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การบูรณาการเทคโนโลยีภูมิสารสนเทศกบัแบบจ าลองเชิงพื้นท่ีท่ีเหมาะสมไดถู้กน ามาใช้

งานอยา่งแพร่หลายในการศึกษาไฟป่าเพื่อใชพ้ฒันาและเพิ่มประสิทธิภาพของระบบการจดัการไฟ
ป่าในภูมิภาคต่างๆ ของโลก การประยุกตใ์ชก้ารรับรู้จากระยะไกลและระบบสารสนเทศภูมิศาสตร์
ร่วมกบัแบบจ าลองเชิงพื้นท่ีท่ีเหมาะสมไดมี้บทบาทส าคญัในการจ าแนกและการท าแผนท่ีไฟป่า ไฟ
ป่าเป็นสาเหตุส าคญัอย่างหน่ึงท่ีส่งผลท าให้ป่าของประเทศภูฏานเส่ือมสภาพ จึงนับว่าเป็นภัย
คุกคามอย่างร้ายแรงต่อความพยายามการอนุรักษ์ทรัพยากรป่าของประเทศ ดงันั้น การวิเคราะห์
ความอ่อนไหวของการเกิดไฟป่าจึงเป็นองค์ประกอบส าคญัของระบบการจดัการไฟป่าส าหรับ
ประเทศภูฏาน เป้าหมายสูงสุดของการศึกษาคือ การประยุกต์ใช้นวตักรรมของเทคโนโลยีภูมิ
สารสนเทศร่วมกบัแบบจ าลองการถดถอยโลจิสติกและแบบจ าลองอตัราส่วนความถ่ีเพื่อสร้างแผน
ท่ีความอ่อนไหวการเกิดไฟป่า ในการศึกษาคร้ังน้ี ได้ท าการรวบรวมและเตรียมขอ้มูลปัจจยัท่ีมี
อิทธิพลต่อการเกิดไฟป่า การวเิคราะห์ และสร้างแผนท่ีความน่าจะเป็นของการเกิดไฟป่าจากแบบจ า
แบบท่ีแตกต่างกนัสองรูปแบบโดยอาศยัเคร่ืองมือของการรับรู้จากระยะไกลและระบบสารสนเทศ
ภูมิศาสตร์ จากนั้น ท าการเปรียบเทียบประสิทธิภาพของแบบจ าลองทั้งสองโดยอาศยัการประเมิน
ความถูกตอ้งและความสมเหตุสมผลดว้ยวธีิการ ROC เพื่อคดัเลือกแบบจ าแนกท่ีเหมาะสม 

จากการแปลตีความผลลัพธ์ ท่ีได้รับจากแบบจ าลองทั้ งสอง พบว่า ตัวแปรอิสระท่ีมี
นยัส าคญัต่อการเกิดไฟป่าในพื้นท่ีศึกษา ไดแ้ก่ อุณหภูมิพื้นผวิดิน ระยะห่างจากถนน ระดบัความสูง 
ความหนาแน่นของประชากร ดชันีพืชพรรณ EVI ระยะห่างจากท่ีดินการเกษตร ความช้ืนสัมพทัธ์ 
และทิศด้านลาด อตัราการคาดการณ์และอตัราความส าเร็จของแบบจ าลองการถดถอยโลจิสติก
เท่ากับ 88.3% และ 88.1% ตามล าดับ ในขณะท่ี อัตราการคาดการณ์และอัตราความส าเร็จของ
แบบจ าลองอตัราส่วนความถ่ีเท่ากบั 85.3% และ 85.5% ตามล าดบั จากผลลพัธ์ท่ีไดรั้บแสดงให้เห็น
วา่ แบบจ าลองทั้งสองสามารถคาดการณ์การเกิดไฟป่าไดดี้ 
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The integration of geoinformatics technology with suitable geospatial models 

have been widely employed in many wildfire studies to enhance the wildfire 

management system in different parts of the world. Particularly, remote sensing and 

GIS with appropriate geospatial models have played a vital role in identifying and 

mapping wildfires. Wildfire is perceived as one of the most noticeable causes of forest 

degradation in Bhutan with serious threat to the national conservation efforts. Thus, 

wildfire susceptibility mapping is seen as an indispensable component of wildfire 

management system for Bhutan. The ultimate objective of the study is to apply the 

innovative approach of geoinformatics technology with the integration of GIS based 

logistic regression (LR) and frequency ratio (FR) models to establish a wildfire 

susceptibility map. Herein, the study collected and prepared various wildfire 

influential factors, analyzed and established probability maps from two different 

models using remote sensing and GIS tools. The efficiency of two models are 

evaluated and compared to determine an optimal model based on the accuracy 

assessment and validation using relative operating characteristic (ROC) method.
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and significance of the study 

Wildfire presents a substantial threat to the precious forest resources and 

numerous studies have indicated an increasing trend in wildfire occurrences around 

the world (Williamson et al. 2015, Hushaw 2016 and Johann et al. 2004). As a result, 

in recent years the topic on wildfire has gained new attention among many researchers 

globally. Wildfire influences vegetation dynamics and land use change at global scale 

and its issues have become more extreme with rise in global temperatures. Wildfires 

which play an important role in global warming and climate change have major 

impact on ecosystems and environment by releasing large amounts of aerosols and 

greenhouse gases (CO2 and CO) into the atmosphere. It is estimated that wildfire 

contributes about 30% to the total amount of tropospheric ozone, global CO and CO2 

(Levine, 1991). Thus, wildfire is considered as a continuous contributor to the earth’s 

deforestation, desertification and ecology damage. Meanwhile, wildfires are expected 

to increase with global warming and variations in the climatic parameters (Stocks et 

al., 1998). 

In Bhutan, among many natural disasters such as earthquake, Glacial Lake 

Outburst Flood (GLOF), flash flood, and windstorm, wildfire is one of the most 

common threat that poses frequent potential hazard with physical, biological, 
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ecological and environmental consequences. It is one of the most prominent causes of 

forest degradation in the country (Tshering, 2006) and perceived as a biggest threat to 

our national conservation efforts. About 80.9% of Bhutan’s land is under pristine 

forest area, out of which 70.46% is covered by trees (Drukpa, 2015). This has 

contributed to the country’s position of being the first carbon negative country in the 

world according to the 2015 UN Climate Submit held in Paris. Based on the Carbon 

Comparator Tool developed by the Energy and Climate Intelligence Unit (ECIU), 

Bhutan’s forest cover observes three time more CO2 than its people produce, making 

a significant contribution to the world that is threatened by climate change. Today, at 

the age of globalization, Bhutan still remains one of the few countries in the World 

with reach natural and pristine forest cover still intact, providing homes to diverse 

flora and fauna including many critical and endangered faunal species. As a result, 

Bhutan is also considered as one of the 10th Global Biodiversity hotspot in the World 

(RGoB, 1999). This was possible, because of the exemplary and wise leadership of 

our beloved kings, and due to a strong and effective laws for the preservation and 

protection of environment regulated by the government. For instance, the constitution 

of the Kingdom of Bhutan mandates to maintain 60% of the country under forest 

cover for all times to come. In addition, the conservation of environment is one of the 

four main pillars of Gross National Happiness (GNH) where a sustainable use of 

natural resources has given the highest priority. Bhutan’s forest also plays a vital role 

in maintaining the sustainability of hydropower industry, sustains rural livelihoods 

and food subsistence. It is one of the largest renewal natural resource and wealth of 

the country that plays an integral role in the development of Bhutan. Hence, the future 

economy of the people and the country depends on the protection, conservation and 
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scientific management of forest resources (RGoB, 1969). As a result, the preservation 

and protection of forest resources is given top priority and every year there is a mass 

plantation and reforestation program being initiated at various capacities ranging from 

community to national level. 

However, wildfire provides a consistent threat and every year thousands of 

acres of forest and its biodiversity are lost to wildfire despite of stringent legislation 

and public awareness programs on wildfire. This has affected the country, socially, 

economically and environmentally. It destroys the habitats and the intricate 

relationships of flora and fauna leading to loss of ecosystems and biodiversity, 

consequently threating the endangered plant and animal species. It is estimated that on 

an average more than 10,000 acres of forest cover is lost due to wildfire every year 

(Kuensel, 2016) reducing the quality of forest features like soil fertility, biodiversity 

and ecosystem. The rugged topographic conditions with high ground fuel loads and 

erratic wind conditions during dry winter season increases the risk of wildfire 

incidents. According to Department of Forest and Park Services (DoFPS), the rate of 

wildfire had rapidly increased in 2015. Within last five years (2010-2015), a country 

recorded 216 wildfire incidences that burned almost 950,351.76 acres of forest cover. 

The number of wildfire incidence and areas damaged reported between 2008 and 

2014 (Yeshey, 2015) is displayed in Figure 1.1. In this period, a total of 72 wildfire 

incidences was observed and 6,766.734 acres were reported damage. The record 

shows that Thimphu, has the highest cumulative frequency of 64 wildfire incidences 

(Figure 1.1). The graph indicates that, the damaged area by the wildfire does not 

necessarily depend on the number of fire incidences or otherwise it is not proportional 

with the frequency of fire incidences. This is an indication that the wildfire frequency 
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and its burning characteristics are influenced by many influential factors, which is 

addressed in the current study. 

 

 

Source Country Report ADRC (2015). 

Figure 1.1   Number of fire incidences and area damaged (2008-2014). 

 

In addition, wildfire also causes decline of air quality due to pollution, soil 

degradation, economic loss, destruction of watersheds and even impacts the health 

and well-being of humans. According to Janbaz, Gholizadeh and Dashliburun (2012), 

the organic matter, which is needed to maintain an optimum level of humus in the 

soil, is destroyed during ground fire affecting the physical and chemical 

characteristics of soil, which in turn affects the growth rate of the ground floras and 

soil organisms due to intense heat released by fire. This causes release and leaching of 

soil chemicals resulting in the loss of soil nutrient and damaging the soil stability. In 

turn this leads to soil erosion, increasing surface run off and silt in rivers. It is reported 
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that the heavier silt load in rivers damages the turbine blades which in turn affects 

power production of hydropower projects, the backbone and main source of national 

revenue for Bhutan. So, loss of forest cover due to wildfire will directly affect the 

sustainability of hydropower industry. Thus, there is high national concern on forest 

protection, conservation and its management. Wildfire issues have been extensively 

discussed and deliberated in various sessions of National Assembly since 1960s 

(Dorji, 2006). In general, wildfire management constitutes an important part of overall 

national forest policy in any country.  

To establish an effective management system, most of the developed countries 

use prediction systems that involve a large number of monitoring tools, including 

advanced weather forecast algorithms. However, a developing country like ours 

cannot afford the use of such technologies due to weakness of technical and human 

resources constraints. Therefore, an alternative approach, such as identification of key 

factors to control wildfires and the use of susceptibility maps can serve as preventive 

approach in wildfire management system. 

Nowadays, geoinformatics technology particularly remote sensing, GIS, and 

GPS provides comprehensive information that can be effectively used in all aspects of 

wildfire management including wildfire susceptibility mapping, and it has proved to 

be a valuable tool. The improved remote sensing and computational capabilities 

enable the rapid processing of large image datasets in near-real time. Meanwhile GIS 

technology has become more common and important in managing natural resource 

management including land use planning, natural hazard/disaster assessment, wildlife 

habitat analysis, riparian zone monitoring, and timber management (Chang, 2014). As 

a result, remote sensing and GIS has become common tools for wildfire monitoring at 
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local, regional and global levels. The availability of remotely sensed fire data and the 

powerful capability of GIS technology in storing and processing spatial data, and GIS 

approach has made it possible to combine several wildfire variables to establish 

wildfire hazard areas and susceptibility maps (Chuvieco and Congalton, 1989). 

Overall, remote sensing and GIS plays a vital role in mapping wildfire prone areas, 

monitoring fuel load and risk modelling for wildfire mitigation and they are widely 

used in wildfire detection, predicting spread/direction of wildfire, early warning and 

coordinating fire-fighting efforts for preparedness and response. In addition, remote 

sensing and GIS are used as a damage assessment tool useful for mapping the extent 

of burn, understanding biological responses due to wildfire severity and quantifying 

extent and pattern of burned areas for wildfire recovery.  

However, this novel approach of geoinformatics technology is rarely applied 

either due to the lack of afford to use these technologies or due to technical 

constraints and lack of spatial data. Tshering (2006) also highlighted that, wildfire 

prediction service is virtually non-existent in Bhutan indicating that wildfire 

prediction research is never done before. Thus, wildfire probability mapping and 

prediction research in Bhutan using geospatial technology is still at developing stage 

and the human resource capacity needs to be strengthened. The previous research 

efforts and information on the wildfire in Bhutan are mainly confined to development 

of wildfire management strategy and policies, prevention, suppression and mitigation 

programs, which is not adequate in the absence of proper wildfire susceptibility map. 

Hence, for Bhutan, identification of effective factors to control wildfire and the use of 

wildfire susceptibility map can serve as a preventive or protective approach to 

improve wildfire management. Since there is a lack of advanced methods to monitor 
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the early detection of wildfire in Bhutan, identifying influential factors and mapping 

wildfire susceptibility is very important. 

Therefore, the ultimate aim of this study is to employ this innovative approach 

of geoinformatics technology by integrating with GIS based LR and FR models in 

wildfire susceptibility analysis and examine the impact of environmental, climatic and 

human variables on wildfire occurrence. The results obtained from the current study 

will be useful in the effective wildfire management system for Bhutan. 

 

1.2 Research objectives 

The primary objective of the study is to apply geoinformatics technology, 

particularly remote sensing and GIS by integrating with geospatial models in wildfire 

susceptibility mapping in Thimphu and Paro districts of Bhutan. The specific 

objectives include: 

(1) To apply remote sensing and GIS technology with the integration of 

geospatial models (LR and FR) and determine the impact of three key influential 

factors (environmental, climatic and anthropogenic) of wildfire occurrence; 

(2) To formulate wildfire probability models (LR and FR) and generate 

probability maps based on identified significant influential factors; 

(3) To examine an optimal geospatial model (FR or LR) based on accuracy 

assessment and validation using ROC method and establish a reliable wildfire 

susceptibility zonation map. 
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1.3 Scope of the study 

This research focuses on wildfire susceptibility analysis using geoinformatics 

technology with reliable geospatial models (LR and FR) in Thimphu and Paro 

districts of Bhutan by considering the three key influential factors of wildfire 

(environmental, climatic and anthropogenic) variables. 

(1) MODIS wildfire hotspot data (dependent variable) of NASA’s EOS of 

MODIS Terra and Aqua satellites for 15 years (2002-2016) period are obtained from 

NASA FIRMS (http://earthdata.nasa.gov) via E-mail. 

(2) Selected wildfire influential factors (independent variables): elevation, 

slope, aspect, curvature, topographic wetness index, enhanced vegetation index, land 

surface temperature, rainfall, relative humidity, land use, distance to road, distance to 

river, distance to settlements, distance to agricultural land and population density are 

prepared using various remote sensing and GIS tools, particularly ESRI ArcGIS and 

ERDAS software. Multicollinearity is tested using variance inflation factor (VIF) and 

tolerance (TOL). 

(3) The accuracy assessment and validation of the two models is performed 

using the ROC method based on the independent validation dataset and the selected 

optimum model is employed to establish the final wildfire susceptibility map. 

 

1.4 Limitation of the study 

The accuracy and the reliability of final results will ultimately depend on 

quality of input data and the performance of the geospatial models used. Thus, 

following possible limitations and constraints are felt as necessary to address in this 

current research. 

http://earthdata.nasa.gov/


9 

(1) Although, LR and FR models have several advantages over other 

available models used in susceptibility analysis, it is important to mention that these 

models are abstract and simplified representations of reality. They require precise 

location of hotspot and large amounts of data to produce reliable results since it is 

based on the assumption that future wildfires will occur under the same conditions as 

past wildfires. For the present study, the spatial location of wildfire in was not 

available, so the availability of wildfire hotspot (2002-2016) rely on MODIS 

downloadable data from NASA FIRMS. Though, MODIS fire detection algorithms 

are fully automated to produce daily fire information for the entire globe, there are 

few limitations being reported which may sometimes produce considerable 

commission and omission errors (Li et al., 2001). Moreover, MODIS hotspot cannot 

determine the burned area. 

(2) Variables such as wind speed/direction, sunshine, unemployment rate etc. 

could not be included due to lack of data. It must also be mentioned that the results of 

the models are constraint by the quality of available input GIS data. 

(3) While LR and FR models utilizes a rich database, the data layers 

themselves may not be perfect. For example, the rainfall and relative humidity data is 

based on only few weather stations, which are not uniformly distributed over the 

entire study area. Also, few missing records are observed and manually recorded data 

are subject to human errors. This may have compromised the accuracy during 

interpolation process in GIS environment. 
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1.5 Study area 

The study area covers Thimphu and Paro districts in western Bhutan (Figure 

1.2). The two districts combined has recorded one of the highest fire incidences 

according to the ADRC statistics of 2015. The study area is characterized by fragile 

mountain ecosystem with rugged topographic terrains combined with high fuel loads 

and erratic wind conditions, becoming more prone to wildfire especially during the 

dry winter season. 

 

 
 

Figure 1.2   Study area. 
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It is bounded by geographic coordinates of longitude 89° 07' 20'' to 89° 45' 56'' 

E and latitude 27° 8' 41'' to 28° 0' 3'' N, covering a total area of 3,084 km2 

approximately. The altitude of the area varies from 1,906 meters to 7,107 meters 

above the MSL. The average annual mean temperature in Thimphu and Paro varies 

between 7°C to 15°C approximately during the winter. Most of the developments and 

settlements are located in the low valleys surrounded by mountains. 

 

1.6 Benefits of the study 

Since wildfire is very difficult to predict, the wildfire susceptibility map 

deduced from the present study would help to minimize the impact and consequences 

from wildfire and eventually serve as an additional tool in the effective wildfire 

management system, particularly, wildfire susceptibility zones in the study area. The 

specific benefits of the current study are presented below: 

(1) Determine the degree of significance of each influential factors on 

wildfire occurrence based on model statistics and regression coefficients of LR model. 

(2) Examine the spatial relationships between distribution of hotspot and its 

related factor to deduce the level of correlation between hotspot locations and each 

influential factors based on frequency ratio of each class of factor from FR model.  

(3) Establish a wildfire probability maps from LR and FR models and their 

performance was determined based on accuracy assessment and validation using ROC 

method. 

(4) Determine the optimum geospatial model (LR) for wildfire susceptibility 

zonation mapping with five levels of susceptibility (VL, L, M, H, and VH). 



 

 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

This chapter contains the basic concepts and theories related to the research: 

The major contents include: (1) definitions and basic concepts of wildfire, (2) basic 

characteristics of wildfire, (3) logistic regression model, (4) frequency ratio model, (5) 

influential factors of wildfire, (6) causes of wildfire in Bhutan, (7) MODIS hotspot, its 

specification, characteristics and basic concepts on fire detection algorithm and 

Statistics of MODIS hotspot in Bhutan and (8) relevant literature reviews on previous 

wildfire researches based on the application of geospatial models (LR and FR) and 

remote sensing and GIS technology. 

 

2.1 Definitions and basic concepts of wildfire 

The term “wildfire” is used for any uncontrolled fire, that destroys forests and many 

other types of vegetation including animal species or it is an unplanned fire burning in 

natural areas such as forests, shrub lands and grasslands (Stein et al., 2013). In some 

parts of the World wildfire is caused by lightning and from few other natural causes 

however, nowadays most wildfire is caused by humans, either accidentally, as a result 

of carelessness, or arson. Depending on the type of vegetation or material being burnt, 

wildfire is known by different names such as forest fire, bush fire, grass fire, vegetation 

fire, peat fire or wildland fire, but all describes the same phenomenon. 
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To understand wildfire terminology, various technical terms associated with 

wildfires like “risk”, “hazard”, “vulnerability” “severity” etc., are addressed here. Fire 

vulnerability is defined as the degree of loss to biotic and abiotic elements of the 

environment to a given magnitude of fire hazard. It is expressed in a scale between “0” 

(no damage) to “1” (total damage.) (Castillo and Avendano, 2004). It is also defined as 

a set of conditions and processes resulting from physical, social, economic and 

environmental factors, which increase susceptibility of community to the impact of 

hazards (ISDR, 2002). Wildfire hazard is defined as a physical event of certain 

magnitude in a given area and at a given time, which has the potential to disrupt the 

functionality of a society, its economy and its environment (Boonchut, 2005). Wildfire 

risk is expected losses due to wildfire hazard to various elements at risk over specific 

time. Thus, it is measured in terms of expected loss such as economic loss, number of 

lives loss and extent of physical damage. Mathematically wildfire risk expressed as: 

 

𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑢𝑡𝑦 ∗ 𝐴𝑚𝑜𝑢𝑛𝑡 (2.1) 

𝑊𝑖𝑙𝑑 𝑓𝑖𝑟𝑒 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑢𝑡𝑦 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (2.2) 

 

Where “Amount” is the quantity of elements at risk, e.g. number of peoples, 

number of trees, number of animals etc. and “Capacity” is the skills and operational 

resources to cope up with the fire risk factors so that the damage can be reduced. 

Wildfire severity refers to the magnitude of significant negative impact on wildland 

systems (Simard, 1991), while susceptibility map gives an estimation of the probability 

that an event occurs in a specific area without considering an absolute temporal scale. 
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2.2 Basic characteristics of wildfire 

The basic characteristic of wildfire which includes fire triangle, type of fire and 

fire behavior triangle are summarized in this section based on Bennett et al. (2010). 

2.2.1 Fire triangle. 

The fire triangle is a simple way of understanding the factors of fire 

(Figure 2.1). It is used as a model for conveying the components of a fire. The three 

sides of fire triangle illustrate the three elements of fire: heat, fuel and oxygen. These 

elements must be combined in the right proportions for a fire to occur and sustain: 

enough oxygen to sustain combustion; enough heat to raise the material to its ignition 

temperature and a fuel/combustible material. If one of the three elements are removed, 

the fire is extinguished. 

(a) Heat 

Heat is the most essential part of fire elements. A fire cannot ignite 

unless it has a certain amount of heat, and it cannot grow without heat either. One of 

the first things firefighters do to extinguish a fire is to apply a cooling agent, usually 

water or a chemical fire retardant used in fire extinguishers. 

 

Source: http://firefoxfiresolutions.com. 

Figure 2.1   Fire triangle. 
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(b) Fuel 

A fire needs a fuel source in order to burn. The fuel source can be 

anything that is flammable, such as wood, paper, fabric, or chemicals. Once the fuel 

element of the fire triangle is removed, the fire will go out. If a fire is allowed to burn 

without any attempt to extinguish it, it will extinguish on its own when it has consumed 

all of the fuel. 

(c) Oxygen 

Oxygen is another essential component of fire. A fire needs 

oxygen to start and continue. That is why small fires are often extinguished by 

smothering with a non-flammable blanket, sand or dirt.  A decrease in the concentration 

of oxygen retards the combustion process. 

2.2.2 Types of fire 

Basically, fire can be categorized into three types: surface fire, ground 

fire and crown fire (Bennett et al., 2010) as shown in Figure 2.2. The relative proportion 

of each type can provide clues to the overall severity of a particular wildfire. 

(a) Surface fire 

A surface fire is the most common type that burns surface litter 

and loose debris of the forest floor and small vegetation, moving slowly and damaging 

trees. It produce flaming fronts that consume needles, moss, lichen, herbaceous 

vegetation, shrubs, small trees, and saplings (Figure 2.2a). It can ignite large woody 

debris and decomposing duff, and burn long after surface flames have moved past. 

  



16 

(b) Ground fire 

A ground fire usually burns the organic matter like duff, musk or 

peat present beneath the surface litter of the forest floor. It not easy to detect as it spreads 

in and do not produce visible flames (Figure 2.2b). In times of drought conditions the 

fire may penetrate several feet below the surface and travel entirely underground often 

smoldering for days or weeks, without flames producing little smoke. 

(c) Crown Fire 

Crown fire is usually intense and is strongly influenced by wind, 

topography, and tree (crown) density. It moves from top to top of trees/shrubs and 

becomes active when enough heat is released to preheat and combust fuel above the 

surface, spreading from one tree crown to the next though the canopy (Figure 2.2c).  

 
(a) Surface fire 

 
(b) Ground fire 

 
(c) Crown fire 

 

Source: Bennett et al. (2010)  

Figure 2.2   Types of wildfire. 

 

In actual fire situations, all three types of fire may occur 

simultaneously and in all possible combinations depending on the type of fuel available 

and influential factors. A surface fire may spread into the crown and develop a crown 

fire, while a crown fire may drop to the ground and become a surface fire. Similarly, a 

surface fire may develop into a persistent ground fire that is difficult to detect. 
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2.2.3 Fire behavior triangle 

Another significant characteristic of fire is its behavior, once a fire is 

ignited its rate of spread and its intensity will depend on the three elements that make 

up the fire behavior triangle: topography, weather and fuel (Figure 2.3). A change in 

any one factor during the fire alters its behavior and fire type. Details on the influence 

of topography, weather, and fuels on fire behavior can be summarized as follows: 

 

Source: https://learn.weatherstem.com  

Figure 2.3 Fire behavior triangle. 

 

(a) Topography 

Topography is the most stable variable in the fire behavior triangle. 

Slope, aspect, elevation, and topographic features influence fire spread. Fire tends to 

spread faster up a slope than down one. As heat rises in front of the fire, it more 

effectively preheats and dries upslope fuels, making for more rapid combustion. Aspect 

affects how much solar radiation a site receives and it dictates the vegetation types. 

Elevation affects fire behavior by influencing the amount and timing of precipitation, 

as well as exposure to prevailing wind. It also affects the seasonal drying of fuel. In 

lower elevations, fuels tend to dry out faster because of higher temperatures and lower 

precipitation.  
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(b) Weather 

Weather influences how fast and to what degree fuels dry out 

during the fire season. It is the most variable factor in the fire behavior triangle. Long 

periods of low relative humidity and high winds can quickly dry fuels. Extended 

drought periods leave fuels with very low moisture content, resulting in increased fire 

activity and intensity. Fire is wind-driven which pushes the fire rapidly in one direction. 

In contrast, a change in weather from hot and dry to cooler, moister conditions can 

reduce fire intensity and rate of spread. 

(c) Fuel 

Fuel consists of dead woody material (needles, fallen branches, 

dried herbaceous vegetation, snags, and logs) or live trees and other vegetation like 

shrubs. The size, moisture and chemical content of fuel also influence combustion and 

fire behavior. Fuel is categorized into four classes: 

(1) Ground fuel consists of duff (decomposed needles and other 

organic material), buried (rotten) roots and logs, and accumulations of decomposing 

bark at the base of trees; 

(2) Surface fuel consists of litter or undecomposed needles; moss; 

lichens; rotten and sound logs; woody debris and slash piles; stumps; low vegetation 

like grass, herbs, and small shrubs; 

(3) Ladder fuel contains large shrubs; small and medium-size 

trees; low-growing branches on medium to large trees that allow a surface fire to move 

up into the overstory tree crowns and  

(4) Crown fuel consists of lichen, tree needles, and small branches 

that compose the forest canopy; and snags. 
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2.3 Logistic regression model 

Logistic regression (LR) model which is sometimes known as logistic model or 

logit model is a special case of multiple linear regression used to predict the presence 

or absence of outcome variable based on the set of predictor variables. It is suitable to 

models where the dependent variable is dichotomous or binary in nature. It is used to 

analyze the relationship between multiple independent variables and a categorical 

dependent variable and estimates the probability of occurrence of an event by fitting 

data to a logistic curve. There are different multivariate statistical approaches like 

multiple linear regression, discriminant analysis, logistic regression, etc. The nature of 

the dependent variables guide the selection of the most appropriate model. If the 

dependent variable is continuous in nature, then multiple linear regression can be used. 

When the dependent variable is dichotomous or binary in nature, both discriminant 

analysis and LR are suitable. Natural data are usually discrete (can be categorical) or 

continuous. Both linear discriminant analysis and logistic regression are appropriate for 

the development of linear classification models, nevertheless, the two methods differ in 

their basic idea and it is reported that LR is better than discriminant analysis when the 

independent variables are categorical, continuous or a combination of both (Atkinson 

and Massari, 1998). 

The other type of LR is multinomial LR which is used when the dependent 

variable is not dichotomous and is comprised of more than two categories. LR generates 

the model statistics and coefficients of a formula useful to predict a logit transformation 

of the probability that the dependent variable is 1 (occurrence of an event). It does not 

define susceptibility directly but the constant and the coefficients of the predictor 
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variables retained by the LR model can be used to draw inference and calculate the 

probability of occurrence of dependent variable. 

The main advantages of LR model are that, it gives the freedom to use both 

categorical and continuous predictor variables together in a regression analysis, 

whereby an independent variables can be non-linear, continuous, categorical or a 

combination of both continuous and categorical (Menard 1995; Schicker and Moon, 

2012). LR is applicable to a broader range of research situations compared to 

discriminant analysis. It is relatively robust, flexible and easily used, and it lends itself 

to a meaningful interpretation. LR model can be validated by receiver operating 

characteristic (ROC) curve where by the accuracy of the model can be obtained. It does 

not require the variables to be normally distributed or it makes no assumptions on the 

distribution of the explanatory data, whereas, linear discriminant analysis has been 

developed for normally distributed explanatory variables, which is not always met in 

case of data on natural phenomena like geology, land use or land cover, etc. The LR 

does not assume a linear relationship between the independent variable, so with other 

forms of regression, multicollinearity among the predictors can lead to biased estimates 

and inflated standard errors (SPSS, 2003). It is also robust when the data are auto-

correlated, which occurs frequently, when derived as GIS raster coverage (Ohlmacher 

and Davis, 2003). 

For linear regression, where the output is a linear combination of input 

feature(s), and it is expressed as: 

Y = βo +  β1X + ∈  (2.3) 

In LR, the same equation is used, but some modification is made to Y (response 

variable). Herein, probabilities are calculated that always lie between 0 and 1. 
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Therefore, the response value must be positive and it should be lower than 1. To meet 

this two criteria, two known conditions are applied i.e., exponential of any value is 

always a positive number and, any number divided by number + 1 will always be lower 

than 1. Implementing these two findings: 

 

𝑃(𝑌 = 1|X) =
e(βo + β1X)  

e(βo + β1X) +1
 (2.4) 

 

This is the logistic function where the probability value will always lie between 

0 and 1. Now, to determine the link function, P(Y=1|X) represents probability that Y 

=1 given some value for predictor variable x. Y can take only two values, 1 or 0. To 

simplify calculation, P(Y=1|X) be expressed as P(Y). 

 

 𝑃(𝑌) =
𝑒(𝛽𝑜 + 𝛽1𝑋) 

𝑒(𝛽𝑜 + 𝛽1𝑋) +1
 (2.5) 

  𝑃. (𝑒(𝛽𝑜 + 𝛽1𝑋) + 1) = 𝑒𝛽𝑜 + 𝛽1𝑋  (2.6) 

  𝑃 = 𝑒(𝛽𝑜 + 𝛽1𝑋)(1 − 𝑃) (2.7) 

 (
𝑃

1−𝑃
) = 𝑒(𝛽𝑜 + 𝛽1𝑋)  (2.8) 

 𝐿𝑜𝑔𝑖𝑡 (𝑌) = 𝑙𝑛 (
𝑃

1−𝑃
) = 𝛽𝑜 +  𝛽1𝑋 (2.9) 

 

The right side of equation 2.9 depicts the linear combination of independent 

variables. The left side is known as the log-odds or odds ratio or logit function and it is 

the link function for LR. This link function (or logit function) follows a sigmoid (Figure 
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2.4) function which limits its range of probabilities between 0 and 1 for any value of x. 

This function outputs the probability that y=1. 

 

 

Source: Source: http://practical-guide-logistic-regression-analysis-r. 

Figure 2.4   Sigmoid (Logistic) function/S-shaped curve. 

 

Equation 2.9 is interpreted as, a unit increase in variable X results in multiplying 

the odds ratio by ε to power β. In other words, the regression coefficients explain the 

change in log (odds) in the response for a unit change in predictor. In multiple 

regression, the ordinary least square (OLS) method is used to determine the best 

coefficients to attain good model fit. In the LR, maximum likelihood method is used to 

determine the best coefficients and eventually a good model fit. Maximum likelihood 

tries to find the value of coefficients such that the predicted probabilities are as close to 

the observed probabilities as possible. In other words, for a binary classification (1/0), 

maximum likelihood will try to find values of coefficients such that the resultant 

probabilities are closest to either 1 or 0. 
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By solving Equation 2.9 for P for “n” independent variables, the final 

probability equation is derived as shown below: 

 

𝐿𝑜𝑔𝑖𝑡 (𝑦) = 𝑙𝑜𝑔
𝑃

(1−𝑃)
=

𝑒(𝛽𝑜 + 𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3………𝛽𝑛𝑥𝑛)

1+𝑒(𝛽𝑜 + 𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3………𝛽𝑛𝑥𝑛)   (2.10) 

𝑃 =
1

1+𝑒−(𝛽𝑜 + 𝛽𝑖𝑋𝑖)     
1

1+𝑒−𝑧  ;              0 < 𝑃 < 1 (2.11) 

 

In this study, the basic requirement is to map the areas of wildfire susceptibility 

based on the prevailing wildfire scenario with its influential factors. The main aim of 

the LR is to find the best-fitting model to describe the relationship between the 

dependent variable and a set of independent variables. The coefficient of the predictor 

variables generated by the LR model describes the significance of each variable, the 

positive and negative influences, and the probability of the presence of wildfire hotspot. 

Using the coefficients of the LR as weights, the probability map of the wildfire can be 

obtained using the Equation 2.11. 

 

2.4 Frequency Ratio model 

Frequency ratio (FR) model is a simple geospatial assessment tool for 

computing the probabilistic relationship between dependent and independent variables, 

including multi-classified maps (Oh, Kim, Choi, and Lee, 2011). It is defined as the 

ratio of occurrence probability to non­occurrence probability for specific attributes (Lee 

and Talib, 2005). For wildfire, the FR is based on the observed relationships between 

distribution of hotspot and each hotspot-related factor, to reveal the level of correlation 
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between hotspot locations and the influential factors in the study area (Pradhan, 

Suliman, and Awang, 2007). 

The FR model is very popular and have been widely used for the wildfire 

susceptibility and in many other risk analysis including landslide and flood 

susceptibility analysis (Lee and Pradhan, 2007; Oh et al., 2011) and it has shown high 

accuracy. Yilmaz (2009) emphasized that the procedure for preparing susceptibility 

map must be simple and have a higher accuracy. Thus, the FR model has several 

advantages of simplicity; more importantly, inputs, output, and calculation process are 

readily understood. In addition, large amount of data can be processed in the GIS 

environment quickly and easily, whereas in statistical package it is hard to process the 

large amount of data. 

The calculation steps for an FR for a class of the wildfire-affecting factor is 

expressed as (Lee and Pradhan, 2007 and Lee and Talib, 2005): 

 

𝐹𝑅 =
𝐻𝑜𝑡𝑠𝑝𝑜𝑡 𝑅𝑎𝑡𝑖𝑜

𝐴𝑟𝑒𝑎 𝑅𝑎𝑡𝑖𝑜
=

(𝐴/𝐵)

(𝐶/𝐷)
=

𝑃

𝐾
 (2.12) 

 

Where, A is the number of hotspot pixels in each class of factor; B is the total number 

of hotspot pixels in the entire study area; P represents % of hotspot pixels for entire 

study area; C is the number of pixels (hotspot and non-hotspot) in each class of factor; 

D is the total number of pixels (hotspot and non-hotspot) in all/whole class (i.e. the 

entire study area); K represents the % of pixels (hotspot and non_hotspot) in each class 

for the factor.  

The next step is to assign these computed FR values of each class of factors 

using the reclassify option of spatial analyst tool in Arc GIS. Finally, all the factor maps, 
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with assigned FR values, are added to produce wildfire susceptibility index (WSI) map 

using the equation below. 

 

𝑊𝑆𝐼 = 𝐹𝑅1 + 𝐹𝑅2 + 𝐹𝑅3 + ⋯ … … … … 𝐹𝑅𝑛 (2.13) 

 

Where, WSI represents wildfire susceptibility index, FR1+FR2+FR3+⋯FRn represents 

frequency ratio factor maps of wildfire influential factors. WSI value represents the 

relative susceptibility to forest fire occurrence, where higher values are associated with 

high susceptibility and lower values will represent low susceptibility 

In wildfire susceptibility analysis, FR model provides how each class of 

influential factor affects fire occurrence, while the LR model gives a clear information 

about the degree of influence each factors have on fire occurrence. Though LR and FR 

models take different approaches to identify susceptibility area, comparison of their 

results provides more insight on the complicated interaction between fire events and 

the environmental conditions in the study area. 

 

2.5 Influential factors of wildfire 

The complex relationship between fire, environment, climate, and vegetation 

are the most interesting and challenging aspects in understanding how fire is changing 

on the landscape in response to climatic change. Occurrence of wildfire does not depend 

on any single factor instead its behavior, intensity and its rate of spread depend on 

various integrated factors. Although, the spread of a wildfire in a particular area 

depends on many factors, most importantly it is influenced by local weather, vegetation, 

and topography. Of these three factors, the topographic features remain static while 
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vegetation changes over time. Weather is the most dynamic factor which affects 

wildfire. Its unpredictable nature makes modelling wildfire a difficult task. Therefore, 

to obtain a reliable wildfire susceptibility map, a detailed study of fire influential 

factors, fire events and fire prone areas must be well understood and analyzed carefully 

in advance. 

According to the relevant literatures (Brown and Davis, 1973; Chuvieco and 

Congalton, 1989; Preisler et al., 2004 and San-Miguel-Ayanz, Ravail, Kelha, Ollero, 

2005), environmental factors including fuel characteristics, climatic characteristics, 

topographic characteristics and fire history are mentioned to have major impacts over 

the creation, propagation and intensity of wildfires, and reported as the critical factors 

in any fire hazard rating system. In another research, Vasconcelos, Pereira and Zeigler 

(1995) stated that vegetation, topography, climatology and fire history are considerable 

components of hazard to assess forest fire risk. Pradhan et al., (2007) emphasized that 

NDVI, soil, slope, aspect, and land use are the effective factors to assess fire risk hazard. 

Also, Janbaz et al., (2012) used topography, vegetation, slope, aspect, NDVI and 

climatic factors to develop forest fire risk mapping in Iran. Furthermore, Ghomi et al. 

(2013) stated that vegetation cover, distance from settlements and slope are important 

factors for forest fire hazard mapping. Hence, understanding the spatial distribution and 

significant predictors of fire occurrence is crucial for wildfire management system. 

Based on extensive literature reviews, the significant influential factors of 

wildfire can be classified under three broad categories: environmental, meteorological, 

and anthropogenic factors as summarized in the following sections. 
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2.5.1 Environmental factors 

Environmental factors consist of topography which includes slope, 

aspect, elevation, curvature etc., and fuel characteristics, such as vegetation type, 

amount, and leaf dryness or fuel moisture content etc. Topographic variables 

characterize the landscape features and they are strongly recommended to be included 

when modeling fire occurrence. The fuel characteristics is another significant factor 

which changes the fire behavior. The amount of fuel and its moisture content have 

significant influence on the rate of combustion and fire behavior. 

(a) Slope 

Slope represents the gradient of the land, and is generally 

expressed in terms of percentage (%) or degrees. It measures the rate of change of 

elevation at a surface location. Among all the topographic factors slope is considered 

to be the most critical. Depending upon slope angle and wind speed, slope can be more 

important than wind in determining the rate of fire spread. Terrain with high or steep 

slopes can accelerate the spread of fires because of more efficient connective 

preheating. As the warm air rises preheating the uphill fuels, fires advance uphill faster 

than they travel downhill (Rawat, 2003). It is claimed that a fire burning up to a slope 

of +20% to +39% will spread twice as first a fire on level terrain (Brown and Davis, 

1973). 

(b) Aspect 

Aspect refers to the direction of slope, which in turn determines 

the intensity and direction of sunlight received by that face. It determines how much 

sunlight is received. Aspect measures are often classified into four principle directions 

and or eight principle directions. South aspects receive more sun light and have higher 
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temperatures with robust winds, low humidity, and low fuel moistures in the North 

Hemisphere. Generally slope facing north is cooler than the south facing slope because 

south and west aspect receives more sunlight than the north and east aspect. Hence, 

vegetation is typically drier and less dense on south-facing aspects than north-facing 

ones which hold more moisture and stay green longer and support more vegetation 

(Prasad et al., 2008). Thus, drier fuels with less moisture content are more exposed to 

ignition. In addition, earlier in the day, east aspects get more ultraviolet and direct 

sunlight than west aspect. Consequently, east aspects dry faster (Adab et al., 2013). 

(c) Elevation 

Elevation is the height at any point on the surface of the Earth 

above the mean sea level. Places at higher elevation are much cooler than the places at 

lower elevation. Hence, elevation is a crucial topographic variable that is associated 

with temperature, moisture, and wind which plays an important role in fire spreading 

(Jaiswal et al., 2002). It has also been observed that fire behavior trends are less severe 

at higher altitude because of higher rainfall (Chuvieco and Congalton, 1989). 

Furthermore, Brown and Davis (1973) reported that high elevation has greater rainfall 

and a colder and wetter climate, resulting in a fire season that is shorter with fire 

incidences that are less severe. 

(d) Curvature 

Curvature is the rate of change of slope gradient or aspect in a 

particular direction (Wilson and Gallant, 2000). It determines whether a land surface is 

upwardly convex or concave. It measures the difference between profile curvature and 

plan curvature in which, profile curvature is estimated along the direction of maximum 

slope and plan curvature is estimated across the direction of maximum slope (Chang, 
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2014). The curvature value can be evaluated by calculating the reciprocal value of the 

radius of curvature of that particular direction. Negative curvature represents concave 

surface, zero curvature represents flat and positive curvature is known as convex 

surface. 

(e) Topographic Wetness Index (TWI) 

Wildfire is influenced by hydrogeological conditions as well, 

therefore, TWI is here selected to represent hydrogeological conditions in the analysis. 

Topography firstly controls the spatial variation of hydrological conditions and slope 

stabilities. It affects the spatial distribution of soil moisture, and groundwater flow often 

follows surface topography. (Moore, Grayson, and Ladson, 1991). TWI, also known as 

compound topographic index (CTI) was developed by Beven and Kirkby (1979) within 

the runoff model to represent a steady state of wetness index. It is commonly used to 

quantify topographic control on hydrological processes. The index is function of both 

the slope and upstream contributing area per unit width orthogonal to the flow direction. 

TWI will be higher in flat areas where the flow accumulation is higher. It is reported 

that the index is highly related with several soil attributes such as horizon depth, silt 

percentage, organic matter content, and phosphorous, hence the use of this variable will 

also suffice the soil type variable which is often used as relevant factor in fire prediction. 

TWI is defined based on equation 2.14 (Moore et al., 1991): 

TWI = (
𝛼

𝑇𝑎𝑛 𝛽
) (2.14) 

Where α is the cumulative up slope area draining through a point (per unit contour 

length) and tan β is the slope angle at the point. TWI reflects the tendency of water to 

accumulate at any point in the catchment and the tendency of gravitational forces to 

move that water down slope (Pourtaghi, Pourghasemi, and Rossi, 2014). In other words, 
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TWI identifies and locates area where water or ponds or any wet area in a landscape, 

and measures the potential wetness in any portion of the landscape. It is a combination 

of catchment area/flow accumulation and slope. Low slope and high catchment area 

will have high potential to collect water, thus it will have high TWI value. 

(f) EVI (Enhanced vegetation index) 

The main factor affecting the spread of a forest fire is the type and 

characteristics of the vegetation because they represent the total fuel available for the 

fire. Vegetation indices play an important role in monitoring variations in vegetation. 

NDVI is the most used common factor for assessing the live fuel moisture content 

(Chuvieco et al., 2003). NDVI is computed based on equation 2.15: 

 

NDVI = 
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
 (2.15) 

 

The enhanced vegetation index (EVI) was developed as an 

alternative vegetation index to address some of the limitations of the NDVI. The EVI 

is specifically developed to: 

i. Be more sensitive to changes in areas having high biomass (a 

serious shortcoming of NDVI). 

ii. Reduce the influence of atmospheric conditions on vegetation 

index values, and 

iii. Correct for canopy background signals. 

EVI tends to be more sensitive to plant canopy differences like leaf 

area index (LAI), canopy structure, and plant phenology and stress than does NDVI 

which generally responds just to the amount of chlorophyll present. With the launch of 
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the MODIS sensors, NASA adopted EVI as a standard MODIS product that is 

distributed by the USGS and it is calculated as: 

 

𝐸𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝐶1∗𝑅𝐸𝐷−𝐶2∗𝐵𝐿𝑈𝐸+𝐿)
∗ 𝐺 (2.16) 

 

Where, RED = Reflectance in MODIS red channel; NIR = Reflectance in MODIS NIR 

channel; BLUE = Reflectance in MODIS blue channel; C1 = Atmospheric resistance 

red correction coefficient (C1 = 6); C2 = Atmospheric resistance red correction 

coefficient (C2 = 7.5); L = Canopy background brightness correction factor (L = 1) and 

G = Gain factor (G = 2.5) 

The output of EVI is a single image layer with values typically 

from 0.0 to 1.0. Each band in the image is a 16-day composite image (that is the “best 

representation” of the vegetation index in a 16-day period). The NDVI and EVI are 

specifically intended to map vegetation but their values are also influence by the 

presence of clouds and snow cover. Both clouds and snow have low NIR and high 

visible reflectance, thus when snow or clouds are present for much or all of the 16 days 

used to create each composite, the NDVI and EVI will be negative. Therefore, regions 

that experience much cloud cover over the winter months may have negative vegetation 

indices even though they would normally have high amounts of vegetation biomass. 

Areas that are snow-covered over much of the year will also have negative NDVI and 

EVI values. 
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(g) Land use  

The human relationship to fire is complex, and it varies 

substantially across the globe (Pyne, 2001). Since the beginning of history, humans 

have used fire as a mechanism for creating areas suitable for agriculture and settlement 

resulting in the change of landscape. Land use changes also influence fire occurrence 

frequency and fuel loads altering fire regimes leading to altered fire patterns in many 

parts of the World. Hence, land use change has become a key driver of fire in many 

systems across multiple scales. For example, Carmoa et al., (2011) found that fire 

proneness was higher in shrub lands and steep slopes. It was observed that, there was a 

slope effect on the fire proneness of all land cover types. 

2.5.2 Meteorological factors 

Meteorological factors such as annual rainfall, temperature, relative 

humidity and wind effect have significant influence and play important role in the 

occurrence of wildfire. In most of the fire prediction research studies, the weather 

variables are taken into consideration as an important factor and it is reported to have 

significant influence in the occurrence of fire. 

(a) Temperature 

Temperature strongly affects the moisture content in forest fuels. 

High temperature helps dry fuels quickly and fuels exposed to direct solar radiation 

become much warmer than the surrounding air, as a result moistures move from warmer 

fuel to the air even if the relative humidity of the air is high (Rawat, 2003). Areas with 

high crown density keeps the ground cooler as it is less exposed to direct sunlight, 

whereas open areas are more prone to fire and often get burned due to higher air 

temperature as a result of exposure to direct sunlight (Brown and Davis, 1973). 
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Land surface temperature (LST) is one of the critical biophysical 

and/or climatic variables, that plays an important role in understanding various 

environmental phenomena, such as surface wetness conditions, evapotranspiration, 

urban heat island, vegetation health, forest fire danger conditions etc. (Wan et al., 2004). 

Nowadays, several LST acquiring satellites are operational, such as MODIS, Advanced 

Spaceborne Thermal Emission and Reflection (ASTER), Landsat-7 ETM+, Landsat-8 

TIRS, Geostationary Operational Environmental Satellite (GOES), NOAA Advanced 

Very High Resolution Radiometer (AVHRR), Indian National Satellite System 

(INSAT), Geostationary Meteorological Satellite (GMS), and Meteorology Satellite 

(Meteosat), etc. In the current study MODIS LST is used as the proxy for temperature. 

(b) Precipitation 

Rainfall is another significant factor which has an effect on both 

fuel and soil moisture. Drought associated with the El Nino turns moist forests into drier 

habitats and increases the flammability of forest vegetation, thus increasing the number, 

frequency, size, intensity and duration of fires (FAO, 2001). In general, rainfall 

increases moisture content in the fuel and surrounding environment and reduces the 

ignition of fires. However, rains during the growing season can spark a plant growth in 

barren lands and then if dry conditions follow, the risk of setting for fire increases with 

lots of dry fuel. 

(c) Relative humidity 

Relative humidity is expressed as the ratio of the amount of 

moisture in the air compared to the amount that the air can hold at the same temperature 

and pressure if it were saturated. A relative humidity of 95 percent indicates that the air 

is nearly saturated with almost all of the water vapor it can hold. The air is much drier 
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when the relative humidity is 30 percent, as compared to 100 percent. Moisture is 

exchanged between the air and nearby objects, including dead and live fuels. For 

example, at low relative humidity the moisture moves out of fuels to the air, and thus, 

drying occurs. At high relative humidity the dead fuels retain most moisture, i.e., less 

moisture moves out of the fuel into the air. When a fuel has more moisture, it is harder 

to ignite and burn. The relative humidity of the air changes faster than an entire fuel 

particle can exchange moisture with the air (http://learningcenter.firewise.org). 

2.5.3 Anthropogenic factors 

The probability of wildfire occurrence is also determined by the nearby 

habitation and the access humans have to the forest, because humans, animals and 

vehicular movement, and activities on roads provide suitable opportunities for 

accidental/man-made fires. Therefore, forests located near roads and habitats are more 

prone to fires. Hence the extent of human interference with the forest can help in 

assessing the potential risk areas from man-induced fires. Forest near by the agricultural 

fields are also very prone to fires due to burning of agricultural debris. However two 

major effects can be considered from proximity data (Chuvieco and Congalton, 1989). 

First, they can serve as fire breaks or pathways for suppression of the fire reducing the 

fire hazard. On the other hand, they are potential routes for hiking or camping areas that 

may increase fire hazard because of the more intense human activities. Hence, 

proximity variables including socio-economic factors play a vital role in wildfire 

occurrence. Generally, the influence of population density can be either positive or 

negative on wildfire occurrence depending on awareness, income, occupation, literacy 

rate, and unemployment etc. 

 



35 

2.6 Causes of wildfire in Bhutan 

Identifying the causes and driving factors of wildfire ignition is the primary step 

towards effective wildfire management system. In general most of the wildfire 

worldwide are related to human activities while natural causes only play a minor role. 

In Bhutan, it is reported that almost all the wildfires are caused by anthropogenic 

activities, either accidently or deliberately (Mckinnell, 2000). Although, few cases 

remain with no concrete evidence, the common causes of wildfires include: burning of 

debris agricultural/waste; electrical defaults; making fires near or inside the forest; 

children playing with flammable materials; deliberate lighting of forest fire to clear land 

to graze cattle; smokers disposing of burning matches or cigarettes butts; picnickers, 

unattended camp fire/warming fire by hikers; cattle herders, both migratory and 

sedentary; road side workers, lemon grass harvester and deliberate acts of arson, either 

to scare away damaging wild animals. Other reasons for the increase in wildfire could 

be associated rapid urbanization and economic growth of the country. In addition, 

mining activities also present a constant threat of sparking off forest fire. Unlike in 

western countries, natural causes like lightning are very rare and does not account for 

any wildfire. The assumed reason is that, most of the lightning strikes are associated 

with heavy rains and thus eliminates the chance of fire incidences, however, the wildfire 

from natural causes is not ruled out. Tshering (2006) mentioned that there exists high 

degree of uncertainty regarding the causes of wildfire in Bhutan referring to the 

suggestions of many fire experts who worked on fire projects in Bhutan. The survey 

conducted also showed that only 36% of the respondents were confident in expressing 

the familiarity with the causes of wildfire in Bhutan, indicating that there are many 

unknown causes. 
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2.7 MODIS hotspot 

Several remote sensing satellite sensors have been used to extract hotspot for 

long term and large scale fire monitoring. However, each of the instruments has 

reported unique advantages and limitations. The design of the MODIS sensor took into 

account these limitations, by improving the number and sensitivity of thermal channels 

and it is widely used sensor for active fire detection nowadays. 

MODIS on board of Terra and Aqua of NASA’s Earth Observation System 

(EOS) was the first satellite image to provide thermal sensors specifically designed for 

fire monitoring. MODIS fire hotspots at a global scale provides highly relevant 

information on fire events. It has a great potential for monitoring fire dynamics, the data 

is delivered free and nearly real time information can be obtained from a maximum of 

four satellite overpasses each day with a data record that spans more than a decade. The 

MODIS instruments provide global coverage of the Earth’s surface in high radiometric 

sensitivity (12 bit). Data collected from the MODIS instruments span over 36 spectral 

bands, ranging from the visible (0.4μm) to the long wave infrared (14.4 µm). The 

MODIS design combines high resolution data from the visible and near infrared 

channels (250-500 m) with the moderate resolution of its infrared channels (1 km). 

MODIS Terra spacecraft was launched in December 1999 and the Aqua spacecraft in 

May 2002. The orbit of the Terra satellite goes from north to south across the equator 

in the morning with a 10:30 am and 10:30 pm equatorial overpass and Aqua passes 

south to north over the equator in the afternoon with a 1:30 pm and 1:30 am equatorial 

overpass resulting in global coverage every 1 to 2 days. However, for most parts of the 

Earth’s equator, there are 4 overpasses in a twenty-four-hour period (NASA FIRMS, 
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2012). Details of MODIS specification are summarized in Table 2.1 and its spectral 

characteristics in Table 2.2. 

 

Table 2.1   Specification of MODIS sensor and its characteristics. 

Structure Specification 

Orbit: 705 km, Terra (10:30 and 22:30) and Aqua (13:30 and 01:30), sun-

synchronous, near-polar, circular 

Scan Rate: 20.3 rpm, cross track 

Swath Dimensions: 2,330 km (cross track) by 10 km (along track at nadir) 

Telescope: 17.78 cm diam. off-axis, a focal (collimated), with intermediate field stop 

Size: 1.0 x 1.6 x 1.0 m 

Weight: 228.7 kg 

Power: 162.5 W (single orbit average) 

Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 

Quantization: 12 bits 

Spatial Resolution: 250 m (bands 1-2) 

500 m (bands 3-7) 

1,000 m (bands 8-36) 

Design Life: 6 years 

Source: http://modis.gsfc.nasa.gov/about/specifications.php. 

 

2.7.1 MODIS Hotspot detection and its characteristics 

The MODIS Rapid Response Team produces the MODIS fire location 

data that identify and characterize actively burning fires (e.g. wildfires, agricultural 

fires, etc.) and other thermal anomalies (e.g. volcanoes, etc.) at the time of satellite 

overpass. Fires that do not emit sufficient heat under relatively cloud-free conditions at 

overpass time are unlikely to go detected. The fire detection algorithms are fully 

automated and produce daily fire information for the entire globe. 

 

http://modis.gsfc.nasa.gov/about/specifications.php
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Table 2.2   MODIS spectral characteristics. 

Primary Use Band Bandwidth 
Spectral Radiance 

(W/m2 -µm-sr) 

Land/Cloud/Aerosols Boundaries 1 620 - 670 nm 21.8 

2 841 - 876 nm 24.7 

Land/Cloud/Aerosols Properties 3 459 - 479 nm 35.3 

4 545 - 565 nm 29.0 

5 1230 - 1250 nm 5.4 

6 1628 - 1652 nm 7.3 

7 2105 - 2155 nm 1.0 

Ocean Color/ Phytoplankton/  

Biogeochemistry 

8 405 - 420 nm 44.9 

9 438 - 448 nm 41.9 

10 483 - 493 nm 32.1 

11 526 - 536 nm 27.9 

12 546 - 556 nm 21.0 

13 662 - 672 nm 9.5 
 

14 673 - 683 nm 8.7 

15 743 - 753 nm 10.2 

16 862 - 877 nm 6.2 

Atmospheric Water Vapor 17 890 - 920 nm 10.0 

18 931 - 941 nm 3.6 

19 915 - 965 nm 15.0 

Surface/Cloud Temperature 20 3.660 - 3.840 µm 0.45 (300K) 

21 3.929 - 3.989 µm 2.38 (335K) 

22 3.929 - 3.989 µm 0.67 (300K) 

23 4.020 - 4.080 µm 0.79 (300K) 

Atmospheric Temperature 24 4.433 - 4.498 µm 0.17 (250K) 

Atmospheric Temperature 25 4.482 - 4.549 µm 0.59 (275K) 

Cirrus Clouds  

Water Vapor 

26 1.360 - 1.390 µm 6.00 

27 6.535 - 6.895 µm 1.16 (240K) 

28 7.175 - 7.475 µm 2.18 (250K) 

Cloud Properties 29 8.400 - 8.700 µm 9.58 (300K) 

Ozone 30 9.580 - 9.880 µm 3.69 (250K) 

Surface/Cloud Temperature 31 10.780 - 11.280 µm 9.55 (300K) 

32 11.770 - 12.270 µm 8.94 (300K) 

Cloud Top Altitude 33 13.185 - 13.485 µm 4.52 (260K) 

34 13.485 - 13.785 µm 3.76 (250K) 

35 13.785 - 14.085 µm 3.11 (240K) 

36 14.085 - 14.385 µm 2.08 (220K) 

Source: http://modis.gsfc.nasa.gov/about/specifications.php. 
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The detection criteria are based on the temperature of an each potential 

fire pixel and the difference between the temperature brightness of the fire pixel and its 

background temperature (Giglio et al., 2003). The detection algorithm identifies pixels 

with one or more actively burning fires that are commonly referred to as “hotspot.” 

Each detected fire represents the center of an (approximately) 1 km pixel that contains 

one or more hotspots. The actual pixel size varies depending on the location of an 

observation in the swath. Pixels farther away from nadir will grow larger. The 

coordinates of the fire in the attribute table does not represent the exact location of the 

fire, but the center point of the pixel (Giglio et al., 2010). The size of the fire can be 

much smaller than the pixel size (Figure 2.5). The detection probability of hotspot 

depends on a number of factors, among others on fire temperature and satellite viewing 

angle. 

 

Source: http://maps.geog.umd.edu/firms/faq.htm. 

Figure 2.5   Fire pixel detection using MODIS. 

 

Hotspot can detect flaming fires (~1000 K) as small as 100 m2 under 

ideal conditions with a 50% detection probability, or a 1000-2000 m2 smouldering fire 
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(~600 K). Detection rates are higher when the daily peak fire activity coincide with the 

time of satellite overpass. Also, fires in degraded forests are easier to detect than fires 

in primary forests, because degraded forests burn hotter due to more dry fuel and the 

open canopy. Ultimately, the algorithm assigns to each pixel one of the following 

classes: missing data, water, cloud, fire, non-fire or unknown.  

The hotspots are derived from multiple MODIS channels to detect the 

thermal anomalies on a per-pixel basis. They produce very sophisticated fire 

information, which is based on the algorithms developed. Hotspots are calculated by 

the MODIS Rapid Response system and reported by FIRMS with multiple reported 

fields. These fields include latitude and longitude (center point location), brightness 

temperature in Kelvin (BT) of either channel 21, 22 or 31, scan and track (actual spatial 

resolution of the scanned pixel), acquisition date and time of the overpass of the 

satellite, satellite name (Terra or Aqua), confidence percentage, version of algorithm, 

and brightness temperature of channel 31 (Appendix A). Hotspot detected by Terra 

satellite is denoted as MOD14 and that of Aqua satellite as MYD14 (Giglio, 2010). 

2.7.2 MODIS fire detection algorithm 

The accuracy of fire information (hotspot) is a common concern for all 

user groups that is determined primarily by fire detection algorithms. The MODIS fire 

detection algorithms are based on those developed for AVHRR, but they bring some 

new capability to the remote sensing field. In the MODIS design, the 3.75 µm channel 

was shifted to 3.95 µm to avoid the variable water vapor absorption and to reduce 

reflected solar radiation by 40%. MODIS visible and NIR channels (0.66 and 0.86 µm) 

both have a resolution of 250 m, which is advantageous for more accurate remote 

sensing of vegetation and burn scars. MODIS has a 1.65 µm channel (with a resolution 
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of 500 m) that has been shown to be very sensitive to burn scars (Kaufman et al., 

1998b). MODIS smoke detection employs the blue (0.41 and 0.47 µm) and mid IR (2.1 

µm) channels in addition to the AVHRR red channel (0.66 µm) for better detection and 

discrimination of smoke from soil dust (Kaufman et al., 1997).  

In order to detect the presence of fire in a non-interactive fashion, a set 

of detection criteria different for the day and night fire observations are prescribed. Fire 

detection algorithm is performed using a contextual algorithm that exploits the strong 

emission of mid infrared radiation from fires. The algorithm examines each pixel of the 

MODIS swath, and ultimately assigns to each one of the following classes: missing 

data, cloud, water, non-fire, fire, or unknown. The algorithm uses brightness 

temperatures derived from the MODIS 4 and 11 µm channels, denoted by T4 and T11, 

respectively. The MODIS instrument has two 4 µm channels, numbered 21 and 22, both 

of which are used by the detection algorithm. Channel 21 saturates at nearly 500 K; 

channel 22 saturates at 331 K. Since the low-saturation channel (22) is less noisy and 

has a smaller quantization error, T4 is derived from this channel whenever possible. 

However, when channel 22 saturates or has missing data, it is replaced with the high 

saturation channel (21) to derive T4. T11 is computed from the 11 µm channel (channel 

31), which saturates at approximately 400 K for the Terra MODIS and 340 K for the 

Aqua MODIS. The 12 µm channel (channel 32) is used for cloud masking; brightness 

temperatures for this channel are denoted by T12 (Giglio et al., 2003). The 250 m 

resolution red and near infrared channels, aggregated to 1 km, are used to reject false 

alarms and mask clouds. These reflectances are denoted by 0.65 and 0.86, 

respectively. The 500 m resolution of 2.1 µm band, also aggregated to 1 km, is used to 

reject water-induced false alarms; the reflectance in this channel is denoted by 2.1 
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(Giglio et al., 2003). A summary of all MODIS bands used in fire detection algorithm 

is shown in Table 2.3. 

 

Table 2.3   MODIS channels used in fire detection algorithm. 

Channel 

number 

Central 

wavelength (µm) 
Purpose 

1 0.65 Sun glint and coastal false alarm rejection; cloud masking. 

2 0.86 
Bright surface, sun glint, and coastal false alarm rejection; 

cloud masking. 

7 2.1 Sun glint and coastal false alarm rejection. 

21 4.0 High-range channel for fire detection. 

22 4.0 Low-range channel for fire detection. 

31 11.0 Fire detection, cloud masking. 

32 12.0 Cloud masking. 

Source: Giglio et al. (2003). 

 

To avoid false detection under MODIS fire detection algorithm, Justice 

et al. (2006) stated that all pixels for which T4 < 315 K (305 K at night) or ∆T = T4 - 

T11 < 10 K (3 K at night) or 0.86 > 0.3 (daytime only) should be immediately 

eliminated as possible fires (potential fire pixels). For absolute fire detection, the 

algorithm requires that at least one of two conditions is satisfied. These are 

(1) T4 > 360 K (330 K at night), and 

(2) T4 > 330 K (315 K at night) and ∆T > 25 K (10 K at night). 

If either of these absolute criteria is not met, the algorithm pursues a 

relative fire detection in which the fire is distinguished from the mean background 

values by three standard deviations in T4 and ∆T as 

T4 > mean (T4) + 3stddev (T4), and ∆T > median (∆T) + 3stddev (∆T). 
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The mean, median, and standard deviations (denoted by ‘‘mean’’, 

‘‘median’’, and ‘‘stddev’’ above) are computed for pixels within an expanding grid 

centered on the candidate fire pixel until a sufficient number of cloud, water, and fire-

free pixels are identified. A ‘‘sufficient number’’ is defined as 25% of all background 

pixels, with a minimum of six. Water pixels are identified with an external water mask, 

and cloud pixels are identified with the MODIS cloud mask product (MOD35). Fire-

free background pixels are identified as those pixels for which T4 < 325 K (315 K at 

night) and ∆T < 20 K (10 K at night). If either standard deviation is below 2 K, a value 

of 2 K is used instead. The background window is allowed to grow up to 21X21 pixels 

in size. If this limit is reached and the previous criteria regarding the minimum number 

of valid background pixels are not met, the relative detection tests cannot be used. If 

the absolute tests do not indicate that an active fire is present in this situation, the 

algorithm flags the detection result as unknown.  

Combining all tests into a single expression, a pixel is classified as a fire 

pixel in daytime if the following conditions are satisfied: 

{T4 > mean (T4) + 3stddev (T4) or T4 > 330 K}, and {∆T > median 

(∆T) + 3stddev (∆T) or ∆T > 25 K}, or T4 > 360 K.  

For the nighttime, following condition is applied. 

{T4 > mean (T4) + 3stddev (T4) or T4 > 315 K}, and {∆T > median 

(∆T) + 3stddev (∆T) or ∆T > 10 K}, or T4 > 330 K. 

Finally, for daytime observations when sun glint may cause false 

detections, a fire pixel is rejected if the MODIS 250 m red and near infrared channels 

have a reflectance above 30% and it lies within 40° of the specular reflection position. 
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2.7.3 Caveats of the hotspot 

There are few limitations of hotspot being reported despite its vast 

applications in many research fields. The textural component of the detection algorithm 

causes problems with false detections in areas where the canopy cover exhibits strong 

differences in surface temperatures. Cloud cover obstructs fire detection and may lead 

to high errors of omission (undetected fires). The size of a particular fire cannot be 

calculated from hotspot data and no distinction can be made between large fires and 

small fires. The hotspots do not allow distinguishing, if one or more fires were actively 

flaming within a pixel on the same day and burned areas cannot be derived from the 

hotspots (Giglio et al., 2003). 

2.7.4 Statistics of MODIS hotspot in Bhutan 

The statistic of MODIS Hotspot data in 20 districts of Bhutan (2002-

2016), detected by MODIS Terra and Aqua satellite onboard are presented below 

(Table 2.4). According to the overall statistics, it is observed that the majority of 

wildfires have occurred in eastern Bhutan, particularly in Mongar, Pema Gatshel, 

Samdrup Jongkhar and Trashigang districts. Likewise, Wangdi Phodrang district in the 

west and Zhemgang district in the central Bhutan also have experienced high frequency 

of wildfires (Figure 2.6). Tsirang, Bumthang and Paro has low wildfire frequency while 

remaining districts has a moderate wildfire frequency. The distribution of hotspot with 

their spatial location for 20 districts of Bhutan are displayed in Figure 2.7. 
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Table 2.4   Statistics of MODIS Hotspot in Bhutan (2002-2016). 

Sl No Dzongkhag No. of hotspots detected Percentage (%) 

1 Bumthang 82 1.70 

2 Chhukha 186 3.86 

3 Dagana 243 5.04 

4 Gasa 145 3.01 

5 Haa 243 5.04 

6 Lhuentse 232 4.82 

7 Monggar 634 13.16 

8 Paro 72 1.49 

9 Pemagatshel 536 11.13 

10 Punakha 69 1.43 

11 Samdrupjongkhar 450 9.34 

12 Samtse 119 2.47 

13 Sarpang 198 4.11 

14 Thimphu 98 2.03 

15 Trashigang 354 7.35 

16 Trongsa 147 3.05 

17 Tsirang 72 1.49 

18 Wangduephodrang 512 10.63 

19 Yangtse 110 2.28 

20 Zhemgang 315 6.54 

Note: NRT files and VIIRS are not included 

 

 

Figure 2.6   Graphical representation of hotspot in Bhutan (2002-2016). 
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Figure 2.7   Distribution of MODIS hotspot in 20 districts of Bhutan (2002-2016). 

 

2.8 Literature review 

To assess the wildfire susceptibility and understand the relationship between 

various influential variables, a good knowledge of spatial distribution and temporal 

variation of wildfire hotspot data in the study area is required. The primary task is to 

identify the areas that have high probability of wildfire that is useful for wildfire 

management and planning. To achieve this, remote sensing and GIS are two 

components applied based on spatial data for biophysical factors, climatic factors and 

human factors in combination with fire-behaviour models. Remote sensing 

technologies provides an efficient and economical means of acquiring fire information 

over large areas on a routine basis, despite various limitations and shortcomings (Setzer 
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and Malingreau, 1996). Along with remote sensing and GIS tools, different GIS based 

statistical and probabilistic methods, models and algorithms are being tested and 

applied in many wildfire researches to determine the effects of various factors. For 

example, various approaches from simple to sophisticated models have been applied 

for forest fire assessments, such as expert knowledge, statistical methods such as linear 

regression, multiple regression, logistic regression, geographically weighted 

regression, frequency ratio, and evidential belief function. The expert knowledge 

method is clearly subjective and the accuracy of the results is questionable. Therefore, 

statistical approaches are widely used to develop fire models based on the statistical 

assumption that the relationship between input variables and forest fire will be the same 

in the past and in the future. However, forest fire regimes are complex and influenced 

multiple factors; therefore, the accuracy of the models is not always satisfactory. 

In general, GIS-based LR and FR models have given a promising result 

in different parts of the world with a high prediction accuracy (Lee and Talib, 2005). 

Both models make use of fire inventory and fire influential factors to come up with a 

certain wildfire susceptibility map. For instance, Mohammadi, Bavaghar and Shabanian 

(2013) integrated logistic regression and geographic information systems (GIS) to study 

the risk of forest fires and to identify the factors that most influenced the occurrence of 

forest fires in the forests of western Iran. The correlation between forest fires and 

climatic variables, human factors and physiography were analyzed. A method based on 

spatial GIS analysis and logistic regression was also used by Zhang, Zhang and Zhou 

(2009) to predict the probabilities of human caused grassland fires in Inner Mongolia. 

Likewise, many fire risk researchers and scholars have used LR and FR to predict and 

analyze forest fire occurrence earlier studies (Pradhan et al. 2007; Intarawichian and 
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Dasananda, 2010; Zhang, Han, and Dai, 2013; Pourtaghi, Pourghasemi and Rossi, 2014 

and Guo et al., 2015). LR examines relations between historical fire data and their 

influential factors and applies this knowledge to determine probability of having fire at 

a particular location. Thus, LR model developed from historical fire data are found 

valuable for understanding general historical fire trends and wildfire prediction. FR 

model provides how each factor’s class affects fire occurrence while the LR gives a 

clear picture about the degree of influence the causative factors that have on fire 

occurrence. Though, LR and FR models take different approaches to identify fire risk 

area the comparison of their results may give us more insight on the complicated 

interaction between fire events and the environmental conditions in the study area. 

Herein, the reviewed literature are briefly summarized. 

Pradhan et al. (2007) used remote sensing and GIS technology to evaluate forest 

fire susceptibility and risk mapping at Selangor, Malaysia together with FR method. 

The main objective was to develop an a fire susceptibility map and determine the level 

of severity of forest fire hazard zones by assessing the relative importance between fire 

factors and the location of fire ignition. Forest fire locations were identified from 

historical hotspots data (2000-2005) from AVHRR data of NOAA 12 and NOAA 16 

satellite. A total of 112 hotspots were compiled and various other supporting data such 

as soil map, topographic data, and agro climate were collected and created using GIS 

software. A total of 6 factors that influence fire occurrence: NDVI, land use, soil, agro 

climate, slope and aspect were derived. The fuel map from NDVI was derived using 

Landsat-7 ETM imagery. The factors were converted to a raster grid with 30 m cells. 

The study area by grid was 2,418 rows by 1,490 columns (i.e. total number is 3,033,610 

cells) and 112 cells had forest fire occurrences. The FR was calculated from analysis of 
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the relation between hotspot and the attributing factors and then Forest Fire 

Susceptibility Index was calculated. The validations of results showed prediction 

accuracy of 73.18% indicating a good prediction accuracy for forest fire susceptibility 

mapping. The, results obtained was expected to help the concerned authorities for forest 

fire management and mitigation. 

Zhang, Zhang and Zhou (2009) examined the probability of human caused 

grassland fires in the east of Inner Mongolia, China using GIS spatial analysis and LR. 

The study highlighted the importance of understanding the fire factors like weather, 

vegetation, topography and socio-economic factors. It focused mainly to improve the 

understanding of spatial dynamics of human caused wildfires and more importance was 

given to anthropogenic variables. The study mentioned that humans are the primary 

cause of forest fire according to the historical records. They found LR model very 

appropriate for fire prediction and to analyze complex relationship between fires and 

associated factors. A total 2,611 fires incidences for 20 years were located and 

converted to shape files. Out of this, 1,537 human-caused grassland fires were used in 

the study. The study assumed that the probability of occurrence of human caused fire 

will increase with proximity to human infrastructure, as a greater number of human 

activities will lead to grassland fire ignition. A total of 13 predictor variables were 

prepared: elevation, aspect, slope, and distance to the nearest isolated building, village, 

railroad, dirt road, paved road. Dynamic variables included mean temperature, 

precipitation, relative humidity, mean sunlight time, and mean wind speed. All these 

variables were resampled to 500 m grid files. LR model was developed using SPSS 

software to statistically test the relationship of grassland fires with the predictor 

variables and predict the probability of location of human caused grassland fires. The 
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model was developed using half of burned points and equal number of un-burned points 

chosen randomly. The LR model was separately applied for two variable groups: static 

and dynamic variables. That means, the first probability (P1) of occurrence of fire was 

obtained using the proximity and topographic variables and in the second probability 

(P2) was tested using topography and climatic variables. Finally, the probability of 

grassland fire was obtained by the product of two probabilities by overlaying P1 and 

P2 and the probability of a grassland fire occurring at a given location and day (P3) was 

calculated. The prediction accuracy of the model was 80.48% indicating that LR can 

produce a meaningful model of the probability for human caused grassland fire. The 

correlations between the human-caused grassland fires and the logistic model variables 

were positive with temperature and elevation, and negative with relative humidity, 

precipitation, distances to dirt roads, railroad, villages, and isolated buildings. The 

results are expected to help other grassland fire studies, such as fire ecology, fire 

weather, and fire cycles. These results will also help to identify locations with a high 

risk of fire occurrence, and prepare plans for grassland utilization. The study did not 

include the fuel characteristic and the socio-economic variables. 

Intarawichian and Dasananda (2010) used both LR and FR to produce fire 

susceptibility map for protected areas in Chiang Mai province of northern Thailand. In 

the LR method, five factors most related to the occurrences of active fire spot were 

considered (slope, rainfall intensity, population, NDVI and elevation, and in the FR 

method, nine factors were used (vegetation, slope, aspect, distances from road/village, 

temperature, rainfall, population, NDVI). Based on 213 samples of active fire spots FR 

matrix of fire variables were constructed using FR equation. The fire risk scores for 

each image’s pixel were then computed and fire susceptibility map with four levels of 
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the severity are categorized: (1) low, (2) moderate, (3) High, and (4) very high. 

Meanwhile, the LR model was applied and the fire severity was categorized as in the 

FR method. Under LR model, 1,229 fire spots were used to find the relation with the 

chosen variables and R2 was found to be 0.70. The factors were then normalized and 

LR model was applied to get the probability map. Resulting susceptibility maps from 

both FR and LR methods indicated a similar pattern of susceptibility level. The output 

maps were validated using the area under the curve (AUC) method where the accuracy 

rate of 75.88% (for FR) and 70.87% (for LR) were achieved. Herein, 47 fire spots, 

which were not used in model development, were applied to validate both methods. The 

results indicated that prediction accuracies from both methods are relatively high with 

FR method performing slightly better. Bases on the result 77.16% was classified as 

moderate level of fire susceptibility by FR method while LR method classified only 

36.06% as moderate level and 28.38% as high level of susceptibility. In contrast, only 

0.5% of the area was at high level of susceptibility by FR method. However, since the 

accuracy obtained from both methods were quite high, the authors recommend that 

these methods are reliable and the results obtained can be used to reduce forest fire 

hazard and assist in proper planning of land use activity in the future.  

Zhang, Han, and Dai (2013) used binary LR analysis to map the fire occurrence 

probability of Northeast China. Ten predictor variables including altitude, slope, aspect, 

distance to the nearest village, distance to the nearest path, distance to the nearest water 

bodies, land cover, fuel moisture content, LST and NDVI were employed. NDVI, LST 

and burned area data are downloaded from NASA website. MOD13 NDVI data, 

MOD11 LST data and MOD14 8-day composite fire products data are here used. The 

study tried to include the human factors apart from natural factors such as topographic, 
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climatic and fuel characteristics. All variable maps were rasterized with the spatial 

resolution of 1 km and all continuous variables are rescaled to ensure easy interpretation 

of the LR result. To obtain the unbiased estimate of model prediction performance, two 

independent data subsets were proportionally defined, 70% for training and 30% for 

validation test. Firstly, all the continuous and categorical variables were included in the 

model. Next, with backwards stepwise procedure, some variables are eliminated from 

the initial model in an iterative process. At each iteration step, the significance of 

variables included in the initial model is tested, and those insignificant variables are 

eliminated. Finally, a model was developed and estimated coefficients are allocated to 

the significant variables. The performance of the model was evaluated using ROC 

technique and the model’s fitness accuracy was found to be 84.2%, which indicates a 

good correlation between independent variables and dependent variable. Except for 

altitude, all other 9 variables were found significant and it was used in the model. The 

interpretations of the estimated coefficients from the LR showed that NDVI best 

explain fire occurrence in the region. The study highlighted that among the quantitative 

techniques, the LR model is considered as a valuable tool for predicting fire events. The 

resulting fire probability maps can assist fire managers in locating spatial potential fire 

danger areas, so that fire managers can act according to circumstances in fire prevention 

operations. Weather variables was excluded in this study and recommended for future 

studies to further improve predictive performance.  

Mohammadi, Bavaghar and Shabanian (2014) used LR and GIS for fire risk 

zone mapping in western Iran. The main objective was to generate a forest fire risk zone 

map and to utilize GIS coupled with spatial LR analysis to define the relationship 

between physiographic and climate characteristics and human activities related to forest 
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fire patterns. The fire map was prepared from the field data available for 6 years and 

field reconnaissance survey. In this study, it was hypothesized that the forest fires are 

related to 6 influential variables including elevation, slope, and distance to streams, 

distance of farmlands, temperature and annual precipitation. All these variables were 

collected from different sources and converted from vector to raster format with 20 m 

grid cells. Spatial interpolation of annual precipitation based on existing datasets was 

carried out using IDW to generate the rainfall distribution layer for the study area. LR 

was used to determine weights of variables as well as to investigate relationships 

between occurrence of forest fire and explanatory variables. In the investigation of 

forest fire risk assessment, fire presence (hotspots) was the dependent variable, while 

the environmental and human factors were the independent variables. 

In this study, 100 sample points each were selected randomly, where fire has 

occurred and not occurred respectively for the same period. To decrease the spatial 

autocorrelation, the points should be separated by distance of at least 1,000 m (Koenig, 

1999). However, the burned areas were composed of small polygons, and therefore at 

least 100 m separation distance between samples was considered adequate. The spatial 

characteristics of each sample points were obtained by extracting data from each 6 

factors and the data were exported to SPSS software. Before applying LR, all the 

explanatory variables were standardized or normalized to uniform scale. Finally, LR 

was applied. Herein, 80% of data points were used for modeling and 20 % for 

validation. The ROC method was employed to assess the discrimination ability of the 

model. The Wald and Chi square test was used to examine the statistical significance 

of the individual regression coefficients. The ROC value of 0.794 was obtained which 

indicates that the model is fit. The results revealed that the probability of forest fire was 
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significant and negatively related to elevation, slope and distance from farmlands 

whereas annual precipitation was found positively related to fire occurrence. This 

indicated that the areas with low elevation, low slope, and short distance from farmland 

to higher precipitation have higher values in fire probability map, and therefore are 

more prone to forest fire. According to the model, there is a positive relationship 

between probability of fire and annual precipitation. Authors observed that higher 

rainfall leads to further growth of grasses on the forest floor. In such circumstances, 

with drying grasses covering the forest floor in summer, the incidence of fire occurrence 

increases in wet sites. This research further demonstrates that LR model and GIS are 

suitable for determining the forest fire risk zone. The analysis has revealed that the 

elevation, slope, annual precipitation and distance to farms have high significant 

correlation with fires. Authors recommended that the model quality could be improved 

if further variables that may affect the forest fire are imported into the LR analysis. The 

relationships between variables may change over time, so periodic updating the model 

is desirable.  

Pourtaghi, Pourghasemi and Rossi (2014) evaluated forest fire susceptibility 

mapping using remote sensing and GIS technology in the Minudasht forests, Golestan 

province, Iran using FR method. Various fire influential factors included NDVI, land 

use, slope, aspect, topographic wetness index (TWI), topographic position index (TPI), 

curvature, distance to roads, distance to rivers, distance to villages, soil texture, wind 

effect, annual temperature and annual rain. Forest fire locations were specified from 

MODIS data and extensive field surveys. 106 (70 %) out of 151 forest fire identified, 

were used for modelling the forest fire susceptibility maps, while the remaining 45 

(30%) cases were used for the validation. Before applying the model, a multicollinearity 
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test among the fire inducing factors was applied. No multicollinearity issue was 

observed, so all the independent variables was used in FR model. The fire map achieved 

from the FR method showed 31.50% of the total area as very high FFM class. On the 

other hands, the area related to low, moderate and high Forest Fire Map (FFM) zones 

are 16.39, 21.85, and 30.26%, respectively. The findings revealed that the most 

important conditioning factors were NDVI, land use, soil and annual temperature. The 

model was validated using the ROC technique and was found to be 83.16% with the 

standard error of 0.044. This further confirms that FR method provides a good result in 

mapping the forest fire susceptibility mapping.  

Guo et al. (2015) analyzed the spatial pattern and drivers of wildfire in Fujian 

province, southeastern China (2000-2008). LR model was used to predict the likelihood 

of wildfire. Herein, forest fires were divided into two categories: anthropogenic fires 

and naturally induced fire. Unlike in other studies it has considered socio-economic 

indicators and human activity as very important. The main objectives were: (1) to 

identify the spatial distribution of fire ignitions; (2) to understand the comprehensive 

and individual effects of ignition factors and (3) to produce spatially explicit statistical 

models and maps predicting patterns of fire ignitions by combining biophysical and 

human variables. For dependent variable, a certain percentage of random points (non-

fire points) were created to satisfy the requirements of the binomial LR model using 

13,185 satellite fire points collected between 2000 and 2008. Herein, a total of 14,965 

random points (non-fire) were generated about the same number of ignition points. 

Independent variables included topography, vegetation, weather, infrastructure, and 

social and economic data. A total of 25 factors were prepared including 15 climate 

variables. Multicollinearity test was performed using VIF test and 18 variables were 
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selected for modelling. In total, 28,150 fires (13,185 fire points +14,965 random point 

as non-fire points) were assigned as validation set (60%) and calibration set (40%). To 

reduce the influence of a random division of samples on the selection of model 

parameters, the division and model fitting were performed three times by generating 

three intermediate models. Variables that are significant in at least two of the three 

intermediate models was selected to use in analysis of the complete dataset. After 

analyzing the model fitting with 18 variables again 11 best variables were selected that 

met the requirements after testing with three intermediate models and were used in the 

final stage of model development. The model was calibrated using the ROC technique 

and results showed AUC value of 0.843, indicating a high goodness of fit proving that 

the model is a good candidate for predicting forest fire occurrence in Fujian Province. 

The study revealed that fire ignition was mainly clustered in space due to the 

comprehensive influence of different factors. Elevation, daily precipitation, and daily 

relative humidity were negatively associated with fire ignitions, whereas distance to 

settlement, population density and per capita gross domestic product (GDP) influenced 

fire occurrence positively. The study also found that the model overestimated forest fire 

occurrence rate in some areas, while it underestimated in other areas. Authors reasoned 

that this might have happened because LR do not consider spatial correlation among 

fire points. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

 The present study on wildfire susceptibility analysis applied the innovative 

approach of remote sensing and GIS technology by integrating with reliable 

geospatial models (LR and FR) which is very significant component in the effective 

wildfire management system. The main objective of the research is to determine the 

impact of environmental, climatic and anthropogenic factors on wildfire occurrence 

and to develop a susceptibility map of the study area.  

 The framework of research methodology consists of three major components 

(Figure 3.1): (1) data collection and preparation; (2) wildfire susceptibility analysis 

based on LR and FR models; and (3) accuracy assessment and validation of wildfire 

probability maps to determine the optimum model for final wildfire susceptibility 

mapping. Details of each component with major steps involved in each component are 

separately described in the following sections. In addition, concepts and process of 

resampling and cell size of raster dataset and its standardization are also summarized 

under Section 3.1 of this chapter. 
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Figure 3.1   Flow chart of research methodology for wildfire susceptibility mapping. 
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3.1 Data collection and preparation 

The data collection and preparation phase consist of two parts: (i) collection of 

MODIS hotspot as data dependent variable and (ii) collection of environmental, 

meteorological and anthropogenic factors as independent variables. The process 

begins with the preliminary analysis of raw input data obtained from various sources 

at varying scales/resolution by classifying and mapping the dependent and 

independent variables that are directly or indirectly related to wildfire occurrence. The 

main steps involved in preliminary analysis includes, projection and defining proper 

coordinate system, extraction, data updating and editing, conversion, vectorization, 

rasterization, resampling and data standardization using remote sensing and GIS 

software (ERDAS Imagine and ESRI ArcGIS) to establish the standard input for 

wildfire susceptibility analysis. Herein, the process for preparation of dependent and 

independent variables are discussed in details separately. 

3.1.1 Dependent variable (MODIS hotspot/active fire data) 

The wildfire inventory map of the study area depicts the spatial 

location of wildfire points and represents the dependent variable in the analysis. 

However, the spatial data for the wildfire incidences in the study area was not 

available and did not exist at all. The study used spatial locations of the wildfire 

hotspots from the MODIS active fire data. MODIS active fire data (Hotspot), 

MCD14ML Collection 5, of both Terra and Aqua satellites was obtained from the 

NASA FIRMS (https://firms.modaps.eosdis.nasa.gov) for 15 year time series (2002-

2016) via E-mail. The MCD14ML is a standard science quality MODIS thermal 

analysis/active fire locations processed by University of Maryland with three months 

lag and it is distributed by NASA FIRMS. 

https://firms.modaps.eosdis.nasa.gov/
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The hotspots data acquired from the MODIS sensor are re-projected to 

a standard coordinate system (UTM Coordinate System Zone 45N for Bhutan) and 

then extracted. Extracted hotspot points are then overlaid to a high resolution Google 

Earth images, analyzed, processed and finally converted to raster format consisting of 

hotspot and non-hotspot to be used as the dependent variable. The output cell size of 

100 m is considered adequate after the analysis of various resolution/scales of other 

relevant factors used in the analysis.  

The statistics of wildfire hotspots obtained from MODIS sensor and its 

monthly distribution during the active fire season is presented in the Figure 3.2 and 

Figure 3.3 respectively. The distribution of number of hotspot (2002-2016) reflects 

the frequency of wildfire incidence in the study (Figure 3.2). It is observed that the 

number of hotspots has increased from 2002 until 2009, with only few incidences 

observed in 2004 and 2005. From 2010 until 2015, a slight decreasing trend is 

observed with sudden drop in 2015. During this period only 3 hotspots were detected, 

but notably a sudden increase of hotspots was again observed in 2016 with 18 fire 

incidents. This varying distribution in the frequency of hotspots in the study area is 

attributed to various associated factors addressed in the result. In addition, it is also 

observed that February is peak wildfire season with 64 hotspot incidences (Figure 

3.3). The information revealed by the hotspots statistics is observed rationale and 

reliable, because the actual fire season in the study area usually begins in the mid of 

October and continues until May, where the peak fire season normally falls in 

January, February and March. Thus, the data is consistent with the actual fire situation 

in the study area. 



61 

 

 

6
1
 

 

Figure 3.2   MODIS Hotspot data from 2002-2016 in the study area. 

 

 

Figure 3.3   Monthly distribution of MODIS hotspot in the study area. 

 

The basic information on remote sensing and GIS input data used in 

the current study is provided in Table 3.1 and the input maps in Figure 3.4 

respectively. 
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Table 3.1  Basic remote sensing and GIS input data for wildfire susceptibility 

analysis. 

No  Input Data Data 

Format 

Scale/ 

Resolution 

Source 

1 MODIS hotspot Vector 1 km NASA FIRMS (LANCE) 

2 ALOS DEM Raster 10 m NLCS, Bhutan 

3 ALOS image Raster 10 m NLCS, Bhutan 

4 Topographic map Vector 1:25,000 NLCS, Bhutan 

5 LULC map Vector 10 m MoAF, Bhutan 

6 NCRP map Vector 10-20 cm NLCS, Bhutan 

7 Meteorological data Excel NA Meteorology department, Bhutan 

8 Population data Excel NA NSB (PHCB-2010), Bhutan 

9 EVI data Raster 250 m NASA, MODIS vegetation 

indices 

10 LST data Raster 1 km NASA, MODIS LST product 

11 Google satellite images Raster 65 cm Digital globe (Quickbird), 2016 

 

 

 

   
(a) MODIS hotspot (b) DEM (c) Topographic map 
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(d) Agriculture land (e) Weather stations (f) Land use and land 

cover 

  

 

(g) Enhanced vegetation 

index 

(h) Land surface 

temperature 

 

 

Figure 3.4   Basic input maps for wildfire susceptibility analysis.  

 

3.1.2 Independent variables (Wildfire influential factors) 

A total of 15 predictor variables that constitute three key influential 

factors (environmental, climatic and anthropogenic) are presented in Table 3.2 with 

quoted references from the literature reviews. In addition, these factors are further 

reclassified into different classes according to the objectives and scale of the input 

data used in the analysis. Characteristics of input wildfire influential factors for LR 
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and FR analysis is presented in Table 3.3. These factors are prepared from basic input 

data obtained from different agencies at varying scales/resolutions using remote 

sensing and GIS tools. Various steps and process of preparation are summarized 

below. 

Environmental factors include topographic features and fuel 

characteristics. Topographic variables including elevation, slope, aspect, curvature 

and TWI are derived from 10 m resolution ALOS DEM (Appendix B), using surface 

analysis and hydrological functions under Spatial Analyst tools in ESRI ArcGIS 

Version 10.3 software. All topographic variables are firstly derived from the original 

DEM at original cell size using surface analysis tools and then resampled to 100 m 

cell size. MODIS vegetation indices, EVI produced on 16 days intervals at 250 m 

resolution is downloaded, re-projected and extracted prior to the active fire season to 

represent fuel. Meanwhile, land use data are extracted from the Bhutan Land Cover 

Assessment 2010 (LCMP-2010) provided by MoAF. Herein, nine major land use 

classes are prepared: coniferous forest, broadleaf forest, broadleaf and coniferous 

forest, shrubs and meadows, agricultural field, built-up areas, snow cover, water 

bodies and miscellaneous classes. Land cover is sometimes used as proxy for fuel 

types because they reflect the possible interactions with the humans. 

Weather conditions affects fuel accumulation and moisture. 

Considering the temporal scale of the current study, climatic variables are derived 

from the average weather conditions over the period of 11 years (2005-2015) from 

Meteorological Department of Bhutan (Appendix C). Climatic factors including 

rainfall and relative humidity are generated through IDW interpolation technique 

using available gauge stations. Meanwhile, level-3 MODIS global LST with 8-day 



65 

 

 

6
5
 

composite of 1-Km LST product (MOD11A1) is downloaded from NASA’s website 

and extracted to represent as a proxy for fuel temperature. It is converted to 

appropriate unit (Celcius) using the scale factor (0.02) provided in metadata file. 

Anthropogenic-induced factors include proximity and socio-economic 

factors, which are the most significant driving factor for wildfire occurrence, since 

most of the wildfire incidences related to human activities. The proximity variables 

represent the accessibility to the areas where fires can occur and many previous 

researchers have pointed out as an important factors in wildfire occurrence. Proximity 

factors like distance to roads, rivers, settlements and agricultural land are obtained 

using the Euclidean distance tool in ESRI ArcGIS software. In this study, roads, rivers 

and settlements are extracted from the topographic map obtained from the NLC at 

1:25,000 scale. The missing features and some new features are updated according to 

the recent National Cadastral Survey Program (NCRP) data. Missing rivers and 

streams are generated from the DEM using the hydrological tools in ESRI ArcGIS 

software. Few road networks are digitized and extracted using Google Earth image. 

Agricultural field class is updated according to the latest NCRP data, obtained from 

NLC of Bhutan. In addition, population density represents the distribution of potential 

human influence, considering that fires in Bhutan are mainly caused by humans. 

Thus, population density is generated at sub-district level using the Population and 

Housing Census (PHCB-2010) data obtained from National Statistical Bureau (NSB) 

of year 2010 (Appendix D). The density value is computed by raster interpolation 

using the IDW method, considering the major towns and cities as the center point of 

highly populated areas. 
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Table 3.2   Selected influential factors for wildfire susceptibility analysis. 

Category No Factor  Reference 

Environmental 

factors 

1 Elevation Zhang et al. (2009); Intarawichian and Dasananda (2010); Zhang et al. (2013); Frouzan et al. 

(2013); Guo et al. (2015) 

2 Slope Pradhan et al. (2007); Zhang et al. (2009); Intarawichian and Dasananda (2010); Zhang et al. 

(2013); Frouzan et al. (2013); Pourtaghi et al. (2014); Guo et al. (2015) 

3 Aspect Pradhan et al. (2007); Zhang et al. (2009); Intarawichian and Dasananda (2010); Zhang et al. 

(2013); Pourtaghi et al. (2014); Guo et al. (2015) 

4 Curvature Pourtaghi et al. (2014) 

5 EVI Pradhan et al. (2007); Intarawichian and Dasananda (2010); Zhang et al. (2013); Pourtaghi et al. 

(2014 

6 TWI Pradhan et al. (2007); Pourtaghi et al. (2014) 

7 Land use Zhang et al. (2013); Pourtaghi et al. (2014); Guo et al. (2015) 

Meteorological 

factors 

8 Rainfall Zhang et al. (2009); Intarawichian and Dasananda (2010); Frouzan et al. (2013); Pourtaghi et al. 

(2014); Guo et al. (2015) 

9 MODIS Land Surface Temperature (LST) Zhang et al. (2009); Intarawichian and Dasananda (2010); Zhang et al. (2013); Frouzan et al. 

(2013); Pourtaghi et al. (2014); Guo et al. (2015) 

10 Relative humidity Zhang et al. (2009); Guo et al. (2015) 

Anthropogenic 

factors 

11 Distance to road Zhang et al. (2009); Pourtaghi et al. (2014); Guo et al. (2015) 

12 Distance to river Zhang et al. (2013); Frouzan et al. (2013); Pourtaghi et al. (2014); Guo et al. (2015) 

13 Distance to settlement Zhang et al. (2009); Zhang et al. (2013); Pourtaghi et al. (2014); Guo et al. (2015) 

14 Distance to agricultural land Frouzan et al. (2013) 

15 Population density Intarawichian and Dasananda (2010); Guo et al. (2015) 
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Table 3.3   Characteristics of input variables for LR and FR analysis. 

No Factors Class for FR Original Scale/ Resolution Remarks 

1 Elevation <2,500 m 10 m Reading from DEM 

2,500-3,500 m 

3,500-4,500 m 

4,500-5,500 m 

>5,500 m 

2 Slope <8o 10 m Generate from DEM  

8–15 o 

15–25 o 

25-50 o 

>50 

3 Aspect Flat  10 m Generate from DEM  

North  

Northeast  

East  

Southeast  

South  

Southwest  

West  

Northwest 

4 Curvature Concave(+)  10 m Generate from DEM  

Flat(0)  

Convex(-)  

5 TWI <0 10 m Generate from DEM  

0-2 

2-4 

4-6 

>6 

6 EVI <0.1 250 m Extraction for study 

area. 0.1-0.2 

0.2-0.3 

0.3-0.4 

>0.4 

7 Land use Coniferous Forest 10 m Extraction and 

updating for study 

area. 
Shrubs and meadows 

Broadleaf Forest 

Agriculture Field 

Water Body 

Snow Cover 

Miscellaneous 

Built-up Areas 

Miscellaneous 
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Table 3.3   Characteristics of input wildfire influential factors for LR and FR analysis 

(continued). 

No Factors Class for FR Original Scale/ Resolution Remarks 

8 Rainfall <1,000 mm Not apply Spatial interpolation 

1,000-1,500 mm 

1,500-2,000 mm 

2,000-2,500 mm 

>2,500 mm 

9 LST  < 0°C  1 km Extraction for study 

area 0–10°C  

10–20°C 

20-25°C 

>25°C 

10 Relative humidity <68% Not applicable Spatial interpolation 

68-70% 

70-72% 

72-74% 

>74% 

11 Distance to road <5,000 m 1:25,000 Euclidean distance 

calculation 500-1000 m 

1000-1,500 m 

1,500-2,000 m 

>2,000 m 

12 Distance to river <5,000 m 1:25,000 Euclidean distance 

calculation 500-1000 m 

1000-1,500 m 

1,500-2,000 m 

>2,000 m 

13 Distance to 

settlement 

<5,000 m 1:25,000 Euclidean distance 

calculation 500-1000 m 

1000-1,500 m 

1,500-2,000 m 

>2,000 m 

14 Distance to 

agricultural land 

<5,000 m 10-20 cm Euclidean distance 

calculation 500-1000 m 

1000-1,500 m 

1,500-2,000 m 

>2,000 m 

15 Population 

density 

<50 person/sq.km Not applicable Density calculation 

and interpolation 50-100 persons/sq.km 

100-200 persons/sq.km 

200-300 persons/sq.km 

>300 persons/sq.km 
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3.1.3 Resampling and cell size of raster dataset. 

Raster datasets from different sources are stored in different cell sizes 

according to their cell resolutions. However, to process between multiple datasets in 

ESRI ArcGIS environment, the cell resolution, like the registration, needs to be the 

same. When multiple raster datasets of different resolutions are input into any ESRI 

ArcGIS Spatial Analyst function, one or more of the input datasets are automatically 

resampled using the nearest neighbor assignment to the coarsest resolution from input 

datasets. By default, the nearest neighbor resampling technique is used since it is 

applicable to both discrete and continuous value types. A resampling technique is 

necessary because it is rare that an output cell center will align exactly with any cell 

center of the input raster. Thus, to align the cell centers of input raster exactly with 

that of output cell of desired resolution, different techniques have been used and the 

values assigned to the cells of an output raster may differ according to the technique 

used. The default resampling method can be changed to a specific cell size of desired 

resolution in ESRI ArcGIS software. Figure 3.5 shows an example of how the input 

raster is resampled to the coarser resolution. 

 
 

Source: ESRI, 2016 

Figure 3.5   Example of resampling technique. 
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A raster dataset can always be resampled to have a larger cell size; 

however, it will not obtain any greater detail by resampling your raster to have a 

smaller cell size (https://www.esri.com). The level of details represented by a raster 

depends on the cell size, or spatial resolution, of the raster. The cell must be small 

enough to capture the required detail but large enough so that computer storage and 

analysis can be performed efficiently. However, smaller cell sizes result in larger 

raster datasets to represent an entire surface; leading to greater storage space, which 

often results in longer processing time. Therefore, choosing an appropriate cell size is 

not always simple and it must be balanced with the application's need for spatial 

resolution with practical requirements for quick display, processing time, and storage. 

For the current study, a cell size of 100 meters is considered adequate and appropriate 

for the analysis based on the following considerations: 

 The spatial resolutions/scales of various input data,  

 The level of details for the analysis and the objectives of study.  

 The size of the resultant database and the processing time 

according to the extent of study area. 

 Cell limitations of the processing software, viz. SPSS and Excel 

spread sheet. 

3.1.4 Standardization of raster dataset  

The first step before the main statistical analysis is to 

normalize/standardize all the raster datasets in a manner LR requires, otherwise, it 

creates problem during interpretation of the final result (Ayalew and Yamagishi, 

2005). Since the independent variables are measured in different scales/resolutions, 

they do not contribute equally to the analysis, making it difficult to assess the relative 
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importance. Hence, transforming the data to comparable scales can solve this 

problem. So, all factor maps are normalized to a uniform scale from 0 to 1 using the 

Rescale function (Linear scale transformation method) in ESRI ArcGIS software. The 

linear scale transformation method converts the raw data into standardized criterion 

scores. The advantage of this method is a proportional (linear) transformation of the 

raw data. This means, the relative order of magnitude of the standardized score 

remain equal and the scale of measurement varies precisely from 0 to 1 for each 

criteria. 

3.1.5 Sampling of dependent variable 

Selecting an appropriate sample for LR model involves considerations 

of the sample size and the proportion of hotspot and non-hotspot pixels (Schicker and 

Moon, 2012). Thus, an appropriate number of samples should be considered to create 

dependent variable. Basically, there are three methods of sampling that is generally 

applied in LR analysis (Zhu and Huang, 2006). The first one is using data from all 

over the study area. This method leads to unequal proportions of hotspot and non-

hotspot pixels (Ohlmacher and Davis, 2003) and involves large volumes of data 

which is sometimes very difficult to process. The second approach is using all the 

hotspot pixels and equal proportions of non-hotspot pixels. This may decrease number 

of data to be used but it eliminates the associated bias in the data sampling process 

(Zhu and Huang, 2006). For example, Yesilnacar and Topal (2005) used all hotspot 

pixels and equal number of randomly selected non-hotspot pixels. The third method is 

considered as the most reasonable approach. Herein, it divides hotspot pixels into two 

parts, i.e. training and validation dataset. In this approach, there are two cases. The 

first one is the application of unequal pixels (Atkinson and Massari, 1998) and the 
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second one is to use equal proportion of hotspot and non-hotspot pixels (Dai and Lee, 

2002). 

In the current study, since the number of hotspot pixels is 

comparatively less than the non-hotspot pixels, all hotspot pixels are taken into 

account. To avoid the drawbacks attributed to the application of unequal proportion of 

hotspot and non-hotspot pixels, equal numbers of non-hotspot pixels are randomly 

selected from hotspot free area (non-hotspot) and then it is combined with equal 

number of hotspot pixels. Thus, equal number of samples of hotspot and non-hotspot 

pixels are considered for the analysis. These samples (dependent variable) is further 

partitioned into training and validation dataset by applying random sampling 

technique to the proportion of 70% and 30% respectively. The random sampling is 

performed using the Geostatistical Analysis Tools in ESRI ArcGIS software. For LR 

model, dependent variable include randomly sampled hotspot and non-hotspot pixels 

while for FR model, it requires only hotspots pixels as dependent variable. 

3.1.6 Input data preparation for LR and FR model  

For LR analysis, first the entire study area is converted to grids of 

points with 100 m cell size using the fishnet tools in ESRI ArcGIS software, such that 

the cells are exactly registered with hotspot map by applying the processing extent 

and Mask function under raster analysis option. The fishnet points are then used to 

extract the values of dependent variable (0 and 1) from the entire study area which is 

divided into hotspot and non-hotspot pixels using the 70% training dataset. Herein, 

the binary values of dependent variable are extracted using the Spatial Analyst Tools. 

These points are in turn used to extract the values of independent variables for the 

corresponding locations of each training dataset and they are exported to MS-Excel 
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spread sheet. Next, a tabular database is designed in the Excel containing the status of 

dependent variable (hotspot and non-hotspot) for 70% training locations, represented 

by 1 (hotspot pixels) and 0 (non-hotspot pixels). The corresponding values of all the 

independent variables, which are extracted for the sample locations is appended to the 

tabular database at their respective locations for each pixel. Thus, this tabular database 

which contains equal proportion of hotspot and non-hotspot locations (dependent 

variable) together with the corresponding values of all independent variables is 

considered as the input for LR model (Appendix E). 

For FR model, all the factor maps are further reclassified into various 

classes using the reclassify function of ESRI ArcGIS software. Herein, factor classes 

are defined according to the objective, accuracy and scale of the data and based on 

standard practice deduced from various literature reviews (Table 3.3). Once all classes 

of factors are finalized, all the hotspot pixels containing the 70% training dataset are 

superimposed over the predictor maps to determine the frequency ratio of respective 

classes of each factor. 

3.1.7 Multicollinearity analysis 

After defining the predictor variables, one of the important keys in any 

research is consideration of multicollinearity problem among predictor variables to 

obtain the best result from the LR analysis. Multicollinearity refers to the correlation 

among the predictor variable in a linear regression model. Multicollinearity happens 

when the correlation among the predictor variables have perfect linear relationship, 

therefore the estimation of the model coefficients cannot be possibly computed 

(Odzemir, 2011). The existence of correlation among the predictor variables may 

distort the model estimation or interfere with accurate estimation. Chatterjee and Hadi 
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(2006) also reported that multicollinearity indicates some of the explanatory variables 

may be highly correlated. In some case, if multicollinearity between two variables are 

very high, but not perfectly correlated, the model regression coefficients become more 

sensitive to individual predictor that can cause result of model coefficient to appear 

insignificant (Rogerson, 2006). 

Tolerance (TOL) and variance inflation factor (VIF) are two important 

indexes widely used for multicollinearity diagnosis. TOL is the amount of variance in 

an independent variable and is not explained by the other independent variable 

(Rogerson, 2006). Mernard (2002) reported that if TOL value is less than 0.2, 

multicollinearity occurs and becomes more serious when TOL value is smaller than 

0.1. Meanwhile, VIF value is a reverse/reciprocal of TOL value. Thus, if VIF value to 

be equal or over 10, multicollinearity will occur (Rogerson, 2006). O’Brien (2007), 

also reported that TOL of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above 

presented a multicollinearity problem. The TOL and VIF value can be calculated 

using the following Equation: 

 

 𝑇𝑂𝐿 = 1 − 𝑟2 (3.1) 

 𝑉𝐼𝐹 =
1

1−𝑟2
 (3.2) 

 

Where, r2 is associated with the regression of the independent variable on all other 

independent variables. In this research, a TOL value of less than 0.1 and VIF index of 

greater than 10 is applied to detect the multicollinearity problem (O’Brien, 2007). 
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3.2 Wildfire susceptibility analysis using LR and FR models 

Wildfire susceptibility analysis is performed using GIS based LR and FR 

models and optimum model for final susceptibility mapping was selected based 

comparative assessment and validation. The various procedure and steps involved in 

applying the two probabilistic models in the analysis are separately summarized in the 

following sections for each model.  

3.2.1 Wildfire susceptibility analysis using LR model 

In general, the main aim of LR is to find the best fitting model to 

describe the relationship between a dependent variable and a set of independent 

variables (Ayalew and Yamagishi 2005). For LR, the dependent variable is 

dichotomous whereas, independent (predictor) variables are either categorical 

(nominal, ordinal) or continuous (interval or ratio scale).  

In the analysis “wildfire occurrence” or presence of dependent variable 

(hotspot) is coded as “1” (y = 1), while “non-occurrence” or absence of dependent 

variable (non-hotspot) is coded as “0” (y = 0). Furthermore, we can assume that the 

probability of occurrence of wildfire (y =1) as P, and the probability of no wildfires (y 

= 0) as (1 - P). This allows LR to model the probability of occurrence of wildfire in 

association with each variable. Since the outcome of LR model is binary, the 

probability value cannot be expressed as the linear function of the explanatory 

variables. Thus, the predicted probability is transformed to linear function of 

predictors applying the logit transformation by executing the logarithm of P/ (1-P) 

known as odds. Thus, in the case of “n” independent variables, the logistic regression 

equation is expressed as shown below in Equation 3.2. 
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 𝐿𝑜𝑔𝑖𝑡(𝑦) = 𝐿𝑛 (
𝑃

1−𝑃
) = 𝛽𝑜  + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 … … … 𝛽𝑛𝑥𝑛 (3.3) 

 

The logit transformation of the equation effectively linearizes the 

model so that the dependent variable of the regression is continuous in the range of 0 

to 1. Thus, the linear regression equation is the natural log-odds of the probability of 

occurrence divided by the probability of non-occurrence of wildfire hotspot. Here, the 

“P” represents the probability of an event occurrence and “1-P” represents the non-

occurrence of an event, and P/ (1-P) is the odds ratio. Quantitatively, relationship 

between the probability of wildfire occurrences and its influential variables can be 

expressed as (Preisler et al., 2004): 

 

 𝑃 =
1

1+𝑒
−(𝛽𝑜 + 𝛽𝑖𝑥𝑖)

    
1

1+𝑒−𝑧         0 < 𝑃 < 1 (3.4) 

and  

 𝑍 = 𝛽𝑜  +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 … … … 𝛽𝑛𝑥𝑛 (3.5) 

 

Where, P is the probability that wildfire occurs (Y=1) at given location and varies 

from 0 to 1. β0 is the intercept/constant of the model and the βi are the coefficients 

associated with the independent (Xi) variables. Z is the linear combination of the 

independent variables (Xi) in use weighted by their regression coefficients and e is the 

base of the natural log and n is the number of the variables used. The coefficients of 

variables with positive values indicate a positive correlation while those with negative 

coefficients indicate a negative correlation with wildfire occurrence (Yalcin, et al., 

2011). 
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Prior to LR analysis, the categorical variables has to be converted from 

nominal to numeric. The conversion of parameters from nominal to numeric can be 

done through the creation of dummy variables or by coding and ranking the classes 

based on the relative percentage of the area containing hotspots. Though, both 

methods are similar the latter is preferred because it avoids the creation of an 

excessive number of dummy variables and allows consideration of previous 

knowledge of hotspot susceptibility (Yesilnacar and Topal, 2005). If there are many 

parameters, it would create a long regression equation that may even create numerical 

problems and even lead to multicollinearity (Yesilnacar and Topal, 2005). Thus, 

considering the advantage of later method, the categorical variables are coded and 

ranked based on the relative percentage of hotspot density using SPSS software. 

Using LR procedure in SPSS statistical software, the constant and the 

coefficients of independent variables are obtained. The intercept also known as 

constant represents the value of dependent variable when the values of all independent 

variables are zero, and the parameter coefficients explains the change in response (Y) 

for a unit increase in the corresponding predictor variable (X). 

(a) Goodness of fit of LR model (Likelihood ratio test) 

The most common assessment of overall model fit in LR is the 

goodness-of-fit test. A LR model is said to provide a better fit to the data if it shows 

an improvement over a model with fewer predictors. This is performed using the 

likelihood ratio test, which compares the likelihood of the data under the full model 

against the likelihood of the data under a model with fewer predictors. That is, simply 

the chi-square difference between the null model and the model containing one or 

more predictors. Removing predictor variables from a model will always make the 
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model fit less, but it is necessary to test whether the observed difference in model fit 

is statistically significant with the given null hypothesis H0: β = 0. If the estimated 

coefficients (β) is statistically different from 0, then a p-value for the overall model fit 

statistic less than 0.05 rejects the null hypothesis. This indicates that selected variables 

are significant (Sig.). 

Unlike in linear regression with ordinary least square (OLS) 

estimation, there is no true coefficient of determination (R2) statistic in LR which 

explains the proportion of variance in the dependent variable that is explained by the 

predictors. The R2 measure is only appropriate to linear regression with continuous 

dependent variables. However, For LR, an equivalent measure called ‘Pseudo R2’ 

measure is developed, which take a different conceptual approach but aims to mimic 

R2 found in OLS and it is used to measure the variance between two or more 

variables. Due to the binary nature of dependent variable, the pseudo R2 measure will 

tend to be lower than OLS R2 measure (Bio et al. 1998). The pseudo R2 in LR model 

are represented by Cox and Snell R2 and Nagelkerke R2 that generally have lower 

values than the OLS R2, but they are interpreted in the same manner. However, Cox 

and Snell R2 cannot reach the maximum value of 1 and it recommended to report 

Nagelkerke R2 which is modified to attain the R2 value to 1. The pseudo R2 value 

greater than 0.2 indicates a relatively good fit (Clark and Hosking, 1986). The Cox 

and Snell R2 is computed as follows: 

 

 𝑓(𝑥) =
1−𝑒𝑥𝑝 (

−2(𝐿𝐿𝑚−𝐿𝐿0)

𝑁
)

1−𝑒𝑥𝑝 (
2𝐿𝐿0

𝑁
)

   (3.6) 
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Where LLm and LL0 are the log-likelihood for the fitted model and intercept (the 

model without any predictors) respectively, and N is the sample size. 

(b) Wald statistics (Statistical tests for individual predictors) 

A Wald test is used to determine statistical significance of each 

coefficient (β) in the model. It is calculated by taking the ratio of the square of the 

regression coefficient to the square of the standard error of the coefficient. The idea is 

to test the hypothesis that the coefficient of an independent variable in the model is 

significantly different from zero. If the test accepts the null hypothesis, this suggests 

that removing the variable from the model will not substantially harm the fit of that 

model. But, if the null hypothesis is rejected that means the coefficient is different 

from zero, then it gives some evidence that the variable is significant to understand 

dependent variable (Rogerson, 2010). The Wald statistic is computed as given below 

(IBM SPSS, 2012; Menard, 2002): 

 

 𝑊𝑎𝑙𝑑 =
𝛽2

(𝑆𝐸𝛽)
 (3.7) 

 

Where, β is a coefficient of independent variable and SEβ is a standard error that 

measures predictive accuracy. 

Wald statistic is interpreted that if the coefficient (β) is more than 

twice (approximately) its corresponding standard error (SEβ), it may be regarded as 

significantly different from zero (Rogerson, 2010). So, in other words, if the Wald 

statistic value is bigger than 4, the independent variables (X) are significant and it can 

influence the model outcome of dependent variable (Y) because the Wald value 
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bigger than 4 gives a level of significance (P-value) of less than α=0.05 (chi-square 

distribution table). Therefore, in backward LR method, the variable that has P-value 

greater than the confidence interval α=0.05 are considered as insignificant and 

removed from the model. After removing, the calculation is repeated again until the 

remaining variables have P-value lower than the value of confidence interval (IBM 

SPSS, 2012). 

(c) Odds Ratio 

In general, most LR analysis outputs odds ratios (OR) along with 

the regression coefficients (β). These odds ratios are the exponential of the 

corresponding regression coefficient (eβ). The OR indicates the change in “odds” of 

being in one of the categories of the dependent variable for every unit increase of any 

given variable in the model. It represents the ratio of the probability that an event will 

occur (hotspot) to the probability that it will not occur (Non-hotspot). While 

coefficient (β) is convenient for testing the usefulness of predictors, odds ratios can be 

used to interpret as much easier than coefficient (β). (IBM SPSS, 2012). OR shows 

how the odds changes for one-unit increase in the value of predictor variable. OR is 

expressed as: 

 𝑂𝑅 =
𝑜𝑑𝑑𝑠(𝑥+1)

𝑜𝑑𝑑𝑠(𝑥)
=

𝑃(𝑥+1)

1−𝑃(𝑥+1)
𝑃(𝑥)

1−𝑃(𝑥+1)

=
𝑒𝛽0+𝛽1(𝑥+1)

𝑒𝛽0+𝛽1(𝑥) = 𝑒𝛽 (3.8) 

If the coefficients (β) is positive, the corresponding value of OR 

is greater than 1, which means the wildfire event is more likely to occur or for every 

unit increase of a given variable the odds of the probability of wildfire occurrence 

increases. If coefficients (β) is negative, the corresponding OR is less than 1 
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indicating that the odds of event will decrease or for every unit increase of a given 

variable, the odds of the probability of wildfire occurrence decreases. If coefficient (β) 

is zero, a value of OR is equal to 1 indicating that there is no change in odds as the 

variable increases (IBM SPSS, 2012). 

Using the coefficients of LR model, the linear combination of the 

independent variables of Z function is determined using Equation 3.5. This process is 

performed using the raster calculator function of Spatial Analyst tools in ESRI 

ArcGIS software. The next step is to calculate the predicted probability (P) of the 

wildfire occurrence for the entire study area. Herein, the final probability values of the 

P function as shown by Equation 3.4 is calculated to generate the probability map, 

which ranges between 0 and 1.  

3.2.2 Wildfire susceptibility analysis using FR model 

Under FR model, based on the observed spatial relationship between 

the hotspot locations (training dataset) and each hotspot related factors, the FR of each 

hotspot related factors classes (see Table 3.3) are calculated using FR equation given 

below:  

 𝐹𝑅 =
𝐻𝑜𝑡𝑠𝑝𝑜𝑡 𝑅𝑎𝑡𝑖𝑜

𝐴𝑟𝑒𝑎 𝑅𝑎𝑡𝑖𝑜
=

𝐴 𝐵⁄

𝐶 𝐷⁄
=

𝑃

𝐾
 (3.9) 

 

Where, A is the number of hotspot pixels in each class of factor; B is the total number 

of hotspot pixels in the entire study area; P represents % of hotspot pixels for entire 

study area; C is the number of pixels (hotspot and non-hotspot) in each class of factor; 

D is the total number of pixels (hotspot and non-hotspot) for the entire study area; K 

represents the % of pixels (hotspot and non-hotspot) in each class for the factor.  
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To compute the FR of each hotspot related factors (independent 

variables), the area ratios and hotspot ratios of each factor’s class is calculated. The 

area ratio (C/D) is calculated by dividing the number of pixels in each factor’s class 

by the total number of pixels in the whole study area. Similarly, the hotspot ratio 

(A/B) is calculated by dividing the number of hotspot pixels in each factor class by the 

total number of hotspot pixels in the entire study area. Then the frequency ratio values 

of each factor classes is then computed by dividing the hotspot percentage (P) by area 

percentage (K) as shown in Equation 3.9. FR values of 1 illustrate an average 

correlation, values greater than 1 illustrate a high correlation (indicate higher chance 

of having fire in that specified class), and a value less than 1 indicates a lower 

correlation (Oh et al., 2011; Ozdemir and Altural, 2013). 

The next step is to assign these computed frequency ratio values of 

each class of factors using the reclassify option of Spatial Analyst tool in Arc GIS. 

Finally, all the factor maps, with assigned FR values, are added to produce wildfire 

susceptibility index (WSI) map using the Equation 3.10 below. 

 

 𝑊𝑆𝐼 = 𝐹𝑅1 + 𝐹𝑅2 + 𝐹𝑅3 + ⋯ … … … … … … . 𝐹𝑅𝑛 (3.10) 

 

Where, WSI represents wildfire susceptibility index, nFRFRFRFR ,.....,, 321  represents 

frequency ratio factor maps of wildfire influential factors. WSI value represents the 

relative susceptibility to forest fire occurrence, where higher values are associated 

with high susceptibility and lower values will represent low susceptibility. 
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3.3 Accuracy assessment and validation 

The accuracy assessment and validation of predicted wildfire susceptibility 

maps is the most important component, otherwise the prediction models has no 

scientific significance (Chung and Fabbri, 2003). The accuracy assessment of the 

wildfire probability maps from the LR and FR models is performed using ROC 

method based on the independent validation dataset (30%). The model that provides 

better ROC value, is selected for the final wildfire susceptibility mapping.  

Basically, ROC determines whether the model is fit or not by checking the 

prediction performance of the model. It determines the accuracy of classification 

model at a user defined threshold value using Area under Curve (AUC) of ROC. The 

AUC, also referred to as index of accuracy (A) or concordant index, represents the 

performance of the ROC curve. Higher the area, better is the model. In general, the 

ROC graph is plotted with true positive rate (sensitivity) on Y-axis against false 

positive rate (1-specificity) on X-axis for possible classification thresholds (Figure 

3.6). The true positive rate (sensitivity) is the proportion of hotspot that are correctly 

classified, while true negative rate (specificity) is the proportion of non-hotspot 

correctly classified. Here, false positive rate (1-specificity) and false negative rate (1-

sensitivity) are the proportion of non-hotspot and hotspot pixels that are erroneously 

classified. Both true positive rate (sensitivity) and false positive rate (1-specificity) 

ranges from 0 to 1. The result of ROC measured by area under ROC curve varies 

from 0.5 to 1. If ROC value is equal to 1, it indicates a perfect fit and ROC value of 

0.5 indicates a random fit. 
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Figure 3.6   Characteristics of ROC curve.  

 

Practically, the derived probability maps of LR and FR models from GIS 

environment were firstly exported to ERDAS Imagine software in IMG format. Then, 

it is imported to IDRISI software and converted to RST format. Subsequently, the 

training and validation dataset are also imported to IDRISI environment to compute 

the ROC from both the datasets. Herein, the probability maps represent the input 

image while the training and validation map is used as reference image for the 

calculation of ROC in IDRISI software. The probability map is then compared with 

the training and validation dataset to obtain the respective ROC values and 

consequently the success and prediction rate curves are constructed for both datasets. 



 

 

 

CHAPTER IV 

RESULTS AND DISCUSSION 

 

 The combination of geoinformatics technology with relevant geospatial models 

can be a reliable tools to identify the wildfire susceptibility zones of particular area. The 

study applied these novel approach to conduct a wildfire susceptibility analysis in 

Thimphu and Paro districts of Bhutan using historical wildfire inventory from remote 

sensing satellite data and the three key influential factors (environmental, climatic and 

anthropogenic) of wildfire. Wildfire hotspots are obtained by Aqua/Terra MODIS of 

NASA’s EOS while various influential factors are derived from collected input 

database. The LR and FR models are the primary analysis applied with remote sensing 

and GIS tools. In this chapter, the major results of the wildfire susceptibility analysis 

are reported and discussed. Herein, the results and analysis for LR and FR models are 

presented separately. 

 

4.1 Input variables for LR model 

The input for LR analysis comprise of fifteen influential factors as described in 

the Section 3.1.2. The summary of input variables used in the LR model is presented in 

the Table 4.1 with abbreviations, descriptions and data types for three different category 

of variables. The input raster maps of dependent and independent variables are shown 

in Figure 4.1 and Figure 4.2.
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Table 4.1   Input variables used for LR analysis. 

Factors No Abbreviations Description Data type 

Dependent  1 Y 1 = Hotspot Dichotomous 

 2 X 0 = Non-Hotspot  

Independent 1 ELV Elevation Continuous 

Environmental factors 

2 SLP Slope Continuous 

3 ASP Aspect Categorical 

4 CRV Curvature Continuous 

5 TWI Topographic wetness index Continuous 

6 EVI Enhanced vegetation index Continuous 

7 LU Land use Categorical 

Meteorological factors 

8 RF Rainfall Continuous 

9 LST Land surface temperature Continuous 

10 RH Relative humidity Continuous 

Anthropogenic factors 

11 Dist_Road Distance to road Continuous 

12 Dist_River Distance to river Continuous 

13 Dist_Sett Distance to settlement Continuous 

14 Dist_AgriL Distance to agricultural land Continuous 

15 Pop_Density Population density Continuous 

 

 

Figure 4.1   Dependent variable (Hotspot map) used in the LR analysis. 
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Figure 4.2   Independent variable (predictor maps) used in the LR analysis. 

 

4.2 Multicollinearity analysis 

To detect the multicollinearity problem among predictor variables, TOL value 

of 0.1 and VIF index 10 were set as benchmark. If the TOL value is less than 0.1 and 

VIF value is greater than 10, the variables are considered to have high 

correlation/multicollinearity (Section 3.1.7). The results of multicollinearity analysis 

which is performed in SPSS statistical software is reported in Table 4.2. 
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Table 4.2   Results of multicollinearity diagnostic test of independent variables  

No Wildfire influential factors  
Collinearity Statistics 

TOL VIF 

1 Elevation (ELV) 0.161 6.218 

2 Slope (SLP) 0.840 1.190 

3 Aspect (ASP) 0.855 1.170 

4 Curvature (CRV) 0.506 1.974 

5 Topographic wetness index (TWI) 0.496 2.016 

6 Enhanced vegetation index (EVI) 0.624 1.602 

7 Land use (LU) 0.875 1.143 

8 Rainfall (RF) 0.684 1.461 

9 Land surface temperature (LST) 0.543 1.842 

10 Relative humidity (RH) 0.184 5.443 

11 Distance to road (Dist_Road) 0.546 1.830 

12 Distance to river (Dist_River) 0.515 1.943 

13 Distance to settlement (Dist_Sett) 0.282 3.541 

14 Distance to agriculture land (Dist_AgriL) 0.270 3.697 

15 Population density (Pop_Density) 0.174 5.753 

 

The test results confirmed that there is no multicollinearity among the 

independent variables. In fact, the lowest TOL value is 0.161 and the highest VIF index 

is 6.218 for elevation which is greater than TOL threshold (0.1) and less than VIF 

threshold (10). Meanwhile, all other variables have TOL and VIF values within the 

threshold value which indicates there is no multicollinearity problem among the 

independent variables. Hence, all independent variables are applied for LR and FR 

analysis. 
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4.3 Wildfire susceptibility analysis using LR model 

For LR analysis, the input for dependent variable consists of equal number of 

samples for the presence and absence of hotspot. Based on the random partition of 

dependent (2,546 pixels) into training and validation dataset to the proportion of 70% 

and 30% respectively, 1,782 hotspot pixels (70%) are selected for the analysis and 

another 764 hotspot pixels (30%) are retained for accuracy assessment and validation 

of result. An equal number of non-hotspot pixels (1,782 pixels) are also randomly 

selected from the non-hotspot pixels and then combined with hotspot pixels. Therefore, 

total number of hotspot and non-hotspot comprise of 3,564 pixels for the entire study 

area as training dataset. Meanwhile, the corresponding values of independent variables 

for 3,564 pixels at the same location of hotspot and non-hotspot were extracted and 

finally combined in MS-Excel spreadsheet as the input for LR analysis. Before LR 

analysis, the relative percentage of hotspot density is used to transform nominal variable 

to numeric variable since this avoids the creation of an excessive number of dummy 

variables (Section 3.2.1). 

The LR analysis in the SPSS statistical software program includes all fifteen 

influential factors of wildfire: elevation (ELV), slope (SLP), aspect (ASP), curvature 

(CRV), topographic wetness index (TWI), enhanced vegetation index (EVI), land use 

(LU), rainfall (RF), land surface temperature (LST), relative humidity (RH), distance 

to road (Dist_Road), distance to river (Dist_River), distance to settlement (Dist_Sett), 

distance to agriculture land (Dist_AgriL) and population density (Pop_Density). The 

LR model in SPSS offers several variable entry methods, namely, Enter, Forward 

Conditional, Forward LR, Forward Wald, Backward Conditional, Backward LR, and 

Backward Wald.  
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In this research, a Backward LR with stepwise analysis using the maximum 

likelihood method is employed. Maximum likelihood estimation involves finding the 

value(s) of the parameter(s) that give rise to the maximum likelihood of occurrence of 

wildfire (IBM SPSS, 2012). The backward stepwise process first starts by entering all 

fifteen predictor variables into the model and then sequentially eliminates the predictor 

variable based on the probability of the likelihood-ratio statistic, based on conditional 

parameter estimates. A variable is retained in the model if the probability of its score 

statistic is less than the “Entry value” (0.05) and it is removed if the probability is 

greater than the “Removal value” (0.01) i.e., it removes the predictor variable with 

largest p-value (i.e. the variable with least statistically significant) greater than the 

significant threshold value one by one. After removal, it refits the model and the same 

process is repeated until all the p-values are less than the cutoff value. The backward 

elimination process of variable removal terminated after the 4th step. In the process, 

three insignificant predictor variables including curvature (CRV), slope (SLP) and 

distance to river (Dist_River) were removed while twelve significant predictor 

variables were retained by the model. 

The model statistics and classification summary of LR analysis reported in 

Table 4.3 conveys that the number of hotspots (presence) and non-hotspots (absence) 

which are coded as 1 and 0 respectively are observed as the dependent variable, while 

the predicted output of the dependent variable based on the full LR model suggests how 

many observed hotspot and non-hotspot are correctly predicted. The classification 

summary table shows that, the predicted accuracy of hotspot is approximately 69% and 

that of non-hotspot is 71% respectively. Thus, the overall percentage of correct 

classification is approximately 70%. In other words, the model predicted that the 
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probability of wildfire occurrence (presence) is correctly classified or predicted by 69% 

(1,226/1,782) and the probability of non-occurrence of wildfire (absence) is correctly 

predicted by 71% (1,262/1,782). The former is called the sensitivity of prediction, that 

is, the percentage of hotspot occurrence correctly predicted and the latter is known as 

specificity of the prediction, that is, the percentage of non-occurrence (non-hotspot) 

correctly predicted. Overall, the model predicted correctly for 2,488 pixels out of 3,564 

pixels with an overall success rate of 70%. The cutoff value is 0.50 which means that 

if the predicted probability of a case being classified into "hotspot" category is greater 

than or equal to 0.50, then that particular case is classified as "hotspot" category. 

Otherwise, the case is classified as the "non-hotspot" category.  

Meanwhile, the LR goodness of fit measured by the Nagelkerke R2 statistic of 

0.267, which is the pseudo-R2, indicates that the estimated LR model can approximately 

explain 27% of variance in wildfire occurrence. The value of pseudo-R2 (>0.2) indicates 

that the performance of the model is good (Clark and Hosking, 1986). Thus, the derived 

LR model can efficiently explain and interpret the relationship between the independent 

variables and the occurrence of wildfire.  

 

Table 4.3   Model statistics and classification summary of LR analysis. 

Observed 

Predicted 

Hotspot Percentage 

Correct Absence Presence 

Hotspot 
Absence 1,262 520 70.8% 

Presence 556 1,226 68.8% 

Overall Percentage 70% 

Nagelkerke R Square : 0.267 

Cox & Snell R Square : 0.20 

ROC : 0.76 

SE : 0.008 

Note: The cutoff value is 0.50 
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Similarly, Cox & Snell R2 can explain the variance of wildfire occurrence, 

however, the Cox & Snell R2 value cannot attain the maximum value as Nagelkerke R2 

(Section 3.2.1a). The ROC value of 76% with the standard error of 0.008 indicates that 

the performance of the model is good with the training dataset. Meanwhile, the chi-

square statistics and its significance level indicates that the overall model is statistically 

significant since the p-value is less than the critical value (0.05). 

The final results of LR analysis is provided in Table 4.4. The variables in 

the equation provides the estimated regression coefficient (β), the Wald statistic and the 

Odds Ratio (Exp(β)) for each variable category. They indicate the contribution of each 

independent variable to the model and its statistical significance. All the variables have 

the estimated coefficients (β) statistically different from 0 with the given null 

hypothesis H0: β = 0. The twelve retained variables have a significance value (Sig.) less 

than 0.05 and they are considered as significant. The Wald with Chi square test is used 

to examine the statistical significance of the individual regression coefficients (β) at 

95% confidence interval for the corresponding degree of freedom (df). The test 

indicates that all twelve variables are significant, because all the Wald values are greater 

than 4 which give the level of significance value (p-value) less than 0.05 (Table 4.4). 

The coefficient (β) of LR model indicates the contribution of each factor 

to wildfire occurrence and its statistical significance. The relative importance of 

independent predictor variables are assessed and the coefficients (β) are used to predict 

the probability of wildfire. The parameter coefficients (β) explains a change in the 

dependent variable (probability of occurrence of wildfire) for a unit increase in the 

corresponding independent variables. The variables with positive coefficients indicate 
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positive correlation while negative coefficients indicate negative correlation to wildfire 

occurrence. 

4.3.1 Impact of influential factors on wildfire occurrence (LR) 

The results of LR analysis revealed that the probability of wildfire 

occurrence have a significant positive correlation with LST, ASP, Dist_AgriL, 

Dist_Sett and LU variables, while Dist_Road, ELV, Pop_Density, EVI, RH, RF and 

TWI have significant negative correlation. Meanwhile, the variables including CRV, 

SLP and Dist_River were eliminated during the process of stepwise LR analysis. 

 

Table 4.4   Variables in the equation retained by LR analysis (LR result). 

No Factors β S.E. Wald df Sig. Exp(β) 

1 Land surface temperature (LST) 5.099 0.480 112.995 1 0.000 163.778 

2 Distance to agriculture land (Dist_AgriL) 1.769 0.320 30.562 1 0.000 5.862 

3 Aspect (ASP) 1.540 0.137 125.692 1 0.000 4.663 

4 Distance to settlement (Dist_Sett) 0.997 0.354 7.921 1 0.005 2.709 

5 Land use (LU) 0.805 0.225 12.851 1 0.000 2.237 

6 Topographic wetness index (TWI) -0.680 0.231 8.671 1 0.003 0.507 

7 Rain fall (RF) -0.790 0.328 5.792 1 0.016 0.454 

8 Relative humidity (RH) -1.388 0.446 9.668 1 0.002 0.250 

9 Enhanced vegetation index (EVI) -1.798 0.565 10.135 1 0.001 0.166 

10 Population density (Pop_Density) -1.841 0.436 17.786 1 0.000 0.159 

11 Elevation (ELV) -2.937 0.563 27.238 1 0.000 0.053 

12 Distance to road (Dist_Road) -3.261 0.366 79.312 1 0.000 0.038 

 Constant -1.785 0.601 8.833 1 0.003 0.168 

Note: β = logistic coefficient; S.E. = standard error of estimate; Wald = Wald chi-square values;  

df = degree of freedom; Sig. = Significance; Exp(β) = exponentiated coefficient. 
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This suggests that they have very weak correlation with the wildfire 

occurrence or their influence on the occurrence of wildfire is negligible compared to 

those factors retained by the model. The variables with positive coefficients have more 

explanatory capability than variables with negative coefficients in terms of causing 

wildfire in the study area. The variables with negative coefficients will tend to suppress 

the probability of wildfire occurrence, which means, for a unit increase in the variables 

with negative coefficients, the probability of wildfire occurrence will decrease. The 

results indicate that the most significant influential factors of wildfire are LST and 

Dist_Road followed by ELV, Pop_Density, EVI, Dist_AgriL, ASP and RH. These 

factors have very high degree of correlation/influence as indicated by their coefficients. 

The remaining factors have relatively low influence. Consequently, areas with high land 

surface temperatures at lower elevations with low rainfall and relative humidity, and 

areas closer to the roads will have high probability values of wildfire, and therefore are 

more prone to wildfire. 

Further, the weight of each independent variable can be interpreted from 

the exponentiated coefficients “(Exp(β))” referred as odds ratio (OR) (Section 3.2.1c). 

All variables with positive coefficients have OR values greater than 1, indicating a 

positive influence. i.e., the probability of wildfire occurrence will increase with every 

one unit increase in this parameters. In contrast, all variables with negative coefficients 

have OR value less than 1 indicating negative influence. In general, the current analysis 

of LR model revealed that the influence of variables including LST, ASP, LU, 

Dist_Road, ELV, Pop_Density, EVI, RH, RF and TWI principally agree with basic 

characteristic of wildfire and found consistent with the previous works of Zhang et al. 

(2009); Mohammadi et al. (2014); Pourtaghi et al. (2014); Guo et al. (2015); Zhang, 
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Han, and Dai (2013) and Abdi et al. (2016). The details on impact of each variables and 

their degree of correlation to the occurrence of wildfire is interpreted and summarized 

in the following sections: 

The value of the odds of LST indicates that, as the LST increases, the 

odds of occurrence of wildfire increase by a factor of 163.788. Here, it can be observed 

that LST is the most notable influential factor of wildfire compared to all other 

variables. This signifies that temperature plays an important role in predicting wildfires 

which is true because LST has significant impact on the moisture content of the fuels. 

So areas with high LST can dry fuels and surrounding areas more quickly, making more 

susceptible to fires. The result is consistent with the previous work of Zhang et al. 

(2009); Mohammadi et al., (2014) and Pourtaghi et al., (2014). 

The positive linear relationship of the proximity variables Dist_AgriL 

and Dist_Sett indicates that as the Euclidean distance increases the occurrence of 

wildfire fire increases. This is an unexpected result because generally areas closer to 

the agriculture land and settlement areas are more likely to initiate the wildfire due to 

human activities like burning of debris (agriculture/orchards/waste). To verify the 

result, the wildfire hotspots were overlaid with the raster maps of agriculture land and 

settlement. It was observed that for certain areas closer to the agriculture lands and 

settlements, show high density of hotspot while more fires are also seems scattered 

farther away from the agriculture and settlement areas in the northern part of Paro and 

southeastern part of Thimphu. As a result, the overall impact seems to show positive 

correlation to the Euclidean distance of agriculture land and settlements. Wu et al. 2015 

also reported that all variables do not necessarily show a consistent linear relationship 

with the wildfire occurrence and instead it is important to focus on the possible reasons 
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for such type of surprising outcomes. The other possible reason could be here 

mentioned, because unlike in the past where farmers used to clear their registered land 

for agriculture, burn grasslands and practice shifting cultivation that caused more fire 

incidences, nowadays such traditional practices have declined with improved farming 

techniques and more awareness on fire has deviated the traditional practice of using 

fires. Ultimately this may have reduced fires incidences in agriculture lands. Moreover, 

in the analysis, all those registered lands irrespective of cultivation status are considered 

as agriculture land which may have accounted for less number of fires compared to 

overall area. In addition, majority of agriculture land are paddy field, especially in the 

lower valleys which may have resulted to less numbers of wildfire unlike other 

farmlands. Most fires are suspected to have occurred along the periphery or away from 

the agriculture lands. Likewise, most of the settlements are more or less concentrated 

in lower valleys while wildfires usually occurs on either side of the valleys above the 

settlement areas spreading uphill. Furthermore, nearby the settlement areas, people 

collect fallen leaves and debris of pines and deciduous trees resulting in less 

accumulation and concentration of litter and duff on the forest floor. This practice also 

in turn may have resulted in the positive correlation to the Euclidean distance. 

In general, the aspect (ASP) variable which determines the intensity and 

direction of sunlight received by the face shows a significant positive 

correlation/influence to wildfire with OR value of 4.663 (β=1.540) as expected. This 

implies that aspect plays an important role in determining the probability of wildfire in 

the study area. 

Likewise, land use (LU) further contributes to the occurrence of wildfire 

with positive influence. This indicates that the overall impact of the land use have a 
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positive influence to the occurrence of wildfire. The study area is characterized by a 

rugged topographic terrain with varieties of vegetation cover. The dry shrubs and 

meadows on the sloppy valleys and mountain bases are more susceptible to fires. In 

addition, Thimphu and Paro are the fastest developing districts in Bhutan where many 

developmental activities are taking place at a rapid pace, and many people from the 

rural areas of Bhutan migrate to these areas looking for jobs and better opportunities. 

As a result, a significant change in the land use may have taken place with increased 

population over the time, which in turn may have a positive impact on the occurrence 

of wildfire. The OR indicated that the probability of wildfire occurrence in the area 

increases by the factor of 2.237 for land use variable. 

One of the most important human factor, distance to road (Dist_Road) 

revealed a negative correlation as expected. This shows that, as the Euclidean distance 

to the road decreases, the probability of occurrence of wildfire increases, indeed a 

positive influence, i.e., the more closer to the vehicle road, it is more likely that the 

incidence of wildfire will increase. The results signifies a strong evidence that road 

access is a significant contributing factor in the probability of wildfire occurrence. Most 

human-caused wildfires start along roads and these fires constitute the majority of the 

wildfires that burn across many areas. While roads do improve access for firefighters 

and sometimes even act as breaklines for fuel, those same roads provide access to 

careless people including drivers, campers, smokers and arsonists which increases in 

human-caused wildfire. Due to this, the overall influence of access to road system on 

wildfire is quite important and need to analyze properly. In addition, wildfires are 

initiated by the road side laborers while burning the bitumen and it is also reported as 

one of the causes of wildfire in Bhutan. Moreover, in the current study area, the 
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topography is not uniform and most of the major roads are located along the sloppy 

mountain bases following the main rivers. So most fires starts from the base of hilly 

terrain spreading uphill where access to road and water becomes very difficult to 

contain the fire. As a result, the probability of wildfires are high within the proximity 

of roads. 

The negative coefficient value of elevation (ELV) indicates that, as the 

altitude of the place above the mean sea level increases, the probability of wildfire 

occurrence decreases. This is because, places at higher elevation normally experience 

more rainfall and remains much cooler and wetter than the places at lower elevation 

that experience higher temperature and lower rainfall. Moreover, places at higher 

altitudes experience frequent snow falls during the winter season coinciding with the 

fire season. As a result, fire behaviour trends are less severe at higher altitude while 

more fires occur at lower altitudes as indicated by the negative correlation of elevation. 

The OR of less than 1 (0.053) also indicates that odds of wildfire event will decrease 

for every unit increase of an elevation by a factor of 0.053. The results is true and 

consistent with the findings of the previous researches (Zhang et al., 2009 and 

Mohammadi et al., 2014). 

The topographic wetness index (TWI) shows a negative correlation with 

the wildfire occurrence. This means, the areas with low TWI values are more 

susceptible to wildfires than those areas that have high TWI values. The results is true 

because TWI represents the measure of potential wetness in any portion of the 

landscape. It identifies and locates areas where water bodies, ponds or any wet areas 

exist in a landscape. Therefore, wetter areas will have lower probability to ignite a fire 
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than the dry areas, hence TWI indicates a negative influence in the occurrence of 

wildfire. 

The mean annual rainfall (RF) and relative humidity (RH) are two 

important factors which determine the moisture content and fuel accumulation which 

in turn effects on the probability of wildfire occurrence. Higher rainfall and high 

relative humidity contribute to fuel moisture, decreasing the possibility of fire ignition. 

This is confirmed by both variables showing a negative correlation. This indicates that, 

places that experience lower annual rainfall have higher chance of wildfire while places 

with higher annual rainfall have less chance of wildfire. This implies that, areas 

associated with high rainfall may have reduced the fire occurrence by increasing the 

fuel moisture content, limiting the fire ignition and spread; On the contrary, rains falling 

outside the fire season may influence wildfire by favouring seasonal growth of 

vegetation/grass lands resulting in an increase availability of dry fuels, where fires can 

easily start and spread during the fire season. Likewise, as the relative humidity in the 

air decreases, the moisture content of the fuels in the surrounding area tend to dry faster, 

increasing the probability of ignition. Though, influence of relative humidity is 

relatively low compared to other variables, the result is consistent with the findings of 

previous studies (Zhang et al. 2009 and Guo et al., 2015). The OR value indicates that, 

for every unit increase in the RF and RH values, the probability of wildfire occurrence 

decreases by the factor of 0.454 and 0.25 respectively. 

The enhanced vegetation index (EVI) which represents the amount of 

fuel available for ignition shows a negative influence, meaning that as the EVI values 

increases the probability of wildfire ignition decreases. In general this is not always 

true, because the high value of EVI means there is more vegetation cover and normally 
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should have a higher chance of wildfire occurrence due to more concentration of ground 

biomass. However, the result seems true and reasonable because majority of the 

wildfire are found in the lower sloppy valleys where the area is mostly covered by 

shrubs and meadows, and in sparsely vegetated areas with small trees and high 

concentrations of dry bushes. Certainly, the EVI values of shrubs and meadows will be 

lower than those with highly vegetated areas like coniferous and broad leaf forest. Thus, 

the result is agreeable because the overall impact of EVI in the current study indicates 

a negative correlation due to low EVI values of shrubs and meadows compared to 

highly vegetated areas. 

The population density which represents the local socioeconomic 

activity indicates a negative correlation. This illustrates that wildfires are less frequent 

in areas that have higher population density. In general, the impact of population density 

in the particular area can have both positive and negative impact on the frequency of 

fires. The positive influence would be that, with rise in population density it is more 

likely that people may induce more fires. On the other hand, more people and more 

resources can be deployed to contain the fire and help in the reduction of fire severity 

and prevent it from spreading. Hence, it can have a negative impact on fire frequency 

as well as in spreading and fire severity. In addition, when an area has no human or less 

population, there is a risk that the fires may increase and spread without any 

interference. In the present study, the negative impact of population density on 

probability of wildfire is agreeable. Thimphu and Paro being one the most developed 

districts constitute the population with high literacy rates and have more awareness on 

the consequences and impacts of fire. Consequently, the overall impact of population 

density have negative correlation in the wildfire occurrence. Meanwhile, the study on 
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the impact of human population density on the fire frequency at the global scale also 

found that the assimilated charcoal records and analysis of regional fire patterns from 

remote sensing observations showed a decline in fire frequency with increase in human 

population (Knorr et al., 2014). Thus, the result is consistent with this finding. 

In summary, LR model demonstrates that, while most of the fires are 

induced by the human activities along the roads, the probability of wildfire occurrence 

are mainly influenced by environmental, climatic and fuel variables. This indicates that 

the spread of wildfire is ultimately a function of various factors described in section 2.5 

of Chapter 2. While the frequency of wildfire was observed higher closer to the road, 

more fires are also predicted away from the agriculture and settlement areas. In 

addition, the population density have a negative correlation. Although this result seems 

contradictory based on the location of wildfire hotspots, it appears to be true because 

once the fire is ignited, it tends to burn more frequently when there is less or no human 

interference with continuous flow of fuels in faraway places. So wildfires can 

consistently sustain burning when they spread beyond their ignition source into more 

remote areas. Although fires start closer to roads, the areas that actually burn most 

frequently are the non-urban areas where fires spread after ignition. Another reason 

could be because, for the current analysis the anthropogenic variables only represents 

for a temporary time period, whereas the hotspot data used for the analysis spanned a 

period of last 15 years. Despite the temporal mismatch, the currents results are found 

consistent with most of the previous research as discussed. This is supported by the fact 

that, while anthropogenic variables are the best predictors for the number of fires that 

start, biophysical variables are better at explaining the variation in area burned. 

Therefore, the most important predictors for the LR analysis also include environmental 
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variables, especially topographic data that remains constant over the temporal extent of 

the fire frequency data. As a result, high number of fire incidence in the particular area 

does not always need to have a positive influence with all considered variables. This 

can be further explained by the fact that, although Thimphu district has the highest 

number of fire incidence compared to other areas of Bhutan, the overall acreage 

damaged is relatively moderate or low compared to other areas. This indicates that there 

are certain factors that may have accounted for negative influence to the occurrence of 

wildfire. For instance, in the core urban areas of Thimphu and Paro, there is more 

support from the sectors like armed forces, police personals, volunteers, Desups, fire 

fighters etc. to contain the fire as soon as it is detected. In addition, accessibility to the 

wildfire is facilitated by the existence of numerous approach roads, while this may not 

be the case in other remote areas. Nevertheless, majority of the areas that are away from 

the human influences have low probability of fire occurrence. Therefore, although fires 

spread away from ignition sources and burn more frequently outside urban and 

settlement areas, there are also even more remote areas that burn with much less 

frequency or no fire incidence at all. However, areas closer to the road associated with 

high human activities are found more conducive to fire and they are more likely to 

experience high number of fire incidences. 

The results of LR model revealed that, the most significant influential 

factors of wildfire are LST and Dist_Road followed by ELV, Pop_Density, EVI, 

Dist_AgriL, ASP and RH. These factors have very high degree of correlation/influence 

as indicated by their coefficients. 
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4.3.2 Wildfire probability map generation 

Using the coefficients (β) values of LR analysis, the predicted 

probability of the entire study area for the observed values of independent variables is 

calculated. For each cell in the study area, the values of independent variables are 

multiplied by their respective coefficients and then they are summed up including the 

estimated constant (β0). Finally the estimated probability map of wildfire hotspot is 

obtained using the probability equation. As described in Section 3.2.1, this is achieved 

using multiple regression and the probability equation of LR model in the following 

steps:  

First the multiple regression equation is applied in three steps for 

environmental, climatic and anthropogenic variables separately and then later added 

together with the estimated constant of the model to complete the multiple regression 

equation all variables. These combined Z values which represents the linear 

combination of all variables weighted by their regression coefficients is then applied to 

formulate the probability equation for the entire study area as shown below: 

 

𝑍𝐸 = 1.54(𝐴𝑆𝑃) − 2.937(𝐸𝐿𝑉) + 0.805(𝐿𝑈) − 1.798(𝐸𝑉𝐼) − 0.68(𝑇𝑊𝐼) (4.1) 

𝑍𝐶 = 5.099(𝐿𝑆𝑇) − 1.388(𝑅𝐻) − 0.79(𝑅𝐹) (4.2) 

𝑍𝐴 = 1.769(𝐷𝑖𝑠𝑡𝐴𝑔𝑟𝑖𝐿) − 3.261(𝐷𝑖𝑠𝑡𝑅𝑜𝑎𝑑) + 0.997(𝐷𝑖𝑠𝑡𝑆𝑒𝑡𝑡) − 1.841(𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦) (4.3) 

𝑍 = −1.785 + 𝑍𝐸 + 𝑍𝐶 + 𝑍𝐴 (4.4) 

 

Now, by applying the value of “Z” in the following LR probability equation 

 

𝐿𝑜𝑔𝑖𝑡 (𝑌) = 𝑙𝑜𝑔
𝑝

(1−𝑝)
=

𝑒(𝛽𝑜 + 𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3…….𝛽𝑛𝑥𝑛)

1+𝑒(𝛽𝑜 + 𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3…….𝛽𝑛𝑥𝑛)   (4.5) 
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=> 𝑃 =
1

1+𝑒−(𝛽𝑜 + 𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3…….𝛽𝑛𝑥𝑛)    
1

1+𝑒−𝑧 (4.6) 

 

Where, 𝑍𝐸 , 𝑍𝐶  and 𝑍𝐴 are the parameters which represents the linear 

combination of environmental, climatic and anthropogenic variables in use weighted 

by their individual regression coefficients respectively, and P is the probability of 

occurrence of wildfire hotspot. 

In practice, the probability map was generated using the Model builder 

in ESRI ArcGIS software with the relevant tools (Figure 4.3). This technique is very 

efficient and convenient which enables to run the model interactively whereby a user 

can input the regression coefficients or change variables efficiently. The model consist 

of three main components. The process first starts with the calculation of multiple 

regression for three categories of independent variables which include environmental, 

climatic and anthropogenic variables. The regression coefficients of each independent 

variable for respective categories were assigned separately by using the raster calculator 

tool in the model. In the second step, the weighted independent variables for all the 

three components are then summed up by applying multiple regression equation in 

raster calculator tool. The result obtained from these process is three raster’s (ZE, ZC 

and ZA) for three categories of independent variables.  

In the next step, all three raster’s are added together to obtain the 𝑍 value, 

the linear combination of all the independent weighted by their respective regression 

coefficients. Herein, the constant of LR model was included in the summation. Finally, 

the probability equation of LR is applied to obtain the wildfire probability map of the 

entire study area. 
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Figure 4.3   Model structure for LR analysis in ESRI ArcGIS 10.3 software. 

 

The result is a raster layer with the cell values representing the estimated 

probability of wildfire occurrence, which vary from 0 to 0.945. The wildfire probability 

map obtained based on the formulated LR model is presented in Figure 4.4.  
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Figure 4.4   Wildfire probability map from LR model. 

 

The probability map derived from LR model demonstrates the impact of 

different factors with different degree of influence to the occurrence of wildfire. As 

indicated by the regression coefficients (β), the probability is observed higher at lower 

elevation that corresponds to high land surface temperature, low rainfall and low 

relative humidity. The probability values are very high closer to the roads and in places 

where the vegetation is dominant with dry grasslands, shrubs and meadows, and 

therefore are more susceptible to wildfire occurrence. Hence, the findings from LR 

analysis revealed that the most significant predictor variables of wildfire are LST 

followed by Dist_Road, ELV, Pop_Density, EVI, Dist_AgriL, RH and ASP. Other 

variables have relative low influence. 
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4.4 Wildfire susceptibility analysis using FR model 

The FR analysis employed all the fifteen influential factors and the classified 

maps are presented in the Figure 4.5. The classification of each factor maps are done 

based on the objective, accuracy and scale of the input data and also based on extensive 

literature reviews. 

 

   

Elevation Slope Aspect 

 

   
Curvature Topographic wetness 

index 

Enhanced vegetation 

index 

Figure 4.5   Input factor maps for FR analysis. 
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Land use Rainfall Relative humidity 

 

   
Distance to road Distance to river Distance to settlement 

 

   
Distance to agriculture 

land 

Population density Land surface temperature 

Figure 4.5   Input factor maps for FR analysis (Continued). 



110 

 

To calculate the FR of each factor class, the hotspot pixels of entire training 

dataset are overlaid/superimposed with the classified factor maps individually and the 

number of hotspot pixels in each class is cross tabulated and examined using the Spatial 

Analyst Tool in ESRI ArcGIS software. It is then imported to MS-Excel spreadsheet to 

calculate the FR values. Herein, the FR of each factor’s class are calculated in three 

steps. First, the area ratio of each class of factor is calculated, followed by the 

calculation of hotspot ratio. Finally, the FR is computed by dividing the hotspot ratio 

by the area ratio for each factor’s classes. The results of FR values determined using 

FR model is provided in Table 4.5 

 

Table 4.5   Frequency ratio of each class of independent factors (FR result). 

Factor Class 

No. of 

pixels  in 

each 

class  

% of pixels  

in each 

class (B) 

No of 

hotspot 

pixels 

% of 

hotspot 

pixels 

(A) 

FR = 

A/B 

Elevation <2500 m 22507 7.3% 272 15.3% 2.092 

2500-3500 m 107241 34.8% 711 39.9% 1.148 

3500-4500 m 112812 36.6% 734 41.2% 1.126 

4500-5500 m 63253 20.5% 65 3.6% 0.178 

>5500 m 2661 0.9% 0 0.0% 0.000 

Slope 0-8o 13473 4.4% 45 2.5% 0.578 

8–15 o 34880 11.3% 172 9.7% 0.854 

15–25 o 104848 34.0% 592 33.2% 0.977 

25-50 o 153493 49.8% 970 54.4% 1.094 

>50 1780 0.6% 3 0.2% 0.292 

Aspect Flat(-1) 59 0.0% 0 0.0% 0.000 

North(0-22.5; 337.5-360) 36565 11.9% 103 5.8% 0.488 

Northeast(22.5-67.5) 43033 14.0% 131 7.4% 0.527 

East(67.5-112.5) 40158 13.0% 217 12.2% 0.935 

Southeast(112.5-157.5) 39793 12.9% 421 23.6% 1.831 

South(157.5-202.5) 39760 12.9% 376 21.1% 1.637 

Southwest(202.5-247.5) 37175 12.1% 300 16.8% 1.397 

West(247.5-292.5) 36587 11.9% 147 8.2% 0.696 

Northwest 35344 11.5% 87 4.9% 0.426 
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Table 4.5   Frequency ratio of each class of independent factors. (Continued). 

 

Factor Class 

No. of 

pixels  in 

each 

class  

% of pixels  

in each 

class (B) 

No of 

hotspot 

pixels 

% of 

hotspot 

pixels 

(A) 

FR = 

A/B 

Curvature Concave 158018 51.2% 862 48.4% 0.944 

Flat 3001 1.0% 16 0.9% 0.923 

Convex 147455 47.8% 904 50.7% 1.061 

TWI <0 108949 35.3% 635 35.6% 1.009 

0 - 2 101073 32.8% 667 37.4% 1.142 

2-4 62128 20.1% 311 17.5% 0.867 

4-6 20944 6.8% 108 6.1% 0.893 

>6 15380 5.0% 61 3.4% 0.687 

EVI <0.1 827 0.3% 0 0.0% 0.000 

0.1-0.2 58858 19.1% 78 4.4% 0.229 

0.2-0.3 54116 17.5% 364 20.4% 1.164 

0.3-0.4 113695 36.9% 1009 56.6% 1.536 

>0.4 80978 26.3% 331 18.6% 0.708 

Land Use Coniferous Forest 149563 48.5% 798 44.8% 0.924 

Shrubs and Meadows 95445 30.9% 735 41.2% 1.333 

Broadleaf Forest 1388 0.4% 1 0.1% 0.125 

Agriculture Field 8638 2.8% 45 2.5% 0.902 

Water Body 972 0.3% 0 0.0% 0.000 

Snow Cover 34686 11.2% 185 10.4% 0.923 

Miscellaneous 15397 5.0% 16 0.9% 0.180 

Built-up Areas 1975 0.6% 1 0.1% 0.088 

Broadleaf and 

Coniferous Forest 
410 

0.1% 
1 

0.1% 
0.422 

Rainfall <1000 mm 154940 50.2% 1271 71.3% 1.420 

1000-1500 mm 135384 43.9% 429 24.1% 0.549 

1500-2000 mm 8150 2.6% 39 2.2% 0.828 

2000-2500 mm 5546 1.8% 34 1.9% 1.061 

>2500 mm 4454 1.4% 9 0.5% 0.350 

LST  < 0°C  3081 1.0% 0 0.0% 0.000 

0 – 10°C  140505 45.5% 460 25.8% 0.567 

10 – 20°C 160574 52.1% 1234 69.2% 1.330 

20-25°C 4233 1.4% 88 4.9% 3.599 

>25°C 81 0.0% 0 0.0% 0.000 

Relative 

humidity 
<68% 10226 3.3% 125 7.0% 2.116 

68-70% 8719 2.8% 134 7.5% 2.660 

70-72% 15076 4.9% 139 7.8% 1.596 

72-74% 161191 52.3% 809 45.4% 0.869 

>74% 113262 36.7% 575 32.3% 0.879 

  



112 

 

Table 4.5   Frequency ratio of each class of independent factors. (Continued). 

 

Factor Class 

No. of 

pixels  in 

each 

class  

% of pixels  

in each 

class (B) 

No of 

hotspot 

pixels 

% of 

hotspot 

pixels 

(A) 

FR = 

A/B 

Distance to 

road 
<500 m 41450 13.4% 351 19.7% 1.466 

500-1000 m 22578 7.3% 363 20.4% 2.783 

1000-1500 m 17514 5.7% 123 6.9% 1.216 

1500-2000 m 15186 4.9% 74 4.2% 0.844 

>2000 m 211746 68.6% 871 48.9% 0.712 

Distance to 

river 
<500 m 31233 10.1% 229 12.9% 1.269 

500-1000 m 27100 8.8% 300 16.8% 1.916 

1000-1500 m 26676 8.6% 218 12.2% 1.415 

1500-2000 m 26368 8.5% 212 11.9% 1.392 

>2000 m 197097 63.9% 823 46.2% 0.723 

Distance to 

settlement 
<500 m 50630 16.4% 487 27.3% 1.665 

500-1000 m 41601 13.5% 372 20.9% 1.548 

1000-1500 m 34438 11.2% 173 9.7% 0.870 

1500-2000 m 28846 9.4% 97 5.4% 0.582 

>2000 m 152959 49.6% 653 36.6% 0.739 

Distance to 

agricultural 

land 

<500 m 54186 17.6% 582 32.7% 1.859 

500-1000 m 32447 10.5% 292 16.4% 1.558 

1000-1500 m 26166 8.5% 74 4.2% 0.490 

1500-2000 m 21770 7.1% 54 3.0% 0.429 

>2000 m 173905 56.4% 780 43.8% 0.776 

Population 

density 
<50 person/sq.km 215810 70.0% 1255 70.4% 1.007 

50-100 persons/sq.km 56084 18.2% 167 9.4% 0.515 

100-150 persons/sq.km 21856 7.1% 166 9.3% 1.315 

150-200 persons/sq.km 9023 2.9% 105 5.9% 2.014 

>200 persons/sq.km 5701 1.8% 89 5.0% 2.702 

 

In practice, the equation 3.9 and 3.10 of FR model (Section 3.2.2) are used to 

calculate the FR values of each class of factors. The computed FR values determines 

the spatial relationships between distribution of hotspot and each hotspot related 

factors, and it explains the level of correlation between hotspot locations and influential 

factors in a certain area. The FR values greater than 1 indicates higher correlation with 

the wildfire occurrence while FR value lower than 1 indicates lower correlation, and if 
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the FR value is 1, it means an average correlation. The correlation of each factor class 

based on the computed FR is interpreted and explained in details in the next section.  

4.4.1 Impact of influential factors on wildfire occurrence (FR) 

Based on the deduced results from FR analysis (Table 4.5), the relation 

of wildfire occurrence and elevation shows a negative correlation. A gradual decrease 

in the FR values shows that the frequency of wildfire occurrence decreases as the 

elevation increases. Most wildfires seems to occur below the elevation of 2,500 meters 

above msl as indicated by highest FR (2.092) value in this class. This is correct because 

places at higher elevation are much cooler than the places at lower elevation making 

the fire behavior trends less severe. In addition, at higher altitudes it encounters higher 

rainfall and remains wet. No incidence of wildfires are observed at elevations greater 

than 5,500 m as indicated by FR value (FR=0). This is because of the general trend that 

as temperature reduces, the humidity increases with increased elevation. This implies 

that the moisture content of fuels on the highest elevation is high reducing the 

flammability of the fuels eventually reducing the chances of fire incidences. In addition, 

at the highest elevations, vegetation are non-existent or very low, because they are 

covered by rocks and bare soils which cannot support the growth of most tree species 

and most of the time they are  covered by snow and permanent glaciers, hence the 

chance of fire is very rare.  

For slope class, there is a positive correlation with the wildfire 

occurrence as indicated by a progressive increase in FR values as the slope angle 

increases. Thus slope plays a significant role in the spread of fire, where fires usually 

spreads rapidly up slope than down slope. The slope class between 25o–50o have highest 

frequency (FR=1.09) of wildfires supporting the fact that, a fire burning up to a slope 
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of +20% to +39% will spread twice as first a fire on level terrain (Brown and Davis, 

1973). Since the study area is mountainous, the steep slopes have contributed to 

increase the spread of wildfires compared to very rare flat slopes. 

Though aspect does not have an effect on ignition of the wildfire, it can 

influence on the rate at which fuels dry consequently affecting fire behaviour. The result 

revealed that aspect classes facing Southeast (112.5-157.5), South (157.5-202.5) and 

Southwest (202.5-247.5) slopes show the highest frequency of wildfire occurrence with 

FR values of 1.831, 1.637 and 1.397 respectively. The other aspect classes show 

relatively less frequency of fire incidences with low FR values. The result is true 

because, south aspects receive more sun light and have higher temperatures with robust 

winds, low humidity, and low fuel moistures in the Northern Hemisphere. Moreover, 

vegetation is typically drier and less dense on south-facing slopes than north-facing 

ones which hold more moisture and stay green longer and support more vegetation 

(Prasad et al., 2008). Thus, drier fuels with less moisture content are more exposed to 

ignition. Hence, south facing slopes are more susceptible to wildfires. Meanwhile, 

convex curvature shows high wildfire frequency compared to concave and flat 

curvatures. The topographic wetness index is found negatively correlated with the 

wildfire occurrence as indicated by decreasing trend of FR values as TWI values 

increases. This indicates that the frequency of fire decreases as wetness or moisture 

content in the surrounding area increases. 

For EVI, the high frequency of wildfire occurrence is observed between 

0.2 and 0.4. As the EVI values falls below 0.2 and rise above 0.4, the probability of 

wildfire occurrence is decreased. This shows that most fire occur in the moderately 

vegetated areas that comprise of shrubs and meadows, dry grasslands or bushy areas in 
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sloppy valleys. EVI values lower than 0.2 may indicate the presence of bare soils and 

snow covered areas where there is less chance of fire occurrence, hence the results show 

no incidence of fires in these areas.  

The type of land use which represents vegetation and the forest type have 

strong influence in the ignition and spread of fire because some forest types are highly 

flammable as compared to others hence increasing the chances of fire occurrence. The 

ignition of a fire depends on fuel flammability. Though the environment may be 

suitable for a fire to start, it cannot start without the flammable material. The results 

shows that FR values are high in shrubs and meadow class (FR=0.924) and in 

coniferous forest class (FR=1.333) indicating higher probability of wildfire occurrence 

compared to other land use types. The result is consistent with the findings of Carmoa, 

Moreiraa, Casimirob and Vaza (2011). This result further supports the occurrence of 

wildfire on intermediate EVI class as discussed. Land use classes like agriculture land 

and snow cover also indicate a moderate correlation with wildfires. While this is 

agreeable with the agriculture land class, the correlation with the snow cover class 

seems doubtful. However, this can also be true because the incidence of fire may have 

happened in the area before it was covered by the snow, because, the fire season in the 

study area begins in early October and continues until the end of May, while the peak 

winter lies in between the mentioned period. In addition, snow cover is one of dynamic 

variable that characterizes spatial-temporal phenomena that results in the mismatch 

with temporal scale of hotspot data. This may provide an unexpected result (FR=0.923) 

as observed. The frequency of wildfire in other classes like broadleaf forest, broadleaf 

and coniferous forest, miscellaneous and built-up areas show relatively low, while the 

water body class shows no incidences.  



116 

 

The climatic variables that includes rainfall and relative humidity show 

negative correlation with the wildfire as expected. It can be seen that the FR values 

gradually decrease as the rainfall and relative humidity increase, indicating the 

decreasing trend in wildfire incidences. In particular, the frequency of wildfire is seen 

high in areas where the mean annual rainfall is less than 1,000 mm and relative humidity 

is less than 70% respectively. The findings are acceptable because high rainfall and 

high relative humidity will result in the high fuel moisture content in the surrounding 

areas eventually reducing the risk of fire occurrence. 

Land surface temperature (LST) is seen as one of the most influential 

factor with highest FR value indicating a positive correlation to wildfire occurrence. 

The progressive increase in the FR values of the LST indicate that the frequency of 

wildfire increases as LST increases. The frequency of wildfire occurrence is relatively 

high in places where the LST is above 25°C as indicated by the FR values of 3.599. 

The influence of temperature on fire behaviour is to reduce the moisture content of the 

fuels. When temperatures are low, the moisture content of the fuels is high making the 

ignition difficult, on the other hand when temperatures are high, the moisture content 

of the fuels is reduced and the surrounding air and soil temperature is increased 

resulting into easy ignition of the fire. Thus, positive influence of LST on wildfire is 

true and consistent with the findings of many other studies (Zhang et al. 2009; 

Intarawichian and Dasananda, 2010); Zhang et al. 2013). 

Likewise, relationship between wildfire occurrence and distance to road 

shows that most wildfire occurs within the proximity of 1,500 meters. As the Euclidean 

distance to the road decreases the intensity and frequency of wildfires occurrence 

increases as shown by the FR values of 2.783 and 1.466 for the classes <500 meters 
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and 500-100 meters respectively. As the distance to the road increases beyond 1,500 

meters the probability is low as indicated by the FR values lower than 1. Relationship 

of wildfire occurrence with distance to rivers shows that, closer to the river there is high 

chance of wildfire and the probability increases until the distance range of 1,000 meters. 

As the distance to rivers increases beyond 1,000 meters, the FR values decreases. The 

proximity variables like distance to settlements and distance to agriculture land also 

shows very high correlation within the proximity of 1,000 meters. Within this range, 

both variables have FR values greater than 1 indicating a high frequency of wildfire. In 

general the frequency of fires with respect to both variables decrease as the distance 

increase, however beyond the distance of 2,000 meters, a slight increase in the fire 

frequency can be noticed. This may be due to the influence of agriculture and settlement 

in remote areas. 

The influence of population density on wildfire occurrence is found very 

high closer to highly populated areas as shown by the FR values greater than 1 for 

population density range of 100-150 persons/km2, 150-200 persons/km2 and >200 

persons/km2 respectively. For the population density range between 50-100 

persons/km2, it shows lower correlation, however it is interesting to observe that places 

with population density less than 50 persons/km2 also shows a high correlation with 

fire. This may due to the people residing in the remote places inducing more fire. 

4.4.2 Computation of prediction rates (PR) from FR analysis. 

In addition to the calculation of FR values, the relative frequency of each 

factor class is calculated by dividing the FR values of each class by the total FR values 

of each factor and then the prediction rates of each factor is computed based on the 

following equations:  
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𝑅𝐹 =
𝐹𝑅 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑅 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟
 (4.7) 

𝑃𝑅 =
(𝑅𝐹𝑀𝑎𝑥−𝑅𝐹𝑀𝑖𝑛)

(𝑅𝐹𝑀𝑎𝑥−𝑅𝐹𝑀𝑖𝑛)𝑚𝑎𝑥
 (4.8) 

 

Where, 

RF = Relative frequency of each class of factor;  

PR = Prediction rate of each factors; 

𝑅𝐹𝑚𝑎𝑥 = Maximum RF in a factor class;  

𝑅𝐹𝑚𝑖𝑛 = Minimum RF in a factor class. 

 

The relative frequency value for each class of factor represents the 

standardized FR values which further determine the relative importance of each class 

in a factor that reveals the level of correlation among each factors with wildfire 

occurrence. The prediction rates of each factors presented in Table 4.6 and the 

prediction chart displayed in Figure 4.6 reveals that the land surface temperature 

followed by elevation, enhanced vegetation index and distance to road have the highest 

contributing factors to the probability of occurrence of wildfire in the study area. The 

other factors like population density, distance to agriculture, rainfall, aspect, relative 

humidity, slope and distance to settlements show a moderate influence in the probability 

of wildfire occurrence while curvature, topographic wetness index and distance to 

rivers have negligible influence to the occurrence of wildfire. Curvature and distance 

to rivers are also eliminated by LR analysis since their contribution to the model is 

insignificant. This indicates that FR model further confirms their negligible influence 

or insignificance to wildfire occurrence. 
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Table 4.6   Prediction rates of wildfire influential factors. 

No Factor Prediction Rate 

1 Elevation (ELV) 0.703 

2 Slope (SLP) 0.323 

3 Aspect (ASP) 0.352 

4 Curvature (CRV) 0.072 

5 Topographic wetness index (TWI) 0.151 

6 Enhanced vegetation index (EVI) 0.645 

7 Land use (LU) 0.416 

8 Rainfall (RF) 0.388 

9 Land surface temperature (LST) 1.000 

10 Relative humidity (RH) 0.337 

11 Distance to road (Dist_Road) 0.451 

12 Distance to river (Dist_River) 0.271 

13 Distance to settlement (Dist_Sett) 0.306 

14 Distance to agriculture land (Dist_Agril) 0.427 

15 Population density (Pop_Density) 0.442 

 

 

Figure 4.6   Graphical representation of prediction rate of each factors. 
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4.4.3 Wildfire susceptibility index map generation 

To generate the wildfire susceptibility index (WSI) map of FR model, 

the computed FR values are assigned as weight values to the classes of each factor map 

to obtain the weighted factor maps using reclassify function in ESRI ArcGIS software, 

and then they are overlaid and numerically added using the raster calculator applying 

the Equation 4.8. Practically, the WSI is obtained by employing a Model Builder in 

ESRI ArcGIS software (Figure 4.7). Herein, weighted input raster with FR values in 

the field of respective classes are first converted to a new raster by using Lookup Tool 

in FR field, then the relative frequency of each class is calculated using the Raster 

calculator. Finally, the WSI is calculated using the Cell Overlay Statistics tool under 

Spatial Analyst function in ESRI ArcGIS software (Figure 4.8). 

 
Figure 4.7   Module structure for FR analysis in ArcGIS 10.3. 
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The wildfire WSI map represents the relative susceptibility to the 

occurrence of wildfire in the entire study area. The higher values of WSI indicates high 

susceptibility to wildfire occurrence while lower values of WSI represents low 

susceptibility. The WSI values here ranges between 1.699 and 5.103. 

 
Figure 4.8   Wildfire susceptibility index (WSI) from FR model.  

 

4.5 Comparative assessment of probability map of LR and FR 

models 

The comparative appearance of wildfire probability map from LR model and 

wildfire susceptibility index (WSI) map from FR model, which both represents the 

probability of wildfire occurrence is displayed again in Figure 4.9. The two probability 

maps show a similar pattern along the valley and lowland areas, and present slightly 

dissimilar pattern in hilly and mountain areas. This is because the representation of 
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input data for LR model as continuous format and FR model as discrete format are 

different. In addition, classification system of influential factors plays an important role 

for FR analysis. However, there is no significant difference between the two probability 

maps which implies the performance of both LR and FR models are reliably good in 

predicting the wildfires in the study area. 

  
(a) Probability map from LR (b) WSI map from FR 

 

Figure 4.9   Comparative view of wildfire probability maps of LR and FR models. 

 

In addition, in order to identify and relate the pattern of influence and degree of 

correlation each factors have on wildfire occurrence from the both models, the graphical 

representation of predictive power (regression coefficients) from LR model and 

prediction rate from FR model are displayed in Figure 4.10. From the graph, it can be 

deduced that LST followed by ELV, EVI, Dist_Road and Pop_Density have highest 

degree of influence in the prediction of wildfire. ASP, RH, Dist_Sett, RF and LU have 

moderate influence while TWI, SLP, CRV and Dist_River show a very low influence. 
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The graph also demonstrates that, all the influential factors considered in this study for 

the wildfire susceptibility analysis generally show a similar pattern of influence or 

correlation in both the models. Thus, from this assessment it can be concluded that the 

overall influence and correlation of influential factors with the wildfire occurrence 

generally remains same despite the two methods applied have a different approach of 

identifying the wildfire susceptible areas.  

Overall, from the two probability maps obtained from LR and FR model, it can 

be observed that the spatial pattern of those areas predicted as having highest 

probability of wildfire occurrence reflects the significant influence of land surface 

temperature, distance to roads, elevation, EVI and population density in the study area. 

 

 

Figure 4.10   Comparison of predictive power of each factors from LR and FR 

models.  
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4.6 Accuracy assessment and validation of LR and FR models 

The accuracy and validation of the two models were performed using the 30% 

independent validation dataset by employing ROC method. The deduced results are 

interpreted and discussed in this section. 

The area under ROC which represents the AUC value is calculated using the 

IDRISI software. Herein, the success-rate curves and the prediction-rate curves are 

constructed. Practically, the success rates are established by comparing the hotspot 

pixels in the training dataset (70%) with the wildfire probability maps of LR and FR 

models respectively. Meanwhile, the prediction rates of LR and FR models are 

determined by comparing the hotspot pixels in the independent validation dataset (30%) 

with the wildfire probability maps of both models. Subsequently, the respective ROC 

curves are constructed with the applied threshold values to obtain the AUC value in 

IDRISI software from the resulting true positives and false positives. 

The results show success rate curves with AUC values of 0.881 and 0.855 for 

LR and FR models respectively (Figure 4.11). Based on Chung and Fabbri (2003), the 

results indicate that both LR and FR models have a very good capability of classifying 

the area, and the models have a high goodness of fit with the training dataset and 

wildfire variables. The prediction rate curves with AUC values of 0.883 and 0.853 is 

obtained for LR and FR models respectively (Figure 4.12). The results indicate that 

both models have a relatively high predictive capability to discriminate the presence 

(hotspot) and absence (non-hotspot) of wildfire in the study area. Both models 

performed better with high accuracy compared to previous studies that employed the 

same model. (Intarawichian and Dasananda (2010); Zhang et al. (2013); Pourtaghi et 

al., 2014; Guo et al. (2015). 
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(a) LR Model (b) FR Model 

 

Figure 4.11   Success rate curves of LR and FR model. 

 

  
(a) LR Model (b) FR Model 

 

Figure 4.12   Prediction rate curves of LR and FR models. 

 

Although, LR model performed slightly better than FR model as indicated by 

higher AUC value, the FR model can also be considered as an equally acceptable model 

that can be applied for susceptibility mapping in the area. A close similarity of success 

and prediction rate curves of the two models indicate that both models are reliable and 

can be used in predicting future wildfires (Figure 4.13). However, for the present study, 

based on the comparative analysis and the validation of final results, LR model is 

considered as the optimum and suitable model for the final wildfire susceptibility 
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mapping. The LR model shows slightly high performance in both the training and 

validation dataset compared to FR model with high AUC value for success and 

prediction rates of 0.881 and 0.883 respectively. Some studies have also found that LR 

model has performed better than FR model (Lee and Evangelista, 2008; Meten et al., 

2015), while others have found FR model better than LR model (Lee and Pradhan, 

2007).

 

Figure 4.13   Comparison of success and prediction rate curves of LR and FR models. 

 

4.7 Wildfire susceptibility mapping 

The optimum LR model is used to generate the final wildfire susceptibility map. 

To generate the final wildfire susceptibility map of different zones from the probability 

map, the method adopted in many previous literatures is to divide the histogram of the 

probability map into different categories based on expert opinions (Dai and Lee, 2002 

and Ohlmacher and Davis, 2003) and many studies have chosen and applied different 

classification methods depending on their interest and the type of data. For instance, 

Ayalew and Yamagishi (2005) applied four classification methods including quantiles, 
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natural breaks, equal intervals and standard deviation and selected one that best suits 

the information depending on the scale of investigation. They found that standard 

deviation method was suitable and provided good information. In other studies, 

Meinhardt et al. (2015) and Intarawichian and Dasananda (2010) applied the manual 

method and natural breaks respectively for better classification.  

The present study examined all the available inbuilt classification methods in 

ESRI ArcGIS software and deduced that the standard deviation method provides the 

best information that is suitable to study area compared to other methods. The standard 

deviation method has a certain advantages of using the mean to generate the class breaks 

(Ayalew and Yamagishi, 2005). Moreover, probability values of the final output map 

is normally distributed according to the statistics of histogram report (Figure 4.14), 

where standard deviation is appropriate (ESRI, 2016). Herein, wildfire susceptibility 

map comprises of five zones: very low, low, moderate, high and very high (Figure 

4.15). The computed area and its percentage for each susceptibility zones are presented 

in Table 4.7. 

 

Figure 4.14   Histogram statistics report for wildfire probability map of LR model. 
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(a) Wildfire susceptibility map (b) Wildfire susceptibility map overlaid 

with wildfire hotspot and rivers. 
 

Figure 4.15   Final wildfire susceptibility map of the study area. 

 

The derived wildfire susceptibility map is further examined by overlaying and 

comparing the hotspot locations under each susceptibility zones to confirm the 

reliability and to check if it provides any useful information and draw important 

conclusions. 

Table 4.7   Percentage of hotspots and the area coverage of each susceptibility zones. 

Probability Range Susceptibility class Hotspot (%) Area (Km2) Area (%) 

0.000 - 0.110 Very low susceptibility 0 161.530 5 

0.110 - 0.300 Low susceptibility 11 860.260 28 

0.300 - 0.500 Moderate susceptibility 17 1,146.420 37 

0.500 - 0.700 High susceptibility 33 639.150 21 

0.700 - 0.945 Very high susceptibility 39 277.380 9 



129 

 

Herein, the percentages of the hotspot pixels falling within each class of 

susceptibility zone and the covered by each zones are calculated and examined (Table 

4.7). According to the classified zones, the majority of the observed hotspots (39%) in 

the study area are found in very high susceptibility zone that covers about 9% (277.38 

km2) of the total study area (3,084.474 km2). Likewise, the high susceptibility zone 

have 33% of the total hotspots covering the area of 21% (639.150 km2) of the total area. 

This indicates that the majority of total hotspots (72%) are found in high and very high 

susceptibility zones covering 30% of the total study area. This demonstrates that the 

results are reliable. The moderate, low and very low susceptibility zones constitute 

17%, 11% and 0% of total hotspots, with the corresponding area coverage of 37% 

(1,146.420 km2), 28% (860.260 km2) and 5% (161.53 km2) respectively.  

Upon the visual interpretation, the deduced wildfire susceptibility map conveys 

a useful information and it appears to be highly satisfying and rationale. According to 

the classified zones, most parts of very high and high zones are located in the sloppy 

valleys at lower elevations and in areas where vegetation is mostly dominant with 

shrubs and meadows/grasslands that experience high land surface temperatures, low 

rainfall and relative humidity. These zones are closer to the roads where most of the 

daily human activities are involved. In addition, most of the agriculture lands also seem 

to fall under high susceptibility zone. Few patches of high susceptible areas are also 

noticed in some areas especially nearby the remote settlement areas. The susceptibility 

of wildfires appear to decrease as the distance from the road increases and in the areas 

where there is less human interference. Most of the areas that are covered by coniferous 

forest in the mid-altitude areas seem to fall under moderate susceptibility zone and those 

areas in the high altitudes covered by snow and bare soils fall under either low or very 
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low susceptibility zones. The areas that correspond to very low susceptibility zone are 

in the northern part and few areas with low susceptibility zone are located in the 

southwest and center of the study area that lie in higher altitudes. Although, the 

proportion of very high and high susceptibility zones are smaller compared to other 

susceptibility zones, the resulting map is agreeable and found related to actual fire 

incidences and situations in the study area. Particularly during winter, when there is no 

rainfall, the surrounding air becomes very dry with fluctuating wind conditions and the 

humidity remains very low. The trees shed their leaves adding more fuel to the ground, 

the grasses, shrubs and meadows become dry. As a result it becomes more susceptible 

to wildfires.  

Overall, the present study demonstrates that the geoinformatics technology, 

particularly remote sensing and GIS with the integration of LR and FR models is very 

appropriate for determining and understanding the influence of significant contributing 

factors of wildfire and eventually develop the wildfire susceptibility map of the study 

area. The findings provide valuable insights that can guide in effective planning, 

prevention and mitigation of wildfire, consequently contributing towards effective 

wildfire management system. 



 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

Wildfires has been and will continue to be the fundamental threat to the rich 

forest resources and to the people across the country. Nevertheless, its impact and 

threat can either be prevented or minimized and the communities can always remain 

alert, cautious and prepared with the availability of reliable wildfire susceptibility 

map. The present study was an attempt to examine and develop the wildfire 

susceptibility map using geoinformatics technology with the integration of LR and FR 

models. This had been achieved by using three key influential factors of wildfire 

established based on extensive literature reviews. The combination of these factors 

create a favourable condition that makes highly vulnerable to wildfires. The influence 

of each factors and their relative importance are analyzed and examined. The 

conclusions and recommendations drawn from the present study of wildfire 

susceptibility analysis is discussed in this chapter. 

 

5.1 Conclusions 

5.1.1 Logistic regression model 

The main influential parameters included in LR analysis are elevation, 

slope, aspect, curvature, topographic wetness index, enhanced vegetation index, land 

use, land surface temperature, rainfall, relative humidity, distance to river, road, 
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settlements and agriculture lands and population density. The aspect and land use 

variables were transformed from nominal to numeric using the relative percentage of 

hotspot density in SPSS software program. The primary output of LR analysis were 

the model statistics and coefficients of regression, which were useful for assessing the 

accuracy of the regression function and the predictive powers of different parameters 

on wildfire occurrence. Applying the coefficients of regression, the calculation of 

probability map was another important outcome of the regression process. However, 

prior to the use of LR model in wildfire prediction, a multicollinearity diagnostic test 

has to be performed among the independent variables because if multicollinearity 

exists, this may interfere in the estimation of model coefficients resulting in erroneous 

results. So diagnoses and elimination of multicollinearity is important. The diagnostic 

test was performed using TOL and VIF technique and it was concluded that there was 

not issue of multicollinearity among the independent variables. 

Based on LR analysis result, the probability of wildfire occurrence 

have a positive correlation with land surface temperature, aspect, distance to 

agriculture land, distance to settlement and land use variables, while distance to road, 

elevation, population density, enhanced vegetation index, relative humidity, rainfall 

and topographic wetness index had a negative correlation to the occurrence of 

wildfire. On the other hand, curvature, slope and distance to river were eliminated 

during the process of stepwise LR analysis. This suggested that they had very weak 

correlation to the wildfire occurrence or their influence on the occurrence of wildfire 

was negligible compared to those factors that were retained by the model. The 

variables with positive coefficients had more explanatory capability than variables 

with negative coefficients in terms of causing wildfire in the study area. The variables 



133 

 

with negative coefficients will tend to suppress the probability of wildfire occurrence. 

The findings from the LR analysis revealed that the most significant influential factors 

of wildfire are land surface temperature followed by distance to road, elevation, 

population density, enhanced vegetation index, distance to agriculture land, aspect 

and relative humidity while other factors have relatively low influence Thus, the 

probability of wildfire occurrence show higher at lower elevations with high land 

surface temperature and closer to the roads that were associated with high frequency 

of human activities. The wildfire is more likely to occur in the sloppy valleys where 

most of the vegetation is covered by shrubs and meadows/grasslands with low 

humidity and less rainfall. 

5.1.2 Frequency ratio model 

The FR model employed was another approach to assess the wildfire 

susceptibility in the study area. All the influential factors that were applied in LR 

analysis were also applied in FR analysis. Herein, all factors were classified into 

distinct classes based on the objectives of the study and the scale of spatial data. 

Using the FR model, the spatial relationship between the hotspot location and each of 

the factors classes contributing to wildfire occurrence were derived. In addition, 

relative frequency of each factor class and the prediction rate of each factor was 

calculated and compared with the predictive power of each factors obtained from LR 

model.  

Based on FR analysis, it revealed that land surface temperature, slope, 

aspect, curvature, enhanced vegetation index, land use, Euclidean distance to road, 

river, settlements and agriculture, and population density had a positive correlation to 

the occurrence of wildfire in the study area, while elevation, rainfall, relative humidity 
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and topographic wetness index had negative correlation. As the value of positively 

correlated parameters increases, the frequency of wildfire tend to increase while for 

negatively correlated variables the frequency of wildfires tend to decrease as their 

negative influence will suppress the occurrence of wildfire.  

Furthermore, the prediction rates revealed that the most significant 

contributing factors of wildfire are land surface temperature, followed by elevation, 

enhanced vegetation index and distance to road. Factors like population density, 

distance to agriculture, rainfall, aspect, relative humidity, slope and distance to 

settlements showed a moderate influence while curvature, topographic wetness index 

and distance to rivers showed very little influence to the occurrence of wildfire. 

The results from FR model showed similar influence to wildfire 

occurrence as revealed by the results of LR model. This confirms the reliability of 

both the models in terms of predicting the wildfire in the study area. In general, it can 

be concluded that GIS based LR and FR models when integrated with remote sensing 

and GIS technology can effectively determine the most significant influential 

variables of wildfire and their degree of influence/correlation and ultimately calculate 

the wildfire probability. 

5.1.3 Accuracy assessment and validation 

The accuracy assessment and validation of results showed the success 

rate with an AUC values of 0.881 and 0.855 for LR and FR models respectively. 

These shows that both models have a very good capability of classifying the wildfire 

susceptibility areas with high goodness of fit with the training dataset and wildfire 

factors. Meanwhile, the prediction rate with AUC values of 0.883 and 0.853 was 

obtained for LR and FR models respectively indicating both models have a relatively 
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high predictive capability to discriminate the presence and absence of wildfire in the 

study area. Nonetheless, based on the comparative analysis and validation results, LR 

model was chosen as the optimum model for the final wildfire susceptibility mapping. 

5.1.4 Wildfire susceptibility mapping 

The final wildfire susceptibility map established based on the optimum 

LR model revealed that the high and very high susceptibility zones covered 30% of 

the total study area and contained majority of the hotspots (72%). These zones mostly 

involved sloppy valleys in lower elevations that are associated with high land surface 

temperatures and in areas where vegetation is dominant with shrubs and meadows, 

dry grasslands mixed with scattered conifers and blue pines. These zones also lies 

within the proximity of 1,500 m from vehicle roads where active human activities 

were involved. This implies that areas closer to the roads are more susceptible to 

wildfires due to human activities that contribute to starting the fires either accidentally 

or intentionally. In addition, the low rainfall and humidity in the area had also 

contributed to high susceptibility to wildfires. 

In a nutshell, it can be concluded that the integration of geoinformatics 

technology with GIS-based LR and FR models can effectively determine the most 

significant influential factors of wildfire occurrence and their degree of influence, 

determine its probability and eventually develop the wildfire susceptibility map. The 

findings may provide valuable information that can guide and help to safeguard our 

environment and preserve our rich forest resources, thereby enhancing the effective 

wildfire management system of Bhutan. In addition, the methodology adopted and the 

results derived in the present study may have the potential to implement in the other 

areas of Bhutan that share similar influential variables. 
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The results of this study also demonstrates the feasibility and the robust 

capability of geoinformatics technology and geospatial models in wildfire mapping. 

The study can also contribute to address the data requirements and the deficiencies in 

wildfire studies. This will have advantage towards more focused efforts to provide the 

data needed for wildfire management system, resulting in the improvement in the 

efficiency of data reporting and inventorying. 

 

5.2 Recommendations 

The current study employed the novel approach of remote sensing and GIS 

with the integration of suitable geospatial models (LR and FR) to establish reliable 

wildfire susceptibility map of Thimphu and Paro districts. The study was able to 

identify the most significant influential factors of wildfire and deduced their degree of 

relative influence that helped to derive the probability maps with high accuracy and, 

eventually accomplished the primary objective of the study to develop wildfire 

susceptibility map of the study area. However, there is a need to highlight for the 

improvement in the underlying suggested recommendations, particularly the 

development of comprehensive database on the spatial distribution of wildfire and 

their characteristics, as well as on the development of spatial information on wildfire 

predictor variables.  

(1) The spatial locations of wildfires were not available and did not exist at 

all for the present study area. The concerned agency needs to maintain a 

comprehensive and reliable spatial database of wildfire inventory, rather than just 

recording the location by place names and area damaged which has no spatial 
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significance. This will immensely contribute to more accurate and reliable assessment 

of future wildfire studies in Bhutan. 

(2) The study also recommends for an improved and reliable meteorological 

data with fair distribution of weather stations particularly intended for use in the 

research applications. The improved climatic variables with the incorporation of wind 

speed/direction and sunshine variables from sufficient number of gauge stations 

would certainly improve the quality of wildfire studies and other researches related to 

disaster management. 

(3) Considering the current trend of wildfire situation in the country, the 

need to initiate research in the field of fire detection, behavior and fire ecology for 

better management of forest fires is seen as necessary and very important. 

(4) The results from the present study is expected to help fire managers and 

planners to identify locations with a high risk of fire occurrence and prepare plans 

accordingly and ultimately contribute to effective fire management system. In 

addition, the current study is expected to serve as a guide towards more advanced 

analysis beyond the susceptibility level including vulnerability and risk assessment 

applying geoinformatics technology.  

(5) The relation between the fire variables may change over time, therefore 

periodic updating of the model is recommended. 
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APPENDIX A 

ATTRIBUTE FIELDS FOR MODIS HOTSPOT DATA 
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Table A   Attribute fields of MODIS hotspot data distributed by NASA firms. 

 

Attribute Short Description Long Description 

Latitude Latitude Center of 1km fire pixel but not necessarily the actual location of the fire as one or more fires can 

be detected within the 1km pixel. 

Longitude Longitude Center of 1km fire pixel but not necessarily the actual location of the fire as one or more fires can 

be detected within the 1km pixel. 

Brightness Brightness temperature 21 (Kelvin) Channel 21/22 brightness temperature of the fire pixel measured in Kelvin. 

Scan Along Scan pixel size The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. 

Scan and track reflect actual pixel size. 

Track Along Track pixel size The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. 

Scan and track reflect actual pixel size. 

Acq_Date Acquisition Date Date of MODIS acquisition. 

Acq_Time Acquisition Time Time of acquisition/overpass of the satellite (in UTC). 

Satellite Satellite A = Aqua and T = Terra. 

Confidence Confidence (0-100%) This value is based on a collection of intermediate algorithm quantities used in the detection 

process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence 

estimates range between 0 and 100% and are assigned one of the three fire classes (low-

confidence fire, nominal-confidence fire, or high-confidence fire). 

Version Version (Collection and source) Version identifies the collection (e.g. MODIS Collection 6) and source of data processing: Near 

Real-Time (NRT suffix added to collection) or Standard Processing (collection only).  

"6.0NRT" - Collection 6 NRT processing.  

"6.0" - Collection 6 Standard processing. Find out more on collections and on the differences 

between FIRMS data sourced from LANCE FIRMS and University of Maryland. 

Bright_T31 Brightness temperature 31 (Kelvin) Channel 31 brightness temperature of the fire pixel measured in Kelvin. 

FRP Fire Radiative Power Depicts the pixel-integrated fire radiative power in MW (megawatts). 

 

DayNight Day / Night D = Daytime, N = Nighttime 

https://earthdata.nasa.gov/faq#ed-modis-collections
https://earthdata.nasa.gov/faq#ed-firms-umd
https://earthdata.nasa.gov/faq#ed-firms-umd


 

 

 

 

 

 

APPENDIX B 

ALOS DEM USED FOR DERIVING TOPOGRAPHIC 

VARIABLES 
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Figure B   ALOS Digital elevation model of Bhutan. 



 

 

 

 

 

 

APPENDIX C 

METEOROLOGICAL STATIONS USED TO 

INTERPOLATE WEATHER VARIABLES 
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Table C   Input meteorological data used in the analysis. 

Station Northing Easting Height Mean annual rainfall Mean annual temperature Mean annual relative humidity 

Simtokha 3037832.00 764447.00 2310 555.58 14.92 65.06 

Paro 3031189.00 739323.00 2406 599.37 13.53 72.34 

Drugyel 3043984.00 730479.00 2547 773.83 13.08 73.69 

Begana 3052725.00 760887.00 2520 919.03 12.94 73.68 

Gidacom 3031681.00 754681.00 2210 537.37 13.01 75.04 

Betikha 3016053.00 738516.00 2660 2986.73 11.74 75.37 

Gunitsawa 3056212.68 725694.65 3060 1554.49 10.75 76.71 

 



 

 

 

 

 

 

 

 

APPENDIX D 

POPULATION DATA AND SUB-DISTRICT BOUNDARY 

MAP OF THIMPHU AND PARO FOR INTERPOLATION 

OF POPULATION DENSITY 
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Figure D   Sub-districts boundary of the two districts used for interpolation of 

population density. 
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Table D   Population data of each sub-district in Thimphu and Paro districts. 

No Gewog Names Total Population District Names Remarks 

1 Chang 42,730 

Thimphu 

Population of 

Thromde is 

merged with the 

respective 

Gewogs (Sub-

district) 

2 Dagala 1,497 

3 Geney 918 

4 Kawang 42,174 

5 Lingzhi 495 

6 Mewang 5,916 

7 Naro 189 

8 Soe 183 

9 Dogar 1,866 

Paro 

Population of 

Thromde is 

merged with the 

respective 

Gewogs 

10 Doteng 1,149 

11 Hungrel 1,250 

12 Lango 3,336 

13 Lungney 2,543 

14 Naja 3,007 

15 Shaba 4,319 

16 Shari 3,180 

17 Tsento 5,253 

18 Wangchang 9,357 

 

Source PHCB-2010, NSB. 



 

 

 

 

 

 

 

 

APPENDIX E 

EXAMPLE OF INPUT ASCII FILES IMPORTED TO 

SPSS FOR LR ANALYSIS  
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Figure B   Example of input ASCII for logistic regression analysis in SPSS software. 
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