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UNANLBATWID9INE

Since the announcement of the human genome project in 1990 up to the
successful sequencing of all the human chromosomes in the year 2003, the amount of
available genome data has been increasing exponentially each year. Unfortunately,
genomic interpretation cannot keep pace with such tremendous raw sequenced data.
Computational methods to gene recognition and identification of its structural
elements such as donor and acceptor splice sites are thus important to the success of
bioinformatics. The widely used methods for gene recognition include hidden Markov
model, Bayesian network, and dynamic programming. Recent advances in gene
prediction tools apply computational intelligent methods such as artificial neural
network, support vector machines, and genetic algorithms to produce a more accurate
model.

In this project, we consider the problem of recognizing coding regions for
protein biosynthesis in eukaryotes. The recognition task is to separate coding and non-
coding regions, and to identify the boundaries of intron and exon parts in the unknown
DNA sequences. We tackle the problem with the knowledge engineering approach in
which not only the machine learning techniques are employed, but also the whole
process of knowledge discovery including feature selection, data modeling, model
validation, and rule extraction is to be designed and developed. The advantages of the
proposed knowledge engineering approach are the ease of use, the automatic
generation of informative and comprehensible model, and the adaptation on new
information. The induced prediction model is also expected to work well with
approximate, incomplete, and uncertain data due to ambiguity in DNA sequencing. We
developed the DNA coding region recognition program with the Erlang programming
language in both sequential and parallel modes. The program is open source in such a
way that the source code is publicly available for further improvement by interesting

researchers.
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1.1 anudayuaziunvesdyninisidy

nsasslusauiinudfsionsmsidneddidinoens siddesnlusiy
Huausznauiiddylusnenie dududnseen ebe Wulwl siufvansusenoudu «q 7l
AudRgsenszuIumMImsduedl wu Slulnadulumeddindonuns Wudu nsyuiunis
ahalusiiluddidin  avgnauaumeyaidsignifveglusuuuuvessiaiugnssiluaed
10w (DNA - deoxyribonucleic acid) lnefduoazgnussyedlulasiuloy uaslaslulouay
sgneluininduavesead Welsunszuiumsainslusiu siaiugnssiludiduediilassaina
Jundeag  azgndmaenlieglulassaiiefifivuinidnadudnunslnssadmeieiveens
WBue (RNA — ribonucleic acid) luguil 1.1 uandlassairsaneifenvesenfidue (@eile)
Wisuiisuiulaseasaundelguesdioues (vaiile) wiedesgavessianugnasuluasmdu
0 Usgneumeilimalelng 4 wila Aw Cytosine, Guanine, Adenine, Thymine WieiSunie
g091 C, G, A, T Tassadsluonsidue Usznausedandlelnaiindemdue Toud Cytosine,

Guanine, Adenine, Uracil #58138n30g031 C, G, A, U

Cytosine c] A Cytosine [c]
KM __—Nucleobases NH:
| = | =y
o o
H H
Guanine . Guanine .
Q 0
NH NH
N N
L ) /)‘NHZ {{/}‘NHz
NT N W N
H Base pair H
Adenine @ Adenine
HoN H N
N N
4\ » £\ P
N~ N N~ N
H H
Uracil g Thymine [ |
o] (o]
HiC
L oo Qo
elix o
H ° sugar-phosphates H ©
Nucleobases Nucleobases
of RNA of DNA
RNA DNA
Ribonucleic acid Deoxyribonucleic acid

U7 1.1 Tassaduaneifeivesendifuieuazindeiguesiiiuie
(fisn https://commons.wikimedia.org/wiki/File%3ADifference DNA RNA-EN.svg)



lassawesensidueadumeienihliiivuiadnnindidue  wagmsivundn
ielfenfidueannsandoufiiugnsuvonderuinadodld  lunssuiuntsdiovendds
dioadluiy  FuSudusetumeunisfnaensiaiugnssuandiduelugonfifuaiFonty
transcription agediuiediléifonin messenger RNA %8 mRNA fifluuadnwedioz
wdouiinugnsuuudoruiiededld  Welduenfidueindeuiieananiuaduanngdiud
Sendlelavanady saiugnssuluaeensidwesrgnoensialaglsluley (ibosome) Tu
FuneuiiFeninnisutasifa wde translation

nsnensaddagldsiatondlolnd 3 dumiiivsngdedesiuuuaeduens
Bute B Taneu (codon) sWaauhumindelaneuiitfuyndeyadmiuimunguiuy
msafensaesiily (U 1.2) Taneu AUG 1usviaimunnsisuainsnsnesily waglaneu
UAG/UGA/UAA \Hussiafiasyinuiindiimuanisngaasansneiily aevesnsmexdludign
aeu  vgnihuiulasudassuiwieludilasastulsugl visgd  wasaRonive

Wsiuwazalln Anuduiusanfueluidusidueuazanineiilidnsduaseilusiu

&z [ & a a [y a ' 41' [y =
‘L!L‘Uu‘lﬂﬁﬂﬂ?iWUiWU%@ﬂ%’J’JWS’ﬁ%@UIMLaf]a 138N ANULVRUAN NIB  central dogma

(Crick, 1970)

Amino acid = | mRNA codons | Amino acid mRNA codons
G| Alanine GCU, GCC, Leucine UUA, UUG,
€ | Codont GCA, GCG CUU, CUC,
N= CUA, CUG
c Codon2 | Arginine CGU, CGC, Lysine AAA, AAG
G_| CGA, CGG,
G AGA, AGG
A Codon 3 . .
G Asparagine | AAU, AAC Methionine AUG
¢ Aspartate GAU, GAC Phenylalanine | UUU, UUC
u Codond | Cysteine UGU, UGC Proline CCU, CCC,
o= CCA, CCG
G Codan § Glutamine CAA, CAG Serine UCU, UCC,
f:= UCA, UCG,
G | Cedené - AGU, AGC
c Glutamate GAA, GAG Threonine ACU, ACC,
T ACA, ACG
A | CodonT | Glycine GGU, GGC, Tryptophan UGG
G GGA, GGG
RNA Histidine CAU, CAC Tyrosine UAU, UAC
Ribonucleic acid Isoleucine AUU, AUC, Valine GUU, GUC,
AUA GUA, GUG
START AUG STOP UAG, UGA,
UAA

U7 1.2 sialaneuuuangensidwe (F18) uaznnsuaninnudenlesssninnsaosiiluuay

swalanew (171) ([ https://en.wikipedia.org/wiki/Genetic_code)




nsfnwieadlunstinensssuluanalduiedad®indu 2 nqulngjie ngulns
A3len (prokaryotes) wangugAislen (eukaryotes) L%aéﬂaaéaﬁ%‘imiumjmiwmﬁi@w?h
HuadPietusidslifiaunnsdudouaslifituedos  shlsmuasiidustaiugnasy
nszLoLIYAd iﬁaﬁuqﬂﬁiuﬁﬁwmmﬁﬁ'ﬂugﬂLLUU%ﬂmauﬁmmaaQﬂaamﬁatﬂu
nsnezilu nquuedlaneurzUsngegluaievesiandlelnd nsudadudiudes 9 Sonindn
gau (exon — expressed sequences) utiudnveusalududdyvosidue viwii
Suiinsviaftanansathlulfuvaiieairadulusiu nszviunsdunseilusiuiadudenen
samdadugrunniidueduoniiduensylfusiilutuneuaatine

Adidindugdundugnidlen 1wu dnifesgnieuy sgflenududousnniilng
a3len meluwadarnuiuedsavinmihivierulasiuloutazansvesiduelinely deisu
nszvaunsadelusi saiugnssulufibuessgndnasniiuasersidueseiuugugd
Bundn primary RNA transcript %130 pre-mRNA — @neoniiduedidnaoninaniduei
meluazusngauvesiadlolndfiussysidlunisairslusiuniodudneey  adusedau
voandlelndnililaldlunisadrelusin  Bendndmdunseu  (inton -  intervening
sequences)  Anwuztuiluandsanadialunguinsenilen  fumnganizdmisngon
solestunseniasvesiiuiouarerfidue lasliusngdudunson

nsiiwadludadlPinngugaslensingdiuvendnvey adusediuvesdunson
yhlitunouresmsdnaensiaiugnssa (transcription) fistungluinafoavonead o
Funoudeiiiniu Zunin Tuneudeuse (splicing) Insludumeutiasinnisidweluaeens
Buaiiielidulaeisaownuresdunseunussauiusasgnanoenld U 13) dw
voudnweuilivde azgnidouseitioiulumeeniiduleassnmedeiiussqanesia
a¥alUsiu anpendidueiildiizondn messencer RNA 9130 mRNA aneLdu3 YN
devananfundealuivdnlelntaaduvesad - iioWidiulsznevddueneadiunia
Islulsy vhwihfinensviausaglaneudunsnesiiluusasyin Wondeiduamevensnezily
wazanevesnneriluazgnuulassadreioludulusiuiianysalluduneuaarine  dumeu

wianluanalanagun 1.4



5' splice site U1 snRNP U2 snRNP, 3' splice site
3" portion of pre-mRNA
exon 1 exon 2
U4/U6 snRNP f
US snRNP branchpoint

U4/U6 snRNP

U5 snRNP

5' splice site cleavage
and lariat formation

lariat

3' splice site cleavage and
joining of two exons

portion of MRNA  5' INEEEE— I 2 + excised intron in
exon 1 exon 2 the form of lariat

JUT 1.3 Jupsuiliousiaiiofndiuduyseuesnanna1ee1sidue
(131 S. Rogic, 2006)

D
F—Tr———r e NG,
— E— ——
ni =xan 2 exan 3

I' 1 TRANSCRIFTION
| primary RNA transcript
| (pre-mRNA) 5,"——-. . o’ |
END MODIFICATION
g
"-—\ F’

e

tail

SPLICING

ribosome

swma
e codan

mRMNA
s

C

% growing protein
D chain

= & LY Y N ! ! [ o =
E‘U‘Vl 1.4 33UVUHBDUNITANRDNTUAH ﬂ'ﬁL?j@llm’e)ﬁ'JUL’e]ﬂ‘d@uuﬁ%ﬂﬁiLLUﬁi%ﬁIﬁﬂ@qugﬂ'ﬁIa@
(#11 S. Rogic, 2006)



nszvuNsBeuselfiofndiudunseulavifoudiudnveuluaesisioue 9z
o a a d‘ 1 =4 ¥ 9 v YV 9 U 1 & @ a
sutulUluiianeiuiueufoanay 5 Wdwu 37 nsdiauassioalunisoueazinig
3R UYALaLsie (splice site) FazUsznaumeaiiousznidngouiudunseu 13
donor site wazgALTENTERIBUNIOUUBNTEU 138nT1 acceptor site ALTBNRBYINEDY
& & o’ o ! ¢ 2 N a ¢
wuuilazusingrsluanesiiduenasgninaendeunluaigonsiduwe (UA 1.4) nsAsey
InssasnsvesangfoueiAuALLsLiueUYes donor sites WAy acceptor sites
ANNEAYREN1IYUNETATIAS19900ONDSOUWe  Larn1INTIUlATIEILENDNSO UL LYY
Tymanuneisasuszneulushuiazls  saudsdelvaunsaviinennuiaunfivesnsasng
TWshunagmanziunnudesdiaznatolumadunse sullamnunainfiduedswanugnssy
NUNNID9
intron
6T AG

D 4 .
Donor site’ Acceptor site

Splice sites

Exon1l Intron1l Exon?2 Intron 2 Exon 3

5. .ATG... | GT..AG | ... GT..AG | .TAA |..3’ DNA
| .AUG... [ISUDARN ... GU..AG__ | .UAA(A.A) | pre-mRNA
[AUG.. [.. |.UAA | mRNA
Exon 1 Exon 2 Exon 3

JUT 1.5 lassadedumseu (nmuw) wagnisiniisdiudunseuazideusiodiudngeuly

JuRoUNITIRTTEAIAINABUL lUTSNa15eUL (NWa4)

tndsluaudinenseaulumanadsiuin Wneeusunimeatiaiiagyeli
anunsaasalumanuaiudilunsnsiaadeunazyiiune donor way acceptor sites luanefidu
av v &, v Ao w a sy A  a ) Y

e wsglueanliasluanuiiugunddglumsivneisudy 9 Migtesiusa

wugnssy Iegluszezusniinmsldmalianisimssiaduvestanilolns (sequence-based

A 1%

approach) tieAurmsukuuiedeliviniune donor wag acceptor sites toogausiugn i

Y

Tusvaznaainidosuldnailaves machine learning AlNaans7ATIANSIN wazAL

1 o a = 1 = =] Y v Y a <3 .
LLEJUEJ’W]QQGUU LLG]‘\]’Tﬂﬂ’]’ﬁﬁﬂ‘H’lLUENG]UﬂUGUQZJUﬁﬂLE]ULE]GUUW]Laﬂ (2,000 instances, 60 base

pairs) VBIdENUIINTSIdmALlA machine leaming LU support vector machines @



ca.5 niawdizlilumanAanuusugilunmsvinglagsiuiengs uilelneilagaziden
WNUIINTTYIUY true splice sites AxinTiIV0 false positive UzUusgfoutnaun
AL ITwIAn NI TNLNNaYDIN13RTIITU splice sites UUABRAEULE
vnansiueniianuuiuduaziionst false positive A1 wazgUwuuvedlnanlaay
< ¥ Y & & (Y v = £4
ausagnuvaadugiuanuimetuneumsuvasnilunseuiunssnlud®  welildszuy
FuANUIFEMTUaTuALUOUAUNSTIEEY TEUUTIUANINAENTEUINN TR LULR

Taziuanusnininlnivesn simues oo d s unuTiansauna

1.2 UIYMNYIVD9

[ v

Tuthsduamssud 21 IfAnUIngsalddymsudinerssiiliana e
#4388 Human Genome Project Usznarudsavesnisaansiaruavedasiulely
uyud Vibiladeyavesanefoue 817 3,310 dwewa (Baldi & Brunak, 2001) uae
UsgneumigBuuseanns 20,000-25,000 widg (Stein, 2004) nsiiAsIgideyan1eliving
guelwgjmanil Vildiananeidelmllufoves Fransaumearmans 3o bioinformatics 4
Jumansvesnisuszendldmaia@eruwinmn 9 luavads wezaunsuiinasaunis
Suuu  wasmsSeudveanies  LilelasesiuazUstinanateyaiidule  (Ouzounis &
Valencia, 2003; Cohen, 2004; Wodehouse, 2006)

Yaqusvasdvasmadinneitoyafduelivainvats  ufiefnwilassai
waznifivesdu (genomics) Anwlassadiswazninfivelusiu (proteomics) Munandn
Y9INTTUIUNIARNTARLWE  Tandadlednuinszuaunssznininalswesmsnensiaaind
Buodulusiu  TasnmsideiliuiinsfnunBuduiivssytaiugnesiensdansgy
Wsiu  Teedmuaveumsmesnuiiensdianeilunaidsiunliamsaiduazsuun
dmUTIaia (exon) saninauiliflsfadmivairalusiu (ntron) samfemnuannsaly
nssuungadionsio (splice sites) vaaidnwounardunsou siludnwardiFendinisviung
U (gene prediction) ﬁaﬂ”ﬁiﬁiﬂg‘mwusﬂa@u (gene recognition)

NMevueEy ¥3en133NFURUUYRIEY Julnideiddnlunudasauna
dosnemusfldanduiiuguddyroamslinnesidudy Wy 9da Yhina uazera
auysalveslsiuiioglinnnszuaunsdanses Tnidulsmenomandumadasing 9 il
nsvhweBufiuiug suuniaemmssy wedamaiuuddiduaesndulvg (Vathe et
al,, 2002; Do & Choi, 2006; Flicek, 2007; Gross et al., 2007; Bandyopadhyay et al,,

2008) A9 intrinsic (W30 ab initio) Way extrinsic (158 homology-based)



wiatiansvungdululuy intrinsic 38 ab initio Aldveyaddutiandlelne
waglaneu laweivsngluamefduefidudmnsvemsduaseiluea Wen1sviune
FLUe98U (Fickett, 1982; Gribskov et al, 1984; Staden, 1984) wANANITILATIZY
inagl#3BnsvneadAigy hidden Markov model wewdldlitensviuneBuiidnoglungs
ab initio oA GenScan (Burge & Karlin, 1997), Augustus (Stanke & Waack, 2003),
TigrScan/Genezilla (Majoros et al., 2004) wag CRAIG (Bernal et al., 2007) TR
Fordvsnor duifeulunduie Genscan osnnldemldtouasssnanasng Sy
syogndaaziivendiafifiensvihuneduilimauutiugngindt ud GenScan gls¥unim
fuuldiduwnasiugy  lunslsudieuanuanunsalunmsyhuetusenduasitlaiunis
ool

L‘VlﬂﬁﬂﬂﬂiﬁWW%iUﬂﬁjMﬁﬁ@ﬂﬁ@ extrinsic %39 homology-based 438
similarity-based  fnslitoyaduuenmiionnfiduetmaneuszneunmsinnedu  doya
duildleun  drdunmsSesinveansaesilululusiu  dduvesiandlelndluaevonduens
B uazsuuuumsSesinvesaefidue sewsdifiensviunelungy extrinsic léuA
ROSETTA (Batzoglu et al., 2000), CEM (Bafna & Husan, 2000), TWINSCAN (Korf et al,,
2001), SLAM (Alexandersson et al., 2003), SGP (Parra et al., 2003), EvoGene (Pederson
& Hein, 2003), ExoniPhy (Siepel & Haussler, 2004), N-SCAN (Gross & Brent, 2005),
DOGFISH (Carter & Durbin, 2006) ey CONTRAST (Gross et al., 2007)

gordwsilemaiueuiifnduluszosnds Wy CONTRAST uandlidiudi
nslidoyadu wu sUuuuMsEesvesmeiidue Uszneumsinnesumisvesdnveu
wliamahuneiiuiugunntu deyaildussneunsiunefu veninguuuunisSesi

9 I

YosEefdueudy Juudlasiainwedunseu wasdayaneriulasiadneueionsiouens

a

TusgiuuguglivasyRoglanunsaiunlidelunmsiueduldilunad (Sparks & Brendel,
2005; Marashi et al., 2006; Rogic, 2006; Dogan et al., 2007)
TsinateiiiinguszasdlumevhueBudeiBn1sves machine leaming Tag
Tdmadian1sAunuanuduius (association mining) lddayaves intron uag exaon lu
las9as1avee RNA Usenaunisvitung  splice sites wed8u Joyausenaunsinuieasgn
sonuuulassaauardnguuuunsunuteyalimnzaniunsvinihidutoyauseneuly
nsmsviune Teelunadildanansagnudastiedlunseuvesszuuguanuiivyiesenisly
U wonNtnsl inference engine wenaNdLgIUATIS sl FAzIANFNIUS LU

A I a X
szuudledianuslniindulueuian



Tagtussuugiuanusluau genomics dailiiesseuu FIGENIX (Gouret et al,
2005) wag CASSIOPE (Rascol et al, 2009) #ldlunisilseudisuilunvoswansfidueiie

Aao v a

AUMUShundawuiindlolnanssiu Lagseuu AlexSys (Aniba et al., 2010) Alglunns
g, [ I3

Wisuifiguiayiaseilusiu sruugIUANUsien suedunimuduiitadad

AMNATIMENIRLE S UUITBATY genomics

1.3 nguerasAvaslasinisiag

o Auphanuiiugnuiediulasiainensiowe  dunseu  wagNITUIUNIS
Feusensioue  Mwinzandmsunisiamnluanuiiugiulunisasng
Tuwaliiensa9du splice sites UWaBAOUED TIUT10DNKUUTULUUTBINS

WUANUINMINzaLAUN Ui leaien1sinwg gy

o sinulumadmsunisvihuneiuniadeusossninsd@LOnYeU-duNseU VU
a g 9 ¥ 1 ) ° v L °

aenawelAauuduglunviunegs uaglvian false positive A1 lag

sULuuvedlaiils sxfesmnzandmsunisulandugiuanuddmsvanu
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1.4 YULYAVDINITIVY
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NATelilun s laadediuin  wareaNkUUTEUUFIUANNSA MUY
PUNTVINUIBEY  LIUNNTUAILAULDNYIU-BUNTOU  LAZUDUIIATLNINIEILVDIDNTIU
wardunseu laglulUesduidalaisinsudiu gene annotation Mdun s uIuBuLay
° ° A | = a4 v X P’ Y a a3
AMNUAGTLAUINU LB WY UULLASIATEN  TAaNEs 199 UENITUN LASIAS19UDIRLO ULD
wazonsiowalunan laedeldfiensavwiad vie function vesswaiugnssy Mmegdey
Anusiugwedunavzldivafinveinnsivaeumedeyanagey A1LITNISUNAVDY

machine learning tnazlaildiBn1snsiaaeuniwieslfianstvinerseauluana
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n1sRRNLUULAZNAUILUSUATY

2.1 NSOULUIAA

(% (3 (%

Trsansideiiingussasdndniteasrsnaadiniuviiue splice sites u3aqn
\ousio exon-intron/intron-exon Tuaefdue msadlunaazliiBmsiFouisuuuan
Foyailn Weoldlumaiiionsinesumisgaideuss n3e splice sites ANUNMMAGDUANY
windrlumsinneud Binaszgnuiandudeyaluguanufifielivsslenlunuimsau
wie fosnluearune splice sites asfoudodansulantuguarudlufunousiely
nuATeiRadenlfvadanisdunuarudinius (association mining) LHudana3fiuiiugu
dwmdunsainsluea  WonlinadnsifumnuduriusiianmnsauUandudeanuludnuay
npvesgrum N3l Tassaavedlusunsunsiunusuuuuiivsnguesludeyafduedimiu

VimneyeteNseluaeAdue (SenTetodnlusunsu assoDNA) wandladagun 2.1

DNA sequence data

—2, o 7 Ny
|
Data of class Data of class Data of class
exon/intron intron/exon none
\ assoDNA
Algorithm
Patterns of Patterns of Patterns of none
exon/intron intron/exon class
class class

~N S

Sorted patterns
according to ‘:D Splice site
confidence value predictive rules

JUT 2.1 uuifnuedlusunsy assoDNA dmsurinnegaideuselufioue
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%gumaum3ﬁ1qwuwé’ﬂﬁuaﬂﬂmﬂium'ﬁé’uwugﬂLLUUﬁUsmgUaaﬁm%’uﬁwmafq@
Weusieluanefidue (Wsunsu assoDNA) dziFusushenisinideyaaedidueritoidy
oyatindwsulilusunsuiFend nszvaunsBouiiinguszasdifloduvnsuiuues splice
site MJugALTonsoYBa exon waz intron 3eqaileuesENIN intron WAy exon ey
yadoyarinuddnutstoyadu @ ndu Aenguusnidumefidueiusngaaidensio exon-
intron (Gend1 donor site)  nguitaendumefueiiungaailouss  intron-exon
(138n71 acceptor site) LLazﬂejuﬁa'mLﬁuawaaLé‘uLaﬁlﬁUmﬂgwgﬂ donor uay acceptor sites

mniudeyaluutaznguazgnindlusunsy assoDNA adeudsuuuuiiusing
U LLasLLammaé’wéLfJugUquﬁﬂimgﬂaaﬁqﬂ (support) 13usanvdunudIFuAAILET
Usnguesangaluin waziFosddunmrimuderiu (confidence) Fafnazliifusnnsin
uwnuAAmgnAesessULUUiiduny  TumAfethsinnsandenldsuuuuiiunnguesuay
audesiugdlutae m¢ dwuusnifiowdasfuteyaiiulilugiumng suuuures splice
sites Auintilugmuanufazgniblulinuiensviunegadesseaefidue dmiunsdi

Tdnsunuduinansfowetiuusing donor site 38 acceptor site w3yl

2.2 nseanuuULaznaulusunIy

nseanwuulUsunst  assoDNA  TduwimemisAumsuwuuiusnguasves
dane3viu Apriori (Agrawal and Srikant, 1993) duiiugnulunisiaun Tuneuisves
TUsunsy assoDNA uanslaluanuazves pseudocode faguil 2.2 waswandludnuauzves
flowchart ﬁﬂgﬂﬁ 2.3

JUNDULINUBILUTHATU assODNA %L{JumiuﬂﬁaaﬂaaaﬂLﬁuammjmiaa Town
exon/intron, intron/exon, - none LﬁaLmuﬂz-jmaﬁa%aﬁLﬁuLaﬁUﬁﬂmmLﬂ?jamﬁaizwj’m
exon-intron ﬂ&jmm%’ayjaﬁﬁuwﬁﬂmﬂmmL%a:uﬁiaiwdw intron-exon WAENGUYBITBYA
a g d' 1 d' 1 o @
AuenliuIINgInBNse AuEIRU

3 d‘ I~ 2 a I 1 1 Ql d‘

Tupauitges {WunsAumsULuLasiladlelnaluidazngulagisuanguuuun
Usznausie 1 dndlelng waziinsruiudiedlelnsenitudu 2, 3, 4, 5, .., 60 waziu
! = ] ' a8 a o ) a = &l
AANNDVRIFURUUIMENTY ArrnadilisendiAnatiuayu (support) sUkuuvestiindlelnai
Usnguesazgnanifeniiiedssielignisvihanlutunewsely Tunisldaulusunsudiaiiud
YupvieAatuaLULUN (minimum support, minSup) Agseylagkldnulusingy

Tupaunauvadlusknsy WunsAuIuAIAUGeril (confidence) vadLfay
gﬂLLUUﬁ?ﬂ%I@VLVIﬁ E‘IJLLUUﬁB\imLﬂmsﬁm’mL%aﬁwﬁ'uﬁﬂ (minimum confidence, minConf)

LY

wgnAnidenuardwialudunausaly A1 minConf agseylaegldanulusunsy
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Tuneunawazin  Junisihuadwszuuuuiedlelnanusnguesuaziaiay

Foduguanudungiietuiinlugiuanus

Step 1: Initialization phase
Split the training dataset into three subsets according to the class value.
Thus, we will get data of class exon/intron, data of class intron/exon,

and data of class none.

Step 2: Generation of frequent patterns
Each data subset is processed through the following steps:

2.1 Set the given minimum support as minSup
2.2 Initialize R ( a set of frequent patterns) to be empty, R = %
2.3 Build a candidate pattern P of length K

P= A«(i=8)

where K starts from 1, i € {-30, .., +30}, and

B, € {ACT,GD,NS,R}

2.4 Select a pattern P with support > minSup to contain in a set S
255 tR=RUS
2.61f S =, then continue to step 3

else increment K and go back to step 2.3

Step 3: Confidence computation
3.1 Compute confidence value of every pattern P in R, and annotate
confidence value to every pattern
3.2 Sort P in descending order according to confidence value, for a tie then

descending sort with respect to a support value

Step 4: Rule generation
4.1 Set the given minimum confidence as minConf
4.2 Generate association rules from every pattern P in R that has confidence

> minConf

Step 5: Building predictor model
Combine rules from the process of every data subset and sort according

their confidence and support values

JUT 2.2 Tunowisvedlusunsu assoDNA
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Given minimum
Data by class i
support (min_sup)

A

Initialize R (a set of final
results) to be empty

A
Build a candidate pattern P of length K

P = Ak (Li = Nj)
where K starts from 1
i € {-30, ...,+30}, Nj € {A,C.T.G}

A

Select a pattern P with

support = min_sup to
containinasetS

Increment K

R=RwS

no

yes

Compute confidence of every pattern P
in R, and annotate confidence value to
every pattemn

A

Sort P in descending order according
to confidence and support values

l

Generate association rules from pattern P with
confidence = the given minimum confidence

JUN 2.3 M3vhauvedlusinsy assoDNA wansluanuae flowchart

nsitmLtuneuifuandusuil 22wy 2.3 Wuldsunsuarldnvieauas
(Erlang) Fadunwideiliidy (miivanlénain httpy/www.erlang.ore) ilosanidu
MTEaNE UM STANFULUUBE195IALE7 (rapid prototyping) wAZANHNSaRAIL
Humslsunsuuuvrunuldie  degdusunsuisdunanddfgun 24 (saduaty
Favuavodlusunsu assoDNA ansnsagldlumanuan o) uasvinvenadnsuesnisusutana

TUsunIuuananagun 2.5
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main1() ->
{Allinput,FNo,ThisClass} = input(),
DB = myToSet(Allinput),
Total = length(Allinput),
{_,Per} = ioread(" input percent> "),
{FNo, ThisClass, DB, Per} .

apriori(DB, Items, Min) ->
C1=[ {from_Llist([X]), findSup(from_list(X]), DB) } || X <- ltems ],
L1=[{FS,Sup} || {FS,Sup} <- C1,Sup>=Min],
LkPrint=[ {to_list(FS), Sup,Sup/length(DB)*100} || {FS,Sup} <- L1],
K=2
LS = [FS || {FS, } <- L1],
aprioriLoopPar(L1, DB, LS, K, Min) .

JUN 2.4 Mesndunanuazileanduaumainuduiusvedusunsi assoDNA

.¥ Erlang b= | E) S
File Edit Options View Help
v| EBEA R

2> assoDNA:main1().

File 1."spliceDNA.DATA" 2."spliceDNA-Test.TEST” :Choose> 1.
Read from file:"spliceDNA.DATA™

Ther are 1-3 Classes :Choose> 3.

Class ="intron/exon” input percent> 50.

Total=560 ,50% MinSup=250.0

K=1-[{["A(-2)"]1,497,99.4},
(["C(-3)"].390,78.0],
(["G(-1)"],498,99.86],
{["G(1)7],251,50.2}], has 4 set

K=2-[{["A(-2)","C(-3)"],389,77.8),
(["a(-2)","6(-1)"]1,496,99.27,
{["A(-2)","G(1)"],251,50.2},
(["c(-3)","6(-1)"1,390,78.03,
(["G(-1)","G(1)"1,251,50.2}], has 5 set

K=3-[{["A(-2)","C(-3)","G(-1)"]1,389,77.8},{["A(-2)","G(-1)","G(1)"]
has 2 set

lk=4-[1, has 0 set

U7 2.5 fegmvenmiidunanisinnuuedlusunsy assoDNA

HANT5YNUYRIlUIUNTN assoDNA AsguTl 2.5 Wun1sAumsduuuvesipgle

Indnusngueslunguvesiiouefiigadiousis  intron-exon  lagimuaaIALAeINTT

1 7 7
aAa v a

Us1ngues 3o minSup 18 50% JUsuuifanaeidusniiinggu 11 JUuuu deil
Intron-exon splice site patterns:
sUwuuR 1 daedlalng A Usingiduvus -2 (confidence = 99.4%)

sUuuu#t 2 fhedleld C Usingiidummis -3 (confidence = 78.0%)
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sULUU# 3 Thmdlelnd G Usingisumis -1 (confidence = 99.6%)
sUuuufl 4 Thedlelnd G Usngiidumia +1  (confidence = 50.2%)
sUuuuit 5 fhndlelnd A Usingiidummis -2 uas

Thadlelns C Usingidumia -3 (confidence = 77.8%)
sUuuUTl 6 Thadlelnd A Usngdidumis -2 uas

Thedlelnd G Usingiidumis -1 (confidence = 99.2%)
sULUU#l 7 Tamdlelnd A Usingiidiummis -2 uaz

Thadlolnd G Usingfidumis +1  (confidence = 50.2%)
sUuuuil 8 Thedlelnd C Usingitdummis -2 uag

Thadleld G Usngidumia -1 (confidence = 78.0%)
sUuuu#l 9 fhndlelnd G Usingisumis -1 uaz

Thadlolnd G Unngfidumis +1  (confidence = 50.2%)
sULUUTl 10 Thadlelnd A Usingiisumis -2 uas

Thadlelnd C Usingidumis -3 uaz

Thedlelnd G UsIngaidums -1 (confidence = 77.8%)
sULuuil 11 Thadlelnd A Usangisumis -2 uas

Thadlolnd G UsIngisumis -1 wag

fedlelnd G Usngiiiiums +1 (confidence = 50.2%)

2.3 nswdasluaalugiuniug

TuimadwsusUuuuidensio  exondntron  JUMUUITeLAE  intron-exon WAy
suuuuilislgaidiensie (none) Ailsa1nlusunsy assoDNA axgnuvastugiuauilnenisld
TUsunsuBanssnsda Win-prolog (httpy//wwaw.lpa.co.uk/winhtm) uaglusunsandsninde
VisiRule (http://www.lpa.co.uk/vsr.htm) ¥glun1sasnegiuanu;  wnunmeaen1sas
grueuiuanslefioguil 2.6 WeUsznanaununinazldyamadlunvidanssnedegui 2.7

nsldnuguanmg avfunsuszananalusunsundanssnelugud 2.7 nslday
Tusunsuasdudnuaeliney Taslusunsuazdadmanlligliney dnovamduaesmaden
fio yes/no fegumsauneuigituiumisiusinglandlelnduuusing 9 Tuaefiduie
wilinadtadeifuguuuuilousieuuy exon-intron uansiaguil 2.8 msldneufugiuemug
uilinadndidusuuuuidensio intron-exon uansisguRl 2.9 wazmsldnouilvinadndidu

Livsngsunisdeuseluaefidue wanaguil 2.10
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WIN-PROLOG

splice-site_visirule.vsr

Question1

\
=

Question4

No '

Question5

Loc-1="A'OR T'OR'C' ?

I =
{ Question2
Loc+1 ='G' AND Loc+2 = 'T? | Yes Loc+3 ='A' ?

No ’—.

Question3
Loc+5 OR Loc+11 OR Loc+20 ="G' ?

/ ~\

Yes No

Loc-2 = 'A' AND Loc-1 = 'G"? J—— _)—- * d
v
i

v — .

5U7 2.6 nsuvadluaaugiunnnudaaelsunsadanin Visiule

do ensure_loaded( system(vrlib) ) .

relation 'START'( Conclusion ) if
g_Question1( Conclusion ) .

relation g Question1( Conclusion ) if
the answer to 'Ouestion1'is and
check( 'Question1’, =, 'No' ) and
g_Questiond( Conclusion ) .

relation g Question1( Conclusion ) if
the answer to 'Ouestion1'is and
check( 'Question1’, =, 'Yes' ) and
g _Question2( Conclusion ) .

relation g Questiond( Conclusion ) if
the answer to 'Questiond’ is  and
check( 'Questiond’, =, 'No' ) and
g _Question5( Conclusion ) .

relation g Question4( Conclusion ) if
the answer to 'Questiomﬂ‘ is and
check( 'Questiond’, =,'Yes' ) and
Conclusion = Intron/Exon

relation g Question5( Conclusion ). if
the answer to 'Question5'is  and
check( 'Question5', =, 'Yes' ) and
Conclusion = 'None'

relation g Question5( Conclusion ) if
the answer to 'Question5'is  and
check( 'Question5', =, 'No' ) and
Conclusion = 'None'

relation g Question2( Conclusion ) if
the answer to 'Question2'is and
check( 'Question?', =, 'No' ) and
g Question3( Conclusion ) .

relation g Question2( Conclusion ) if
the answer to 'Question2'is  and

check( 'Question2', =, 'Yes' ) and
Conclusion = "Exon/Intron'

relation g Question3( Conclusion ) if
the answer to 'Question3'is  and
check( 'Question3', =, 'Yes' ) and
Conclusion = "Exon/Intron'

relation g Question3( Conclusion ) if
the answer to 'Question3'is  and
check( 'Question3', =, 'No' ) and
Conclusion = 'None' .group groupl
'‘No', 'Yes' .

question 'Question2’
Loc+3 = "A" ?';
choose one of groupl
because "

group group2
Yes', 'No' .

question 'Question3'
'Loc+5 OR Loc+11 OR Loc+20 = "G" 7*;
choose one of group?2
because "

question 'Questiond’
'Loc-2 = "A" AND Loc-1 = "G"?~M~J" ;
choose one of groupl
because "

question 'Question5’
'Loc-1 ="A"OR"T"OR"C" ?";
choose one of group?
because "'

question 'Question?’
'Loc+1 = "G" AND Loc+2 = "T"?";
choose one of groupl
because "

JUN 2.7 gandanedenssneflaainnsussuiananinlugui 2.6
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5] Single Choice Options Menu
Prompt: 0K I
= —
Loc+1 = "G" AND Loc+2 = 'T"? Explain.. I
No
= Single Choice Options Menu
Prompt: oK I
=AY D
Loc+3 ="A" ? Explain . I
No
VisiRule

i L Exon/Intron
e Y

oK |

U7 2.8 nsldneuiugiuanuiudilinaidededuguuuuideusie exon-intron

Prompt:

o |
Loct] = 'G' AND Loct2 = 'T'?

Explain .. I

Prompt:

ok |
Loc-2 = 'A' AND Loc-1 = 'G'?

Exglain .

:

VisiRule

-’L‘\ Intron/Exon

oK |

U7 2.9 nsldneuiugiuauiudilinaidadeduguuuuideuse intron-exon
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Prompt: 0K |

Loc+1 ='G" AND Loc+2 = 'T'? .
Explain ..

Prompt: 0K |

Loc-2 ="A" AND Loc-1 ='G"? :
Explain ..

Yes
Prompt: 0K, ‘
Loc-1 ="A'OR'T"OR'C'? .
Explain ..

P

VisiRule n

I _ None

0K

JUN 2.10 nsbimeuiugiuanusuas inaidadednliunng uuuuieuse

2.4 n153AN15AU LIUNaUA28ATNISAUNULReUS LN

Tunsainteuatindllanusal  Tngoialiursiiwniaesasfduenlinsiusia

Y Y

wugnssuigndes  wiielunsdivesnsAumyaeuselug udeyafdweniivuaivauin

9 Y

o
(Y )9 b4

JuppunsAumaeIsunAsldaUssianalasninensmheanudigann . mslels

AunulagUssananstisuityteyaliauysaluasUydeyativunlngld wuifiniugiu

Y -

vaansAunulpgyszanupelinisduifenteyaiiieinuuseuiananielusunsy assoDNA

Y

o
av a4 1 I

wnmensduithiauslusAdeifensdumurnumnuduvesteyaluusiay
AaNa LA ARE exon-intron AaNE intron-exon kagAaTa none Tunsdivestoyarunalg
msduasliiduannsoudeyarniadn  anduidounseudeyalunusiuludnuasves
FTsdounsouniieng  (sliding  window) ?’J’agaﬂflaiuﬂsauﬁﬁmﬂmmLmiuﬁammsﬁﬁ

imun  aggndudenuiunigluiufimieanudndinsnnEeniuneasiniu  (reservoir)
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Toyatuwrasininuilviiy Arzgniludumsuuuumelsunsy assoDNA winAueInIs

guamuAnuukinvesdeyaiie TN Tayaiu L uuianaeinivun Suitnliluuvasin

usanaduwaunnlanegui 2.11 wagduneunisineuludnuneaes pseudocode uand

Igisaguil 2.12

density-biased-

samples

sampling
algorithm
<

U

Reservoir

(temporary <—

memory)

samples

approximation-
via-sliding-window
algorithm

Frequent pattern
discovery algorithm

Association patterns

~ a oA %] oA o = v &
211 ﬂiEJ‘ULLU'JF’]@‘SUENﬂ'ﬁ?jllLa@ﬂﬂ]@u\lamqmﬂ'ﬂmﬁuqLLUULWE]‘UHV]ﬂl’ﬂULLﬂaﬂﬂﬂLﬂU

Input:

a set of data points represented as vectors

Output: a new set of transformed data points annotated with density value

(1
2)

(3)

(4)
(5)

% Initialize windows

Interact with user to obtain dimension value

Generate window grid of size W along dimension axes

% Count density

Sequential move on each window and count number of data points, N,

in the window

Record a list of window’s central point and its N value in a file F

Return F as a set of transformed data

Ql' ) aal A v % M v
E‘IJV] 2.12 Gﬂumaujﬁm@fm"ﬁ?jllLa@ﬂm@yjam’]uﬂ'ﬁqﬂi‘wuqLLUU@’JHﬂ’]iLa@Uﬂi@UMUW@’N
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2.5 MSANUTEANSAINIUSHNTUAILNITNIUUUIUIY

Tunsdlngldnulusunsy assoDNA desnisiiinannuiilunsuszaiana a1mnse
LBDN I IUTWATUTNINITVINULUUIUIE A DBLAIDILILAIUALAINNYINUNISUTEUIANE
TUSHASULUUIUIUMIENSIEIsNTas1avanalnswa  Insluswnsuwesazdudfiansanwas

Y

Mvuanswadmsunsussinanalulysunsudindulaniannsaiaunseuduld o
Usngilenduniidnuaizsangd awnsaldeds spawn weaalnswalvdliiauguuiu
wuunSeuduiulnsieady  gaddwedlusunsy  assoDNA  fignusuugslivinnunuuvuy

uaASlARIIUN 2.13 Uagi9E19980MMUBINTTUTEIIAHALUUIWILLAALARIUT 2.14

-module(assoDNA_par).

concurrent(P1, P2, P3) ->
spawn(assoDNA _par, run, [self(),P1]),
spawn(assoDNA par, run, [self(),P2]),
spawn(assoDNA_par,run,[self(),P3]),
receive

my _end -> ok

end.

run(MasterID, InputL) ->
R = main2(any, 3, InputL),
file:delete("out.txt") ,
AD = lists:last(R),
[ADD|_] = AD,
Rules = lists:sublist(R, length(R)-1),
PrintRules = map(fun( {D, S, Per, Class} ) ->
{to_Col3(notLast(D)), S, Per, transformBack(Class) }
end, Rules),
ADP = lists:map(fun(Data) -> {Data, checkRules(Data, Rules) }
end, AD),
ADPprint = map(fun({Data, V}) -> Predict = transformBack(V),
{Data, [last(Data), Predict,
mark(last(Data), Predict) 1}
end, ADP),
Predict = map(fun( {F, S}) -> {to_Col3(notLast(F)), S}
end, ADPprint),

writeToFile(Predict),
[,Stop|_] = InputL,
if Stop ==2 -> MasterID I my end ;

true -> MasterID ! not_end

end.

'
[

SUN 2.13 yardaniweauasdmiulseaianalusunsy assoDNA Luuvwiy
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.¥ Erlang =
File Edit Options View Help

v|5a BAT

3> f(), {T,_}=timer:tc(assoDNA_par,concurrent, [[1,1,80],[1,2,80],[1,3,80]]).

====zz::==Read from file:"spliceDNA.DATA"====z===z==:

Ther are 1-3 ClassesClass ="exon/intron"

----- START---Apriori(in class=2,Min Support86%:-400.0)---

Ther are 1-3 Classes

Ther are 1-3 ClassesClass ="none" Class ="intron/exon™

----- $TART---Apriori(in class=3,Min Support80%-460.0)---

----- $TART---Apriori(in class=1,Min Support80%-860.0)---

K=2-[{["G(1)","G(5)"].427,85.39999999999999},
{["G(1)","T(2)"],494,98.8],
{["G(5)","T(2)"],424,84.8}], has 3 set

K=3=[{["G(1)"."G(5)","T(2)"].424,84.8}], has 1 set

[{["TA"], 494},
{["GP"],499},

(["GT"], 427},
{["GP","GT"] 427},
{["GP","TQ"] 494},
(["GT","TA"] 424},
(["GP","GT","TQ"],424}]

K=2-[{["A(-2)","G(-1)"],496,99.2}], has 1 set

[{["AH"],497), (["GN"].498), {["AN","GN"],496)]
(5304600, ok }

JUT 2.14 9901muanin1sUsERianalusin g assoDNA Luuvuiy

mummgﬂmwma}mL%amiamaﬂﬂmﬂsu assoDNA  LUUYUIU (gﬂﬁ 2.14)
wanssunesinaalondnsluwuuildiiavuazuuuildsia ASCIl unuses wunsdl
YRINSIRaY “A2)” nunefe dndlelng A (or adenine) au siuwvius -2 Tuanevesdidu
0 wasnsdifildswa ASCl Wy “AM” maneds Sanalelns A a swmus 29 (5% ASCI w9

fones M) TuaneuaamduLe
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Nan1snagauluswnsy

Tnssmsifeilitnnusvasindnanssensfe (@) eonuuuiBnmaielilslung
vioynuegULUUAMIUATITU splice sites TumemiBueliildnavesnisnsradusalusi@il
F1 false positive #1 wazimumamIoenuuuindulUsuAsuMsAumUTULULTUTINg oy
ludoyadue vdolusunsy assoDNA () 1H38msmadmnssumnuiidadunaiiienis
nradugadonsie v3e splice sites Wuluaalusunuuiiannsoldnuiuszuugmanuile
%’jumam%ﬁmmaaiﬂ3Qﬂﬂiiﬁaﬁﬁaﬂﬂi@@ﬂLLUULLasﬂ’muﬂUiLmﬁu assoDNA  fatiunsvagou
Tsunsudadunsvaaeuaugndeswedimalunsviunegadesselumeidue  fewyn
foyavaaey uenanidsdinmaaeutszAvsnmuaslusunsuiidunuziuuulnesusean

waAunuULUUmEmATansUszanawuurwl Judumedadiaduanduneuman

3.1 dayanltlunimagau

lummaaeuaugniBIuazUsEANTAMvedUsungd  assoDNA  TupisAum
a ] a2 au vy A . . . %
sUsuungausialuaeAaue ¢uiTeilldveuata splice junctions 3N ulaya UCI The

Machine Learning Data Repository (2017) wasuuniverasuiiupdnesideidiouaslii

¥

. . . & a 1% ¢ " Ny ¢ o
SUEJi{Ija spllce junctions ‘Sq@@fll,@llﬂigﬂ@u@'gﬂ 3190 L5AABSA LLWLU@QT\]WﬂQJm@;‘J’a 4 L15AADTAN

v

syanusnssuluuesmetiny @Ganuliidusuindusia A vse G e C wise T) Tu

9

1
[ v Y

NuATeETadadoyaiia 4 snnesaii ilfasvdedoyaililunsmnassson 3186 1sarosa

foyaluusiazisareinUszneume 61 Aodutl Aeduti 1-60 1Wusiatedlelns
o funleeing 1 vesaneiwe TngmeRidueEuduidums -30 Auandidumia +30 va
TndlelndluwsazsumiszUsnglu A v3e G wie T wie C eduvgavhevesloyas
szyriavesyaidiensioindu exon/intron ¥de intron/exon ¥ie none Bwsnefislsiusing
@m%miaﬁgaaamw gﬂ‘ﬁ 3.1 uanslassainsvestuiiusznousie exon uag intron gﬂﬁ 3.2

wanssiregadeyanldlummeaeulusinsudiuiu 5 Lsanein
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Chromosome \

DNA (Double Helix)

JUN 3.1 Inseainevesguiisenausigdiu exon wag intron

(ﬁlll’] http://genome.gov/Glossary/)

% Data : A sequence of DNA starting at position -30 and ending at position +30.

% Problem statement :

% Given a sequence of DNA, recognize the exon/intron (donor site)

% and intron/exon (acceptor site) boundaries.

% Data examples :

TLTLGTATGAGAAACGTGGCATTGTGCGELAAGGTGEGEECCCEECEEGA,
C,G,G,G,G,CAGCT,CCG,G,G, exon/intron

CTCCCCACCCACCTGTCCACCCECLCGCAGATCGCTTLCCT.GGEAGK,
CAGGCAAGAACT,CCA, intron/exon

C!T!G’A7C7T)A!AlG!C’C!G)C)C)C]C’T’T’G!T7ClC’C!T!T)C]T!C’A)GlA’T]T’AlT!G!T7T)T’G’AlG7A7C]C7
T,T,CAACACCCCGGCC, intron/exon

GAGGAGCTAGACAAGTACTGGTCT.CAGCAGGTGLET,GAGGGGAG,
G,G,GATGGCT,GCCAAGG, exon/intron

AAGGCTCAGGAGGAGGGAGATCAACATCAACCTGCCCCGCCCCOT,
C,CCCAGCCTGATAAA none

JUN 3.2 Megretayanldlunisnaaeulisunsy
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(%
sl 1

doyadnuau 3186 seresall  avgnuialuaesdunidiviy 61 aedul

willoufiu Joyadiuninusznousie 2000 aresa Mdwsuludeyafin (training data)
Wielilusunsy assoDNA TdlumsiBeufiflefumsuuuuresqailiensis exon/intron way
intron/exon teyadufiaesuszneuse 1186 15anasa lddmiunaaey (test data) Anu
wiugwadinmansadugadoudelumefidue  mInszevesdeyaiiBueiiannguos

A a ! v = v Yo PN
(W3asand1 aana) lugadeyarinuazyadeyavadeu asulinmnsnad 3.1

A5 3.1 NsnsEatevesteyaluldazaatavesntoyarnuaztoanaaey

Test data

Class

Splice site data

Training data

exon/intron

767 (24%)

464 (23.20%)

303 (25.55%)

intron/exon 765 (24%) 485 (24.25%) 280 (23.61%)
none 1,654 (52%) 1,051 (52.55%) 603 (50.84%)
Total 3,186 2,000 1,186

yadoyaisusduiidndiuvestoyalunana exon/intron Andlu 24% dadves
Youalunaa intron/exon AnLdu 24% wavdaduvesteyaluaana none Amfu 52% Lo
wendeyailuaosmndoniitevhmihilidudeysiinuaztoyavaaey nsguidenteyaidlditgu
wuktadudu (stratified sampling) ileliéndunosdoyalusisauaadlugadoyafinuay

Joyanaaaulnalfgaiutayanuadliuinign

3.2 wnsiadszansmnluealunsinuneyaeusialugu

mswannlnavioynvessUuuuilivinunegadeussluiursomevesdiduied
\{u exon/intron 38 intron/exon M‘%E}l&iﬂiﬂﬂmm‘?}amaﬁﬂamLL“U‘U (none) +Jw3sns
aalumauuusalusi@ TaelilusunsuiSoudsuuuuanyndeysiiniifinanasegudrinmbule
melausngandiensiauuy exon/intron  Adueanslausinggaidensionuy intron/exon
warduemslalivsngandeurorsaenuy Tuwaildanmadsussnludfuuutitneed
AnsRananuRseglesnealiauysaiiuvvesdeyaiin  Fsdeslimsuszidiuannuusiuen
Tumsvihuneveslumalnelivatoyannaey  inseslefifesldlunistufinnanisuszidues
lunafows3ndfifiveSonomyin wedndduau viie Aeuihdumming (confusion matrix)
Tassarsvesmeuindusindlunsdideyagaidonsoluidueniaunaa uanslifomsnsd

3.2
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15197 3.2 Inssasmeuihiuunsnddmsudeyanisimunegaiioussluaiamidue

Predicted Predicted Predicted
exon/intron | intron/exon none
Actual exon/intron a b c actual_El
Actual intron/exon d e f actual_IE
Actual none g h i actual None
predict_El predict IE | predict None

insinlsyansnmuedies avfununausngluliasdesuasnouiiadu
wesngmuiiusnglunaed 3.2 Tnsrvesiauusluuiasvesdiaumnedail
a mneds Snuteyanaaeuiiiunata exon/intron uazlunarunglsgnaosindy
exon/intron
b e Swudeyaneaeuiiiiiuaana exon/intron uslumavhuneinindy
intron/exon
e Srnuteyanaasuiiiunata exon/intron uilupavinneiadidu none
d mneds Sunuteyannaeuiiiunana intron/exon wiliaavinneinindy
exon/intron
e et dnnudeyanaaeuiiiunana intron/exon wazluinavinngligndesindy
intron/exon
yanefa Snudeyanaaouiidunana intron/exon wilinariuneiiaindu none

VUNYD ﬁﬁuauﬁaaﬂamaauﬁﬂuﬂma none Welatpavinunginandu exon/intron

> o

wneds Snnudeyanaaeuiiiiupaia none usluinainuieRadndu intron/exon

i el unudeyaneasuiiluaaia none wazlumavinuneligniesindu none

ANV UVDBUASNBT UATINATIL I UMUILD ULAZLUIFT TAMUMUNEGIT

actual El

U ai’wmu%auﬂawmaauﬁwmﬁﬁﬂmaﬁLw’fﬁm’ju exon/intron
AurlnankasnvesAlukuuaulawn (@ + b + ©)

actual IE

vneds Inudeyanaaeuisuaninaanuviasiy intron/exon
mulanuasmvesatlulwIueulaun (d + e + f)
= o Y & aa A v a & ° v
actual_None e Iuudeyanagourmuaninaanuiatadu none Aualaain

nasImvesAluLLILeaUlALn (¢ + h + 1)
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predict £ wneds Snnudoyaneaeuisuaiilunayuneinduaata exon/intron
Fnaldanuasivosatlunadsldun @ + d + )

predict IE wneds Snnudoyaneaeuisuaillinaviuneinduaaia intron/exon
fruaildnnuamesailuudldud b + e + h)

predict None visngiis ﬁﬂuauﬁaa&awmaauﬁg@wmﬁimLmaﬁmwd%ﬁuﬂma none AL

Taanwasiuvasrlulunslann (c + f + 1)

mM3inanuuiuglunsiuelagsivedana (overall accuracy) aglakasiu
voammhuegniedutos o, e, i mskesuaudeyansautiavan uwilunsdfifoyaluus
avaanadisiuliviiuagldnmsieseessanBenluseaaa  wasiaditesldlunsin
Uszansnmlumasdvazidendusienana Useneumeannsin true positive rate 110530
false positive rate 11m5iA precision LazunTIn F-measure n1sAmuladluLfazIngin
osuelddeelull

wnsindnsviueaanaidminggnaes (true positive rate, or TP rate) #38en
5980 (recal) vderruly (sensitivity) Inefinanatihmunevesnsinssidenseniy
panauIn (positive class) wnasiilfifiefadindeyaiifunanauin Tuwaanunsovhungld
gnsieainluaanauin dwauunusedeeiieds nsfwnandufaEunIsd 3.1 - 3.3 uay

Argnsviuneeaatinegniesiiaiegszning 0 83 1 Afdilnavildeoluria wans

deanulhvedunaiaunsansiadudeyatuaaiavunalansuaiu

Y

TP rate (for class exon/intron) = a (3.1)
(actual EI)

e (3.2)

TP rate (for class intron/exon)
(actual IE)

TP rate (for class none) = i (3.3)
(actual None)

wasindnsvhuneratauRnInduaanadivang (false positive rate, or FP
2o v 1w Aaq | [ ° a 1 & a o
rate) awsildinddeyaniliraadmuneunlunavineiindnluaaadving G391
= 3 = o 3 [ a 1w o A a 1 I
inusoteuiedla Msmwnasduiiaunisn 3.4 - 3.6 avasviueaatadulnIndy
aanadming (Vesasenindyaaiieuin v3e false alarm) dgilAegszning 0 fis 1
A v v cA & | aa & = PN Y] I
Amdlndrudiodunng  Arlikansdisnruaunsavedunaninsiaduaaiaidmunelals

Wnfiuganed aunsenvinuneeatadwInduratadmung
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FP rate (for class exon/intron) = (d+9) (3.4)
(actual IE + actual None)

FP rate (for class intron/exon) = (b +h) (3.5)
(actual El + actual None)

FP rate (for class none) = (c+f) (3.6)
(actual IE + actual El)

WATInAULIY (precision) ¥ inanuansavedlumainilelunaviungdoya

& o & ¥ = i 1 1 ' = A v

Miluraatmng msvihunelugndeaiisdla AANuluegsznde 0 B 1 Adnlng
nilannitgadiednduaia nmsmuaesdudiaunisi 3.7 - 3.9

Precision (for class exon/intron) = a (3.7)

(predict_El)

Precision (for class intron/exon) = e (3.8)
(predict IE)

i (3.9)

Precision (for class none) - i
(predict_None)

uasiaen  (F-measure) inanuannsaveslunarssumendly (3o
SE8N)  LATAIAINULIY ﬁgﬁﬁmmﬂmﬂuLﬂamaﬁmmmbqaLwiﬁﬁ’]mmmiw‘h AN
nsfilanavinunedoyavianuainiusaatvng wwiililddnnuliiigan (= 1) e
mmum’usﬁ"wmﬂLﬁ'aqmﬂﬁﬁmﬁaiuﬂma?iuﬁgwmasgﬂﬁwmadWLﬁuﬂmaL{]mma 11T INLEN
FagnitmnTudieTartasnaulusgaeuusiundontu Aowogssning 0 e 1 anfiudn

Tndnllannfigatiodinduafa - wansdsUszansamvastuaaindineianuly  (Sersedn)

J | aa o 1 &) Y ]
LAZANAMUBIUNA N1TANUIUALDNAZLTUAIANNITN 3.10

F-measure (by class) = __(2 x Precision x Recall) (3.10)
(Precision + Recall)

3.3 wamadaulusunsumsdunugluuununnguesTudayamduie

mMnedeulszansanvadunationisinunsgaiioussluaiefidueildmada
nsAunuULUUIUsINgUee  laelusunsy  assoDNA  3gMadeuAduaIdnsnvadlueg

Wiueuivlumanlnannnaiedudn 4 waila AdeuldlusunsSeudveanses loun
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C4.5, Naive Bayes, Instance based (using 10 nearest neighbors) &g Support vector
machine (using polynomial kernel)

MslSeueuagleunsin TP rate, FP rate, Precision way F-measure Nan1s
Wisuileulsravsnmmsnsadugailensie exon/intron uanafanIsedl 33 wazuang
amnsl (U 3.3) Wisuifiouiamzanasin F-measure Way FP rate (iesnnidu
fnguszasivdnvesidfolidonislunaiidussaninmnisieda - Sedveennuluas
auwiulunsiunedy wavvasiientuasdesiien false positive i

nansUTsuisulsEABamnansiadugeidiouss intron/exon LAAIRINIT
7l 3.4 uazSouliiou F-measure WAz FP rate fenswlfaguil 3.4 wansiwieuidieu
UsgAnSnmmsasaduaeiiduensdilivangyadomsio  wansinsel 35 uag

wW3guwigu F-measure Lway FP rate 518ﬂ51ﬂﬁdgﬂﬁ 3.5

PN —~ a a ° A ' .
HITNN 3.3 ﬂ'ﬁL‘UiEJ‘UW]EJ‘ULVlﬂUQﬂ']iVHU']EJ"gﬂL'ﬁ@NG]B exon/intron

Model performance metrics
Method TP rate (recall) FP rate Precision F-measure
assoDNA 0.977 0.024 0.934 0.955
4.5 0.911 0.039 0.890 0.900
Naive Bayes 0.921 0.024 0.930 0.925
Instance based
(10 neighbors) 0.950 0.114 0.740 0.832
Support vector
machine
(polynomial kernel) 0.941 0.027 0.922 0.931
17702 ¢ 0.925 0.931

0.9 0.832

0.8 -

07

06

05 | W F-measure

04 - W FP-rate

0.3

0.2 1 14

0.1 24 39 24 27

0 ; ; ; .
assoDNA (45 NB 1B-10 SVM

JUN 3.3 nsi3guiigudn F-measure Uag FP rate 904Luaans3adu exon/intron
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M15°9% 3.4 MIUTEULgUWATIANTSYINUNEARBNSD intron/exon

Model performance metrics

Method TP rate (recall) FP rate Precision F-measure
assoDNA 0.936 0.014 0.953 0.944
ca.s 0.900 0.026 0.913 0.906
Naive Bayes 0.925 0.019 0.938 0.932
Instance based
(10 neighbors) 0.954 0.096 0.754 0.842
Support vector
machine
(polynomial kernel) 0.889 0.024 0.919 0.904

17 024 0.904

0.9 id

0.8 V]

0.7 id

0.6 V] -

05 _/ . F-measure

04 177 W FP-rate

0.3 id

0.2 V]

0.1 id

0 T T T
assoDNA c4.5 NB 1B-10 SVM

JUT 3.4 M3USguiigua F-measure Uag FP rate ¥83liaansiadu intron/exon
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Model performance metrics

Method TP rate (recall) FP rate Precision F-measure
assoDNA 0.964 0.022 0.978 0.971
cas 0.942 0.055 0.947 0.944
Naive Bayes 0.965 0.048 0.954 0.960
Instance based
(10 neighbors) 0.726 0.009 0.989 0.837
Support vector
machine
(polynomial kernel) 0.955 0.051 0.950 0.953

| 02 0.944 0.96 0.953

09 V| 0.837

08 |

0.7 4

06 1 | o

05 _/ -measure

04 17 W FP-rate

03 |

02 | I’\

01 17| db22 2> ~[egpis oo PRl

0 T T T T T
assoDNA c4.5 NB IB-10 SVM

JUN 3.5 nsil3guiiguan F-measure Wag FP rate vadlunansallidusingynitouse
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1.00 0.96 0.97 0.94 0.93

0.80

0.70

0.60

0.50 +— F-measure

0.40 ——FP-rate

0.30

0.20

0.10 0.02 0.04 0.03 0.07 0.03

0.00 = : : : . .
assoDNA ca.5 NB IB-10 SVM

JUN 3.6 M3LUTEUigUA F-measure Uay FP rate vadliinalngindevemnaaid

HaN1sAaeUUsEANSN MaluealaaInlusunsy assoDNA dmsuiuneyn
\Wousa exon/intron YaLlawsie intron/exon waznsaiiliusngnidenseluaefdue

Usingiibiaimula (TP rate) Armauusiu (Precision) wazAewl (F-measure) 7gand

g
Tuwmadildanmededy luvasiidnnufianainussan false positive rate Tefisng
wmafindu
Slew3suiiloudn F-measure uazen FP rate lnswndsandoyatisanunana (3
o

#1 3.6) nausIngimnatavedusunsu assoDNA Tilumaiiiussansamaninluwadu luea

iny93891179 Naive Bayes uag Support vector machine

3.4 WANISNAEBUISNITAUNULATUSTUT

lunsdlifeyafidueiivuelng  Tasnsideitiauomaiafudufoldnisd
puevuuesteya  Liteanvunnvesdeyaliiaunsaystananaldlueiosnoufiunes
ffmheauiidin  nmveseulueaiildniimsdudadunmsdunilaedssnad 14
FnsvasouiToudleutulunaiildanmafunugiuuuandeyamunlagliinisduidon
inausilunsTasaldnstiusuuguuuufifunuannds assoDNA Uni WSsuifisuduguuuud
FnmsUssananadeyaiiuduneumsdy  wanmeaesanadenssdl 3.6 uagnans
Wisuiisuguuuuiinsaiuredisuninaylneussnaagulsfmnad 3.7 anmsiingei

HansiUSeumsusiuy asulainisunfuasislneussanalvinadnsnlnalAessiu
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M1519 3.6 NsiTeuLfiguInusUsuuRAunUlng s UnALaslng s UM

Traditional pattern

Approximate method

Minimum discovery method #Matched
support H1- |#2 |#3 |#a | #1- |#2 |#3 |4 |PATEMS
item item | item | item | item item | item | item

Class = “none”
50% 0 0 0 0 0 0 0 0 0
45% 0 0 0 0 0 0 0 0 0
40% 0 0 0 0 0 0 0 0 0
35% 0 0 0 0 0 0 0 0 0
30% 1 0 0 0 1 0 0 0 1
25% 117 0 0 0 111 0 0 0 111

Class = “exon/intron”
85% 3 2 0 0 3 2 0 0 5
80% 4 5 2 0 4 5 2 0 11
5% 4 5 2 0 4 5 2 0 11
70% 4 6 3 0 4 6 3 0 13
65% 5 8 5 1 5 8 5 1 19
60% 5 9 7 2 5 8 5 1 19

Class = “intron/exon”
85% 2 1 0 0 2 1 0 0 3
80% 3 3 1 0 3 3 1 0 7
75% 3 3 1 0 3 3 1 0 7
70% 3 3 1 0 3 3 1 0 7
65% 3 3 1 0 3 3 1 0 7
60% 3 3 1 0 3 3 1 0 7
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A5 3.7 KaNFIATIERIWINgULUUIRS iuTENIaNTAUNURUUUNRLaE LU UU ST

Matched patterns Matched patterns Difference

Class (traditional method) (approximate (traditional vs
method) approximate)

2-item 3-item 2-item 3-item 2-item 3-item

patterns | patterns | patterns | patterns patterns | patterns
none -- -- -- -- -- -
exon/intron 91.24% | 84.35% | 90.98% | 83.27% 0.26 1.08
intron/exon 90.11% | 87.62% | 90.09% | 86.89% 0.02 0.73

3.5 Han1MAFaUITNITAUNUFULUUNUIIN UBBLUUTUIY

ARSI IUTWATURUUIUIU (MelUswnsy Parallel-assoDNA) wlawSeuriigu

AUITNSIUTRASURUUAIRU  (PelUsWNSH assoDNA)  WUINNISIUSHNSURUUILIULALLLAS

NAANSATINUAUITNTIUSHATULUUAIAU  waktkalun1sussulanamInINuseunad 46.29%

LEnNan1sVAaeulafegun 3.6 UITINEANIEUDIRN AN LULLEALIATUNTTUTENIaKE

WUUAAY (WﬂUSTQQURYH%LﬂNIﬂﬁaUWﬁ) LAZIDAINATUALEAILIATIUNTUSEUIANALUY

VYUY
¥ Erlang \¥ Erlang ="}
File Edit Options View Help File Edit Options View Help

v‘ﬁA“Z’

MELYS

2> timer:tc(assoDNA_par,run,[self(),[1,1,80,1,2,80,1,3,80]]).

==z==:z:z::Read from file:"spliceDNA.DATA"=======:==:=
Ther are 1-3 ClassesClass ="none”
----- START---Apriori(in class=1,Min Support80%-800.8)---

====z=:=zRead from file:"spliceDNﬂ.DﬁTﬂ":::::::===
Ther are 1-3 ClassesClass ="exon/intron”

----- START---Apriori(in class=2,Min Support80%-400.0)--
fK=2-[(["G(1)","G(5)"], 427,85.39999999999999),
{["G(1)","T(2)"],494,98.8},
{["G(5)","T(2)"] 424,84.8}].

MK=3-[{["G(1)" "G(5)"."

has 3 set

T(2)"].424,84.8)], has 1 set
[{["TQ"].494},

(["GP"],499),

(["GT"],427),

(["GP™,"GT"], 427},

{["GP","TQ"], 494},

(["GT","TQ"], 424},

([7GP™,"GT","TQ"],4243}]

=:z=z:zz:Read from file:"spliceDNA.DATA"==z=zz=z::2
Ther are 1-3 ClassesClass ="intron/exon”

----- START---Apriori(in class=3,Min Support80%:-400.0)---
K=2-[(["A({-2)","G(-1)"],496,99.2}], has 1 set

[(["AM"1,497), (["GN"], 498}, (["AM","
||(9875000, not_end}

GN"1,496) ]

N5LUIHNTULUUAIRNU (9,875,000 psec.)

=Read from file:"spliceDNA.DATA"=
=Read from file:“"spliceDNA.DAT
=zzzz::z:2:Read from file:"spliceDNA.DATA":=
Ther are 1-3 ClassesClass ="exon/intron”
----- START---Apriori(in class=2,Min Support80%-400.8)---
Ther are 1-3 Classes

Ther are 1-3 ClassesClass ="

nohe” Class ="intron/exon”

----- START---Apriori(in class=3,Min Support80%:=400.0)---
----- START---Apriori(in class=1,Hin Support88%:860.6)---
K=2-[(["G(1)","G(5)"],427,85.39999999999999) ,
{["G(1)"."T(2)"].494,98.8},
(["G(5)","T(2)"],424,84.8)], has 3 set
K=3-[{["G(1)"."G(5)","T(2)"].424 84.8}], has 1 set
[{[7TQ"], 494},
"1,499},
"1.427),
"LUUGTT] L H21),
1LUTAT ], 494,
LUTA™], 4243,
ULUUGTTLUTQN]L 4243 ]
K=2-[{["A(-2)","G(-1)"],496,99.2}], has 1 set
[C[7AM™], 497), (["GN"],498), (["AM™ "GN"] 496)]

(5304000, ok}

N5lUINTUWUUTLIU (5,304,000 psec.)

JUN 3.7 Wiguiigunalunsuseaianalusun suluuafukagkuuIwIu

3> f(), (T,_)}=timer:tc(assoDNA_par,concurrent, [[1,1,80],[1,2,80],[1,3.80]]).
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1%
aAav A

Tasamsifeilunsussandldivaiaumiiooyaussinnnsdunuannuduius (association
mining)  MelumsdumsdnuuiithazusngluamedueseisnsSeussluifangs
foyatln  suuutlumefiBuevedasnmifeiitiufisuuuuvenaidonsadnseu/Aunseu
wazdunseuidnueu  sUsuUAesUstaniinimdend  susuugaideudie  (splice-site
patterns)  SsnsUsngandensesniduadomneusiinfidueuinaimddnu il
yhnhiidnenensviadiduionuaunisaiislusiu domnludunouvesmsdunsgy
Tusiulumad dugosnglumefiduniifonindunsouazgniniuarduiindododnueu
wgniandewsioty  Tedlelndimmslumednouiivimihduduussgaradd
dwumununsaiansnezilluusazein  aevesnIneviluazgnitmunlasiasiadelusie

wuszinUlndiiaduluanaveslusfivawingnn wiavesdusiufiairsazunnarsiulunusia

'
v 1 a o0 W =

Adanussgliluanevediidue  msfiamnsassuliindiuresiiduenmdsdinueguuilsva

'
o o o

rdsdmsumuaunsadlsiuumngegvielsl ugaiuduresnsinsgiidudouialy
Sidusely iy Wikufleggnatstuasfulusiurielanasdauunnsadunssuiums
aedeuiusglusiaddmselsl

NI iigULUIYeaLdeNsaLE nTe/BunseularBunsew/dneuTu
mefdueseisnmssnlufivosnsimilesteya  JadumsAnwifeafusiamaiugnssy
Tneldreuiinmesdielunszuiunisinsie - lasshluismsvinniesteyaihianldinasdy

msBeuiifiessylssamvioduunaaaresdeya  (classification)  dmlunisiSeuiuuud

Haeu (supervised learning) lnggaeulzminegnayadeoyainidoyaudazsnenisilaaiaves
Toyariuld Aaavestayaniiuliidunesaresaivinthflnnisseuivenies

Aoufimesiiaunsaduaseizuuuuiidudnvasinulssdudazaanatoyq
TulpssnTeildmedafiuanaseinauddedu q Asldion1TAUNUANLENTUS
FalagunAdadunsiFeusuuulifidaeu (unsupervised learning) tlasvinyateyaiildily
Toyarinlidnludesdinisszyrana  nsiznaleudzuuuuliladimgussasdAmsuuuud
< v =] = k% - = LY ¥ =% &
Judnwaziangvesnata wildunsseudsduuule 9 usingIusuiiludeyatinyaiu

lngdayansaaiaiuoianansguuuuivioutiuld  sULuukanseenmileuiuazgnin
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ATNTIUAU waggUuuunUnngsuiuleeiignasgnandent ilunadnsgavineves
Y o w ¢ 4 ¢ o w ea | 1Y) =
NFEUIUNSAUNUANNANTLS Fmnefsrnuduiusnusinguesluyadeyaiin
Tunuideilidenldisnsvimilosdeyaussinmnisaunuanuduius wivsuus
TumpuneuiMsfumULuUNvINgUeesenisdndeyaidungudesnupaianaula &
TuanAdeliuszneume o Aanafe Aaavesasfdweniiyatousadngou/dunseu Aad
a g c{'d dl' 1 Aa @ a & cl' ] d' 1
YDIALADUNTALTEUFRBUNTBUAINTOU  wazAAAYRIEERAdUEN IV INRLTEUsD
AU MIAUNUAMNFUTUSNseInAuTeYalunqugstsasngl  NISSEUTIUUTERY
v & = . . . P a =1 9 Y 9 a
Fandunuunsaeu (semi-supervised learning) o ININsTUUENTOUAILNTHENToYAT
I a [ v [ ¥ =2 a [y} 3 = v [ cl' 1 [ 1
Juranaweniuleglugadeyalinuadediu  antudsrumanvausnuinngsuiuley 9
Tuyadeyatiy anuENSIEUIRUUTR19INLUUNSREUIRUUIRFauUTEIANNTIUUN
AANATRYA @iﬁﬁsﬁ@mﬂaLLGiazﬂmﬁQﬂLLEJﬂEJEJﬂL%uLLGiasﬂfjﬂJEJ'@‘E-JLLﬁ%ﬂ’]iL%EJHiEULLUUﬁUi’mQ
Uesnsgvilunquees  nsiseudsuuutluwsaznqueesululnedassvilidnuazinuves
nauldvuiuteyalundudu YAYaINgNTeyailvinAuIdliiinansenusianseuIuns
a v
Seus
Y
ANYAUZLAUTDINTEUIUNSITEUTHUUNIAD UL TANBINUNTAUNUANNTURUS
Jadumsfumzviuuiusazaaradeyaansauansgiivuaueaniiliuwlivziiveyalunaa
v Y d' % d' 1 a & Yy Y] [ 1 Q’l’
tesnhdeyalupanadu 9 wanisAunuglsuuIndeuseluaefidue laguduanvugaul
Inggndoyaniltlunisnaassideyalunanailiusingymtense  undugesivestoyaly
Aanadneew/Bunseu  wavunduassviwesleyalunaadunsew/dnveu  nsdideyaly
X = o ) a ° v ' |
aunauisyiuuiensdunaaalaemily  azeudstlunmuiunedayalunanadiulng
Ieigndesunnninihwiedeyamdunaadiutes uin1svhwemeisnisiseusuuuiaausie
ganasiunmsAunuanEduiusmiauelulasns3idel inansiuenianuusliugigans
lunsaleranadiulngLaraaiddiutay Aulansmeranisvaassiuuni 3
weNANHMednYENITTEUILUUNEaUMESaNDSTIUNSAUNUAIENTWS 9
dnausluamifeliinsuendeyalunquéesuaaavesfoys  iliBesreonsusus
NsZUIUNSIENLNsaUsEINaRaLUUILIUlY  Nan1svaas eI Ui uAuEILarAIL
gnfadlun1sUsyatanavedlUsingy assoDNA wazlusunsy Parallel-assoDNA 8ufuiing

a Lo d!
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Sﬁagaiul,wmﬁmwuu (incremental learning)
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Constraint-Based System for Genomic Analysis

Nittaya Kerdprasop and Kittisak Kerdprasop

Abstract—Recent advent of the new high-throughput
biological technologies has brought more challenges to the
computer science community in terms of the amount and
variety of biological data awaiting for analysis.
Computationally intensive techniques such as pattern
recognition and machine learning algorithms have been applied
to extract knowledge from several biological domains ranging
from genomics, proteomics to system biology and evolution
process. Learning techniques applied to the computational
biology are mostly in the category of classification. Therefore,
the sequence analysis problem has to be formulated as
classification task, which is quite difficult due to the unobvious
one-to-one mapping of the problem. In this paper, we propose a
different setting of sequence analysis formulation based on the
nucleotide patterns using a constraint logic programming
paradigm, in which the sequence alignment can be performed
through pattern matching techniques. With available
knowledge from the field of pattern mining, we can apply the
well-established techniques within the new framework of
constraint programming. However, to make the system
efficiently work, we need a new set of constraint solver
algorithms specifically designed for the sequence analysis
problem. The design and implementation of such algorithms are
thus the main focus of our research project. We propose in this
paper the design of a constraint-based system for genomic
sequence analysis including the algorithm for the constraint
solver, a major part of the proposed system.

Index Terms—Genomic sequence analysis, constraint-based
system, constraint solver algorithm, constraint programming.

. INTRODUCTION

Living organisms contain multiples cells to perform
different functions. There are two basic types of cells:
prokaryote cells (found in bacteria) and eukaryote cells
(appeared in plants and animals). Contained within the cell
membrane are several organelles and thousands of different
types of molecules, the important one is DNA
(deoxyribonucleic acid) that carries the entire genetic
inheritance, or genes, of the cell. DNA is a long polymer
molecule that contains sugar, phosphate group, and a mixture
of four different nucleotide bases: adenine (A), cytosine (C),
guanine (G), and thymine (T).

In 1953, Watson and Crick [1] discovered the DNA double
helix structure in a complementary base pairing that A-T and
G-C units always occur together, they are thus referred to as
base pairs. In 1957, Crick [2], [3] described the flow of
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genetic information in biological systems (Fig. 1) that firstly
DNA is copied to more DNA in the replication process, then
DNA is transcribed into mRNA (or messenger-RNA) in a
transcription process and finally mRNA is translated (by
ribosome) into protein in a translation process.

This overall process of biological protein synthesis is
known as gene expression. Understanding the process of
gene expression in different types of cells and under different
conditions is one of the fundamental research aspects of
genomics, which is all the studies related to genes.

In prokaryotes, genetic information is encoded
continuously on a DNA strand. But in eukaryotes, regions
that code for protein (called exons) are interrupted by the
non-coding regions (called introns). During the transcription
of most eukaryotic genes, the primary RNA transcript (or
pre-mRNA) needs additional modification step called
splicing to remove introns and join exons together to make
one long continuous mMRNA strand (Fig. 2). The ribosome is
an organelle that translates code on mRNA to different kinds

of amino acids.
? Replication

genomic DNA %
Transcription

UACUGCCUAGUCGBEGUU
AlLLLLLLLLLLLLLLLL
? Translation

&

Fig. 1. Flow of genetic information in biological systems.
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Fig. 2. Removal of introns and joining of exons in the splicing process during
the DNA transcription.
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Fig. 3. Structure of gene and genome.
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In multi-cellular organisms, the DNA in each and every
cell is identical. Different cells can perform different
functions because different portions of the DNA molecule
are active in different cells at different times. The entire DNA
sequence contained in a cell, including the genes (stretches of
DNA that code for a protein) and the control elements, is
referred to as genome. Sketch of genome structure is
presented in Fig. 3.

Genome is not only important to the life cycle of the cell,
but also represents a blueprint for the life of the organism.
Large genome sequencing projects have been set up by many
governments and commercial  organizations.  The
development of automated sequencing technologies such as
shotgun sequencing technique allows scientists to decode
genomes of many organisms at a significantly increasing rate.
After a genome is reconstructed from the pieces of
sequencing data, the next and most important step is to
understand the content of the genome. That is, to identify the
gene location and then annotate the function of each gene.

Since the announcement of the draft version of the human
genomic sequence in 2001 [4] and the completion of several
genome projects during the past decade, enormous amount of
raw biological sequence data has been stored and awaited for
interpretation. Dealing with large volume of data, efficient
computational methods and intelligent techniques are a real
need.

Sequence comparison is a fundamental operation in the
field of computational molecular biology to detect similarity
between biological sequences such as proteins and DNA
sequences. The optimal match in a comparison between two
sequences can be achieved through the dynamic
programming technique. But it is very slow when it has to
compare a sequence against many others, or compare among
a group of related sequences in large database. To solve the
computational time problem, approximate techniques tend to
be the method of choice.

Many search tools employ a sophisticated statistical-based
technique such as hidden Markov model (HMM). An HMM
is a stochastic model that characterizes a coding sequence by
computing probability of appearance of a nucleotide base (A,
C, G, or T) based on the k previous nucleotides in the
sequence. Computer scientists from the machine learning
field prefer the neural network and support vector machines
approaches rather than the statistical method of HMM.
However, to characterize reliable coding sequences, these
approaches require a large number of training sequences. The
significant impact of such requirement is a very large search
space. We, therefore, propose to tackle the sequence analysis
problem through the constraint-based setting in which the
search space could be reduced prior to the search for solution.
Our prototype implementation is based on the constraint
logic programming paradigm.

Genomic sequences are just raw biological data. To
understand biological process inherent in the genomic
sequences, computational and statistical techniques such as
pattern recognition and machine learning algorithms are
essential tools for the analysis of such large amount of
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genetic sequences. The analysis task over DNA, RNA and
protein sequences includes several subtasks of

searching for patterns within a sequence,

searching for similarities between two sequences
including sequence alignment for a pairs of sequences,
searching for similarities among many sequences and
performing multiple sequence alignment,

constructing phylogenetic trees based on sequences,
predicting and analyzing the secondary structures based
on the sequences, and

predicting and analyzing tertiary structure and folding
patterns for protein and RNA sequences.

In this research we concentrate on the first three subtasks
of analyses. That is, the problem of finding and parsing
eukaryotic protein-coding genes.

Gene finding is generally the detection of sequence
elements such as exons, introns, and the intergenic regions
that separate genes. Once gens are found, their internal
exon-intron structure can be predicted so that the encoded
protein may be deduced. The gene finding problem in
eukaryotes is difficult because the genes comprise less than
30% of the genome and once a gene is found, the locations of
introns within the gene must be precisely determined in order
to accurately deduce the protein product of the gene.

In the past, genes were identified with experimental
validation on living cells and organisms. It is the most
reliable method, but costly and labor intensive. At present,
most biologists rely on the computational methods to
automatically analyzed the uncharacterized genomic
sequences. Some of the frequently applied computational
techniques include dynamic  programming, linear
discriminant analysis, linguistic methods, hidden Markov
model, and machine learning techniques such as neural
network, decision-tree induction, support vector machines.
Several successful gene-finding programs are based on the
hidden Markov model algorithms.

A Markov model is a model of discrete stochastic process
that evolves through the states from the set S = {sy, Sy, ..., Sn}-
The main assumption is that the probability of appearance of
any future state depends only on the k preceding states, for
some constant k. Given a learning set of sequences, a Markov
model can be built by computing the probability that a certain
nucleotide x; appears after a sequence s;, for example,

< P(xi=A|si=TTGGA),
P(xi=C|si=TTGGA),
P(xi=G|s=TTGGA),
P(xi=T|si=TTGGA) >

is a computing scheme of the Markov model of degree 5 (that
is, k = 5). To model the codon usage that appears as a triplet
of nucleotide bases, the degree k of the Markov model is
normally set to 2, 5, 8, and so on.

The oldest gene-finding method based on Markov model is
GeneMark [5]. From the success of GeneMark as an accurate
tool to recognize and annotate genes in genome projects, a
family of GeneMark programs have been developed
including GeneMark.hmm [6], GeneMarks [7], GeneMarkE
[8], GenScan [9], EuGene [10], and GeneTack [11]. The
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GeneMark family detects genes by identifying open reading
frames (the regions between start and stop codons) using
precomputed species-specific gene models as training data to
determine parameters of the protein-coding and non-coding
regions.

The major limitation of GeneMark family is the
fixed-order Markov model such that models of higher order
require exponentially more training data, which are usually
not available for new sequences. The Glimmer gene-finding
program [12] introduces a generalized hidden Markov model
with variable order called the interpolated Markov model.
Other gene-finding programs that based on the concept of
interpolated Markov model and generalized Markov model
include FGENESH [13], HMMGene [14], and AUGUSTUS
[15].

Machine learning and data mining methods have been
successfully applied to various kinds of prediction problems
such as exon prediction [16], start codon prediction [17], and
splice site prediction [18], [19]. More than 90% of
nucleotides can be correctly identified as either coding, or
non-coding. But the exact boundaries of the exons and their
assemblies into complete coding regions are much more
difficult to predict correctly using the classification-oriented
formulation. DNA sequences are rather parsing-oriented in
their nature.

We thus propose a novel setting of constraint logic
programming to formulate a computational method toward
the problem of gene searching and recognition in DNA
sequences. This new scheme of DNA sequence analysis has
just recently gained interest with some preliminary work
appeared in the literature [20]-[22].

I1l. METHOLOGY

A. Constraint Programming for Computational Genome
Analysis

Constraint programming is a programming paradigm
normally applied to solve combinatorial search problems
such as flight scheduling, crew rostering, logistic planning,
and many more of this kind. The main steps of constraint
programming are:

1) Users specify a problem by defining the variables
together with their associated domains and constraints on
these variables,

2) The search procedure and constraint solver find solutions,
which are values assigned to the specified variables such
that all constraints are satisfied.

It is obvious from the program structure that constraint
programming has been designed to solve constraint
satisfaction problems that have been extensively studied in
artificial intelligence. The efficiency of constraint programs
is basically due to the constraint propagator feature in a
constraint solver. The function of constraint propagator is to
reduce the domains of variables by inferring from the
existing constraints and then to prevent the search procedure
from visiting parts of the search tree that do not contain any
solution.

A constraint propagator takes as input a domain D from
which a variable can be assigned its value, and a set of
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constraints C. The output of the propagator is a reduced
domain D’'. For instance, given that X, Y, Z are variables, the
domains

D(X) ={a, c, d},
D(Y)={a, b, c, d},
D(Z) ={c},

and a set of constraints
C={X=Y AY=Z},
the output of the constraint propagator are

D'(X) = D'(Y) = {a, d}, and
D'(2) = {c}.

The repeated application of propagator can lead to
increasingly stronger (that is, smaller) domains. The
propagator continues until it reaches a fixed point in which
the domains cannot be further reduced. At this stage, the
search procedure (either global or heuristic-based) can
efficiently start assigning possible value to each variable. A
toy example of map coloring in Fig. 4 illustrates the
constrain-and-search  strategy ~ of  constraint  logic
programming (CLP), as opposed to the generate-and-test of
logic programming (LP) scheme.

$% CLP style: Constrain-and-search

- lib(£d) .

map color CLP([A,B,C,D]) -
% declare variables and domains
[A,B,C,D]:: red,green,blue,yellow],
% constrain
alldifferent ([A,B,C,D]),
% then search
labeling([A,B,C,D]) .

%% LP style: Generate-and-test

color (red) .
color (blue) .

color (green) .
color(yellow) .

map color LP([A,B,C,D])
% generate solution

color(A), color(B),
color(€), color(D),
% then test for constraints
A \= B, A\=C, A \=D,
B \= C, B \=D, C \= D.

Fig. 4. Constraint logic programming versus logic programming schemes.

At present, there are several constraint systems that
provide functions to specify (or model) the problems and
maintain the constraint consistency efficiently. They are
called constraint programming systems if they are based on
procedural languages. The systems are classified as
constraint logic programming systems if they are based on
logic programming languages. The focus of this research is
the development of constraint solvers (that is, the integration
of constraint propagators and search procedures) for a
specific application of genomic analysis using the constraint
logic programming paradigm. The main benefits of such
scheme are two folds:

1) the declarative style allows users to specify a problem
itself, instead of specifying how to solve the problem, and
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2) a high level of knowledge representation facilitates
genomic pattern specification and the inclusion of new
knowledge which is highly dynamic in the active area of
genomics and computational microbiology.

Most constraint logic programming systems provide a
large set of predefined constraints such as alldifferent
and powerful search commands such as 1abeling to solve
the combinatorial problems. The predefined constraints and
exhaustive depth-first search procedure aim at solving a
general class of constraint satisfaction problems. We argue
that for a specific problem of genomic sequence analysis, a
new set of built-in constraints that propagate with the already
known biological relations together with alternative
approximate search methods can more or less benefit the
sequence analysis tool.

B. A Framework of Constraint-Based System

The main purpose of our research is the design and
implementation of a computational system for genomic
sequence detection and recognition of its structure and
function using the declarative paradigm of constraint logic
programming. The advantage of such paradigm is its
powerful features to handle patterns within the DNA and
RNA sequences. In addition, the heuristic search such as
branch and bound, simulated annealing can be applied to
speed up the computation time. The design is sketched as
shown in Fig. 5.

A constraint-based approach to DNA sequence analysis
starts from the modeling of sequence search and gene finding
problems as constraint satisfaction problems, and also
constraint optimization problems if preferences are to be
numerically measured or when several solutions are
generated. We name this step as “Query reformulator.”

The constraints involved in the sequence analysis
problems could be symbolic and numeric constraints over
finite domains. The constraints formulated at this step can be
either local or global constraints. Local constraints are
restrictions over local patterns, whereas the global constraints
address restrictions over the whole set of solutions.

User &
ﬂ query/preferences

Query reformulator

solution to query

Constraint solver

local constraints

——

‘ Local constraint propagator ‘

filtered domain ﬂ

Numeric GSP

global constraints ‘ Global constraint propagator ‘

il

——
Set CSP
— i
<— Data [— i Domain store

solution to query Search procedure for

Gene finder

Fig. 5. Schematic overview of a constraint-based system for genomic
sequence analysis.

In a subsequent phase of constraint solving, local
constraints are handled prior to the global ones because local
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patterns under constraints can be checked independently of
the other patterns holding in the data. The reduced domain of
data values is then passed over to the global constraint
propagator. The product of this step is the domain store to
collect variable domains that their sizes have been reduced by
the constraint propagators. The search procedure designed
for gene-finding task can now start its process and report
solutions to the user. The skeleton of constraint solver is
shown in Fig. 6.

1. Develop the problem’s model, in terms of variables and
constraints, as a constraint satisfaction problem (or constraint
optimization problem if some costs, distance measures, or
other measurable metrics are specified)

2. Initialize for all variable-value pairs as modeled in step 1

3. Repeat until a termination condition is reached (this can be a
maximum number of iteration, acceptable score range, or
other conditions)

3.1 Call the local constraint propagator to constrain the domain
space of each variable and return a possibly smaller set
of domains

3.2 Call the global constraint propagator to further constrain
the domain space

3.3 Perform a search procedure (including a heuristic-based
method)

3.3.1 Select a variable
3.3.2 Select a value from the domain
3.3.3 Instantiate the variable

3.3.4 If the instantiation fails (because constraint is
violated), then backtrack to the step 3.3.2 and
select another value

3.3.5 If the sets of variables and their values are not empty
yet, then repeat the steps 3.3.1-3.3.4

4. Return the solution (which is a set of variables and their values as
modeled in step 1) if it exists

Fig. 6. A constraint solver algorithm for the genomic sequence analysis

system.

IV. CONCLUSION

In the past, genes were identified with experimental
validation on living cells and organisms. It is the most
reliable method, but costly and labor intensive. At present,
most biologists rely on the computational methods to
automatically analyze the uncharacterized genomic
sequences. Gene finders are programs that analyze and
predict the exon-intron structures of genes using the
sequences of one or more genomes as their only input. Many
algorithms implement statistical and intelligent methods to
represent sequence patterns and output a model of the gene
structure. Some of the frequently applied techniques include
dynamic programming, linear discriminant analysis,
linguistic methods, hidden Markov model, and various
machine learning techniques such as neural network,
decision-tree induction, and support vector machines.

However, the insufficiency of known genes causes trouble
to many algorithms to produce accurate prediction model.
Some gene finders find most of the genes, but have a
significant number of false positives. We thus propose a
novel setting of constraint logic programming to formulate a
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computational method toward the problem of gene searching
and recognition in DNA sequences. This new scheme of
DNA sequence analysis has just recently gained interest with
some preliminary work appeared in the literature.

We concentrate our research study on the early biological
process of gene detection and prediction because the
understanding of gene structure and its function is important
to the subsequent knowledge of protein analysis. Most of
previous constraint-based work has based their constraint
implementation on the constraint handling rules. The
proposed techniques of our constraint solvers are mostly
constraint propagation and search procedures embedded in
the libraries of a finite and symbolic domains of the
logic-based constraint system. Upon completion of this
research project, we therefore expect to achieve some
advancement to not only the computational gene-finding
research area, but also to the constraint solving field.
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Visual Knowledge Mining and Utilization in the
Inductive Expert System

Nittaya Kerdprasop and Kittisak Kerdprasop

Abstract—Advances in computer graphics and the human-
machine visual systems have made visualization become an important
tool in current data exploration and analysis tasks. Visual data mining
is the combination of visualization and data mining algorithms in
such a way that users can explore their data and extract the models in
an interactive way. Existing visual data mining tools allow users to
interactively control the three main steps of data mining: input data,
explore data distribution, and extract patterns or models from data. In
this paper, we propose a framework to extend these visually
controlled steps to the level of model deployment. We demonstrate in
this paper that both model induction and model deployment can be
done through the visual method using the KNIME and Win-Prolog
tools for knowledge acquisition and knowledge deployment,
respectively. Model deployment presented in this paper is the
utilization of induced data model as an inductive knowledge source
for the inductive expert system, which is the next generation of
knowledge base systems that integrate automatic learning ability in
their knowledge acquisition part.

Keywords— Visual data mining, Inductive learning, Inductive
expert system, Visual logic program.

|. INTRODUCTION

VISUAL data mining is an automatic and intelligent data
analysis technique that utilizes visualization as a means to
communicate between user and the computer to explore data
and to extract hidden patterns from stored databases [33], [18].
The main benefit of visualization is that it allows easy
understanding for novice users and it is also natural to human
perception [15], [28], [36]. Recent trend in intelligent
manufacturing and other engineering fields [8], [13], [17], [32]
is to apply data mining techniques to automatically identify
patterns and causal relationships that are too obscure and
unobvious to be detected by human’s eyes.

Applying data mining technique to high dimensional and
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large amount data is however not a straightforward task
because the induced patterns are normally low accurate if the
input data are not well prepared or not in an appropriate form.
Numerous available learning algorithms and many data
preparation techniques supported by most data mining systems
are also a hindrance to users who are unfamiliar with the
knowledge discovery process.

We thus illustrate in this paper a natural way to do data
mining through visualization. We also propose a semi-
automatic technique to transfer the data mining output to be a
knowledge base content in the inductive expert system.

The main characteristic of current expert systems is the
separation of a knowledge base that may be changed from one
application to another from the inference engine that still
remains the same across applications. The delay in the
development of many expert systems is due to the difficulty in
acquiring and eliciting knowledge from the human domain
experts [11], [20].

The concept of inductive expert system is thus been devised
to overcome such bottleneck by incorporating automatic
knowledge acquisition module in the system. According to this
new concept, knowledge can now be induced or learned in an
automatic way from archived databases that are normally
available in most organizations. In this paper, we propose an
architecture of the inductive expert system that includes the
knowledge mining engine part to automatically forming expert
rules from the stored data. The learned knowledge can be
visually transformed to be the knowledge base and
automatically encoded as inference rules of the inductive
expert system. We show in this paper that the processes of
knowledge mining and knowledge acquisition in the inductive
expert system can be done through the support of available
visual tools, namely the KNIME system [7] and the Win-
Prolog [23].

1. PRELIMINARIES AND RELATED WORK

A.The Visual Data Mining Tools

Data mining is the search for useful patterns that normally
are difficult to be recognized by human’s eyes due to the large
amount of data items stored in the databases. Most algorithms
used in the data mining software construct a mathematical
model from the data instances for the purpose of describing
common patterns or predicting some unknown attribute values
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in the future cases. Model construction is a core step of data
mining process. To train the learning algorithm to construct an
accurate predictive model needs some parameter tuning, which
is absolutely not an easy task for casual users. Therefore,
modern data mining software provides some graphical
interfaces to help users in controlling the process [4], [10],
[21].

Visualization can be used in several stages of data mining:
data exploration, analysis, and knowledge representation. The
existing visual exploring and analytic tools [2], [3], [30] are
fast and effective enough for the interactive induction of
hidden knowledge. In this work, we adopt the KNIME visual
data mining system [7] for knowledge mining.

B. Expert System and Data Mining

Since the release of DENDRAL in the 1960s from the
Stanford Heuristic Programming Project [22] as the first
practical knowledge-driven program, expert systems have
enormously proliferated and been applied to all areas of
computer-based problem solving [34]. The inventors of
DENDRAL system have introduced the novel and important
concept of knowledge base separation in that the content of
knowledge could be added and refined independently from the
program module. This module is called the inference engine
responsible for interpreting and using the knowledge. The
loosely coupling of a knowledge base and an inference engine
is an influential concept to all successor rule-based expert
systems such as MYCIN [35], INTERNIST-1 [26], and many
others [14], [16].

Since the 1980s expert systems, also called knowledge-
based systems, have shifted from the medical and scientific
application domains to various areas. In manufacturing,
mechanical analysis, and other engineering applications, rule-
based expert systems are commonly applied to solve
optimization problems, diagnose equipment failures, plan
manufacturing scheduling, and other stages of the
manufacturing process [6].

The increasing popularity of rule-based expert systems is
due to the simplicity of the if-then rules that are easy to
comprehend by humans. Many expert system tools such as
Clips and Jess are available as a rule engine to facilitate rule
generation for a knowledge base. These tools help facilitating
the part of knowledge representation, but knowledge
acquisition and elicitation are still the labor-intensive tasks for
most knowledge engineers.

Modern expert system development process has thus moved
toward the automating methodology by applying intelligent
knowledge extraction techniques [12], [29]. Such intelligent
techniques can be acquired through the machine learning and
data mining technologies. There have been increasing numbers
of research work attempting to apply learning techniques to
automatically extract end elicit knowledge [1], [19], [27], [37].
These attempts have pushed the current expert system
technology to the next generation of an inductive expert
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system in the sense that besides the knowledge base and the
inference engine, the system now includes the learning
component.

The research work presented in this paper takes the same
direction as most researchers in an attempt to automate
knowledge extraction and elicitation with machine learning
and data mining techniques. Our work, however, is different
from others in that not only proposing an architecture of the
learnable inductive expert system, but we also cover the
knowledge mining from existing databases, knowledge transfer
as a set of rules to be stored in the knowledge base, and
knowledge reasoning through a logic-based inference engine.
The process of knowledge mining and knowledge utilization
have been demonstrated through the adoption of existing
visual tools.

I11. BRIDGING MINING MODEL WITH THE KNOWLEDGE

ACQUISITION OF INDUCTIVE EXPERT SYSTEM

Knowledge mining [24], [25] is the discovery of hidden
knowledge stored possibly in various forms and places in large
data repositories. The whole process of knowledge mining
works around data, meta-data, and previously discovered
patterns. It can be conceptually shown as in Figure 1.

The initial step of knowledge mining focuses on setting the
mining goal which can be achieved through understanding the
task objectives and organization requirements. Problem
defining is important because it will guide activities in
subsequent steps to collect only relevant data, to do mining
with appropriate algorithm, and to keep only pertinent and
actionable knowledge.

The second step covers all activities necessary for preparing
high quality data suitable for mining algorithm. This data
preparation step includes collecting data from multiple
sources, transforming the data format, selecting data
representatives with minimum but sufficient attributes. Data
preparation is typically time consuming and likely to be
performed iteratively. Meta-data and background knowledge
are kinds of supportive information that can be applied in this
step.

Problem Data Knowledge
Defining Preparation Mining
-...‘ ‘_: '-."‘.. é
T
Knowledge
Knowledge
Deployment

Fig. 1 The knowledge mining process

Knowledge
Evaluation
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The third step is knowledge mining which is the search and
extraction of interesting patterns (local generalized structures)
or models (global generalized structures) from data. Such
patterns and models are called knowledge. This step is the
backbone of the knowledge mining process.

The fourth step is for evaluating accuracy, significance, and
interestingness of the discovered knowledge based on some
threshold values. The accurate, significant, and interesting
knowledge is finally fed to the deployment step to be
actionable information for the organization, or it can even be
put back into the repositories to be background knowledge for
other knowledge mining tasks.

We design (in Figure 2) an architecture of the inductive
expert system to include the knowledge engine facility.
Knowledge induction phase is the back-end of the system
responsible for acquiring and discovering new and useful
knowledge. Usefulness is to be validated at the final step by
human experts. Discovered knowledge is stored in the
knowledge base to be applied to solve new cases in knowledge
inferring phase which is the front-end of the proposed system.

Enowledga
Intagrator

Enowledge mferring phase -f
Feazoning and predicting mechanizms

Solutions |+

Fig. 2 Architecture of an inductive expert system
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The knowledge induction phase is comprised of three main
modules: pre-mining, mining, post-mining. The term mining
means automatic learning of patterns or models from specific
data. Pattern is an expression describing a subset of the data.
For example, f(x) = 3x2 + 3 is a pattern induced from a given
2-dimensional dataset {(0,3), (1,6), (2,15), (3,30), (4,51)},
whereas the term model refers to a function representing the
source that generates the data. For this example, the model is
f(x) = ax? + b. In his paper we refer to both patterns and
models as new knowledge discovered from data sources.

The pre-mining module performs data preparation tasks
such as
o locate and access relevant data sets,
o transform the data format,
o clean the data if there exists noise and missing values,
e reduce the data to a reasonable and sufficient size with
only relevant attributes.

The mining module performs mining tasks including
classification, regression, clustering, association, and other
learning task. The post-mining module is composed of two
main components: knowledge evaluator and knowledge
integrator. These components perform major functionalities
aiming at a feasible deployment of the discovered knowledge.

Knowledge evaluator involves evaluation, based on
corresponding measurement metrics, of the mining results.
Knowledge integrator examines the induced patterns to
remove redundant knowledge. Ontology has also been applied
at this step to provide essential semantics regarding the domain
problems.

I\VV. DEMONSTRATION AND RESULTS

A.Data Set

The purpose of this experimentation is to illustrate the
proposed automatic knowledge base creation method with real
data. We use a car evaluation data set [9], [38] obtain from the
UCI Machine Learning Repository [5]. In this data set, each
car is to be evaluated its acceptability level as either very good
(vgood), good, acceptable (acc), or unacceptable (unacc).

The car acceptability has been evaluated from the six
attributes: the buying price (buying), price of maintenance
(maint), number of doors (doors), capacity in terms of persons
to carry (persons), the size of luggage boot (lug_boot), and the
estimated safety of the car (safety). This data set has 1728 data
instances. Examples of data instances are shown in Tablel.

This data set has been used in this paper as a training set for
constructing a conceptual model of car acceptability decision
based on the price and other technical characteristics. Class
distribution of each acceptability levels is as follows: unacc =
70.02%, acc = 22.22%, good = 3.99%, and v-good = 3.76%.
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Table 1. Some instances of a car evaluation data set

buying maint doors persons lug_ safety class
boot

vhigh  vhigh 2 2 small  low unacc
high high 4 more small  low unacc
vhigh  med 2 4 big high acc
high high 4 4 big med acc
med low 4 more small  high good
med low 4 4 big high vgood

B. Visual Data Mining and Its Result

The car evaluation data set has been mined with the visual
data mining tool named KNIME [7]. The visual data mining
process is illustrated in Figure 3, and the mining result as
decision tree is shown in Figure 4. The learning algorithm used
in this demonstration is the decision tree induction algorithm
[31] because of its efficiency. Moreover, the structure of the
induced tree is appropriate for generating reasoning and
explanation part in the expert system shell.

The steps graphically shown in Figure 3 are the process to
generate a decision tree model. The first step is to read the
input data; this can be done through the icon ‘File Reader’. We
then partition the input data into the training set and the test set
(through the ‘Partitioning” icon). The model induction part is
accomplished through the use of ‘Decision Tree Learner’ icon.
The output of this process is the learned knowledge to be used
by the expert system shell. The ‘Decision Tree Predictor’ and
‘Scorer’ icons are used only for evaluating the accuracy of the
tree model. Evaluation result of the model accuracy is shown
in Figure 5.

KNIME SHIEN— X
File Edit View Node Help
N~HE@ LA
@l 0% < imsE00DOOFESEAEP OO E
= #2:002001_DecisionTree CAR 2 &2 4 X =8 .
4 Decision { a
File Reader  Partitioning Tree Learner
L
al @—E& a
leta split tg set ision Tree Predictor
from test data (deprecated) Scorer
use decision treeConfusion Matrix
to predict classes results
5 A & o
=]

Fig. 3 Data mining process through the connection of visual icons in
KNIME system
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- Decision Tree View (simple) - 2:9 - De...l = |[=] ﬁ]

File Hilite

@D[root]: class 'unacc' (399 of 570)

@I:I [safety = low]: class 'unacc' (207 of 207)
=3 @D[safety =med]: class 'unacc’ (110 of 182)
@D[buying =vhigh]: class 'unacc' (39 of 48)
@D[huying = high]: class 'unacc' (33 of 46)
QD[huying =med]: class 'unacc' (23 of 47)

QD[huying = lowr]: class 'acc' (21 of 41)

=- QI:I [safety = high]: class 'unacc' (82 of 181)

— @D[persons <= 2]: class 'unacc' (60.127 of 84.364)
@D[buying =vhigh]: class 'unacc' (17.321 of 21.059)
@'D[buying = high]: class 'unacc' (13.331 of 18.458)
(:P'D[buying = med]: class 'unacc' (18.466 of 26.39)

@'D[buying = low]: class 'unacc' (11 of 18.458)

B- QD[persons = 2]: class 'acc' (51.22 of 96.636)
D-I:I[buying =vhigh]: class 'unacc' (13.669 of 26.941)
@D[huying = high]: class "acc' (15.873 of 23.542)
@-D[huying = med]: cdass 'acc’ (12.407 of 19.61)

QD[hu}ring = low]: class 'vgood' (12.271 of 26.542)

- 4

Fig. 4 A decision tree model to classify acceptability of a car as
unacc/acc/vgood

C.Visual Knowledge Acquisition and Consultation

The induced knowledge as a decision tree is subsequently to
be transformed into a format of decision rules by the Win-
Prolog visual tool [23]. The rule generation can be done
automatically. These rules are to be used by the inference
engine for giving recommendation to users. These rules are
also capable of giving explanation when requested by the
users.

The knowledge acquisition starts when the decision tree has
been built and output by the KNIME tool. The output from
KMINE (Figure 4) has to be manually transformed into a
format understandable by the Win-Prolog. The transformation
is however easy via the support of visualization tools. The
transformed rules are graphically shown in Figure 6. The
meaning of the two formats is the same; only graphical
representation is slightly different.
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4 Accuracy statistics - 2:5 - Scorer(Confusion Matrix) E‘@ﬂ

File
[Table "default” - Rows: 5!| spec - Columns: 11 | Properties | Flow Variables|
Row ID | TrueP...| | FalseP...| | TrueN...| | False... | D Recall | D Precisi...| D Sensit...| D Specifity)| D F-mea...| D Accur... | D Cohen...
unacc 757 197 150 54 0.933 0.794 0.933 0.432 0.858 ? ?
acc 85 89 812 172 0.331 0.489 0.331 0.901 0.394 ? ?
vgood 10 20 1094 34 0.227 0.333 0.227 0.982 0.27 ? ?
good 0 0 1112 46 0 ? 0 1 ? ? ?
Overall ? ? ? ? ? ? ? ? ? 0.736 0.32
L A

Fig. 5 Accuracy evaluation results of the induced decision tree model

Question1

Safety scale

vhigh

Question2
med Buying ? high
Prize i

high '
Question3
Person ? no
Num.person

.
)

Quesgtion5
Buying ?
Prize

Fig. 6 A decision tree model in a Win-Prolog format

car_eval _rule2.vsr

Question1 low S g
—p Safety? Zoom 4
Safety scale Show Grid i1
Snap to Grid
med il
I Wndo Ctrl+Z
Rédo ciirey §
Select All Ctri+A
high J ‘
Show Code... .
car_eval_rule2.vsr
- Generated code “

Compilation mezsages;

Close |

Start goals:

Fig. 7 Steps to generate Prolog code from a given decision tree model
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To generate expert system shell for a specific decision tree
model, we run the Win-Prolog and use the command:

load files(system(visirule)).

Then, click ‘File’ to open the saved ‘VisiRule Files’. In this
demonstration, our model (Figure 6) has been saved in a file
named ‘car_eval_rule2.vsr’. When the model appears, user can
right-click on the screen to choose ‘Show Code...” and click
‘Run’ button on the ‘Generated code’ window. These steps are
graphically shown in Figure 7.

The Prolog code automatically generated from the visual
form of a decision tree model is as follows:

do ensure loaded( system(vrlib) )

relation 'START'( Conclusion ) if
g Questionl( Conclusion )

relation g Questionl( Conclusion ) 1if
the answer to 'Questionl' is and
check( 'Questionl', =, high ) and
g Question3( Conclusion )

relation g Questionl( Conclusion ) 1if
the answer to 'Questionl' is and
check( '"Questionl', =, low ) and
Conclusion = unacc

relation g Questionl( Conclusion ) 1if
the answer to 'Questionl' is and

check ( 'Questionl', =, med ) and
g Question2( Conclusion )

relation g Question3( Conclusion ) 1if
the answer to 'Question3' is and
check ( 'Question3', =, '<=2' ) and

g Question5( Conclusion )

relation g Question3( Conclusion ) 1if
the answer to 'Question3' is and
check( '"Question3', =, '>2' ) and
g Question4 ( Conclusion )

relation g Question5( Conclusion ) 1if
the answer to 'Question5' is and
check( 'Question5', =, vhigh ) and
Conclusion = unacc

relation g Question5( Conclusion ) if
the answer to 'Questionb' is and
check( 'Question5', =, high ) and
Conclusion = unacc

relation g Question5( Conclusion ) if

the answer to 'Questionb' is and
check ( 'Questionb', =, low ) and
Conclusion = unacc

relation g Questionb5( Conclusion ) if
the answer to 'Questionb' is and
check ( 'Questionb', =, med ) and
Conclusion = unacc

relation g Question4( Conclusion ) if
the answer to 'Question4d' 1is and
check( 'Question4', =, high ) and
Conclusion = acc

ISSN: 1998-4308

162

Volume 8, 2014

relation g Question4 ( Conclusion ) 1if
the answer to 'Questiond' is and
check( 'Question4', =, vhigh ) and
Conclusion = unacc

relation g Question4 ( Conclusion ) 1if
the answer to 'Questiond' is and
check ( 'Question4d', =, med ) and
Conclusion = acc

relation g Question4 ( Conclusion ) 1if
the answer to 'Questiond' is and

check ( 'Question4d', =, low ) and
Conclusion = vgood

relation g Question2( Conclusion ) 1if
the answer to 'Question2' is and
check( 'Question2', =, vhigh ) and
Conclusion = unacc

relation g Question2( Conclusion ) 1if
the answer to 'Question2' 1is and
check( '"Question2', =, high ) and
Conclusion = unacc

relation g Question2( Conclusion ) if
the answer to 'Question2' 1is and
check( 'Question2?2', =, med ) and
Conclusion = unacc

relation g Question2( Conclusion ) 1if
the answer to 'Question2' 1is and
check ( '"Question2', =, low ) and
Conclusion = acc

group groupl
low, high, med

question 'Questionl'
'Safety?’
choose one of groupl
because 'Safety scale'

group group2
vhigh, high, med, low

question 'Questiond'
'Buying?'
choose - one of group2
because 'Prize'

group group3
|<=2|, TS0

question 'Question3'
'Person ?'
choose one of group3
because 'Num.person'

group group4
vhigh, high, low, med

question 'Questionb5'
'Buying ?' ;
choose one of group4
because 'Prize'

question 'Question2'
'Buying ?' ;
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choose one of group?
because 'Prize'

The generated Prolog program acts as an inference engine
of the expert system. We test the recommendation given by the
system for two cases: unacceptable car and a very good car.
The unacceptable case (Figure 8) has been recommended after
asking for only one question. That is, for the low safety car, it
is unacceptable.

For the second case, we provide the system the following
information:

Safety = high
Number of persons that a car can carry > 2
Buying price = low

The recommendation given by the system is that the
acceptability level of this car is very good (shown in Figure 9).
As the inference engine is encoded in Prolog language that has
the inherent ability of backtracking, the system can also search
for other solutions if they exist (shown in Figure 10).

Question1
Safety?
Safety scale

T

Question2
Buying ?
Prize

high ' med
) Generated code low [
Compiation messages: Fun |
do ensure_loaded( system(vrlib) ) . -~ T
lose.
relation 'START'( Conclusion ) 1if Stat goak: 3 a
q_Ques ( Conclusion ) . = Single Choice Options Menu
relation o ¢ i Prompt: 3
onl' is  and
2
, high ) and Safety? Explan
3( conclusion ) .
relation g ¢ Cenclusion ) if
the answs onl' is  and T
check( ' low ) and
Conclusion = unace
high
relation o_Qus 1( Conclusion ) if med
the answer to nl’ and
v

VisiRuIe.g

-
b

unacc

oK

Fig. 8 The case of unacceptable car decision
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Explain .. |

Prompt:
Safety?
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med

-

Prompt:
Person ?

Single Choice Options Menu “

[1]:8 I
Explair .. |

=

. Bl

Prompt:
Buying?

Single Choice Options Menu

118

Explain .. |

vhigh
high
+Imed

| P —

visikule TR

vgood

OK

[

Fig. 9 The case of a very good car decision
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VisiRule

! . MNext solution?

Yes Mo

Fig. 10 Screenshot asking user for alternative solutions

From the experiments, we can observe that the generated
expert system shell contains both the rule based knowledge
and the inference ability. These rules are specific to the
knowledge model, which is a decision tree in this
demonstration. If the knowledge model has been changed, the
generated rules would be changed accordingly.

V. CONCLUSION

Acrtificial intelligence, specifically expert systems, has
played an important role in solving complex engineering,
manufacturing, medicine, and many other problems for more
than four decades. Knowledge base and inference procedures
have been employed to solve the problems that require
significant human expertise and domain-specific knowledge.
The required knowledge has to be elicited by knowledge
engineers. It is a labor-intensive task, and thus a bottle neck in
building intelligent systems.

We propose to apply data mining technique as a major step
in a knowledge engine component of the inductive expert
system to assist the knowledge elicitation task. The proposed
technique is a novel method for automating knowledge
acquisition that help supporting manufacturing and other
intelligent systems. We demonstrate = knowledge mining
through the visual tool called KNIME, which has many
visualization features to support users who are not an expert in
data mining.

Knowledge as a learned tree structure is then transformed by
another visual tool called Win-Prolog to generate a Prolog
program as a rule set that can be integrated into the knowledge
base. The demonstration given in this paper has proved
applicability and appropriateness for inferring and reasoning
from the knowledge base that can be automatically induced
from the stored database.
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Abstract

Top-k frequent pattern discovery is indeed an association analysis concerning automatic
extraction of the k most correlated and interesting patterns from large databases. Current
studies in association mining concentrate on how to effectively find all objects that are
frequently co-occurring. Given a set of objects with m features, there are almost 2™
frequent patterns to consider. For DNA data that are normally very high in dimensionality,
frequent pattern discovery from genetic data is obviously a computationally expensive
problem. We therefore devise an approximate approach to tackle this problem. We propose
an approximate method based on the window sliding concept to estimate data density and
obtain data characteristics from a small set of samples. Then we draw a set of
representatives with reservoir sampling technique. These representatives are subsequently
used in the main process of frequent pattern mining. Our designed algorithm had been
implemented with the Erlang language, which is the functional programming paradigm
with inherent support for pattern matching. The experimental results confirm the efficiency
and reliability of our approximate method.

Keywords: Top-k frequent patterns, Approximate method, DNA patterns, Window sliding, Reservoir
sampling, Erlang language

1. Introduction

Frequent pattern discovery is an essential operation for association analysis, which is the
discovery process concerning an automatic extraction of interesting patterns and correlations
from a large database. These patterns can reveal implicit relationships among set of objects (or
items) that lead to the generation of association rules in a form of “if antecedents then
consequences.” These rules have the potential use in medical diagnosis, customer behavioural
forecast, financial decision support, and many other applications. The process of finding all
frequent itemsets in a database is computationally expensive because it involves the search for
all item combinations. For a data set with high dimensionality such as the genetic data, finding
only top-k frequent itemsets is more practical than searching for all itemsets that meet the
minimum support threshold. Top-k frequent pattern discovery (Han et al., 2002) limits the
search space to the k most frequently occurred patterns across the database.

In this paper, we study the top-k frequent pattern discovery in the data streaming
scenario. The discovery of frequent patterns from a stream is considered a hard problem because
of a continuously generated nature of stream that does not allow a revisit over passing data
element. Moreover, the discovery process has been required to be fast to produce immediate
results. From these requirements, we thus devise an approximate approach to solve the problem
of top-k pattern discovery over continuous stream using the DNA data as an illustration. Our
approximate algorithm is intended to be applied to process a stream prior to the pattern
discovery process. The organization of this paper is as follows. After the literature review
regarding association analysis and frequent pattern mining in section 2, we present our method
in section 3. The experimental results are demonstrated in section 4. We conclude our paper in
section 5 with the discussion of future research direction.



2. Literature Review

Since the introduction of the AIS (Agrawal-Imielinski-Swami) algorithm (Agrawal and
Srikant, 1994b) by the three members of IBM Almaden Research Center in 1993 (Agrawal et
al., 1993), the concept of association rule mining from transactional databases has received
much interest from many data mining researchers. A year later, Rakesh Agrawal and
Ramakrishnan Srikant (1994a; 1994b) improved the algorithm by reducing its search space
with apriori property of the search through a frequent itemset lattice. This new algorithm has
been named Apriori. The advent of Apriori algorithm is a major milestone of advancement in
association analysis.

Apriori algorithm has been widely used as a basis for subsequent improvement proposed
by a number of research teams. Park et al. (1995a) proposed to use hashing technigue for the
improvement of frequent itemset search. Han and Fu (1995) introduced the idea of discovering
multiple levels of association rules. For a very large transactional database, Savasere et al.
(1995) suggested to split the database and then search for associative relationships in a reduced
data set. Toivonen (1996) tackled the large database problem with a sampling idea to search for
interesting association from data representatives. Cheung et al. (1996a) considered an
incremental approach for gradually learning of association among itemsets. Parallel
computation is another mainstream of research to speed up association rule mining (Park et al.,
1995b; Agrawal and Shafer, 1996; Zaki et al., 1997).

For a non-Apriori based association mining algorithm, the FP-growth algorithm that uses
a tree structure to store frequent itemsets is an efficient method for extracting frequent patterns.
The algorithm had been proposed by Han et al. (2000) and gained popularity since then
(Agrawal et al., 2001; Pei et al., 2001; Liu et al., 2002; Grahne and Zhu, 2003).

In the emerging era of cloud technology, distributed computation of frequent patterns
can be effectively accomplished. The research along this line has started since the last two
decades (Cheung et al., 1996b) and it is still an active research area (Coenen and Leng, 2006;
Tseng et al., 2010; Zhu et al., 2011; Lin et al., 2013; Cuzzocrea et al., 2014; Elayyadi et al.,
2014).

With the advanced mobile devices, data collection and broadcasting occur at a very high
speed. The frequent pattern discovery algorithms have to deal with the new kind of data, i.e.,
streaming data. A data stream is a sequence of digitally encoded data that are continuously
transmitted from distributed sources (Guha et al., 2001; Babcock et al., 2002; Gaber et al.,
2005; Jiang and Gruenwald, 2006). Kargupta et al. (2004) developed the VEDAS system to
monitor vehicles at real time. Cai et al. (2004) designed the MAIDS system to mine incidents
from data streams. Halatchev and Gruenwald (2005) proposed an estimation technique to guess
missing values in sensor data streams. Finding frequent itemsets over data stream is a research
problem studied by several researchers (Chang and Lee, 2004; Charikar et al., 2004; Chi et al.,
2004; Gaber et al., 2004; Ghoting and Parthasarathy, 2004; Li et al., 2004; Teng et al., 2004;
Yu et al., 2004; Lin et al., 2005; Mao et al., 2005).

The work presented in this paper is also along the line of distributed data stream
processing to find the top-k patterns from DNA data. To estimate the frequency of top-k
patterns, we adapted the Monte Carlo approximate method (Kerdprasop et al., 2006). The
details of our design will be discussed in the next section.

3. Approximate Method for Top-k Pattern Discovery

A framework of our approximate top-k frequent pattern discovery is presented in figure
1. Contribution of our work is the design and implementation of the approximation-via-sliding-
window (figure 2) and density-biased-sampling (figure 3) algorithms, whereas the frequent
pattern discovery is Apriori-based algorithm (Agrawal and Srikant, 1994). Our sampling
technique is based on the reservoir concept (Vitter, 1985; Kerdprasop et al., 2005), but data
representatives will be drawn only from the dense area. Thresholds for minimum density and
area size can be adjusted by user.
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Figure 1. A framework of approximate method for top-k pattern discovery

Input: a set of data points represented as vectors
Output: a new set of transformed data points annotated with density value

% Initialize windows
(1) Interact with user to obtain dimension value
(2) Generate window grid of size W along dimension axes
% Count density
(3) Sequential move on each window and count number of data points, N, in the window
(4) Record a list of window’s central point and its N value in a file F
(5) Return F as a set of transformed data

Figure 2. Pseudocode of the approximation-via-sliding-window algorithm

Input: aset of high density data from the approximation-via-sliding-window algorithm
Output: a new set of data samples

(1) Extract data from a condense form and obtain a desired sampling choice from user
(2) If choice = ‘Density-biased Reservoir+Hashing’, then

3 Interactive with user to obtain reservoir size

(@) Hash each data point to store in a reservoir R

(5) If collision occurs, then stored data item is replaced by a new one

(6) Repeat steps 4-5 until there is no more data point, and return R as output

(7) If choice = ‘Density-biased Reservoir+Simple Random Sampling’, then

(8) Interact with user to obtain the bin size

9 Randomly select data point to store in a reservoir R //sampling without replacement
(10)  Repeat step 9 until R is full, and return R as an output

(11) If choice = ‘Density-biased Reservoir+Rejection Sampling’, then

(12)  Interact with user to obtain the bin size and interval I, | € [0.0..0.5]

(13)  Randomly select data point D /I sampling without replacement
(14)  Generate a uniform random number U from the range [0.0 .. 1.0]

(15) If U is within the range [0.5-1 .. 0.5+I], then store D in R

(16) Otherwise, reject and discard D

a7 Repeat steps 13-16 until R is full, and return R as an output

Figure 3. Pseudocode of the density-biased-sampling algorithm
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Figure 4. Twenty data points distributed within six windows of size 3x3

Our density-biased sampling technique (an algorithm in figure 2) has been designed to
handle streaming in which input data are continuously processed by the system. To analyse
each and every data item is almost impossible. We thus instead consider frequent patterns from
the representatives. The intuitive idea of selecting representative data with the approximation-
via-sliding-window algorithm can be demonstrated through a simple situation of processing a
two-dimensional data set containing 20 data points, which are shown in figure 4. For the
purpose of concise demonstration, we assume that the data points in this example limit
themselves within the scale 9x6 along the horizontal and vertical axes, respectively.

The first step of a stream data density estimation is to decide the size of small grids,
which we call windows in our algorithm. Suppose we choose the size 3x3. The boundaries of
each window can be listed with intervals in the <x,y> coordinates as follows (note that the
interval such as [0,3) represents the values ranging from zero up to 3, but does not include 3) :

Range along <x,y> axes Range along <x,y> axes
window @: <[0,3), [0,3) > window @: < [0,3), [3,6] >
window @: <[3,6), [0,3) > window ®: < [3,6), [3,6] >
window ®: <[6,9],[0,3) > window ®: <[6,9], [3,6] >

Data points in each window will be counted and condensed to the representation format
that consumes less memory. The condensed form is per window, instead of per data point. In
this condensed form, we store the central location of a window together with the number of
data points existing in that window. For instance, all five data points in window @ will be
packed and stored as { <1.5,4.5>, 5 }, where <1.5,4.5> is the central point of this window. All
20 data points will be transformed as shown in Figure 5. These transformed data points that
meet the minimum density requirement are the output of the approximation-via-sliding-window
algorithm, and also the input for the density-biased sampling algorithm.

Raw data Transformed data Output

<1,1> <24> <54> {<1515>4}

<1,1> <25> <55>  window {<4515> 4} density {<1515> 4}
<14> <32> <74> size=3x3 {<75,15> 2} threshold=4 {<4.5,15> 4}
<15> <4,2> <75> => {<1545>5} => {<1545>5}
<2,1> <44> <82> {<4545> 3}

<2,2> <51> <9,1> {<7545> 2}

<2,3> <52> <54>

Figure 5. The transformation from raw data to the {central-point, density} format and the final
output of approximation-via-sliding-window algorithm
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{<1515>4} <1.5,15>, <1.51.5>, <1.5,1.5>, <1.5,1.5>
{<4515>4}% => <45,15>, <4515><4515><4515>,
{<1545>5} <1.5,45>, <1.5,4.5><1.5,4.5><1.5,4.5><1.54.5>,

Figure 6. Data representatives that are generated back from the condensed format

The first step of the density-biased-sampling algorithm is the extraction of data points
that are stored in the condensed form. After the extraction process, we obtain the representative
data points as illustrated in figure 6. In the sampling step, user can choose different schemes of
sample draw and temporary memory maintenance as follows:

o Density-biased reservoir + Hashing
o Density-biased reservoir + Simple random sampling
o Density-biased reservoir + Rejection sampling

A set of samples drawn from streaming data is then forwarded to the Apriori-based
frequent pattern discovery algorithm (Agrawal and Srikant, 1994).

4. Experimental Results
A. DNA Data Set

The proposed approximate method has been applied to find top-k frequent patterns
from the DNA data set (available at http://archive.ics.uci.edu/ml/datasets/). This data set
contains 3,186 instances. We split the data into two parts: the first 2,000 instances to be
used as a training data and the rest 1,186 instances are for testing correctness of the
discovered patterns. Each data instance is a sequence of 60 genetic codes (A=adenine,
T=thymine, C=cytosine, G=guanine) obtained from different location of a gene. Some data
samples are displayed in figure 7.

These genetic codes can be categorized as either exon/intron, intron/exon, or none. The
exon/intron is the border region of genetic codes that links the exon part to the intron part.
The intron/exon can be interpreted in the same manner, but vice versa. Exon is the part
containing genetic codes that control the protein synthesis. Intron is the intervening area
between exons and it will later be discarded before the synthesis of proteins. The none
category is the genetic string that does not bear genetic codes for protein synthesis. The
structure of exon and intron in a gene is schematically shown in figure 8.

TT.CTATGAGAAACGTGGCATTGTGCG,CAAGGTGGGCCC,
C,G,C,G,G,GACG,G,G,G,CAG,CT,C,C,G,G,G,exon/intron

ClTiCiCiClClAiciClClAiClCITIGiTiCiC1AICICICIG5C1C1CYGICIA1GlAiTich!C!TiTicicl
T,G,G,AG,C,CAG,G,CAAGAACT,C,CA,intron/exon

C,T,G,A,C,T,A,A,G,C,C,G,C,C,C,C,T,T,G,T,C,C,C,T,T,C,T,C,A,G,A,T,T,A,T,G,T,T,T,
G,AGACCT,TCAACACCC,C,G,G,C,C,intron/exon

GYAieIG'lAlG1C1T7AlG7AICIA1AIG7T1A1C1T1GIG7T7C7T7C1A1G1C1A1GIG7T7GICIG7TYG1A1
G,G,G,G,AG,G,G,GATGG,CT,G,C,CAA,G,G,exon/intron

A1A161G1C1T!C7AIG7GlA7GiG1A1G'lGlG1AlG7AlTlCIAYA1C1A1T1C1AIA7C7C7T7G1C1CYCIC1G1
CCCCCT,CCCCAGCCTGATAAAnNNE

Figure 7. Some DNA data instances
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Figure 8. Structure of a gene with exon and intron parts (http://genome.gov/Glossary/)

B. Testing Scheme

We test the performance of our approximate method by simulating the DNA data set
as a data stream, then feeding a stream to the density approximation and sampling
algorithms. Data representatives are stored in a temporary memory area, called a reservoir.
The representatives are finally processed by the frequent pattern discovery algorithm to
find the top-k patterns. Completeness of the approximately discovered patterns is justified
by the comparison against the frequent patterns that are discovered without the application
of approximate method.

C. Program Running Results

We implemented our approximate frequent pattern discovery method with the Erlang
programming language. The running result of the main function is shown in figure 9. Our
approximate frequent pattern discovery program finds the frequent patterns of a specific
class. In figure 9, we show the frequent patterns of a class intron/exon with the minimum
support = 80%. At this level of support value, there are 3 frequent patterns of length 1 (k=1,
or 1-item sets), 3 frequent patterns of length 2 (k=2, or 2-item sets), and 1 frequent pattern
of length 3 (k=3, or 3-item set). These seven patterns (shown inside the red square in figure
9) can be interpreted as follows:

[“AM”] means occurrence of the adenine base (A) at location 29 (ASCII code of M) in a
DNA string

[“CL”] means occurrence of the cytosine base (C) at location 28 (ASCII code of L) in a
DNA string

[“GN”] means occurrence of the guanine base (G) at location 30 (ASCII code of N) in a
DNA string

[“AM”, “CL”] means co-occurrence of the adenine base at location 29 and cytosine base at
location 28 in a DNA string

[“AM”, “GN”] means co-occurrence of the adenine base at location 29 and guanine base at
location 30 in a DNA string

[“CL”, “GN”] means co-occurrence of the cytosine base at location 28 and guanine base at
location 30 in a DNA string

[“AM”, “CL”, “GN”] means co-occurrence of the adenine base at location 29, cytosine
base at location 28, and guanine base at location 30 in a DNA string
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Figure 9. Running result of intron/exon frequent patterns with at least 80% of occurrence
frequency (that is, minimum support = 80%)

7> assoDNA: FindSupOf(["AKM™,"GN"]).
“DNA-nominal.data"”, "DNA-nominal.test” Start NewJob FileName> "DNA-nominal.test”.

Class:"none™ has 41 = 6.799336650082918 percent0f 603
Class:“exon/intron™ has 149 = 49.17491749174918 percentOf 303

m

li:ass:"intron/exon" has 278 = 99.28571428571429 percentOf 280endOfPrint
2>

|

Figure 10. The result of comparing the pattern [“AM”,”GN”] against the test data

Correctness of the discovered frequent patterns can be confirmed through the use of
“findSupOf” function to predict the probable area of a gene in the test data set. Figure 10
shows the confirmation of the pattern [“AM”,”GN”], which is one of the discovered
frequent patterns of a class intron/exon, through the search and comparison of this pattern
against the whole test set. We found that this pattern matched 41 sub-patterns in the class
none, 149 sub-patterns in the class exon/intron, and 278 sub-patterns in the class
intron/exon. Based on the majority matching, we thus conclude that the discovered pattern
[“AM”,”GN”] correctly represents the top frequent patterns of the class intron/exon.

For completeness confirmation, we compared the patterns discovered from our
approximate method with those obtained from the traditional method that does not apply
the density approximation and sampling technique. With varied percentages of minimum
support value, our approximate method can discover patterns very close to the traditional
method. The results are summarized in table 1.




Table 1. Comparative results of number of patterns discovered from our approximate method with
those discovered from traditional method.

Traditional pattern discovery Approximate method
Minimum method #Matched
support B1- | #2- | #3- |#4- |#1- | #2- |#3 |#g4 | PAEMS
item item | item | item | item item | item | item
Class = “none”
50% 0 0 0 0 0 0 0 0 0
45% 0 0 0 0 0 0 0 0 0
40% 0 0 0 0 0 0 0 0 0
35% 0 0 0 0 0 0 0 0 0
30% 1 0 0 0 1 0 0 0 1
25% 117 0 0 0 111 0 0 0 111
Class = “exon/intron”
85% 3 2 0 0 3 2 0 0 5
80% 4 5 2 0 4 5 2 0 11
75% 4 5 2 0 4 5 2 0 11
70% 4 6 3 0 4 6 3 0 13
65% 5 8 5 1 5 8 5 1 19
60% 5 9 7 2 5 8 5 1 19
Class = “intron/exon”
85% 2 1 0 0 2 1 0 0 3
80% 3 3 1 0 3 3 1 0 7
75% 3 3 1 0 3 3 1 0 7
70% 3 3 1 0 3 3 1 0 7
65% 3 3 1 0 3 3 1 0 7
60% 3 3 1 0 3 3 1 0 7
Table 2. Averaging summary of matched patterns against the test data.
Matched patterns Matched patterns Difference
Class (traditional method) (approximatie (traditional vs
method) approximate)
2-item 3-item 2-item 3-item 2-item 3-item
patterns patterns patterns patterns patterns patterns
none - 5 T T - --
exon/intron | 91.24% 84.35% 90.98% | 83.27% 0.26 1.08
intron/exon | 90.11% 87.62% 90.09% | 86.89% 0.02 0.73

The comparative results shown in table 1 have been performed on the training data set.
When matching the discovered patterns against the DNA patterns in the test data set, we
found that the difference of patterns matched by our approximate method to the ones that
matched by traditional method is only 0.52% (averaging from the difference values: 0.26,
1.08, 0.02, 0.73). We therefore conclude from this empirical study that the discovery of
frequent patterns from randomly selected representatives from a data stream yields the
patterns as complete and accurate as the standard method that finds patterns from the whole
large data set.



5. Conclusions

Frequent pattern discovery is an essential operation for association analysis. The
discovery process concerns an automatic extraction of interesting patterns and correlations from
a large database. These patterns can reveal implicit relationships among set of objects (or items)
that lead to the generation of association rules to be used for decision support, financial forecast,
medical diagnosis, and many other applications. Current studies in association rule mining
concentrate on how to effectively find all objects frequently co-occurring. Given m objects,
there are as much as 2" frequent patterns to consider. Frequent pattern discovery is thus a
computationally expensive problem. For the case of data streaming, this problem is even harder
because a continuously generated nature of stream does not allow a revisit on each data element,
but the discovery process must produce results in a reasonable short period of time.

With such a strict requirement, we therefore propose an approximate approach to tackle
the frequent pattern discovery over continuous stream problem. Our approximate algorithm is
intended to be a pre-processing step prior to the discovery process. We propose a stochastic
method to get a good guess of the stream characteristics, and then draw a set of representatives
from the incoming stream. These representatives are subsequently used in the process of
frequent pattern mining. Our design had been implemented with the functional programming
paradigm and the experimental results confirm the efficiency and reliability of our method. For
a massive database, parallel method is a solution for the scalability problem. That is the main
direction of our future research.
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Abstract

The discovery process of data mining concerns an automatic extraction of interesting
patterns and correlations from a large database. These patterns can reveal implicit
relationships among set of objects that lead to the generation of actionable rules to be used
for financial forecast, medical diagnosis, and many other useful applications. Current studies
in data mining and genetic computing concentrate on how to effectively find all objects
frequently co-occurring or correlated. For a massive database, parallel method is a solution
for the scalability problem. In this paper, we present the design of parallel methods to the
genetic algorithms, clustering, and association mining tasks. The implementation of the
proposed method is based on the concurrent functional programming paradigm using the
Erlang language that handles parallelism via a message passing mechanism. We test our
implementations on the synthetic data sets and the real genetic data. The results show a good
runtime improvement.

Keywords: Concurrent programming, Erlang language, Concurrent genetic algorithms,
Concurrent clustering, Concurrent association mining

1. Introduction

Concurrent computing is a form of parallel task computation. A task-parallel method
is commonly used in computer programming [12, 17, 23, 28] to speedup the
computational time. Currently, there are two commonly used concurrent computing
methods: thread and message passing. OpenMp is a well-known thread implementation
[10], whereas MPI1 and MapReduce [30] are examples of message passing techniques In
this paper, we study parallelization of data mining and genetic computing tasks based
on the message-passing method using Erlang language [5]. This language uses
concurrent functional paradigm and communicates among hundreds of active processes
via simple message passing built-in functions. As an example, to create multiple
processes in Erlang, we use a spawn function as follows:

-module(example).
-export([start/0]).

start() ->
Pid1 = spawn(fun run/0),
io:format("New process ~p~n", [Pid1]),
Pid2 = spawn(fun run/0),
io:format("New process ~p~n", [Pid2]).

run() -> io:format("Hello ! ~n", []).
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The start function in a module example, which is the main process, creates two
processes with identifiers Pidl and Pid2, respectively. The newly created processes
execute a run function that prints the word “Hello !” on the screen as the following:

New process <0.63.0>
Hello !
New process <0.64.0>

Hello !

The numbers <0.63.0> and <0.64.0> are identifiers of the newly created two
processes. Each process then independently invokes the run function to print out a word
“Hello !” on the screen. The processes in Erlang virtual machine are lightweight and do
not share memory with other processes. Therefore, it is an ideal language to implement
large scale parallelizing algorithms through the concurrent computation methods.

2. Concurrent implementation methods

2.1. Concurrent genetic algorithms

Genetic algorithms are search and optimization methods inspired by the natural
selection process that causes biological evolution [11]. At the initial stage, genetic
algorithms model a population of individuals by encoding each individual as a string of
alphabets called a chromosome. Some of these individuals are possible solutions to a
problem. To find good solution quickly, the algorithms emulate the strategy of nature,
that is, survival of the fittest. Individuals that are more fit, as measured by the fitness
function, are more likely to be selected for reproduction and recombination to create
new chromosomes representing the next generation. Reproduction and recombination
are normally achieved through the probabilistic selection mechanism together with the
crossover and mutation operators.

As a consequence of their simple and yet effective search procedure, genetic
algorithms have been successfully applied to solve different kinds of work [1, 3, 4].
Parallel computation for genetic algorithms has been proposed [7, 18, 24, 25] for at
least two decades to speedup the computational time. Our work presented in this paper
propose a simple scheme toward high performance computing using message passing
mechanism, instead of a more sophisticated techniques appeared in the literature. The
work of Bienz, et al., [6] is close to ours, but their process interaction scheme is more
tightly coupled than our scheme.

The implementation of genetic algorithms uses a simple mathematical problem: find
the maximum squared number of an integer from the search space of mixed positive
integers ranging from 1 to 16,777,127. The correct solution is 281,472,426,579,600.
Main module of our program is the function go() that takes three parameters, that is, the
population size, probability of mutation, and probability of crossover. Program source
code in Erlang is given as follows:

go (PS, PM, PC) ->
p([max is, max()]),

Popu = init (PS, space()),
evol (PS, PM, PC, Popu, maxLoop (), false).

max () -> round (math:pow (2,bit ())-1).
bit()-> 24 . 5 24=2%*24 instances including 0
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maxLoop () ->150.
correct ()-> 0.99999.
space () -> lists:seq(l, round(math:pow(2,bit())-1) ).

init (PS,L)->
random: seed (erlang:now()),
Pop = randwW(L,PS) ,
lists:map (fun encode/1, Pop) .

randW( ,0)-> [1; % random population with replacement

randW (L, N) ->

[lists:nth(random:uniform(length(L)),L ) |randW(L,N-1)].
evol (PS, PM, PC, Popu, 0, )->

p([in _each evol,hd(Popu)]),

hd (Popu) ;

evol (PS, PM, PC, Popu, ,true)->
p([in_each evol2,hd(Popu)l),
hd (Popu) ;

evol (PS, PM, PC, Popu,Max, false) ->
PopuNew = xover (PM, PC, Popu) ++Popu,
Lout = sel (PS, PopuNew),
[{Tmp, _,_}I_] = Lout,
Percent=Tmp/max (),
p(lafter evol loop , maxLoop ()-Max+l,max,Tmp/max()]),
OverThresh = Percent>correct (),
evol (PS, PM, PC, Lout,Max-1,0verThresh) .

sel (PS, Popu) -> % select good parent
Lsort=lists:sort(fun ({ , ,X},{ , ,¥Y})-> X>Y end, Popu),
{Ll, }=lists:split(PS,Lsort) ,
L1 . % select best rank

xover (PM, PC, [])-> [];
xover (PM, PC, [X1,X2|T])-> xv (X1,X2,maybe (PC), PM) ++xover (PM, PC,T) .

xv (X1,X2,false,PM)-> [X1,X2]; % no crossover
xv (X1,X2,true,PM)-> cross (X1,X2,PM) . % crossover

cross({_ ,X1, },{ ,X2, },PM)->
Rand=random:uniform(length (X1))-1,
{L1,L11}= lists:split(Rand,X1),
{L2,L22}= lists:split (Rand,X2),
Xnewl= mutString (L1++L22,PM),
Xnew2= mutString (L2++L11,PM), % mutate
V1l = decode (Xnewl,bit()),
V2= decode (Xnew2,bit ()),
[{V1l,Xnewl, fitness (V1) }, {V2,Xnew2, fitness (V2)}].

mutString ([],PM)->[];
mutString ([H|T], PM) ->
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Prob=maybe (PM) ,

if Prob->
true ->

end.

maybe (Prob) -> random:uniform/()

encode (N)-> { N ,

decode ([], )->0;

[ (H+1)
[H

rem 2
|mutString (T, PM) ]

< Prob.

|mutString (T

,PM) 1%
no mutate

mutate

bitOf (N,bit()), fitness(N) }.

decode ([H|T],B)-> round (H*math:pow(2,B-1))+decode (T,B-1) .

bitOof( ,0)->[1;

bitOf (N,B)-> bitOf (N div 2,B-1)++[N rem 2].

fitness (A) -> A*A

p(L)-> lists:foreach(fun(H)->io:format ("~p

io:format ("~n") .

On the design of concurrent computation (Figure 1), we try to keep the message
communication as simple as possible. The main process simply creates the child process
and waits for the first best result to arrive. As soon as the main process receives the first
solution, it will kill other processes that are still active. This problem has only one best
solution, so we accept the first one. Implementation of this concurrent scheme is in

Figure 2.
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Figure 1. A message-passing model in concurrent genetic algorithms
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-module (ga) .

-compile (export all).
main([P1,M1,C1], [P2,M2,C2]) —->
Pid2=spawn (?MODULE, process,
[P1,M1,C1]),
Pid3=spawn (?MODULE, process,
[(p2,M2,C2]),
pid2 ! {self ()},
Pid3 ! {self ()},
p(lall pid,Pid2,Pid3]),
receive
{Pid,Msg}->io:format ("P ~w
Value=~p~n", [Pid,Msqg]),
exit (Pid2,kill),

\ ¥ Erlang “h \ \

) =izl |

File Ecit Options View Help

‘ FBBAY

3y qaznain([16,0.65,0.9],[32,0.85,0.9]).
all_pid nax_is mas_is <B.40.85 16777215 16777215 <0.41.0)

after_evol loop 1 max 0.7685661573324298
after_evol loop 2 max 0.8488288431661631
|after_evol loop 3 max 0.8488288431661631
after_evol loop 4 max 0.9979851840725651
after_evol loop 5 max 0.9979851848725651
after_evol loop 6 max 0.9979851840725651
|after_evol loop 7 max 0.9988462192324531
after_evol loop § nax 0.9980462192324531

exit (Pid3,kill) after_evol_Toop 9 nax 8.0080462192324531
end. ‘after_euul_lnup 10 nax 0.9999955296513754
process (PS,PM, PC) -> in_each_evol? {16777140,[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,0],281472426579600}
R = go(PS,PM, PC),
receive
{From}-> From! {self(),R}
end. ‘true
‘h)

P €0.40.0> Ualue={16777140,
[1,1,1,1,1,1,1,1,,,1,,,,1,,1,6,1,1,0,1,8,0],
2B14726265796.00)

Figure 2. Implementation and running result of concurrent genetic
algorithms with two active processes. The first process (process-id =
<0.40.0>) has population size = 16, probability of mutation = 0.05, and

probability of crossover = 0.9. The second process (process-id = <0.41.0>)
has population size = 32, the other two parameters are the same as the
first process

2.2. Concurrent clustering

Clustering is an unsupervised learning problem widely studied in many research
areas such as statistics, machine learning, data mining, pattern recognition. The
objective of clustering process is to partition a mixture of large dataset into smaller
groups with a general criterion that data in the same group should be more similar or
closer to each other than those in different groups. A serial k-means algorithm was
proposed by J.B. MacQueen in 1967 [20] and since then it has gained mush interest
from data analysts. Despite its simplicity and great success, the k-means method is
known to degrade when the dataset grows larger in terms of number of objects and
dimensions [13, 15]. To obtain acceptable computational speed on huge datasets, most
researchers turn to parallelizing scheme [9, 14, 16, 22, 27, 30].

The serial k-means algorithm [20] starts with the initialization phase of randomly
selecting temporary k central points, or centroids. Then, iteratively assign data to the
nearest cluster and then re-calculate the new central points of k clusters. The serial
algorithm takes much computational time on calculating distances between each of N
data points and the current K centroids. Then iteratively assign each data point to the
closest cluster. We thus improve the computational efficiency by assigning P processes
to handle the clustering task on a smaller group of N/P data points. The centroid update
is responsible by the master process. In Figure 3, the PKM algorithm is the master
process responsible for creating new parallel processes, sending centroids to the created
processes, receiving the cluster assignment results, and recalculating the new centroids.
The steps repeat as long as the old and the new centroids do not converge. The
convergence criterion can be set through the function difference(C, C’). A screenshot of
compiling and running the program (Erlang release R13B04) is given in Figure 4.
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process
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Cluster member assignment

Figure 3. Communication between master and created processes in the
concurrent k-means clustering

-module (pkm) .

-import (lists, [seq/2,sum/1,flatten/1,
split/2,nth/2]).

—-import (io, [format/1, format/2]) .

—-import (random, [uniform/1]) .

start (Datal, Cent, NumPar) ->
CidL = myspawn (NumPar),
LastC= myloop (CidL,Cent,
DatalL, NumPar, 1),
format ("~nCentroid=~w", [LastC]),
LastC.

myspawn (0) -> [] ;
myspawn (N) -> [spawn (?MODULE, c,
[self()]) |
myspawn (N-1) ].
myloop (CidL, Cent, Datal,
NumPar, Count) ->
mysend (Count, CidL,Cent, Datal),
L=flatten (myrec (Count,NumPar)),
C=calNewCent (Cent, L),
format ("~w." [Count]),

if Count >100 -> mystop(CidL),C;

Cent/= C_ ->
myloop (CidL,C ,Datal,

NumPar, Count+1l);
true -> mystop(CidL),C
end.
c(sid) ->
receive

stop -> true;

{LoopN, Cent,Data} ->
L=locate (Data,Cent),
Sid!{LoopN,L},c(Sid)

end.

e
file Edit Options View Help
v‘ Baf
3> NumCent=Y4,CL=1ists:sublist(D,NumCent).
|[[924,uuzs},[7231,9459},{5@15,3114],{5975,9157]]

4> NumPar=8,0Lzpkn:mysplit(length(D) div NumPar,D,NumPar).
[1{824, 4436,
7231,9459},
5615,3114},
3975,9157},
5> (TReal,RealCen}:=timer:te(pkm,start, [DL,CL,length(DL)]).
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.
.31.32.33.34.35.
[|Centreid=[ {2496, 7755378358665, 2510, 583056046844, {T494. 7329494421265,
388755),(7500. 717667375798, 2502 243794268552} , { 2493 . 4655962076956, 75€
396)]{129371060,

[{2496. 7755378358665, 2510, 583056046844) ,

{7494 . 7329494421265, 7500. 258223388155} ,

{17500. 717667375798, 2502. 243794268552},

{2493. 4655902076956 , 7504 . 351034472396} |}
6> TReal.
129371600

—— e —

Figure 4. Coding and series of line commands to create four initial
centroids (command 3), then partition 800,000 data points into eight
subgroups sending to the eight processors (command 4), parallel k-means
(pkm) starts at command 5. The outputs of pkm are the number of iteration
(i.e., 35) and the mean points of four clusters. A variable TReal is for
displaying the running time of the whole process, which is 129371000
microseconds or 129.371 seconds, including send-receive messages
between the master and the eight concurrent processes
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2.3. Concurrent association mining applied to the splice site recognition problem

The splice site recognition problem can be formulated as the following. Given some
part of unclassified genomic DNA sequences, decide whether this is an intron/exon
border, an exon/intron border, or none of the two splice sites. To develop an accurate
prediction model, a machine learning technique is usually applied. The learning task is
that given sequences of genomic DNA with known splice junction labeled as either an
intron/exon, an exon/intron, or none, the learning objective is to find a classification
rule that can successfully predict the region of uncharacterized genomic DNA sequence.

Splice site prediction can be considered as a subproblem of gene prediction that aims
at correctly recognizing gene from the given fragment of DNA sequence. The task of
splice site prediction is to recognize the actual boundaries of the protein-coding regions
in the DNA sequence. There are many computational techniques applied to tackle this
problem. The direct method [8, 29] is to analyze the sequence to capture gene profile
and identify specific features that that can accurately predict the splice junctions.
Researchers from the machine learning community prefer to attack this problem via a
single or multiple classification learning algorithms [19, 21].

Our approach to solve the splice site recognition problem is different from those
appeared in the literature in that our predictor is built from the association analysis
technique [2], not the classification ones. The advantage of the proposed technique is
that the prediction model can contain nucleotides at arbitrary position, not necessarily
be the contiguous base sequences.

At the initial stage of our proposed method (named assoDNA), the training dataset
with a mixture of exon/intron, intron/exon, and none of the two DNA sequence splice
sites is separated into three subsets according to splice junction types. Each data subset
is then processed through the same steps of frequent patterns and association analysis.
Once the three data subsets are processed through the frequent pattern analysis method,
the three sets of learning results (displayed as prediction rules) are finally combined
and prioritized according to the confidence and support values. The proposed assoDNA
method can be explained as a flow diagram shown in Figure 5.

The concurrent implementation of assoDNA is illustrated as follows:
-module (assoDNA par) .

concurrent (P1, P2, P3) ->
spawn (assoDNA par, run, [self(),P1l]),
spawn (assoDNA par, run, [self(),P2]),
spawn (assoDNA par,run, [self (),P3]),
receive
my end -> ok
end.

run (MasterID, Inputl) ->

R = main2 (any, 3, Inputl),

file:delete ("out.txt")

AD = lists:last(R), [ADD| ] = AD,

Rules = lists:sublist (R, length(R)-1),

PrintRules = map (fun({D, S, Per, Class}) ->
{to Col3(notLast(D)),S,Per, transformBack (Class)} end,
Rules),

ADP=lists:map (fun(Data) -> {Data,checkRules (Data,Rules)} end, AD),

ADPprint=map (fun ({Data, V}) ->
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Predict=transformBack (V),

{Data, [last (Data), Predict,

mark (last (Data), Predict) ] } end, ADP),
Predict=map (fun ({F,S}) -> {to_Col3(notLast(F)),S} end, ADPprint),
writeToFile (Predict),

[_,Stopl_] Inputl,

if Stop ==2 -> MasterID ! my end ;
true -> MasterID ! not end

end.

support (min_sup)

v

Initialize R (a set of final
results) to be empty

Data by class Given minimum /

»
>

¥
Build a candidate pattern P of length K
P = AK (Li = Nj)
where K starts from 1
i € {30, ....+30}. Nj € {A.C.T.G}

A

Select a pattern P with
support = min_sup to
contain in asetS

Increment K l

R=RwS

no

Compute confidence of every pattern P
in R, and annotate confidence value to
every pattermn

A

Sort P in descending order according
to confidence and support values

!

Generate association rules from pattern P with
confidence = the given minimum confidence

Figure 5. A flow diagram illustrating the assoDNA method
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3. Performance Study Results

3.1. Performance of concurrent genetic algorithms

We design a series of experimentation to compare performance of sequential genetic
algorithms against the concurrent implementation. The number of processes in the
concurrent implementation has been varied from 2, 4, 8, 16, 32, 64, and 128. When the
number of processes has been increased to 256, memory capacity is not enough for the
Erlang system to reach the completion stage. If we, however, decrease the problem
domain, the Erlang system can spawn more than hundreds of processes. To record
running time of genetic algorithms, we use the following commands:

£0,

Tl = erlang:now(),
ga:main([8,0.05,0.8],[40,0.01,0.5]),
T2 = erlang:now(),

timer:now diff(T2,T1)/1.0e6.

The f() function is for clearing buffer. Function now() is the clock function available
in the Erlang shell. We start the concurrent process by calling function main(). In the
above example, concurrent genetic algorithms with two processes have been invoked.
The deduction of start time from the stop time will yield the running time. We also
change the time unit from microsecond to second. The concurrent genetic algorithms
coding can be easily adjusted to spawn more than two processes. Running time of 2 to
128 processes have been summarized and graphically shown in Figure 6. It can be seen
from that concurrent genetic algorithms with 16 processes give the best computation
performance. When the number of spawned processes is higher than a hundred,
concurrency yields poorer performance than serial computation. This is mainly because
every time the main process spawn a child process, there is an overhead cost of message
passing. For this specific simple problem, we should not concurrent more than 16
processes. The optimal number of processes is however subjective and varied according
to the problem domain. Empirical study is essential for the best parameter setting.

Time {seconds)
w
.
N
|
"
|
!
.
i
i~

=4—ConcurrentGA

2 / —m—SequentialGA
1

2 4 ] 16 32 64 128 Number of Processes

Figure 6. Computational time comparison of sequential versus concurrent
genetic algorithms
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3.2. Performance of concurrent clustering

We evaluate performances of the proposed PKM algorithm on synthetic two
dimensional dataset. The computational speed of concurrent k-means as compared to
serial k-means is given in Figure 7. It is noticeable that when dataset is small (N=50),
running time of concurrent k-means is a little bit longer than the serial k-means. This is
due to the overhead of spawning concurrent processes. At data size of 900,000 points,
running time is unobservable because the machine is out of memory. Speedup
advantage is very high (more than 30%) at dataset of size between 50,000 to 200,000
points.

==f==Serial k-means 17367

180 +— _— —
== Concurrent k-means

100 +

Running Time (sec)
= [=)] [=x]
o (=) (=]

[
[==]

(=)
I

0.014 003
50 500 50K 100K 200K 300K 400K S00K 600K 700K 800K #Data

Figure 7. Running time comparisons of serial versus parallel k-means

3.3. Performance of concurrent association mining

The dataset used in this work is primate splice-junction gene sequences available at
the UCI repository of machine learning databases [26]. This dataset are taken from
GenBank 64.1 containing 3,190 DNA sequences. Each sequence is a window of 60
DNA base pairs starting at position -30 and ending at position +30 corresponding to the
splice site location. The splice junction can be either a junction between intron and
exon (intron/exon), a junction between exon and intron (exon/intron), or no junction at
all (none).

To improve the computational performance of the proposed assoDNA method, we
employ the concept of concurrent programming. Reduction in running time can be
compared through the screenshots in Fig. 8 in which the last line on a upper screen is
sequential running time (in a unit of microseconds), whereas the last line on a lower
screen is concurrent running time. Time reduction in this example is around 46.29%.
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. Erlang ¥ Elang =]
File Edit Options View Help File Edit Options View Help

v\ BAT L BEAT
2> timer:tc(assoDNA_par,run,[self(],[1,1,88,1,2,80,1,3,80]]). 3 £(), (T,_)=tiner:tc{assoDNA_par concurrent,[[1,1,88],[1,2,88],[1,3,89]]).
===z=z::z::Read from file:"SpliCGDNﬂ.DﬂTﬂ"“:::::::: =:zzzzzzzPead from file:"spliceIJMR.IJﬂTﬂ"= """ EEH]

Ther are 1-3 ClassesClass ="none” =:Read from file:"spliceDNA.DATR"
----- START---Apriori(in class=1,Min Support80%=800.0)--- 2:Read from file:"spliceDNn.DATA":

[l Ther are 1-3 ClassesClass ="exon/intron"
. T START---Apriori{in class=2,Min Support86%-409.0)---
===zz=z::z::Read from file:"spliceDNA.DATA"=====:2:2:: Ther are 1-3 (lasses

Ther are 1-3 ClassesClass ="exon/intron Ther are 1-3 ClassesClass ="none” Class ="intron/exon”
""" START-~-fpriori(in clase=2,Hin Suppor t80%:409.6)--- -----STRT--Bpriori{in class=3,Hin Support31:400.¢)---
K2[([°6(1)" "G(S)"] 42T,85.39000999900009}, L. START---Rprioriin class+1,Hin Support4g1-800.8)--

{["G(1)","T(2)"].494,98.8), S g
(["G(5)","T(2)"],424,84.8)}], has 3 set ka2 IHEEH?:3}32;;::?939399999393]

(16(5)","T(2)" ] 424,84.8)], has 3 set

K=3-[(["G(1)","G(5)","T(2)"].424,84.8}], has 1 set

[(["T0"], 494}, K=3-[{["6(1)","6(5)","T(2)"] 424,84.8)], has 1 set

"GP"],499),
(1), e
(["6P"."6T"] 427}, {[76P"] 469),
(["GP"."T0"] 494}, {['6r"]. ),
(["6T", "T0"], 4243, {['6P","GI"]. 4217),
(["GP" "6T","T0"].424)] {["6P","T0"] 98],
{[6T",70°], 24},
zzzzzzzzzRead from file:"spliceDNA.DATA"zzzzzzz=:: ([°6P","6T","T0"] 4243
Ther are 1-3 ClassesClass ="intron/exon”
----- START---Apriori{in class=3,Min Support80%-40@.9)--- K:2-[{["8(-2)","6(~1)"] 496,99.2)], hes | set

k=2-[{["A(-2)","G(-1)"],496,99.2)], has 1 set

T[40 ] 497)  ([GH"].498), {["8H" ,"GN"].496}]
[(["AM"],497Y, (["GN"],498}, ([ "AH"  "GN"],496)}] (5384009, 0k
|[(9875000. not _end)

Figure 8. Screenshots of sequential assoDNA (left) versus concurrent
assoDNA (right)

4. Conclusion

Data mining and soft computing via genetic algorithms share a common goal of
extracting patterns and useful information from a large collection of data. One
important problem of such intelligent techniques is scalability due to huge amount of
data to be processed. In this paper, we propose the design and implementation of
concurrent computation to speedup the execution time over large amount of data. We
investigate the robust search technique of genetic algorithms and propose that the
algorithms can be improved via concurrency. The data mining tasks presented in this
paper are clustering and association mining. Their performances also improved
significantly with the concurrency scheme. From these promising results, we plan to
further our study over distributed concurrent method.
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Abstract

Decision tree induction has gained its popularity as an effective automated method for
data classification mainly because of its simple, easy-to-understand, and noise-tolerant
characteristics. The induced tree reveals the most informative attributes that can best
characterize training data and accurately predict classes of unseen data. Despite its
predictive power, the tree structure can be overly expanded or deeply grown when the
training data do not show explicit patterns. Such bushy and deep trees are difficult to
comprehend and interpret by humans. We thus propose a logic-based method to query over a
complicate tree structure to extract only parts of the tree model that are really relevant to
users’ interest. The implementation using ECLiPSe constraint language to perform
constrained search over a decision tree model is given in this paper. The illustrative examples
on medical domains support our hypothesis regarding simplicity of constrained tree-based
patterns.

Keywords: Constraint data mining, Pattern induction, Querying, Classification tree,
Decision tree induction, Constraint logic programming

1. Introduction

A decision tree is a hierarchical structure comprising of nodes and edges. Each
internal node, including the root of a tree, represents a decision choice. All possible
decision choices are represented as branches from a node. The terminal decision
outcome appears at the leaf node [13, 20, 24]. Machine learning and data mining
communities consider the automatic process of building a decision tree from the
training data with labeled decision outcomes as a classification problem (if the decision
outcomes are continuous values rather than the nominal ones, it is referred to as a
regression problem).

Given a training data set with decision attributes and the labeled outcome, the
classification process aims at constructing an optimal classifier (or a tree) with
minimum classification error. The tree-based classification process is thus composing
of the tree-building phase and the pruning phase [12].

Building a decision tree from a set of training data is to partition data with mixing
decision classes down the tree until each leaf node contains data instances with pure
class. For a large data set with many attributes, constructed tree may contain branches
that reflect chance occurrences, instead of the true relationship underlying the data
subset. Many tree induction algorithms [5, 16, 18, 19] apply pruning strategies as

ISSN: 1738-9984 |JSEIA
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subsequent steps following the tree-building phase. A tree pruning operation, either pre-
pruning or post-pruning, involves modifying a tree structure to be more simplified.

The built tree is considered corresponding to a collection of decision rules when
traversing from the root node down to its leaves. A tree, or a set of decision rules, is
normally applied as a classifier to help identifying appropriate decision on the future
event or predicting class of unseen object. A classifier also serves as a generalized
model of the training data set. Due to its simplicity and efficiency, decision tree
induction has been applied in many research and application areas ranging from grid
computing [4], finance [15], engineering [22], health care industry [1, 14], medicine
[11], to bioinformatics [23].

Even with a tree pruning operation, a final tree structure can become a complex
model when applying to the real world data with so many instances and attributes.
General users and decision-makers normally prefer less complex decision trees. Many
researchers solve this problem by simplifying tree structure with the trade off in
classification accuracy [3], or applying some constraints during the tree-building phase
[8, 9]. Our proposed method is different from most existing mechanism in that we deal
with complexity problem after the tree induction phase.

We propose to construct a complete decision tree with the top-down induction
approach [17]. Then we suggest that the users can manipulate the structure to be less
complicate and truly reflect their interest by posing querying on this tree structure.
Querying the tree model also appears in the literature [2, 6] but with quite a different
purpose. Previous work on querying tree aims at extracting meta-data and statistical
information from the model. Our work, on the other hand, focuses on serving users to
extract only parts of the tree model that are of their interest.

We present the method and the detail of our implementation in Section 2. The
prototype of our implementation based on the logic programming paradigm is also
illustrated. Tree induction is normally implemented with SQL language [10, 21]; we
demonstrate in this paper that it can be more effective to implement with constraint
logic programming using ECLiPSe. Section 3 shows querying techniques. Efficiency of
our implementation on medical data [7] is demonstrated in Section 4. Conclusion
appears as the last section of this paper.

2. Building a Decision Tree Model with Logic Programming

We implement the decision tree induction method based on the ID3 algorithm [17]
using logic programming paradigm and run with the ECLiPSe constraint programming
system (http://www.eclipseclp.org). Program and data set are in the same format: that
is, Horn clauses. Example of breast cancer data set [7] is shown in Figure 1. Format of a
data set is data([[data instances]+[attribute set]]).

Program coding is given in Appendix. To run the program, users may simply call the
predicate “run” as shown in Figure 2. The output of the program is a tree model that has
been displayed as a textual format. Each branch of the tree has also been transformed as
a decision rule.
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data([ [age-"30-39", menopause-premeno, tumor_size-"30-34", inv_nodes-"0-2",node_caps-no,
deg_malig-3,breast-left,breast_quad-left_low,irradiat-no,class-no_recurrence_events],

[age-"40-49", menopause-premeno, tumor_size-"20-24", inv_nodes-"0-2",node_caps-no,
deg_malig-2,breast-right,breast_quad-right_up,irradiat-no,class-no_recurrence_events],
+
[ [class-no_recurrence_events, class-recurrence_events],
[age-"10-19", age-"20-29", age-"30-39", age-"40-49",age-"50-59", age-"60-69", age-

"70-79",age-"80-89",age-"90-99"],

[menopause-1t40, menopause-ge40, menopause-premeno],

[tumor_size-"0-4",tumor_size-"5-9",tumor_size-"10-14",tumor_size-"15-
19" tumor_size-"20-24" tumor_size-"25-29" tumor_size-"30-34" tumor_size-"35-
39",tumor_size-"40-44", tumor_size-"45-49" ,tumor_size-"50-54",tumor_size-"55-
59"],

[inv_nodes-"0-2",inv_nodes-"3-5",inv_nodes-"6-8",inv_nodes-"9-11",inv_nodes-"12-
14", inv_nodes-"15-17",inv_nodes-"18-20",inv_nodes-"21-23",inv_nodes-"24-
26",inv_nodes-"27-29",inv_nodes-"30-32",inv_nodes-"33-35",inv_nodes-"36-39"],

[node_caps-yes, node_caps-no],

[deg_malig-1, deg_malig-2, deg_malig-3],

[breast-left, breast-right],

[breast_quad-left_up, breast_quad-left_low, breast_quad-right_up, breast_quad-
right_low, breast_quad-central],

[irradiat-yes, irradiat-no]

D).

Figure 1. Breast Cancer Data Set in a Horn Clause Format

7% ECLiPSe 6.0 Toplevel

File Query Tools Help

eclipse l:|cun

| = —

- |2- run_
¥Yes (1.14s cpu, scluticn 1, maybe more)

Qutput al

“ |[iao_eco loaded in 0.02 seconds

Choose : [breast_guad — left_up, breast_guad - left_low, breast_gquad — right_up, breast_gq|
=|| 2t : breast_guad — left_up
—| Ans: elass - recurrence_ events

rule :if breast_gquad — left_up then class - recurrence_svents

At : breast_guad — left_lowChoose : [inv_nodes — O — 2, inv_nodes — 3 — S, inv_ncdes - &

At : inv_neodes — 0 — ZChoose : [tumorsize — 0 — 4, tumorsize — 5 - 3, tumorsize - 10 - 1

At : tumorsize — O — 4

Zns: class - no_recurrence_svents

rule :if breast_guad — left_low inv_nodes — 0 — 2 tumcrsize — 0 - 4 then class - no_recu

At : tumorsize — 5 — 3

Zns: class - no_recurrence_svents

rule :if breast_guad — left_low inv_nodes — 0 — 2 tumcrsize — 5 - 3 then class - no_recu

At : tumorsize — 10 — 14

Zns: class - no_recurrence_svents

rule :if breast_guad — left_low inv_nodes - 0 — 2 tumcrsize — 10 - 14 then class — no_re

At : tumorsize — 15 — 15Choose :© [menopause — 1t40, menopause - ged4(, menopause — premen

At : mencpause — 1t40d

Zns: class - no_recurrence_svents

rule :if breast_guad — left_low inv nodes - 0 — 2 tumorsize — 15 - 13 mencopause — 1t40

At : mencpause — gedd

Zns: class - no_recurrence_svents

rule :if breast_guad — left_low inv _nodes - 0 — 2 tumorsize — 15 - 13 mencpause — ge40

At : menopause — premencChoose - [age — 10 — 15, age — 20 — 25, age — 30 — 35, age — 40

Figure 2. A Screenshot of Program Running on the Breast Cancer Data Set
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3. Querying a Tree Model

Once a decision tree model has been created as shown in Figure 2, user can then
query the model with 7 different styles of constraints:

findRule([]) : to display all rules extracted from a decision tree model.

findRule([X]) : to display only rules that are relevant to the attribute X (such as irradiat for
rules that contain the attribute “irradiat” or irradiat — yes as a query to show
all rules with “irradiat with value yes™); number of attributes is not limited.

findRule([\+X]) : to display all rules except the ones with attribute X (\+ means “not”).

findRule([X1,X2]) : to display all rules that satisfy the condition X1 AND X2 (negation \+ can
also be applied to the attributes X1, X2).

findRuleOr([[X1],[X2]]) : to display all rules satisfied either the attribute X1, or X2 (negation
\+ can also be applied to the attributes X1, X2).

findRuleOr([[\+X1],[\+X2]]) : to display all rules extracted from a decision tree model

findRuleOr([[X1\+X2],[\+X3,X4]]) : to display all rules that satisfy the compound
operations “(X1 AND (NOT X2)) OR ((NOT X3) AND X4)”.

We show the result of findRule([]) querying over a tree model induced from the
breast cancer data set in Figure 3. Then constraining the result with the query findRule
([class - recurrence_events]). The query result is shown in Figure 4.

if breast_quad - left low inv_neodes - 15-17 age - 40-43 then class -
if breast_quad - left low inv_nodes — 15-17 age - 50-53 then class -

if breast_quad - left low inv nodes — Z4-Z& then class - recurrence ew
if breast quad - right_up tumor size - (-4 then class - no_recurrence_
if breast_gquad - right up tumor size - 5-% then class - no_recurrence |

if breast_gquad - right up tumor size - 10-14 then class - no recurrenc

if breast_gquad - right up tumor size - 15-13% then class - no recurrenc
if breast_gquad - right up tumor size - Z0-Z4 inv nodes - 0-Z then cla
if breast_gquad - right up tumor size - 20-Z4 inv_nodes - 3-5 then cla
if breast_gquad - right up tumor size - 25-2Z3 deg malig - 1 then class
if breast_guad - right up tumor size - 25-2Z3 deg malig - Z( ‘age - 40-
if breast quad - right up tumor gize - 25-29 deg malig - /2% age - 50-
if breast_gquad - right up tumor_size - 25-2Z% deg malig'-= 2 age - 50-
if breast_gquad - 'right up tumeor size - 25-Z3 deg. malig - Z age - &0-
if breast_gquad - right up  tumor/size — 25-23 -deg malig - 3 age - 30-
if breast_gquad - right up tumor_size - 25-2Z3 deg malig - 3 age - 40-
if breast_gquad - right up tumor_size - 25-2Z% deg malig - 3 age - 50-
if breast_gquad - right up tumor size - Z25-2Z% deg malig - 3 age - &0-
if breast_gquad - right up tumor size - 30-34 deg malig - 1 then class
if breast quad - right up tumor size - 30-34 deq malig - Z node_caps
if breast_gquad - right up tumeor size - 30-34 deg malig - 2 node_caps
if breast_gquad - right up tumor size - 30-34 deg malig - Z node_caps
if breast_gquad - right up tumor size - 30-34 deg malig - Z node_caps
if breast_gquad - right up tumor size - 30-34 deg malig - Z node_caps

Figure 3. A Set of Rules Obtained from the Query findRule([])
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breast_guad
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breast quad
breast_guad

breast quad
breast guad
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breast quad
breast guad
breast gquad
breast quad
breast guad
breast gquad
breast guad
breast guad
breast gquad
breast guad
breast gquad
£ breast quad
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left low
left low
left_low
left_low
left low
left_low
left_low
left_low
left low
left_low
left_low
left low
left low
left_low
left_low
left low
left_low
left_low
left_low
left low
left_low
right up
right up
right up
right up
right up
right up
right up
right up
right up
right up
right up

inv_ncdes
inv_nodes
inv_nodes
inv_nodes
inv_nodes
inv_ncdes
inv_nodes
inv_nodes
inv_nodes
inv_nodes
inv_ncdes
inv_ncdes
inv_nodes
inv_nodes
inv_nodes
inv_nodes
inv_ncdes
inv_nodes
inv_nodes
inv_ncdes
inv_nodes

tumor size -

tumcr size
tumor_ size
tumcr_size
tumcr_size
tumor_ size
tumcr_size
tumcr_ size
tumor_size
tumcr size
tumcr size

0-2 tumcr size - 30-34 age - 50-53% breast - left oy
0-2 tumor size - 35-3% age - 30-33 then class - recuy
0-Z tumor size - 35-39% age - 50-53% deg_malig - Z thy
0-2 tumor size - 40-44 age - 40-4% deg malig - 1 thy
0-2 tumor size - 40-44 age — 60-63 then class - recuy
0-2 tumecr size - 50-54 breast - right then class - =x¢
3-5 deg malig - 2 age - 30-39 then class - recurrence
3-5 deg malig - Z age - 40-43 breast - left then cl:
3-5% deg malig - 2 age - £0-%€5% then class - recurrence
3-5 deg malig - 3 age - 30-39 then class - recurrence
3-5 deg_malig - 3 age — 40-45 then class - recurrence
2-5% deg malig - 3 age - 50-55 then class - recurrence
3-5 deg malig — 3 age — &0-63 tumor size — 40-44 thy
£-8 tumor size - 15-1% then class - recurrence events
€-8 tumer size - Z5-29% then class - recurrence events
6-8 tumor size — 35-39 then class — reacurrence avents
£-8 tumcr size - 40-44 then class - recurrence events
59-11 age - 20-35 then class - recurrence_events

5-11 =age - 70-73 then class - recurrence_svents

15-17 =age - 40-43 then class - recurrence_events
24-2¢ then class - recurrence events

20-24 inv_ncdes - 3-5 then class - recurrence_events
25-2% deg malig - Z age - 50-5% breast - left then
25-2% deg malig - £ age - ©0-&3 then class - recurrs
25-23 deg malig - 3 age - 30-33% then class - recurce
25-23 deg malig - 3 age - 40-43 then class - recurre
Z5-2 deg malig — 3 age - &0-83 then class - recurrs
20-24 deg malig - Z node_caps - yes age - 40-43 thg
30-34 deg malig - Z node_caps - yes age - 50-53 the
30-34 deg malig - Z node_caps - yes age — &0-83 iy
20-24 deg malig - 2 age - 40-49% ncde caps - yes thyg
30-34 deg malig - 3 age - 50-53 then class - recurre

Figure 4. Result of Constrained Search with the Query findRule ([class -
recurrence_events])

4. Experimentation and Results

To test the performance of the proposed method to query over a discrete tree model,
we use the standard UCI data repository [7] including the hepatitis data set (155
instances and 15 attributes), breast cancer data set (286 instances, 10 attributes), and
thyroid disease data set (2800 instances and 16 attributes). Query result over a hepatitis
data set with the query is shown in Figure 5. For each data set we test the system with
seven different kinds of queries as summarized in the followings.

Hepatitis data set

findRule([])
findRule([bilirubin - "0.1-1.0"])
findRule([\+bilirubin - "0.1-1.0"1)
findRule([bilirubin - "0.1-1.0" | class - live])
findRule([\+bilirubin - "0.1-1.0", class - live])
findRuleOr([[ascites - yes],[bilirubin - "0.1-1.0,age - "31-40"]]) % Version 1
findRuleOr (][ [ascites - yes],[bilirubin - "0.1-1.0" ,age - "31-40"]]) % Version 2

Breast cancer data set
findRule([])
findRule([breast_quad - right_up])
findRule([\+breast_quad - right_up])
findRule([breast_quad - right_up , class - no_recurrence_events])
findRule([\+breast_quad - right_up , \+class - no_recurrence_events])

findRuleOr([[breast_quad - left_low , inv_nodes - "6-8" ], [breast_quad - left_low,
inv_nodes - "6-8", tumor_size - "15-19"1]) % Version 1

Copyright © 2013 SERSC
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findRuleOr([[breast_quad - left_low , inv_nodes - "6-8" ] , [breast_quad - left_low,
inv_nodes - "6-8", tumor_size - "15-19"]]) % Version 2

Thyroid disease data set

findRule([])

findRule([pregnant - false])

findRule([\+pregnant - false])

findRule([query_hyperthyroid - true , query_hypothyroid - true , sex - male ,
on_antithyroid_medication - false])

findRule([\+query_on_thyroxine - false , \+on_antithyroid_medication , \+class -
sick])

findRuleOr([[query_hyperthyroid - true , query_hypothyroid - false] , [\+
query_hypothyroid - true] , [\+class - negative]]) % Version 1

findRuleOr([[query_hyperthyroid - true , query_hypothyroid - false] , [\+
query_hypothyroid - true] , [\+class - negative]]) % Version 2

File Query Tools Help

eclipse ¥ |:|findRule (1)
run I more I 3

Q

A |2— run. ¥ L |
" ||¥es (0.563 ecpu, scluticn 1, maybe more)
=|?- findRule{[]1).
" |l¥es to0.0z2s cpul
- 4
Output an
a |[bilirubin — 0.1-1.0, age - 51-&0, sgot — 101-200, class - die]
[Bilirubin — 0.1-1.0, age - 51-60, sgot - Z01-300, class - liwve]
[bilirubin — 0.1-1.0, age - €1-70, albumin - 2Z_.1-3, class — liwve]
[Bilirubin — 0.1-1.0, age - &1-70, albumin — 3.1-4, class - die]
[bilirukbin — 0.1-1.0, age - €1-70, albumim - 4_.1-5, class - liwe]
[bilirubin — 0.1-1.0, age - 71-80, class — liwvel
[bilirukbin — 1.1-2.0, spiders - yes, warices — yes, class - liwve]
[bilirubin - 1.1-2.0, spiders - yes, varices - no, class - diel
[bilirubin — 1.1-2.0, spiders — mo, sex — male, age — 21-30, clasas - liwe]
[bilirubin — 1.1-Z2.0, spiders — no, sex - male, age — 31-40, ascites - yes, class - liwve]
[bilirubin — 1.1-200, spiders - mno, Iex - male, age — 31-40, ascites - mo, class — diel
[Bilirukin — 1.1-2:0, spiders - mno, sex - male, age — 41-50, =got - 1-100, class — die]
[bilirubin — 1.1-2.0, spiders - nc, sex - male, age — 41-50, sgot — 101-200, class - die]
[Ebilirubin - 1.1-Z2.0, sSpiders - no, sex - male, age — 41-50, sgot — Z01-300, class - liwve]
[bilirubin — 1.1-2.0, @piders - nc, sex - male, age — 51-&0, sgot — 1-100, clasa — liwvel
[bilirubin - 1.1-2.0, spiders - no, sex - male, age - 51-&0, sgot. — 101-Z00, class - diel
[bilirubin — 1.1-2.0, sgpiders - no, ‘sex - male;wage = §51-€0, agot — 201-300, class - die]
[Bilirukin - 1.1-2Z.0, spiders - no, Sex - male, age — €1-70, class - die]
[bilirubin — 1.1-2.0, spiders - no, sex - female, claas — liwvel]
[Bilirukin - Z2.1-3.0, age - 11-20, clasa - liwve]
[bilirubin — Z2.1-3.0, age — Z1-320, malaise — yes, claas — liwe]
[Bilirukin - Z2.1-3.0, age - Z1-30, malaise - no, class - diel
[bilirubin — Z2.1-3.0, age - 31-40, class - die]
[Bilirukbin - Z2_.1-3.0, age - 41-50, stercid - yes, clagas - diel
[bilirubin — 2.1-3.0, age - 41-50, stercid — no, class - liwve]
[Bilirukin - Z2_.1-3.0, age - 51-80, classa - die]
[bilirubin — 3.1-4.0, stercid - yes, class — liwvel]
[Bilirukbin - 3.1-4.0, stercid - no, clags - diel
— | [bilirubin — 4.1-5.0, age - 21-30, class — liwve]
[Bilirukin - 4_.1-5.0, age - 41-50, clasa - die]
E|[bilirubin - 4.1-5.0, age - 51-%0, spleen palpable - yes, class — die]
[Bilirubin - 4.1-5.0, age - 51-80, spleen_palpzsble — no, class - liwve]

Figure 5. Running Result of Querying Hepatitis Data Model with the Query
findRule([])

274 Copyright © 2013 SERSC



International Journal of Software Engineering and Its Applications
Vol.7, No.5 (2013)

As a demonstration of querying the model, we show only one example. For the query
“findRuleOr ([ [\+referral_source-svhc, \+ query_hypothyroid - false, class - sick], [ \+
query_ hypothyroid - false] ])”, its result is as follows:

Rule 1: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
female on_thyroxine - false query_hyperthyroid - false psych - false
query_on_thyroxine - false on_antithyroid_medication - false pregnant - false
thyroid_surgery - false lithium - false goitre - false hypopituitary - false
then class - negative

Rule 2: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
female on_thyroxine - false query_hyperthyroid - false psych - true
then class - negative

Rule 3: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
female on_thyroxine - false query_hyperthyroid - true
then class - negative

Rule 4: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
female on_thyroxine - true
then class - negative

Rule 5: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
male query_hyperthyroid - false on_thyroxine - false query_on_thyroxine - false
on_antithyroid_medication - false pregnant - false thyroid_surgery - false lithium
- false goitre - false hypopituitary - false psych - false
then class - negative

Rule 6: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
male query_hyperthyroid - false on_thyroxine - true
then class - negative

Rule 7: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
male query_hyperthyroid - true on_antithyroid_medication - false
then class - sick

Rule 8: if referral_source - other sick - false tumor - false query_hypothyroid - true sex -
male query_hyperthyroid - true on_antithyroid_medication - true
then class - negative

Rule 9: if referral_source - other sick - false tumor - true
then class - negative

Rule 10: if referral_source - other sick - true sex - female query_hyperthyroid - false
query_hypothyroid - true
then class - negative

Rule 11: if referral_source - other sick - true sex - female query_hyperthyroid - true
then class - negative

Rule 12: if referral_source - other sick - true sex - male
then class - negative

Rule 13: if referral_source - stmw
then class - negative
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Rule 14:

Rule 15:

Rule 16:

Rule 17:

Rule 18:

Rule 19:

Rule 20:

Rule 21:

Rule 22:

Rule 23:

Rule 24:

Rule 25:

if referral_source - svhc query_hypothyroid - true on_thyroxine - false sick - false
sex - female psych - false
then class - negative

if referral_source - svhc query_hypothyroid - true on_thyroxine - false sick - false
sex - female psych - true query_on_thyroxine - false on_antithyroid_medication -
false pregnant - false thyroid_surgery - false query_hyperthyroid - false lithium -
false goitre - false tumor - false hypopituitary - false

then class - sick

if referral_source - svhc query_hypothyroid - true on_thyroxine - false sick - false
sex - male
then class - negative

if referral_source - svhc query_hypothyroid - true on_thyroxine - false sick - true
then class - sick

if referral_source - svhc query_hypothyroid - true on_thyroxine - true
then class - sick

if referral_source - svhd query_hypothyroid - true sex - female
then class - negative

if referral_source - svhd query_hypothyroid - true sex - male
then class - sick

if referral_source - svi query_hypothyroid - true sex - female sick - false
on_thyroxine - false query_on_thyroxine - false on_antithyroid_medication - false
pregnant - false thyroid_surgery - false query_hyperthyroid - false lithium - false
goitre - false tumor - false hypopituitary - false psych - false

then class - negative

if referral_source - svi query_hypothyroid - true sex - female sick - false
on_thyroxine - true query_on_thyroxine - false on_antithyroid_medication - false
pregnant - false thyroid_surgery - false query_hyperthyroid - false lithium - false
goitre - false tumor - false hypopituitary - false psych - false

then class - sick

if referral_source - svi query_hypothyroid - true sex - female sick - true
then class - negative

if referral_source - svi = query_hypothyroid - true sex - male sick - false
on_thyroxine - false query_on_thyroxine - false on_antithyroid_medication - false
pregnant - false thyroid_surgery - false query_hyperthyroid - false lithium - false
goitre - false tumor - false hypopituitary - false psych - false

then class - negative

if referral_source - svi query_hypothyroid - true sex - male sick - true
then class - sick

Performance of running results in terms of rule reduction, that is the simplification of
a tree model, can be graphically shown in Figures 6-8.
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Figure 6. Performance in Terms of Model Reduction of Hepatitis Data Set
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Figure 8. Performance in Terms of Model Reduction of Thyroid Disease
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5. Conclusion

Classification is a data mining task that aims to induce general concept from training
data. The induced concept not only explains major characteristics of the underlying
data, but also acts as a classification model to predict classes of unseen data. Several
learning algorithms have been proposed to induce classification concept, but the most
applicable algorithm is decision tree induction. The main reason for its popularity is a
simple and understandable form of a tree that has been used to represent the induced
concept.

Despite its simplicity and efficiency, it could be a problem when communicating
sophisticate concept as a large tree model to general users who are not an expert in
decision science or computer technology. Large tree model is difficult to comprehend at
a glance. Therefore, simplifying tree structure is necessary for conveying concept
model to novice users. Many researchers propose a constraint-based approach during
the tree-building phase to make a tree structure more simplified. We, however, consider
tree simplification as a post-process of decision tree induction. We propose to grow a
full decision tree. Then, apply users’ preferences as a constrained search over a tree
model. Only branches of a tree model that correspond to the user-specified constraints
are displayed in a simple form of decision rules to the users.

The implemented prototype is expected to ease users in searching for useful
knowledge from the tree model. The usability test with users who are practitioners in
the field is nevertheless essential to confirm our assumption. In our future work, we
also intend to consider other aspects of pushing constraints in the tree induction
process.
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Appendix

A source code of decision tree with findRule predicates to query a tree model,
implemented with constraint logic programming language ECLiPSe, is given as follows.

%% Program Discrete-Tree Induction with findRule queries
:- lib(listut).

:- lib(sd).

:-dynamic rule_me/1.

:-dynamic allrule/1.

append_me([H|T],L,[H|RT]) :- append_me(T,L,RT).
append_me([],L,L).

findRuleOr([H|T]) :- ( findRule(H) -> true ;! ),
findRuleOr(T).
findRuleOr([]).

findRule(X) :- allrule(L),
findRule(X,L).
findRule(_,[]).
findRule(X,[H|T]) :- (findQuery(X,H)-> split_rule(H) ; true),
findRule(X,T).

findQuery([\+X|TX],H) :- (findAtt(X,H) -> false ; (findAttLabel(X,H) -> false ; true)),
findQuery(TX,H).
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findQuery([X|TX],H) :- (findAtt(X,H) -> true ; (findAttLabel(X,H) -> true ; false )),
findQuery(TX,H).
findQuery((],.).

findAtt(X,[X-_]|_]).
findAtt(X,[_| T]) :- findAtt(X,T).
findAtt(_,[]) :- false.

findAttLabel(X,[X]|_]).
findAttLabel(X,[_| T]) :- findAttLabel(X,T).
findAttLabel(_,[]) :- false.

run :- retractall(rule_me(_)),
retractall(allrule(_)),
compile("//C/Users/ASUS/Desktop/id3_ok/data-sickthyroid_OK.txt"),
data(Data+Attrs),
main(Data,Attrs,|]),
retractall(rule_me([_])),
findall(X,rule_me(X),R),
assert(allrule(R)).

main([],_, ).
main(_,[], ).
main(Data, Attrs,OldAttr) :- all_info(Data+Attrs, R1),

(\+*hasOneClass(R1) -> (maplist(avg_info,R1,0ut),
chooseMin(Out, nil/11,00),
00=0/_,
writeln('Choose ':00),
[listut]:delete(Attrs,O,NewAttrs),
(foreach(X,0),param(Data,NewAttrs,OldAttr) do
(filterData([X],Data,NewData),
write(' At":X),
append_me(OldAttr,[X],0AL),
main(NewData,NewAttrs,OAL))

)); writeln("),
getlast_goal(Data,Att-Ans),
write(" Ans: "), writeln(Att-Ans),
append_me(OldAttr,[Att-Ans|,NOAL),
write('rule :'),
split_rule(NOAL)),
assert(rule_me(NOAL)).

split_rule(NOAL) :- mem_last(NOAL,L,RL),write('if),
(foreach(RLL,RL) do write(' '),write(RLL),write(' ),
write('then'),write(' '),writeln(L).

%]last member in list
%mem_last([1,2,3,5,6],L,RL).
mem_last([H],H,]]).

mem_last([H|T],L,[H|RL]) :- mem_last(T,L,RL).

%mem(Data+Attrs),all_info(Data+Attrs,R).
all_info(Data+[P | Attr],R):-maplist(info(Data,P), Attr, R).

%mem(Data+_), info(Data,[p-y,p-n],[o-s,0-c,0-1], R).
%R=[2,3], [4,0], [3,2]]

info(Data, P, O, O-R) :- maplist(infol(Data,P),O,R).
infol(Data, P, O, R) :- maplist(mcount(Data,O),P,R).

mcount(Data,O,P,Sum) :- foreach(L,Data),fromto(0,I,R,Sum),param(O,P) do
((member(O,L), member(P,L))->R is I+1; R is I).

%avg_info(o-[[2,3],[4,0],[3,2]],R).

avg info(O-LL,O/Info ):- flatten(LL,L), sumlist(L, Sum),
(foreach(X,LL), fromto(0,I,N,Info),param(Sum) do
(sumlist(X,SumX),
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(Sum>0 -> Ratio is SumX/Sum, ! ; Ratio is 0),
logInfo(X,InfoSub),
N is I+(Ratio*InfoSub)

)

sumlist(L,[],L):-!.
sumlist([], [],[]):-!.
sumlist([H1 | T1],[H2 | T2],[HR|TR]) :- HR is H1+H2,sumlist(T1,T2,TR).

sumlists([],R,R):-!.
sumlists([H | T],PR,NR) :- sumlist(H,PR,R), sumlists(T,R,NR).

hasOneClass([]):-!.
hasOneClass([_-VL|T]) :- sumlists(VL,[],NR), hasOneClass(T,NR).

hasOneClass([],[]):-!.
hasOneClass([_-VL|T],PR) :- sumlists(VL,PR,NR), hasOneClass(T,NR).
hasOneClass([],[H|T]) :- (H=0 -> hasOneClass([],T) ; find(T)).

find([]):-!.
find([H|T]) :- (H=0 -> find(T) ; false).

% get the Last data in Fist of list in list
getlast_goal([H|_]|,R) :- getlast(H,R).
getlast([H],H).

getlast([_| T],R) :- getlast(T,R).

%filterData

filterData(_,[],[]).

filterData(L,[H | Data],[H | R]) :- msubset(L,H), !, filterData(L,Data,R).
filterData(L,[H | Data],R) :- \+msubset(L,H), !, filterData(L,Data,R).

msubset(S1,S2) :- foreach(X,S1), param(S2) do member(X,S2), !.
allmem([H],L) :- member(H,L), !.

allmem([H|T],L) :- member(H,L), allmem(T,L).

logInfo(XL, R) :- sumlist(XL,Sum), Sum==0, R=99, I.

logInfo(XL, R) :- sumlist(XL,Sum),

(foreach(X,XL), fromto(0,S,N,R), param(Sum) do
( Ratio is X/Sum,
(Ratio>0->[iso]:log(Ratio,Log) ; Logis 1), %log(0) is undefined
[iso]:log(2,Base2),
N is S-(Ratio*(Log/Base2))) ).

chooseMin([],0/Tmp,O/Tmp).
chooseMin([A/H|T],0/Tmp,Min) :- (H<Tmp -> NextMin = A/H ; NextMin = O/Tmp),

chooseMin(T,NextMin,Min).

% ===== End of Program =s============
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Abstract

The main characteristic of current expert systems is the
separation of a knowledge base that may be changed from one
application to another from the inference engine that still remains
the same across applications. The delay in the development of
many expert systems is due to the difficulty in acquiring and
eliciting knowledge from the human domain experts. The
concept of inductive expert system is thus been devised to
overcome such bottleneck by incorporating automatic knowledge
acquisition module in the system. According to this new concept,
knowledge can now be induced or learned in an automatic way
from archived databases that are normally available in most
organizations. In this paper, we propose an architecture of the
inductive expert system that includes the knowledge engine part
to automatically forming expert rules from the stored data. We
explain the automatic knowledge creation technique through a
simple running example, then followed by a real application. We
also provide our Prolog source code in appendices for knowledge
engineers to apply our technique as a rapid prototyping of their
own expert systems.

Keywords: Expert Systems, Intelligent Knowledge Base,
Machine Learning, Knowledge Engineering.

1. Introduction

Since the release of DENDRAL in the 1960s from the
Stanford Heuristic Programming Project [5] as the first
practical knowledge-driven program, expert systems have
enormously proliferated and been applied to all areas of
computer-based problem solving. The inventors of
DENDRAL system have introduced the novel and
important concept of knowledge base separation in that the
content of knowledge could be added and refined
independently from the program module, called the
inference engine, that interprets and uses that knowledge.
The loosely coupling of a knowledge base and an
inference engine is an influential concept to all successor
rule-based expert systems such as MYCIN [10],
INTERNIST-1 [6], and many others.

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Since the 1980s expert systems, also called knowledge-
based systems, have shifted from the medical and
scientific application domains to various areas. In
manufacturing and other engineering applications, rule-
based expert systems are commonly applied to solve
optimization problems, plan manufacturing scheduling,
diagnose equipment failures, and use in almost every stage
of the  manufacturing process [2]. The increasing
popularity of rule-based expert systems is due to the
simplicity of the if-then rules that are easy to comprehend
by humans. Many expert system tools such as Clips and
Jess are available as a rule engine to facilitate rule
generation for a knowledge base. These tools help
facilitating knowledge representation, but knowledge
acquisition and elicitation are still the labor-intensive tasks
facing most knowledge engineers.

Modern expert system development process has thus
moved toward the automating methodology by applying
intelligent  knowledge extraction techniques. Such
intelligent techniques can be acquired through the machine
learning and data mining technologies. There have been
increasing numbers of research work attempting to apply
learning techniques to automatically extract end elicit
knowledge [1], [31, [4], [7], [8], [11]. These attempts have
pushed the current expert system technology to the next
generation of an inductive expert system in the sense that
besides the knowledge base and the inference engine, the
system now includes the learning component.

The research work presented in this paper takes the same
direction as most researchers in an attempt to automate
knowledge extraction and elicitation with machine
learning and data mining techniques. Our work, however,
is different from others in that not only proposing an
architecture of the learnable inductive expert system and
experimenting with some learning algorithms, but we also
design and develop a full complement of the rule-based
expert system. The work presented in this paper covers the
knowledge mining from existing databases, knowledge
transfer as a set of rules to be stored in the knowledge
base, and knowledge reasoning through a logic-based

1JCSI
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inference engine. Program source code for the whole

process also provided in appendices. i

(start the process)

Training
Data

2. A Framework for Automatic Knowledge

Base Creation
We design (in Fig. 1) an architecture of the inductive ID3 module
expert system to include the knowledge engine facility. (create tree model)
This part of the system requires a machine learning '
algorithm and a training dataset. The learning algorithm
used in our work is based on the ID3 algorithm [9]
because the structure of induced tree is appropriate for
generating reasoning and explanation in the expert system create KB
shell. The induced knowledge is to be generated in a (transform tree model
format of decision rules incorporated with probabilistic to rules)
values. This value is intended to be used as the degree of
potential ~applicability of each decision rule. The Kinchwiacige

e s . Base
probabilistic values are indeed the coverage values of

decision rules and can be computed as a proportion of
(number of instances at leaf nodes) / (total data instances
in a training dataset).

Expert system shell |

The steps graphically shown in Fig.2 are the process to l T
generate decision rules to be stored in the knowledge base.
These rules are to be used by the inference engine for User

giving recommendation to users. Consulting rules are for

reasoning and giving explanation when requested by the i _ o
Fig. 2 Automatic knowledge engineering process.

users.
3. Running Example
User —» | User Interface g P

E13 3.1 Training Data for Building a Tree Model
Inference Engine, )+ To explain the idea proposed in the previous section, we
. provide a running example through a simple training
=== dataset as illustrated in Fig. 3. The given data contain
Knowledge information regarding color and shape of three objects and
P 225 their classified class as either yes (the right object), or no
Kgr‘]""?fsgre Knowledge Engine | | (the wrong one). Our objective is to learn a decision model
9 from this small dataset and extract a model in a form of a
@ decision tree that to be helpful in identifying objects in the

future with unknown class. The first step is converting
Learning Method data format to fit the program. Most data in the databases
are represented as table. Appropriate format as required by

our Prolog program is the one shown below the table in
Fig.3. This converted data has been saved in a file
‘shape.pl’, and is to be used as a training dataset in the
next step.

Fig. 1 Architecture of the inductive expert system.
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.‘é SWI-Prolog —- d:f10-Research-E>»

color | shape class
red round yes
blue polygon | yes
green | square no

attribute(color, [red, green, blue]).
attribute(shape, [round, polygon, square]).
attribute(class, [yes, nol).

instance(1, class=yes, [color=red, shape=round]).
instance(2, class=yes, [color=blue, shape=polygon]).
instance(3, class=no, [color=green, shape=square]).

Fig. 3 A sample shape dataset that contains three instances.

3.2 Tree Model and a Transformed Knowledge Base
Rule

Once the training dataset has been prepared, the next step
is to build a tree model from the data. This can be done
through invoking the program °‘id3menu.pl.” A small
dialog box will be popped up (as shown in Fig. 4) to ask
the file name of training data. The parameter ‘MinProb’ is
for pruning a tree model. The more the value, the shorten
the tree model. Default value of this parameter is 0.001,
which should be small enough for most moderate size
data.

When user clicks the ‘Enter’ button, the dialog box
disappears and the program starts building a tree model.
This model is actually a data structure of nodes and edges
(as illustrated in Fig.5). User will then be asked to input
the file name to store the model. In this example, we store
a model in the file named ‘shape.knb’. Content of this file
(displayed in Fig.6) is automatically created by the
‘id3menu.pl” program. The program traverses the tree
model and converts the structures of nodes and edges into
rules. The created file, ‘shape.knb’, is a knowledge base
induced from the training data and can be consulted by the
inference engine of the expert system shell.

.‘é SWI-Prolog -- d:/10-Research-Experimentations/Inductive-expertSystem,TestProgram/id3menu.pl LE

| File Edit Settings Run Debug Help
The host-language is SWI-Prolog version 6.2.3

o ==
For HELP on prolog, please type help. of S Creaie Rules from D3 =
on xpce, please type manpce. - ’shapepl—
172- MinProb: ,0001—

% shape.pl compiled 0.00 sec, 7 clauses i
creating_tree_model %
addToKB
[0.3333333333333333>>[color=red]>>yes,0.3333333333333333>>[color=greel
333333>>[color=blue]>>yes]

Enter KB file name(ex. '1.knb".): 'shape . knb'".

Fig. 4 A snapshot of parameter setting and output of the program
id3menu.pl.

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

File Edit Settings Run Debuc
2 ?- listing(node).
- dynamic node/2.

node(1, [1, 2]-[3]).

node(2, [11-]).

node(3. [I[3]).

node(4. [2]-[). red blue

green

true.
. - yes > < no > < yes >
3 ?- listing(edge).

- dynamic edge/3.

edge(0, root=nil, 1).
edge(1, color=red, 2).
edge(1, color=green, 3).
edge(1, color=blue, 4).

true.

Fig. 5 A tree model in a form of node and edge structures (left) and its
interpretation in a graphical form (right).

| shape - Notepad

File Edit Format View Help
% Knowledge base automatically created for expert shell.

% top_goal is where the inference starts.
top_goal(X,V) :- type(X,V).

% Generated rules:
type(yes,0.3333333333333333):-color(red).
type(no,0.3333333333333333):-color(green).
type(yes,0.3333333333333333):-color(blue).

% Generated menu:
color(X):-menuask(color,X,[red,green,blue]).
shape(X):-menuask(shape,X,[round,polygon,square]).

class(X):-menuask(class,X,[yes,na]).

% end of automatic KB creation

Fig. 6 A knowledge base ‘shape.knb’ that is automatically generated
from a tree model.

3.3 Knowledge Consulting Through the Expert
System

To consult a knowledge base, user needs a second
program named ‘expertshell.pl’. After running this
program (by double-clicking at the file name), the prompt
sign ‘1 ?” will appear on the screen. User can now start
commanding the expert system by typing ‘expertshell.’
and press enter. The system will greet with simple advice
(as in Fig.7). This expert shell can work with any
knowledge base. Therefore, user has to specify the file
name of the knowledge base. It is ‘shape.knb’ in this
example. Once the knowledge base has been loaded, user
may start the consulting process by typing the command
‘solve.” (Note that every command in Prolog ends with a
full-stop.)
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E SWI- Drolngi— a:/lﬂ—Research- Experimentations/Inductive-expertSystem,/TestProgra

File Edit Settings Run Debug Help

1 ?- expertshell.

This is the Easy Expert System shell.
Type help. load. solve. why. quit.
at the prompt.

expert-shell> load.

Enter file name in single quotes (ex. '1.knbk".): 'shape.knb'.
% shape.knb compiled 0.00 sec, 8 clauses

expert-shell> sclve.

What is the value for color?
[1-red,2-green,3-blue]

Enter the choice> 1.
The answer is ___yes___ with probability 0.3333333333333333
expert-shell> solve.

What is the value for color?
[1-red,2-green,3-blue]

Enter the choice> 2.

The answer is ___no___ with probability 0.3333333333333333

Fig. 7 An interaction with the expert system shell using a knowledge
base ‘shape.knb’.

The expert shell starts asking questions as suggested by
information stored in the knowledge base. Thus, the order
and content of questions can vary according to the
knowledge base currently applicable to the expert shell.
After the system provides appropriate answer, user may
ask for explanation by typing a command ‘why.’

4. Experimentation

The experimentation with real data is to confirm the
efficiency of the proposed automatic knowledge base
creation method. For the purpose of demonstration, we use
a car evaluation data set obtain from the UCI repository
(http://archive.ics.uci.edu/ml). In this dataset, each car is
to be evaluated as acceptable or unacceptable based on the
buying price, price of maintenance, number of doors,
capacity in terms of persons to carry, the size of luggage
boot, and the estimated safety of the car. The data set has
been formatted as Prolog clauses and saved in a file named
‘car.pl’. The created knowledge base is illustrated in Fig.
8, and consulting this knowledge base through the expert
system shell is shown in Fig.9.

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.
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File Edit Format View Help

% Knowledge base for expert shel. — wntten by Data mining postprocess
% top_goal where the inference starts.

top_goal(X,V) - type(X,V).

type(acc,0.32) -safety(high),persons(4). % generated rule
type(unacc,0.18)--safety(low). % generated rule
type(acc,0.14) -safety(high),persons(more). % generated rule
type(unacc,0.1)-safety(med),maint(vhigh). % generated rule
type(acc,0.08) -safety(med),maint(high). % generated rule
type(acc,0.08) -safety(med), maint{med). % generated rule
type(unacc,0.08):-safety(high),persons(2). % generated rule
type(acc,0 06) -safety(med) maint(low). % generated rule

buying(X):-menuask(buying, X, [vhigh,high, med low]). %generated menu
maint(X)--menuask(maint, X, [vhigh,high,med,low]). %generated menu
doors(X):-menuask(doors, X, [2,3.4,'bmore']). %generated menu
persons(X):-menuask(persons, X,[2,4,more]). %generated menu
lug_boot(X)--menuask(lug_boot, X, [small, med,big]). %generated menu
safety(X)--menuask(safety, X [low,med,high]). %generated menu
class(X):-menuask(class, X, [unacc,acc]). %generated menu

Fig. 8 An automatically created knowledge base ‘car.knb’.

'XE SWI-Prolog -- d:/10-Research-Experimentations/Manufacturing-|

File Edit Settings Run Debug Help

1 ?- expertshell

This is the Easy Expert System shell

Type help. load. solve. why. quit. or 99.

at the prompt

expernt-shell> load

Enter file name in single quotes (ex. "1.knb".): ‘car.knb'.
% car_knb compiled 0.00 sec, 5,888 bytes
expert-shell> solve

What is the value for safety?
[1-low,2-med, 3-high,99-exitShell]
Enter the choice>2

What is the value for maint?
[1-vhigh,2-high,3-med 4-low,99-exitShell]
Enter the choice> 4.

The answer is __acc__ with probability 0.06
expert-shell> why

The answer is ...acc... with probability = 0.06.
The known storage are
[maint(low),safety(med)]

expert-shell>

Fig. 9 Consulting ‘car.knb’ through the expert system shell.
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5. Conclusion

Artificial intelligence, specifically expert systems, has
played an important role in solving complex engineering
and manufacturing problems. Knowledge base and
inference procedures have been employed to solve the
problems that require significant human expertise and
domain-specific knowledge. The required knowledge has
to be elicited by knowledge engineers. It is a labor-
intensive task, and thus a bottle neck in building intelligent
systems. We propose to apply data mining technique as a
major step in a knowledge engine component of the
inductive expert system to assist the knowledge elicitation
task. The proposed technique is a novel method for
automating knowledge acquisition that help supporting
intelligent manufacturing systems. Knowledge in our tool
can be discovered from the stored data using the decision
tree induction algorithm. The learned tree structure is then
transformed to a rule set that can be integrated into the
knowledge base. The implementation of our knowledge
acquisition tool is based on the logic programming scheme
that has been proven appropriate for inferring and
reasoning answers and recommendations from the existing
knowledge base.

Appendix A. Source Code for Automatic Knowledge
Base Creation

The source code provided here is for learning a tree model
from training data and then transform the model to be a
rule set to store in the knowledge base. The given ID3
module is capable of learning model of binary classes such
as yes/no, true/false, acceptable/unacceptable. For training
data with multiple classes, the module needs some
modification. This program should be saved in a single
file, named “id3menu.pl”. To run the program, user may
double click at the file name in the directory where it has
been saved. The knowledge base will be automatically
created and stored in the same directory with the file name
such as ‘shape.knb’, and this program can now be closed.
The created knowledge base will be used later by the
expert system shell, which is another Prolog program.

id3menu:-
new(Dialog,dialog('Create Rules from 1D3')),
send_list(Dialog, append,
[ new(D1, text_item(datafile,"*.pl')),

new(Per,text_item(minProb,'0.001')),
button(cancel, message(Dialog, destroy)),
button(enter, and(message(@prolog,callld3,
D1?selection, Per?selection),message(Dialog,destroy) )) 1),
send(Dialog, open).

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

callld3(Dfile,Per) :- term_to_atom(Perl,Per),
consult(Dfile), createKB(Per1).
-id3menu.

createKB(Min) :- init(AllAttr,EdgelList), getnode(N),
create_edge(N,AllAttr,Edgelist), addAllKnowledge,
selectRule(Min,Res), writeln(Res), nl,
write('Enter KB file name(ex. '"1.knb".):"),
read(F), tell(F),
rules:~n'),

writeHeadF, format('"~n% Generated

maplist(createRulel,Res), nl,
format('~n% Generated menu:~n'),
writeTailF, told, writeln(endProcess).
writeHeadF :-
format('% Knowledge base automatically created for expert
shell.'),
format('~n~n% top_goal is where the inference starts.~n'),
format('~ntop_goal(X,V) :- type(X,V).~n').
writeTailF :-
findall(_, (attribute(S,L),
format('~n~w(X):-menuask(~w,X,~w). ',[S,S,L])),_),
format('~n~n% end of automatic KB creation').
transform1([X=V],[Res]) :-
atomic_list_concat([X,'(',V,')'],Res1),
term_to_atom(Res,Res1),!.
transform1([X=V|T],[Res|T1]) :-
atomic_list_concat([X,'(',V,')'],Res1),
term_to_atom(Res,Res1), transform1(T,T1).
createRulel(l) :- | = Z>>X>>Y,
transform1(X, BodyL),
format('~ntype(~w,~w):-', [Y,Z]),
myformat(BodylL) , !.
myformat([X]) :- write(X), write("."),!.
myformat([H|T]) :- write(H), write(','), myformat(T).
addAllKnowledge :-
findall([A], pathFromRootToLeaf(A,_), Res),
retractall(_>>_>>_), maplist(apply(assert),Res),
write(addToKB), nl. % add to knowledge base
selectRule(V,Res) :-
findall(N>>X>>Class,(X>>Class>>N,N>=V),Res1),
sort(Res1,Res2), reverse(Res2,Res).
path(A,[H|T],C) :- edge(A,H,B), path(B,T,C).
path(C,[],C) :- L.
pathFromRootTolLeaf(V>>Class>>Num, C) :-
path(1,V,C), node(C,Valuel-Value2),
(Valuel=[] ; Value2=[]),
(Valuel=[] -> length(Value2,Numb) ; length(Value1,Numb)),
total+Total, Num is Numb/Total, hasClass(C1,C2),
(Valuel=[]->Class=C2;Class=C1).

Yo--------=----- ID3 (work only with data with 2 classes) --------------
:- dynamic current_node/1,node/2,edge/3,hasClass/2,type/2.
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init(AllAttr,[root-nil/PB-NB]) :-

writeln(creating_tree_model), retractall(hasClass(_,_)),

attribute( class,[ Y1, Y2]), assert(hasClass(Y1,Y2)),

retractall(node(_,_)), retractall(current_node(_)),
retractall(type(_,_)), retractall(edge(_,_,_)),
assert(current_node(0)), hasClass(C1,C2),
findall(X,attribute(X,_),AllAttr1),
delete(AllAttrl,class,AllAttr),
findall(X2,instance(X2,class=C1,_),PB),
findall(X3,instance(X3,class=C2,_),NB),

length(PB,N1), length(NB,N2), N is N1+N2,

retractall(total+_), apply(assert,[total+N]).

getnode(X) :- current_node(X), X1 is X+1,
retractall(current_node(_)),
assert(current_node(X1)), X1 <4000. % limit at 4000 nodes
create_edge(_,_,[]) :- .
create_edge(_,[],_) :- .
create_edge(N, AllAttr, Edgelist) :-
Edgelist).
create_nodes(N, AllAttr, [H1-H2/PB-NB|T] ) :-

getnode(N1),

assert(edge(N,H1=H2,N1)), assert(node(N1,PB-NB)),

append(PB, NB, Allinst),

( (PB\==[], NB\==[]) -> (cand_node(AllAttr, Allinst, AllSplit),
min_cand(AlISplit, [V, MinAttr, Split]),
delete(AllAttr,MinAttr,Attr2),
create_edge(N1,Attr2,Split)) ; true),

create_nodes(N,AllAttr,T).

create_nodes(_, ,[]) :- I
create_nodes(_,[],_) :- I
min_cand([H|T], Min) :- min_cand(T, H, Min).
min_cand([], Min, Min).
min_cand([H]|T], Min0, Min) :- H=[V,_, ], Min0 =[VO,_,_],
(V<VO0 -> Min1=H ; Min1=Min0),
min_cand(T, Min1, Min).
cand_node([H|T], CurlnstL, [[Val, H, SplitL] | OtherAttr]) :-
info(H, CurlnstL, Val, SplitL),
cand_node(T, CurlnstL, OtherAttr).
cand_node([],_,[]) :- I
cand_node(_,[],[])-
info(A,CurlnstL,R,Split) :- attribute(A,L),
maplist(concat3(A,=), L, L1),
suminfo(L1, CurlnstL, R, Split).
concat3(A,B,C,R) :- atom_concat(A,B,R1), atom_concat(R1,C,R).
suminfo([H|T], CurlnstL, R, [Split | ST]) :-
AlIBag = CurlnstL, hasClass(C1,C2),
term_to_atom(H1,H),
findall(X1,(instance(X1,_,L1),member(X1,CurlnstL),
member(H1,L1)), BagGro),
findall(X2,(instance(X2,class=C1,L2),
member(X2,CurlnstL), member(H1,L2)), BagPos),
findall(X3,(instance(X3,class=C2,L3),member(X3,CurlnstL),
member(H1,L3)), BagNeg),

create_nodes(N, AllAttr,

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

413

(H11=H22) = H1,
length(AllBag,Nall), length(BagGro,NGro),
length(BagPos,NPos), length(BagNeg,NNeg),
Split = H11-H22/BagPos-BagNeg,
suminfo(T,CurlnstL,R1,ST),
(NPos is 0 *->L1 = 0; L1 is (log(NPos/NGro)/log(2)) ),
(0is NNeg *->L2 = 0; L2 is (log(NNeg/NGro)/log(2)) ),
(NGrois0->R=999;
Ris (NGro/Nall)*(-(NPos/NGro)*L1-(NNeg/NGro)*L2)+R1) .
suminfo([],_,0,[]).
% End of KB Creation Process --------------

Appendix B. Expert System Shell in Prolog

% -------- expertshell.pl -------------
% To run this program call ‘expertshell.’
%  then call ‘load.” and input a file name such as 'file.knb'.
%  Start consulting the expert system with the command ‘solve.’
:-dynamic known/1, answer/2.
expertshell :-
greeting, repeat, nl, write('expert-shell> '), read(X), do(X),
== quit, writeln('>>>>Goodbye, see you later<<<<'), |.
greeting :-
write('This is the Easy Expert System shell."), nl,
native_help.
do(help) :- native_help, !.
do(load) :- load_kb, !.
do(solve) :- solve, !.
do(why) :- why, 1.
do(quit).
do(X) :- write(X), write(' is not a legal command.'), nl, fail.
native_help :- write('Type help. load. solve. why. quit.'),
nl, write('at the prompt.'), nl.
load_kb :- write('Enter file name in single quotes (ex. ""1.knb".): "),
read(F), reconsult(F).
solve :- retractall(known( _) ),retractall(answer(_,_)),
top_goal(X,V),
format('The answeris __~w__ with probability ~w',[X,V]),
assert(answer(X,V)), nl.
solve :-  write('No answer found.'), nl.
menuask(Pred,Value,Menu) :-
menuask(Pred,Menu),
atomic_list_concat([Pred,'(',Value,')'],X),
term_to_atom(T,X), known(T),!.
menuask(Pred,_) :-
atomic_list_concat([Pred,'(",'_",')'],X),
term_to_atom(T,X), known(T), !.
menuask(Attribute,Menu):-
nl, write('What is the value for '), write(Attribute), write('?'),
nl, addchoice(Menu,MenuRes), writeln(MenuRes), nl,
write('Enter the choice>"'), read(C), nl,
member(C-V,MenuRes),
atomic_list_concat([Attribute,'(',V,')'],X),
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term_to_atom(T,X), asserta(known(T)).

why :- answer(A)V),
format('~nThe answer is ...~w... with probability =
~w.~n',[AV]),
findall( X, known(X),Result),
writeln('The known storage are'), writeln(Result).

addchoice(X,Res) :- length(X,Len),
numlist(1,Len,NumL), map(NumL,X,Res).

map((1,[1,1)-
map([H|T], [X|TT], [H-X|T1]) :- map(T, TT, T1).
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Abstract: - Visual data mining is a sub-discipline of data mining, which is a main analysis step of the process
called knowledge discovery in databases or KDD. The objective of KDD is to automatically discover
potentially useful knowledge that are hidden in large volume. In this paper, we demonstrate the use of KNIME
system to do visual data mining. We also show the subsequent deployment of discovered knowledge as an
intelligent resource of a rule-based expert system. Such knowledge is automatically derived from the stored
data, rather than manually elicited from the human experts as in traditional expert systems. We therefore call
such knowledge resource as the inductive knowledge base. The case study to derive car evaluation knowledge
shown in this paper as a running example is expected to be a demonstration of data mining technique and
application that can support the advancement of intelligent mechanical analysis.

Key-Words: - Visual data mining, Inductive learning, Knowledge base creation, Inductive expert system.

1 Introduction The main characteristic of current expert systems
Visual data mining is an automatic and intelligent is the separation of a knowledge base that may be
data analysis technique that utilizes visualization as changed from one application to another from the
a means to communicate between user and the inference engine that still remains the same across
computer to explore data and to extract hidden applications. The delay in the development of many
patterns from stored databases [1], [2]. The main expert systems is due to the difficulty in acquiring
benefit of visualization is that it allows easy and eliciting knowledge from the human domain
understanding for novice users and it is also natural experts. ) ) )
to human perception. Recent trend in intelligent The concept of inductive expert system is thus
manufacturing and other engineering fields [3], [4] been devised to overcome such bottleneck by
is to apply data mining techniques to automatically incorporating  automatic knowledge acquisition
identify patterns and causal relationships that are too module in the system. According to this new
obscure and unobvious to be detected by human’s concept, knowledge can now be induced or learned
eyes. in an automatic way f_rom archlved_ da'gabases thgt
Applying data mining technique to high are normally available in most organizations. In t_hls
dimensional and large amount data is however not a paper, we propose an architecture of the inductive
straightforward task because the induced patterns expert system t_hat lnClUdt?S the knowledge engine
are normally low accurate if the input data are not part to automatically forming expert rules from the
well prepared or not in an appropriate form. stored data.

Numerous available learning algorithms and many
data preparation techniques supported by most data
mining systems are also a hindrance to users who 2 Related Work

are unfamiliar with the knowledge discovery Since the release of DENDRAL in the 1960s from
process. the Stanford Heuristic Programming Project [5] as

We thus illustrate in this paper a natural way to the first practical knowledge-driven program, expert
do data mining through visualization. We also systems have enormously proliferated and been
propose a semi-automatic technique to transfer the applied to all areas of computer-based problem
data mining output to be a knowledge base content solving. The inventors of DENDRAL system have
in the inductive expert system. introduced the novel and important concept of

knowledge base separation in that the content of
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knowledge could be added and refined
independently from the program module. This
module is called the inference engine responsible
for interpreting and using the knowledge. The
loosely coupling of a knowledge base and an
inference engine is an influential concept to all
successor rule-based expert systems such as
MYCIN [6], INTERNIST-1 [7], and many others.

Since the 1980s expert systems, also called
knowledge-based systems, have shifted from the
medical and scientific application domains to
various areas. In manufacturing, mechanical
analysis, and other engineering applications, rule-
based expert systems are commonly applied to solve
optimization problems, diagnose equipment failures,
plan manufacturing scheduling, and other stages of
the manufacturing process [8].

The increasing popularity of rule-based expert
systems is due to the simplicity of the if-then rules
that are easy to comprehend by humans. Many
expert system tools such as Clips and Jess are
available as a rule engine to facilitate rule
generation for a knowledge base. These tools help
facilitating the part of knowledge representation, but
knowledge acquisition and elicitation are still the
labor-intensive tasks for most knowledge engineers.

Modern expert system development process has
thus moved toward the automating methodology by
applying intelligent  knowledge  extraction
techniques. Such intelligent techniques can be
acquired through the machine learning and data
mining technologies. There have been increasing
numbers of research work attempting to apply
learning techniques to automatically extract end
elicit knowledge [9], [10], [11], [12]. These attempts
have pushed the current expert system technology to
the next generation of an inductive expert system in
the sense that besides the knowledge base and the
inference engine, the system now includes the
learning component.

The research work presented in this paper takes
the same direction as most researchers in an attempt
to automate knowledge extraction and elicitation
with machine learning and data mining techniques.
Our work, however, is different from others in that
not only proposing an architecture of the learnable
inductive expert system, but we also cover the
knowledge mining from existing databases,
knowledge transfer as a set of rules to be stored in
the knowledge base, and knowledge reasoning
through a logic-based inference engine.
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3 A Framework Toward Automatic
Knowledge Base Creation

We design (in Figure 1) an architecture of the
inductive expert system to include the knowledge
engine facility. This part of the system requires a
machine learning algorithm and a training dataset.
The learning algorithm used in our work is the ID3
algorithm [13] because of its efficiency. Moreover,
the structure of the induced tree is appropriate for
generating reasoning and explanation part in the
expert system shell.

The induced knowledge as a decision tree is
subsequently to be transformed into a format of
decision rules that are also incorporated each rule
with the probabilistic value. This value is intended
to be used as the degree of potential applicability of
each decision rule. The probabilistic values are
indeed the coverage values of decision rules and can
be computed as a proportion of (number of instances
at leaf nodes) / (total data instances in a training
dataset).

The steps graphically shown in Figure 2 are the
process to generate decision rules to be stored in the
knowledge base. These rules are to be used by the
inference engine for giving recommendation to
users. Consulting rules are for reasoning and giving
explanation when requested by the users.

Use —» | User Interface
E3
Inference Engine
Knowledge
Base
Kg:;'::gf Knowledge Engine
12
Learning Method iﬁ?

Figure 1. Architecture of the inductive expert
system.
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Menu
(start the process)

Training
Data

Create decision tree
(ID3 algorithm) i T

Automatic KB creation
(tree model O rules)

Knowledge
Base

Expert system shell
consultation

i

User

Figure 2. Automatic knowledge engineering
process.

4 Experimentation and Results

4.1 Car Evaluation Data Set and the Visual
Data Mining

The purpose of this experimentation is to illustrate
the proposed automatic knowledge base creation
method with real data. We use a car evaluation data
set obtain from the UCI repository (https://archive.
ics.uci.edu/ml/datasets/Car+Evaluation). In this data
set, each car is to be evaluated as either very good
(vgood), acceptable (acc), or unacceptable (unacc)
based on the buying price, price of maintenance,
number of doors, capacity in terms of persons to
carry, the size of luggage boot, and the estimated
safety of the car.

The data set has been mined with the visual data
mining tool named KNIME [14]. The visual data
mining process is illustrated in Figure 3, and the
mining result as decision tree is shown in Figure 4.
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Figure 3. Data mining process through the
connection of visual icons in KNIME system.

4 Decision Tree View (simple) - 2:9 - De...l = =] i:h

File Hilite

@D[root]: class 'unacc' (399 of 570)

@D [safety = low]: class 'unacc' (207 of 207)

;‘ @D[safety =med]: class 'unacc' (110 of 182)
@D[huying =vhigh]: class 'unacc' (39 of 48)
@D[huying = high]: class 'unacc' (33 of 46)

QI:I[buying = med]: class 'unacc' (23 of 47)
QI:I[buying = low]: class 'acc' (21 of 41)

|:r QD[safety = high]: class 'unacc' (82 of 181)

[—] @D[persons <= 2]: class 'unacc' (60.127 of 84.364)
@D[buying =vhigh]: class 'unacc' (17.331 of 21.059)
. @D[buying = high]: class 'unacc' (13.331 of 18.458)

: @D[buying = med]: class 'unacc' (18.466 of 26.39)

@D[buying = low]: class 'unacc' (11 of 18.458)
=8 Ql:l[persons > 2]: class 'acc' (51.22 of 96.636)

QD[buying =vhigh]: class 'unacc' (13.669 of 26.941)

@D[buying = high]: cdlass 'acc' (15.873 of 23.542)
@D[buying =med]: class 'acc' (12.407 of 19.61)

QI:I[buying =low]: class 'vgood' (12.271 of 26.542)

h 4

Figure 4. A decision tree model to classify safety of
a car as unacc/acc/vgood.
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4.2 Knowledge Base Creation and
Consultation Through the Expert System
Shell

Once the decision tree has been built and output by
the KNIME tool, we develop the program to
traverse the tree model and convert the structures of
nodes and edges into rules. The created file,
‘car.knb’, is a knowledge base induced from the
training data and can be consulted by the inference
engine of our simple expert system shell. The
created knowledge base content is illustrated in
Figure 5, and example steps of consulting this
knowledge base through the expert system shell is
shown in Figure 6.

User starts commanding the expert system by
typing ‘expertshell” and press enter. The system will
greet with simple advice. This expert shell is
implemented with the Prolog language and can
work with any knowledge base. Therefore, user has
to specify the file name of the knowledge base. It is
‘car.knb’ in this example. Once the knowledge base
has been loaded, user may start the consulting
process by typing the command ‘solve’.

.«“

J car - Notepad

File Edit Format View Help

% top_goal where the inference starts.
top_goal(X V) - type(X V).

type(acc,0.32):-safety(high),persons(4). % generated rule
type(unacc,0.18)-safety(low). % generated rule
type(acc,0.14) -safety(high) persons(more). % generated rule
type(unacc,0.1)-safety(med), maint{vhigh). % generated rule
type(acc,0.08)-safety(med) maint(high). % generated rule
type(acc,0.08) -safety(med) maint(med). % generated rule
type(unacc,0.08)-safety(high), persons(2). % generated rule
type(acc,0.06):-safety(med) maint(low). % generated rule

maint(X)-menuask(maint, X, [vhigh, high,med,low]). %generated menu
doors(X)--menuask(doors X [2,3,4,'5more’]). %generated menu
persons(X) -menuask(persons, X, [2,4 more]). %generated menu
lug_boot(X) -menuask(lug_boot X, [small med,big]). %generated menu
safety(X).-menuask(safety, X, [low,med,high]). %generated menu
class(X)--menuask(class X, [unacc,acc]). %generated menu

Figure 5. An automatically created knowledge base
‘car.knb’.
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:! SWI-Prolog -- d:/10-Research-Experimentations/Manufacturing-|

File Edit Settings
1 ?- expertshell
This is the Easy Expert System shell

Type help. load. solve. why. quit. or 99.

at the prompt

expert-shell> load

Enter file name in single quotes (ex. "1.knb".): ‘car.knb’.
% car.knb compiled 0.00 sec, 5,888 bytes
expert-shell> solve

Run Debug Help

What is the value for safety?
[1-low,2-med, 3-high,99-exitShell]
Enter the choice> 2

What is the value for maint?
[1-vhigh,2-high,3-med.4-low,99-exitShell]
Enter the choice> 4

The answer is __acc__ with probability 0.06
expert-shell> why

The answer is ...acc
The known storage are
[maint(low),safety(med)]
expert-shell> |

with probability = 0.06

Figure 6. Consulting ‘car.knb’ through the Prolog
expert system shell.

To consult a knowledge base, user needs to
invoke a program named ‘expertshell.pl’. After
running this program, the prompt sign ‘1 ?° will
appear on the screen (as shown in Figure 6). User
can now start commanding the expert system by
typing ‘expertshell.” and press enter. After that the
prompt sign will be changed to ‘expert-shell>’.

This expert shell is a general tool in the sense
that it can work with any knowledge base that is
encoded with the -appropriate rule-based format.
Therefore, user has to specify the file name of the
knowledge base of his/her intention. It is ‘cart.knb’
in this example. Once the knowledge base has been
loaded, user may start the consulting process by
typing the command ‘solve.” (Note that every
command in Prolog has to end with a full-stop.)

The expert shell starts asking questions as
suggested by information stored in the knowledge
base. Thus, the order and content of questions can
vary according to the knowledge base currently
applicable to the expert shell and also depending on
the answer given by user. After the system provides
appropriate answer or suggestion, user may ask for
explanation by typing a command ‘why.” The
system will respond with the phrase ‘The known
storage are’ and then followed by the answers stored
in the working storage.
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The coding of expert system shell is so concise
that it can be listed at the end of this section. To test
this simple program, interested reader just create a
knowledge base ‘car.knb’ as shown in Figure 5 and
then run this expert system shell with the Prolog
interpreter. (We use SWI-Prolog in this example.)

% -------- expertshell.pl -------------

% To run this program call ‘expertshell.’

%  then call ‘load.” and input a file name such as 'file.knb'.

%  Start consulting the expert system with the command ‘solve.’

:-dynamic known/1, answer/2.

expertshell :-
greeting,
repeat,
nl, write('expert-shell> '),
read(X),
do(X),
X == quit,
writeln('>>>>Goodbye, see you later<<<<'), I.

greeting :-
write('This is the Easy Expert System shell."), nl,
native_help.

do(help) :- native_help, !.

do(load) :- load_kb, !.

do(solve) :- solve, !.

do(why) :- why, L.

do(quit).

do(X) :- write(X), write(' is not a legal command.'), nl, fail.

native_help :- write('Type help. load. solve. why. quit."),
nl, write('at the prompt.'), nl.

load_kb :- write('Enter file name in single quotes (ex. "1.knb".): "),
read(F), reconsult(F).

solve :-
retractall(known( _) ),
retractall(answer(_,_)),
top_goal(X,V),
format('The answer is __~w__ with probability ~w',[X,V]),
assert(answer(X,V)), nl.
solve :-  write('No answer found.'), nl.
menuask(Pred,Value,Menu) :-
menuask(Pred,Menu),
atomic_list_concat([Pred,'(',Value,')'],X),
term_to_atom(T,X), known(T),!.

menuask(Pred,_) :-

atomic_list_concat([Pred,'(","_",")'],X),
term_to_atom(T,X), known(T), |.
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menuask(Attribute,Menu):-
nl, write('What is the value for '),
write(Attribute), write('?"), nl,
addchoice(Menu,MenuRes),
writeln(MenuRes), nl,
write('Enter the choice>"), read(C), nl,
member(C-V,MenuRes),
atomic_list_concat([Attribute,'(',V,")'],X),
term_to_atom(T,X),
asserta(known(T)) .

why :- answer(A,V),
format('~nThe answer is ...~w... with probability =
~w.~n',[AV]),
findall( X, known(X),Result),
writeln('The known storage are'), writeln(Result).

addchoice(X,Res) :-
length(X,Len),
numlist(1,Len,NumL),
map(NumL,X,Res).

map([L, (1)
map([H|T], [X|TT], [H-X|T1]) :- map(T, TT, T1).

5 Conclusion

Artificial intelligence, specifically expert systems,
has played an important role in solving complex
engineering and manufacturing problems for more
than four decades. Knowledge base and inference
procedures have been employed to solve the
problems that require significant human expertise
and domain-specific knowledge. The required
knowledge has to be elicited by knowledge
engineers. It is a labor-intensive task, and thus a
bottle neck in building intelligent systems.

We propose to apply data mining technique as a
major step in a knowledge engine component of the
inductive expert system to assist the knowledge
elicitation task. The proposed technique is a novel
method for automating knowledge acquisition that
help supporting intelligent manufacturing systems.
We demonstrate knowledge mining through the
visual tool called KNIME, which has many
visualization features to support users who are not
an expert in data mining.

Knowledge as a learned tree structure is then
transformed by our Prolog program to be a rule set
that can be integrated into the knowledge base. The
implementation of our knowledge acquisition tool is
based on the logic programming scheme that has
been proven appropriate for inferring and reasoning
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answers and recommendations from the existing
knowledge base.
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Abstract

Knowledge mining is the process of deriving new and useful knowledge from vast
volumes of data and other background information. Derived knowledge can possibly be
patterns of data represented in summarized form, relationships among data represented as
rules, or representatives of data subgroups represented by majority values. In health and
medical domains, knowledge has been discovered in different forms such as association,
classification rules, clustering and segmentation, trend or temporal pattern analysis. The
discovered knowledge can facilitate computational health informatics in various aspects
such as supporting expert decision, making estimation of future trends, diagnosing the
causes of illness, and predicting severity of the symptoms. The term computational health
informatics refers to an emerging field of research focusing on the devise of novel
computational techniques to support healthcare and medical applications. In this paper, we
propose a knowledge mining method based on the declarative programming scheme, which
IS a programming paradigm that we argue to be more appropriate for the knowledge
intensive tasks than the imperative and object-oriented paradigms. Easy knowledge transfer
to the knowledge base content is demonstrated in this paper to confirm the appropriateness
of a high-level declarative scheme. Our designed system includes four major knowledge
mining tasks: data classification, association mining, sequence analysis, and clustering. We
demonstrate knowledge deployment through the automatic generation of knowledge base to
support medical decision. The knowledge deployment example illustrates advantage of the
high-level declarative scheme to facilitate current computational health informatics.

Keywords: Knowledge Mining, Computational Health Informatics, Healthcare Decision
Support System, Declarative Programming

Introduction

Healthcare organizations at the present day regularly generate huge amount of data
in electronic form stored in their databases. These data are valuable resource for automatic
discovering of useful knowledge, or knowledge mining, to gain insight knowledge
potentially useful for a better patient-care decision support. Such implicit knowledge is a
valuable asset to most organizations as a substantial source to enhance understanding of
data relationships and support better decisions to increase organizational competency.
During the past decades there has been an increasing interest in devising database and
learning technologies to automatically induce implicit knowledge from clinical and health
data (Kretschmann et al., 2001; Lin et al., 2001; Bratsas et al., 2007; Huang et al., 2007,
Ghazavi & Liao, 2008; Noren et al., 2008; Zhuang et al., 2009). Most of these work used
imperative and object-oriented programming styles. These programming styles are suitable
for general software development that requires a nice form of graphical user interface. But
for a specific kind of intelligent software development, fast knowledge deduction and
accurate induction features are more important than a friendly GUI (Truemper, 2004). We
thus design our knowledge mining system based on the declarative paradigm.

This paper presents the design of an intelligent system that has the capability of
inducing knowledge from the stored data and automatically ranking and selecting induced



knowledge to be included in the knowledge base. Our system includes data mining engines,
that is, the classifier and other miners, as a main feature for extracting hidden knowledge.
We, however, broaden typical data mining system by incorporating knowledge management
functions with the inclusion of additional features to elicit and store selected knowledge in
the knowledge base. Demonstration of the system deployment has been done through the
knowledge induction application to support medical and health informatics.

The Design and Implementation of a Declarative Knowledge Mining System

Implicit knowledge acquisition can be achieved through the availability of the
knowledge-mining system. Knowledge mining is the discovery of hidden knowledge stored
possibly in various forms and places in large data repositories. Automatic knowledge
acquisition can be achieved through the availability of the data mining engines. The
discovered knowledge facilitates expert decision support, data exploration and explanation,
estimation of future trends, and prediction of future outcomes based on present data. In this
section, we present the design (Figure 1) of a knowledge-mining system named SUT-Miner
to support a high-level decision in medical domains.

SUT Miner — A Knowledge Mining System

Data Preparation

Database
Transformation
Cleansing
Reduction
r Background
<£ ;> Knowledge
Data Mining
Classification Clustering
Association Sequence
Mining Analysis
Knowledge Management

Knowledge Representation

Knowledge Evaluation

Knowledge Selection Domain
expert

Knowledge Storing

Decision

<i Support

System Knowledge Base

General Practitioner

Figure 1. Architecture of the knowledge mining system



Generally, the proposed system can also be applicable to any domain that requires a
knowledge-based decision support. A rapid prototyping of the proposed system has been
implemented with a declarative style using first-order and second-order Horn clauses
(Nadathur & Miller, 1990; Naish, 1996; Kramer & Widmer, 2001). The intuitive idea of our
design and implementation is that for such a complicated knowledge-based system program
coding should be done declaratively at a high level to alleviate the burden of programmers.
The advantages of declarative style are thus the decrease in program development time and
the increases in expressiveness of knowledge representation and efficiency of knowledge
utilization.

Knowledge induction through various data mining engines is the back-end of the
system responsible for acquiring and discovering new and useful knowledge. Usefulness is
to be validated at the final step by human experts of the field. Discovered knowledge is
stored in the knowledge base to be applied to solve new cases or create new knowledge in
the knowledge inferring phase, which is the front-end of the decision support system.

The SUT-Miner system obtains input from heterogeneous data sources. Therefore,
redundancy, incompleteness, and noise (i.e., random error) can be expected from the input
data. The data preparation component has been designed to clean, transform the format, and
select only relevant data with suitable feature selection techniques and possibly sampling to
reduce data instances. The data mining component is for performing various mining tasks.
Currently, we design and implement four different mining modules, i.e., classification,
association mining, sequence analysis, and clustering. Some background knowledge can be
adopted to guide the mining methodology selection.

The knowledge management is a novel component that we include in our design to
move data mining methodology towards the actual applicability for most general users. In
our implementation, knowledge selection module applies some heuristics to rank and elicit
knowledge based on possibility of future application. Knowledge evaluation and selection
should, however, be confirmed by human experts for correctness and usefulness.

To illustrate working example of the proposed SUT-Miner system, we include in
this section some coding of declarative programming based on the Prolog language. The
program coding is the classification module using decision-tree induction method known as
ID3.

mainld3(Min) :-
init(AllAttr,EdgeList),
getnode(N),
create.edge_onelevel(N,AllAttr,EdgeList),

addKnowledge,

selectRule(Min,Res),

maplist(writeln,Res).

create_edge_onelevel(_,_,[]):-\

create_edge_onelevel(_,[],_):-\

create_edge_onelevel(N,AllAttr,EdgeList) :- create_nodes(N,AllAttr,EdgeList).
create_nodes(N,AllAttr,[H1-H2/PB-NB|T]) :-

getnode(N1),

assert(edge(N,H1=H2,N1)),

assert(node(N1,PB-NB)),

append(PB,NB,Allinst),

( (PB\==[], NB\==[]) -> (cand_node(AllAttr,Allinst,AllSplit),
min_cand(AllSplite,[V,MinAttr,Split]),
delete(AllAttr,MinAttr,Attr2),
create_edge_onelevel( N1,Attr2,Split))

; true),
create_nodes(N,AllAttr,T).
create_nodes(_,_,[]):-



create_nodes(_,[],_):-\

addKnowledge :-
findall([Al,pathFromRootTolLeaf(A,_),Res),
retractall(_>>_>>_),
maplist(apply(assert),Res).

selectRule(V,Res):-
findall(N>>X>>Class,(X>>Class>>N,N>=V),Res 1),
sort(Res1,Res2),
reverse(Res2,Res).

Deployment: Automatic Generation of a Knowledge Base

To demonstrate knowledge deployment, we call the ID3 classification module as
shown in the previous section. The pop-up window will appear (Figure 2) on the screen for
user to specify data file to be mined. The parameter ‘MinProb’ is for rule selection. In our
classification module, we convert the decision tree, which is the output of the ID3 algorithm
(Quinlan, 1986), to be in a form of decision rules. Each rule has been augmented with the
probability value, which can be computed as a proportion of:

(number of instances at leaf node) / (total data instances in a data set).

User can specify the minimum probability value for selecting only rules that have high
possibility for applying to predict future event. The default of this parameter is 0.001. In
main module, the predicates addknowledge and selectRule(V,Res) are invoked to compute
probability along each tree branch to generate probabilistic rules and then select only rules
that could occur at the probability level higher than the specified threshold.

vad SWI-Prolog -- d:/10-Research-Experimentations,/Inductive-expertSystem,TestProgram/id3menu.pl

File Edit Settings Run Debug Help

Copyright (C) 1993-2009 University of Amsterdam.

XPCE comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.

The host-language is SWI-Prolog version 6.2.3

For HELP on i Create Rules from ID3 [ (=] ﬁ

on xpce

pic).

Datafile: |breast-cancer-wiscunsin_pk

172 MinProb: |0.001

Qancel_ ‘ Enter I

\

Figure 2. Pop-up window for specifying data filename and minimum probability threshold

In the shown example, we use a data named breast-cancer-wisconsin (available at
http://www.ics.uci.edu/~mlearn/MLRepository.html). The data had been transformed to be
in a first-order clausal format (as shown in Figure 3). The model to be induced from this
dataset aims at predicting breast cancer images as either in a benign or malignant stage.

The decision rules induced from this dataset are then automatically transform to be a
knowledge base as illustrated in Figure 4. The deployment of this knowledge base has been
shown through the inference steps of an expert shell (Figure 5).



% data: breast-cancer-wisconsin

attribute(clump_thickness, [1,2,3,4,5,6,7,8,9,10]).
attribute(uniformity_of_cell_size, [1,2,3,4,5,6,7,8,9,10]).
attribute(uniformity_of_cell_shape, [1,2,3,4,5,6,7,8,9,10]).
attribute(marginal_adhesion, [1,2,3,4,5,6,7,8,9,10]).
attribute(single_epithelial_cell_size, [1,2,3,4,5,6,7,8,9,10]).
attribute(bare_nuclei, [1,2,3,4,5,6,7,8,9,10]).
attribute(bland_chromatin, [1,2,3,4,5,6,7,8,9,10]).
attribute(normal_nucleoli, [1,2,3,4,5,6,7,8,9,10)]).
attribute(mitoses, [1,2,3,4,5,6,7,8,9,10]).

attribute(class, [benign, malignant]).

instance(1,class=benign,[clump_thickness=5,clump_thickness=1,uniformity_of_cell_
size=1,uniformity_of_cell_size=1,uniformity_of_cell_shape=2,uni
formity_of_cell_shape=1,marginal_adhesion=3,marginal_adhesio
n=1,single_epithelial_cell_size=1]).

instance(2,class=benign,[clump_thickness=5,clump_thickness=4,uniformity_of_cell_
size=4,uniformity_of_cell_size=5,uniformity_of_cell_shape=7,uni
formity_of_cell_shape=10,marginal_adhesion=3,marginal_adhesi
on=2,single_epithelial_cell_size=1]).

instance(699,class=malignant,[clump_thickness=4,clump_thickness=8,uniformity_of
_cell_size=8,uniformity_of_cell_size=5,uniformity_of_cell_shape
=4,uniformity_of_cell_shape=5,marginal_adhesion=10,marginal_
adhesion=4,single_epithelial_cell_size=1]).

Tn

igure 3. Breast-cancer-wisconsin dataset in a format of first-order logic clauses.

% Knowledge base automatically created for expert shell.
% top_goal is where the inference starts.
top_goal(X,V) :- type(X,V).

% Generated rules:

type(malignant,0.1430615164520744):-
uniformity_of_cell_shape(10),clump_thickness(10).

type(malignant,0.060085836909871244):-
uniformity_of_cell_shape(10),clump_thickness(8).

type(benign,0.04721030042918455):-
uniformity_of_cell_shape(3),clump_thickness(1).

type(malignant,0.001430615164520744):-
uniformity_of_cell_shape(1),marginal_adhesion(4),clump_thickness
(2),uniformity_of_cell_size(1).

% Generated menu:
clump_thickness(X):-menuask(clump_thickness,X,[1,2,3,4,5,6,7,8,9,10]).
uniformity_of_cell_size(X):-menuask(uniformity_of_cell_size,X,[1,2,3,4,5,6,7,8,9,10]).
uniformity_of_cell_shape(X):-
menuask(uniformity_of_cell_shape,X|[1,2,3,4,5,6,7,8,9,10]).
marginal_adhesion(X):-menuask(marginal_adhesion,X,[1,2,3,4,5,6,7,8,9,10]).
single_epithelial_cell_size(X):-
menuask(single_epithelial_cell_size,X|[1,2,3,4,5,6,7,8,9,10]).
bare_nuclei(X):-menuask(bare_nuclei,X,[1,2,3,4,5,6,7,8,9,10]).
bland_chromatin(X):-menuask(bland_chromatin,X,[1,2,3,4,5,6,7,8,9,10]).
normal_nucleoli(X):-menuask(normal_nucleoli,X,[1,2,3,4,5,6,7,8,9,10]).
mitoses(X):-menuask(mitoses,X,[1,2,3,4,5,6,7,8,9,10]).
class(X):-menuask(class,X,[benign,malignant]).
% end of automatic KB creation

Figure 4. Generated knowledge base content and menu to appear in the expert system shell.



v SWI-Prolog -- d:/10-Research-Experimentations/Inductive-expertSystem/TestProgramy/expertshell.pl E&Ii—hj

File Edit Settings Run Debug Help

1 ?- expertshell.

This is the Easy Expert System shell.
Type help. load. solve. why. quit.
at the prompt.

expert-shell> load.
Enter file name in single quotes (ex. '1.knb".): 'breast-cancer-wisconsin.knb'.
% breast-cancer-wisconsin.knb compiled 0.05 sec, 492 clauses

m

expert-shell> solve.

What is the value for uniformity_of_cell_shape?
[1-1,2-2,3-3,4-4,5-5,6-6,7-7,8-8,9-9,10-10]
Enter the choice> 8.

What is the value for marginal_adhesion?
[1-1,2-2,3-3,4-4,5-5,6-6,7-7,8-8,9-9,10-10]
Enter the choice> 10.

The answer is __malignant__ with probability 0.017167381974248927
expert-shell> why.
The answer is ...malignant... with probability = 0.017167381974248927.

The known storage are
[marginal_adhesion(10),uniformity_of_cell_shape(8)]

expert-shell> |

-

— ———— 7 ’

Figure 5. Inference steps of the expert system shell through the automatically created
knowledge base content

Conclusions

Healthcare organizations regularly generate huge amount of data in electronic form
and store in heterogeneous databases. These data are a valuable resource for automatic
discovering of useful knowledge, known as knowledge mining or data mining, to support
high-level decisions.

In this paper we have proposed the design and implementation of SUT-Miner, a
declarative knowledge mining system. The system is intended to support automatic
knowledge acquisition in medical domains that require new knowledge to support better
decisions as well as to enhance comprehension of stored data. The system is also applicable
to any domain that requires a knowledge-based decision support. A rapid prototyping of the
proposed system is provided in a declarative style using first-order and second-order Horn
clauses. The proposed knowledge discovery environment is composed of tools and methods



suitable for various kinds of knowledge discovery tasks including data classification,
association discovery, sequence analysis, and data clustering.
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Fonwing msfunusUsuUnUTIngUesludeyafidue
%ammé’aﬂqw Program to discover frequent patterns in DNA data
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% Program to discover frequent patterns in DNA data

%

% Created by Kittisak Kerdprasop and Nittaya Kerdprasop
% Data Engineering Research Unit,

% Suranaree University of Technology, Thailand.
%

% Start the program by calling

% c(assoDNA, [export_all]).

%  followed by

% assoDNA:main2().

%

% The program is written in Erlang language

%

-module (assoDNA) .
-import (lists, [seq/2,sum/1, flatten/1,split/2,nth/2,map/2,last/1]).
-import (io, [format/1l, format/2]) .
-import (ordsets, [to list/1,from list/1,is subset/2,union/1]).
Using this program:

c (assoDNA, [export all]).

assoDNA:main2 () .

% input( )->I[I[1,3,41,[2,3,51,101,2,3,5],[2,5]11.

% allltems() ->[1,2,3,4,5]. maxRec()->5. per()->50.

% input (_) _>[ ["a"’"C"’ "d"} , ["b"’ "C"’ "e"J | ["a"’ llb"’ "C"’ "e"J , ["b"’ "e"J ] .
% allltems() _>[Haﬂ,Hb","cﬂ,ﬂdﬂ,ﬂe"] .

% maxRec () ->5. per()->50.

input( ) -> FileNs=["DNA-nominal.data","DNA-nominal.test"],
format ("~nFile 1.~p 2.~p ",FileNs),
{ ,FNo}=io:read(" :Choose> "),
FileN=lists:nth (FNo,FileNs),
format ("Read from file:~p", [FileN]),
readfile (FileN) .

allItems () -> [F++[S]]||F<= ["A","C","T","G"], S<-seq(048+1,048+60)].
readfile (FileName) -> {ok, Binary} = file:read file(FileName),
Lines = string:tokens(erlang:binary to list (Binary), "\n\r"),
L=lists:map (fun(X) -> string:tokens(X," ,") end,Lines),
AD=[addCol (EachL, 1) || EachL <-L]J,
S=splitClass (["none","exon/intron", "intron/exon"], AD),
AllData=[extract(LL) || LL <-=S],

format ("~nTher are l-~w Classes", [length(AllData)]),
{ ,ClassNo}=io:read (" :Choose> "),
{Class,Data}=1lists:nth(ClassNo,AllData),

io:format ("Class =~p ", [Class]),

Data.

splitClass([], ) -> [1;
splitClass ([H|T],L) -> [lists:filter(fun(X)->lists:last(X)==H end, L) |splitClass(T,L)].

) —> [X] ; % except the last

addCol ([X],
[H|T],N) -> Col=048+N, [ H++[Col] | addCol(T,N+1)].

addCol (

extract ([H|T]) -> {last(H),extract2([H|T])}.
extract2 (LL) -> [Rec--[last(Rec)]||Rec<-LL].

main() -> AllInput=input(1111),
DB=myToSet (AllInput),Total=length(AllInput),{ ,Per}=io:read("input percent> "),
MinSup=Total*Per/100,
format ("~nTotal=~w ,~w% MinSup=~w", [Total,Per,MinSup]),
apriori (DB,allItems(),MinSup) .



119

myToSet (L) -> [from list(X) | |X<-L].
myToList (SL) -> [to list(S)|[|S<-SL].

apriori (DB, Items, Min) ->
Cl=[{from list([X]),findSup (from list ([X]),DB)}|| X<-Items ],
L1=[{FS,Sup} || {FS,Sup}<-Cl,Sup>=Min],
% print L1
LkPrint=[ {to_list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-L1l],

format ("~nK=~w-~p, has ~w set ",[1l,LkPrint,length(LkPrint)]),
K=2, LS=[FS||{FS, }<-L1],
apriorilLoop (L1l,DB, LS, K,Min)

findSup( , []) ->0;

findSup (Set, DB) -> [H|T]=DB,
Cond = is subset (Set,H),
if Cond->1+findSup (Set,T);

true -> findSup(Set,T)

end.
apriorilLoop (AllL, ,[], , ) -> AllL;
apriorilLoop (AllL, ,[ ], , ) -> AllL;

aprioriLoop(AllL,DB,LS,?,Min) -> Com=combi (LS),
C = myDistinct (usedCombi (Com,K)),

Ck=[{X, findSup(X,DB) } | | X<-C 1],

Lk=[ {FS,Sup} || {FS,Sup}<-Ck,Sup>=Min],
LkS=[FS||{FS, }<-Lk],
LkPrint=| {to_list(FS),Sup,Sup/length(DB)*lOO} [l {FS,Sup}<-Lk],

format ("~nK=~w-~p, has ~w set ", [K,LkPrint,length(LkPrint)]),
apriorilLoop (A11L++Lk, DB, LkS,K+1,Min)

myDistinct (List) -> to list(from list(List)).
combi ([H|T]) -> [[H,Te] || Te<-T]++ combi (T) ;
combi ([]) -> [].
usedCombi ([H|T], K) -> Union=union (H),

Len=ordsets:size (Union),

if Len==K -> [Union|usedCombi (T,K)];

true -> usedCombi (T,K)

end ;
usedCombi ([], ) —-> [].
shift ([H|T]) ->T++[H].

genR(_ ,Max,Max) -> [];
genR(L,N,Max) -> {H,T} = lists:split(N,L), [{H,T}]++genR(L,N+1,Max).

genRule( ,0, ) -> [1];
genRule (L, Count, Len) -> genR(L,1,Len)+tgenRule (shift (L), Count-1,Len).

set (X) -> from list(X).
list (X) -> to list(X).

searchL (Set, [{Set,Val}| ]
searchL (Set, [{_ Another, }
searchL ( Set, []) -> 1
findConf ({H,B},AllL)-> {H,B,searchlL(set (H++B),AllL) /searchL(set (H),AllL)}.
sortConf ({_, ,Confl},{ , ,Conf2}) -> Confl>Conf2.

) -> Val;
| TT) -> searchL (Set,T);

main2 () ->
format ("~n-—-—--—-—---—-—--—- START-======———————— "),
AllL=main (),
AllAsso2=[list(X) || {X,_ } <-AllL,length(list(X))>1 1,
AllRuleGen=lists:flatten([genRule (L, length (L), length (L)) | |L<- AllAsso2]),

AllRuleConf=[findConf (X,Al1lL) | | X<-AllRuleGen],
format ("~n~n AllRule=~w ,~nThere are ~w rules
", [AllRuleConf, length (A11RuleConf)]),
lists:sort ({assoDNA, sortConf},AllRuleConf),
format ("~n---------—--——--——————————— ")



-—--Test Module-----—-—"""="=-"-"—"—"—"—"—"—"———————

Cc (assoDNA, [export all]).

assoDNA: findSupOf (["AM", "GN"]) .

assoDNA: findPos (["AM", "GN"]) .

findPos ([]) ->0k;

findPos ([H|T])->[F,S]=H, format ("~p~w--", [ [F],S-48]), findPos (T) .
subList (L1,L)->length(L--L1)==1length(L)-length(Ll) .

findSupl (L1,LL)->1ists:filter (fun(L)->subList (L1,L) end,LL)

o° o o o

findSupOf (Lfind) -> format ("\"DNA-nominal.data\",\"DNA-nominal.test\" "),
{ ,FileName}=io:read (" Start NewJob FileName> "),
{ok, Binary} = file:read file(FileName),
Lines = string:tokens(erlang:binary to list (Binary), "\n\r"),
L=lists:map (fun(X) -> string:tokens(X," ,") end,Lines),
AD=[addCol (EachL,1) || EachL <-L],
Sl=splitClass(["none","exon/intron","intron/exon"],AD) ,
[{_,CLl},{ ,CL2},{ ,CL3}] =[extract(LLl) || LL1 <-S1J,

OLenz[lengEh(CLl),length(CL2),length(CL3)],
Re=findSupl (Lfind,AD),

S=splitClass (["none","exon/intron","intron/exon"],Re),
AllData=[extract (LL) || LL <-S],

myprint (OLen,AllData) .

myprint ([], ) -> endOfPrint;
myprint ([OH|OT], [{C,LL}|T]) ->
format ("~nClass:~p has ~w = ~w percentOf

~w", [C,length(LL), length (LL) /OH*100,0H]),
myprint (OT,T) .
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% Parallel Association Mining Program

%

% Created by Kittisak Kerdprasop and Nittaya Kerdprasop
% Data Engineering Research Unit,

% Suranaree University of Technology, Thailand.
%

% Start the program by calling

% c(assoDNA_par,[export_all]).

%

% This Erlang language program is written to mine association rules concurrently.
%

-module (assoDNA par) .

-import (lists, [sublist/2,seq/2,sum/1, flatten/1,split/2,nth/2,map/2,last/1]).
-import (io, [format/1l, format/2]) .

-import (ordsets, [to list/1l,from list/1,is subset/2,union/1]).

% Using this program:

%%%%% c(assoDNA par, [export all])

% Filel,Class,Minsup=80%
timer:tc(assoDNA par,run, [self (), [1,1,80,1,2,80,1,3,80]
£f(), {T, }=timer:tc(assoDNA par,concurrent, [[1,1,80],[1
422000 microsec

oo

1). %$%11265000 microsec
,2,801,[1,3,80]]).

%% Filel,Class,Minsup=60%

% timer:tc(assoDNA par,run, [self(),[1,1,60,1,2,60,1,3,60]]). %%15125000 microsec
£f(), {T, }=timer:tc(assoDNA par,concurrent, [[1,1,60],[1,2,60],[1,3,60]]).

125000 microsec

0° d° oo o
oe

o

9

% Filel,Class,Minsup=40%
timer:tc(assoDNA par,run, [self (), [1,1,40,1,2,40,1,3,40]
£f(), {T, }=timer:tc(assoDNA par,concurrent, [[1,1,40],[1
8657000 microsec

oe

39609000 microsec

1). %
+2,401,11,3,40]1).

o° 0P o o°
o o° o oP

1

concurrent (P1,P2,P3)->
spawn (assoDNA par, run, [self(),P1l]),
spawn (assoDNA par, run, [self(),P2]),
spawn (assoDNA par, run, [self(),P3]),
receive
my end-> ok
end.
fileNames () -> ["spliceDNA.DATA","spliceDNA-Test.TEST"].

input (Inputl) -> FileNs=fileNames (),
[FNo,ClassNo, | ]=InputlL ,FileN=lists:nth(FNo,FileNs),

format ("~n=========Read from file:~p==========", [FileN]),
{ok, Binary} = file:read file(FileN),

Lines = string:tokens(erlang:binary to list(Binary), "\n\r"),
L=lists:map (fun(X) -> string:tokens(X," ,") end,Lines),
AD=[addCol (EachL, 1) || EachL <-LJ, % all data

S=splitClass (["none","exon/intron","intron/exon"],AD),
AllData=[extract (my no value,LL) || LL <-S],

format ("~nTher are 1l-~w Classes", [length(AllData)]),
{Class,Data}=1lists:nth(ClassNo,AllData),
io:format ("Class =~p ", [Class]),
{AD,Data, FNo,ClassNo}.
% all available of gene at any Col for finding C1
allItems() -> [F++[S] | |F<— ["A","C","T","G","D","N","S","R"J,
S<- seq(048+1,048+30)++seq(048+32,048+60) ].

addCol ([X], )->[X] ; % except the last
addCol ([H|T],N) when N <31 ->Col=048+N, [ H++[Col] | addCol (T,N+1)1;
addCol ([H|T],N) ->Co0l=049+N, [ H++[Col] | addCol(T,N+1)]. % skip Col=31

to Col2(LL)->lists:map (fun([A,Col])->[A]++integer to list(Col-048) end,LL).
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% to _Col3("exon/intron")->"exon/intron";
to Col3(LL)->
lists:map (fun([A,Col])->[A]++" ("++integer to list (Col-048-31)++")" end,LL).

apriori (DB, Items,Min) ->
Cl=[{from list([X]),findSup(from list([X]),DB)}|| X<-Items ],
L1=[{FS,Sup} || {FS,Sup}<-Cl,Sup>=Min],
LkPrint=[ {to list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-L1],
K=2, LS=[FS||{FS, }<-L1],
apriorilLoopPar (L1,DB,LS,K,Min) .

findSup( , [1)->0;
findSup (Set, DB)->[H|T]=DB,
Cond =is_ subset (Set,H),
if Cond->1+findSup (Set,T);
true -> findSup (Set,T)

end.
apriorilLoopPar (AllL, ,[], , ) ->format("~n~p~n", [AllL]),AllL; % return final Set
apriorilLoopPar (AllL, ,[ ], , ) —->format ("~n~p~n", [AllL]),AllL;

aprioriLoopPar(AllL,BB,LS,R,Min)—>
Com=combi (LS),
C =myDistinct (usedCombi (Com, K) ),
Ck=[{X, findSup (X,DB) } | | X<-C 1,

Lk=[ {FS,Sup} || {FS,Sup}<-Ck,Sup>=Min],
LkS=[FS| | {FS, }<-Lk],
LkPrint=|[ {to_list(FS),Sup,Sup/length(DB)*lOO} || {FS,Sup}<-Lk],

LkPrint3=lists:map (fun({F,S,T})->{to Col3(F),S,T} end,LkPrint),
format ("~nK=~w-~p, has ~w set ~n ", [K,LkPrint3, length(LkPrint)]),
apriorilLoopPar (A11L++Lk, DB, LkS,K+1,Min)

aprioriloop (AllL, ,[], , ) -> format ("~n~p~n", [Al1L]),AllL; % return final Set
apriorilLoop (Al1lL, ,[ ], , ) -> format("~n~p~n", [A11L]),AllL;
apriorilLoop (Al11lL,DB,LS,K,Min)->

Com=combi (LS),

C =myDistinct (usedCombi (Com,K)),

Ck=[{X, findSup (X, DB) } | | X<-C 1,

Lk=[ {FS,Sup} || (FS,Sup}<-Ck,Sup>=Min],
LkS=[FS||{Fs, }<-Lk],
LkPrint=[ {to list (FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-Lk],

LkPrint3=lists:map (fun ({F,S,T})->{to Col3(F),S,T} end,LkPrint),

format ("~nK=~w-~p, has ~w set ~n ", [K,LkPrint3, length(LkPrint)]),

apriorilLoop (Al11L++Lk, DB, LkS,K+1,Min) .
myDistinct (List)->to list (from list (List)).
combi ([H|T])->[[H,Te] || Te<-T]++ combi (T);
combi ([])->[].
usedCombi ([H|T],K)-> Union=union (H),

Len=ordsets:size (Union),

if Len==K -> [Union|usedCombi (T,K)];

true -> usedCombi (T, K)

end ;

usedCombi ([], )->[1.

shift ([H|T])->T++[H].

genR(_ ,Max,Max)->[];

genR(L,N,Max)->{H,T}=1lists:split (N, L),
[{H,T}]++genR(L,N+1,Max) .

% genRule([2,3,5],3,3).
genRule( ,0, )->[];
genRule (L, Count, Len) ->genR (L, 1, Len) ++tgenRule (shift (L) ,Count-1,Len) .

set (X)->from list(X). list(X)->to list(X).
searchL (Set, [{Set,Val}| 1) -> Val;
searchL (Set, [{_ Another, }|T]) -> searchL(Set,T);



125

searchL( Set,[])-> 1 . % Cannot find Set
findConf ({H,B},AllL) -> {H,B, searchl (set (H++B) ,Al11L) /searchL (set (H) ,Al11L) }.
sortConf ({ , ,Confl},{ , ,Conf2})-> Confl>Conf2.

2 is "exon/intron"
o)

(el o o o o s rMIN() === 2220000000000 00000 00
$%5%5%5%%5%%5%%5%%5%%5%%5%%5%%5%%5%% MAIN : run() %%5%%5%%5%%5%%5%%5%%5%%5%%%%5%%5%%5%%%%%

run (MasterID, Inputl) ->
R=main2 (any, 3, InputlL), file:delete ("out.txt"), SHHHHHH
AD=lists:last (R), $ all data
[ADD| ]=AD, % c (128, [ADD,lists:last(AD)])
Rules=lists:sublist (R, length(R)-1),
PrintRules=map (fun({D, S, Per,Class})->
{to Col3(notLast(D)),S,Per, transformBack(Class)} end, Rules),
ADP=lists:map (fun (Data)-> {Data,checkRules (Data, Rules)} end,AD),
ADPprint=map (fun({Data,V})-> Predict=transformBack (V),
{Data, [last (Data), Predict, mark(last (Data),Predict)]} end,ADP),
Predict=map (fun({F,S})->{to _Col3 (notLast(F)),S} end, ADPprint),
writeToFile (Predict),
[ ,Stop| ]=InputL,
if Stop ==2 -> MasterID!my end ;
true -> MasterID!not end
end.

$ write to text file

writeToFile (Data)-> {ok,FP}=file:open ("out.txt", [append]),
io:format (FP,"~p", [Datal),
file:close (FP) .

mark (V1,V2)->V1==V2.

first([])-> no first;

first ([H|T])-> H.

notLast (F)-> sublist (F, length(F)-1).

checkRules (D, [])-> 1;
checkRules (D, [H|T])-> Datal=lists:sublist (D, length(D)-1), %no class attached
{L,S,Con,C}=H,Condition=subList (L, Datal),
if Condition-> C ;
true ->checkRules (D, T)
end.
transformBack (1) -> "none";
transformBack (2) -> "exon/intron";
transformBack (3) -> "intron/exon".

main2( ,AD, [])->[AD];
main2( , ,InputL)-> {AD,AllInput,FNo,ThisClass}=input (Inputl), %$%%HHH
DB = myToSet (AllInput),Total=length (AllInput),
[ , ,Per|LT] = InputL, % = 80,
MinSup=Total*Per/100,
format ("~n----- START---Apriori(in class=~p,Min Support~p%=~p)---
", [ThisClass, Per,MinSup]),
AllL=apriori(DB,allItems(),MinSup), % find asso of this class
LL=lists:map (fun({CodeL, })->CodelL end,AllL) %extract code list
[["AM"],["AM","CL"] ...],
Confll= lists:map(fun({Lfind,V})->
{Lfind,V,myfindSupOf (Lfind, FNo, ThisClass), ThisClass} end,AllL),
SortByConf=lists:sort (fun({A,S1,K1l, },{B,S2,K2, })-> KI1>=K2 end,ConfllL),
Filter=lists:filter(fun({_, ,K1, })->
K1>=85 end, SortByConf), % 85=max% confidence
Filter++main2 (any, AD,LT)

I3
o

oe

---Modules For Testing--—--------
c(assoDNA par, [export all]l), assoDNA par:findSupOf (["AM","GN"]) .
myfindSupOf (["AM","GN"],1,2).

assoDNA:myfindSupOf (["GN","GP","GT","TQ"],1,2). S%$support=63,conf= 95%
assoDNA:myfindSupOf (["GN","GP","GT"],1,2). % support=64,conf=82 %

o° d° od° d° o



126

myfindSupOf (Lfind, FNo, ThisClass) ->
FileNs=fileNames ()
,FileName=lists:nth (FNo,FileNs),

{ok, Binary} = file:read file(FileName),

Lines = string:tokens(erlang:binary to list (Binary), "\n\r"),
L=lists:map (fun(X) -> string:tokens(X," ,") end,Lines)

,AD=[addCol (EachL, 1) || EachL <-L]
,Sl=splitClass (["none", "exon/intron","intron/exon"],AD)

,[{ _,CL1},{ ,CL2},{ ,CL3}] =[extract(my no value,LLl) || LL1 <-S1]

,OLen=[length(CL1l), length(CL2), length (CL3)]

,Re=findSupl (Lfind, AD) % may be []
,S=splitClass(allClass () ,Re)

, [LC1,LC2,LC3]=S,[C1,C2,C3]=allClass()

,AllData=[extract (Cl,LCl), extract(C2,LC2),extract(C3,LC3)]
,{Ccl,Lcl}=lists:nth(ThisClass,AllData) % ThisClass

, [{Cc2,Lc2},{Cc3,Lc3}]=AllData--[{Ccl,Lcl}] % other classes

, ThisConf=length (Lcl)*100/ (length (Lcl)+length (Lc2)+length (Lc3))
, ThisConf.

subList (L1,L)->length(L--L1)==1length(L)-length(Ll) .
splitClass([], )->[];
splitClass([H|T],L)->[lists:filter (fun(X)->lists:last (X)==H end, L) |splitClass(T,L)]
findSupl (L1,LL)->1lists:filter (fun (L) ->subList (L1l,L) end,LL).
findSupOf (Lfind) -> %$search Lfind in all Classes
FileNs=fileNames ()
, format ("~nFile 1.~p 2.~p ",FileNs)
;{_,FNo}=io:read(" Start NewJob FileName> ")
,FileName=1lists:nth (FNo,FileNs),

{ok, Binary} = file:read file(FileName),

Lines = string:tokens(erlang:binary to list (Binary), "\n\zr"),
L=lists:map (fun(X) -> string:tokens(X," ,") end,Lines)

,AD=[addCol (EachL, 1) || EachL <-L]
,Sl=splitClass (["none", "exon/intron","intron/exon"],AD)
,[{_,CL1},{ ,CL2},{ ,CL3}] =[extract(my no value,LLl) || LL1 <-S1]

,OLen:[length(CLl),length(CLZ),length(Cf3)T

,Re=findSupl (Lfind,AD) % may be []
,S=splitClass(allClass(),Re)

, [LC1,LC2,LC3]=S,[Cl,C2,C3]=allClass ()

,AllData=[extract (Cl,LCl), extract(C2,LC2),extract (C3,LC3)].

allClass()-> ["none","exon/intron","intron/exon"].

extract (C, [1)->{C, [1};

extract(_,[HIT])—>{last(H),extrath([HIT])}.

extract2 (LL)->[Rec—--[last (Rec) ]| |Rec<-LL].

myprint ([], )->endOfPrint;

myprint ([OH[OT], [{C,LL}|T])->
format ("~nClass:~p has ~w = ~w percentOf ~w", [C,length(LL),length(LL)/OH*100,0H])
,myprint (OT, T) .

c(Line,Re) ->format ("~nin~pCheck=~p~n", [Line,Re]) .

myToSet (L) ->[from list (X) | |X<-L].

myToList (SL)->[to_list(S) | |S<-SL].

mySort (L) ->lists:sort (fun({A,F1,K1},{B,F2,K2})-> F1=<F2,K1=<K2 end,L).

% s()=fun({A,K1l, },{B,K2, })-> KI=<K2.

Cc (assoDNA, [export all]).
assoDNA:mainl () .

c (assoDNA, [export all]) , assoDNA:mainl ().
erlang:spawn_opt (assoDNA,main2, [1,2], [{min_heap size,466}]).

oC d° d° d° o
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