discount factor,  : The discount factor defines how much expected

future reward affects the immediate reward. The discount factor is usually set between

0 and 1. Setting it to 0 means that agent is interested only in the immediate reward and

neglects the long term future reward. As 1  , more weight is placed on the future

reward in the updating process. Hence, the future reward will have more significant

impact on learning the suitable cause of action.

 Learning rate, : The learning rate is set between 0 and 1. It

determines how fast the old Q-value is forgotten, i.e., how much weight is put on the

new Q-value estimate. When  is 0, the Q-value will not be updated, hence nothing

is learned. As 1  , the new Q-value estimate “forgets” the old Q-value more

quickly and take the value of the new estimate 1 2[ ( , , )]t t
i i ir NashQ s a a    more rapidly

as well.

To learn the optimal policy in the NashQ algorithm, we therefore study the

effect of both parameters. In the experiment, we set both parameters in the range

between 0-1 and observe which values that achieve the best performance in terms of

network lifetime and packet delivery ratio.
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B.1 Effect of learning parameters in D-NashQ

B.1.1 Effect of discount factor

Figure B.1 Effect of discount factor on network lifetime for D-NashQ

Figure B.2 Effect of discount factor on PDR for D-NashQ

Figure B.1 depicts the effect of the discount factor on the network lifetime for

the D-NashQ algorithm. It can be seen that the discount factor of 0.01 and 0.001
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obtains the best network lifetime while the other discount factors are comparable.

However, when the packet delivery ratio is considered in Figure B.2, it is found that

the discount factor of 0.001 outperform the discount factor of 0.01 in a sparse network

and becomes comparable to other discount factor values when the node density

increases. Therefore, we choose a discount factor of 0.001 which provides the best

network performance.

B.1.2 Effect of learning rate

Figure B.3 shows the effect of the learning rate on the network lifetime for the

D-NashQ algorithm. It can be seen that low values of learning rate obtains longer

network lifetime than higher values of learning rate. Moreover, a learning rate of 0.01

and 0.001 provide the best network lifetime. However, only a learning rate of 0.01 can

maintain PDR at almost 100% when the node density becomes lower, as shown in

Figure B.4.  We thus choose a learning rate of 0.01 at which the algorithm performs

best.

Figure B.3 Effect of learning rate on network lifetime for D-NashQ
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Figure B.4 Effect of learning rate on PDR for D-NashQ

Interestingly, from this experiment, the algorithm performs best performance

at very low values of both learning parameter. This is because each agent must learn

Q-values for a large number of state-action pairs ( n nS A , where n is the number of

agents). The finer the state quantization is in D-NashQ, the slower the learning rate to

attain the optimal policy should be. Otherwise, a step size too large may not allow

convergence to the optimal policy.

B.2 Effect of learning parameters in C-NashQ

B.2.1 Effect of discount factor

Figures B.5 and B.6 indicate the effect of the discount factor on the

network lifetime and packet delivery ratio, respectively, in C-NashQ algorithm. It can

be seen that the discount factor of 0.25 outperforms the other discount factor values in

terms of network lifetime and packet delivery ratio. Therefore, we choose discount

factor of 0.25.
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Figure B.5 Effect of discount factor on network lifetime for C-NashQ

Figure B.6 Effect of discount factor on PDR for C-NashQ
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B.2.2 Effect of learning rate

Figure B.7 shows the effect of learning rate on the network lifetime for

the C-NashQ algorithm. From the figure, a learning rate of 0.1 achieves the longest

network lifetime while a learning rate of 0.001 attains the shortest. Moreover, a

learning rate of 0.1 also maintains the PDR almost 100% as shown in Figure B.8. We

thus choose a learning rate of 0.1 which gives the best performance.

From all results, it is shown that the performance of the proposed algorithms

are sensitive to the selection of learning rate. If the learning rate is set too high, the

algorithm can oscillate around the optimal policy and become unstable. If the learning

rate is too small, the algorithm takes too long to converge. This experiment also

suggests that C-NashQ prefers high value of discount factor and learning rate than D-

NashQ. This because C-NashQ does not require as many time steps as D-NashQ to

visit each state-action pair since it can learn the continuous state though the feature

function. Therefore, it does not require a small value of learning rate to perform best.

Figure B.7 Effect of learning rate on network lifetime for C-NashQ
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Figure B.8 Effect of learning rate on PDR for C-NashQ
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