GROUP COMPOSITION AND BEHAVIOR PRELIMINARY STUDY OF LAOTIAN BLACK CRESTED GIBBON (*NOMASCUS CONCOLOR LU*) AROUND BAN TOUP, NAM KAN NATIONAL PROTECTED AREA, LAO PDR

Singphone Luangleuxay

A Thesis Submitted in Partial Fulfillment of the Requirements for the

ลัยเทคโนโลยีส^{ุร}่

5475781

Degree of Master of Science in Environment Biology

Suranaree University of Technology

Academic Year 2016

การศึกษาโครงสร้างกลุ่มและพฤติกรรมเบื้องต้นของชะนีแก้มดำบริเวณบ้านตูบ ป่าสงวนแห่งชาติน้ำก่าน สาธารณรัฐประชาธิปไตยประชาชนลาว

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2559 สิงพร หลวงลือไช : การศึกษาโครงสร้างกลุ่มและพฤติกรรมเบื้องต้นของชะนีแก้มคำ NOMASCUS CONCOLOR LU บริเวณบ้านตูบ ป่าสงวนแห่งชาติน้ำก่าน สาธารณรัฐ ประชาธิปไตยประชาชนลาว (GROUP COMPOSITION AND BEHAVIOR PRELIMINARY STUDY OF LAOTIAN BLACK CRESTED GIBBON (NOMASCUS CONCOLOR LU) NEAR BAN TOUP, NAM KAN NATIONAL PROTECTED AREA, LAO PDR). อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร.พงศ์เทพ สุวรรณวารี, 96 หน้า.

ชะนีแก้มคำลาวเป็นสิ่งมีชีวิตที่ถูกคุกกาม และพบอาศัยในภากเหนือของสาธารณรัฐ ประชาธิปไตยประชาชนลาวเท่านั้น การศึกษาสมาชิกในฝูงและพฤติกรรม กระทำโดยการติดตามชะนี จำนวน 4 ฝูง เป็นเวลา 4-7 วัน จากเดือนสิงหาคมถึงพฤศจิกายน พ.ศ. 2556 บริเวณบ้านตูบ ในป่าสงวน แห่งชาติน้ำก่าน การศึกษาพบชะนีทั้งสิ้น 20 ตัว เฉลี่ย 5 ตัวต่อฝูง มี 2 ฝูงที่พบตัวผู้ตัวเดียวแต่มีตัวเมีย สองตัว ในขณะที่อีก 1 ฝูง ไม่มีลูกอ่อน หรือวัยเด็กเลย

จากการเฝ้ามองเป็นช่วง ๆ ชะนีเต็มวัยตัวผู้และตัวเมียใช้เวลาในการเดินทางมากที่สุด ร้อยละ 25 รองลงมาคือ การกินอาหารและการเฝ้าระวัง แต่ชะนีวัยหนุ่มสาว วัยเด็ก และวัยทารกกลับ ใช้เวลาส่วนใหญ่ในการเล่น รองลงมาคือ การเดินทางและการเฝ้าระวัง การที่ชะนีใช้เวลาจำนวน มากในการเดินทางหาอาหารและการกินอาหาร อาจเนื่องมาจากมีแหล่งอาหารไม่เพียงพอ และมีการ รบกวนจากมนุษย์มากในพื้นที่ศึกษา

มีเพียงชะนี่ตัวโตเติมวัยและวัยหนุ่มสาวเท่านั้นที่ร้อง ชะนีชนิดนี้ส่งเสียงร้องในตอนเช้า ตั้งแต่ 06:04 ถึง 07:36 โดยร้องเป็นเวลานาน 28 ± 5 นาที จากต้นไม้ที่ชะนีใช้ร้องจำนวน 35 ต้น พบว่าเป็นพืช 9 ชนิด ชนิดที่มีจำนวนมากที่สุดคือ Spondias lakhonensis Pierre ร้อยละ 22.9 ตามด้วย Ficus benjamina ร้อยละ 20.0 และ Spondias axillaris Roxb ร้อยละ 17.1 ตามลำดับ ชะนีกินพืช 15 ชนิด จากพืชที่พบ 131 ต้น พืชที่ชะนีชอบที่สุดคือ Spondias lakhonensis Pierre ร้อยละ 27.9 รองลงมาคือ Ficus hispida L. ร้อยละ 15.1 Ficus benjamina ร้อยละ 11.6 และ Choerospondias axillaris ร้อยละ 10.5 ตามลำดับ โดยชะนีทั้งตัวผู้และตัวเมียเลือกที่จะกินผลมากที่สุด ร้อยละ 72.9 รองลงมาคือ ใบอ่อน ร้อยละ 14.7 ดอก ร้อยละ 6.9 และใบแก่ ร้อยละ 5.4 ตามลำดับ

ชะนี้เดินทาง 1.4-3.0 กิโลเมตรต่อวัน เฉลี่ย 2.3±0.6 กิโลเมตรต่อวัน พวกมันออกหาอาหาร กิดเป็นพื้นที่ 9.0-37.4 เฮกแตร์ต่อวัน เฉลื่ย 19.1±7.9 เฮกแตร์ต่อวัน พื้นที่หากินต่อวันนี้มีความ แตกต่างอย่างมีนัยสำคัญในชะนีแต่ละฝูง SINGPHONE LUANGLEUXAY : GROUP COMPOSITION AND BEHAVIOR PRELIMINARY STUDY OF LAOTIAN BLACK CRESTED GIBBON (*NOMASCUS CONCOLOR LU*) AROUND BAN TOUP, NAM KAN NATIONAL PROTECTED AREA, LAO PDR. THESIS ADVISOR : ASST. PROF. PONGTHEP SUWANWAREE, Ph.D. 96 PP.

GIBBON/ NOMASCUS CONCOLOR LU/ BEHAVIOR/ NAM KAN

Laotian black crested gibbon (*Nomascus concolor lu*) is a globally threatened species and only lives in northern Lao PDR. Group compositions and behavior of this gibbon was investigated by following 4 gibbon groups for 4-7 days from August to November 2013 at Ban Toup, Nam Kan National Protected Area. A total of 20 individuals were found with mean group size of 5.0 individuals. Interestingly, two groups had one adult male and two adult females while one group had no juvenile or infant.

From scan sampling technique, adult males and adult females spent most time on travelling (25%), followed by feeding and watching but sub adults, juveniles and infants spent most time on playing, followed by traveling and feeding. Gibbon spent most time on feeding and traveling more than other behaviors, due to not enough food patches and high human disturbance.

Only adults and sub adults call. They sang early morning calls after dawn between 06:04 to 07:36. The calls lasted 28 ± 5 minutes. From 35 singing trees found, nine plant species were identified. The highest number was *Spondias lakhonensis*

ACKNOWLEDGEMENTS

I am sincerely grateful to Asst. Prof. Dr. Pongthep Suwanwaree, my thesis advisor, and Dr. Phaivanh Phiapalath for their invaluable helps, encouragement and financial support throughout the course of this research. I will be forever grateful.

I wish to thank Suranaree University of Technology for supporting scholarship and many thanks to Mr. Jean-francois Reumaux, the Gibbon Experience, ecotourism forest conservation project in Nam Kan National Protected Area in Bokeo Province, Lao PDR, for supporting scholarship and payment cost of my study and research field worked and support for a good accommodation, foods and staffs for their assistance in this research field worked.

I would like to express my gratitude for the permission to undertake the field survey in Nam Kan National Protected Area to the Ministry of Natural Resource and Environment in Bokeo Province, Lao PDR (permission No. 88).

Thanks to Dr. Pongrit Krubphachaya, Assoc.Prof.Dr. Griangsak Eumkeb and Dr. Pantip Piyadasananon for their advices as academic mentors in the preparation of this dissertation. I would like to thank Mr. Kham Youanechuexian, Mr. Warin Boonriam, Ms. Jirapa Suwanrat, and Miss Manuswee Phanichnok for their assistances in field and warm friendship during the course of my studies.

Finally, I wish to thank my family for their unfaltering faith in my ability and encouragement throughout the period of this research.

CONTENTS

Page

AB	STR	ACT IN THAI I
AB	STR	ACT IN ENGLISHIII
AC	KNO	OWLEDGEMENTSV
CO	NTE	NTSVI
LIS	T O	F TABLES IX
LIS	T O	F FIGURESX
CH	[AP]	
Ι		TRODUCTION
	1.1	Backgrounds and Problem
	1.2	Research Objectives
	1.3	Scope and Limitation of the Study
II	LI	TERATURE REVIEW
	2.1	Scope and Limitation of the Study
		Black Crested Gibbon (<i>Nomascus concolor</i>) [Harlan, 1826]7
		2.2.1 Taxonomy
		2.2.2 Description
		2.2.3 Population and Distribution
		2.2.4 Habitats
		2.2.5 Group Structure

CONTENT (Continued)

Page
14
14
14
17
18
20
20
20
22
24
25
26
29
29
32
41
45
49
55
65

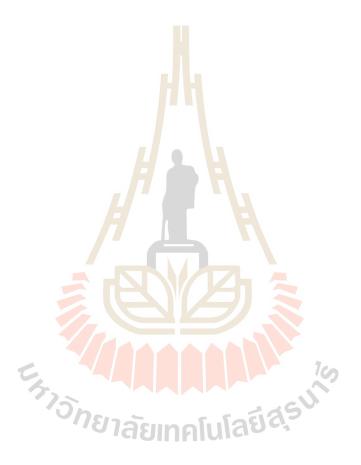
CONTENT (Continued)

Page
5.1 Conclusions
5.2 Recommendations
REFERENCES
APPENDICES
APPENDIX A ACTIVITY BUDGET79
APPENDIX B ACTIVITY BUDGET BY TIME85
APPENDIX C SINGING TREES OF LAOTIAN BLACK CRESTED
GIBBONS IN NAM KAN NATIONAL PROTECTED
AREA91
APPENDIX D PLANT SPECIES USED AS FOOD BY LAOTIAN
BLACK CRESTED GIBBONS IN NAM KAN NPA94
CURRICULUM VITAE
E
รั ³ าวักยาลัยเทคโนโลยีสุร ^น าว

LIST OF TABLES

Tabl	e Page
2.1	The gibbon species and distribution5
2.2	Group size of other gibbon species
2.3	Home range, group size and duration of studies of <i>Nomascus concolor</i> 15
2.4	List of plant species fed on by the black crested gibbons at Mt. Wuliang
	central Yunna China16
2.5	Occurrence of Black crested gibbon song types
4.1	Group composition of Laotian black crested gibbon
4.2	Comparison group size and adult male, adult female, of other gibbons32
4.3	Male activity budget of Laotian black crested gibbon in Nam Kan NPA33
4.4	Female activity budget of Laotian black crested gibbon in Nam Kan NPA33
4.5	Sub-adult activity budget of Laotian black crested gibbon in Nam Kan NPA34
4.6	Juvenile activity budget of Laotian black crested gibbon in Nam Kan NPA34
4.7	Infant activity budget of Laotian black crested gibbon in Nam Kan NPA34
4.8	Activity budget comparison among gibbon species
4.9	Singing time of Laotian black crested gibbon in Nam Kan NPA42
4.10	Singing trees of Laotian black crested gibbons in Nam Kan NPA43
4.11	Plants species used by gibbon group of adult males and females50
4.12	Plant part eaten by Laotian black crested gibbon in Nam Kan NPA52
4.13	Diet proportion comparison among gibbon species
4.14	Number of feeding trees per day of each gibbon group55

LIST OF FIGURES


Figu	re Page
2.1	Geographical distribution of the four gibbon genera6
2.2	Adult male and adult female with infant of <i>Nomascus concolor</i>
2.3	Distribution of <i>Nomascus concolor</i> (Bleisch <i>et al.</i> , 2008)10
2.4	Annual change in the proportion of time spent in feeding on different food in
	Wuliang Mountain17
3.1	Study sites at Ban Toup in Nam Kan National Protected Area, Lao PDR21
3.2	Mean monthly temperature in 201321
3.3	Mean monthly rainfall in 2013
3.4	Topography of Nam Kan NPA
3.5	Study sites and 4 main rivers in Nam Kan NPA
3.6	Land cover of Nam Kan NPA
3.7	Location of study sites and tree houses
4.1	Locations of 4 gibbon groups near Gibbon Experience's tree houses in
	Nam Kan NPA
4.2	Activity budget comparison among adult male (n=4), adult female (n=4),
	sub adult (n=2), juvenile (n=3) and infant (n=2) of Laotian black
	crested gibbon
4.3	Percentage of adult male activity budget by time
4.4	Percentage of adult female activity budget by time

LIST OF FIGURES (Continued)

Figu	re Page
4.5	Percentage of sub adult activity budget by time40
4.6	Percentage of juvenile activity budget by time40
4.7	Percentage of infant activity budget by time
4.8	Singing trees of group 1 of Laotian black crested gibbon in Nam Kan NPA44
4.9	Singing trees of group 2 of Laotian black crested gibbon in Nam Kan NPA45
4.10	Singing trees of group 3 of Laotian black crested gibbon in Nam Kan NPA46
4.11	Singing trees of group 4 of Laotian black crested gibbon in Nam Kan NPA47
4.12	Frequency distribution of singing tree DBH (cm)48
4.13	Frequency distribution of singing tree height (m)48
4.14	Frequency distribution of singing tree elevation (m)
4.15	Comparison percentage part of eaten by male and female of Laotian black
	crested gibbon in Nam Kan NPA
4.16	Feeding tree locations of Laotian black crested gibbon in Nam Kan NPA56
4.17	Feeding tree G1 of Laotian black crested gibbon in Nam Kan NPA57
4.18	Feeding tree G2 of Laotian black crested gibbon in Nam Kan NPA58
4.19	Feeding tree G3 of Laotian black crested gibbon in Nam Kan NPA59
4.20	Feeding tree G4 of Laotian black crested gibbon in Nam Kan NPA60
4.21	Frequency distribution of feeding trees DBH61
4.22	Frequency distribution of feeding trees Height61
4.23	Frequency distribution of feeding tree elevation
4.24	Height of feeding and singing tree comparison

LIST OF FIGURES (Continued)

Figure			
4.25	DBH of feeding and singing tree comparison	63	
4.26	Elevation of feeding and singing tree comparison	64	

CHARPTER I

INTRODUCTION

1.1 Backgrounds and Problem

Laotian black crested gibbon (*Nomascus concolor Lu*) is listed as critically endangered species (Bleisch *et al.*, 2008) and there are only a few populations in the northern Laos that remain entirely unstudied. In 1939, this gibbon was discovered at Ban Nam-Khueng in Bokeo province, northwestern Lao. A dozen individuals were collected, which were subsequently described as a new subspecies (Delacour, 1951). The Laotian black crested gibbon only occurs in small populations in Nam Kan National Protected Area (NPA), Bokeo province. An additional small population in Nam Ha NPA, Luang Namtha province, Lao PDR.

In 1999, 13 gibbon groups were found in Ban Toup and Ban Lor Xor in the southern half of Nam Kan NPA (Geissmann, 2007). Later Robichaud *et al.* (2010) surveyed and interviewed villagers in and around Nam Kan NPA and they reported 9 to 14 groups of Laotian black crested gibbon in the southern part and later reported 10 to 14 groups were found at Ban Chomsy forest area and in the north central of the NPA mostly in the catchments of the upper Nam Touey and Nam Hmongnoy (Timmins and Duckworth, 2013). In addition, five gibbon groups were found in Nam Ha NPA in 2003 (Johnson *et al.*, 2005) which is only adjacent national protected area located on the north

10

next to this study site. However, only one group was found three years later at the same location (Brown, 2009). This group still remains in that area as confirmed recently by Luangluexay and Suwanwaree (2012). Therefore, Nam Kan NPA is very important for conservation of this gibbon population as the only site that can support viable population of this gibbon.

The population of Laotian black crested gibbons has declined due to habitat loss and hunting, habitat degradation and deforestation. These activities also inhibit sustainable economic development, particularly for rural communities who are often entirely dependent upon local natural resources. Hunting by both local villagers and outsiders appears to be the most important issue directly affecting the recovery of the gibbon. Nam Kan NPA is easily accessible to markets in China via transportation along the Mekong River and the R3 road which runs through the protected area (Robichaud *et al.*, 2010). Therefore, this study is the first effort to understand the activity and feeding proportion and home range of Laotian black crested gibbon in Nam Kan NPA. Results of this study would be useful for conservation planning and management of the species in the future.

The Gibbon Experience ecotourism is the best way to protect forest and wildlife habitat of this area. The team has long been looking for innovative methods to change the villagers' idea that they can make a non-destructive living from their unique environment, by protecting the forest and farming at the lower altitude flat lands. Gibbon Experience supports the monitoring and protecting the forest from external logging and poaching local people. Now the Gibbon Experience has proved that taking care of the forest can be a profitable activity for all.

1.2 Research Objectives

The objectives of the study are: To identify group composition of Laotian Black crested gibbon at the Gibbon Experience ecotourism near Ban Toup, Nam Kan National Protected Area, Bokeo province, Lao PDR.

1) To observe behaviors of adult male, adult female, sub adult, juvenile and infant of this gibbon.

2) To characterize singing trees, feeding trees, feeding proportion, movement and foraging area of this gibbon.

1.3 Scope and Limitations of the Study

The study site was located at Gibbon Experience around 1 km in the West of Ban Toup in Nam Kan NPA. Four gibbon groups were selected and followed for 4-7 day each group per month from August to November 2013. Group composition, behaviors, singing trees, feeding trees, feeding proportion, movement and foraging area were observed. We could not follow the gibbons for the whole day and the same length of time for each group due to bad weather in the field. We could follow each gibbon group only one time due to funding limit

CHAPTER II

LITERATURE REVIEW

2.1 Gibbons

Gibbon constitutes the small ape among the order primates of the class Mammalia. There are 17 gibbon species (Table 2.1) in four genera (*Hylobates, Hoolock, Nomascus and Symphalangus*) living in tropical and subtropical rainforests of south Asia, China and south east Asia (Figure 2.1), from northeast India to Indonesia and southern China, including the islands of Sumatra, Borneo, and Java (Van Ngoc Thinh *et al.*, 2010).

Lao PDR has a high diversity of gibbons, as second to only Indonesia in the world (Duckworth, 2008). Seven species occur in Lao PDR of which Black crested gibbon (*Nomascus concolor lu*) and Northern white-cheeked gibbon (*Nomascus leucogenys*), are globally list as critically endanger and all others such as Northern buffed-cheeked gibbon (*Nomascus annamensis*), Red-cheeked gibbon (*Nomascus gabriellae*), Lar gibbon (*Hylobates lar*), Pileated gibbon (*Hylobates pileatus*) and Southern white-cheeked gibbon (*Nomascus siki*) are endangered. Gibbons are distributed throughout Lao PDR; the two species of Hylobates are found west of the Mekong River and the five species of *Nomascus* are found east of the Mekong River (Bleisch *et al.*, 2008).

No	Scientific name	Common name	IUCN Red List Status	Distribution
1	Hylobates agilis	Agile gibbon	Endangered	Indonesia, Malaysia and Thailand
2	Hylobates albibarbis	Bornean white-bearded gibbon	Endangered	Indonesia
3	Hylobates klossii	Kloss's gibbon	Endangered	Indonesia
4	Hylobates lar	Lar gibbon	Endangered	Indonesia, Lao PDR, Malaysia, Myanmar and Thailand
5	Hylobates moloch	Silvery Javan gibbon	Endanger <mark>ed</mark>	Indonesia
6	Hylobates muelleri	Müller's Bornean gibbon	Endangered	Indonesia and Malaysia
7	Hylobates pileatus	Pileated gibbon	Endangered	Thailand, Lao PDR and Cambodia
8	Hoolock hoolock	Western hoolock gibbon	Endangered	India, Myanmar and Bangladesh
9	Hoolock leuconedys	Eastern hoolock gibbon	Vulnerable	China and Myanmar
10	Nomascus annamensis	Northern buffed-cheeked gibbon	Not assess	Vietnam, Cambodia and Lao PDR
11	Nomascus concolor	Black crested gibbon	Critically endangered	China, Lao PDR and Viet Nam
12	Nomascus gabriellae	Red-cheeked gibbon	Endangered	Cambodia, Viet Nam and Lao PDR
13	Nomascus hainanus	Hainan gibbon	Critically endangered	Hainan Island, China
14	Nomascus leucogenys	Northern white-cheeked gibbon	Critically endangered	Viet Nam, Lao PDR and Yunnan, China
15	Nomascus nasutus	Cao-vit crested gibbon	Critically endangered	Viet Nam and China
16	Nomascus siki	Southern white-cheeked gibbon	Endangered	Lao PDR and Viet Nam
17	Symphalangus syndactylus	Siamang	Endangered	Indonesia, Malaysia and Thailand

Table 2.1 Gibbon species, distribution and conservation status (Bleisch *et al.*, 2008).

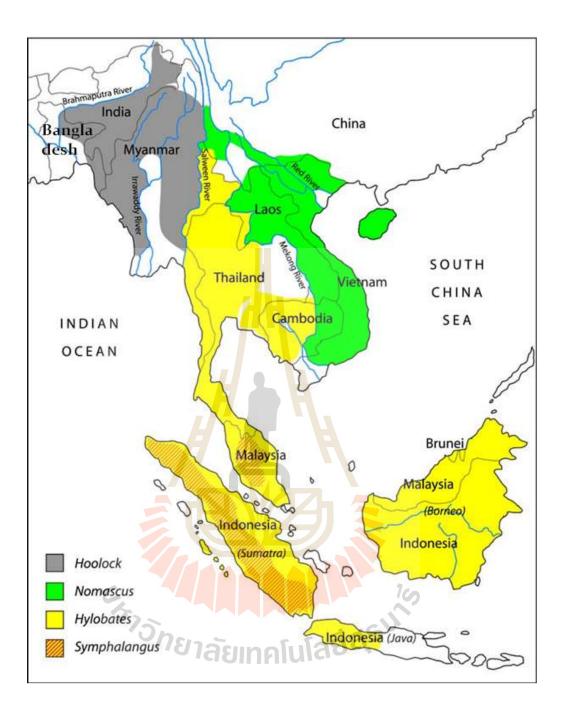


Figure 2.1 Geographical distributions of four gibbon genera (Mootnick and Fan, 2011).

2.2 Black crested gibbon (*Nomascus concolor*) [Harlan, 1826]

2.2.1 Taxonomy

Domain Eukarya

Kingdom Animalia

Phylum Chordata

Class Mammalia

Order Primates

Family Hylobatidae

Genus Nomascus

Species Nomascus concolor

The black crested gibbon has been divided in to four subspecies: particularly the Tonkin black crested gibbon (*N. c. concolor*), the West Yunnan black crested gibbon (N. c. furvogaster), the Central Yunnan black crested gibbon (N. c. jingdongensis) and the Laotian black crested gibbon (N. c. lu). Each subspecies has only minimal molecular differences among N. c. concolor, N. c. furvogaster and N. c. jingdongensis (Mootnick and Fan, 2011). วายาลัยเทคโนโลยีสุรบ

2.2.2 Description

Adult males are completely black. A few single white hairs may occur in the corner of the mouth. Adult females are pale yellow, yellow, orange or beige brown. Adult females have a black cap and a large, often rhomboid area with black hairs on the ventral area (Figure 2.2). The amount of ventral black varies. In some females, the whole ventral fur maybe black, strongly contrasting with the light back, at the other end of the range, the ventral fur may be merely interspersed with some black hairs (Geissmann *et al.*, 2000). Black Crested Gibbons are not monkeys but apes. Males are all black with black hairless faces while females are yellowish-beige with black hairless faces and black patches on the top of their head, chest and abdomen. Females and males generally weigh from 6.9 to 10 kg (average 8 kg) and measure between 43 and 54 cm (average 50 cm). Gibbons have the longest arm length relative to body size of all primates. Gibbons' arms are about twice the length of their body and one and a half times the length of their legs. This sexual dichromatic develops with age, the female changes from black to buff or tawny coloration in early adulthood (Mootnick and Fan, 2011).

Male

Female with infant

Figure 2.2 Adult male and adult female with infant of *Nomascus concolor* (Rawson *et al.*, 2011).

Darker fur coloration, which was originally considered to be distinctive for females of Laotian black crested gibbon, turned out to be based on inclusion of sub adult females which have not completely finished their colour change from juvenile black to adult yellow. Fully adult females do not exhibit these characteristics. Males of Laotian black crested gibbon have also been reported to exhibit a silvery-black line between eye and ear (Geissmann *et al.*, 2000).

Black crested gibbons communicate through vocalizations, including calls and songs, by most between 6:00 am to 7:00 am in the morning but possibly start from 5:00 am to10:00 am. While singing the animal has physical interactions and facial expressions. The song of black crested gibbon maybe used for variety of purpose, including defense of resources and establishment of territories, as well as attracting mates and strengthening pairs bonds (Geissmann, 2007).

2.2.3 Population and Distribution

Black crested gibbon global population is estimated at 1,300-2,000 individuals and occurs discontinuously in southwestern China, northwestern Lao PDR and northern Viet Nam (Geissmann *et al.*, 2000; Figure 2.3). *N. c. concolor* estimated at 40 to 300 individuals lived in southwestern Yunnan, China (Jiang *et al.*, 2006) and 59 individuals were found at Lao Cai, Yen Bai, Son La, and Lai Chau Provinces in northern Viet Nam (Le Trong Dat and Le Ming Phong, 2001). It is found between the Song Da (Black) and Song Hong (Red) rivers, north to 23°45'N and south to about 20°N (Groves, 2001).

N. c. furvogaster, estimated at 50 to 100 individuals, occurs in southwestern Yunnan, southern China (Jiang *et al.*, 2006). It is found only in a small region near the Myanmar border, west of the Mekong river from 23°15' to 23°40'N and 99°05' to 99°29'E (Groves, 2001). *N. c. jingdongensis*, estimated at 195 to 450 individuals, occurs in west-central Yunnan, southern China (Jiang *et al.*, 2006). It is found only in a small region around Wuliang Mountain, between the Mekong and Chuanhe River about 24 to 25°N (Groves, 2001). *N. c. lu*, expected up to 200 individuals, occurs in northwestern Lao PDR. An isolated population, it is known for certain only in a tiny area on the east bank of the Mekong river at about 20°17' to 20°25'N. It has been confirmed in Nam Ha NPA, Luang Namtha province, and Nam Kan NPA, Bokeo province (Johnson *et al.*, 2005; Brown, 2007; Geissmann, 2007).

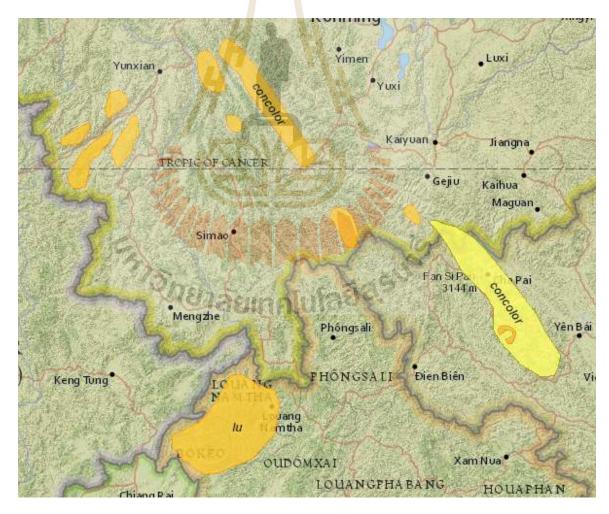


Figure 2.3 Distribution of *Nomascus concolor* (Bleisch et al., 2008).

2.2.4 Habitats

The black crested gibbon occurs in subtropical and montane evergreen, semi-evergreen and deciduous forest (Bleisch *et al.*, 2008). In China it is likely restricted to broadleaved evergreen forests. In Yunnan province, it occurs at altitude ranging from 1,900 to 2,790 m, but at other sites in Yunnan the species may also occur at elevation as low as 500 m. In northern Viet Nam, the species was reported at elevation of 1,600 to 2,000 m and in Nam Kan NPA Lao PDR, it was found at 450 to 900 m, but mainly above 550 m. The main forest type since which they are species found in Nam Kan NPA is dry evergreen and mixed deciduous forest (Timmins and Duckworth, 2013).

2.2.5 Group Structure

Black crested gibbons live in typically small monogamous groups of family units, most of which consist of a pair of adults, one male and one female, and their offspring. It has been observed that some groups consist of one adult male living with two to four females and their offspring. The groups can potentially include one infant, one juvenile and one sub adult (Jiang *et al.*, 1999). Other gibbons have group size average from 3 to 6 (Table 2.2).

A gibbon family is territorial and defends its territory with regular morning songs performed by the breeding male and female (Leighton, 1987). Groups have, on average, four to eight individuals and usually include an adult male and female, one juvenile and one infant, although the group may also include one adolescent and one subadult (Leighton, 1987). There is a high degree of social and behavioral equality between adult males and females and codominance is exhibited (Leighton, 1987; Geissmann *et al.*, 2000). Because of this egalitarian social atmosphere and no competition between males for access to females, white-cheeked gibbons are not sexually dimorphic

Species	Location	Group size	References
Hoolock hoolock	Jorhat, Assam, India	3.2	Tilson (1979)
	Tripura, India	3	Kakati <i>et al.</i> (2009)
Hylobates agilis	W. Malaysia	4.4	Gittins and Raemaekers (1980); Mitani (1987)
	W. Kalimantan, Indonesia	4.1	Mitani (1987, 1990)
Hylobates klossi	Siberut, Indonesia	3 <mark>.</mark> 4	Tenaza (1975)
	Siberut, Indonesia	3.7	Whitten (1980)
	Siberut, Indonesia	4.1	Tilson (1981)
Hylobates lar	Khao Yai, Thailand	4.3	Brockelman et al. (1998); Bartlett (1999) and Reichard (1995
	Kuala Lompat, Malaysia	3.3	Gittins and Raemakers (1980) Barelli et al.(2006)
	Tanjong Triang	3.3	Ellefson (1974)
	Ketambe, Sumatra, Indonesia	4.1	Palombit (1992)
Hylobates moloch	Ujung-Kulon, West Java, Indonesia	4	Kim <i>et al.</i> (2011)
	Leuweung Sancang, West	3.3	Malone and Oktavinalis (2006)
Hylobates muelleri	Kutai, Kalimantan, Boneo, Indonesia	3.4	Leighton (1987), McConkey et al. (2002)
Hylobates pileatus	Khao Soi Dao, Thailand	6	Srikosamatara (1984)
Nomascus nasutus	Bangliang, Jingxi, Chi	6	Fan <i>et al.</i> (2010)
Symphalangus	Ulu Sempan, Malaysia	4	Chivers (1974), Lanpan (2007)
syndactylus	Kuala Lompat, Malaysia	5	Chivers (1974)
	Kuala Lompat, Malaysia	a 3.8	Gittins and Raemaekers (1980)
	Ketambe, Sumatra, Indonesia	3.8	Palombit (1992 and 1994)
	Way Canguk, Sumatra, Indonesia	4	Lappan (2005) and O'Brien et al. (2003)

Table 2.2 Group size average of other gibbon species.

2.2.6 Foraging area

Gibbons are territorial animals with a restricted home range and foraging area. The sizes of foraging area vary considerably depending upon the habitat and quality of the forest (Fan *et al.*, 2008). Black crested gibbon has a home range size of 100-500 ha (Table 2.3). However, there is no study on the home-range of this gibbon species that has been undertaken in Lao PDR.

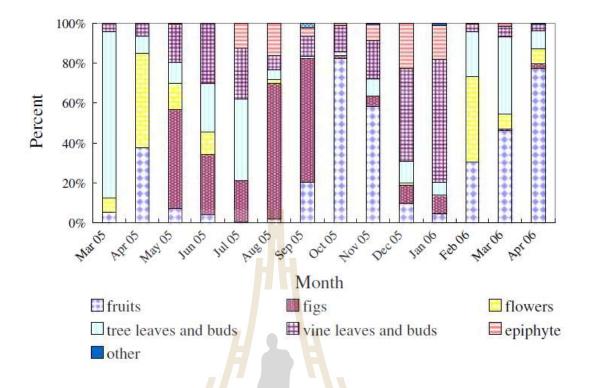
2.2.7 Reproduction

Black crested gibbons reproduce once every 2 to 3 years, usually producing one offspring in each interval. The gestation period lasts about 7 to 8 months, and newborns weigh about 510 g at birth (Geissmann and Orgeldinger, 1995). Offspring are weaned at around two years of age, and they reach sexual maturity at about eight years of age. Males and older offspring also provide care to young (Geissmann and Orgeldinger, 1995).

2.2.8 Food and Feeding Behaviors

Black crested gibbons feed preferentially on ripe, sugar-rich fruit, such as figs, but occasionally consume vitamin-rich leaf buds as well as flowers and rarely eat animals (Fan *et al.*, 2009). Gibbons are typically frugivorous gibbons consumed 77 different plant species and two insect-species (Table 2.4). Buds and leaves constituted 46.5% of the diet (21.0% vine leaves and buds, 19.2% tree leaves and buds, and 6.3% epiphyte leaves). Fruits, figs and flowers accounted for 25.5, 18.6 and 9.1% of the diet, respectively (Fan *et al.*, 2009). The proportion of their food varies by season (Figure 2.4).

Scientifics name	Location	Country	Group size	Home range (ha)	References
Nomascus concolor	Xiobahe, Yunnan	China	5.25	łh	Sheeran (1993); Lan and Sheeran (1995)
	Yunnan	China		100-200	Jiang <i>et al.</i> (1994)
	Hainan	China	5.25	200-500	Zhenhe et al. (1989)
	Hainan	China		3 <mark>00-</mark> 500	Lid <i>et al.</i> (1989)
	Che Tao/Ho Nam Mu	Vietnam	6.0		Zhenhe et al. (1989)
	Mt. Wuliang, Yunnan	China		150	Fan <i>et al.</i> (2009)
N. c. lu	Nam Kan NPA	Lao	3.6-3.8		Geissmann (2007)
N. c. furvogaster	Yunnan	China			Groves (2001)
N. c. jingdongensis	Central Yunnan, China	China	2.9- 6.6	151	Fan <i>et al.</i> (2008)
					100


Table 2.3 Home range and mean group size of *Nomascus concolor* in different locations.

ะ ³่าวักยาลัยเทคโนโลยีสุรบาว

Family	Species	Life form	Parts eaten	Total (%)	Month(s) consumed
Araliaceae	Pentapanax leschenaultia	Т	Fr <mark>, L,</mark> S	3.9	October–June
Betulaceae	Betula alnoides	Т	L,B	13.1	March–April
Celastraceae	Celastrus gemmatus	V	Fr, L	1.2	June–August; December–January
Ericaceae	Rhododendron siderophyllum	Т	FI	1.8	April
Gnetaceae	Gnetum montanum	V	Fr	1.8	October–April
Labiatae	Leucosceptrum canum	Т	FI	4.5	January–March
Moraceae	Ficus neriifolia	Т	Fr, L	21.6	Whole year
Moraceae	Ficus sarmentosa	Е	Fr	2.3	April–May–July–August–October
Myrsinaceae	Embelia ribes	v	-Fr-	1.1	December–May
Orchidaceae	Pholidota articulate	Е	L	7.8	July–March
Rosaceae	Photinia serrulata	V	Fr	2.3	February–March
Sabiaceae	Sabia dielsii	V	Fr,L	2.2	June–November; April
Saurauiaceae	Saurauia napaulensis	Т	Fr, L	5.9	October–March
Schisandraceae	Kadsura interior	C V	Fr, Fl	7.1	April–June (Fl); September–November (Fr
Symplocaceae	Symplocos ramosissima	T	Fr	1.3	November–December
Vitaceae	Tetrastigma delavagi	13/181	a Eurr, L	8.1	September-May

Table 2.4 List of plant species fed on by black crested gibbons at Mt. Wuliang, central Yunnan, China (Fan et al., 2009).

Plant type: T tree, V vine, E epiphyte

Figure 2.4 Annual change in the proportion of time spent in feeding on different foods at Wuliang Mountain (Fan *et al.*, 2008).

2.2.9 Sleeping Trees

Black crested gibbons at Wuliang usually selected the highest trees (45%) as sleeping trees in the plot and also tend to sleep on the trees with the tallest and thickest canopy with large crowns on steep slopes and near important food patches. Sleeping trees were situated within 30 m of the hill ridge of the valley (Fan and Jiang, 2008). Sleeping trees may be chosen to make approach and attack difficult for predators and to provide an easy escape route in the dark (Fan and Jiang, 2008).

The members of the group typically formed four sleeping units (adult male and juvenile, adult female with one semi-dependent black infant, adult female with one dependent yellow infant, and sub adult male) spread over different sleeping tree branches. Individuals or units preferred specific areas to sleep (Fan and Jiang, 2008). The adult male and juvenile often huddled and shared the same sleeping place, but the other gibbons slept in different trees (except for females with their dependent infants). Individuals or units tended to sit at the crotch of a large branch to sleep, and sleeping spaces were usually well covered by the crown (Fan and Jiang, 2008).

The gibbons at Wuliang usually entered the sleeping trees on average at 17:02 h (range: 15:10-18:25 h) before sunset and they left the sleeping trees on average at 7:59 h (range: 6:45-8:45) after sunrise. There were no signs of searching for sleeping trees. Individuals always moved rapidly in a straight line to the sleeping trees and their sleeping places and became silent once settled (Fan and Jiang, 2008).

2.2.10 Singing

All gibbon species are known to produce loud and long song bouts, lasting for 10-30 minutes. The black-crested gibbon sings in the morning, sometimes in duets initiated by the male. The males choose the highest tree branches, often near ridges (Fan *et al.*, 2009). The songs are thought to be used for resource defense, mate defense, pair bonding, and group cohesion and mate attraction (Geissmann, 2007). The songs are innately altruistic, as each group calls separately. The adult male and two females in the study group always sang interactively to produce duet bouts. Males, and in some also females sing solos to attract mates, as well as advertise their territories. There are three main songs referred as Great call, Duet song and solo. The solo can be made by either male or female (Table 2.5).

No	Song types	Description	References	
1	Great call	A duet bout usually consists of male loud	Fan <i>et al.</i> (2009)	
		calls repeated phrases increasing in		
		loudness and complexity and somewhat		
		more modulated and complex, stereotyped		
		phrases of females called "great calls".		
2	Duet song	The vocalizations of gibbon male and	Geissmann	
		female together. Duet song bouts, like	(2002)	
		female song bouts, usually have duration of		
		less than 30 minutes.		
3	Male solo	The vocalizations of gibbon male only, the	Geissmann	
	song	mated males of most gibbon species may	(2002)	
		engage in uninterrupted solo song bouts of		
	Ch	considerable length, sometimes lasting more than 2 h.		
4	Female	Female solo song bouts are of shorter	Geissmann	
	solo song	duration than male solo song bouts (usually	(2002)	
		less than 30 minutes). Most gibbon species		
		do not normally produce solo song bouts.		

 Table 2.5 Occurrence of Black crested gibbon song types.

CHAPTER III

MATERIALS AND METHODS

3.1 Study Area

This study was carried out at Gibbon Experience around 1 km West from Ban Toup in Nam Kan NPA, 14 km from the main road of Luangnamtha to Bokeo provinces in the South (Figure 3.1). This village belongs to Hmong ethnic group. Nam Kan NPA is situated at latitude 20°21′ to 20°23′ N and longitude 100°51′ to 100°59′ E in the northwest of Lao PDR about 60 km from Bokeo province. It covers an area of 136,000 ha, of which about 66,000 ha is in Bokeo province and 70,000 ha is in Luang Namtha province (Robichaud *et al.*, 2010). The current gibbons recorded were mainly around treehouse areas of the Gibbon Experience.

3.1.1 Climate

There are two distinct seasons at Ban Toup, Laos is a monsoon country, with a rainy season from May to September and a dry one from October to April. In 2013, the maximum temperature average was 28.0 °C and the minimum temperature average was 16.7 °C (Figure 3.2), while the rainfall average was 8.7 mm per year (Figure 3.3). Since the study site has no climatic data logger, the climatic data were collected from meteorological station at Bokeo province (Meteorology Department Bokeo province, 2013).

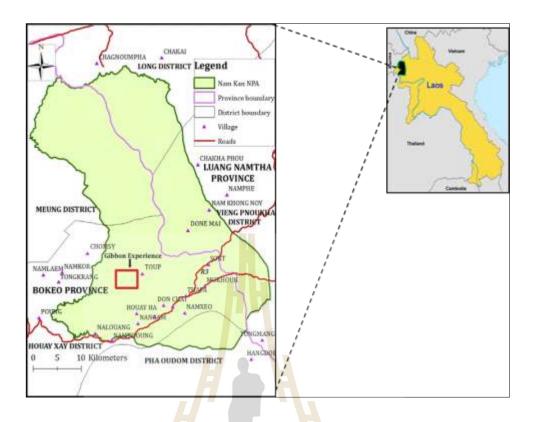


Figure 3.1 Study sites at Ban Toup in Nam Kan National Protected Area, Lao PDR.

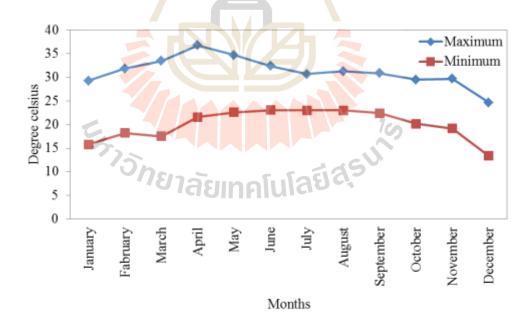


Figure 3.2 Mean monthly temperature in 2013 (Meteorology Department of Bokeo province, 2013.

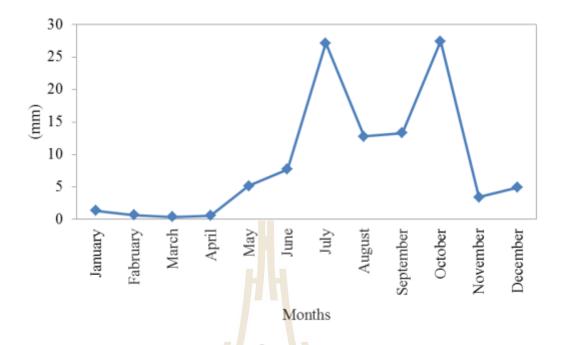


Figure 3.3 Mean monthly rainfall in 2013 (Meteorology Department of Bokeo province, 2013).

3.1.2 Topography

Nam Kan NPA has altitude ranging from 440 to 1,468 m above sea level (Figure 3.4). The Nam Kan NPA is mainly dominated with steep slope mountains and evergreen forest, tropical rain forest with outstanding scenic values. There are six main rivers such as Nam Pha Noy and Nam Touy are lying at the northern part and Nam Pea, Nam Kan, Nam Nga and Nam Ngao they lying at the central and southern parts of Nam Kan NPA (Robichaud *et al.*, 2010).

The study sites connect with Nam Nga in the North, Nam Kan and Ban Toup in the East, Nam Kok in the South and Nam Ngao in the West of Nam Kan valleys (Figure 3.5).

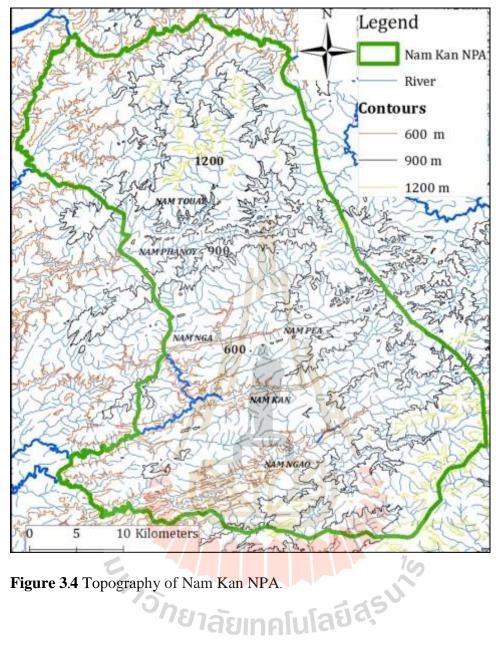


Figure 3.4 Topography of Nam Kan NPA.

23

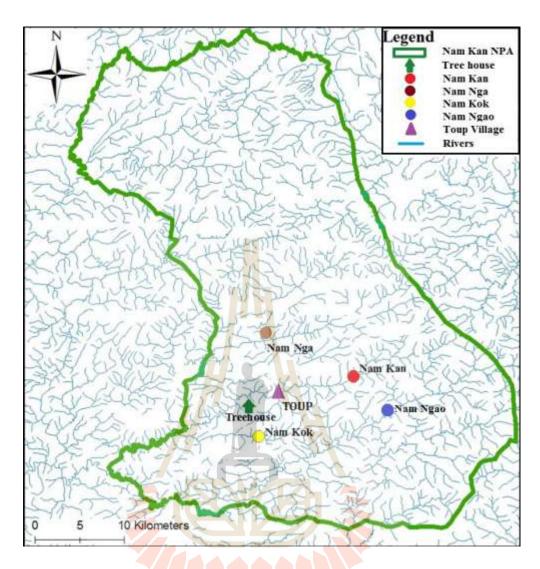
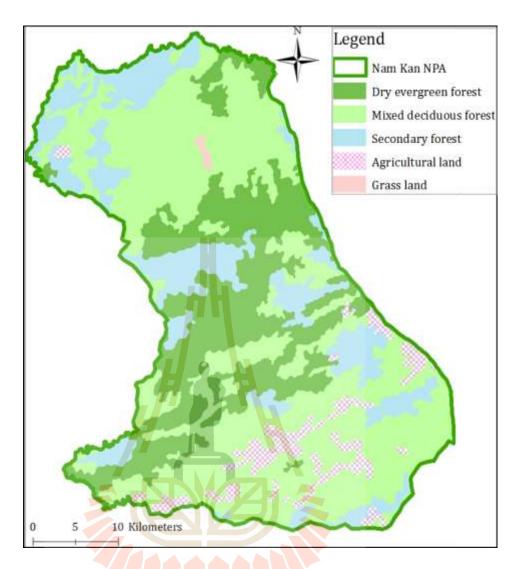
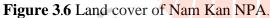




Figure 3.5 Study sites and 4 main rivers in Nam Kan NPA.

3.1.3 Land Cover

The Nam Kan National Protected Area has different forest types (Figure 3.6). Mixed deciduous forest area is 65,500 ha (48.2%) in the north and south, dry evergreen forest area is 40,200 ha (29.6%) at the central, secondary forest area is 22,000 ha (16.2%), agriculture land is 8,000 ha (5.9%) distributed around NPA and some grassland is 300 ha (0.2%) (Department of Forestry, 2005).

วกยาลัยเทคโนโลยีสุรบั 3.1.4 Flora and Fauna

Little is known about flora in Nam Kan NPA, but common species are recorded in the area including *Afzelia xylocarpa*, *Pterocarpus*, *Azadirachta*, *Phyllantus emblica*, *Spondias pinnata*, *Dipterocarpus intricstus*, *Baccaurea ramiflora*, *Ficus neriifolia*, *Amomum villosum*, rattan, broom grass and bamboo (Timmins and Duckworth, 2013).

Nam Kan NPA is also important for wildlife conservation in Laos with high diversity of wildlife. There is a number of current wildlife identified especially for bird species. The bird species recorded includes Great salty woodpecker Mulleripicus pulverulentus, Woodpeckers (Picidae), Oriental pied hornbill Anthracoceros albirostris, Brown hornbill Anorrhinus tickelli, Blyth's kingfisher Alcedo Hercules, Stork-billed kingfisher Halcyon capensis, Crested kingfisher Megaceryle lugubris, Barred cuckoo dove *Macropygia unchall*, Little cuckoo dove *Macropygia ruficeps*, Green pigeons Treron, Green imperial pigeon Ducula aenea, Blue naped / Blue rumped *Pitta Pitta nipalensis / P. soror* and Large billed Crow *Corvus macrorhynchos* (Timmins and Duckworth, 2013).

The mammals include Pig tailed macaque Macaca nemestrina, Assamese macaque *Macaca assamensis*, Bear macaque *Macaca arctoides*, Phayre's leaf monkey Semnopithecus phayrei, Dhole Cuon alpinus, Otters (Lutrinae), Chevrotain Tragulus, Sambar Cervus unicolor, Muntjacs Muntiacus and Black giant squirrel Ratufa bicolor (Timmins and Duckworth, 2013). ⁷วักยาลัยเทคโนโลยีสุรบโ

3.2 **Methods**

Four groups of gibbon were selected for this study. They were located near tree house number 1, 2, 3, 5 and 7 (Figure 3.7). Group 1 (G1) lived near the tree house 3 and 7, group 2 (G2) near the tree house 2, group 3 (G3) near the tree house 1 and kitchen 1 and group 4 (G4) near the tree house 5 to the west of Nam Kan valley. The distances between group 1, 2 and 3 are 1 km apart from each other.

Gibbon groups were located by listening to the loud calls in the morning. After the groups were found. All group members were counted and classified into 5 age-sex classes, including infant, juvenile, sub-adult, adult female and adult male. The infant is less than 1.5 years old. The average distance from observing team to gibbon groups were from 80 to 250 m.

Figure 3.7 Location of study sites and tree houses (Th).

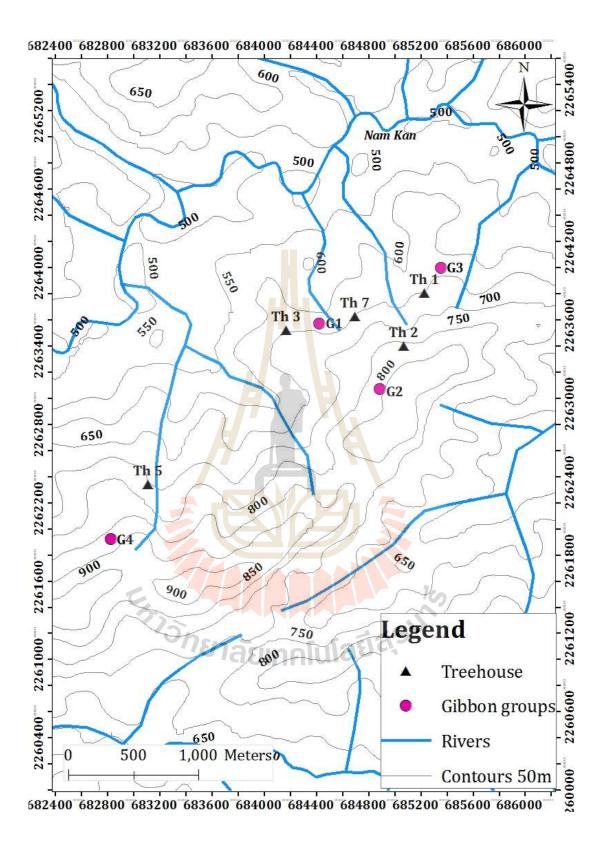
Behavior of one adult male, adult female, sub-adult, juvenile and infant of each group were observed by 1-minute scan sampling every 15 minutes interval (Altmann, 1974). Behaviors were classified in 8 types; singing, travelling, feeding watching, grooming, playing, resting and sleeping (Nguyen Xuan Nghia *et al.*, 2010). Due to poor weather condition, gibbon groups were followed for 4-7 days per group, one group per month, for totally 22 days from August to November 2013.

Because we cannot follow gibbon until they go to sleep in the evening, we cannot call the trees they sing in the morning as sleeping trees. We call them singing trees instead. Singing trees and food plants GPS locations were recorded. Plant local names and specific part eaten (e.g., fruit, leave and flower) were also noted and photographed. Later, the height and diameter at breast height (DBH) at 1.3 m from the ground were measured. Height was measured using a direct-reading optical Bushnell Bow hunter range finder. Plant specimens were collected and identified by Dr. Khamseang Shihalath at Faculty of Agriculture and Forestry, National University of Lao. Wild animals encountered during this study were also listed.

The activity budgets of adult male, adult female, sub-adult, juvenile and infant were calculated and compared. DBH and height of singing trees and feeding trees of each group were compared by the analysis of variance (ANOVA) using SPSS version 15.0. All gibbon movement GPS positions were gathered. Daily travel paths and lengths were mapped and calculated using ArcMap 10.2.2. Since we follow gibbon for only a short period, we cannot calculate home range of this gibbon but can show only the foraging area. The daily and total foraging areas were calculated by minimum convex polygon method (MCP) and using ArcMap 10.2. Group daily travel lengths and foraging areas were compared by ANOVA. Statistical significant difference was determined at $p \le 0.05$.

CHAPTER IV

RESULTS AND DISCUSSIONS


4.1 Group Composition

Four gibbon groups of total 20 individuals were found ranging from 2 to 8 gibbons per group (Table 4.1). G1, near tree house number 3 and 7 (Figure 4.1), was the biggest group consisting of 8 individuals. G2, near tree house 1 next to the kitchen to the east, had 7 individuals. G3, near Mr. Laoxo farm rice very closed to Nam Kan River, had 3 individuals. G4, the smallest group near tree house 5, had only 2 individuals. This small group probably results from hunting pressure which perhaps adult males or females are shot and cannot have more infants.

Group	Adult male	Adult female	Sub adult	Juvenile	Infant	Total
1	1	กยาลัยเท	คโนโลยี	333	1	8
2	1	2	1	2	1	7
3	1	1		1		3
4	1	1				2
Total	4	6	2	6	2	20

10

Table 4.1 Group composition of Laotian black crested gibbon in Nam Kan NPA.

Figure 4.1 Locations of 4 gibbon groups near Gibbon Experience's tree houses in Nam Kan NPA.

In this study, we observed polygyny in 2 gibbon groups (G1 and G2), similar to another subspecies, *Nomascus concolor jingdongensis* at Dazhaizi, Mt Wuliang, Central Yunnan, China (Fan, 2006), *Nomascus nasutus* at Bangliang Nature Reserve, Jingxi County, Guangxi, China (Fan *et al.*, 2010) and *Nomascus hainanus* at Bawangling National Nature Reserve, Hainan, China (Fellowes *et al.*, 2008).

Group size average of gibbon at this location is 5 individuals, closed to other subspecies in China and Vietnam (Table 4.2) but higher than those of previous studies in the same area (Geissmann, 2007) and other places in Nam Kan NPA (Youanechuexian *et al.*, 2014). The group size is big because Hmong people does not hunt gibbons and Gibbon Experience ecotourism provides more income to local people in this area.

Species	Location	Group size	References
Nomascus concolor lu	Nam Kan, Lao	5.0	Present study
	Nam Kan, Lao	3.6-3.8	Geissmann (2007)
	Nam Kan, Lao	3.9	Youanechuexian et
			al. (2014)
Nomascus concolor	Che Tao/Ho Nam Mu,	6.0	Zhenhe et al. (1989)
	Vietnam		
	Hainan, C <mark>hin</mark> a	5.25	Zhenhe et al. (1989)
	Xiobahe, Yunnan, China	5.25	Lan and Sheeran
			(1995)
N. c. jingdongensis	Central Yunnan, China	2.9-6.6	Fan <i>et al.</i> (2008)
Nomascus nasutus	Ban <mark>glia</mark> ng, Jing <mark>xi, C</mark> hina	6	Fan <i>et al.</i> (2010)
Hoolock hoolock	Tripura, India	3	Kakati <i>et al.</i> (2009)
Hylobates agilis	West Kalimantan,	4.1	Mitani (1990)
	Indonesia		
Hylobates klossi	Siberut, Indonesia	3.4	Tenaza (1975)
	Siberut, Indonesia	4.1	Tilson (1981)
Hylobates lar	Khao Yai, Thailand	4.3	Bartlett (1999)
E	Kuala Lompat, Malaysia	3.3	Barelli et al. (2006)
Hylobates moloch	West Java, Indonesia	4	Kim et al. (2011)
Hylobates muelleri	Kutai, Kalimantan, aU	3.4	McConkey et al.
	Boneo, Indonesia		(2002)
Hylobates pileatus	Khao Soi Dao, Thailand	6	Srikosamatara (1984)
Symphalangus syndactylus	Ulu Sempan, Malaysia	4	Lanpan (2007)

Table 4.2 Group size comparison of Laotian black crested gibbon and other gibbons.

4.2 Activity Budget

From total of 670 observations, both adult males and adult females spent most daily time on travelling, followed by feeding and watching respectively but less time on

sleeping (Table 4.3 and 4.4). Adult males spent a bit more time on singing than adult females while adult females spent more time on grooming than singing. In contrast, sub adults, juveniles and infants spent most time on playing, followed by traveling and feeding, respectively (Table 4.5-4.7). Sub adults spent least time on singing and sleeping while juveniles and infants did not sing at all.

Groups	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
G1	14	21	31	26	18	9	13	5	137
G2	18	37	46	36	14	14	10	5	180
G3	23	38	44	36	_19	14	14	6	194
G4	18	30	46	23	15	7	15	5	159
Total	73	126	167	121	66	44	52	21	670
%	10.9	18.8	24.9	18.0	9.8	6.5	52 7.7	3.1	100

Table 4.3 Male activity budget of Laotian black crested gibbon in Nam Kan NPA.

Table 4.4 Female activity budget of Laotian black crested gibbon in Nam Kan NPA.

100

	2						7		
Groups	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
1	U	On	CI2 -		5-22	50		1	
G1	15	18	38 8	19	23	13	5	6	137
G2	18	39	40	36	16	10	11	10	180
G3	20	41	37	29	22	18	15	12	194
G4	16	34	45	24	15	5	12	8	159
Total	69	132	160	108	76	46	43	36	670
%	10.3	19.7	23.8	16.1	11.3	6.8	6.4	5.3	100

Group	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
G1	4	19	30	22	16	31	11	4	137
G2	6	37	28	21	20	45	17	6	180
Total	10	56	58	43	36	76	28	10	317
%	3.1	17.6	18.3	13.5	11.3	23.9	8.8	3.1	100
				-					

Table 4.5 Sub-adult activity budget of Laotian black crested gibbon in Nam Kan NPA.

Table 4.6 Juvenile activity budget of Laotian black crested gibbon in Nam Kan NPA.

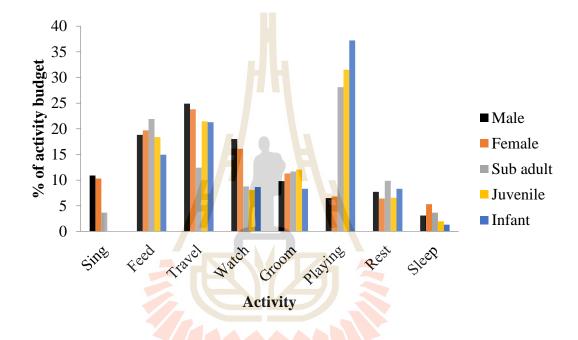

Group	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
G1	0	20	37	14	15	40	9	2	137
G2	0	28	- 39	18	27	53	12	3	180
G3	0	49	30	16	26	58	11	4	194
	0		50	10	20	50		-	174
Total	0	97	106	48	68	151	32	9	511
%	0.0	18.9	20.7	9.3	13.3	29.5	6.2	1.7	100

 Table 4.7 Infant activity budget of Laotian black crested gibbon in Nam Kan NPA.

10

	~ .				6	-		~ 1	
Group	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
	_					-		-	
G1	0	14	32	14	14	50	12	1	137
G2	0	31	37	15	16	65	13	3	180
02	0	51	57	15	10	05	15	5	100
Total	0	45	69	29	30	115	25	4	317
%	0.0	14.2	21.7	9.1	9.4	36.2	7.8	1.2	100
70	0.0			2.1-	2.1.1				100

Clearly, sub adult, juvenile and infant spent 4-5 proportion of time on playing more than those of adult male and female but spent 2 times on watching less (Figure 4.2). Sub adults sing and travel but very much less than adult gibbons. Adult male and female have similar proportion of time for each behavior because they live in the same group and do the same thing all the time.

Figure 4.2 Activity budget comparison among adult male (n=4), adult female (n=4), sub adult (n=2), juvenile (n=3) and infant (n=2) of Laotian black crested gibbon.

When we compared adult male data with another subspecies, Laotian black crested gibbons in our study sites spent most time in resting (38.8%) similar to *Nomascus concolor jingdongensis* in Yunnan, China (Lan, 1989; Fan et al., 2008; Table 4.8) and the same as many gibbon species such as *Hylobate albibarbis* in Indonesia (Cheyne, 2004), *H. klossii* in Sumatra (Whitten, 1980), *H. moloch* in Java (Kim, 2011) and *H. pileatus* in Thailand (Srikosamatara, 1984).

However, gibbons of our study spent more time on traveling but less time on feeding than another subspecies in Yunnan, China (Lan, 1989; Fan *et al.*, 2008), indicating possible lower food availability or higher human disturbance in this study site.

Spacias	Study area		<mark>Ac</mark> tivi	ty budget (%)		_ References
Species	Study area	Feed	Travel	Rest	Sing	Others	- References
Nomuscus concolor lu	Nam Kan, Lao	18.8	24.9	38.8	10.9	6.6	Present study
N. c. jingdongensis	Yunnan, China	33	14	50	3		Lan (1989)
	Yunnan, China	35.1	19.9	40	2.6	2.5	Fan et al. (2008)
	South-west	29	37	18	11	4	Sheeran et al. (1998)
	Yunnan						
Hylobate agilis	Malay Peninsula	29	10	29	5		Gittins (1982)
Hylobate albibarbis	Indonesia	32	16	26	8	18	Cheyne (2004)
	Indonesia	37	24	37	2		Cheyne (2004)
	Indonesia	18	20	49	7	8	Cheyne (2004)
Hylobate klossii	Sumatra,	34	11	54	2		Whitten (1980)
	Indonesia						
Hylobate moloch	Java, Indonesia	36	15	41		8	Kim (2011)
Hylobate muelleri	Indonesia	18	20	49	7100	8	Cheyne (2004)
	Java, Indonesia	32	23	40	5		Kappeler (1981)
Hylobate pileatus	Thailand	22	- 24	39	8	7	Srikosamatara (1984
Hoolock hoolock	Bangladesh	52		28	3	4	Ahsan (2000)
Symphalangus syndactylus	central Malaya	31-56	8-20	35-52	1–3	2	Chivers et al. (1975)

 Table 4.8 Activity budget comparison among gibbon species.

4.3 Activity Budget by Time

Adult male gibbons spend 70% of time singing from 6:00 to 8:00 then they feed, travel, watch and do other activities from 8:00 to 15:00 (Figure 4.3). Feeding reduces in the afternoon while traveling increases. They also sleep at noon or midday around 11:00-14:00. However, after 15:00 we were unable to follow them because they travel fast and it gets darken very quickly in the field. Adult females used 70% of the first hour, 6:00-7:00 for singing too but they sing less only 30% from 7:00 to 8:00 (Figure 4.4). They even start traveling after 6:00 and start feeding after 7:00. Females also take longer sleep than males until 15:00. Unlike adult gibbons, sub adults play all the time around 20-30% of each hour starting from 6:00 (Figure 4.5). They sing from 6:00 to 8:00 to 9:00 (Figure 4.5). They sing from 6:00 to 9:00 to 9:

ะ รา_{วั}กยาลัยเทคโนโลยีสุรุนา

38

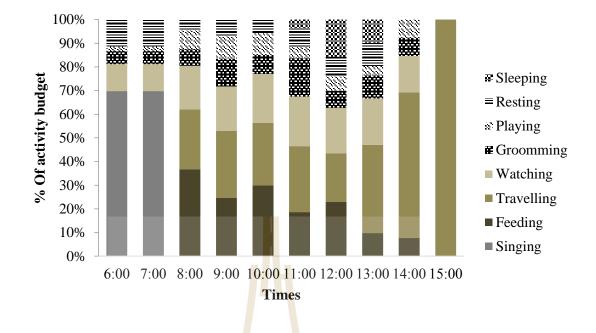


Figure 4.3 Percentage of adult male activity budget by time.

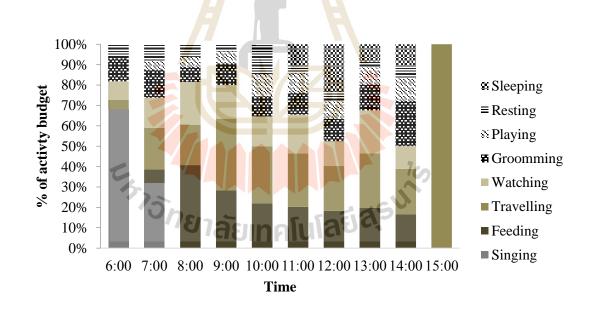


Figure 4.4 Percentage of adult female activity budget by time.

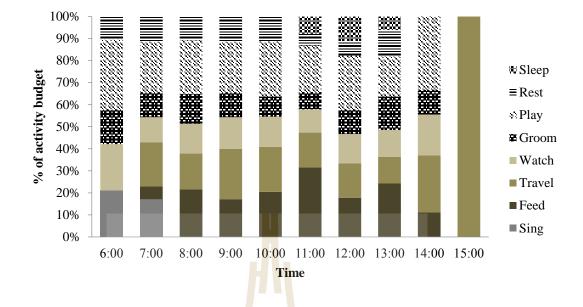


Figure 4.5 Percentage of sub adult activity budget by time.

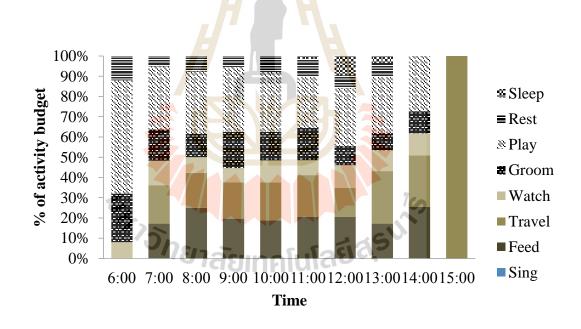


Figure 4.6 Percentage of juvenile activity budget by time.

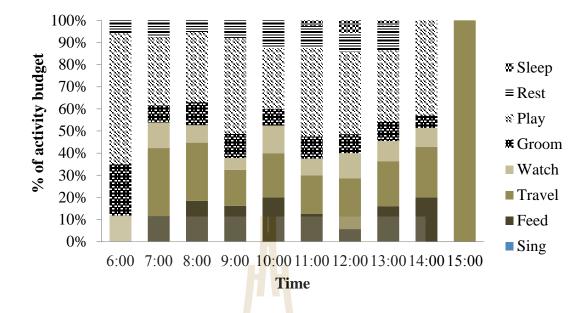


Figure 4.7 Percentage of infant activity budget by time.

4.4 Singing Behavior

The Laotian black crested gibbons generally sing early morning call after dawn and stop before 8:00 (Table 4.9). Adult males and females in the study group always sang interactively to produce duet bouts at a little bit same time. The first of all adult male calling, and then adult females started to duet followed with the sub adult male and other individuals in the group called, after that the song are produced harmonize to together. The singing lasts from 18 to 38 min with the mean of 28.3 ± 5.1 min. The songs are thought to be used for resource defense, mate defense, pair bonding, and group cohesion and mate attraction (Fan *et al.*, 2009). The songs are innately altruistic, as each group calls separately.

Crowns	Doto	Time	of Call	minuto	Altitude	Location
Groups	Date	Start	End	minute	Annuae	Location
	04-Aug-13	6:20	6:41	21	654	Tree house 7
G1	05-Aug-13	6:19	6:52	33	620	Tree house 7
01	06-Aug-13	6:40	7:14	34	682	Tree house 7
	07-Aug-13	6:55	7:23	28	621	Tree house 3
	01-Sep-13	6:20	6:57	37	680	Tree house 2
	02-Sep-13	6:34	7:06	32	767	Tree house 2
G2	03-Sep-13	6:15	6:38	23	750	Tree house 2
62	04-Sep-13	6:08	6:31	23	796	Tree house 2
	05-Sep-13	6:15	6:43	28	683	Tree house 2
	06-Sep-13	6:21	6:59	38	550	Tree house 3
	04-Oct-13	6:30	7:01	-31	670	Tree house 1
	05-Oct-13	7:05	7:36	31	643	Tree house 1
	06-Oct-13	6:25	6:49	24	785	Tree house 1
G3	07-Oct-13	7:00	7:24	24	550	Tree house 1
	08-Oct-13	6:44	7:12	28	812	Kitchen 1
	09-Oct-13	6:15	6:47	32	790	Kitchen 1
	10-Oct-13	6:17	6:44	27	778	Tree house 1
	02-Nov-13	6:34	7:06	32	864	Tree house 5
	03-Nov-13	6:20	6:38	18	600	Tree house 5
G4	04-Nov-13	6:04	6:32	28	895	Tree house 5
	05-Nov-13	6:45	7:11	26	760	Tree house 5
	06-Nov-13	6:30	6:55	25	843	Tree house 5

Table 4.9 Singing time of Laotian black crested gibbon in Nam Kan NPA.

4.5 Singing Trees

From 35 singing trees of this study, we identified 9 different plant species (Table 4.10). The highest number of singing trees used by Laotian black crested gibbon is *Spondias lakhonensis* Pierre (22.9%), followed by *Ficus benjamina* (20.0%) and *Spondias axillaris* Roxb (17.1%), respectively. Each group used different plants ranging 5-8 species and 7-11 trees. Singing tree locations of each group are shown in (Figure 4.8-4.11). Singing trees had 25.0 ± 5.5 m mean height, 84.4 ± 14.8 cm mean DBH and 771 \pm 95 m mean elevation (Figure 4.12-4.14). Gibbon chooses these trees for singing mostly because they can easily find fruit or food resource. They usually selected the highest tree as singing trees as singing trees as reported in Kloss gibbons (Whitten, 1982) and Moloch gibbons (Kappeler, 1984).

No	Local name	Scientific name	G1	G2	G3	G4	Total	%
1	Khishi	Dipterocarpus alatus Roxb.		110	1		2	5.7
2	Deang Nam	Bauhinia nervosa (Wall.ex Benth)	1	1	1	1	4	11.4
3	Ngom Hin	Chukrasia tabularis A. Juss	512	1			2	5.7
4	Mai Hai	<u>Ficus benjamina</u>	2	1	2	2	7	20.0
5	Mark Hor	Spondias lakhonensis Pierre	2	1	3	2	8	22.9
6	Mark Kom	Microcos paniculata		1	1		2	5.7
7	Mark Mue	Spondias axillaris Roxb	2	1	2	1	6	17.1
8	Ton Pao	Dioscorea bulbifera Loureiro	1				1	2.9
9	Mark Fan	Protium serratum (Wall.) Engl		1	1	1	3	8.6
		Total number	9	8	11	7	35	
		Total species	6	8	7	5	9	100

Table 4.10 Singing trees of Laotian black crested gibbons in Nam Kan NPA.

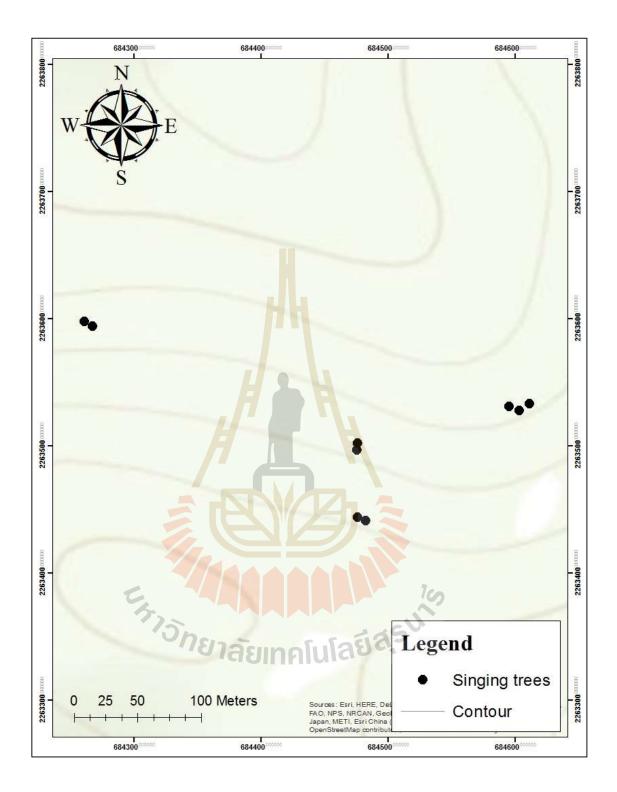


Figure 4.8 Singing trees of group 1 of Laotian black crested gibbon in Nam Kan NPA.

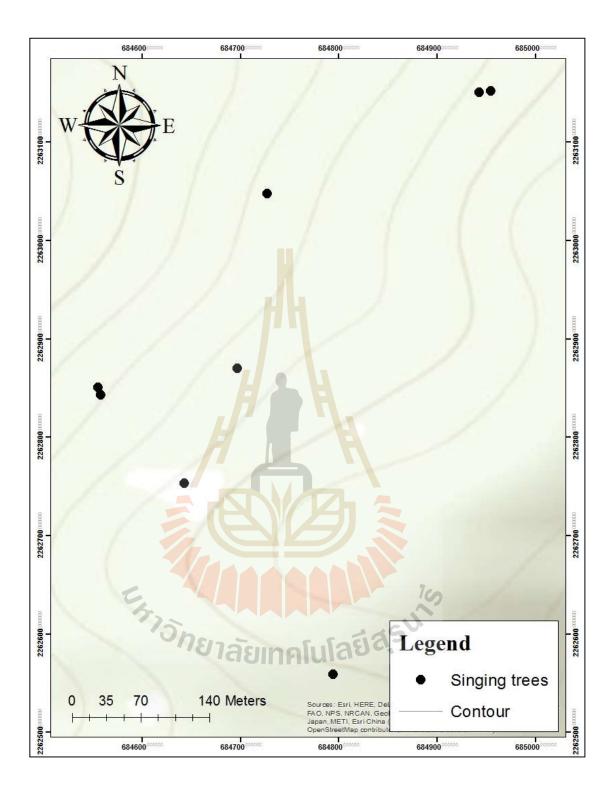


Figure 4.9 Singing trees of group 2 of Laotian black crested gibbon in Nam Kan NPA.

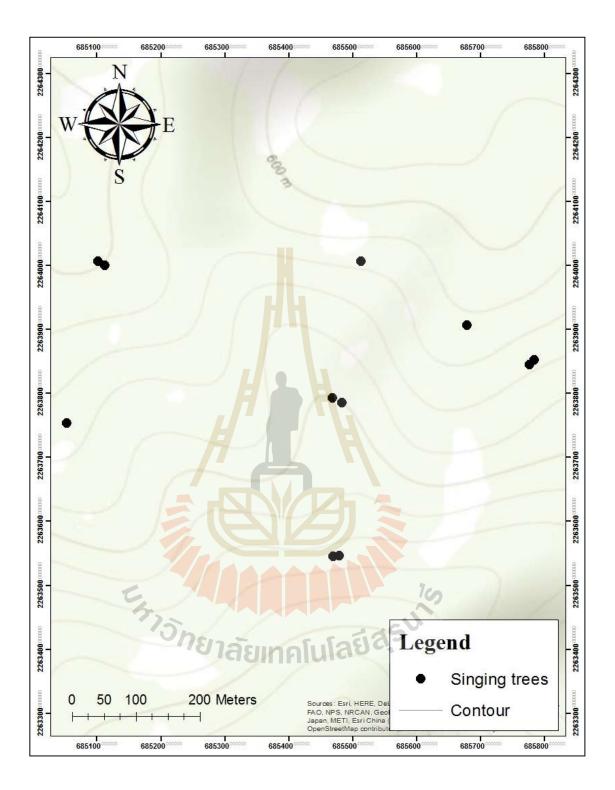


Figure 4.10 Singing trees of group 3 of Laotian black crested gibbon in Nam Kan NPA.

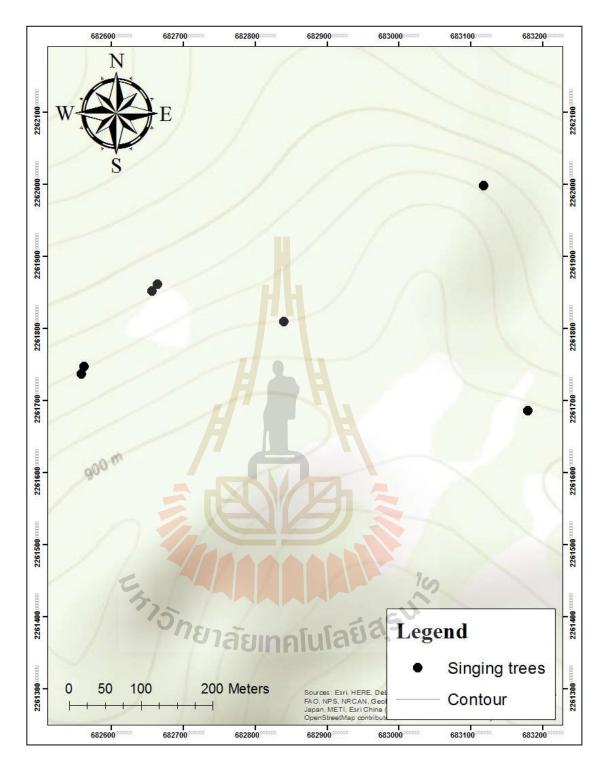


Figure 4.11 Singing trees of group 4 of Laotian black crested gibbon in Nam Kan NPA.

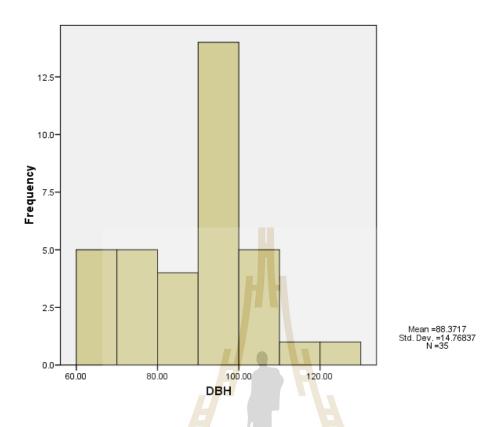


Figure 4.12 Frequency distribution of singing tree DBH (cm).

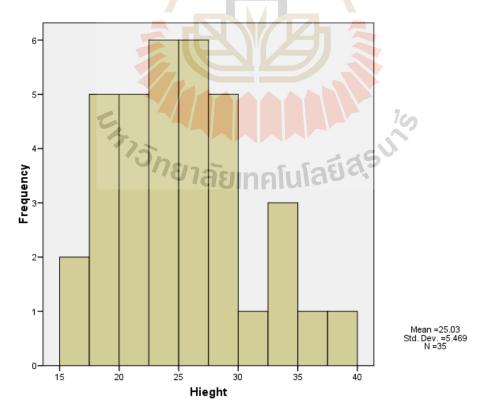


Figure 4.13 Frequency distribution of singing tree height (m).

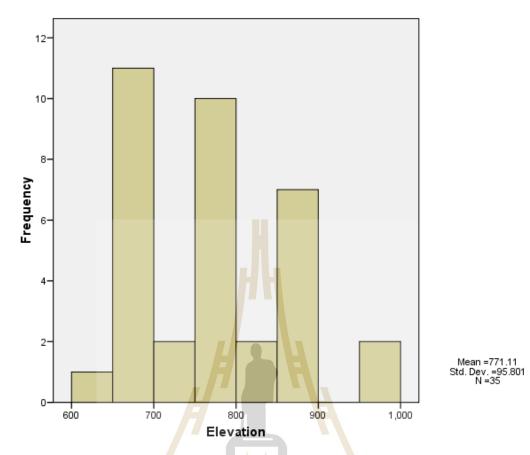


Figure 4.14 Frequency distribution of singing tree elevation (m).

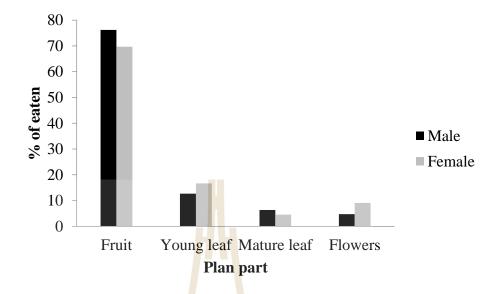
4.6 Gibbon Food

Laotian black crested gibbons consume total of 15 different plants during our research but we can identify to species only 11 of them. The most favorite plant is *Spondias lakhonensis* Pierre (27.9%), followed by *Ficus hispida* L. (15.1%), *Ficus benjamina* (11.6%) and *Choerospondias axillaris* (10.4%), respectively (Table 4.11).

No.	Il	S _:: f :	Us	ed by gil	obon gro	ups	T-4-1	%
INO.	Local name	Scientific name	G1	G2	G3	G4	Total	%
1	Mark Hor	Spondias lakhonensis Pierre	19	17	20	16	72	27.9
2	Deua Pong	Ficus hispida L.	8	11	0	20	39	15.1
3	Mai Hai	Ficus benjamina	0	18	0	12	30	11.6
4	Mark Mue	Choerospondias axillaris	9	4	10	4	27	10.4
5	Mark Ka Mang	Unidentified 1	4	5	5	2	16	6.2
6	Ton Pao	Dioscorea bulbifera Loureiro	3	7	5	0	15	5.8
7	Mark Jing Kor	Unidentified 2	0	2	4	6	12	4.6
8	Mark Kok	Spondias lutea L.	0	8	0	0	8	3.1
9	Porsa	Broussonetia pa <mark>pyrifera</mark>	0	0	8	0	8	3.1
10	Ton Mai	Unidentified 3	0	2	2	3	7	2.7
11	Mark Kom	<i>Microcos paniculata</i> L.	0	3	0	3	6	2.3
12	Mark Kam Pom	Phyllanthus <mark> emb</mark> lica	0	3	0	2	5	1.9
13	Mark Kor Land	Unidentified 4	0	1	0	4	5	1.9
14	Mark Fan	Protium serratum Guillaumin.	0	0	4	0	4	1.5
15	Mark Kor	<i>Quer<mark>cus</mark> augustinii</i> Skan	-0	2	0	2	4	1.5
		Total	43	83	58	74	258	100
		%	16.6	32.1	22.4	28.6	100	100

 Table 4.11 Plants species used by gibbon group of adult males and females

Group 2 had the highest number of food plant species (13 species), followed by G4 (10 species), G3 (8 species) and G1 (5 species), respectively. G1 had the lowest number because we spent only 4 days following this group. Food plants varied among gibbon groups, only *Spondias lakhonensis*, *Choerospondias axillaris* and unidentified 1 were found in every group.


The number of plant species found in our study is a bit higher than plants found in the preliminary study of *N. c. jingdongensis* food by Lan (1993). The results show in our study plant species and percentage of eaten by Laotian black crested gibbon were less than other studies as Fan *et al.* (2009), Ni *et al.* (2014) and Kim *et al.* (2012). Gibbons preferred fruits the most (72.8%), followed by young leaves (14.7%), flowers (6.9%) and mature leaves (5.4%), respectively (Table 4.12). All feeding plants produced fruits in our study. Gibbons ate young leaves from 13 plants, flowers from 9 plants and mature leaves from only 8 plants.

All of food plants in our study were found produced fruits. The high proportion of Laotian black crested gibbons were used as feeding food is fruit. It is the same as results found in *N. c. jingdongensis* in Yunnan (Ni *et al.*, 2014) as in (Table 4.18). In other crested gibbon species, fruits accounted for 38.6% of *Nomascus leucogenys* (Hu *et al.*, 1989) and 58% of *Nomascus nasutus* feeding time (Fan *et al.*, 2011). High levels of frugivory in hylobatids has been reported by (Hasan *et al.*, 2005) in Lawachara, Bangladesh, where *Hoolock hoolock* spent 90% of feeding time on fruits. However, we did not find *N. c. lu* feeding on any animals as in some studies before.

Adult males and adult females have similar food proportion but adult males spend more time feeding on fruit more than females do (Figure 4.15). While adult females spend more time feeding on young leaves and flowers more than adult males do.

				Plan	t part			
No.	Local name	Scientific name	Fruits	Young leaf	Mature leaf	Flower	Total	%
1	Mark Hor	Spondias lakhonensis Pierre	68	3	1		72	27.9
2	Deua Pong	Ficus hispida L.	34	5			39	15.1
3	Mai Hai	Ficus benjamina	21	4	3	2	30	11.6
4	Mark Mue	Choerospondias axillaris	21	3	1	2	27	10.4
5	Mark Ka Mang	Unidentified 1	7	3	1	5	16	6.2
6	Ton Pao	Dioscorea bulbifera Loureiro	5	5	3	2	15	5.8
7	Mark Jing Kor	Unidentified 2	6	3	2	1	12	4.6
8	Mark Kok	Spondias lutea L	2	4	1	1	8	3.1
9	Porsa	Broussonetia papyrifera 🛛 🛋	7				8	3.1
10	Ton Mai	Unidentified 3	3	3		1	7	2.7
11	Mark Kom	Microcos paniculata L	3			3	6	2.3
12	Mark Kam Pom	Phyllanthus emblica	4	1			5	1.9
13	Mark Kor Land	Unidentified 4	3	1	7	1	5	1.9
14	Mark Fan	Protium serratum Guillaumin.	2	2	S		4	1.5
15	Mark Kor	Quercus augustinii Skan	2		2		4	1.5
		Tot	al 188	38 38	14	18	258	
			% 72.8	14.7	5.4	6.9	100	100

Table 4.12 Plant part eaten by Laotian black crested gibbon in Nam Kan NPA.

Figure 4.15 Comparison percentage part of eaten by male and female of Laotian black crested gibbon in Nam Kan NPA.

However, In Yunnan, China, black crested gibbons are folivorous-frugivorous, spending on average similar amounts of time eating leaves and fruit. Their diet varies seasonally, based on the availability of food sources including leaves, fruits, buds, and flowers. In a study in 2008 (Fan *et al.*, 2009), black crested gibbons ate increased levels of figs in August and September, flowers in February and April, leaves in March, and buds and leaves in December and January. They prefer to eat fruits and figs over other foods during their first and last meals of the day (Fan *et al.*, 2008). They have also been observed eating insects, eggs, and other small organisms. One population of black crested gibbons concentrated ranging behavior, staying in valleys with more abundant food for several consecutive days before moving to another, in order to avoid frequent passages through areas with little food (Fan and Jiang, 2008).

Gibbon species	Plant		Diet (%)			Study sites	References		
Cibboli species	species	Fruit	Leave	Flower	Others	Study sites	KEIEIEIEES		
Nomascus concolor lu	15	72.9	21.7	5.4	0	Nam Kan NPA, Lao PDR	This study		
N. c. jingdongensis	12	21	72	7	0	Mt. Wuliang, Yunnan, China	Lan (1993)		
N. c. jingdongensis	77	44.1	46.5	9.1	0.3	Da <mark>zha</mark> izi, Yunnan, China	Fan et al. (2009)		
N. c. jingdongensis	50	77.8	16.2	2.7	3.3	Baj <mark>iaoh</mark> e, Yunnan, China	Ni et al. (2014)		
N. leucogenys	NA	38.6	52.8	4.7	3.9	Southern Yunnan, China	Hu et al. (1989)		
N. nasutus	81	58	31.2	3	7.8	Bangliang NR, Guangxi, China	Fan <i>et al.</i> (2011)		
Hoolock hoolock	NA	90	5	3	2	Lawachara NP, Bangladesh	Hasan et al. (2005)		
Hylobates moloch	68	59	27	12	2	Gunung Halimun-Salak NP, Indonesia	Kim et al. (2012)		
Hylobates syndactylus	NA	61	17	1	21	Gunung Leuser NP, Sumatra, Malaysia	Palombit (1996)		
Hylobates lar	NA	71	4	1	24	Gunung Leuser NP, Sumatra, Malaysia	Palombit (1996)		
<u>Hylobates muelleri x agilis</u> NB = National Bark NBA =	52	62	23.8	O _{13.4}	0.8	Central Kalimantan, Indonesia	McConkey et al. (2002)		

 Table 4.13 Diet proportion comparison among gibbon species.

NP = National Park, NPA = National Protected Area, NR = National Reserve, NA = Not available

4.7 Feeding Trees

In our study, we found a total of 131 feeding trees from 4 gibbon group. G2 had the highest number of food trees (41), followed by G4 (36), G3 (31) and G1 (23), respectively (Table 4.14). Even we followed G2 1 day less than G3, this group visited many trees per day up to 12 trees more than G3. Overall, each gibbon group visited 6 trees each day (range 2-12). Feeding tree locations of each group are shown in (Figure 4.16-4.19). All food trees are mature, big and tall. The mean DBH was 72.9 ±10.5 cm, range 59.6-99.4 (Figure 4.16), mean tree height was 25.5 ± 4.7 m, range 17-40 (Figure 4.20) and mean elevation was 773 ± 87 m, range up to 1,000 m above sea level (Figure 4.21). Many trees were big; we found 21 trees with DBH higher than 90 cm. The highest tree was 40 m found in G1 area while 27 trees were higher than 30 m. *Spondias lakhonensis* Pierre was the biggest and highest food tree found in this study. **Table 4.14** Number of feeding trees per day of each gibbon group.

Group	Survey period	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Total
G1	4-7 Aug 2013	6	5	7	5	100	-	-	23
G2	1-6 Sept 2013	6	9	12	5	54	5	-	41
G3	4-10 Oct2013	5	aşın	คโนโ	4	6	2	4	31
G4	2-6 Nov 2013	5	4	9	12	6	-	-	36
								Total	131

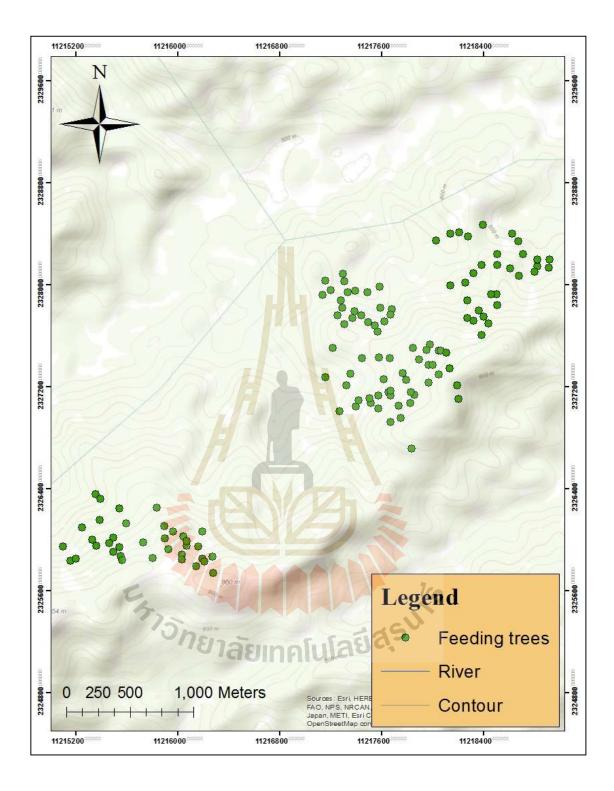


Figure 4.16 Feeding tree locations of Laotian black crested gibbon in Nam Kan NPA.

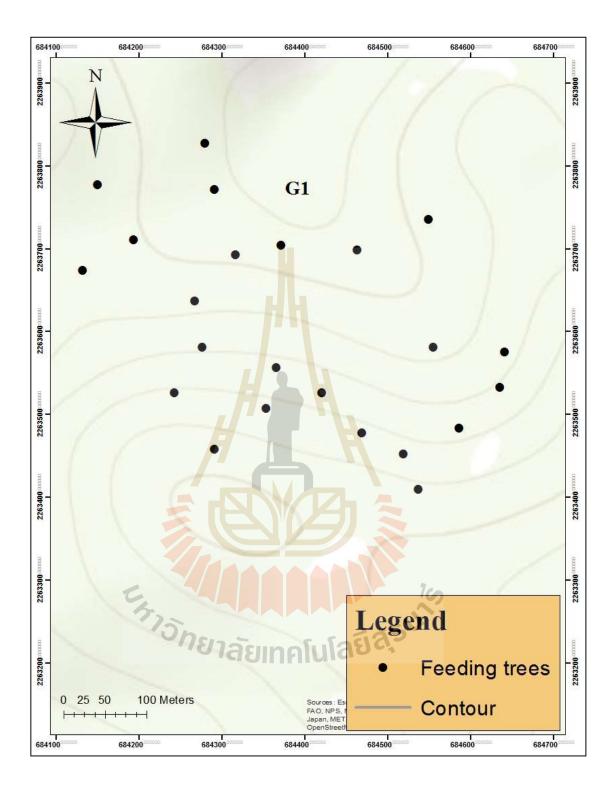


Figure 4.17 Feeding tree G1 of Laotian black crested gibbon in Nam Kan NPA.

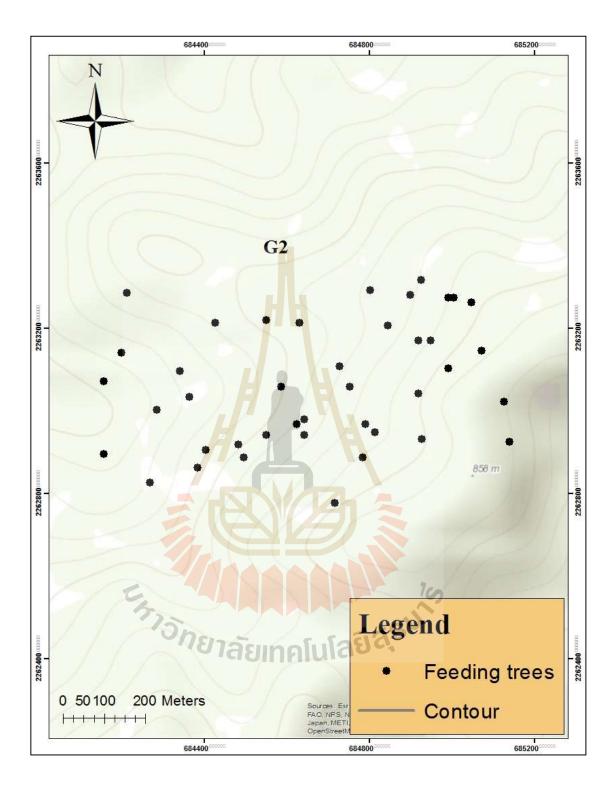


Figure 4.18 Feeding tree G2 of Laotian black crested gibbon in Nam Kan NPA.

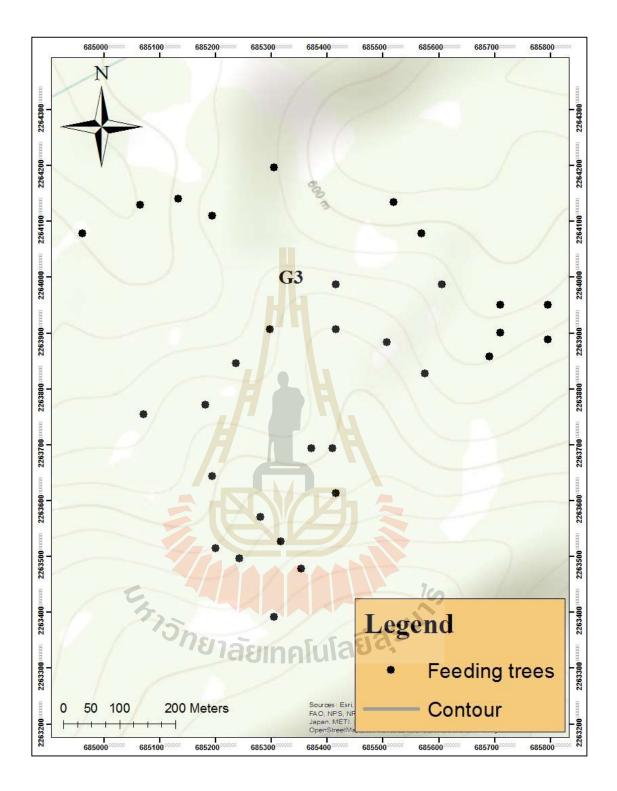


Figure 4.19 Feeding tree G3 of Laotian black crested gibbon in Nam Kan NPA.

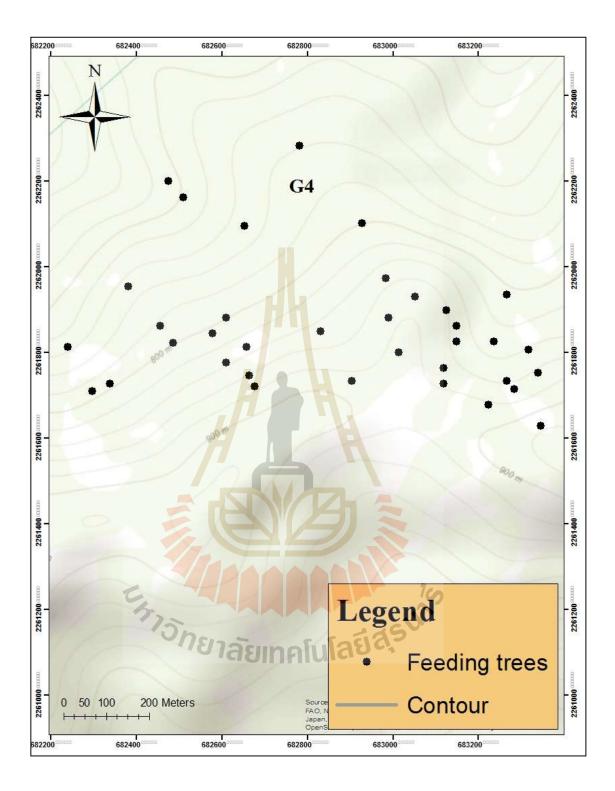


Figure 4.20 Feeding tree G3 of Laotian black crested gibbon in Nam Kan NPA.

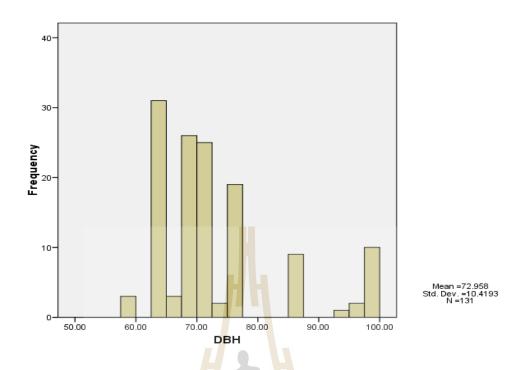


Figure 4.21 Frequency distribution of feeding tree DBH (cm).

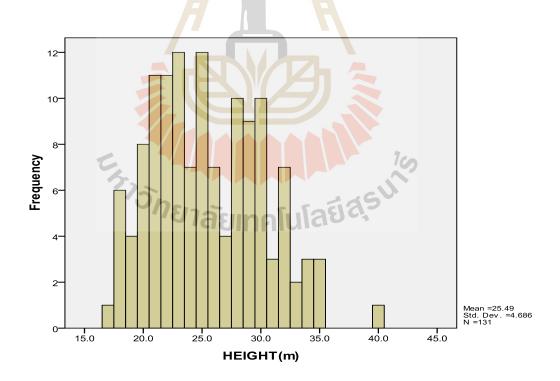


Figure 4.22 Frequency distribution of feeding tree height.

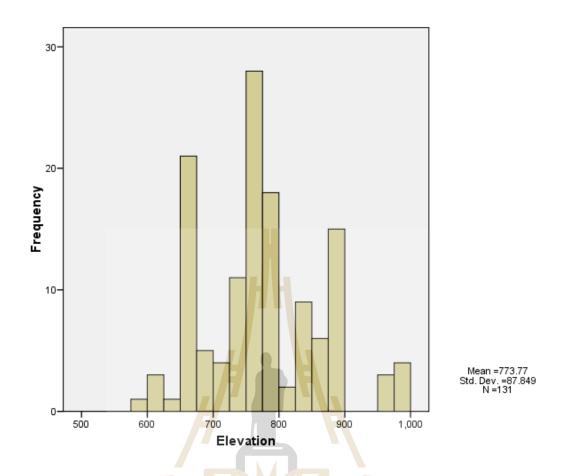


Figure 4.23 Frequency distribution of feeding tree elevation.

When compare with singing trees, feeding trees have the same average height (Figure 4.24), significantly less DBH (p<0.05; Figure 4.25) but stay in significant higher elevation (p<0.05; Figure 4.26) than singing trees.

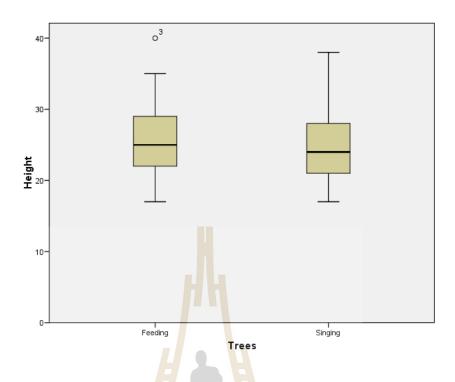


Figure 4.24 Height of feeding and singing tree comparison.

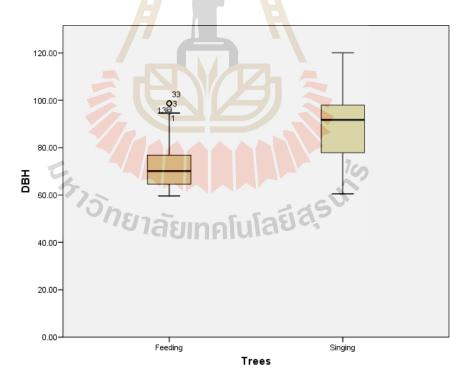


Figure 4.25 DBH of feeding and singing tree comparison.

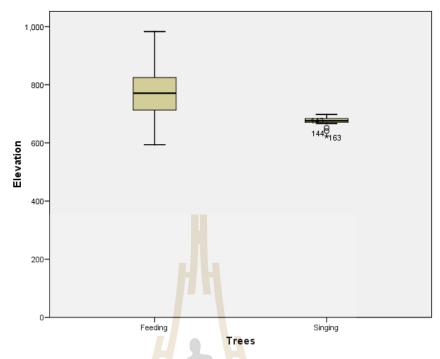


Figure 4.25 Elevation of feeding and singing tree comparison.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A total of 4 gibbon groups and 20 individuals were found and the group size average was 5.0 individuals. Two groups had one adult male and two adult females while some group had only 2 adults. This is probably from hunting.

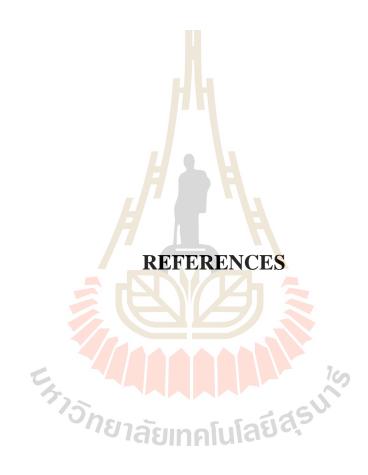
From total of 670 observations, both adult males and adult females spent most daily time on travelling, followed by feeding and watching respectively but less time on sleeping. Adult males spent a bit more time on singing than adult females while adult females spent more time on grooming than singing. In contrast, sub adults, juveniles and infants spent most time on playing, followed by traveling and feeding, respectively. Sub adults spent least time on singing and sleeping while juveniles and infants did not sing at all.

The gibbon sang early morning calls after dawn between 06:04 to 07:36. The calls lasted 28 ± 5 minutes. From 35 singing trees found, nine plant species were identified. The highest number was *Spondias lakhonensis* Pierre, followed by *Ficus benjamina* and *Spondias axillaris* Roxb, respectively.

Gibbons consumed 15 plant species of 131 trees during our research. The most favorite plant was *Spondias lakhonensis* Pierre, followed by *Ficus hispida* L., *Ficus benjamina* and *Choerospondias axillaris*, respectively. Adult male and female gibbons

spent most of feeding time on fruits, followed by young leaves, flowers and mature leaves, respectively.

Singing trees had 25.0 ± 5.5 m mean height, 84.4 ± 14.8 cm mean DBH and 771 ± 95 m mean elevation. While, feeding trees had 25.5 ± 4.7 m height, 72.9 ± 10.5 cm DBH and 773 ± 87 m elevation. In comparison, feeding trees have the same average height, significantly less DBH but stay in significant higher elevation than those of singing trees.


Laotian black crested gibbons travel from 1.40 to 3.04 km per day. The average travel distance is 2.35 ± 0.63 km. There is no significant different daily travel distance among groups. While, gibbon foraging area ranges 9.01-37.41 ha/day with the mean of 19.17 ± 7.9 ha/day. Daily foraging area is significantly different among gibbon groups.

Gibbon Experience is one of three places in Nam Kan NPA that still supports good gibbon populations since the gibbon hunting activity is less due to Hmong's traditional taboo. The Gibbon Experience also hire local staff to deploy on site and do regular patrol but not yet effective. Gibbon population keeps declining compared to even several years ago.

้ว_{ักยาลัยเทคโนโลยีสุรมา endations}

5.2 **Recommendations**

More study of this species is still needed. A whole year study would be necessary to understand the dynamics of their food in different season. Longer time observation is needed to understand their behavior and social interaction. The same time observation is also important to compare behavior, movement and home range of each group. The researcher should spend more time following gibbons until they are familiar with so they can show true behavior.

REFERENCES

- Ashan, M. F. (2001). Socio-ecology of the hoolock gibbon (*Hylobates hoolock*) in two forests of Bangladesh. (pp. 286–299). In The Apes: Challenges for the 21st Century Conference Proceedings, Chicago Zoological Society, Chicago.
- Altmann, J. (1974). Observational study of behavior: sampling methods. **Behaviour**. 49(3): 227-266.
- Bartlett, T. Q. (1999). Feeding and ranging behavior of the white-handed gibbon (*Hylobates lar*) in Khao Yai National Park, Thailand. Ph.D. Dissertation, Washington University, USA.
- Bleisch, B., Geissmann, T., Timmins, R. J., and Xuelong, J. (2008). Nomascus concolor. In: IUCN Red List of Threatened Species. Version 2013. 1. Downloaded on 10 Junly 2013.
- Brockelman, W. Y., Reichard, U., Treesucon, U., and Raemaekers, J. J. (1998).
 Dispersal, pair formation and social structure in gibbons (*Hylobates lar*).
 Behavioral Ecology and Sociobiology. 42(5): 329-339.
- Brockelman, W. Y. (2009a). Ecology and the social system of gibbons. (pp. 211-239). In The Gibbons. Springer New York.
- Brockelman, W. Y. (2009b). Ecology and the social system of gibbons. In The Gibbons (pp. 211-239). Springer New York.
- Brown, J. (2009). Status of the western black crested gibbon (*Nomascus concolor*) in the Nam Ha National Protected Area, Lao PDR. **Gibbon Journal**. 5: 28-35.

- Carpenter, R. (1941). A Field Study in Siam of the Behavior and Social Relations of the Gibbon (*Hylobates Lar*). New York: Kraus.
- Mead, M. (1942). MISCELLANEOUS: A Field Study in Siam of the Behavior and Social Relations of the Gibbon (*Hylobates Lar*). RC Carpenter. American Anthropologist. 44(3): 511-512.
- Chan, B. P. L., Xue-feng, T., and Wu-jing, T. (2008). Rediscovery of the critically endangered eastern black crested gibbon Nomascus nasutus (*Hylobatidae*) in China, with preliminary notes on population size, ecology and conservation status. Asian Primates Journal. 1(1): 17-25.
- Chivers, D. J. (1974). The Siamang in Malaya: A field study of a primate in a tropical forest. Contributions to Primatology. 4: 1-335.
- Chivers, D. J., Raemaekers, J. J., and Aldrich-Blake, F. P. G. (1975). Long-term observations of siamang behaviour. Folia Primatologica. 23(1-2): 1-49.
- Chivers, D. J. (2005). Gibbons: The small apes. World atlas of great apes and their conservation. Berkeley: University of California Press. 205-214.
- Coelho Jr, A. M., Bramblett, C. A., Quick, L. B., and Bramblett, S. S. (1976). Resource availability and population density in primates: a socio-bioenergetic analysis of the energy budgets of Guatemalan howler and spider monkeys. **Primates**. 17(1): 63-80.
- Crandall, Lee S. (1964). Management of Wild Mammals in Captivity. Chicago: University of Chicago Press.
- Deputte, Bertrand L. (1982). Duetting in male and female songs of the white-cheeked gibbon (*Hylobates concolor leucogenys*). **Primate communication**. 67-93.

- Duckworth, J. W. (2008). Preliminary gibbon status review for Lao PDR 2008. Fauna and Flora International, Hanoi.
- Delacour, J. (1951). La systématique des gibbons indochinois. **Mammalia**. 15(4): 118-123.
- Ellefson, J. O. (1974). A natural history of white-handed gibbons in the Malayan peninsula. In D. M. Rumbaugh (ed.). Gibbon and Siamang. (pp. 1-136). Basel: Karger,
- Pengfei, F., Xuelong, J., Changming, L., and Wenshou, L. (2006). Polygynous mating system and behavioural reason of black crested gibbon (*Nomascus concolor jingdongensis*) at Dazhaizi, Mt. Wuliang, Yunnan, China. Zoological Research. 27(2): 216-220.
- Fan, P. F., and Jiang, X. L. (2008). Sleeping sites, sleeping trees, and sleep related behaviors of black crested gibbons (*Nomascus concolor jingdongensis*) at Mt. Wuliang, Central Yunnan, China. American Journal of Primatology. 70(2): 153-160.
- Fan, P., Ni, Q., Sun, G., Huang, B., and Jiang, X. (2009). Gibbons under seasonal stress: the diet of the black crested gibbon (*Nomascus concolor*) on Mt. Wuliang, Central Yunnan, China. **Primates**. 50(1): 37-44.
- Fan, P., Fei, H., Xiang, Z., Zhang, W., Ma, C., and Huang, T. (2010). Social structure and group dynamics of the cao vit gibbon (*Nomascus nasutus*) in Bangliang, Jingxi, China. Folia Primatologica. 81(5): 245-253.
- Fan, P. F., Xiao, W., Feng, J. J., and Scott, M. B. (2011). Population differences and acoustic stability in male songs of wild western black crested gibbons

(*Nomascus concolor*) in Mt. Wuliang, Yunnan. **Folia Primatologica**. 82(2): 83-93.

- Fellowes, J. R., Chan, B. P. L., Zhou, J., Chen, S. H., Yang, S., and Ng, S. C. (2008). Current status of the Hainan gibbon (*Nomascus hainanus*): progress of population monitoring and other priority actions. Asian Primates. 1(1): 2-11.
- Fuentes, A. (2000). Hylobatid communities: changing views on pair bonding and social organization in hominoids. **Yearbook of Physical Anthropology**. 43: 33-60.
- Geissmann, T. (2002). Duet-splitting and the evolution of gibbon songs. **Biological Reviews of the Cambridge Philosophical Society**. 77(1): 57-76.
- Geissmann, T. (2007a). First field data on the Laotian black crested gibbon (*Nomascus concolor lu*) of the Nam Kan area of Laos. **Gibbon Journal**. 3: 56-65.
- Geissmann, T. (2007b). Status reassessment of the gibbons: results of the Asian primate red list workshop 2006. Gibbon Journal. 3: 5-15.
- Geissmann, T., and Orgeldinger, M. (1995). Neonatal weight in gibbons (*Hylobates* spp.). American Journal of Primatology. 37(3): 179-189.
- Gittins, S. P., and Raemaekers, J. J. (1980). Siamang, lar and agile gibbons. International Malayan forest primates (pp. 63-106). Springer US.
- Gittins, S. P. (1982). Feeding and ranging in the agile gibbon. Folia Primatologica.38: 39-71.
- Gittins, S. P. (1984). The vocal repertoire and song of the agile gibbon. (pp. 345-375).In Preuschoft H., Chivers, D. J., Brockelman W. Y., and Creel. N. (Eds.). The Lesser Apes. Edinburgh: Edinburgh University Press.
- Groves, C. P. (2001). Primate Taxonomy. Smithsonian Institution Press. Washington, DC.

- Hladik, C. M. (1977). A comparative study of two sympatric species of leaf monkeys: Presbytis entellus and Presbytis senex. Primate Ecology: Studies of Feeding and Ranging behaviour in Lemurs, Monkeys, and Apes. 323-353.
- Hladik, C. M., Hladik, V., Bousset, J., Valdebouze, P., Viroben, G. and Delor-Laval, J. (1971). The diet of primates on the Barro-Colorado Island (Panama): results of quantitative analysis. Folia Primatologica. 16: 85-122.
- Huang, C. M., Wei, F. W., Li, M., Li, Y., and Sun, R. (2003). Sleeping cave selection, activity pattern and time budget of white-headed langurs. International Journal of Primatology. 24: 813-824.
- Jiang, X., Luo, Z., Zhao, S., Li, R., and Liu, C. (2006). Status and distribution pattern of black crested gibbon (*Nomascus concolor jingdongensis*) in Wuliang Mountains, Yunnan, China: implication for conservation. **Primates**. 47(3): 264-271.
- Jiang, X., Wang, Y., and Wang, Q. (1999). Coexistence of monogamy and polygyny in black-crested gibbon (*Hylobates concolor*). Primates. 40(4): 607-611.
- Johnson, A., Vongkhamheng, C., Hedemark, M. and Saithongdam, T. (2006). Effects of human–carnivore conflict on Tiger (*Panthera tigris*) and prey populations in Lao PDR. Animal Conservation. 9: 421-430.
- Johnson, A., Singh, S., Duangdala, M., and Hedemark, M. (2005). The western black crested gibbon *Nomascus concolor* in Laos: new records and conservation status. **Oryx**. 39(03): 311-317.
- Kappeler, M. (1984). Vocal bouts and territorial maintenance in the moloch gibbon.The lesser apes: evolutionary and behavioral biology. Edinburgh UniversityPress, Edinburgh. 376-389.

- Kim, S., Lappan, S., and Choe, J. C. (2011). Diet and ranging behavior of the endangered Javan gibbon (*Hylobates moloch*) in a sub montane tropical rainforest. American Journal of primatology. 73(3): 270-280.
- Lan, D. Y. (1989). Preliminary study on the group composition behavior and ecology of the black gibbons (*Hylobates concolor*) in southwest Yunnan. Zoological Research. 10: 126.
- Lan, D., and Sheeran, L. K. (1995). The status of black gibbons (*Hylobates concolor jingdongensis*) at Xiaobahe, Wuliang Mountains, Yunnan Province, China.
 Asian Primates. 5(1-2): 2-4.
- Lappan, S. (2005). Biparental care and male reproductive strategies in siamangs (Symphalangus syndactylus) in southern Sumatra. New York University.
- Le, T. D., Fan, P. F., Yan, L., Le, H. O., and Josh, K. (2008). The global cao vit gibbon (*Nomascus nasutus*) population. Fauna and Flora International, Vietnam Programme and China Programme.
- Le Trong Dat, and Le Minh Pong. (2010). Census of western black crested gibbon *Nomascus concolor* in Mu Cang Chai species/habitat conservation area (Yen Bai Province) and adjacent forest in Muong La District (Son La Province). Fauna and Flora International/ Conservation International, Hanoi, Vietnam.
- Leighton, D. R. (1987). Gibbons: territoriality and monogamy. pp. 135-145. In SmutsB. B., Cheney D. L., Seyfarth R. M., Wrangham R. W. and Struhsaker T. T. (eds.). Primate Societies. Chicago: University of Chicago Press.
- Lukas, K. E., Barkauskas, R. T., Maher, S. A., Jacobs, B. A., Bauman, J. E., Henderson, A. J., and Calcagno, J. M. (2002). Longitudinal study of delayed reproductive

success in a pair of white cheeked gibbons (*Hylobates leucogenys*). **Zoo Biology**. 21(5): 413-434.

- Luangleuxay, S., and Suwanwaree, P. (2012). The status of western black crested gibbon (*Nomascus concolor lu*) in Nam Ha National Protected Area, Lao PDR.
 The 33rd Thailand Wildlife Seminar. December 14-15, Kasetsart University, Bangkok, Thailand.
- Macdonald D, editor. (2001). The encyclopedia of mammals. Volume 2, Primates and large herbivores. New York: Facts on File. 930 pp.
- Malone, N., and Oktavinalis, H. (2006, January). The socio-ecology of the silvery gibbon (*Hylobates moloch*) in the Cagar Alam Leuweung Sancang (CALS), West Java, Indonesia. In American Journal of Physical Anthropology (pp. 124-124).
- McConkey, K. R., Aldy, F., Ario, A., and Chivers, D. J. (2002). Selection of fruit by gibbons (*Hylobates muelleri*× agilis) in the rain forests of central Borneo.
 International Journal of Primatology. 23(1): 123-145.
- Mootnick, A. R., and Fan, P. F. (2011). A comparative study of crested gibbons (*Nomascus*). American Journal of Primatology. 73(2): 135-154.
- Ni, Q. Y., Huang, B., Liang, Z. L., Wang, X. W., and Jiang, X. L. (2014). Dietary variability in the Western Black Crested Gibbon (*Nomascus concolor*) inhabiting an isolated and disturbed forest fragment in southern Yunnan, China. American Journal of primatology. 76(3): 217-229.
- Nijman, V. (2004). Conservation of the Javan gibbon *Hylobates moloch*: population estimates, local extinctions, and conservation priorities. **Raffles Bulletin of Zoology**. 52(1): 271-280.

- Palombit, R. A. (1992). Pair bonds and monogamy in wild siamang (*Hylobates syndactylus*) and white-handed gibbon (*Hylobates lar*) in northern Sumatra University of California, Davis.
- Palombit, R. A. (1994). Dynamic pair bonds in hylobatids: implications regarding monogamous social systems. Behaviour. 128: 65-101
- Rawson, B. M., Insua-Cao, P., Ha, N. M., Van Ngoc Thinh, H. M. D., and Mahood, S. (2011). The conservation status of Gibbons in Vietnam. Fauna and Flora International/ Conservation International, Hanoi, Vietnam.
- Robichaud, W., Insua-Cao, P., Sisomphane, C., Chounnavanh, S., and Robichaud, W.(2010). A scoping mission to Nam Kan National Protected Area, Lao PDR.Fauna and Flora International.
- Silk, J. B. (2002). Kin selection in primate groups. International Journal of Primatology. 23(4): 849-875.
- Sheeran, L. K. (1993). A preliminary study of the behavior and socio-ecology of black gibbons (*Hylobates concolor*) in Yunnan Province, People's Republic of China.
 The Ohio State University.
- Srikosamatara, S. (1984). Ecology of pileated gibbons in south-east Thailand. (eds.) The Lesser Apes: Evolutionary and Behavioural Biology, Preuschoft, H., Chivers, D. J., Brockelman, WY and Creel, N. 242-257.
- Tenaza, R. R. (1975). Territory and monogamy among Kloss' gibbons (*Hylobates klossii*) in Siberut Island, Indonesia. Folia Primatologica. 24(1): 60-80.
- Timmins, R. J. and Duckworth, J. W. (2013). A survey of gibbons and other wildlife in the Bokeo section of Nam Kan National Protected Area, Lao PDR. Fauna and Flora International, Cambridge, U.K.

- Tilson, R. L. (1979). Behaviour of hoolock gibbon (*Hylobates hoolock*) during different seasons in Assam, India. Journal of the Bombay Natural History Society. 76(1): 1-16.
- Tilson, R. L. (1981). Family formation strategies of Kloss's gibbons. Folia Primatologica. 35(4): 259-287.
- Thinh, V. N., Rawson, B., Hallam, C., Kenyon, M., Nadler, T., Walter, L., and Roos,
 C. (2010). Phylogeny and distribution of crested gibbons (genus *Nomascus*) based on mitochondrial cytochrome b gene sequence data. American Journal of Primatology. 72(12): 1047-1054.
- Treesucon, U., and Raemaekers, J. J. (1984, January). Group formation in gibbon through displacement of an adult. In International Journal of Primatology, (pp. 233: 387-387).
- Varsik A, Compiler. (2001). North American regional studbook for white-cheeked gibbon *Nomascus leucogenys* and golden-cheeked gibbon *Nomascus Gabriella*.
 Santa Barbara (CA): Santa Barbara Zoo Gardens. 33 pp.
- Whittaker, D. J. (2005). New population estimates for the endemic Kloss's gibbon *Hylobates klossii* on the Mentawai Islands, Indonesia. **Oryx**. 39(04): 458-461.
- Wittenberger, J. F., and Tilson, R. L. (1980). The evolution of monogamy: hypotheses and evidence. **Annual Review of Ecology and Systematics**.11: 197-232.
- Whitten A. J. (1982a). Home range use by kloss gibbons (*Hylobates klossii*) on Siberut island, Indonesia. **Animal Behavior**. 30:182-198.
- Whitten, A. J. (1982b). The ecology of singing in Kloss gibbons (*Hylobates klossii*) onSiberut Island, Indonesia. International Journal of Primatology. 3(1): 33-51.

- Youanechuexian, K., Phiapalath, P., and Suwanwaree, P. (2014). The status of Laotian black crested gibbon *Nomascus concolor lu* in Nam Kan National Protected Area, Lao PDR. Advances in Environmental Biology. 8(14): 7-13.
- Zhenhe, L., Yongzu, Z., Haisheng, J., and Southwick, C. (1989). Population structure of *Hylobates concolor* in Bawanglin nature reserve, Hainan, China. American Journal of Primatology. 19(4): 247-254.
- Zhou, J., Wei, F., Li, M., Zhang, J., Wang, D., and Pan, R. (2005). Hainan black-crested gibbon is headed for extinction. International Journal of Primatology. 26(2): 453-465.
- Zhou, Q., Wei, F., Huang, C., Li, M., Ren, B., and Luo, B. (2007). Seasonal variation in the activity patterns and time budgets of Trachypithecus francoisi in the Nonggang Nature Reserve, China. International Journal of Primatology. 28(3): 657-671.

APPENDIX A

ACTIVITY BUDGET.

Groups	Date	Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
	04-Aug-13	6:22-14:28	4	7	13	6	4	3	2	1	40
G1	05-Aug-13	6:56-13:36	4	6	6	3	2	1	3	1	26
01	06-Aug-13	6:15-13:15	3	6	7	4	3	1	3	0	27
	07-Aug-13	6:20-15:05	3	5	6	9	2	3	2	2	32
	01-Sep-13	6:20-13:50	2	4	4	3	3	1	3	0	20
	02-Sep-13	6:20-14:35	3	5	7	6	2	3	2	2	30
G2	03-Sep-13	6:23-13:35	4	6	9	8	3	1	3	1	35
62	04-Sep-13	6:10-14:55	3	6	7	2	5	2	2	0	27
	05-Sep-13	6:55-14:40	4	5	8	8	5	1	3	1	35
	06-Sep-13	6:22-14:42	4	9	7	10	3	0	3	1	37
	04-Oct-13	6:34-14:44	4	4	6	4	2	1	2	0	23
	05-Oct-13	6:15-13:45	4	7	8	5	4	2	0	1	31
	06-Oct-13	6:54-14:14	2	6	6	3	2	2	3	1	25
G3	07-Oct-13	6:45-13:15	4	4	7	5	3	1	2	2	28
	08-Oct-13	6:20-14:50	4	6	8	5	4	2	2	1	32
	09-Oct-13	6:2 5-13 :25	2	6	7	7	2	2	2	1	29
	10-Oct-13	6:34-14:44	3	5	8	4	2	2	2	0	26
	02-Nov-13	6:15-14:30	3	5	6	6	3	3	3	1	30
	03-Nov-13	6:56-13:20	3	6	8	7	2	4	3	2	35
G4	04-Nov-13	6:15-12:50	4	5	8	4	54	3	1	1	30
	05-Nov-13	6:17-13:49	3	6	10	7	2	2	3	2	35
	06-Nov-13	6:34-14:44	3	7	11	5	4	4	3	0	37
	То	tal	73	126	167	121	66	44	52	21	670

 Table A1 Activity budget of adult male of Laotian black crested gibbons.

Group	Date	Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Tota
	04-Aug-13	6:22-14:28	2	6	11	3	6	1	2	1	32
G1	05-Aug-13	6:56-13:36	4	7	12	8	2	1	4	2	40
01	06-Aug-13	6:15-13:15	3	7	4	4	3	1	2	2	26
	07-Aug-13	6:20-15:05	3	4	8	4	2	1	2	1	25
	01-Sep-13	6:20-13:50	2	2	5	5	3	3	2	1	23
	02-Sep-13	6:20-14:35	2	6	3	6	2	2	1	2	24
C2	03-Sep-13	6:23-13:35	2	4	7	3	2	4	1	2	25
G2	04-Sep-13	6:10-14:55	4	5	7	3	2	2	3	1	27
	05-Sep-13	6:55-14:40	2	6	6	4	5	2	3	1	29
	06-Sep-13	6:22-14:42	2	8	8	5	2	1	2	2	30
	04-Oct-13	6:34-14:44	3	9	6	4	2	3	2	2	31
	05-Oct-13	6:15-13:45	4	8	6	8	5	1	2	2	36
	06-Oct-13	6:54-14:14	4	7	8	2	4	4	0	2	31
G3	07-Oct-13	6:45-13:15	4	6	10	7	2	2	4	3	38
	08-Oct-13	6:20-14:50	4	6	5	6	4	2	1	2	30
	09-Oct-13	6:25-13:25	2	6	4	4	3	3	1	1	24
	10-Oct-13	6:34-14:44	4	8	5	3	1	3	3	2	29
	02-Nov-13	6:15-14:30	4	4	9	4	5	1	1	2	30
	03-Nov-13	6:56-13:20	4	6	8	6	7	2	0	0	33
G4	04-Nov-13	6:15-12:50	4-	6	9	3	56	5	1	2	36
	05-Nov-13	6:17-13:49	3	2	12	6	5	2	3	2	35
	06-Nov-13	6:34-14:44	3	9	7	10	3	0	3	1	36
	То	tal	69	132	160	108	76	46	43	36	670

 Table A2 Activity budget of adult female of Laotian black crested gibbons.

Groups	Date	Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
	04-Aug-13	6:22-	1	2	5	3	3	9	3	1	27
	0 4 -740g-15	14:28	I	2	5	5	5)	5	1	27
	05-Aug-13	6:56-	1	3	4	2	5	8	1	1	25
G1	05 Mug 15	13:36	1	5	-	2	5	0	1	1	23
01	06-Aug-13	6:15-	1	6	2	2	4	7	3	1	26
	00 1145 15	13:15	1	Ū	-	2	-	1	5	1	20
	07-Aug-13	6:20-	1	4	3	2	3	8	3	1	25
	0, 11 0 <u>9</u> 10	15:05	-	İ		-	0	Ũ	0	-	
	01-Sep-13	6:20-	1	8	3	2	3	6	3	1	27
	Ĩ	13:50									
	02-Sep-13	6:20-	1	9	3	3	3	8	3	1	31
		14:35									
	03-Sep-13	6:23-	1	6	2	2	3	10	4	1	29
G2	-	13:35									
	04-Sep-13	6:10-		7	4		2	8	2	1	26
		14:55									
	05-Sep-13	6:55-	1	6	2	3	4	5	3	1	25
	6	14:40					10	0			
	06-Sep-13	6:22-	1	9	6	4	S2J	8	2	1	33
		14:42	ยาล่	- Elir	เคโนโ						
	То	tal	10	60	34	24	32	77	27	10	274

 Table A3 Activity budget of sub adult of Laotian black crested gibbons.

Group	Date	Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Tota
-	04-Aug-13	6:22-14:28	0	4	8	2	1	12	1	1	29
C 1	05-Aug-13	6:56-13:36	0	3	7	3	3	8	2	0	26
G1	06-Aug-13	6:15-13:15	0	5	8	3	2	7	3	1	29
	07-Aug-13	6:20-15:05	0	5	9	2	3	8	1	0	28
-	01-Sep-13	6:20-13:50	0	3	6	3	3	12	1	0	28
	02-Sep-13	6:20-14:35	0	2	5	1	4	9	3	1	25
C 2	03-Sep-13	6:23-13:35	0	4	7	2	2	6	2	0	23
G2	04-Sep-13	6:10-14:55	0	4	6	2	4	7	1	0	24
	05-Sep-13	6:55-14:40	0	3	7	2	4	8	3	1	28
	06-Sep-13	6:22-14:42	0	4	7	3	5	9	2	1	31
-	04-Oct-13	6:34-14:44	0	5	3	2	3	11	1	0	25
	05-Oct-13	6:15-13:45	0	7	4	2	3	13	1	1	31
	06-Oct-13	6:54-14:14	0	6	3	1	4	7	2	1	24
G3	07-Oct-13	6:45-13:15	0	8	5	4	3	5	1	1	27
	08-Oct-13	6:20-14:50	0	6	5	2	2	7	2	0	24
	09-Oct-13	6:25-13:25	0	8	3	2	4	7	1	0	25
	10-Oct-13	6:34-14:44	0	7	5	-1	5	8	3	1	30
	Total	· isn	0	84	98	37	55	144	30	9	457

Table A4 Activity budget of juvenile of Laotian black crested gibbons.

Groups	Date	Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
	04-Aug-13	6:22-14:28	0	3	6	2	2	13	2	0	28
G1	05-Aug-13	6:56-13:36	0	4	7	3	3	9	5	1	32
01	06-Aug-13	6:15-13:15	0	3	6	2	2	11	2	0	26
	07-Aug-13	6:20-15:05	0	4	8	2	2	14	3	0	33
	01-Sep-13	6:20-13:50	0	5	7	2	3	13	2	1	33
	02-Sep-13	6:20-14:35	0	4	5	3	2	12	3	0	29
G2	03-Sep-13	6:23-13:35	0	5	6	2	3	12	2	0	30
02	04-Sep-13	6:10-14:55	0	6	6	3	3	9	2	1	30
	05-Sep-13	6:55-14:40	0	4	7	3	2	10	3	0	29
	06-Sep-13	6:22-14:42	0	7	6	4	3	9	1	1	31
	Total		0	45	64	26	25	112	25	4	301

 Table A5
 Activity budget of infant of Laotian black crested gibbons.

ACTIVITY BUDGET BY TIME

Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
6:00	37			6	3	1	6		53
7:00	36	6	28	19	14	8	12		123
8:00		32	22	16	6	7	4		87
9:00		21	24	16	10	8	6		85
10:00		26	23	18	7	8	5		87
11:00		16	24	18	14	4	7	3	86
12:00		19	17	16	6	5	7	13	83
13:00		5	19	10	-5	2	5	5	51
14:00		1	8	2	1	1			13
15:00			2		H				2
Total	73	126	167	121	66	44	52	21	670
	,	5473	ักยาส			jas	15		

 Table B1 Adult male activity budget by time.

Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
6:00	30		2	4	5		3		44
7:00	39	8	25	18	17	5	10		122
8:00		33	16	17	6	4	5		81
9:00		24	30	14	9	5	3		85
10:00		18	23	12	8	9	12		82
11:00		17	22	16	9	8	3	9	84
12:00		15	18	10	9	7	4	19	82
13:00		14	19	15	9	6	2	6	71
14:00		3	4	2	4	2	1	2	18
15:00			-1						1
Total	69	132	160	108	76	46	43	36	670
			Ŕ		5				
	C					1	5		
		75n	517-		นโลยี	asu			
			361	าทคเ	ulao	- 1			

 Table B2 Adult female activity budget by time.

Time	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
6:00	4			4	3	6	2		19
7:00	6	2	7	4	4	8	4		35
8:00		8	6	5	5	9	4		37
9:00		6	8	5	4	8	4		35
10:00		9	9	6	4	11	5		44
11:00		12	6	4	3	8	2	3	38
12:00		8	7	6	5	11	3	5	45
13:00		8	4	4	5	6	4	2	33
14:00		3	7	5	3	9			27
15:00			4						4
Total	10	56	58	43	36	76	28	10	317
	7	1715	ักยาส	a E I I I I I I I I I I I I I I I I I I		ยีส	10	2	

 Table B3 Sub adult activity budget by time.

	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
6:00				2	6	14	3		25
7:00		10	11	7	9	18	3		58
8:00		13	9	4	6	16	4		52
9:00		11	10	4	10	18	3		56
10:00		12	12	7	9	19	5		64
11:00		14	14	5	11	17	6	1	68
12:00		13	9	7	6	18	4	6	63
13:00		10	15	6	5	16	4	2	58
14:00		14	14	6	6	15			55
15:00			12						12
Fotal	0	97	106	48	68	151	32	9	511
			J		Ø				
	7	575			าโนโล		15		
			hera	า้ยเทต	าโนโล	ยสุร			

 Table B4 Juvenile activity budget by time.

	Sing	Feed	Travel	Watch	Groom	Play	Rest	Sleep	Total
6:00				2	4	10	1		17
7:00		3	8	3	2	8	2		26
8:00		7	10	3	4	12	2		38
9:00		6	6	2	4	16	3		37
10:00		8	8	5	3	11	5		40
11:00		5	7	3	4	16	4	1	40
12:00		2	8	4	3	13	3	2	35
13:00		7	9	4	4	14	5	1	44
14:00		7	8	3	2	15			35
15:00			5		H				5
Total	0	45	69	29	30	115	25	4	317
	10.	515	ายาล์			jąs	15		

 Table B5 Infant activity budget by time.

SINGING TREES OF LAOTIAN BLACK CRESTED

GIBBONS IN NAM KAN NATIONAL PROTECTED AREA

No	Date	Scientific name	High(m)	DBH(Cm)	U	ТМ	Elevation
NU	Date	Scientific name	iiigii(iii)	DBII(CIII)	X	Y	Elevation
1	04-Aug-13	Dipterocarpus alatus Roxb.	28	63.06	684611	2263533	673
2	04-Aug-13	<i>Bauhinia nervosa</i> (Wall.ex Benth)	35	70.06	684586	2263508	771
3	05-Aug-13	Chukrasia tabularis A. Juss.	34	92.68	684482	2263441	671
4	06-Aug-13	Ficus benjamina	23	81.21	684476	2263502	755
5	06-Aug-13	Spondias lakhonensis Pierre	18	71.66	684267	2263594	763
6	07-Aug-13	Microcos paniculata	19	60.51	684187	2263600	731
7	07-Aug-13	Spondias axillaris Roxb	18	62.74	684519	2263502	771
8	07-Aug-13	Spondias lakhonensi <mark>s Pie</mark> rre	27	81.53	684672	2263521	713
9	08-Aug-13	Ficus benjamina	29	111.78	684482	2263551	851
10	01-Sep-13	<i>Dipterocarpus <mark>alat</mark>us</i> Roxb.	23	74.52	684697	2262870	832
11	02-Sep-13	Chukrasia tabularis A. Juss.	26	95.22	684525	2262839	677
12	03-Sep-13	Dipterocarpus alatus Roxb.	19	94.59	683794	2262599	652
13	03-Sep-13	Spondias lakhonensis Pierre	-20	96.18	683843	2262753	623
14	04-Sep-13	Ficus benjamina	23	91.72	683954	2262642	775
15	05-Sep-13	Chukrasia tabularis A. Juss.	30	100	684955	2263152	868
16	06-Sep-13	Ficus benjamina	33	120.06	684555	2262851	686
17	06-Sep-13	Spondias lakhonensis Pierre	26	95.54	684727	2263048	683
18	04-Oct-13	Dipterocarpus alatus Roxb.		99.36	685679	2263907	870
19	05-Oct-13	Spondias lakhonensis Pierre	22	102.87	685673	2263778	674
20	06-Oct-13	Ficus benjamina	24	62.42	685513	2264006	888
21	07-Oct-13	Spondias lakhonensis Pierre	19	102.55	685016	2263969	984
22	07-Oct-13	Dipterocarpus alatus Roxb.	28	78.03	685102	2264006	781

Table C1 Singing trees of Laotian black crested gibbons in Nam Kan National protected

 Area.

No	Date	Scientific name	High(m)	DBH(Cm)	U	ТМ	Elevation
110	Duit	Selentine hume	ingn(iii)	DDH(Chi)	Х	Y	
23	08-Oct-13	Ficus benjamina	34	91.08	685126	2264110	672
24	08-Oct-13	Dipterocarpus alatus Roxb.	38	98.73	685470	2263545	884
25	08-Oct-13	Spondias lakhonensis Pierre	23	94.9	685747	2263926	776
26	09-Oct-13	<i>Dioscorea bulbifera</i> Loureiro	21	77.71	685784	2263852	798
27	09-Oct-13	Protium serratum (Wall.) Engl	25	89.17	685483	2263785	667
28	10-Oct-13	Microcos paniculata	17	69.11	685053	2263754	893
29	02-Nov-13	<i>Spondias lakhonensis</i> Pierre	21	95.54	683217	2261777	972
30	02-Nov-13	Dipterocarpus alatus Roxb.	22	90.13	683327	2261666	785
31	03-Nov-13	<i>Bauhinia nervosa</i> (Wall.ex Benth)	24	97.13	682259	2261672	891
32	04-Nov-13	Spondias lak <mark>hone</mark> nsis Pierre	26	102.87	682363	2261746	841
33	05-Nov-13	Ficus benjamina	28	85.03	682357	2261949	671
34	06-Nov-13	Ficus benjamina	29	102.87	683118	2261998	778
35	06-Nov-13	Spondias lakhonensis Pierre	-27	90.45	683143	2261838	669

APPENDIX D

PLANT SPECIES USED AS FOOD BY LAOTIAN BLACK

CRESTED GIBBONS IN NAM KAN NPA

No.	Date	Scientific name	High(DBH	UT	UTM		
			m)	(Cm)	Х	Y	Elevation	
1	04-Aug-13	Ficus hispida L.	28	95.2	684641	2263576	860	
2	04-Aug-13	Ficus benjamina	35	94.6	684635	2263533	691	
3	04-Aug-13	Spondias lakhonensis Pierre	40	96.2	684586	2263484	594	
4	04-Aug-13	Euphoraiceae	25	74.8	684537	2263410	711	
5	04-Aug-13	Ficus benjamina	29	67.8	684519	2263453	752	
6	04-Aug-13	Sponddias lutea L.	30	66.6	684469	2263478	776	
7	05-Aug-13	<i>Dioscorea bulbifera</i> Lourei <mark>ro</mark>	22	59.6	684291	2263459	795	
8	05-Aug-13	Microcos paniculata	32	68.8	684353	2263508	625	
9	05-Aug-13	Unidentified	23	70.1	684242	2263527	619	
10	05-Aug-13	Spondias lakhonensis Pierre	29	76.8	684276	2263582	809	
11	05-Aug-13	Broussonetia papyri <mark>fera</mark>	26	70.4	684365	2263557	760	
12	06-Aug-13	Unidentified	20	63.1	684420	2263527	725	
13	06-Aug-13	<i>Quercus aug<mark>u</mark>stinii</i> Skan	24	98.7	684267	2263637	825	
14	06-Aug-13	Spondias axillaris Roxb	23	69.4	684132	2263674	771	
15	06-Aug-13	Euphoraiceae	30	77.1	684193	2263711	671	
16	06-Aug-13	Unidentified	29	64.6	684150	2263778	755	
17	06-Aug-13	Spondias lakhonensis Pierre	25	86.3	684279	2263828	763	
18	06-Aug-13	Unidentified	27	67.8	684291	2263772	731	
19	07-Aug-13	Spondias lakhonensis Pierre	32	71	684316	2263693	771	
20	07-Aug-13	Unidentified	25	62.7	684371	2263705	713	
21	07-Aug-13	Spondias lakhonensis Pierre	35	64.6	684463	2263699	851	
22	07-Aug-13	Protium serratum (Wall.) Engl	26	70.4	684549	2263736	832	
23	07-Aug-13	Quercus augustinii Skan	22	71.7	684555	2263582	677	
24	01-Sep-13	Ficus hispida L.	25	74.8	684813	2262949	652	
25	01-Sep-13	<u>Ficus benjamina</u>	35	67.8	684783	2262888	623	
26	01-Sep-13	Spondias lakhonensis Pierre	30	66.6	684715	2262778	775	
27	01-Sep-13	Dioscorea bulbifera Loureiro	25	59.6	684623	2262968	868	
28	01-Sep-13	Unidentified	24	68.8	684494	2262888	686	
29	01-Sep-13	Leguminosae	30	70.1	684641	2262943	683	

 Table D1 Plant species used as food by Laotian black crested gibbons in Nam Kan

 NPA.

No.	Date	Scientific name	High	DBH (Cm)	UTM		Elevation
INO.			(m)		Х	Y	Elevation
30	02-Sep-13	Unidentified	20	76.8	683855	2262532	870
31	02-Sep-13	Protium serratum (Wall.) Engl	23	70.4	683769	2262434	674
32	02-Sep-13	Ficus hispida L.	32	63.1	683616	2262581	619
33	02-Sep-13	Quercus augustinii Skan	22	98.7	683702	2262624	809
34	02-Sep-13	Euphoraiceae	26	68.8	683855	2262569	760
35	02-Sep-13	Unidentified	28	70.1	684267	2262827	725
36	02-Sep-13	Spondias lakhonensis Pierre	23	76.8	684383	2262863	825
37	02-Sep-13	Unidentified	21	70.4	684549	2262943	771
38	02-Sep-13	Quercus augustinii Skan	30	63.1	684641	2262980	671
39	03-Sep-13	Ficus hispida L.	17	98.7	684156	2263072	755
40	03-Sep-13	Broussonetia papyrife <mark>r</mark> a	22	69.4	684211	2263287	763
41	03-Sep-13	Unidentified	24	77.1	684426	2263214	731
42	03-Sep-13	<u>Ficus benjamina</u>	28	64.6	684340	2263097	771
43	03-Sep-13	Leguminosae	18	86.3	684549	2263220	674
44	03-Sep-13	<u>Spondias lutea L.</u>	20	70.1	684586	2263060	888
45	03-Sep-13	Spondi <mark>as</mark> axillaris Roxb	29	76.8	684924	2263318	983
46	03-Sep-13	Unidentified	22	70.4	684991	2263275	781
47	03-Sep-13	<u>Ficus benjamina</u>	30	63.1	684918	2263171	672
48	03-Sep-13	Euphoraiceae	24	98.7	684991	2263103	884
49	03-Sep-13	Protium serratum (Wall.) Engl	22	68.8	684752	2263060	776
50	03-Sep-13	Unidentified	21	70.1	684789	2262968	798
51	04-Sep-13	Leguminosae	18	76.8	685139	2262925	667
52	04-Sep-13	Spondias lakhonensis Pierre	32	70.4	684482	2262919	893
53	04-Sep-13	Spondias lakhonensis Pierre	29	63.1	684402	2262906	972
54	04-Sep-13	<u>Spondias lutea L.</u>	23	67.8	684727	2263109	785
55	04-Sep-13	Broussonetia papyrifera	27	66.6	684844	2263207	891
56	05-Sep-13	Spondias axillaris Roxb	20	59.6	684918	2263042	841
57	05-Sep-13	Spondias lakhonensis Pierre	21	68.8	685126	2263023	671

No.	Date	Scientific name	High	DBH (Cm)	UTM		Elevation
140.			(m)		Х	Y	Elevation
58	05-Sep-13	<u>Ficus benjamina</u>	31	70.1	684801	2263293	725
59	05-Sep-13	Dioscorea bulbifera Loureiro	34	76.8	685004	2263275	825
60	06-Sep-13	Unidentified	23	70.4	684948	2263171	771
61	06-Sep-13	Leguminosae	25	63.1	684629	2263214	671
62	06-Sep-13	Unidentified	26	98.7	684899	2263281	755
63	06-Sep-13	Quercus augustinii Skan	25	69.4	685047	2263263	763
64	06-Sep-13	Microcos paniculata	24	77.1	685071	2263146	731
65	04-Oct-13	<u>Ficus benjamina</u>	19	64.6	685796	2263950	771
66	04-Oct-13	Ficus hispida L.	28	86.3	685796	2263889	674
67	04-Oct-13	Spondias lakhonensis Pierre	34	67.8	685710	2263901	888
68	04-Oct-13	Unidentified	27	71.2	685575	2263828	983
69	04-Oct-13	Broussonetia papyr <mark>if</mark> er <mark>a</mark>	21	62.7	685507	2263883	781
70	05-Oct-13	Protium serratum (Wall.) Engl	30	63.1	685415	2263907	672
71	05-Oct-13	Unidentified	31	98.7	685409	2263693	884
72	05-Oct-13	Microcos paniculata	25	69.4	685691	2263858	776
73	05-Oct-13	Unidentified	20	77.1	<mark>6</mark> 84961	2264079	798
74	06-Oct-13	Spondias axillaris Roxb	23	64.6	685065	2264129	667
75	06-Oct-13	<i>Quercus augustinii</i> Skan	26	86.3	685133	2264141	893
76	06-Oct-13	Euphoraiceae	18	70.1	685194	2264110	972
77	06-Oct-13	Spondias lakhonensis Pierre	22	76.8	685237	2263846	785
78	06-Oct-13	Spondias axillaris Roxb	24	70.4	685298	2263907	891
79	06-Oct-13	Spondias lutea L.	30	63.1	685415	2263987	725
80	07-Oct-13	Unidentified	23	98.7	685519	2264135	825
81	07-Oct-13	Spondias lakhonensis Pierre	25	68.8	685569	2264079	771
82	07-Oct-13	Unidentified	20	70.1	685605	2263987	671
83	07-Oct-13	Unidentified	21	76.8	685710	2263950	755
84	08-Oct-13	Spondias lakhonensis Pierre	18	70.4	685071	2263754	763
85	08-Oct-13	Broussonetia papyrifera	22	63.1	685182	2263772	731

N-		0.1	High	DBH	UTM		
No.	Date	Scientific name	(m)	(Cm)	Х	Y	- Elevation
86	08-Oct-13	Ficus hispida L.	26	67.8	685194	2263643	771
87	08-Oct-13	Microcos paniculata	28	69.4	685200	2263514	713
88	08-Oct-13	Dioscorea bulbifera Loureiro	23	77.1	685280	2263570	851
89	08-Oct-13	Spondias lakhonensis Pierre	21	64.6	685243	2263496	832
90	09-Oct-13	Ficus benjamina	19	86.3	685317	2263527	771
91	09-Oct-13	Unidentified	18	67.8	685305	2263392	674
92	10-Oct-13	Unidentified	21	71.2	685354	2263478	888
93	10-Oct-13	Spondias lakhonensis Pierre	20	62.7	685372	2263693	983
94	10-Oct-13	Unidentified	25	63.1	685415	2263613	781
95	10-Oct-13	Unidentified	28	98.7	685305	2264196	672
96	02-Nov-13	Spondias lakhonensis Pierre	29	69.4	683339	2261752	884
97	02-Nov-13	Ficus benjamina	21	77.1	683266	2261734	776
98	02-Nov-13	Microcos pani <mark>culat</mark> a	20	64.6	683235	2261826	798
99	02-Nov-13	Unidentified	18	98.7	683149	2261826	667
100	02-Nov-13	<u>Spondias lutea L.</u>	32	69.4	682983	2261973	893
101	03-Nov-13	Unidentified	29	77.1	682830	2261850	972
102	03-Nov-13	Spondias axillaris Roxb	23	64.6	682664	2261746	785
103	03-Nov-13	Broussonetia papyrifera	28	86.3	682609	2261777	891
104	03-Nov-13	Ficus hispida L.	22	69.4	682296	2261709	725
105	04-Nov-13	Protium serratum (Wall.) Engl	32	77.1	682240	2261813	825
106	04-Nov-13	Quercus augustinii Skan	28	64.6	682486	2261823	771
107	04-Nov-13	Euphoraiceae	33 G	86.3	682381	2261955	671
108	04-Nov-13	Unidentified	30	67.8	682609	2261881	755
109	04-Nov-13	Spondias axillaris Roxb	21	71.2	682658	2261813	763
110	04-Nov-13	Unidentified	34	62.7	682474	2262200	731
111	04-Nov-13	Dioscorea bulbifera Loureiro	29	63.1	682510	2262163	771
112	04-Nov-13	Ficus hispida L.	24	63.1	682652	2262096	674
113	04-Nov-13	Unidentified	19	67.8	682928	2262102	888

No.	Date	Scientific name	High	DBH (Cm)	UTM		Elevation
140.			(m)		Х	Y	- Elevation
114	05-Nov-13	Leguminosae	21	69.4	683125	2261899	983
115	05-Nov-13	Spondias lakhonensis Pierre	22	77.1	681317	2261807	781
116	05-Nov-13	Euphoraiceae	21	64.6	683266	2261936	672
117	05-Nov-13	Dioscorea bulbifera Loureiro	19	86.3	632535	2262022	884
118	05-Nov-13	Leguminosae	26	67.8	682455	2261863	776
119	05-Nov-13	Spondias lakhonensis Pierre	25	71.2	682578	2261844	798
120	05-Nov-13	Quercus augustinii Skan	32	62.7	682338	2261727	667
121	05-Nov-13	Ficus hispida L.	29	63.1	682903	2261734	893
122	05-Nov-13	Unidentified	28	62.7	682676	2261721	671
123	05-Nov-13	Unidentified	30	63.1	683051	2261930	755
124	05-Nov-13	Protium serratum (Wa <mark>ll.) E</mark> ngl	25	98.7	683149	2261863	763
125	05-Nov-13	Spondias lakhonensis Pierre	23	69.4	683118	2261764	731
126	06-Nov-13	Sponddias lute <mark>a</mark> L.	28	77.1	683346	2261629	771
127	06-Nov-13	Broussonetia papyrifera	22	64.6	683223	2261678	713
128	06-Nov-13	<i>Dioscorea bulbifera</i> Loureiro	33	86.3	683014	2261801	851
129	06-Nov-13	Unidentified	27	70.1	683284	2261715	832
130	06-Nov-13	Spondias lakhonensis Pierre	31	76.8	683118	2261727	771
131	06-Nov-13	Unidentified	23	70.4	682989	2261881	675

ะ ³่าวักยาลัยเทคโนโลยีสุรบาว

CURRICULUM VITEA

Name	Mr. Singphone Louangleuxay
Date of birth	5 June 1980
Place of birth	Luangnamtha Province, Lao PDR
Education	2001 B.Sc. (Forestry), Faculty of Forestry,
	National University of Laos.

Research Publication

Luangleuxay, S., Youanechuexian, K. and Suwanwaree, P. (2015). Laotian black crested

gibbon food and their feeding trees preliminary study in Ban Toup, Nam Kan National Protected Area, Lao PDR. **The 3rd Environment Asia International**

Conference. June 17-19, 2015 Bangkok, Thailand.

