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วตัถุประสงคข์องการศึกษาน้ีเพื่อผลิตนมและไอศกรีมแลคโตสตํ่า โดยใชเ้อนไซมเ์บตา้ -        

กาแลคโทสิเดสลูกผสมจากเช้ือ Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 โดยใช้

เช้ือ L. plantarum TLG02 เป็นเซลลเ์จา้บา้นสาํหรับผลิตเอนไซมเ์กรดอาหาร ในขั้นแรกของการผลิต

เอนไซมเ์กรดอาหารน้ีเป็นการเปล่ียนเวคเตอร์ pSIP409-lacZ และ pSIP409-lacZ-His ซ่ึงมียนีตา้นยา

ปฏิชีวนะอีริโทรมยัซินใหเ้ป็นยนีอะลานีนราซิเมส ทาํใหไ้ดเ้วคเตอร์ ใหม่คือ pSIP609-lacZ และ 

pSIP609-lacZ-His เวคเตอร์ดงักล่าวน้ีเป็นเวคเตอร์ท่ีไม่ตอ้งใช้ ยนีตา้นยาปฏิชีวนะเป็นยนี

เคร่ืองหมายในการคดัเลือก ต่อมาเวคเตอร์เหล่าน้ีไดถู้กถ่ายโอนไปยงัเช้ือ L. plantarum TLG02 ซ่ึง

เป็นเซลลเ์จา้บา้นท่ีถูกดดัแปลงพนัธุกรรมใหเ้หมาะกบั การถ่ายโอนเวคเตอร์ท่ีมียนีอะลานีนราซิเมส

เป็นเคร่ืองหมายในการคดัเลือก เอนไซมเ์บตา้ -กาแลคโทสิเดสลูกผสม บริสุทธ์ิท่ีไดใ้นขา้งตน้น้ี มีค่า

กิจกรรมจาํเพาะของเอนไซม์  165±5 ยนิูตต่อมิลลิกรัม  และอุณหภูมิท่ีเหมาะสม ในการทาํงานของ

เอนไซม์น้ีคือ ในช่วงอุณหภูมิ 55–60 องศาเซลเซียส เม่ือใชแ้ลคโตสเป็นสารตั้งตน้  ค่าคงท่ีไมคีลิส-

เมนเทนท่ีดีท่ีสุดของเอนไซมเ์บตา้-กาแลคโทสิเดสลูกผสม บริสุทธ์ิน้ีมีค่าประมาณ 5.6 มิลลิโมลาร์  

ท่ีอุณหภูมิ  30 องศาเซลเซียส  ซ่ึงค่า ความเร็วสูงสุ ดของเอนไซม์ ท่ีอุณหภูมิน้ีมีค่าประมาณ 153        

ไมโครโมลต่อนาทีต่อมิลลิกรัม ทั้งน้ียงัไดมี้การศึกษา เสถียรภาพ ของเอนไซมด์งักล่าวขา้งตน้ใน

บฟัเฟอร์ต่างชนิด (โซเดียมฟอสเฟตบฟัเฟอร์, โซเดียมฟอสเฟตบฟัเฟอร์ท่ีมีแมกนีเซียมไอออน        

1 มิลลิโมลาร์, โซเดียมฟอสเฟตบฟัเฟอร์ท่ีมีแมกนีเซียมไอออน 10 มิลลิโมลาร์ และบฟัเฟอร์นม   

ซ่ึงพบวา่โซเดียมฟอสเฟตบฟัเฟอร์ท่ีมีแมกนีเซียมไอออน 1 มิลลิโมลาร์สามารถยดือายกุารเกบ็รักษา

ของเอนไซมไ์ด้ การศึกษาผลของการใชเ้อนไซมส์กดัหยาบท่ีความเขม้ขน้ 3 ระดบั (1, 5 และ 10 ยนิู

ตต่อมิลลิลิตร ) ร่วมกบัแลคโตสท่ีความเขม้ขน้ 2 ระดบั (125 และ 165 มิลลิโมลาร์) ท่ีอุณหภูมิ

แตกต่างกนั (4 และ 65 องศาเซลเซียส) ท่ีมีต่อปฎิกิริยาแลคโตสไฮโดรไลซิสในบฟัเฟอร์นม พบวา่ 

การใชเ้อนไซมส์กดัหยาบ ท่ีความเขม้ขน้ 5-10 ยนิูตต่อมิลลิลิตร  สามารถไฮโดรไลซ์แลคโตสได้

อยา่งนอ้ยร้อยละ 50 ทั้งท่ี 4 และ 65 องศาเซลเซียส นอกจากน้ีการศึกษาปฎิกิริยาแลคโตสไฮโดรไล

ซิสในนมไขมนัตํ่า  ท่ีไดจ้ากเปรียบเทียบการใช้ เอนไซมเ์บตา้ -กาแลคโทสิเดสลูกผสม ต่างชนิด 

(เอนไซมส์กดัหยาบ และเอนไซมบ์ริสุทธ์ิ) และเอนไซมเ์ชิงการคา้ (Lactozym 2600L) ดว้ยเทคนิค  

โครมาโทกราฟีเหลวความดนัสูง พบวา่ เอนไซมทุ์กชนิด สามารถยอ่ยแลคโตสในนมไขมนัตํ่าได้

มากกวา่ร้อยละ 85 ภายใน 18 ชัว่โมง ท่ี 4 องศาเซลเซียส ซ่ึงในปฏิกิริยาดงักล่าวน้ีพบวา่ กาแลคโต -           

โอลิโกแซคคาไรดส์ามารถเกิดข้ึนไดม้ากท่ีสุด (3.63 มิลลิกรัมต่อมิลลิลิตร) ท่ีเวลา  3 ชัว่โมง โดยผล
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ของปฏิกิริยาแลคโตสไฮโดรไลซิสดว้ยเอนไซมต่์างชนิดกนัในขา้งตน้ไดถู้กศึกษาในนมท่ีมีปริมาณ

ไขมนัท่ีต่างกนั (ไขมนัตํ่าและไขมนัปกติ : ร้อยละ 3.5) ซ่ึงพบวา่ปริมาณไขมนัในนมไม่มีผลกระทบ

ต่อปฎิกิริยาแลคโตสไฮโดรไลซิส จากการใช้ เอนไซมทุ์กชนิด ผลดงักล่าวน้ี ยนืยนัได้ โดย การ

ตรวจสอบด้ วยเทคนิ คโครมาโตกราฟี แผน่บาง  ส่วนผลการทดสอบทางประสาทสมัผสัพบวา่ 

คะแนนเฉล่ียความชอบรวมของนมไขมนัตํ่าหรือนมไขมนัปกติท่ีมีการใชเ้อนไซมแ์ต่ละชนิดและนม

ตวัอยา่งควบคุมมีความแตกต่างกนั อยา่งมีนยัสาํคญั (p<0.05) ในขณะท่ีคะแนนเฉล่ียความชอบรวม

ของไอศกรีมจากนมไขมนัตํ่าท่ีมีปริมาณแลคโตสตํ่าจากการใชเ้อนไซมส์กดัหยาบหรือเอนไซม์

บริสุทธ์ิและไอศกรีมตวัอยา่งควบคุมมีความแตกต่างกนัอยา่งมีนยัสาํคญั  (p<0.05) แต่ไม่พบความ

แตกต่างในไอศกรีมจากนมไขมนัปกติท่ีมีปริมาณแลคโตสตํ่าจากการใชเ้อนไซมท์ั้งสองชนิดและ

ไอศกรีมตวัอยา่งควบคุม (p>0.05) ดงันั้นเอนไซมเ์บตา้-กาแลคโทสิเดสลูกผสมทั้งชนิดเอนไซมส์กดั

หยาบและเอนไซมบ์ริสุทธ์ิสามารถ นาํมา ประยกุตใ์ช้ ได้ในการผลิตนมและไอศกรีมท่ีมีปริมาณ    

แลคโตสตํ่า เพื่อตอบสนองความตอ้งการของผูบ้ริโภคท่ีมีปัญหาในเร่ืองการยอ่ยแลคโตสในนม 
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NUMPHON  THAIWONG : THE PRODUCTION OF LOW LACTOSE MILK 

AND ICE CREAM USING ENZYME TECHNOLOGY. THESIS ADVISOR : 

ASST. PROF. SIWATT  THAIUDOM, Ph.D., 220 PP. 

 

RECOMBINAT β-GALACTOSIDASE/LACTOBACILLUSPLANTARUM/            

pSIP VECTOR/OVEREXPRESSION/LACTOSE HYDROLYSIS/MILK BUFFER 

 

The objective of this study was to produce low lactose milk and ice cream 

using a recombinant β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus 

DSM 20081, overexpressed in L. plantarum, a food-grade expression host. The food-

grade expression vector (pSIP-based) was constructed by replacing the erythromycin 

resistance gene (ermR) of the pSIP409-lacZ and pSIP409-lacZ-His with the alanine 

racemase (alr) gene, allowing an antibiotic-free selection condition. Subsequently, the 

food-grade expression vectors, designated as pSIP609-lacZ and pSIP609-lacZ-His, 

were transformed into the L. plantarum TLG02, which is a D-alanine auxotroph. 

Consequently, a recombinant β-galactosidase was produced from these bacteria. The 

purified recombinant β-galactosidase showed the specific activity was 165±5 U/mg 

and the optimal temperature was in the range of 55–60°C when lactose was used as a 

substrate. The best value of Michaelis-Menten constant (Km) was approximately      

5.6 mM at 30°C, of which the maximal velocity (Vmax,Glc) at this temperature was 

approximately 153 µmol⋅min-1⋅mg-1. Then, the catalytic stability was determined in 

different buffers (Sodium phosphate buffer, Sodium phosphate buffer + 1 mM Mg2+, 

Sodium phosphate buffer + 10 mM Mg2+, and milk buffer). The result showed that      

1 mM of Mg2+ in the sodium phosphate buffer could enhance the enzyme stability. The 
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effects of different crude enzyme concentrations (1, 5, and 10 U/mL), lactose 

concentrations (125 and 165 mM), and temperatures (4 and 65°C) in the milk buffer 

on lactose hydrolysis were also studied. The crude enzyme concentration from 5-10 

U/mL could hydrolyze lactose by at least 50% in both studied temperatures. Moreover, 

low-fat milk as a lactose source was used for the comparison of different types of 

recombinant β-galactosidase (crude and purified forms) and commercial enzyme 

(Lactozym 2600L) on lactose hydrolysis. HPLC analysis indicated that all enzyme 

preparations could hydrolyze more than 85% of lactose within 18 hours at 4°C. The 

highest galacto-oligosaccharides formation (3.63 mg/mL) was found at 3 hours in this 

reaction condition. The effect of fat content (low-fat milk and regular milk: 3.5% milk 

fat) on the hydrolysis of these enzymes was also investigated. The results showed that 

the different fat content in milks (low-fat milk and regular milk) did not affect the 

lactose hydrolysis for all enzyme preparations, which were detected by TLC. For the 

sensory evaluation, the overall acceptance of low-fat lactose-hydrolyzed milks and 

regular-fat lactose-hydrolyzed milks were significantly different from that of the 

control (p<0.05). The overall acceptance of all ice cream from low-fat lactose-

hydrolyzed milk using crude or purified enzymes and the control was significantly 

different (p<0.05) but no significant difference was found among those samples 

prepared by regular-fat milk (p>0.05). In conclusion, both crude and purified 

recombinant β-galactosidase could be applied for the preparation of low-lactose milk 

and ice cream for lactose-intolerant consumers. 
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CHAPTER I 

INTRODUCTION 

 

1.1   Introduction 

  About 90% of the people in Africa and Asia are lactose intolerant (Bulhões et 

al., 2007; The National Digestive Diseases Information, 2012; Curry, 2013). The 

cause of lactose intolerance is the inability to digest significant amounts of lactose 

because of a genetically inadequate amount of the β-galactosidase enzyme at the 

intestinal brush border (Swagerty et al., 2002; Wang et al., 1998) where the                

β-galactosidase enzyme breaks down the lactose into the glucose and galactose 

molecules for absorption into the body (Suarez et al., 1995). When the amount of      

β-galactosidase is not adequate to break down the lactose, the body cannot absorb the 

lactose directly. Therefore the lactose remains in the intestines and eventually finds 

its way into the large intestine. In the large intestine, millions of bacteria use the 

lactose for their own nourishment, multiplying rapidly, and producing a large number 

of by-products. Usually a variety of gases, organic acids, and other irritating 

chemicals result from the activity of these micro-organisms, of which the effects are 

excessive flatus, abdominal bloating, pain, loose stools, or diarrhea, and general 

distress in the large intestine (Swagerty et al., 2002; The National Digestive Diseases 

Information, 2011). 

 Most mammals normally become lactose intolerant after weaning (Saavedra 

and Perman, 1989; Wang et al., 1998), and this can also happen in adults (Ferguson et 
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al., 1984). Due to the world population ageing structure, there will soon be a much 

more elderly population than at present; therefore, the number of lactose intolerant 

people will correspondingly increase (The  Department  of  Economic  and  Social  

Affairs  of  the  United  Nations  Secretariat, 2009). This will also affect Thailand, 

where the numbers of people aged 60 and above will rise to 19% (14 million) in 2025 

and will constitute 25% (19 million) in 2050 (Knodel et al., 2011). Although common 

in adults, lactose intolerance is rarely dangerous, but lactose intolerant people should 

avoid drinking milk or consuming other dairy products containing lactose 

(Densupsoontorn et al., 2004; Jelen and Tossavainen, 2003). Consequently, dairy 

companies have developed products which are suitable for lactose intolerant people.  

 Likewise, the market trend of lactose-reduced products has been driving 

demand for lactose-free products (Mahoney, 2003). The market survey (the Statistics 

Portal) of lactose-free dairy products in the United States of America, the largest 

market for lactose-free food, has shown an increased demand for lactose-free food 

products of 701.5 million US dollar in 2012 to 807.7 million US dollar in 2015. The 

Thai dairy market had total revenues of 1.6 billion US dollar in 2012, representing      

a compound annual growth rate (CAGR) of 3.3% between 2008 and 2012 (Senadisai 

et al., 2015). 

 Most production of lactose free and low lactose products use the                     

β-galactosidase enzyme to break down the lactose molecules by using either the free 

(soluble) or, rarely, the immobilized enzyme variant of the process, from which the 

hydrolysis of lactose or related compounds of β-galactosidase are used to improve 

digestibility and the sweetness of dairy products. In addition, some β-galactosidases 

catalyze transgalactosylation reactions in which lactose, as well as the released 
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glucose and galactose, serve as galactosyl acceptors, yielding a series of di, tri-, and 

higher oligosaccharides called galacto-oligosaccharide (GalOS) (Park and Oh, 2010; 

Reyes-Torres et al., 2010; Rodriquez-Colinas et al., 2012). GalOS are non-

carcinogenic, reduce the level of cholesterol in serum, prevent colon cancer, and 

exhibit prebiotic properties. However, the properties of GalOS depend on their 

chemical composition, structure, and degree of polymerization (Cardelle-Cobas et al., 

2011; Rodriquez-Colinas et al., 2012). Moreover, the transferase reaction of the 

hydrolyzed lactose can be used to attach galactose to other chemicals which has 

potential applications in the production of food ingredients, pharmaceuticals, and 

other biologically active compounds (Mahoney, 1998). 

 Lactose-hydrolyzed milk production by β-galactosidase has been used for the 

preparation of flavored milk, cheese, and yogurt. It also prevents lactose 

crystallization in condensed milk products and frozen foods such as ice milk, and ice 

cream (Panesar et al., 2010). The result of lactose-hydrolyzed milk is sweeter than 

ordinary milk because of the glucose and galactose, which are obtained after the 

conversion of lactose (Akcan, 2011; Harju et al., 2012; Panesar et al., 2006). It has 

been suggested that limiting hydrolysis to 80-90% avoids excessive sweetness. Flynn 

and co-workers (1994) had used potassium chloride for lactose hydrolysis, which the 

optimal condition was at 15-45 mmol/L. In 1996, Vasala et al patented a method to 

reduce the sweetness of lactose-hydrolyzed UHT milk by adding the potassium salt 

of an organic acid, such as citrate, malate, or gluconate. Moreover, Harju and co-

workers (2012) reduced the sweetness of lactose-hydrolyzed milk by potassium 

chloride treatment. Nevertheless, many consumers can feel unnatural taste of lactose 

free or low lactose products that are much sweeter than fresh milk. Additionally,                   
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β-galactosidase can be used for converting lactose in whey into a very useful product 

like sweet syrup, which can be used in various processes of dairy, confectionary, 

baking, and soft drink industries (Panesar et al., 2010; Pivarnik et al., 1995; Tweedie 

et al., 1978). Therefore, lactose hydrolysis not only allows milk consumption by 

lactose intolerant populations, but can also solve the environmental problems linked 

with whey disposal (Champluvier et al, 1988; Gekas and Lopez-Leiva, 1985; 

Martinez and Speckman, 1988; Panesar et al., 2010). 

 Beta-galactosidases from microorganisms are the major source of                   

β-galactosidase for lactose hydrolysis in bioprocess technology and biotechnological 

applications due to their easy approaches (Halbmayr et al., 2008; Husain, 2010; 

Juajun et al., 2011; Nakayama and Amachi, 1999; Nguyen et al., 2006; Park and Oh, 

2010; Rahim and Lee, 1991; Rajakala and Karthigai, 2006). Main β-galactosidase 

from microorganisms are derived from Kluyveromyces lactis, Kluyveromyces 

marxianus, and Aspergillus niger, respectively, with the remainder being those from 

Escherichia coli (lacZ) (Henrissat, 1991). Also, Aspergillus oryzae (Chen et al., 

2002), Aspergillus japonicas (Saad, 2004), Pyrococcus furiosus (Li et al., 2013),     

K. lactis (Li et al, 2007; Novalin et al., 2005), and Bacillus circulans (Rodriguez-

Colinas et al., 2012) are the sources of β-galactosidase. Beta-galactosidases from     

E. coli cannot be used in the food industry, mainly because of the unacceptability of 

the bacterium from consumers or humans (Nakayama and Amachi, 1999). Beta-

galactosidase from different microorganisms has different enzyme properties, such as 

molecule weight, protein chain length, and the position of the active site, but they 

have the same amino acid residue, glutamic acid, as their catalytic site (Harju et al., 

2012; Mahoney,1997). 
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 Up to date, many species of Lactobacillus spp. have been studied for the 

enzyme production and application because they are recognized as the 

GRAS organism (Generally Recognized As Safe) and play important roles in foods. 

There have been a number of investigations of enzymes from this source and their 

possible application for the production of galacto-oligosaccharides (Toba et al., 

1981). Garman and co-workers (1996), in a study of a number of species of 

Lactobacillus and Streptococcus thermophilus, found that Lactobacillus delbrueckii 

subsp. bulgaricus strain possesses a β-galactosidase with transgalactosylation acidity 

similar to the enzyme from S. thermophilus. Kobayashi and co-workers (1990) 

patented a method for producing a processed milk containing galacto-

oligosaccharide. In their patent, milk was treated with a β-galactosidase derived from 

S. thermophilus or L. delbrueckii subsp. bulgaricus which could change at least 15% 

of the lactose in the milk into galacto-oligosaccharide. Moreover, β-galactosidase 

from L. reuteri L103 and L461 also exhibited high transgalactosylation activity 

(Nguyen et al., 2006). 

 Although β-galactosidase naturally from native Lactobacillus spp. is 

considered as a product from GRAS organism, safeness of using recombinant            

β-galactosidase expressed in E. coli system is doubtful and likely to apply for the 

non-food industry. Few examples of β-galactosidase from Lactobacillus spp. with    

E. coli expression system, which has been applied to lactose-hydrolyzed milk 

include: the cold-adapted recombinant β-galactosidases from L. acidophilus (Pan et 

al., 2010) and the acid tolerant β-galactosidase from L. delbrueckii subsp. bulgaricus 

ATCC 11842 (Rhimi et al., 2009).  
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 In order to replace the E. coli system, the production of β-galactosidase from 

Lactobacillus spp. can be obtained using the Nisin-Controlled Expression (NICE) or 

pheromone-inducible (pSIP) systems, which are well-known as overexpression 

systems for Lactic acid bacteria (LAB) (Sorvig et al., 2003; Sorvig et al., 2005; 

Halbmayr et al., 2008; Mathiesen et al., 2008; Straume et al., 2006).Furthermore, the 

vectors in the pSIP system permit all parts of the plasmid to be easily modified and 

used among different LAB, especially Lactobacillus spp., while plasmids in the 

NICE system are suitable mainly for Lactococcus spp. (Sorvig et al., 2003; 

Maischberger et al., 2010). However, it was shown that the pSIP system resulted in 

higher levels of overexpressed enzyme than the NICE system (Nguyen et al., 2011b). 

Although, the use of the pSIP system has been increasingly used in the food 

industry recently, there is a major limitation of pSIP system. Because of the original 

system, the erythromycin antibiotic resistance gene (erm) is used as a selective 

marker for the cell selection stage of enzyme production, which might affect the 

microflora in the human body. In addition, the erm gene may be transferred to other 

organisms, resulting in resistance to this antibiotic. To avoid this undesirable effect, 

the alanine racemase gene (alr) is used as a selection marker, instead of the erm gene, 

which is safer in terms of human food consumption. The alanine racemase enzyme is 

important for cell wall biosynthesis, especially in LAB. It converts L-alanine to D-

alanine, which is an essential component for the growth and cell wall biosynthesis of 

prokaryotic cells (Hols et al., 1997). Additionally, pSIP vectors carrying the alr gene 

as a selection marker have been successfully applied in complementation approaches 

both in Lactococci and Lactobacilli (Nguyen et al., 2011a). Thus, expression of the 

lacZ gene, coding for β-galactosidase, using the alr gene as a selection marker can 
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provide a safer new method to produce recombinant β-galactosidase in a completely 

food-grade manner. At this point, little research has been conducted utilizing an 

expression vector carrying the alr gene with a suitable alr-deletion strain to 

overexpress a β-galactosidase of the LacLM type (Nguyen et al., 2011a). This lacLM 

protein is heterodimeric and is encoded by two partially overlapping genes, which 

might be more complicated to express and study as a model system. Thus, the 

expression of homodimeric lacZ β-galactosidase encoded by the lacZ gene with the 

alr gene as a selective marker in a pSIP vector, known as a recombinant system, 

might be more beneficial, in terms of cost, time, and safety, than the heterodimeric 

system. 

Beta-galactosidase from Lactobacillus spp. has not been widely applied for the 

production of lactose-free or low lactose milk due to three complicated methods 

(Rand, 1981; Mahoney, 1997; Jelen and Tossavainen, 2003; Mahoney, 2003). First, 

β-galactosidase is added to the milk before heat treatment (pre-treatment). Then, the 

milk is heated, packed, and sold at 6-8°C to avoid microbial growth. As this method 

is not performed in the optimum temperature of the enzyme, the hydrolysis time of 

this method is rather long (24-30 hours) depending upon the enzyme dosage. 

However, in good quality raw milk, hydrolysis at high temperature (38-40°C) can be 

used (Fuquay et al, 2011). Moreover, the milk should always be pasteurized or at least 

thermalized prior to hydrolysis for safety purposes. The second method involves the 

application of β-galactosidase after heat treatment of milk (post-treatment). In this 

process, milk is packaged after a sterile β-galactosidase is added in-line immediately 

following UHT treatment of milk, allowing the lactose to be hydrolyzed in the final 

package at ambient temperature. Since active enzyme is present in the milk during 
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storage, this method requires a high quality of β-galactosidase preparation. The last 

method is applying β-galactosidase into milk products by the consumer by adding a 

few drops of β-galactosidase prior to consumption of the milk. Consumers can buy 

small packages of neutral β-galactosidase, and the lactose will be hydrolyzed within 

12–24 hours depending upon the dosage (Rand, 1981; Pivarnik et al, 1995; Mahoney, 

1997; Jelen and Tossavainen, 2003; Mahoney, 2003). Nevertheless, the β-

galactosidase from Lactobacillus spp. can be use similarly for lactose-free milk 

production. The commercial β-galactosidases are commonly used for milk lactose 

hydrolysis to obtain the pasteurized-milk product, and there were few studies of 

recombinant β-galactosidase expressed in Lactobacillus spp. for lactose-hydrolyzed 

milk in complete milk pasteurization processing. Jokar and Karbassi (2011) 

demonstrated the hydrolysis of sterile milk using the cell free extracts of                   

β-galactosidases from L. bulgaricus CHR Hansen Lb-12 in comparison with the 

commercial enzyme (DSM Food specialist Maxilact 12000, France) for the sensory 

evaluation. When β-galactosidase is applied to milk for the production of lactose free 

or low lactose products, the price of lactose-hydrolyzed milk is higher than for 

ordinary milk (Jelen and Tossavainen, 2003). Variable prices of β-galactosidase are 

depending on enzyme, the level of production, and purification (Akcan, 2011; Panesar 

et al., 2006).  

In Thailand, most lactose free or low lactose products are imported from 

abroad by large companies, so the price of these products is even higher. Beta-

galactosidase is mainly used to produce the lactose-free or low lactose products in the 

hospitals for lactose intolerant people. Moreover, the application of β-galactosidase is 

used for improving texture-quality and stability of dairy products, such as, ice cream 
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in small or medium company. There is only little research on the production lactose-

hydrolyzed milk and ice cream by recombinant β-galactosidases from L. bulgaricus 

with pSIP-based system. This project includes enzyme production through the 

molecular cloning and utilization of the recombinant enzyme to produce lactose-

hydrolyzed milk and ice cream as a prototype of enzyme production and application 

in Thailand for the future. 

The objectives of this study were to produce the recombinant β-galactosidase 

(LacZ) from L. bulgaricus expressed in L.  plantarum, using a pSIP-based food-grade 

expression system and to study the food-grade β-galactosidase expression, enzyme 

characterization, and kinetic parameters, in order to study the application of food 

grade β-galactosidase in low-lactose milk and ice cream for their physical, microbial, 

and sensory properties. 

 

1.2  Research objectives 

 The objectives of this study were: 

1. To produce the recombinant β-galactosidase (LacZ) from L. bulgaricus 

expressed in L. plantarum, using a pSIP-based food-grade expression system. 

2. To determine the food-grade β-galactosidase expression, enzyme 

characterization, and kinetic parameters. 

3. To apply food grade β-galactosidase in milk and ice cream and determine 

for their physical, microbial, and sensory properties. 
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1.3  Research hypotheses 

Beta-galactosidases from the heterologous overexpression of single-gene 

encoded β-galactosidase (LacZ) from L. bulgaricus expressed in L. plantarum can be 

used as an enzyme for low lactose milk, which may be comparable to the commercial 

enzyme. In addition, milk and ice cream produced by this enzyme possess favorable 

qualities suitable for consumers. 

 

1.4  Scope of the study 

The study was divided into three parts which were: 1) the production of 

recombinant β-galactosidase expressed in L. plantarum, using a pSIP-based food-

grade expression system; 2) the food-grade β-galactosidase expression and enzyme 

characterization; and 3) the application of β-galactosidase (LacZ) from L. bulgaricus 

in milk and ice cream. 

In phase 1, the plasmids (pSIP609-lacZ and pSIP609-lacZ-His) were 

constructed from pSIP vectors; pSIP409-lacZ and pSIP409-lacZ-His and                   

L. plantarum WCFS1 bacterial host (provided by Food Biotechnology Laboratory, 

Department of Food Sciences and Technology, BOKU-University of Natural 

Resources and Life Sciences Vienna, Austria). The single-gene encoded                    

β-galactosidase (LacZ) from L. bulgaricus in pSIP vectors was cloned into                

L. plantarum TLG02, which was a food-grade host in order to produce a food grade 

β-galactosidase 

In phase 2, expression of food-grade, recombinant β-galactosidase produced 

from L. plantarum TLG02 harboring pSIP609-lacZ or pSIP609-lacZ-His was 

determined by the denaturing sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis (SDS-PAGE) and the measuring enzyme activity. The recombinant 

enzyme was purified and characterized for the optimal temperature, the steady-state 

kinetic, and the catalytic stability. The optimal temperature was measured at 

temperatures ranging from 20-90oC in two different substrates (ortho-Nitrophenyl-β-

galactoside (oNPG) and lactose) both milk buffer and sodium phosphate buffer. The 

steady-state kinetic was analyzed in milk buffer from 4-65°C. The catalytic stability 

of recombinant enzyme was compared with different substrates (oNPG and lactose) 

and different buffers (sodium phosphate buffer, sodium phosphate buffer with 1 mM 

Mg2+, sodium phosphate buffer with 10 mM Mg2+, and a milk buffer) at temperatures 

ranging from 4-55oC.  

Finally, the crude enzyme of recombinant β-galactosidase was applied for 

lactose hydrolysis in the milk buffer. The recombinant β-galactosidase activity was 

determined in the presence of lactose, glucose, galactose, and galacto-

oligosaccharides (GalOS) content from low-fat milk hydrolysis by the Reverse Phase 

High-Performance Liquid Chromatography (RP-HPLC). Low lactose milk and ice 

cream were produced by recombinant β-galactosidase. The qualities of the low 

lactose milk and ice cream were examined for their physical, microbial, and sensory 

properties. These qualities were compared with low lactose milk and ice cream which 

was hydrolyzed by commercial enzyme. The low-lactose milk samples were 

qualitative analysis by thin layer chromato-graphy (TLC). 

  

1.5   Expected results 

We expected that the LacZ gene from L. bulgaricus using pSIP vectors could 

overexpress in L. plantarum TLG02 as a host. The result of lactose hydrolysis by 
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crude enzyme of β-galactosidase, recombinant β-galactosidase, and commercial 

enzyme (Lactozym 2600L) in milk buffer should show the suitable condition for 

further application in regular milk and low-fat milk that can be benefit to the dairy 

industry. Moreover, these enzymes can be used as the superior substitutes for current 

commercial enzymes that will be more readily accepted by consumers. These 

advancements will lead to more suitable conditions for the production of low lactose 

milk and ice cream. 

 

1.6  References 

Akcan, N. (2011). High level production of extracellular β-galactosidase from 

Bacillus licheniformis ATCC 12759 in submerged fermentation. African 

Journal of Microbiology Research.5(26): 4615-4621. 

Becerra, M. and González Siso, M. I. (1996). Yeats β-galactosidase in solid-state 

fermentation. Enzyme and Microbial Technology.19(1): 39- 44. 

Bulhões, A.C., Goldani, H.A.S., Oliveira, F.S., Matte, U.S., Mazzuca1, R.B. and 

Silveira, T.R. (2007). Correlation between lactose absorption and the C/T-

13910 and G/A-22018 mutations of the lactase-phlorizin hydrolase (LCT) 

gene in adult-type hypolactasia. Brazilian Journal of Medical and 

Biological Research. 40(11): 1441-1446. 

Cardelle-Cobas, A., Corzo, N., Olano, A., Pelaez, C., Requena, T. and Avila, M. 

(2011). Galactooligosaccharides derived from lactose and lactulose: influence 

of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. 

International Journal of Food Microbiology. 149: 81-87. 

 

 

 

 

 

 

 

 



13 
 

 
 

Champluvier, B., Kamp, B. and Rouxhet, P. G. (1988). Preparation and properties of 

β-Galactosidase confined in cells of Kluyveromyces sp. Enzyme and 

Microbial Technology. 10: 611- 617. 

Chen, C.-S., Hsu, C.-K., Chiang, B.-H.(2002). Optimization of the enzymic process 

for manufacturing low-lactose milk containing oligosaccharides. Process 

Biochemistry. 38: 801-808. 

Curry, A. (2013). The milk revolution. Nature. 500: 20-23. 

Densupsoontorn, N., Jirapinya, P., Thamonsiri, N. Chantaratin, S. and Wongarn, R. 

(2004). Lactose Intolerance in Thai Adults. Journal of the Medical 

Association of Thailand. 87(12): 1501-1505. 

Ferguson. T. U., Haynes, P. H. and Spence, J. A. (1984). The effect of sett size, sett 

type and spacing on some aspects of growth, development and yield in white 

Lispbon yams D. alata, Proceeding. 6th Symposium of the International 

Society for Tropical Crops. CIP; Lima, Peru. (pp. 649-655). 

Fuquay, J.W., Fox, P.F. and McSweeney, P.L.H. (2011). Application of Lactases. 

In Fuquay, J.W., Fox, P.F. and McSweeney, P.L.H. (Eds.). Encyclopedia of 

Dairy Sciences.Volume 2 (2nd ed.). Academic Press. 

Flynn, R. G., Bakal, A. I. and Snyder, M. A. (1994). Method of preparing lactose-

hydrolysed milk with suppressed sweetness. Patent US5334399. 

Garman, J., Coolbear, T. and Smart, J. (1996). The effects of cations on the hydrolysis 

of lactose and the transferase reactions catalysed by β-galactosidase from six 

strains of lactic acid bacteria. Applied Microbiology and Biotechnology. 46: 

22-27. 

 

 

 

 

 

 

 

 



14 
 

 
 

Gekas, V. and Lopez-Leiva, M. (1985). Hydrolysis of lactose: a literature review. 

Process Biochemistry. 20: 2-12. 

Harju, M., Kallioninen, H. and Tossavainen, O. (2012). Lactose hydrolysis and other 

conversions in dairy products: Technological aspects: A review. International 

Dairy Journal. 22: 104-109. 

Halbmayr, E., Mathiesen, G., Nguyen, T., Maischberger, T., Peterbauer, C. K., 

Eijsink, V. G. H. and Haltrich, D. (2008). High-level expression of 

recombinant β-galactosidases in Lactobacillus plantarum and Lactobacillus 

sakei using a sakacin P-based expression system. Journal of Agricultural 

and Food Chemistry. 56: 4710-4719. 

Harju, M., Kallioninen, H. and Tossavainen, O. (2012). Lactose hydrolysis and other 

conversions in dairy products: Technological aspects: A review. International 

Dairy Journal. 22: 104-109. 

He, Y. Q. and Tan, T. W. (2006). Use of response surface methodology to optimize 

culture medium for production of lipase with Candida sp. 99-125. Journal of 

Molecular Catalysis B: Enzymatic. 43(1-4): 9-14. 

Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid 

sequence similarities. Biochemical Journal. 280(2): 309–316.  

Hols, P. Defrenne, C., Ferain, T., Derzelle, S., Delplace, B. and Delcour, J. (1997). 

The alanine racemase gene is essential for growth of Lactobacillus plantarum. 

Journal of Bacteriology. 179(11): 3804–3807. 

Husain, Q. (2010). β-Galactosidase and their potential applications: A 

review. Critical Reviews in Biotechnology. 30(1): 41-62. 

 

 

 

 

 

 

 

 

https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwij-fT3yojKAhVHBY4KHU5xCz0QFggaMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F09586946&usg=AFQjCNEOJ25yhMdnUuHVokXQkaL_NqKCPw&sig2=pK2Eli5AoIwewYtGYDoq4g
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwij-fT3yojKAhVHBY4KHU5xCz0QFggaMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F09586946&usg=AFQjCNEOJ25yhMdnUuHVokXQkaL_NqKCPw&sig2=pK2Eli5AoIwewYtGYDoq4g
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwij-fT3yojKAhVHBY4KHU5xCz0QFggaMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F09586946&usg=AFQjCNEOJ25yhMdnUuHVokXQkaL_NqKCPw&sig2=pK2Eli5AoIwewYtGYDoq4g
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwij-fT3yojKAhVHBY4KHU5xCz0QFggaMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fjournal%2F09586946&usg=AFQjCNEOJ25yhMdnUuHVokXQkaL_NqKCPw&sig2=pK2Eli5AoIwewYtGYDoq4g


15 
 

 
 

Jelen, P. and Tossavainen, O. (2003). Low lactose and lactose-free milk and dairy 

products – prospects, technologies and applications. Australian Journal of 

Dairy Technology. 58: 161-165. 

Jokar, A. and Karbassi.A. (2011). In-house Production of Lactose-hydrolysed Milk by 

Beta-galactosidase form Lactobacillus bulgaricus. Journal of Agricultural 

Science and Technology. 13: 577-584. 

Juajun, O., Nguyen, T.H., Maischberger, T. Iqbal, S., Haltrich, D. and Yamabhai, M. 

(2011). Cloning, purification, and characterization of β-galactosidase from 

Bacillus licheniformis DSM 13. Applied Microbiology and Biotechnology. 

89: 645-654. 

Knodel, J. E., Chayovan, N. and Prachuabmoh, V.  (2011). Impact of demographic 

change in Thailand. In G. Jones and W. Im-em. (Eds.). Impact of 

Demographic Change in Thailand. University of Michigan Population 

Studies Center. (pp. 35–63). 

Li, X., Zhou, Q.Z.K. and Chen, X.D. (2007). Pilot-scale lactose hydrolysis using β-

galactosidase immobilized on cotton fabric. Chemical Engineering and 

Processing. 46: 497–500.  

Li, B., Wang, Z., Li, S., Donelan, W., Wang, X., Cui, T. and Tang, D. 

(2003).Preparation of lactose-free pasteurized milk with a recombinant 

thermostable β-glucosidase from Pyrococcus furiosus. BioMed Central 

Biotechnology. 2013: 13:73. DOI: 10.1186/1472-6750-13-73. 

Mahoney, R. R. (1997). Lactose: enzymatic modification. In Fox, P. F. (Ed.). 

Advanced dairy chemistry: Lactose, water, salts and vitamins. Volume 3 

(2nd ed.). London, UK: Chapman and Hall Press. 

 

 

 

 

 

 

 

 



16 
 

 
 

Mahoney, R. R. (1998). Galactosyl-oligosaccharide formation during lactose 

hydrolysis: A review. Food Chemistry. 63: 147-154. 

Mahoney, R.R. (2003). Enzymes exogenous to milk in dairy, β-D-galactosidase. In 

Roginski, H., Fuquay, J.W., Fox, P.F. (Eds.). Encyclopedia of Dairy 

Sciences. London, UK: Academic Press. (pp. 907–914). 

Maischberger, T., Mierau, I., Peterbauer, C.K., Hugenholtz, J. and Haltrich, D. 

(2010). High-level expression of Lactobacillus beta-galactosidases in 

Lactococcus lactis using the food-grade, nisin-controlled expression system 

NICE. Journal of Agricultural and Food Chemistry. 58(4): 2279-2287. 

Manera, A. P., Ores, J. C., Riberiro, V. A. and Burkert, C. A. V. (2008). Optimization 

of the culture medium for the production of β-galactosidase form K. 

marxianus CCT 70082. Food Technology and Biotechnology. 46(1): 66–72. 

Martinez, S. B. and Speckman, R. A. (1988). Enzyme in milk and cheese production. 

In G. A. Tucker and L. F. L. Woods (Eds.). Enzymes in Food Processing (2nd 

ed.). US, Chapman and Hall Press. 

Mathiesen, G., Sveen, A.,  Piard, J.C., Axelsson, L. and Eijsink, V.G. (2008). 

Heterologous protein secretion by Lactobacillus plantarum using homologous 

signal peptides. Journal of Applied Microbiology. 105(1): 215–226. 

Nakayama, T. and Amachi, T. (1999). β-Galactosidase, enzymology. In Flickinger, 

M. C. and Drew, S. W. (Ed.). Encyclopedia of bioprocess technology: 

Fermentation, biocatalysis, and bioseparation. New York, US: John Wiley 

and Sons Press. 3: 1291-1305. 

Nguyen, T.T.,  Maischberger, G., Fredriksen, L., Kittl, R., Nguyen, T.H., Eijsink, 

V.G., Haltrich, D. and Peterbauer, C.K. (2011)a. A Food-Grade system for 

 

 

 

 

 

 

 

 



17 
 

 
 

inducible gene expression in Lactobacillus plantarum using an Alanine 

Racemase-Encoding selection marker. Journal of Agricultural and Food 

Chemistry. 59: 5617–5624. 

Nguyen, T. T., Nguyen, T. H., Maischberger, T., Schmelzer, P., Mathiesen, G., 

Eijsink, V. G., Haltrich, D. and Peterbauer, C. K. (2011)b. Quantitative 

transcript analysis of the inducible expression system pSIP: comparison of the 

overexpression of Lactobacillus spp. β-galactosidases in Lactobacillus 

plantarum. Microbial Cell Factories. doi:10.1186/1475-2859-10-46. 

Nguyen, T.T., Splechtna, B., Steinböck, M., Kneifel, W., Lettner, H. P., Kulbe, K. D. 

and Haltrich, D. (2006). Purification and characterization of two novel β-

galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food 

Chemistry. 54: 4989-4998. 

Novalin, S., Neuhaus, W.andKulbe, K.D. (2005). A new innovative process to 

produce lactose-reduced skim milk. Journal of Biotechnology. 119 :212-218. 

Oliveira, C., Guimarães, P.M.R., Domingues, L. (2011). Recombinant microbial 

systems for improved β-galactosidase production and biotechnological 

applications. Biotechnology Advances. 29: 600–609 

Panesar, P.S., Panesar, R., Singh, R.S., Kennedy, J.F. and Kumar, H. (2006). 

Microbial production, immobilization and applications of β-D-galactosidase. 

Journal of Chemical Technology and Biotechnology. 81: 530-543.  

Panesar, P. S., Shweta, K. and Panesar, R. (2010). Potential applications of 

immobilized β-galactosidase in food processing industries. Enzyme 

Research. doi:10.4061/2010/473137. 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Novalin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15955585
http://www.ncbi.nlm.nih.gov/pubmed/?term=Neuhaus%20W%5BAuthor%5D&cauthor=true&cauthor_uid=15955585
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjJ5-ebgJbMAhXDMKYKHcObD5sQFggdMAA&url=http%3A%2F%2Fwww.journals.elsevier.com%2Fjournal-of-biotechnology%2F&usg=AFQjCNF_6tZbY75LW6H6TECBhvYh07MnEw&sig2=lInFVOuydGfUkBen0VyRQg&bvm=bv.119745492,d.dGY


18 
 

 
 

Pan, Q., Zhu, J., Liu, L., Cong, Y., Hu, F., Li, J. and Yu, X. 2010. Functional 

identification of a putative beta-galactosidase gene in the special lac gene 

cluster of Lactobacillus acidophilus. Current Microbiology. 60(3):172-178. 

Park, A. R. and Oh, D. K. (2010). Galacto-oligosaccharide production using microbial 

β-galactosidase: current state and perspectives. Applied Microbiology and 

Biotechnology.85: 1279–1286. 

Pivarnik, L. F., Senecal, A. G. and Rand, A. G. (1995). Hydrolytic and 

transgalactosylic activities of commercial beta-galactosidase (lactase) in food 

processing. In Kinsella, J. E. and Taylor, S. L. (Eds.). Advances in food and 

nutrition research. California, US: Academic Press. (pp. 1-102). 

Rashmi, R. and Siddalingamurthy, K. R. (2011).Optimization of β-galactosidase 

production by response surface methodology. International Journal of 

Biosciences. 1(6): 119-127. 

Rahim, K. A. A. and Lee, B. H. (1991). Specificity, inhibitory studies, and 

oligosaccharide formation by β-galactosidase from psychrotrophic Bacillus 

subtilis KL88. Journal of Dairy Science. 74: 1773–1778.  

Rhimi, M., Aghajari, N., Jaouadi, B., Juy, M., Boudebbouze, S., Maguin, E., Haser, 

R. and Bejar, S. (2009). Exploring the acidotolerance of beta-galactosidase 

from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for 

lactose bioconversion. Research in Microbiology. 160(10):775-84.  

Rajakala, P. and Karthigai, P. S. (2006). The effect of pH, temperature and alkali 

metal ions on the hydrolysis of whey lactose catalysed by β-galactosidase 

from Kluyveromycesmarxianus. International Journal of Dairy Science. 1: 

167–172. 

 

 

 

 

 

 

 

 



19 
 

 
 

Rand, A.G, Jr. (1981) Enzyme technology and the development of lactose-hydrolyzed 

milk. In Paige, D.M. and Bayless, T.M. (Eds.). Lactose Digestion – Clinical 

and Nutritional Implications. London, UK: Johns Hopkins University Press. 

(pp. 219–230).  

Reyes-Torres, D. P., Goncalves, M., Teixeira, J. A. and Rodrigues, L. R. (2010). 

Galacto-oligosaccharides: production, properties, applications, and 

significance as prebiotics. Comprehensive Reviews in Food Science and 

Food Safety. 9: 438-454. 

Rodriquez-Colinas, B., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O. and Plou, 

F. J. (2012). Galacto-oligosaccharide synthesis from lactose solution or skim 

milk using β-galactosidase from Bacillus circulans. Journal of Agricultural 

and Food Chemistry. 60(25): 6391-6399. 

Roy, D., Daoudi, L. and Azaola, A. (2002). Optimization of galacto-oligosaccharide 

production by Bifidobacterium infantis RW-8120 using response surface 

methodology. Journal of Industrial Microbiology and Biotechnology. 29: 

281–285. 

Saad, R.R. (2004). Purification and some properties of β-galactosidase from 

Aspergillus japonicas. Annals of Microbiology. 54(3): 299-306. 

Saavedra, J. M. and Perman, J. A. (1989).Current  concepts  in  lactose malabsorption 

and intolerance. Annual Review of Nutrition. 9: 475 - 502. 

Senadisai, P., Trimetsoontorn, J. and Fongsuwan, W. (2015). Lactose Free Milk and 

Dairy Product Purchasing Habit Variables of Bangkok Thailand Metropolitan 

Consumers. Research Journal of Business Management. 9(2): 364-377. 

 

 

 

 

 

 

 

 

http://www.ift.org/knowledge-center/read-ift-publications/comprehensive-reviews-in-food-science-and-food-safety.aspx
http://www.ift.org/knowledge-center/read-ift-publications/comprehensive-reviews-in-food-science-and-food-safety.aspx
http://www.ift.org/knowledge-center/read-ift-publications/comprehensive-reviews-in-food-science-and-food-safety.aspx
https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiKluGl1YjKAhWIBo4KHenvCN8QFggsMAI&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAnnual_Review_of_Nutrition&usg=AFQjCNHyD2RC1tYelejwZqfIBST7I-Uw8w&sig2=OrmvZct3K71-TJbcPEhnsw&bvm=bv.110151844,d.c2E


20 
 

 
 

Sorvig, E., Gronqvist, S.,  Naterstad, K.,  Mathiesen, G., Eijsink, V.G. and Axelsson, 

L. (2003). Construction of vectors for inducible gene expression in 

Lactobacillus sakei and L. plantarum. Federation of European 

Microbiological Societies. 229(1): 119–126. 

Sorvig, E., Mathiesen, G., Naterstad, K., Eijsink, V.G. and Axelsson, L. (2005). 

High-level, inducible gene expression in Lactobacillus sakei and 

Lactobacillus plantarum using versatile expression vectors. Microbiology. 

151(7): 2439–2449. 

Straume, D., Axelsson, L., Nes, I.F. and Diep, D.B. (2006). Improved expression and 

purification of the correctly folded response regulator PlnC from lactobacilli. 

Journal of Microbiological Methods. 67(2): 193–201. 

Suarez, F. L., Savaiano, D. A. and Levitt, M. D. (1995). A comparison of symptoms 

after the consumption of milk or lactose-hydrolyzed milk by people with self-

reported severe lactose intolerance. The New England Journal of Medicine. 

333: 1–4. 

Swagerty, D. L., Walling, A. D. and Klein, R. M. (2002). Lactose intolerance. 

American Family Physician. 65(9): 1845-1850. 

The Department of Economic and Social Affairs of the United Nations Secretariat 

(2009).World population ageing 2009. In Department of Economic and 

Social Affairs Population Division. New York: United Nations Pub. 

The National Digestive Diseases Information (2011) [On-line]: Available:http://diges 

-tive.niddk.nih.gov/ddiseases/pubs/lactose intolerance/ 

The National Digestive Diseases Information (2012) [On-line]: Available:http://diges 

-tive.niddk.nih.gov/ddiseases/pubs/lactose intolerance/ 

 

 

 

 

 

 

 

 



21 
 

 
 

Toba, T., Tomita, Y., Itoh, T. and Adachi, S. (1981). β-galactosidases of lactic acid 

bacteris: characterization by oligosaccharides formed during hydrolysis of 

lactose. Journal of Dairy Science. 64: 185-192. 

Tweedie, L. S., MacBean, R. D. and Nickerson, T. A. (1978). Present and potential 

uses for lactose and some lactose derivative. Food Technology Association of 

Australia.30: 57-62.  

Vasala, A., Huumonen, J. and Alatossava, T. (1996). Menetelmä maitotuotteen 

makeuden peittämiseksi. Patent FI 100375B. 

Wang, Y., Harvey, C. B., Hollox, F. J., Phillips, A. D., Poulter, M., Clay, P., Walker-

Smith, J. A. and Swallow, D. M. (1998). The genetically  programmed down-

regulation of lactase in children. Gastroenterology. 114: 1230-1236. 

Xu, J.L., Zhao, J., Wang, L.F., Sun, H.Y., Song, C.L. and Chi, Z.M. (2012). 

Enhanced β-galactosidase production from whey powder by a mutant of the 

psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. 

Applied Biochemistry and Biotechnology. 166(3): 599-611. 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

CHAPTER II 

 LITERATURE REVIEWS  

 

2.1  Lactose 

Lactose (β-D galactopyranosidases) is the principle carbohydrate in the milks 

of all mammals; non-mammalian sources are very rare. The range of concentrations of 

lactose is about 2-10% (w/v), and the average lactose content of bovine milk is about 

4.8%, ranging between 4.4% and 5.2% (Ganzle et al., 2008; Reyes-Torres et al., 

2010). Milk contains only trace amounts of other sugars, including glucose (50 mg/L), 

fructose, glucosamine, galactosamine, neuraminic acid and neutral and acidic 

oligosaccharides (Fox and McSweeney, 1998). Lactose is less sweet than sucrose. The 

sweetness of 1% sucrose is equal to 16% lactose. The low level of sweetness makes 

lactose useful as a bulking agent (McSweeney and Fox, 2010). In addition, it is 

important in the manufacture of fermented dairy products because it serves as a 

carbon source for lactic acid bacteria (LAB) which produce lactic acid (McSweeney 

and Fox, 2010). However, lactose is a hygroscopic sugar. As such, it has a strong 

tendency to adsorb flavors and odors. It also causes various defects in refrigerated 

foods such as crystallization in dairy foods, development of sandy or gritty texture, 

and formation of deposits (Carrara and Rubiolo, 1994; Panesar et al., 2010).   

2.1.1  Lactose Physical Properties 

  Lactose dissolves in the serum (whey) phase of fluid milk can be found in 

two forms, α-anomer and β-anomer. These forms can convert back and forth between 
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each other (Figure 2.1). The solubility of these two anomers is temperature-dependent, 

therefore the equilibrium concentration of the two forms will be different at different 

temperatures. At room temperature (20°C), the equilibrium ratio is approximately 

37% α- and 63% β-lactose. At temperatures above 93.5°C, the            β-anomer is less 

soluble, so there is a higher ratio of α- to β-lactose. The type of anomer does not affect 

the nutritional properties of lactose, but it does affect the physical properties of lactose 

crystals (Dincer, Parkinson, Rohl, and Ogden (1999). 

 Lactose crystals formed at temperatures below 20°C are mainly α-lactose 

crystals (Fox and McSweeney, 1998; Holsinger, 1988; Holsinger, 1997; O'Brien, 

1995; O'Brien, 1997). The α-monohydrate lactose crystals are very hard, and they can 

form when ice cream goes through numerous warming and freezing cycles (Ganzle et 

al., 2008; Fox and McSweeney, 1998; Holsinger, 1988; Holsinger, 1997; O'Brien, 

1995; O'Brien, 1997). They create an undesirable, gritty, sandy texture in the ice 

cream (Abboud, 1999). This problem can be improved by the addition of gums, which 

are often used in ice cream to inhibit lactose crystallization. The crystal form of β-

lactose is sweeter and more soluble than the α-monohydrate lactose, and may be 

preferred in some bakery applications. (Fox and McSweeney, 1998; Holsinger, 1988; 

Holsinger, 1997; O'Brien, 1995; O'Brien, 1997). 
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(A) 

 

 D-galactose  D-glucose  

 

(B) 

 

 D-galactose  D-glucose  

 

Figure 2.1  The molecular structure of (A) α-lactose and (B) β-lactose. The figure was  

  modified from Dincer and co-workers (1999). 

 

2.1.2  Significance of lactose in dairy products 

  Due to the fact that lactose is less soluble, crystallizing and hygroscopic 

than most sugars, it causes a problem in food processing, especially concentrated, 

dehydrated and frozen dairy products. Although concentrated and dehydrated dairy 

products comprise a small portion of the overall dairy market, these physiochemical 
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properties also cause problems in the production of frozen milk. These problems can 

negatively affect dairy economics, especially if the milk is pre-concentrated. 

However, the problem of lactose crystallization formation in frozen dairy product 

relates to the casein micelles, which are destabilized during frozen storage and 

aggregate on thawing. Destabilization is caused by a decrease in pH and an increase in 

Ca2+, both due to the formation of Ca3(PO4)2 from CaHPO4 and Ca(HPO4)2 on 

reducing the amount of solvent water on the formation of ice and which is reduced 

further by the crystallization of α-lactose monohydrate (Fox and McSweeney, 1998). 

 Lactose is a type of reducing sugar that can participate in the Maillard 

reaction, principally with the ε-amino group of lysine, resulting in impaired 

functionality and nutritional value, and the formation of brown-colored pigments of 

volatile flavored compounds. The Millard reaction is particularly severe in heated 

products but also occurs in milk powders, especially during storage in adverse 

temperatures and humidities. It can also cause problems with cheese that is subjected 

to severe heating, e.g. Mozzarella, or in grated cheese during storage (Fox and 

McSweeney, 2009). 

 The use of galactose-negative stains of lactobacilli and Streptococcus 

thermophilus, which cannot metabolize galactose, may produce sufficient galactose to 

cause browning-related problems in certain types of cheese and whey during drying. 

The accumulated galactose is significantly different from those of lactose, and has 

strong tendency to cause problems in whey powders (Turner and Martley, 1983; 

Robitaille, et al., 2007; Fuquay et al., 2011; Anbukkarasi et al., 2013). The 

monosaccharides, glucose and galactose, are more reactive than lactose, which make 

dairy products containing hydrolyzed lactose particularly susceptible to Maillard 
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browning. The hydrolysis of lactose by β-galactosidase markedly increases the heat 

stability of milk and concentrated milk more than 20%, especially around the pH of 

minimum solubility (Tan and Fox, 1996). The mechanism of stabilization has not 

been fully elucidated but proposed that carbonyls are formed via the Maillard 

reaction.  Then, the lactose-hydrolyzed milk products are sensitive to the maillard 

reaction, effect the consumer perception (Fox and McSweeney, 2009; Fuquay et al., 

2011). 

2.1.3  Lactose Intolerance 

  All humans are born with the ability to produce the β-galactosidase 

enzyme which is secreted by the cells of the small intestine. β-galactosidase breaks 

down lactose into glucose and galactose molecules, which are then absorbed into the 

bloodstream. As humans age, their ability to produce adequate amounts of β-

galactosidase enzyme decreases. This condition is called lactase non-persistence 

(Miller et al.,1999; Savaiano et al.,2006; Suarez et al., 1995; The National Digestive 

Diseases Information Clearinghouse, 2009; Vesa et al., 2000). Inadequate amounts of 

β-galactosidase enzyme causes inadequate lactose-hydrolyzation, a condition in which 

lactose cannot be broken down into glucose and galactose molecules. Therefore, 

ingested lactose remains undigested in the small and large intestines. Millions of 

bacteria in the large intestine use lactose for their own nourishment. They multiply 

rapidly and produce a large number of by-products, usually a variety of gases, organic 

acids, and other irritating chemicals, typically causing excessive flatus, abdominal 

bloating, pain, loose stool, diarrhea, and general distress in the lower intestines 

(Panesar et al., 2010; Shukla and Wierzbicki, 1975; Swagerty et al., 2002; The 

National Digestive Diseases Information, 2011). Lactose malabsorption is the 
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condition where people suffer these effects after eating dairy products (Miller et al., 

1999; Savaiano et al., 2006; Vesa et al., 2000). 

 Lactose intolerance due to β-galactosidase deficiency has two causes;    

1) a genetically inadequate production of β-galactosidase at the intestinal brush border 

and 2) damage to small intestine's brush border. Genetic β-galactosidase deficiency 

develops over time and begins after about age 2, when the body begins to produce less 

β-galactosidase. Most children who have β-galactosidase deficiency do not experience 

symptoms of lactose intolerance until late adolescence or adulthood (Swagerty et al., 

2002; The National Digestive Diseases Information Clearinghouse, 2009; Wang et al., 

1998). Injury acquired β-galactosidase deficiency occurs commonly with severe 

intestinal illness, such as severe diarrhea, celiac disease, Crohn's disease, and 

chemotherapy. This type of β-galactosidase deficiency can occur at any age but is 

more common in infancy (The National Digestive Diseases Information 

Clearinghouse, 2009).  

 In general, humans lose 90-95% of birth β-galactosidase levels by early 

childhood, and there is a continuous decline in β-galactosidase during the course of a 

life- time (Ferguson et al., 1984). The number of lactose intolerant people is increasing 

due to the world population ageing structure (The Department of Economic and Social 

Affairs of the United Nations Secretariat, 2009). The National Digestive Diseases 

Information (2012) showed; 1) total percentage of lactose intolerant people is around 

33%, 2) total percentage of adults that have a decrease in β-galactosidase activity is 

75%, and 3) total percent of Asian-Americans that are lactose intolerance is 90% 

which is more likely to become lactose intolerant than others (Bulhões et al., 2007; 

Curry, 2013: Figure 2.2). The percentage of Thai adults at age 60 years and older who 
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will be lactose intolerant in 2025 is around 19% (14 million), and they will constitute 

25% (19 million) in 2050 (Knodel et al., 2011). 

 

 

 

Figure 2.2  Worldwide prevalence of lactose intolerance. 

Source: Curry, 2013. 

 

 Lactose intolerant people often avoid dairy products. Long term 

avoidance of dairy products resulting from perceived lactose malabsorption can result 

in decreased consumption of calcium, potassium, magnesium and other minerals and 

vitamins necessary to support proper health. However, regularly consuming small 

amounts of dairy can minimize symptoms of lactose intolerance by slowly adapting 

the digestive system to the presence of lactose. In addition, the consumption of 

fermented dairy foods containing lactic acid producing bacteria that have lactase 
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present provide additional active enzymes to assist with human digestion. Fermented 

dairy products usually have less lactose because some has been consumed by the 

bacteria to produce the desirable flavors and textures of products like yogurt and 

cheese. Lactose-reduced dairy products are another option as well as pills containing 

the β-galactosidase enzyme, which can be taken prior to consuming dairy products to 

ease digestion (Miller et al.,1999; Savaiano et al., 2006; Vesa et al., 2000). 

 

2.2  Beta-Galactosidase 

 Beta-galactosidase (β-gal, EC 3.2.1.23), most commonly known as lactase, 

catalyzes the hydrolysis and transgalactosylation of β-D galactopyranosidases by the 

attaching of β-galactosidase at the o-glucosyl group of lactose (Reyes-Torres et al., 

2010). The general mechanism of enzymatic lactose hydrolysis has a transgalactosylic 

nature, involving a multitude of sequential reactions with a series of di, tri-, and 

higher oligosaccharides called galacto-oligosaccharides (GOS), as intermediate 

products (Reyes-Torres et al., 2010; Rodriguez-Colinas et al., 2012; Wallenfels and 

Malhotra, 1960). Beta-galactosidase is found widespread in nature that has been 

isolated and characterized from many different sources including microorganisms, 

plants, and animals. Beta-galactosidases from microorganisms are of major interest 

due to their easy application in bioprocess technology and biotechnological 

applications (Halbmayr et al., 2008; Husain, 2010; Juajun et al., 2011; Nakayama and 

Amachi, 1999; Nguyen et al., 2006; Park and Oh, 2010; Rahim and Lee, 1991; 

Rajakala and Karthigai, 2006).  

 Beta-galactosidase is used in lactose hydrolysis in order to catalyze the 

reaction by broking down lactose into glucose and galactose, which in turn serves as 
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an easily metabolizable and renewable substrate for a number of different 

fermentations (Juajun et al., 2011; Shukla and Wierzbicki, 1975; Panesar et al., 2010). 

β-galactosidase is widely known for applications in the dairy industries to improve 

digestibility, solubility and sweetness of lactose (Nakayama and Amachi., 1999; 

Panesar et al., 2010; Shukla and Wierzbicki, 1975). Furthermore, β-galactosidase can 

possess transgalactosylation activity, which has recently gained interest for the 

production of galacto-oligosaccharides (GOS) - prebiotic that can stimulate the 

growth of beneficial bacteria such as Bifidobacteria and Lactobacilli (Juajun et al., 

2011; Macfarlane et al., 2008; Rastall and Maitin, 2002). During the past years, the             

β-galactosidase-catalyzed trans-galactosylation has proved to be useful for structural 

and functional modification of food materials, medicines, and other biologically active 

compounds. At present, more than a hundred putative β-galactosidase sequences can 

be deduced from various databases, and these can be classified in to four different 

glycoside hydrolase (GH) families GH-1, GH-2, GH-35, and GH-42, based on 

functional similarities (Cantarel et al., 2009). In addition, microbial β-galactosidases 

are used as marker enzymes for coliform bacteria, which are indicators of the fecal 

contamination of water (Leitner, 2009; Nakayama and Amachi, 1999). 

Major sources of β-galactosidase are derived in order from K. lactis,                 

K. marxianus, and A. niger, respectively, with the remainder being those from E. coli. 

Henrissat (1991) has classified these glycosyl hydrolases into four families based on 

sequence similarities. According to this system, β-galactosidases are grouped into four 

families: 1, 2, 35 and 42. The members of family 2 include the β-galactosidase from  

E. coli (lacZ), the most extensively studied β-galactosidase. Unfortunately, enzymes 

from E.coli cannot be used in the food industry, mainly because of the unacceptability 
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of the bacterium (Leitner, 2009; Nakayama and Amachi, 1999). Beta-galactosidase 

from different microorganisms has different enzyme properties, such as molecule 

weight, protein chain length, and the position of the active site, but they have the same 

amino acid residue, glutamic acid, as their catalytic site, as shown in Table 2.1. 

 

 

 

 

 

 

 

 

 



 

 
 

Table 2.1  Properties of microbial β-galactosidase. 

Source 
Molecular weight 

(×103) 
pH optimuma 

Temperature  

operation range (°C) 
Activators Ionic inhibitorsb 

Aspergillus niger 124 3.0-4.0 55-60 None needed None 

Aspergillus oryzae 90 5.0-6.2 50-55 None needed None 

Kluyveromyces lactis 228 6.5-7.3 35 K, Mg, Mn Ca, Na 

Kluyveromyces marxianus 201 6.6 37 K, Mg, Mn Ca, Na 

Escherichia coli 464 7.2 40 Na, K, Mg - 

Bacillus circulans 240 6.0 60 None needed - 

Bacillus subtilis 88 6.5-7.0 50 None needed - 

Bacillus stearothermophilus 116 5.8-6.4 65 Mg - 

Lactobacillus acidophilus 540 6.2-6.6 55 Mg - 

Streptococcus thermophilus 464 7.1 55 Na, K, Mg Ca 

Note: a Dependent on strain/source.  b Ionic species likely to be found in dairy products; a dash indicates data not available. 

Source:  Harju et al (2012) and Mahoney (1997). 

 

 

 

 

 

 

 

 



33 
 

 

2.2.1  Lactobacillus spp. for β-galactosidase production 

 Lactobacilli are one of the most beneficial to human health among the 

species of bacteria present in the human intestine. Several beneficial functions such as 

vitamin production, production of digestive enzymes, and stimulation of the immune 

system have been suggested for the members of this genus as well as for other 

probiotic strains (Holzapfel and Schillinger, 2002; McNaught and MacFie, 2000; 

Nguyen et al., 2006; Sanders, 1998). 

 Many species of Lactobacillus (L. acidophilus, L. rhamnosus, L.  casei, 

L. plantarum, and L. reuteri) have been evaluated for clinical effects in humans, 

including modulation of intestinal flora, lowering fecal enzyme activities, prevention 

and treatment of antibiotic-associated diarrhea, and effects on superficial bladder 

cancer and cervical cancer (Holzapfel and Schillinger, 2002; Saarela et al., 

2000)Because of these proven and assumed positive effects, it is desirable to increase 

their number in the colon of human hosts (Nguyen, 2006).Then, β-galactosidases from 

Lactobacillus spp. have been able to produce the galacto-oligosaccharides possibility 

(GalOS) (Toba et al., 1981), apart from the main benefit that possess the high enzyme 

activity. The various sources of Lactobacillus spp. such as L. delbrueckii subsp. 

bulgaricus and L. reuteri are proven that they possessed the β-galactosidases activity 

and transgalactosylation such as L. delbrueckii subsp. bulgaricus (Garman et al., 

1996; Kobayashi et al., 1990; Nguyen et al., 2006). 

 In general, the production of recombinant β-galactosidase from 

Lactobacillus spp. can be expressed in two well-known overexpression systems for 

lactic acid bacteria, which are the Nisin-Controlled Expression (NICE) or pheromone-
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inducible (pSIP) systems (Sorvig et al., 2003; Sorvig et al., 2005; Halbmayr et al., 

2008; Mathiesen et al., 2008; Straume et al., 2006). 

 The NICE system is appropriate mainly for plasmids from Lactococcus 

spp., while the pSIP system is easily adapted and applied to the different LAB, 

especially Lactobacillus spp. (Sorvig et al., 2003; Maischberger et al., 2010). Nguyen 

and co-workers (2011b) reported that the pSIP system gave the higher levels of 

overexpression of β-galactosidase from L. plantarum than that of the NICE system. 

Thus, the production of β-galactosidase from Lactobacillus spp., recognized as the 

GRAS organism (Generally Recognized As Safe), is even more interesting in the 

application to food industry. 

 Nevertheless, the pSIP system has a major limitation in food application 

from the original system. Since it possesses the erythromycin antibiotic resistance 

gene (erm), this gene is the selection marker one for the cell selection stage of enzyme 

production. The erm gene might have an effect on the microflora in human body and 

it may be transferred to other organisms, resulting in resistance to this antibiotic. In 

order to avoid this undesirable effect, the alanine racemase gene (alr) is used to be a 

selection marker, instead of the erm gene in the system for safety in terms of human 

food consumption. The alr gene could be produce the alanine racemace enzyme 

which this enzyme could convert L-alanine to D-alanine that is an essential 

component for the growth and cell wall biosynthesis of prokaryotic cells (Hols et al., 

1997). Recently, Nguyen and co-workers (2011a) have been successfully used the 

pSIP vectors for carrying the alr gene as a selection marker in complementation 

approaches both in lactococci and lactobacilli (Nguyen et al., 2011a). Therefore, the 

expression of the lacZ gene, coding for β-galactosidase with the alr gene as a 
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selection marker can afford a safer new method to produce a recombinant β-

galactosidase in a completely food-grade manner. Nonetheless, there has been only a 

work of Nguyen and co-workers (2011a) that revealed the successful expression of β-

galactosidase from LacLM type with the alr-based. The LacLM as a expression gene 

of β-galactosidase is more complex in terms of protein structure than LacZ gene. The 

expression of           β-galactosidase from LacZ gene has not been studied in the alr-

based vector. 

2.2.1.1  Substrates 

Many chromogenic, fluorogenic, and luminogenic substrates 

that are specific for β-galactosidase have been developed (Nakayama and Amachi, 

1999). In nature, the substrate for β-galactosidases is lactose which is similar to ortho-

nitrophenyl-β-D-galactopyranoside (oNPG) structure. The respective reaction 

products of lactose and oNPG are shown in Figure 2.3 (Leitner, 2009). 
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Figure 2.3  Substrate degradation by β-galactosidase (A) Natural substrate lactose  

(B) ortho-Nitrophenyl-β-D-galactosidase (oNPG). The figure was 

modified from Leitner (2009). 

(A) 

(B) 
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2.2.1.2  Hydrolysis and transgalactosylation reaction of lactose 

The mechanism of lactose hydrolysis can be explained on the 

structure. β-galactosidase has 2 glutamic acid residues (Glu482 and Glu551). These 

residues function simultaneously as proton donors and as a nucleophile/base in the 

enzymatic reaction. The first step is the formation of enzyme–galactosyl complex and 

the simultaneous glucose liberation. In the second step, the enzyme–galactosyl 

complex is transferred to an acceptor containing a hydroxyl group as shown Figure 

2.4. While in a diluted lactose solution or water, lactose can be a more competitive 

acceptor than other sugars such as glucose. Therefore, galactose is formed and 

released from the active site. In addition, in a high lactose content solution, the lactose 

molecule has more chances to act as the acceptor, binding with the enzyme–galactose 

complex to form oligosaccharides, which explains the formation of the Galacto-

oligosaccharides (Huh et al., 1990; Lopez-Leiva and Guzman, 1995; Mahoney, 1998; 

Reyes-Torres et al., 2010; Rustom et al., 1998; Sheu et al., 1998).  

 

 

 

Figure 2.4 Schematic mechanism of the lactose hydrolysis by β-galactosidase. 

Source:  Zhou and Chen (2001). 
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2.2.1.3  Galacto-oligosaccharides (GalOS) 

Galacto-oligosaccharides can be produced from lactose in milk 

through the enzymic transgalactosylation reactions of β-galactosidase. GalOS appear 

as undesirable by-products in processes for low lactose or lactose-free products. 

However, GOS has been shown to promote the growth of Bifidobacteria, health 

microbes, in the large intestine of humans (Chen et al., 2002; Ito et al., 1990; 

Matsumoto et al., 1989; Reyes-Torres et al., 2010; Tanaka et al., 1983; Yanahira et 

al., 1995). 

The formation of GalOS is shown in Figure 2.5. During 

intramolecular trans-galactosylation lactose is broken down, and the glucose molecule 

binds immediately again with a different glycosidic linkage to the galactose- moiety, 

which is not replaced from the active site by a water molecule. This process is how 

allolactose is formed. When high concentrations of lactose are present, lactose can act 

as a galactosyl acceptor (Nu; Figure 2.4) with a transfer product of galactosyllactose. 

The galactosyllactose can act again as galactosyl acceptor to produce tetrasaccharides 

(intermolecular transgalactosylation) such as β-6′galactosyllactose. 
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Figure 2.5 Hydrolysis and transgalactosylation of lactose catalyzed by E. coli LacZ    

β-galactosidase: E: enzyme (β-galactosidase); S: substrate (lactose); Lac: 

lactose; Gal: galactose; Glc: glucose; Nu: nucleophil. The figure was 

modified from Nakayama and Amachi (1999). 

 

The global market size of GOS was estimated to be 20,000 tons 

with a compound annual growth rate of 10-20% (Affertsholt-Allen 2007; Reyes-

Torres et al., 2010). While the global market size of non-digestible oligosaccharides is 

estimated at 50,000-80,000 tons annually. Oligosaccharides derived through 

enzymatic synthesis from lactose, particularly GOS, lactulose, and lactosucrose, 

account for a major share, approximately 40%, of annual production (Crittenden and 

Planyne, 1996; Gänzle, 2012; Seibal and Buchholz, 2010). 

2.2.1.4  Treatment of milk with β-galactosidase 

Beta-galactosidase treatment for lactose-hydrolyzed milk 

production has been used for the preparation of flavored milk, cheese, and yogurt. It 
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also prevents lactose crystallization in condensed milk products and frozen foods such 

as ice milk, and ice cream (Panesar et al., 2010). Moreover, β-galactosidase can be 

used for converting lactose in whey into a very useful product like sweet syrup, which 

can be used in various processes of dairy, confectionary, baking, and soft drink 

industries (Panesar et al., 2010; Pivarnik et al., 1995; Tweedie et al., 1978). Therefore, 

lactose hydrolysis not only allows milk consumption by lactose intolerant populations, 

but can also solve the environmental problems linked with whey disposal 

(Champluvier et al, 1988; Gekas and Lopez-Leiva, 1985; Martinez and Speckman, 

1988; Panesar et al., 2010). Lactose content can also be reduced in liquid milk 

products by lactic acid fermentation, because lactose is the main source of carbon for 

lactic acid bacteria (LAB) (McSweeney and Fox, 2010). Approximately 30% of 

lactose is converted by these bacteria during the fermentation (Harju et al., 2012). 

The process of lactose hydrolysis is simple and, therefore, does 

not require special equipment in dairy plants. Three techniques are used commercially 

to perform lactose hydrolysis: 1) single-use batch system, 2) recovery systems 

(enzyme reuse) and 3) immobilized enzymes (Mahoney, 1997). Most production of 

lactose free- or low lactose products uses β-galactosidase to hydrolyze lactose 

molecules by using either the free (soluble) or, rarely, the immobilized enzyme. The 

free enzyme treatment has several factors that must be considered: substrate 

concentration, pH of operation, maximum temperature, contact time permissible, 

enzyme activity, and cost. In addition, maintaining consistent temperatures must be 

considered because this factor affects microbial growth. Overnight holding of 

production at refrigeration temperature may be more suitable than using the 

temperature at 35-45°C for preventing microbial growth (Zadow, 1986). The 

 

 

 

 

 

 

 

 



41 
 

 

production of lactose-hydrolyzed milk by β-galactosidase treatment affects the 

physical properties of milk by decreasing the freezing point (Nijpels et al., 1980; Kreft 

et al., 2001; Nagaraj et al., 2009). Lactose-hydrolyzed milk is sweeter than ordinary 

milk because of the glucose and galactose, which are obtained after the conversion of 

lactose (Akcan, 2011; Harju et al., 2012; Panesar et al., 2006). It has been suggested 

that limiting hydrolysis to 80-90% avoids excessive sweetness. Vasala et al (1996) 

patented a method to reduce the sweetness of lactose-hydrolyzed UHT milk by adding 

the potassium salt of an organic acid, such as citrate, malate, gluconate or lactate at up 

to 80 mmol/L, optimally 15-45 mmol/L. Flynn et al (1994) reduced the sweetness of 

lactose-hydrolyzed milk using potassium chloride (Harju et al, 2012).  

Heat treatment is also a problem of lactose-hydrolyzed milk 

production. The increased numbers of reduced sugars (i.e., the glucose and galactose) 

from increased hydrolysis reaction create significant Maillard browning (Harju et al., 

2012). Nevertheless, UHT (Dahlqvist et al., 1977) and sterilization treatments 

(Mendoza et al., 2005) are used for lactose-hydrolyzed milk to avoid the Maillard 

reactions problem. As a result, β-galactosidase treatment increases the cost of fluid 

milk by ∼$0.06-$0.08/L (McSweeney and Fox, 2010). However, the immobilization 

of enzyme can be applied to pasteurization or ultra-high temperature sterilization of 

milk for a more heat stable benefit of enzyme (Panesar et al., 2010). For the yeast              

β-galactosidase treatment of lactose-free milk production, three principle ways have 

been recommended for enzyme application (Rand, 1981; Mahoney, 1997; Jelen and 

Tossavainen, 2003; Mahoney, 2003). Firstly, pre-treatment, the enzyme is performed 

in milk before heat treatment then the product is heated, packed, and sold at 6-8°C to 

avoid microbial growth. However, the temperature of this method is not the optimal 
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temperature for enzyme activation. Thus, the duration of enzyme application should 

be longer around 24-30 hours depending on the enzyme dosage. Secondly, post-

treatment, the enzyme is performed in milk after heat treatment. For this process,        

a sterile β-galactosidase is supplied in-line immediately following UHT treatment of 

milk. Then, the product is subsequently packaged. The lactose is hydrolyzed in the 

final package at ambient temperature. However, the high quality of β-galactosidase 

preparation should be kept in mind in this method because the active enzyme must be 

presented in the milk during storage. Lastly, a few drops of enzyme is added in milk 

products prior by consumer in order to produce the milk lactose-hydrolyzed products. 

This process time is within 12–24 hours depending upon the dosage of enzyme (Rand, 

1981; Pivarnik et al, 1995; Mahoney, 1997; Jelen and Tossavainen, 2003; Mahoney, 

2003). Although, these ways of lactose-free milk production can be used with the      

β-galactosidase from yeast but they can also utilize the enzyme from Lactobacillus 

spp. in order to produce the lactose-hydrolyzed milk.  

2.2.1.5  Application of β-galactosidase  

 2.2.1.5.1  Milk 

 Beta-galactosidase treatment for the production of 

lactose-free or low lactose products occurs only in hospitals for lactose intolerant 

people. Otherwise, β-galactosidase treatment for decreasing sandiness or stability 

improvement of ice cream does not exist in manufacturing, which may be explained 

by the high costs of investment in β-galactosidase treatment.  

 The application of β-galactosidases from different 

Lactobacillus spp. to hydrolyze lactose with milk as substrate has been shown a few 

studies. The milk lactose has been hydrolyzed about 80 and 89% after 10 hours 
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incubation at 42°C with the original and mutated-enzyme form, respectively, these 

enzymes were form an acid tolerant β-galactosidase from L. delbrueckii subsp. 

bulgaricus ATCC 11842, expressed in E. coli (Rhimi et al., 2009). While a 

recombinant enzyme from L. acidophilus, produced through E. coli expression 

system, has hydrolyzed the milk lactose about 73% within 30 hours at 10°C (Pan et 

al., 2010; Oliveira et al., 2011). Nonetheless, these researches have reported the 

recombinant β-galactosidase, which produced in the E. coli expression systems apply 

to the probable non-food products.  

In term of lactose hydrolysis in milk by a 

recombinant β-galactosidase expressed in Lactobacillus spp. has not been shown a 

research now, except of which Jokar and Karbassi (2011). Beta-galactosidases from       

L. bulgaricus CHR Hansen Lb-12 has been mentioned from a native or recombinant 

cell, the milk lactose has been hydrolyzed with the cell free extracts of                       

β-galactosidases for sterilized milk production that the sensory evaluation of lactose-

hydrolyzed milk by the cell free extract of enzyme did not exhibit any significant 

difference when compared with ordinary UHT milk (Jokar and Karbassi; 2011). 

2.2.1.5.2  Ice cream 

Lactose makes up over one third of the solid matter in 

milk, and approximately 20% of the carbohydrates in ice cream (Marshall and 

Arbuckle, 1996).  The lactose in ice cream mixes is from milk and milk solids not fat 

(MSNF). The percentage of lactose in ice cream is dependent on the amount of MSNF 

and fat in the mixture. Increasing D-glucose and D-galactose in lactose hydrolysis by 

β-galactosidase leads to an increase of the total solids in solution without contributing 

to the caloric content of the ice cream mix (Bakken et al., 1992; Matak et al., 1999). 
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Lactose-hydrolyzed milk is sweeter than non-hydrolyzed milk. About 70% of the 

hydrolyzed lactose in milk increases the sweetness of milk, equivalent to adding 2% 

of sucrose in milk (Zadow, 1986). In addition, the monosaccharides produced from 

hydrolyzed lactose can decrease the freezing point of ice cream mixes, increase 

relative sweetness, and promote the ease of dipability of ice cream (Iversen, 1983). 

The low freezing point is normally responsible for the accelerated melting of ice 

cream (Marshall and Arbuckle, 1996). The freezing point of ice cream mixes is 

directly proportional to the number of particles in solution and decreases 

proportionately to the level of lactose hydrolysis processing (Lindamood et al, 1989; 

Mitchell, 1989). Invariably, the hydrolysis of lactose in ice cream results in a 

smoother product (McSweeney and Fox, 2010). Therefore, β-galactosidase treated 

milk might be a new choice to improve the stability and texture of ice cream. 

However, the application of β-galactosidase from 

Lactobacillus spp. with pSIP system to hydrolyze milk lactose and to improve ice 

cream properties has been still few studies that are interesting to study more. Because 

this enzyme, which produced in food-grade host might be appropriate in food industry 

in soon. 

 

2.3  Ice cream 

Ice cream is a frozen dessert made by freezing a pasteurized mix of 

ingredients, which the main ingredients of ice cream are cream, non-milk-solid, 

sweeteners and flavoring. In addition, the main components are milk fat, lactose, milk 

protein, sugar, and corn syrup solids (Marshall et al., 2003). Then, the regulatory 

standards for chemical composition of ice cream are usually determined by the fat 
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content, total solids, and protein content. The processing of ice cream is basically two 

steps; mix making and mix freezing (Schmidt, 2004). Mix is the liquid product 

consisting of milk ingredients that the optional mix ingredients, such as corn syrup 

solids, whey, whey protein powders, caseinates, coloring, egg solids, stabilizers, and 

emulsifiers may be used depending on the desired end product (Schmidt, 2004). 

2.3.1  Ingredients 

 Common ingredients of ice cream include cream, butter or vegetable 

fats as the main sources of fat, condensed skim or whole milk, skim milk powder 

and/or whey powder or whey protein products as concentrated milk-solids-not-fat 

(MSNF), sucrose and/or corn starch hydrolysates as sweeteners, polysaccharides 

(such as locust bean gum, guar gum, carbozymethyl cellulose and/or carrageenan) as 

stabilizers, mono- and di-glycerides and polysorbate 80 as emulsifiers, and milk or 

water as main sources of water in the formula to balance the total solids of the 

components (Marshall et al., 2003). One mix is usually used for the production of a 

variety of flavors (McSweeney and Fox, 2010). Components of typical ice cream mix 

formulations are shown in Table 2.2. Each ingredient is an indicator of the perceived 

quality of ice cream. 

 2.3.1.1  Fat  

 The fat content is indicative of the perceived quality and/or 

value of ice cream. It increases the richness of ice cream, helps to give body, produces 

a characteristic smooth texture by lubricating the palate, and aids in producing 

desirable melting properties (Berger, 1997; Goff, 1997; Marshall and Arbuckle, 1996; 

McSweeney and Fox, 2010). 
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 2.3.1.2  Milk solids-not-fat (MSNF) 

 Serum solids or milk solids-not-fat (MSNF) contain protein, 

carbohydrate, water-soluble vitamins, and minerals. Limitations on MSNF content 

may lead to problems of excessive freezing point depression and/or lactose 

crystallization (McSweeney and Fox, 2010). 

 2.3.1.3  Sweeteners 

 Sweeteners enhance flavors and improve the texture and 

palatability of ice cream. Their stabilization of a solution lowers the freezing point 

and imparts a measure of control over the temperature-hardness relationship (Berger, 

1997). The most common sweetening agent is sucrose, which is used alone or in 

combination with other sugars. Sucrose and lactose are found most commonly in ice 

cream in the supersaturated glassy state, with few crystals present (Berger, 1997; 

Caldwell et al., 1992). In many ice cream formulations, sweeteners derived from corn 

syrup are substituted for either all or a portion of the sucrose. The use of corn starch 

hydrolyzed products (corn syrups of glucose solids) in ice cream is generally 

perceived to provide greater smoothness by contributing to a firmer and more chewy 

body, providing better melt-down characteristics, reducing heat shock potential 

(which improves the shelf-life of the finished product), and providing an economical 

source of solids (McSweeney and Fox, 2010). 

2.3.1.4  Stabilizers 

Ice cream stabilizers are a group of hydrocolloid ingredients 

(usually polysaccharides) used in ice cream formulations to produce smoothness in 

body and texture, to reduce or retard the formation of ice and lactose crystals during 

storage, and to provide melt resistance and uniform texture. They also increase the 
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viscosity of the mix, stabilize the mix by preventing serum separation (e.g., 

carageenan), aid in suspension of flavoring particles, produce a stable foam with 

stiffness and easy cut-off at the barrel freezer for packaging, slow down moisture 

migration from the product to the package, and help prevent shrinkage of the product 

volume during storage (Marshall and Arbuckle, 1996). Commonly used stabilizers 

include: locust bean (carob) gum, guar gum, carboxymethyl cellulose, sodium 

alginate, xanthan, gelatin and carrageenan (McSweeney and Fox, 2010). 

 2.3.1.5  Emulsifiers 

 Emulsifiers have been used in the manufacturing of ice cream 

mix for many years. They are usually integrated with stabilizers in proprietary blends, 

but their function and action are very different from that of stabilizers. They are used 

to improve the whipping quality of the mix, produce a drier ice cream to facilitate 

molding (fancy extrusion and novelty product manufacture), produce a smoother body 

and texture in the finished product, and promote superior drawing qualities at the 

freezer to produce a product with good stand-up properties and melt resistance (Goff, 

1997; Marshall and Arbuckle, 1996; McSweeney and Fox, 2010). All ingredients 

must be analyzed for quality and composition to ensure that the preparation of the 

final product complies with legal requirements, company, specifications, and 

consumer expectations (Schmidt, 2004). 
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Table 2.2  Components of typical ice cream mix formulations 

Component Range (%) 

Milk fat 10-16 

Milk solids-not-fat 9-12 

Sucrose 9-12 

Corn syrup solids 4-6 

Stabilizers/Emulsifiers 0-0.5 

Total solids 36-45 

Water 55-64 
 

Source: Fox and McSweeney (2009) 

 

2.3.2  Processing 

 In most countries, mix must be pasteurized to assure a pathogen-free 

product. Additional steps after pasteurization and cooling may include aging, 

flavoring and coloring. The next step is freezing and hardening of the final product. 

During this step mix is frozen in a ‘freezer’, cooled during the hardening stage, and is 

subsequently distributed to markets (Schmidt, 2004). The main steps of ice cream 

processing are depicted in the flowchart in Figure 2.6. 
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Figure 2.6  Flowchart for ice cream processing 

Source:  Schmidt (2004) 

 

2.3.3  Ice cream quality 

  The quality of ice cream depends mainly upon the ingredients and 

procedures which affect ice cream structure. The ice cream structure has effects on the 

chemical, compositional, physical, microbiological, and sensory characteristics 

(Marshall et al., 2003). The specifics of transformation of ice cream are a result of 

these characteristics, which can deteriorate ice cream quality (Palka and Palich, 2007). 
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2.3.3.1   Physical properties 

  In particular, fat appears to contribute largely to the properties 

of ice cream during freezing and whipping, especially through the partially 

coalesced/agglomerated continuous three-dimensional network of homogenized 

globules (Goff, 1997). The structure of ice cream is characterized mostly by 

examining the state of dispersion of the fat as well as the sizes of the ice crystals and 

air bubbles. These affect the hardness, apparent viscosity, fat globule size, melting 

rate, shape retention, freezing behavior, overrun, and volume. Normally, the melting 

point and overruns of ice cream decrease when total soluble solids in ice cream 

increase, resulting in reduced hardness. However, the hardness of ice cream also 

depends on other factors or ingredients such as stabilizers or types of fat.  

2.3.3.2   Microbiological contamination 

  Although ice cream is not a sterilized product, it contains no 

harmful microorganisms when it is produced by an approved process under hygienic 

conditions. Freezing can destroy many bacteria, and the frozen condition of the 

product prevents growth of microorganisms. Except for a large outbreak of 

salmonellosis, only a few cases of food-borne illness from commercially 

manufactured ice cream have been reported. And these instances were the result of 

contaminated raw eggs. Most regulatory agencies require that ice cream mixes should 

be pasteurized. The primary area of concern about microorganisms in frozen desserts 

is contamination of the frozen product during the addition of fruits, nuts and 

flavorings as well as during filling of containers (Marshall et al., 2003). 
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2.3.3.3   Sensory characteristics 

  Ice cream has many attributes that make it a favored food of 

most people. Among these are a rich sweet flavor, a smooth and resistant texture, and 

a cold sensation that contrasts to the warmth of most other foods. The chemical and 

physical properties imparted by the ingredients and the processes used in manufacture 

and handling largely determine the sensory properties. The chemical, compositional, 

and physical properties affect ice cream structure by determining several important 

sensorial parameters in the final product, such as stiffness, dryness, melt resistance 

and texture (Goff, 1997). High quality unflavored ice cream tastes sweet, heated 

(cooked), nutty, and creamy and/or buttery. Depending on the type and amount of 

flavoring added, all of these flavors except sweet may become imperceptible to all but 

the expert evaluator (Marshall et al., 2003). Additionally, defects in flavor of frozen 

desserts are conveniently grouped in the following categories: 1) Dairy products of 

poor quality - sour (acid), oxidized, stale, lipolyzed, unclean, and excessively cooked 

or scorched; 2) Sweetener(s) - unnatural, excessive, or deficient; 3) Flavoring - 

unnatural, excessive, or deficient; 4) Blend - unpleasant balance of ingredients; 5) 

Storage - stale or absorbed flavor (Marshall et al., 2003). 
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CHAPTER III 

PRODUTION OF RECOMBINANT β-GALACTOSIDASE 

IN LACTOBACILLUS PLANTARUM, USING  

A pSIP-BASED FOOD-GRADE EXPRESSION SYSTEM 

   

3.1 Abstract 

 Food-grade expression systems based on using food-grade microorganisms 

have been developed for the production of recombinant enzymes and could be used in 

food applications. Lactic acid bacteria (LAB), especially Lactobacilli, have been 

widely used for various purposes in food and recognized as a promising host for food-

grade enzyme production. In this study, the pSIP409 vectors, originally containing the 

erm selective gene and expressing the β-galactosidase gene, were used and replaced 

by the alr gene, resulting in the production of the pSIP609 expression vector in          

L. plantarum. This vector can express high amounts of β-galactosidases, showing 

both high volumetric and specific enzymatic activity. Thus, the food-grade                

β-galactosidases recombinant enzyme production in L. planatarum harboring 

pSIP609 was very fruitful, and, therefore, has a potential for the commercial food 

industries.  

 

Keywords: Food-grade expression systems, pSIP system, Lactic acid bacteria,          

β-galactosidases, Alanine racemase gene 
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3.2 Introduction 

 Lactic acid bacteria (LAB) play important roles in foods because they have 

been recognized as a food-grade additive. Several LAB, especially Lactobacilli, have 

been developed as cell factories relating to inducible gene expression for food 

applications in which they are used for the production of a range of interesting 

proteins. Such enzyme production can be obtained using the Nisin-Controlled 

Expression (NICE) or pheromone-inducible (pSIP) systems, which are well-known 

overexpression systems for LAB (Sorvig et al., 2003; Sorvig et al., 2005; Halbmayr et 

al., 2008; Mathiesen et al., 2008; Straume et al., 2006). Furthermore, the vectors in 

the pSIP system permit all parts of the plasmid to be easily modified and used among 

different LAB, especially Lactobacillus spp., while plasmids in the NICE system are 

suitable mainly for Lactococcus spp. (Sorvig et al., 2003; Maischberger et al., 2010). 

Moreover, it was shown that the pSIP system resulted in higher levels of over-

expressed enzyme than the NICE system in some instances (Nguyen et al., 2011b). 

Thus, recently, the use of the pSIP system has been increasingly attractive in the food 

industry. However, the pSIP system still has a major limitation when it is applied in 

foods. In the original system, the erythromycin antibiotic resistance gene (erm) is 

used as a selective marker for the cell selection stage of enzyme production, which 

might affect the microflora in the human body. In addition, the erm gene may be 

transferred to other organisms resulting in resistance to this antibiotic. To avoid this 

undesirable effect, the alanine racemase gene (alr) is used as a selection marker, 

instead of the erm gene, which is safer in terms of human food consumption. The 

alanine racemase enzyme is important for cell wall biosynthesis, especially in LAB. It 

converts L-alanine to D-alanine, which is an essential component for growth and cell 
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wall biosynthesis of prokaryotic cells (Hols et al., 1997). Moreover, pSIP vectors 

carrying the alr gene as a selection marker have been successfully applied in 

complementation approaches both in Lactococci and Lactobacilli (Nguyen et al., 

2011a). Thus, expression of the lacZ gene, coding for β-galactosidase, using the alr 

gene as a selection marker can provide a safer new method to produce recombinant                   

β-galactosidase in a completely food-grade manner. 

Beta-galactosidase (lactase, EC 3.2.1.23) is an important enzyme in the dairy 

industry (Nguyen et al., 2012). This enzyme hydrolyzes lactose into glucose and 

galactose. It can be used to prevent lactose crystallization in dairy products, to 

increase the solubility of milk products, and to produce lactose-free food products 

(Sani et al., 1999).  Moreover, β-galactosidase can produce galacto-oligosaccharides 

(GOS), which occurs simutaneously during lactose hydrolysis (Nakayama et al., 

1999). Even though use of the pSIP vectors with the erm gene in Lactobacilli as a 

host can express high yields of β-galactosidase (Nguyen et al., 2012; Nguyen et al., 

2011b), there remains a problem of antibiotic resistance in such systems.  To date, 

only the work of Nguyen and coworkers (2011)a has dealt with this problem by using 

an expression vector carrying the alr gene with a suitable alr-deletion strain to 

overexpress a β-galactosidase of the LacLM type (Hols et al., 1997). This lacLM 

protein is heterodimeric and is encoded by two partially overlapping genes, which 

might be more complicated to express and study as a model system. Thus, the 

expression of homodimeric lacZ β-galactosidase encoded by the lacZ gene with the 

alr gene as a selective marker in a pSIP vector, known as a recombinant system, 

might be more beneficial, in terms of cost, time, and safety, than the heterodimeric 

system. The objective of this study was to construct and express the food-grade                      
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β-galactosidase from L. delbrueckii subsp. bulgaricus in L. plantarum for a potential 

use. 

 

3.3  Materials and methods 

3.3.1  Culture of bacterial strains 

 Escherichia coli Top10, used as cloning hosts, was purchased from 

Invitrogen (CA, USA). They were grown in Luria-Bertani (LB) medium either on 

solid agar plates or in liquid medium, and incubated for overnight at 37ºC in a cabinet 

(Memmert, BE 500, WTB Binder BD115, Memmert GmbH + Co. KG, Schwabach, 

Germany) for plates or in a shaker incubator (Innova 4230 refrigerated incubator 

shaker, New Brunswick Scientific, USA) for liquid cultures. Erythromycin (800 

μg/mL) was added to the medium to select for growth of E. coli Top10 strains 

containing the plasmids. 

 Escherichia coli MB2159 (D-alanine auxotroph) was used as cloning 

host for food-grade expression vectors, as described by Strych and co-workers (2001). 

The bacterium was grown in Luria-Bertani (LB) medium supplemented with 200 

μg/mL of D-alanine and incubated for overnight at 37ºC in a cabinet (Memmert, BE 

500, WTB Binder BD115, Memmert GmbH + Co. KG, Schwabach, Germany) for 

plates or in a shaker incubator (Innova 4230 refrigerated incubator shaker, New 

Brunswick Scientific, USA) for liquid cultures. 

 Lactobacillus plantarum WCFS1 (wild type) was used as described 

by Kleebezem and co-workers (2003). They were grown either in Man-Rogosa-

Sharpe (MRS) medium or on solid MRS-agar plates. L. plantarum cultures were 

incubated under facultative aerobic condition at 37°C without agitation for 18-24 
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hours in a cabinet for plates (Memmert, BE 500, WTB Binder BD115, Memmert 

GmbH + Co. KG, Schwabach, Germany). L. plantarum WCFS1 cells containing 

plasmids harboring an antibiotic resistance gene were grown in agar plates and liquid 

medium containing 5 μg/mL of erythromycin concentration. 

 Lactobacillus plantarum TLG02 (Δalr, D-alanine auxotroph), used as 

expression host for food-grade expression vectors, was used as described by Nguyen 

and co-workers (2011)a. The cells were grown in in MRS medium supplemented with 

200 μg/mL D-alanine and incubated for overnight at 37ºC in a cabinet (Memmert, BE 

500, WTB Binder BD115, Memmert GmbH + Co. KG, Schwabach, Germany) for 

plates or in a shaker incubator (Innova 4230 refrigerated incubator shaker, New 

Brunswick Scientific, USA) for liquid cultures. 

3.3.2  Construction of β-galactosidase Expression Vectors 

 The food-grade expression vector was constructed in the pSIP vectors 

(Figure 3.1) by replacing the erythromycin resistance gene (erm) with the alanine 

racemase gene (alr) from the L. plantarum genome as described by Nguyen and co-

workers (2011)a. This modification changes the plasmid from pSIP409(erm) to 

pSIP609(alr). 

3.3.3  Expression and Confirmation of β-galactosidases with alr-Based   

 Vectors 

 Overnight cultures of L. plantarum TLG02 harboring pSIP609(alr) 

were diluted in 300 ml of fresh pre-warmed MRS medium (for erm-based systems,    

5 μg/mL of erythromycin was added) to get a cell concentration OD600nm of ∼0.1 by 

determining the absorbance at 600 nm using a spectrophotometer (Ultrospec 2000, 

Pharmacia biotech, Cambridge, UK). The mix was then incubated at 30°C until 
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OD600nm of ∼0.3 was reached. Peptide pheromone at 25 ηg/mL (IP-673) was added to 

the mix, and the cultivation was continued until a final cell culture concentration of 

OD600nm at 1.8 to 2.0 was reached. Ten mL of cell culture solutions were centrifuged 

by the centrifuge machine (Eppendrof centrifuge 5810 R, Eppendrof, USA) at 3500 g 

for 10 minutes at 4°C. The pelleted cells were collected,  washed with buffer P (50 

mM sodium phosphate buffer, pH 6.5, 20% of glycerol and 1 mM DTT), and 

resuspended in 500 μL of buffer P. The pelleted cells were disrupted by sonicator 

(40% power, 5 sec on and 6 sec off for 5 minutes 2 times; Waken GE100 Ultrasonic 

processor, Japan) to get the cell lysate. Finally, this suspension was centrifuged by the 

centrifuge machine (Thermoscientific, Sorvall legend XTR centrifuge, USA) at 9000g 

at 4°C for 5 minutes to get the cell-free extracts used for activity assays and protein 

concentration determination using the denaturing sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). 

3.3.4  Enzyme Assay and Protein Determination 

 3.3.4.1 Gel electrophoresis analysis 

Denaturing sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE) was performed in accordance with Laemmli (1970). Protein 

samples were heated at 100°C for 5 minutes in the loading buffer. Protein samples 

were loaded onto 10% acrylamide gel. Gels were run at a constant voltage at 90V.  

Protein bands were stained with 0.125% Coomassie brilliant blue R 250 and destained 

in a solution containing 25% ethanol and 10% acetic acid). A protein ladder (10–200 

kDa) from Bio-Rad Laboratories (CA, USA) was used for protein maker.  
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 3.3.4.2 Protein determination 

 Proteins concentration was determined by Quick startTM 

Bradford protein assay (Bio-Rad Laboratories, CA, USA)) using bovine serum 

albumin as standard. The dye reagent was mixed 1 to 4 with DI water and filtered. 

The properly diluted samples (60 µl) were mixed with 200 µl of dye reagent and 

stand at room temperature for 2 minutes. The absorbance at 595 nm was measured by 

ELISA reader (Sunrise, TECAN, Austria). The protein concentration was calculated 

from the following relationship (Bradford et al., 1976): 

 

 Protein concentration (mg/mL) = 
OD595

k
×Dil                           

 

Where OD595 is the sample-measured absorption at 595 nm, k 

is the slope of the BSA standard curve, and Dil is the dilution factor, after correcting 

for the blank. 

 3.3.4.3  Beta-galactosidase activity assay  

 Ortho-nitrophenyl-β-D-galactopyranoside (o-NPG) from Sigma 

-Aldrich (CA, USA) was the chromogenic substrate to assay the β-galactosidase 

activity. Twenty two mM oNPG in 50 mM sodium phosphate buffer (pH 6.5) was 

prepared as the substrate solution. The β-galactosidase activity assay performed by 20 

µL of enzyme solution was added into 480 µL of the substrate solution and incubated 

at 30°C for 10 minutes with 600 rpm speed agitation in a dry bath incubator (HB1, 

Wealtee Corp., USA). After reaching the incubation time, the reaction was stopped by 

adding 750 µL of 0.4 M Na2CO3. The release of ortho-nitrophenol (oNP) was 

assessed by determining the absorbance at 420 nm by spectrophotometer (Ultrospec 

2000, Pharmacia biotech, Cambridge, UK). One unit of oNPG activity was defined as 
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the amount of enzyme releasing 1 µmol of oNP per minute under the described 

conditions. The β-galactosidase activity or the volumetric activity was calculated 

from the following relationship (Nguyen et al., 2006): 

 

 

 

  

Where OD420 is the sample-measured absorption at 420 nm, k 

is the slope of the oNP standard curve, t is the reaction time (10 minutes), VoNPG is 

the volume of oNPG (480 µL), Venzyme is the volume of enzyme sample (20 µL), and 

Dil is the dilution factor, after correcting for the blank. 

 The specific activity was calculated from the following 

relationship: 

 

   

 

3.3.5  Statistical analyses 

 All experiments and measurements were performed at least in duplicate. 

Analysis of variance (ANOVA) was determined using SPSS program (SPSS version 

16, Windows version). Duncan Multiple Range Testing (DMRT) was used to compare 

differences among the means at P<0.05. 

 

 

 

β-galactosidase activity (U/mL) 

β-galactosidase activity or 

Volumetric activity (U/mL) =  
OD420

k
×

1
t
×

VoNPG +  Venzyme

Venzyme
× Dil 

Specific activity (U/mg protein)  = 
Protein concentration (mg /mL) 
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3.4 Results and discussion 

3.4.1  Preparation of vectors and insert gene for food-grade expression  

 vector 

 The vectors, pSIP409-lacZ and pSIP409–lacZ-His were extracted using 

QIAGEN™ plasmid preparation kit (Qiagen, Hilden, Germany). The presence of the 

erm insert gene in the plasmid was confirmed by BamHI-HF and ClaI restriction 

enzyme digestion (New England Biolabs, MA, USA) and analysis of the restriction 

pattern (Figure 3.1) by agarose gel electrophoresis (Figure 3.2). The alanine racemase 

gene (alr) of the L. plantarum WCFS1 genome (Nguyen et al., 2011a) was used as the 

insert gene. Then, the pSIP609gusA was extracted using the QIAGEN™ plasmid 

preparation kit to verify the restriction pattern (Figure 3.3). DNA fragments of lacZ 

gene ( ̴ 2.2 kbp) and alr gene( ∼1.8-2.0 kbp) were shown after double digestion with 

BamHI-HF and ClaI restriction enzymes by agarose gel electrophoresis (Figure 3.4). 

Ligation reactions were performed with the relevant restriction endonucleases to 

digest the vector. A molar ratio of linearized vector to insert was approximately 1:15. 

The amount of linearized vector for each ligation reaction was 100 ηg. Ligations were 

performed for 16 hours at 16°C in the presence of T4 DNA ligase in a final volume of 

25 µL. T4 DNA ligase was heat-inactivated (65°C for 15 minutes) before trans-

formation. The constructs were transformed into competent E. coli Top10 (Invitrogen, 

CA, USA), resulting in the plasmid pSIP409-lacZ and pSIP409–lacZ-His. The 

transformants were selected on LB agar containing 800 µg/mL erythromycin in the 

culture condition at 37°C for 16 hours.  

 The plasmids were extracted from positive clones of the recombinant E. 

coli harboring pSIP409-lacZ and pSIP409–lacZ-His using the QIAGEN™ plasmid 
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preparation kit. Then plasmids were digested with BamHI-HF and ClaI to analyze the 

restriction pattern by agarose gel electrophoresis (Figure 3.5). Afterwards, pSIP409-

lacZ and pSIP409–lacZ-His were transformed into competent L. plantarum WCFS1, 

which is an expression host introduced by electroporation. Electroporation condition 

was performed at 25% amplitude with a 5 sec pulse followed by 3 minutes on ice for 

2 rounds. The transformants were selected using a MRS agar plate containing             

5 µg/mL erythromycin. All strains were stored in sterilized 1.5 mL Eppendorf tubes at 

-80°C in MRS broth medium containing 20% (v/v) glycerol until used. The positive 

clones of  L. plantarum WCFS1 harboring pSIP409-lacZ and pSIP409-lacZ-His were 

confirmed by the expression of β-galactosidases using SDS-PAGE analysis as shown 

in Figure 3.6 and 3.7. The recombinant lacZ showed a molecular weight of 

approximately 110 kDa that was the same weight of two cold-sensitive mutants of the 

β-galactosidase from L. delbruckii subsp. bulgaricus showing two 110 kDa subunits 

(Adams et al., 1994) and agreed with the study of homodimeric β-galactosidase from 

L. delbrueckii subsp. bulgaricus DSM 20081, expressed in L. plantarum (Nguyen et 

al., 2012).  According to the references, the expressed β-galactosidase in L. plantarum 

WCFS1 shows the molecular weight of β-galactosidase from L. delbrueckii subsp. 

bulgaricus. 
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Figure 3.1  Schematic overview of food-grade expression vector (pSIP409-lacZ or 

pSIP409–lacZ-His) using the erythromycin resistance (erm) gene as a 

selection marker. The expression of sppK (histidine kinase) and sppR 

(response regulator) was regulated by PsppIP promoter. In addition, the 

expression of structural genes was controlled by the inducible promoter 

PsppQ, which was switched on by adding the peptide pheromone        

IP-673. The BamHI-HF and ClaI restriction enzymes were used for 

cloning. The arrows indicate the gene fragment, which includes the erm 

gene.  
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(A)                                                                   (B) 
 
 
Figure 3.2 Restriction analysis of recombinant constructs. (A) pSIP409-lacZ,   

(Lane 1, 1kbp DNA ladder; Lane 2, uncut pSIP409-lacZ ; Lane 3, cut 

pSIP409-lacZ with BamHI-HF; Lane 4, cut pSIP409-lacZ with ClaI; 

Lane 5, double digested pSIP409-lacZ with BamHI-HF and ClaI); (B) 

pSIP409-lacZ-His, (Lane 1, 1kbp DNA ladder; Lane 2, uncut pSIP409-

lacZ-His; Lane 3, cut pSIP409-lacZ-His with BamHI-HF; Lane 4, cut 

pSIP409-lacZ-His with ClaI; Lane 5, double digested pSIP409-lacZ-His 

with BamHI-HF and ClaI). The arrows indicate the erm gene. 
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Figure 3.3  Schematic overview of pSIP609gusA used in this study to obtain the 

insert gene for β-galactosidase expression. The BamHI-HF and ClaI 

restriction enzymes were used for cloning. The arrows indicate the gene 

fragment, which includes the alr gene. The fragment gene will be 

removed from this plasmid and put on the vector. 
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Figure 3.4  Restriction analysis of pSIP609gusA (Lane 1, 1kbp DNA ladder; Lane 2, 

uncut pSIP609gusA vector; Lane 3, double digested pSIP609gusA vector 

with BamHI-HF and ClaI). The arrow indicates the alr gene. 
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Figure 3.5  Restriction analysis of recombinant constructs; Lane 1, 1kbp DNA ladder; 

Lane 2-3, pSIP409-lacZ clone 1, uncut and double digested with BamHI-

HF and ClaI, respectively; Lane 4-5, pSIP409-lacZ clone 2, uncut and 

double digested with BamHI-HF and ClaI, respectively; Lane 6-7, 

pSIP409-lacZ clone 3, uncut and double digested with BamHI-HF and 

ClaI, respectively; Lane 8-9, pSIP409-lacZ clone 4, uncut and double 

digested with BamHI-HF and ClaI, respectively; Lane 10-11, pSIP409-

lacZ-His clone 1, uncut and double digested with BamHI-HF and ClaI, 

respectively; Lane 12-13, pSIP409-lacZ-His clone 2, uncut and double 

digested with BamHI-HF and ClaI, respectively; Lane 14-15, pSIP409-

lacZ-His clone 3, uncut and double digested with BamHI-HF and ClaI, 

respectively; Lane 16-17, pSIP409-lacZ-His clone 4, uncut and double 

digested with BamHI-HF and ClaI, respectively. The arrows indicate the 

alr gene. 
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Figure 3.6 Expression of L. plantarum WCFS1 harboring pSIP409-lacZ at different 

time intervals. The cell-free extracts from induced cells with IP-673 were 

analyzed by SDS-PAGE (Lane 1, non-induced by IP-673 counted as         

0 hour; Lane 2, induced for 1 hour; Lane 3, induced for 2 hours; Lane 4, 

induced for 3 hours; Lane 5, induced for 6 hours; Lane 6, induced for 24 

hours; Lane 7, induced for 48 hours; and Lane 8, Precision plus Protein 

standard ladder (Bio-Rad)). The arrows indicate the bands of expressed    

β-galactosidase. The gel was stained with Coomassie blue. 
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Figure 3.7  Expression of L. plantarum WCFS1 harboring pSIP409-lacZ-His at 

different time intervals. The cell-free extracts from induced cells with     

IP-673 were analyzed by SDS-PAGE (Lane 1, non-induced by IP-673 

counted as 0 hour; Lane 2, induced for 1 hour; Lane 3, induced for 2 

hours; Lane 4, induced for 3 hours;  Lane 5, induced for 6 hours; Lane 6, 

induced for 14 hours; Lane 7, induced for 24 hours; Lane 8, induced for 

48 hours; Lane 9, Precision plus Protein standard ladder (Bio-Rad)). The 

arrows indicate the bands of expressed β-galactosidase. The gel was 

stained with Coomassie blue. 
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3.4.2  Construction of food-grade expression vectors  

  The food-grade expression vectors (alr-based vectors) were constructed 

by replacing the erythromycin resistant (erm) gene of the pSIP409-lacZ and pSIP409-

lacZ-His vectors with the alanine racemes gene (alr). The recombinant pSIP409-lacZ 

and pSIP409-lacZ-His in the erm-based vectors (Figure 3.1) were designed as 

pSIP609-lacZ and pSIP609-lacZ-His (Figure 3.8). The transcription of lacZ genes 

was controlled by the promoter PsppQ. Selection of constructs harboring the food-

grade expression vectors was made by growing the E.coli MB2159 (D-alanine 

auxotroph) in LB media without using antibiotic. The integration of pSIP609-lacZ 

and pSIP609–lacZ-His was confirmed by BamHI-HF and ClaI restriction enzyme 

digestion.  

  In accordance with Nguyen and co-workers (2011)a, the fragment gene 

from restriction analysis including the alr gene was the size band about 1.8–2.0 kbp 

for this study. However, the size band of alr gene size had been also reported at about 

1.3 kbp (Bron et al., 2002). Therefore, the alr gene from the restriction analysis of 

pSIP609-lacZ and pSIP609-lacZ-His in Figure 3.9 and 3.10 showed the right band 

size. The food-grade vectors were then transformed into the expression host,             

L. plantarum TLG02, for the production of food-grade β-galactosidase recombinant 

enzyme. 
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Figure 3.8 Schematic overview of food-grade expression vectors (pSIP609-lacZ or 

pSIP609-lacZ-His) using the alanine racemase (alr) gene as a selection 

marker. The expression of sppK (histidine kinase) and sppR (response 

regulator) was regulated by PsppIP promoter. In addition, the expression 

of structural genes was controlled by the inducible promoter PsppQ, 

which was switched on by adding the peptide pheromone IP-673. The 

BamHI-HF and ClaI restriction enzymes were used for cloning. The 

arrows indicate the gene fragment, which includes the alr gene.  
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Figure 3.9  Restriction analysis of pSIP609-lacZ, (Lane 1, 1kbp DNA ladder; Lane 2, 

uncut pSIP609-lacZ clone 1; Lane 3, pSIP609-lacZ clone 1 cut with 

BamHI-HF; Lane 4, pSIP609-lacZ clone 1 cut with ClaI; Lane 5, double 

digested pSIP609-lacZ clone 1 with BamHI-HF and ClaI; Lane 6, uncut 

pSIP609-lacZ clone 2; Lane 7, pSIP609-lacZ clone 2 cut with BamHI-HF; 

Lane 8, pSIP609-lacZ clone 2 cut with ClaI; Lane 9, double digested 

pSIP609-lacZ clone 2 with BamHI-HF and ClaI; Lane 10, uncut pSIP609-

lacZ vector clone 3; Lane 11, pSIP609-lacZ clone 3 cut with BamHI-HF; 

Lane 12, pSIP609-lacZ clone 3 cut with ClaI; Lane 13, double digested 

pSIP609-lacZ clone 3 with BamHI-HF and ClaI. The arrows indicate the 

DNA fragments of the alr gene. 
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Figure 3.10  Restriction analysis of pSIP609-lacZ-His, (Lane 1, 1kbp DNA ladder; 

Lane 2, double digested pSIP609-lacZ-His clone 1 with BamHI-HF and 

ClaI; Lane 3, uncut pSIP609-lacZ-His clone 1; Lane 4, double digested 

lacZ-His clone 2 with BamHI-HF and ClaI; Lane 5, uncut pSIP609-lacZ-

His clone 2; Lane 6, double digested pSIP609-lacZ-His clone 3 with 

BamHI-HF and ClaI; Lane 7, uncut pSIP609-lacZ-His clone 3; Lane 8, 

double digested pSIP609-lacZ-His clone 4 with BamHI-HF and ClaI; 

Lane 9, uncut pSIP609-lacZ-His clone 4.The arrows indicate the DNA 

fragments of the alr gene. 
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3.4.3  Expression of β-galactosidase in the food-grade expression vectors 

 The constructed plasmids (pSIP609-lacZ and pSIP60-lacZ-His) were 

transformed into D-alanine auxotroph L. plantarum TLG02 by electroporation. The 

organisms harboring alr-based vectors were then cultivated for β-galactosidase 

production. The results showed that expression of alr-based vectors obtained at 

different induction times and concentrations yielded high levels of β-galactosidases in 

a dose response manner as shown in Figure 3.11, 3.12 and 3.13. Also, the SDS-PAGE 

analysis of food-grade β-galactosidases from L. delbrueckii subsp. bulgaricus in        

L. plantarum TLG02 showed the molecular weight about 110 kDA of L. delbrueckii 

subsp. bulgaricus correctly (Adams et al., 1994; Nguyen et al., 2012). These 

expression levels were also confirmed by measuring the β-galactosidase activity and 

protein content, resulting in the specific activity as Table 3.1. The volumetric activity 

of crude enzymes of L. plantarum TLG02, harboring pSIP609-lacZ and pSIP609-

lacZ-His were approximately 307±8 and 81±2 U/mL of fermentation broth, 

respectively indicating that the specific activity of LacZ-His was obviously lower than 

of LacZ. Then, the enzyme activity of LacZ-His was always significantly lower than 

LacZ by approximately 20-30% that caused the C-terminal His-tag (Nguyen et al., 

2012). Resulting in a poly-histidine tag can adversely affect the biochemical 

properties change the binding characteristics, alter protein structure conformation, and 

prompt protein oligomerization (Gaberc-Porekar et al, 1999; Chant et al,2005; Amor-

Mahjoub, 2006; Horchani et al, 2009; Kuo, W.H.K. and Chase. H.A., 2011).  

 The volumetric activity of β-galactosidase from L. bulgaricus in                 

L. plantarum with the erm-based vector, noninduced peptide pheromone (IP-673) was 

0.63 U/mL of fermentation broth for LacZ, and 0.51±0.04 U/mL of fermentation 
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broth for LacZ-His (Nguyen et al., 2011a) that these specific activities were lower 

than both the volumetric activity of β-galactosidase from cell-free extract of 

nontagged (307 U/ml) and of his-tagged (81 U/ml). This confirmed that there was the 

overexpression of β-galactosidase from L. delbrueckii subsp. bulgaricus certainly. 

Additionally, the volumetric activity of crude enzyme in this study was similar to the 

volumetric activity of crude enzyme of the same stain in the erm-based system that 

was 193 U/mg protein in LacZ and 168 U/mg protein in LacZ-His. In terms of the 

specific activity of β-galactosidase from the crude enzyme of L. plantarum TLG02 

with the alr-based system in this study (30 ml cell culture) was 22.3 U/mg protein of 

pSIP609-lacZ and 26.4 U/mg of pSIP60-lacZ-His. This result opposed a work of 

Nguyen and co-workers (2012) that reported the specific activity of β-galactosidase 

from the crude enzyme of L. plantarum WCFS1, harboring LacZ from L. bulgaricus 

with the erm-based system (15 mL cell culture) was 193 U/mg protein and 168 U/mg 

protein of LacZ and LacZ-His, respectively. The specific activity obtained the result 

of the β-galactosidase activity divided by the protein concentration, then, the 

volumetric activity of β-galactosidase with the alr-based system in this study was 

approximate the volumetric activity of β-galactosidase with the erm-based system, a 

work of Nguyen and co-workers (2012). Therefore, the different specific value was a 

result of the protein concentration that made the changing of specific activity. The 

presenting protein concentration in the crude enzyme of L. plantarum TLG02 from 

recombinant β-galactosidase with the alr-based system was from the overexpression 

of β-galactosidase as well as other protein, which expressed during the fermentation. 

The other protein expression could observe the dark bands that was not in the 

molecular weight range about 100-115 kDa. However, the volumetric activity, the 
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protein concentration and the specific activity in this chapter is the indication of                     

β-galactosidase overexpression in a food-grade expression vectors, they must be 

studied again after the purification for further work. 
 

 

 

 

 

Figure 3.11  Expression of L. plantarum TLG02 harboring pSIP609-lacZ at different 

time intervals. The cell-free extracts from IP-673induced cells were 

analyzed by SDS-PAGE (Lane 1, non-induced by IP-673 counted as       

0 hour; Lane 2, induced for 3 hours; Lane 3, induced for 6 hours; Lane 4, 

induced for 9 hours; Lane 5, induced for 12 hours; Lane 6, induced for 

18 hours; Lane 7, induced for 24 hours; Lane 8, induced for 48 hours; 

Lane 9, Precision plus Protein standard ladder (Bio-Rad)). The arrows 

indicate the bands of expressed β-galactosidase. The gel was stained 

with Coomassie blue. 
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Figure 3.12 Expression of L. plantarum TLG02 harboring pSIP609-lacZ-His at 

different time intervals. The cell-free extracts fromIP-673 induced cells 

were analyzed by SDS-PAGE (Lane 1, Precision plus Protein standard 

ladder (Bio-Rad); Lane 2, non-induced by IP-673 counted as 0 hour; 

Lane 3, induced for 3 hours; Lane 4, induced for 6 hours; Lane 5, 

induced for 9 hours; Lane 6, induced for 12 hours; Lane 7, induced for 

18 hours; Lane 8, induced for 24 hours; Lane 9, induced for 48 hours). 

The arrows indicate the bands of expressed β-galactosidase. The gel 

was stained with Coomassie blue. 
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Figure 3.13 SDS-PAGE analysis of crude enzyme from different cell concentrations 

(OD600nm∼0.3, 1.0, 2.0, and 3.0) of L. plantarum TLG02 harboring 

pSIP609-lacZ (Lanes 2, 3, 4, 5), and pSIP609-lacZ-His (OD600nm∼0.3, 

2.0, and 3.0; Lanes 6, 7, 8). Lane 1 shows the Precision plus Protein 

standard ladder (Bio-Rad). The arrows indicate the bands of expressed β-

galactosidase. The gel was stained with Coomassie blue. 

 
 

 
 
 
 
 
 
 

kDa       Lane 1          2             3             4             5             6             7            8 
 

250 
150 

 
 
 

100 
 
 
 

75 
 
 
 
 
 
 
 

50 

       Marker                 pSIP609-lacZ                      pSIP609-lacZ-His 
                       OD600∼0.3   ∼1.0     ∼2.0      ∼3.0       ∼0.3      ∼2.0      ∼3.0 

 

 

 

 

 

 

 

 



93 
 

 

Table 3.1  Beta-galactosidase activity in crude enzymes of induced L. plantarum 

TLG02 harboring pSIP609-lacZ and pSIP609-lacZ-His by oNPG as a 

substrate.  

Plasmid 

β-galactosidase 

activity 

(U/mL) 

protein 

concentration 

(mg/mL) 

Specific 

activity 

(U/mg protein) 

pSIP609-lacZ 307 ± 8 13.8 ± 0.9 22.3 ± 0.6 

pSIP609-lacZ-His 81 ± 2 3.07 ± 0.1 26.4 ± 0.7 

 

Note: Three hundred mL of cultured medium was a sample for β-galactosidase 

purification to determine the volumetric activity and the protein concentration. 

Experiments were performed in duplicate, and the standard deviation was 

<5%.  

 

3.5 Conclusions 

The expression plasmids pSIP609-lacZ and -lacZ-His were successfully 

constructed by replacing the erm gene with the alr gene from L. plantarum. This gene 

is derived from a GRAS organism and is an essential step towards food-grade 

production of proteins in L. plantarum. These constructed plasmids resulted in 

efficient overproduction of β-galactosidases when using the alr-based vectors. The 

expression of these crude enzymes from pSIP609-lacZ and -lacZ-His showed a high 

potential for applying to food industries for reduced-lactose dairy products. 
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CHAPTER IV 

BIOCHEMICAL CHARACTERIZATION OF 

RECOMBINANT β-GALACTOSIDASE FROM 

LACTOBACILLUS PLANTARUM 

 

4.1  Abstract 

The recombinant β-galactosidase from Lactobacillus delbruekii subsp. 

bulgaricus DSM 20081 expressed in L. plantarum TLG02 as a food-grade host was 

determined for the overexpression, characterization, and lactose hydrolysis. The 

results showed that the overexpression of β-galactosidase had a molecular mass of 

∼110 kDa. The specific activity of the enzyme, using oNPG and lactose as substrates, 

was 212 and 165 U per mg protein, respectively. The volumetric activity of                

β-galactosidase from pSIP609-lacZ and pSIP609-lacZ-His was ∼44,800 and    

∼45,800 U of fermentation medium, respectively. The β-galactosidase yield was ∼240 

mg/L of pSIP609-lacZ and ∼277 mg/L of pSIP609-lacZ-His under the same 

cultivations (400 mL flask cultures). The optimal temperature of β-galactosidase 

when using the lactose and oNPG as the substrates was 55–60 and 50°C, respectively. 

The kinetic parameters at various temperatures (4-65°C) was determined in the milk 

buffer. The higest value of Michaelis-Menten constant (Km) was approximately 5.6 

mM at 30°C which the maximal velocity (Vmax,Glc) at this temperature was 
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approximately 153 µmol⋅min-1⋅mg-1. The presence of Mg2+ in the buffer could extend 

the catalytic stability (half-life time) of the enzyme; however, its stability could 

rapidly lose activity beyond 45°C with or without Mg2+. 

 

Keywords:  overexpression, characterization, the Km, the catalytic efficiency, the 

half-life time, milk buffer 

 

4.2  Introduction 

Beta-galactosidases (lactase, EC 3.2.1.23) are important enzymes for dairy 

industry applications (Nakayama and Arnachi, 1999; Panesar et al., 2010; Nguyen et 

al., 2006, Splechtna et al., 2007; Nguyen et al., 2011b). The ability of β-galactosidases 

to convert lactose into galactose and glucose is used to prevent the crystallization of 

lactose, to improve sweetness, to increase the solubility of milk products, and to 

produce lactose-free food products (Sani et al., 1999; Nguyen et al., 2011b). Lactose 

hydrolysis is 75-80% efficient in industrial applications and about 90% efficient (or 5 

g/L of lactose in lactose-hydrolyzed milk product) when ingested in pill form for 

lactose product consumption by lactose intolerant individuals (Prenosil et al., 1987; 

Hernandez and Asenjo, 1982; Matioli et al., 2003).  

Beta-galactosidases from Lactobacillus spp. can be divided into two families, 

GH2 and GH42 (Cantarel et al., 2009; Nguyen et al., 2012). Beta-galactosidase, 

produced from L. reuteri, L. acidophilus, L. pentosus, L. plantarum, and L. sakei; have 

been classified in the GH2 family. Beta-galactosidases in this family from these 

microorganisms consists of two different subunits encoded by two overlapping genes 

lacL (large subunit) and lacM (small subunit) which are the β-galactosidases from      
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L. reuteri, L. acidophilus, L. pentosus, L. plantarum, and L. sakei (Nguyen et al., 

2006; Nguyen et al., 2007; Iqbal et al., 2010; Maischberger et al., 2010; Iqbal et al., 

2011; Nguyen et al., 2012). However, β-galactosidase from L. bulgaricus are encoded 

by a single gene, which is absent in lactobacilli, and mostly present in other lactic acid 

bacteria such as Streptococcus spp. or bifidobacteria such as Bifidobacterium spp. 

(Hung et al., 2001; Vaillancourt et al., 2002; Goulas et al., 2007; Nguyen et al., 2012).  

Since β-galactosidases can be produced from various microorganisms, they 

typically have different biochemical properties, resulting in different rates of 

hydrolysis for specific glycosidic linkages (Nguyen et al., 2006). Differences in 

biochemical properties are also dependent upon substrate selection and hydrolysis 

reaction conditions. The biochemical properties of β-galactosidase from different 

Lactobacillus spp., including optimum temperature, metal ion requirement, and 

kinetic parameters (such as the Michealis-Menten constant; Km, the maximal velocity; 

Vmax, the turnover number; kcat), are summarized in Table 4.1. The goals of this study 

were to overexpress and characterize the recombinant β-galactosidase from                

L. delbruekii subsp. bulgaricus DSM 20081 expressed in L. plantarum TLG02.  
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Table 4.1 Biochemical properties of β-galactosidases from Lactobacillus spp. 

Source Optimum temperature 

kinetic parameter for lactose hydrolysis 
Metal ion 

requirement 
References Km 

(mM) 

Vmax 

(µmol min-1 mg-1) 

kcat 

(s-1) 

β-galactosidases from  

L. reuteri L103 

50°C for oNPG hydrolysis 

45°C for lactose hydrolysis 

13±2 34 

 

60 Na+, K+, Mg2+, 

Mn2+ 

Nguyen et al., 2006 

β-galactosidases from  

L. reuteri L461 

50°C for oNPG hydrolysis 

50°C for lactose hydrolysis 

31±5 33 

 

58 Na+, K+, Mg2+, 

Mn2+ 

Nguyen et al., 2006 

β-galactosidases from  

L. acidophilus R22  

55°C (both lactose and oNPG 

hydrolysis) 

4.0±0.3 28.8 ± 0.2 

 

50.4 Mg2+ Nguyen et al., 2007 

β-galactosidases from  L. 

pentosus KUB-ST10-1 

55°C for oNPG hydrolysis 

60-65°C for lactose hydrolysis 

38 11.3 ± 0.8 

 

20 Mg2+ Maischberger et al., 

2010 

β-galactosidases from  L. 

delbrueckii subsp. 

bulgaricus ATCC 11842, 

expressed in E. coli 

ER2566 

30-50°C (substrate not 

specified) 

0.98 

(at pH 6.5) 

 

57.5 

 

45.7 

(at pH 6.5) 

Mn2+, Co2+ Rhimi et al., 2009 
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Table 4.1 Biochemical properties of β-galactosidases from Lactobacillus spp. (continued) 

Source Optimum temperature kinetic parameter for lactose hydrolysis Metal ion 

requirement 

Reference 

Km 

(mM) 

Vmax 

(µmol min-1 mg-1) 

kcat 

(s-1) 

β-galactosidases from  

L. plantarum WCFS1, expressed in 

L. plantarum 

55°C for oNPG hydrolysis 

60°C for lactose hydrolysis 

29±1 12.9 ± 0.5 

 

98 Na+, K+, 

Mg2+, Mn2+ 

Iqbal et al., 2010 

His-tagged β-galactosidases from 

L. sakei Lb790, expressed in E. coli 

55°C 

(both oNPG and lactose 

hydrolysis) 

20±2 24±1 43±1 Mg2+ Iqbal et al., 2011 

His-tagged β-galactosidases from  

L. delbrueckii subsp. bulgaricus 

DSM 20081,  expressed in L. 

plantarum WCFSl with the erm-

based vectors 

55°C 

(both oNPG and lactose 

hydrolysis) 

19.9±4 111±4 211±10 Na+, K+, 

Mg2+ 

Nguyen et al., 2012 

β-galactosidases from L. 

kefiranofaciens ZW3, expressed in 

E. coli BL21(DE3) 

50°C for LacLM 

for oNPG hydrolysis 

 

1.61±0.07 2.44±0.11 2.96 Mg2+ He et al., 2016 
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4.3  Materials and methods 

4.3.1  Bacterial strains and media 

 L. plantarum TLG02 harboring pSIP609(alr)-lacZ and pSIP609(alr)-

lacZ-His were grown in MRS medium (Oxoid, Basingstoke, U.K.) at 37°C in 

incubator (Memmert, BE 500, WTB Binder BD115) without agitation. 

4.3.2  Expression of β-galactosidases 

 Overnight cultures of L. plantarum harboring pSIP609(alr)-lacZ and 

pSIP609(alr)-lacZ-His were diluted in fresh, pre-warmed MRS medium to reach a 

cell concentration of OD600nm∼0.1, determined the absorbance at 600 nm by 

spectrophotometer (Ultrospec 2000, Pharmacia biotech, Cambridge, UK). The 

cultured medium was then incubated at 30°C in incubator (Memmert, BE 500, WTB 

Binder BD115) until the OD600nm reached at ∼0.3. Then, expression of recombinant 

protein was induced by adding 25 ηg/mL peptide pheromone IP673 (supplied by 

Food Biotechnology Laboratory, Department of Food Sciences and Technology, 

BOKU University of Natural Resources and Life Sciences, Vienna, Austria). Forty 

mL of induced cells were harvested periodically (0, 3, 6, 9, 12, 15, 18, 21 and 24 

hours) until a final cell culture concentration of OD600nm at 3.0 was reached. The 

harvested cells were pelleted by the centrifuge machine (Eppendorf centrifuge      

5810R, Eppendorf, USA) at 3500 g for 10 minutes at 4°C. They were washed with 50 

mM sodium phosphate buffer (pH 6.5) and resuspended in 500 μL of the same buffer. 

The cells were disrupted to obtain the cell lysate as described by Nguyen and co-

workers (2011)a. The lysate was centrifuged by the centrifuge machine 

(Thermoscientific, Sorvall legend XTR centrifuge, USA) at 9000 g (4°C) for 5 

minutes to get the crude enzymes used for determination of activity assays and 
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protein concentration using the denaturing sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). 

4.3.3  Fermentation and protein purification 

 L. plantarum TLG02 harboring pSIP609-lacZ-His was cultivated in 400 

mL of fermentation medium in order to obtain sufficient material for purification of 

LacZ. The bacteria were grown in MRS medium in a 500 mL reagent bottle loosely 

closed with screw-cap at 30°C in incubator (Memmert, BE 500, WTB Binder 

BD115). Precultured bacteria were grown overnight in 40 mL MRS medium and 

inoculated into 400 mL fresh pre-warmed MRS medium at the cell concentration 

(OD600) of 0.1 until the OD600nm reached at ∼0.3. Then, expression of recombinant 

protein was induced by adding 25 ηg/mL peptide pheromone IP673. The cultures 

were incubated until a final cell culture concentration of OD600nm was about 2.0 - 3.0. 

The induced cells were harvested and washed twice with 50 mM sodium phosphate 

buffer (pH 6.5). After centrifugation, cells were disrupted by using a French press 

(Aminco, Silver Spring, MD), and debris was removed by the centrifugation 

(Thermoscientific, Sorvall legend XTR centrifuge, USA) at 12000 g, 30 minutes, 4°C. 

The recombinant enzyme was purified by immobilized metal affinity chromatography 

using a Ni-Sepharose column (GE Healthcare, Uppsala, Sweden; supplied by Food 

Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU 

University of Natural Resources and Life Sciences, Vienna, Austria) as Nguyen and 

co-workers (2006). Purified enzymes were then eluted in 50 mM sodium phosphate 

buffer, pH 6.5, at 4°C. 
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4.3.4  Protein determination 

 Proteins concentration was determined by Quick startTM Bradford 

protein assay (Bio-Rad Laboratories, CA, USA) using bovine serum albumin as a 

standard. The dye reagent was mixed at 1 to 4 with DI water and filtered. The 

properly diluted samples (60 µL) were mixed with 200 µl of dye reagent and stood at 

room temperature for 2 minutes. The absorbance at 595 nm was measured by ELISA 

reader (Sunrise, TECAN, Austria). The protein concentration was calculated from the 

following relationship (Bradford et al., 1976): 
 

Protein concentration (mg/mL)   =   
OD595

k
×Dil 

 

 Where OD595 is the sample-measured absorption at 595 nm, k is the slope 

of the BSA standard curve, and Dil is the dilution factor, after correcting for the 

blank.  

4.3.5  Enzyme Assays 

  4.3.5.1  Assay with chromogenic glycoside 

ortho-Nitrophenyl-β-D-galactopyranoside (oNPG) from Sigma-

Aldrich (CA, USA) was used as the chromogenic substrate. To assay the                   

β-galactosidase activity, the substrate solution was prepared from mixing 22 mM 

oNPG into 50 mM sodium phosphate buffer (pH 6.5). Twenty µL of enzyme solution 

was added into 480 µL of the substrate solution. Then, the mixture was incubated at 

30°C for 10 minutes with 600 rpm speed agitation in dry bath shaking incubator 

(HB1, Wealtee Corp., USA). After the incubation time, the reaction was stopped by 

adding 750 µL of 0.4 M Na2CO3. The release of ortho-nitrophenol (oNP) was 

assessed by determining the absorbance at 420 nm by spectrophotometer (Ultrospec 
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2000, Pharmacia biotech, Cambridge, UK). One unit of oNPG activity was defined as 

the amount of enzyme releasing 1 µmol of oNP per minute under the described 

conditions. The β-galactosidase activity or the volumetric activity was calculated 

from the following relationship (Nguyen et al., 2006): 

 

 

 

 

Where OD420 is the sample-measured absorption at 420 nm, k 

is the slope of the oNP standard curve, t is the reaction time (10 minutes), VoNPG is 

the volume of oNPG (480 µL), Venzyme is the volume of enzyme sample (20 µL), and 

Dil is the dilution factor, after correcting for the blank. 

4.3.5.1 Assay with Lactose as substrate 

Lactose was used as the substrate in this assay. Twenty µL of 

enzyme solution was added to 480 µL of a 600 mM lactose solution in 50 mM 

sodium phosphate buffer (pH 6.5). This reaction mixture was incubated at 30°C for 

10 minutes and shaking at 600 rpm in dry bath incubator (HB1, Wealtee Corp., USA). 

After 10 minutes, the reaction was heat-inactivated at 99°C for 5 minutes. The sample 

had been cooled to room temperature and then, the release of D-glucose was assessed 

colorimetrically using the enzymatic assay of glucose oxidase (GOD/POD assay) 

following a wok of Kunst and co-workers (1988) by adding 60 µL of reaction mixture 

into 600 µL of a solution containing GOD (94 µg/mL; Sigma-Aldrich, CA, USA), 

POD (6.1 µg/mL; Sigma-Aldrich, CA, USA), 4-aminoantipyrine (157 µg/mL; Sigma-

Aldrich, CA, USA), and phenol (1.95% v/v; Merck Ltd.) in 50 mM sodium phosphate 

buffer (pH 6.5). This assay mixture (660 µL) was incubated in a dark room at ambient 

β-galactosidase activity or 

Volumetric activity (U/mL)  =  
OD420

k
×

1
t
×

VoNPG +  Venzyme

Venzyme
× Dil 
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C (g/l) 

Mrglucose 

temperature for 40 minutes, and the absorbance at 505 nm was measured by 

spectrophotometer (Ultrospec 2000, Pharmacia biotech, Cambridge, UK). One unit of 

lactase activity was defined as the amount of enzyme releasing 1 µmol of D-glucose 

per minute under the given conditions. All measurements and experiments were 

performed at least in duplicate, and the experimental error was less than 5%. The 

glucose concentration (C) was defined as follows (Kunst et al., 1988): 

 

C [g/l]    =                     × (sample dilution factor) 

 

C [mM]  =                      × 1000 

 

Where OD505 is the sample-measured absorption at 505 nm, k 

is the slope of the glucose standard curve, and Mrglucose is the molecular mass of 

glucose (180.16 g/mol), after correcting for the blank. 

The β-galactosidase activity was calculated from the following 

relationship (Nguyen et al., 2006): 

 

                                                         =  C [mM]  ×        ×                                     × 
 

 

 Where C [mM] is the glucose concentration (mM), t is the 

reaction time (10 minutes), Vlactose is the volume of lactose (480 µL), Venzyme is the 

volume of enzyme sample (20 µL), and Dil is the enzyme dilution factor, after 

correcting for the blank. 

1 
 

t 

(Vlactose+ Venzyme) 
 

Venzyme 
Dil 

OD505 

k 

β-galactosidase activity 
or 

volumetric activity (U/mL) 
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The specific activity was calculated from the following 

relationship (Nguyen et al., 2006): 

 

Specific activity (U/mg protein)   =      

 

4.3.6  Characterization of recombinant β-galactosidase 

 4.3.6.1  Optimal temperature  

The temperature dependence of β-galactosidase activity was 

assessed by measuring activity in the range of 20−90°C for 10 minutes in order to 

achieve the optimal temperature of β-galactosidase. Twenty two mM of oNPG and 

600 mM of lactose were used as a substrate for detecting the enzyme activity. This 

was performed in a sodium phosphate buffer (pH6.5) or milk buffer (pH 6.5). Milk 

buffer consists of KCL + MgSO4·7H2O + NaH2PO4·H2O + CaSO4·2H2O + 

CaCl2·2H2O + Citric acid at 1.10 + 0.71 + 1.87 + 1.00 + 0.99 + 2.00 g/L, respectively 

(Gutierrez et al., 2002). The measured activities were compared with the blank 

standard reaction.  

4.3.6.2  Steady-state kinetic measurements 

The steady-state kinetic measurements were studied at 8, 30, 

37, 45, 50, 55, 60 and 65°C in milk buffer, pH 6.5 (Gutierrez et al., 2002) with the 

lactose concentrations ranging from 0 to 600 mM of lactose. The enzyme activity of 

lactose hydrolysis was calculated by the SigmaPlot (SPSS, Chicago, IL) following the 

Michaelis-Menten equation, consequencing in the Vmax and Km. These values were 

calculated to provide the kcat and the catalytic efficiency (kcat/Km). 

 

β-galactosidase activity (U/mL) 
 

Protein concentration (mg protein/mL) 
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4.3.6.3  Catalytic stability  

 The catalytic stability of β-galactosidase using oNPG and 

lactose as the substrates was determined by incubating the enzyme in a milk buffer 

(Gutierrez et al., 2002) at various temperatures (8, 30, 37, 45, 50 and 55°C) and by 

subsequent measurements of the remaining enzyme activity (A) at various time points 

(t). Residual activities (At/A0, where At is the activity measured at time t and A0 is the 

initial activity) were plotted versus the incubation time. The inactivation constants kin 

were obtained by line arregression of ln (activity) versus time. The half-life values of 

thermal inactivation τ1/2 were calculated using τ1/2 = ln 2/kin (Nguyen et al., 2012).  

 To study the effect of various cations on β-galactosidase 

activity, the enzyme was assayed with 22 mM oNPG and 600 mM lactose in 50 mM 

sodium phosphate buffer, containing different Mg2+ concentrations (0, 1, and 10 mM 

of Mg2+) and in milk buffer as the substrates. The measured activities were compared 

with the blank standard reaction, which shared identical conditions but without 

cations. 

4.3.7  Statistical analyses 

 All experiments and measurements were performed at least in duplicate. 

Analysis of variance (ANOVA) was determined using SPSS program (SPSS version 

16, Windows version). Duncan Multiple Range Testing (DMRT) was used to compare 

the differences among the means at P < 0.05. 
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4.4 Results and discussion 

4.4.6 Fermentation of β-galactosidase 

The cell concentration of L. plantarum TLG02, harboring pSIP609-

lacZ and pSIP609-lacZ-His from L. delbrueckii subsp. bulgaricus DSM 20081, was 

measured over a period of 0 to 24 hours. The cell pellet samples in each period time 

were prepared for the crude enzymes. These crude enzymes were analyzed by SDS-

PAGE and their specific bands were about 110 kDa in both pSIP609-lacZ (Figure 4.1) 

and pSIP609-lacZ-His (Figure 4.2).  

Overexpression of recombinant β-galactosidase at ∼110 kDa in this 

study was consistent with those of three other studies conducted via different 

expression systems. These studies included cold-sensitive mutants of β-galactosidase 

from L. delbruckii subsp. bulgaricus (Adams et al., 1994), β-galactosidase from        

L. bulgaricus expressed in E.coli ER2566 (Rhimi et al., 2009), and β-galactosidase 

from L. bulgaricus DSM 20081 expressed in L. plantarum WCFS1 as a food grade 

host (Nguyen et al., 2012).  

The relationship of volumetric activity and cell concentration of               

L. plantarum TLG02, harboring pSIP609–lacZ and pSIP609-lacZ-His, was also 

studied at different time intervals. This microorganism exhibited the highest 

volumetric activity at 18 hours. However, their volumetric activity decreased rapidly 

after 18 hour in both pSIP609–lacZ and pSIP609-lacZ-His (Figure 4.3 and 4.4). 

Moreover, at 24 hours, this microorganism showed the less value of the volumetric 

activity, indicating the cells could not grow after 24 hours. Consistent with this study, 

Nguyen and co-workers (2011)a reported that L. plantarum, harboring LacLM from   

L. reuteri with the alr-based vectors, was unable to grow after 24 hours at 37°C.  
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The results of cell concentration, pH, volumetric activity and protein 

concentrations from the expression of β-galactosidase with different genes are 

summarized in Table 4.2 and 4.3. The L. plantarum TLG02 in this study could 

provide the highest protein concentration at 12 hours. This result was consistent with 

the cell concentration as a function of the increasing time. The pH values of cultured 

medium were rapidly decreased from pH 5.3–pH 4.7 within 9 hours. However, the pH 

had gradually decreased to 4.3 at the end of fermentation process. The decreasing of 

pH values was found in both pSIP609–lacZ and pSIP609-lacZ-His gene. The 

changing of cell concentration, volumetric activity, protein concentrations, and pH can 

be explained by the behavior of lactic acid bacteria. The more lactic acid bacteria 

grew, the less pH was found. The pH of the cultured medium decreased as the 

accumulation of organic acids. Not only the decrease of pH could slow down the 

growth of such bacteria growth but also the cells of bacteria could be destroyed, 

consequencing in the loss of cell viability (Hutkins and Nannen, 1993). 

For the volumetric activity in terms of enzyme production of crude 

enzyme incubated 400 mL of cultured medium for 18 hours, it showed that the 

volumetric activity of crude enzyme from pSIP609-lacZ and pSIP609-lacZ-His was 

∼44,800±1,700 and 45,800±1,200 U of β-galactosidase activity per liter of medium, 

respectively (Table 4.4). The β-galactosidase yield was 240±6 mg/L of pSIP609-lacZ 

and ∼277±4 mg/L of pSIP609-lacZ-His under the same cultivations. A work of 

Nguyen and co-workers (2012) reported that the volumetric activity of β-galactosidase 

from L. bulgaricus DSM 20081 with the erm-based was ∼53,000±2,000 U of             

β-galactosidase activity per liter of medium and ∼170 mg of recombinant protein per 

liter. While Halbmayr and co-workers (2008) showed that β-galactosidase from         
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L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from 

L. reuteri L103 was ∼23,000 U of β-galactosidase activity per liter of medium and  

100 mg of recombinant protein per liter. Whereas, β-galactosidase from L. plantarum 

WCFS1 harboring the plasmid pEH9R containing the lacLM gene from L. reuteri 

L103 was ∼35,000-40,000 U of β-galactosidase activity per liter of medium and     

200 mg of recombinant protein per liter (Nguyen et al., 2015). 

 

 

 

Figure 4.1 SDS-PAGE analysis of crude enzyme of induced L. plantarum TLG02 

harboring pSIP609-lacZ from 40 mL of cell cultured (Lane 1, Precision 

plus Protein standard ladder (Bio-Rad); Lane 2, non-induced by IP-673 

counted as 3 h; Lane 3, induced for 6 h; Lane 4, induced for 9 h;  Lane 5, 

induced for 12 h; Lane 6, induced for 15 h; Lane 7, induced for 18 h; Lane 

8, induced for 21 h; Lane 9, induced for 24 h). 
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Figure 4.2 SDS-PAGE analysis of crude enzyme of induced L. plantarum TLG02 

harboring pSIP609-lacZ-His from 40 mL of cell cultured (Lane 1, 

Precision plus Protein standard ladder (Bio-Rad); Lane 2, non-induced by 

IP-673 counted as 0 h; Lane 3, induced for 6 h; Lane 4, induced for 9 h;  

Lane 5, induced for 12 h; Lane 6, induced for 15 h; Lane 7, induced for 18 

h; Lane 8, induced for 21 h; Lane 9, induced for 24 h). 
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Figure 4.3 The relationship between the volumetric activity and the concentration of 

induced L. plantarum TLG02 harboring pSIP609-lacZ (U/L of 

fermentation): (O) cell concentration (OD600); () volumetric activity 

(U/L of fermentation). Lactose was used as a substrate. 
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Figure 4.4 The relationship between the volumetric activity and the concentration of 

induced L. plantarum TLG02 harboring pSIP609-lacZ-His (U/L of 

fermentation): (O) cell concentration (OD600); () volumetric activity 

(U/L of fermentation). Lactose was used as a substrate. 
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Table 4.2  The variation of induced L. plantarum TLG02 harboring pSIP609-lacZ concentration, pH, volumetric activity and protein 

concentration at different times  

Time (h) 0 3 6 9 12 15 18 21 24 

Cell concentration 

(OD600) 
0.30±2E-03a 0.50±2E-03b 0.64±3E-03c 1.2±4E-03d 1.6±4E-03e 1.97±3E-03f 2.4±5E-03g 2.6±3E-03h 2.7±3E-03i 

volumetric activity 

(U/mL of fermentation 

medium) 

3.50±0.06a 10.6±0.22c 13.2±0.14d 14.9±0.30e 17.1±0.06f 19.4±0.03g 20.2±0.33h 16.32± 0.19i 6.06±0.18b 

Protein concentration 

(mg/mL) 
0.72±5E-03c 0.72±5E-03c 0.70±4E-03c 0.83±1E-03d 1.1±9E-03f 0.93±7E-03e 0.92±6E-03e 0.56±1E-02b 0.36±1E-03a 

pH 5.31g 5.13f 4.98e 4.74d 4.65c 4.57c 4.38b 4.33a 4.32a 

Note:  Forty mL of cultured medium was a sample for determining the volumetric activity and the protein concentration. Experiments were 

performed in duplicate, and the standard deviation was <5%. Values in each time period marked with the same letter are not 

statistically different. Values marked with different letters are statistically different (P<0.05). 
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Table 4.3 The variation of L. plantarum TLG02 harboring pSIP609-lacZ-His concentration, pH, volumetric activity and protein concentration 

at different times. 

Time (h) 0 3 6 9 12 15 18 21 24 

Cell concentration 

(OD600) 
0.3±2E-03a 0.6±4 E-03b 0.85±5 E-3c 1.5±3 E-03d 1.8±3 E-03e 2.2±3E-03f 2.5±2 E-03g 2.6±3E-03g 2.7±4E-03h 

Volumetric activity 

(U/mL of fermentation 

medium) 

3.22±0.04a 12.4±0.2c 15.0±0.2d 16.7±0.1e 19.8±0.3g 21.6±0.3h 23.6±0.1i 21.4±0.3h 4.87±0.2b 

Protein concentration 

(mg/mL) 
0.61±1 E-02c 0.53±4 E-01b 0.85±1 E-2df 0.80±3 E-2df 0.88±3 E-03f 0.79±7 E-03d 0.77±1 E-02d 0.78±3 E-02d 0.07±9 E-03a 

pH 5.28e 5.1e 4.87e 4.66d 4.64d 4.61d 4.37c 4.32b 4.32a 

Note : Forty mL of cultured medium was a sample for determining the volumetric activity and the protein concentration. Experiments were 

performed in duplicate, and the standard deviation was <5%. Values in each time period marked with the same letter are not statistically 

different. Values marked with different letters are statistically different (P<0.05). 
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Table 4.4  Comparative study of volumetric activity (oNPG assay) and protein concentration of crude enzyme from L. plantarum  TLG02 

harboring pSIP609-lacZ and pSIP609-lacZ-His detecting at the end of fermentation at 18 hours with other β-galactosidases from 

Lactobacillus spp. 

Vector 

Volumetric activity  

(U of β-galactosidase activity  

per liter of medium) 

β-galactosidase  

yield (mg/L) 
Reference 

pEH3R-lacLM  (E.coli as a host strain) ∼23,000 100 Halbmayr et al., 2008 

pSIP409-lacZ (erm-based vector,  

L. plantarum WCFS1 as a host strain) 

∼53,000±2,000 ∼170 Nguyen et al., 2012 

pEH9R-lacLM  (E.coli as a host strain) ∼35,000-40,000 200 Nguyen et al., 2015 

pSIP609-lacZ (alr-based vector,  

L. plantarum TLG02 as a host strain) 

44,800±1,700 240±6 this study 

pSIP609-lacZ-His (erm-based vector,  

L. plantarum TLG02 as a host strain) 

45,800±1,200 277±4 this study 

 

 

Note: Four hundred mL of cultured medium was a sample for β-galactosidase purification to determine the volumetric activity and the 

protein concentration. Experiments were performed in duplicate, and the standard deviation was <5%. Values in each category 

(volumetric activity and protein concentration) marked with the same letter are not statistically different. Values marked with 

different letters are statistically different (P<0.05). 
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4.4.2 The purification of L. plantarum TLG02 harboring pSIP609-lacZ 

and pSIP609-lacZ-His 

The crude enzyme from L. plantarum TLG02 harboring pSIP609-lacZ 

and the purified enzyme from L. plantarum TLG02 harboring pSIP609-lacZ-His were 

analyzed by SDS-PAGE and showed specific bands of ∼110 kDa as shown in Figure 

4.5 and Table 4.5. This finding is consistent with the works of Nguyen and co-

workers (2012), Rhimi and co-workers (2009), and Adams and co-workers (1994). 

The β-galactosidase activity of crude and purified enzymes using 

oNPG as a substrate was about 560±7 and 304±4 U/mL, respectively. The protein 

concentration was about 3.67±0.14 mg/mL of crude enzyme and 1.37±0.03 mg/mL of 

purified enzyme. The specific activity of crude and purified enzymes was about 78±2 

U/mg and 218±8 U/mg when oNPG was used as a substrate. This means that the 

specific activity of purified enzyme was higher than that of crude enzyme around 2.72 

fold (Table 4.5).  
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(A) (B) 

 

Figure 4.5  SDS-PAGE analysis of crude enzyme of induced L. plantarum TLG02 

harboring pSIP609 (A) -LacZ-His (Lane 1, Precision plus Protein standard 

ladder (Bio-Rad); Lane 2, crude enzyme); and (B) the purified 

recombinant β-galactosidase (Lane 1, Precision plus Protein standard 

ladder (Bio-Rad); Lane 2, β-galactosidase). 

kDa        Lane 1         2                             kDa         Lane 1       2 
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Table 4.5  Purification of β-galactosidase from L. plantarum TLG02 harboring pSIP609-lacZ-His when oNPG and lactose were used as the 

substrates. 

Sample Volume of 

fermentation 

medium (mL) 

Total activity 

(U/mL) 

Total protein  

(mg/mL) 

specific activity 

(U/mg) 

Purified 

factor 

Recovery (%) 

Crude enzyme  400 560± 7 (release of oNP)c 3.67 ± 0.14b 78 ± 2a 1 100 

Purified enzyme 5 304 ± 4 (release of oNP)b 1.37 ± 0.03a 212 ± 8b 2.72 1.25 

  226 ± 3 (release of D-glucose) 1.37 ± 0.03a 165 ± 5 - - 

Note : Four hundred mL of cultured medium was a sample for β-galactosidase purification to determine the volumetric activity and the protein 

concentration. Data are shown as the average ± standard deviation of duplicate independent cultivations. Values in each category (volumetric 

activity and protein concentration) marked with the same letter are not statistically different. Values marked with different letters are 

statistically different (P<0.05).  
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4.4.3 The characterization of recombinant β-galactosidase 

4.4.3.1 Optimal temperatures of a recombinant β-galactosidase 

using different buffers and substrates 

The optimal temperature of recombinant β-galactosidase was 

studied in different buffers (milk buffer and sodium phosphate buffer) both in oNPG 

and lactose as the substrates (Figure 4.6 and 4.7). The optimal temperature was 50°C 

when using oNPG as a substrate both in milk buffer and in sodium phosphate buffer. 

When lactose was used as a substrate, the optimal temperature was at 60°C in milk 

buffer and 55°C in sodium phosphate buffer. 

This result agrees with Nguyen and co-workers (2006), 

reporting that the optimal temperature of β-galactosidase from L. reuteri for oNPG 

hydrolysis was ~50°C. Similarly, the optimal temperatures of β-galactosidases for 

lactose hydrolysis from native cells of L. pentosus KUB-ST10-1 and the recombinant 

β-galactosidases from L. plantarum WCFS1 expressed in L. plantarum were 60°C 

(Maischberger et al, 2010; Iqbal et al., 2010). Also, the optimal temperatures of         

β-galactosidases for lactose hydrolysis from L. acidophilus R22, recombinant             

β-galactosidases from L. sakei Lb790 in E. coli expression system, and recombinant  

β-galactosidases from L. delbrueckii subsp. bulgaricus DSM 20081 in erm-based 

vectors were 55°C (Nguyen et al, 2007; Iqbal et al., 2011; Nguyen et al, 2012). The 

optimal temperature of β-galactosidases from Lactobacillus spp. was 50-60°C 

regardless of different substrates, different strains of Lactobacillus spp., native cells, 

recombinant cells, or different expression systems. However, each of these studies was 

conducted using only a pH of 6.5 to imitate the pH of milk during the lactose-
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hydrolyzing process. Thus, the using of milk buffer did not affect the optimal 

temperature of β-galactosidase from L. bulgaricus with alr-based vectors in this study. 

The optimal temperatures of β-galactosidase in both oNPG and 

lactose substrates from literatures showed slightly different values. This variance can 

be explained by the different products and their respective methods of measurement 

between these two hydrolysis reactions. oNP, a product from oNPG hydrolysis, can 

only be absorbed at 420 nm. However, D-glucose, a product of lactose hydrolysis, is 

measured by glucose oxidase and peroxidase assay (GOD/POD assay). A colored 

product from GOD/POD assay is absorbed at a wavelength between 470-550 nm, a 

broader range of wavelengths than that of oNP absorption (Kunst et al., 1988), 

resulting in higher values for measured β-galactosidase activity in lactose hydrolysis. 
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Figure 4.6  Optimal temperature of the activity of recombinant β-galactosidase from 

L. delbrueckii subsp. bulgaricus DSM 20081 in milk buffer: (O) lactose as 

substrate; () oNPG as substrate. Relative activities are given in 

comparison with maximum activities calculated under optimal conditions 

(100%), which were 510 and 346 U/mL with oNPG and lactose used as 

substrates. 
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Figure 4.7  Optimal temperature of the activity of recombinant β-galactosidase from 

L. delbrueckii subsp. bulgaricus DSM 20081 in sodium phosphate buffer: 

(O) lactose as substrate; () oNPG as substrate. Relative activities are 

given in comparison with maximum activities calculated under optimal 

conditions (100%), which were 691 and 390 U/mL with oNPG and lactose 

used as substrates. 

 

 

 

 

 

 

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e 
ac

tiv
ity

 (%
)

Temperature (°C)

 

 

 

 

 

 

 

 



127 
 

 

4.4.3.2 Determination of kinetic parameters at different 

temperatures in the milk buffer 

A recombinant β-galactosidase from L. bulgaricus with an alr-

based system was determined in the milk buffer for the kinetic parameters (maximal 

velocity, Michaelis-Menten constant, turnover number, and catalytic efficiency), in the 

temperature range of 4-65°C.   

The maximal velocity (Vmax,Glc) of a recombinant                    

β-galactosidase at 60°C showed the highest values about 308 µmol⋅min-1⋅mg-1 (Table 

4.6). This high value of Vmax,Glc at high temperature could be explained by the 

collision theory of Max Trautz in 1916 and William Lewis in 1918 (Arnaut et al., 

2007). As temperature increased, molecules gained energy and moved continually 

faster, resulting in the increase of reaction rate. However, the enzyme might be 

denatured at high temperature (Daniel et al., 1996). 

The best value of the Michaelis-Menten constant (Km) of a 

recombinant β-galactosidase from this study was about 5.6 mM at 30°C. This value 

was the highest affinity for lactose. The best value of turnover number (kcat) and 

catalytic efficiency (kcat/Km) was about 1054 S-1 at 60°C and 109000 M-1s-1 at 55°C, 

respectively. This agrees with Nguyen and co-workers (2012) which reported that a 

Km value of β-galactosidase from L. bulgaricus DSM 20081 with an erm-based system 

was 19.9 mM at 30°C (standard assay). This Km value was larger than that of             

β-galactosidase from L. bulgaricus DSM 20081with an alr-based system in this study 

(5.6 mM). This finding indicates that β-galactosidase in alr-based systems has a higher 

affinity for lactose than the β-galactosidase from L. bulgaricus DSM 20081 in erm-

based systems. The small Km value will approach Vmax faster than the high Km value 
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that enzyme has a very high affinity with the substrate (Berg et. Al., 2002). Regarding 

the Km
 value, it found that the purified enzyme produced from this study could 

effectively be used for a production of low- or free-lactose milk.  

In comparison with the common commercial enzymes which 

obtain from yeast and fungi, the Km value was 15–52 mM for K. fragilis, 35 mM for  

K. lactis, 54–99 mM for A. niger, and 36–180 mM for A. oryza (Jurado et al., 2004; de 

Roos, 2004; Nguyen et al., 2006). These Km values from commercial enzymes are 

higher than the Km value of β-galactosidase in this study, showing that β-galactosidase 

with the alr-based system has the higher affinity for lactose than those commercial 

enzymes. 
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Table 4.6 Kinetic parameters for lactose hydrolysis for a recombinant β-galactosidase from L. bulgaricus at different temperatures in the milk 

buffer. 

Temperature 

Kinetic Parameters 

Vmax,Glc (µmol min-1 mg-1) Km (mM) kcat (s-1) kcat/Km (M-1s-1) 

4°C 66±1a 7.6±0.6 a 226±3a 30,000±500b 

30°C 153±3c 5.6±0.7a 524±10abc 94,000±2,000f 

37°C 166±3c 6.5±0.7 a 568±10abc 87,000±2,000d 

45°C 206±5d 6.9±0.7a 705±17bc 102,000±2,000g 

55°C 259±4e 8.1±0.5a 886±14cd 109,000±2,000h 

60°C 308±20f 32±4b 1054±68d 33,000±2,000c 

65°C 109±5b 43±4c 373±17ab 9,000±400a 

The molecular weight at 115 kDa of LacZ-His was used to calculate the kcat from νmax. 

Note: Experiments were performed in duplicate, and the standard deviation was <5%. Values in each attribute category marked with 

the same letter are not statistically different. Values marked with different letters are statistically different (P<0.05). 
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4.4.3.3 Determination of catalytic stability in different buffers and 

substrates 

The inactivation constant (kin) and the half life (t1/2) of 

recombinant β-galactosidase using oNPG or lactose as a substrate with different 

temperatures are shown in Table 4.7 and 4.8, respectively. The half life was calculated 

from ln of kin. In different buffers with different Mg2+ concentrations, the result 

showed that the increase of temperature could induce the half life decrease. The half 

life rapidly decreased as the temperature was higher than 45°C in both different buffer 

systems (Table 4.7 and 4.8). 

The increase of Mg2+ concentrations in a sodium phosphate 

buffer could extend the half life rather than the buffer without Mg2+ in both substrates. 

This means that no effect of the substrate type on the catalytic stability. However, the 

highest concentration of Mg2+ (10 mM) in the sodium phosphate buffer system 

decreased the half life of enzymes rather than the lower concentration of Mg2+           

(1 mM). However, the half life of enzyme from oNPG or lactose hydrolysis in 1mM 

Mg2+ of sodium phosphate buffer was higher than that of the other buffers. This might 

be because of the presence of Mg2+ in the buffer could extend the catalytic stability 

(half life time) of the enzyme. Most of the half-life times of recombinant                    

β-galactosidase in sodium phosphate buffer which contained 1 mM Mg2+ showed the 

higher value than that of the other buffers both in oNPG hydrolysis and lactose 

hydrolysis, especially in the temperature range 4–37°C. Nonetheless, the stability of 

recombinant β-galactosidase could rapidly lose activity beyond 45°C with or without 

Mg2+ both in oNPG hydrolysis and lactose hydrolysis. As a result of the lower half-

life times with increased temperatures, it can be determined that the presence of Mg2+ 
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in the buffers did not impact the half-life times at high temperature up to 45°C. 

However, the presence of Mg2+ may increase the β-galactosidase stability of              

L. bulgaricus with the alr-based system. This result is consistent with other studies 

using β-galactosidases LacLM from Lactobacillus spp. and β-galactosidases LacZ 

from E. coli (Tenu et al., 1971; Edwards et al., 1990; Roth and Huber, 1996; Nguyen 

et al., 2006; Nguyen et al., 2007; Juers et al., 2009; Iqbal et al., 2010; Maischberger et 

al., 2010; Iqbal et al., 2011; Nguyen et al., 2012; He et al., 2016). Moreover, Nguyen 

and co-workers (2012) reported that the stability and activity of GH2 β-galactosidases 

could be affected by the ions such as Mg2+, which is a common of enzyme 

characteristic. As the half-life time of recombinant β-galactosidase in sodium 

phosphate buffer containing 10 mM Mg2+ was lower values than that of sodium 

phosphate buffer containing 1 mM Mg2+ and milk buffer. This finding agrees with a 

work of Nguyen and co-workers (2012). Recombinant β-galactosidases from             

L. bulgaricus with an erm-based vector system decreased the enzyme activity of 31% 

in 10 mM bis-Tris buffer containing 10 mM Mg2+. In addition, high concentrations of 

Mg2+ resulted in inactivation of β-galactosidases from an E. coli (E416Q and E416V 

strain) as the expression system (Roth and Huber, 1996). The presence of several 

metal-binding sites, locating near the active site of β-galactosidase enzyme has a 

second Mg2+ binding site, which is important to the catalysis (Adalberto et al 2010). 

Beta-galactosidase commonly requires Mg2+ for maximal activity because the Mg2+ is 

well known to be essential for the folding and stability of large RNA molecules. This 

binding of Mg2+ to the substrate could induce some conformational changes in the 

enzyme molecule (Adalberto et al 2010), resulting in the better enzyme activity 

(Edwards et al., 1990; Juers et al., 2009).  Ions in buffers are believably took a direct 
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part in the catalytic mechanism of β-galactosidases and contribute to subunit 

interaction of β-galactosidases LacZ from E. coli (Nguyen et al., 2012). As the 

stabilization of β-galactosidases by presenting Mg2+, similarly, the divalent ions such 

as Mn2+, Mg2+, and Ca2+ were important to catalytic activity and stability of β-

galactosidases from Kluyveromyces (Huber et al, 1979; Harada et al., 1994; Page and 

Cera, 2006; Sutendra et al., 2007; Adalberto et al., 2010). 

To mimic the real system of lactose hydrolysis in dairy 

manufacturing, the catalytic-stability of the enzyme was carried out in milk buffer 

with oNPG and lactose as a substrate. The half life significantly decreased when the 

incubation temperature increased. Nevertheless, the lactose hydrolysis in milk buffer 

at 65°C seemed to give the half life stability better than sodium phosphate buffer with 

10 mM Mg2+ or without Mg2+. These results might be because of the present of 

calcium ion (Ca2+) in the milk buffer. Calcium is one of the important intrinsic 

components of milk and could induce the enzyme activity for the lactose hydrolysis 

reaction (Beard, 1992; Sendra et al., 2012). However, Pal and co-workers revealed 

that the β-galactosidases from many GRAS microorganisms were inhibited their 

activity by Ca2+ at approximately higher than 30 mM. Half life of enzyme in milk 

buffer with oNPG as a substrate at 4°C was the lowest when compared with that of the 

other buffers (Table 4.7). This might be because Ca2+, dissociated from CaCO3 which 

was the main composition in milk buffer, could attach and bind with the metal-

binding site of enzyme. Moreover, Ca2+ can be released more when the temperature of 

oNPG hydrolysis increased (Ritchie, 2008). 
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Table 4.7 The catalytic stability of a recombinant β-galactosidase from L. bulgaricus in milk buffer for oNPG hydrolysis 

Temperature 

(C°) 

Sodium phosphate buffer, 

pH6.5 

Sodium phosphate buffer+ 

1mM Mg2+, pH6.5 

Sodium phosphate buffer + 

10mM Mg2+, pH6.5 
Milk buffer, pH6.5 

kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) 

4 0.0013 533b 0.0012 578c 0.0013 533b 0.0015 462a 

30 0.0048 144c 0.0027 257d 0.0090 77a 0.0052 133b 

37 0.0050 139c 0.0040 173d 0.0059 117b 0.0068 102a 

45 0.0955 7.3a 0.0732 9.5b 0.0967 7.2a 0.428 16c 

50 0.256 2.7ab 0.234 3.0b 0.276 2.5a 0.158 4.5c 

55 1.10 0.6a 0.840 0.8a 0.440 1.6b 0.198 3.5c 

Note : Experiments were performed at least in duplicate, and the standard deviation was <5%. Values in each temperature marked with the 

same letter are not statistically different. Values marked with different letters are statistically different (P<0.05). 

 

 

 

 

 

 

 

 

 

 



134 
 

 

Table 4.8 The catalytic stability of a recombinant β-galactosidase from L. bulgaricus in milk buffer for lactose hydrolysis 

Temperature 

(C°) 

Sodium phosphate buffer, 

pH6.5 

Sodium phosphate buffer 

+ 1mM Mg2+, pH6.5 

Sodium phosphate buffer + 

10mM Mg2+, pH6.5 
Milk buffer, pH6.5 

kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) kin (h-1) t1/2 (h) 

4 0.0030 231a 0.0023 301c 0.0027 257b 0.0024 289c 

30 0.0078 89a 0.0038 182c 0.0071 98b 0.0040 173d 

37 0.0102 68c 0.0136 51b 0.0168 41a 0.0113 61d 

45 0.196 3.5b 0.132 5.2c 0.188 3.7b 0.211 3.3a 

50 0.579 1.2a 0.202 3.4c 0.215 3.2c 0.263 2.6b 

55 0.809 0.9a 0.596 1.2b 0.198 3.5c 0.311 2.2d 

Note : Experiments were performed at least in duplicate, and the standard deviation was <5%. Values in each temperature marked with the 

same letter are not statistically different. Values marked with different letters are statistically different (P<0.05). 
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4.5 Conclusions 

L. plantarum TLG02 harboring pSIP609-lacZand pSIP609-lacZ-His in an alr 

system yielded overexpression of recombinant β-galactosidase. The optimal 

temperature of the recombinant β-galactosidase was 55-60°C for lactose and 50°C for 

oNPG substrates. The temperature gave the highest affinity of attachment between 

lactose and recombinant enzyme was at 30°C. The presence of Mg2+ could increase 

the half-life times. 
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CHAPTER V 

APPLICATION OF RECOMBINANT  

BETA-GALACTOSIDASE IN MILK AND ICE CREAM  

 

5.1  Abstract 

The recombinant β-galactosidase from Lactobacillus delbruekii subsp. 

bulgaricus DSM 20081 expressed in L. plantarum TLG02 was applied for 

hydrolysis of lactose in the milk buffer and low fat milk. The crude enzyme of 

recombinant β-galactosidase at a concentration of 5-10 U/mL could hydrolyze lactose 

in milk buffer at least 50 and 90% within 1 hour at 4 and 65°C, respectively. The 

lactose hydrolysis and transgalactosylation of recombinant β-galactosidase in crude 

and purified enzymes was measured and compared with the commercial enzyme 

(Lactozym 2600L) with different enzyme concentrations (1, 5, and 10 U/mL) in low 

fat milk. All enzyme preparations could hydrolyze more than 85% of lactose within 18 

hours at 4°C. Moreover, the optimal time for galacto-oligosaccharides formation (3.63 

mg/mL) was at 3 hours. These were qualitatively confirmed by thin layer 

chromatography (TLC). Lactose-hydrolyzed milks were used as ingredients for a 

production of the ice cream which were evaluated for its qualities and sensory 

attributes. However, the sweetness and overall acceptance of regular-fat lactose-

hydrolyzed milks hydrolyzed by crude enzyme had the higher acceptability than those 

of the other milks hydrolyzed by the other enzymes. The overrun of regular-fat 
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lactose-hydrolyzed ice cream was higher than that of low-fat lactose-hydrolyzed ice 

cream. The overall acceptance mean scores of low-fat lactose-hydrolyzed ice cream 

produced by difference enzymes were significantly different (p<0.05). However, crude 

and purified enzymes could give no significant mean scores of color, aroma, 

sandiness, and overall acceptance when these values were compared with the regular-

fat lactose-hydrolyzed ice creams (p>0.05). 

 

Keywords:   recombinant β-galactosidase, milk buffer, transgalactosylation, thin layer 

chromatography, overall acceptance, overrun 

 

5.2  Introduction 

The most important reason for the use of β-galactosidase in the dairy industry 

is to allow lactose intolerant people to consume dairy products which are naturally 

high in lactose. Beta-galactosidase enzymes are commercially available from different 

sources with different enzyme formulations. Their major applications include the 

treatment of liquid milk and the use of the enzyme as a nutritional supplement (Dekker 

and Daamen, 2003; Mahoney, 2003). Another benefit of β-galactosidase is the 

transgalactosylation reaction, resulting in the formation of galacto-oligosaccharides 

(GalOS), which co-occurs during lactose hydrolysis (Nakayama and Arnachi, 1999; 

Nguyen et al., 2006, Splechtna et al., 2006; Nguyen et al., 2007; Splechtna et al., 

2007; Nguyen et al., 2011). 

Beta-galactosidases applied in liquid dairy products should be obtained from 

GRAS (generally recognized as safe) microorganisms. The enzyme should have a 

relatively high optimal pH (pH 6–7) to allow effective lactose hydrolysis at milk pH. 
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As many processors prefer to treat milk during overnight storage in low temperatures 

to avoid microbial growth, the enzyme needs to be able to be active at these 

temperatures (6-8°C) to avoid the introduction of additional processing steps. 

Moreover, the enzyme should be able to be inactivated by pasteurization and/or ultra-

high temperature (UHT) treatment in order to prevent its activity in the final product. 

In addition, the enzyme should be sufficiently pure to prevent off-flavor formation 

upon extended storage of UHT milk (Rand, 1981; Pivarnik et al, 1995; Mahoney, 

1997; Dekker and Daamen, 2003; Jelen and Tossavainen, 2003; Mahoney, 2003). 

Lactose hydrolysis is used to prevent the crystallization of lactose, improve 

sweetness, increase the solubility of milk products, produce lactose-free food 

products, and improve scoopability and creaminess in ice cream, yogurt and frozen 

dessert products (Neelakantan et al., 1999). Many recombinant β-galactosidases from 

Lactobacillus spp., such as L. sakei, L. acidophilus, L. plantarum, L. pentosus,           

L. bulgaricus, were isolated/overexpressed, characterized, and applied for lactose 

hydrolysis and transgalactosylation (Vasiljevic and Jelen, 2003; Nguyen et al., 2007; 

Maischberger et al., 2010; Iqbal et al., 2010; Iqbal et al., 2011; Nguyen et al., 2012). 

There still has the limitation of the application of β-galactosidase from Lactobacillus 

spp. in milk hydrolysis by using milk lactose as a substrate. Also, by products known 

as oligosaccharides have been less studied when milk lactose has been used as a 

substrate (Schwab and Ganzle, 2011; Ganzle, 2012). Moreover, the application of     

β-galactosidase for lactose hydrolysis to get the oligosaccharides has been focused 

only in the use of the commercial enzyme derived from yeast and fungi, such as 

Kluveromyces fragilis, Kluveromyces lactis, Aspegillus niger, and Aspegillus oryza 

(Panesar et al., 2010; Oliveira et al., 2011). There are two sources of recombinant      
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β-galactosidase used for lactose-hydrolyzed milk, which are L. delbrueckii subsp. 

bugaricus ATCC11842 in E. coli expression system (Rhimi et al, 2009) and the cold-

adapted L. acidophilus in E. coli expression system (Pan et al., 2010). Jolar and 

Karbassi (2011) have used the β-galactosidases in crude enzyme from L. bulgaricus to 

produce lactose-hydrolyzed milk for sensory evaluation to compare the lactose-

hydrolyzed milk treated by commercial enzymes.  

As the galacto-oligosaccharides (GalOS) obtain by transgalactosylation, which 

co-occurs during lactose hydrolysis, have prebiotic properties (Nakayama and 

Arnachi, 1999; Nguyen et al., 2006, Splechtna et al., 2006; Nguyen et al., 2007; 

Splechtna et al., 2007; Nguyen et al., 2011). GalOS can be produced from β-

galactosidases derived from various Lactobacillus spp., such as L. delbrueckii subsp. 

lactis, L. reuteri, L. acidophius, L. pentosus, L. sakei as well as L. plantarum 

(Vasiljevic and Jelen, 2003; Spletchna et al., 2006; Nguyen et al., 2007; Iqbal et al., 

2010; Maischberger et al., 2010; Iqbal et al., 2011; Oliveira et al., 2011). Given the 

higher yield rate of GalOS production by β-galactosidase from Lactobacillus spp. 

versus other sources, application of β-galactosidase from Lactobacillus spp. has 

gained attention as a prebiotic ingredient (Rhimi et al., 2009; Asraf and Gunasekaran, 

2010; Iqbal et al., 2011). Moreover, production of GalOS by β-galactosidases from 

lactic acid bacteria can be augmented by increasing lactose concentration in milk 

(Smart, 1991; Ganzle, 2012). 

For the production of lactose-free milk, there are three principle ways to 

produce this product (Dekker and Daamen, 2003). First, β-galactosidaseis added to the 

milk before heat treatment (pre-treatment) then the product is heated, packed, and sold 

at 6°C- 8°C to avoid microbial growth (Dekker and Daamen, 2003). This method is 
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not performed in the optimum temperature of the enzyme, the hydrolysis time is rather 

long (24-30 hours) depending upon the enzyme dosage (Dekker and Daamen, 2003). 

In addition, this method can be applied at high temperature (38-40°C) in good quality 

raw milk. Also, the milk should always be pasteurized or at least thermalized prior to 

hydrolysis for safety purposes. The second method involves the application of β-

galactosidase after heat treatment of milk (post-treatment) (Dekker and Daamen, 

2003). In this process, milk is packaged after a sterile β-galactosidase is added in-line 

immediately following UHT treatment of milk, allowing the lactose to be hydrolyzed 

in the final package at ambient temperature. Since active enzyme is present in the milk 

during storage, this method requires a high quality of β-galactosidase preparation 

(Dekker and Daamen, 2003). The last method is applying β-galactosidase into milk 

products by the consumer by adding a few drops of β-galactosidase prior to 

consumption of the milk. Consumers can buy small packages of neutral                      

β-galactosidase, and the lactose will be hydrolyzed within 12–24 hours depending 

upon the dosage (Rand, 1981; Pivarnik et al, 1995; Mahoney, 1997; Dekker and 

Daamen, 2003; Jelen and Tossavainen, 2003; Mahoney, 2003). 

In the review of Oliveira and co-workers (2011), the cold-adapted recombinant 

L. acidophilus β-galactosidases were produced and purified through the E. coli 

expression system. These recombinant enzymes were able to hydrolyze 73% of lactose 

in milk within 30 hours at 10°C (Pan et al., 2010). Another recombinant acid tolerant 

β-galactosidase from L. delbrueckii subsp. bulgaricus ATCC 11842 was produced 

from the E. coli expression system. The lactose hydrolyses of both milk and whey 

using original recombinant enzymes were compared with the E491A mutated enzyme 

(substitution of glutamic acid at position 491 by alanine). The result showed that the 
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mutated enzyme had an 89% bioconversion at 42°C after 10 hours incubation with     

1 mg/mL of β-galactosidase, as compared to 80% efficiency in the original version 

(Vasiljevic and Jelen, 2001; Rhimi et al., 2009). Although, the recombinant                

β-galactosidases expressed in E. coli systems is safe, few studies of recombinant       

β-galactosidases expressed in Lactobacillus spp. were performed. Jokar and Karbassi 

(2011) have studied the hydrolysis of sterile milk using the crude enzyme of              

β-galactosidases from L. bulgaricus CHR Hansen Lb-12 in comparison with the 

commercial enzyme (DSM Food specialist Maxilact 12000, France). The result 

showed that lactose-hydrolyzed milk by the crude enzyme did not exhibit any 

significant differences in sensory evaluation when compared with the ordinary UHT 

milk. 

For ice cream applications, lactose reduction is mainly performed by neutral  

β-galactosidases (Illanes, 2003). The glucose and galactose from lactose hydrolysis 

produce a much softer ice cream than do disaccharides such as sucrose (Marshall et 

al., 2003). Lactose hydrolysis improves the scoopability of the ice cream due to the 

decreasing of the freezing point, leading to an increase in the amount of solutes in the 

solution (Matak, 1999). Lactose hydrolysis also has an effect on the sandiness, texture, 

and other sensory characteristics of ice cream (Mahoney, 1997; Jelen and 

Tossavainen, 2003; Mahoney, 2003). Only commercial grade β-galactosidases are 

used for lactose hydrolysis in ice cream production, most of which are derived from 

yeast (Stevenson et al., 1983; Matak, 1999; Abbasi and Saeedabadian, 2013). 

However, the purified and crude enzymes of recombinant β-galactosidases from 

Lactobacillus spp. have not been studied. The market trend of lactose-reduced 

products is driving demand for lactose-free products (Mahoney, 2003). The market 
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survey (Statista Inc.) of lactose-free dairy products in the U.S., the largest market for 

lactose-free food, has shown an increased demand for lactose-free food products of 

$701.5 million in 2012 to $807.7 million in 2015. The Thai dairy market had total 

revenues of $1.6 billion in 2012, representing a compound annual growth rate 

(CAGR) of 3.3% between 2008 and 2012 (Senadisai et al., 2015). Thus, the increased 

market demand for low-lactose milk and milk products such as ice cream should 

increase the overall demand for milk, thereby expanding the dairy market as a whole. 

The objectives of this study were to study the efficacy of crude enzyme for 

lactose hydrolysis in the milk buffer and to compare the lactose hydrolysis and 

transgalactosylation of crude, purified and commercial enzymes in low fat milk for the 

potential use in the dairy industry. Lactose in low-fat and regular-fat pasteurized milk 

were hydrolyzed at 4°C using different types of β-galactosidases and were determined 

for sensory evaluation. Also, the qualitative presence of lactose was detected by thin 

layer chromatography (TLC). These lactose-hydrolyzed milks were used as 

ingredients in producing ice cream, which was evaluated for the sensory attributes too. 

 

5.3  Materials and methods 

5.3.1 Preparation of the crude enzymes of β-galactosidase from              

L. plantarum TLG02 harboring pSIP609-lacZ 

L. plantarum TLG02 harboring pSIP609-lacZ was cultivated in        

500 mL fermentations to obtain sufficient material for the crude enzyme. This strain 

was grown in MRS broth (Oxoid, Basingstoke, U.K.) in a one liter of Erlenmeyer 

flask with loosely closed screw-cap at 30°C in incubator (Memmert, BE 500, WTB 

Binder BD115). L. plantarum TLG02 harboring pSIP609-lacZ was grown overnight 
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in 50 mL MRS broth medium as a pre-culture and inoculated into 500 mL fresh pre-

warmed MRS medium (30°C) until the density of cell concentration (OD600) reached 

0.1, which was measured by spectrophotometer (Ultrospec 2000, Pharmacia biotech, 

Cambridge, UK) at 600 nm absorbance. When the OD600nm reached to ∼0.3, 25 

ηg/mL of the inducing peptide pheromone IP673 (supplied by Food Biotechnology 

Laboratory, Department of Food Sciences and Technology, BOKU University of 

Natural Resources and Life Sciences, Vienna, Austria) was added to the cultured 

medium. The cultures were incubated further for 20 hours until the cell concentration 

reached OD600 of 6. The induced cells were harvested and washed twice with 50 mM 

sodium phosphate buffer (pH 6.5). After centrifugation, the cell pellets were dissolved 

in 50 mM sodium phosphate buffer (pH 6.5) and were disrupted by the ratio of 1:3. 

Cells were disrupted via 5 minutes sonication (40% power output, with pulses set to   

5 sec ON / 5 sec OFF, 2 times) on ice using a sonicator (Waken GE100 Ultrasonic 

processor, Japan). After sonication, cell debris was removed by the centrifuge 

machine (Thermoscientific, Sorvall legend XTR centrifuge, USA) at 9000 g (4°C) for 

20 minutes to get the crude enzyme. The crude enzymes of β-galactosidase were 

stored at 4°C in refrigerator for 5 days. 

5.3.2 Enzyme Assay 

5.3.2.1 Assay with lactose as substrate 

Lactose was used as the substrate in this assay. Twenty µL of 

enzyme solution was added to 480 µL of a 600 mM lactose solution in 50 mM sodium 

phosphate buffer (pH 6.5). The reaction mixture was incubated at 30°C for 10 minutes 

by 600 rpm speed agitation in dry bath incubator (HB1, Wealtec Corp., USA). After 

10 minutes, the reaction was heat-inactivated at 99°C using dry bath incubator (HB1, 
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Wealtec Corp., USA) for 5 minutes. The sample had been cooled to room temperature 

and then, the release of D-glucose was assessed colorimetrically using the enzymatic 

assay of glucose oxidase (GOD/POD assay) from a wok of Kunst and co-workers 

(1988) by adding 60 µL of reaction mixture to 600 µL of a solution containing GOD 

(94 µg/mL; Sigma-Aldrich, CA, USA), POD (6.1 µg/mL; Sigma-Aldrich, CA, USA), 

4-aminoantipyrine (157 µg/mL; Sigma-Aldrich, CA, USA), and phenol (1.95% v/v; 

Merck Ltd.) in 50 mM sodium phosphate buffer (pH 6.5).This assay mixture (660 µL) 

was incubated in a dark room at ambient temperature for 40 minutes, and the 

absorbance at 505 nm was measured using spectrophotometer (Ultrospec 2000, 

Pharmacia biotech, Cambridge, UK). One unit of lactase activity was defined as the 

amount of enzyme releasing 1 µmol of D-glucose per minute under the given 

conditions. All measurements and experiments were performed at least in duplicate, 

and the experimental error was less than 5%. The glucose concentration (C) was 

defined as follows (Kunst et al., 1988): 

 

C [g/l]     =                    × (sample dilution factor) 

 

C [mM]   =                      ×   1000 

 

Where OD505 is the sample-measured absorption at 505 nm,   

k is the slope of the glucose standard curve, and Mrglucose is the molecular mass of 

glucose (180.16 g/mol), after correcting for the blank. 

The β-galactosidase activity was calculated from the following 

relationship (Nguyen et al., 2006): 

 

OD505 
k 

C (g/l) 
Mrglucose 
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β-Galactosidase activity (U/mL)  =  C [mM]  ×         ×                                  × 

 
 

Where C [mM] is the glucose concentration (mM), t is the 

reaction time (10 minutes), Vlactose is the volume of lactose (480 µL), Venzyme is the 

volume of enzyme sample (20 µL), and Dil is the enzyme dilution factor, after 

correcting for the blank. 

5.3.3 Lactose hydrolysis in the milk buffer 

  The effects of crude enzyme concentrations (1, 5, and 10 U/mL of 

reaction mixture), lactose concentrations (125 and 165 mM), and the reaction 

temperatures (4 and 65°C) on lactose hydrolysis in a milk buffer (Gutierrez et al., 

2002) were determined. Milk buffer consists of KCL + MgSO4·7H2O + 

NaH2PO4·H2O + CaSO4·2H2O + CaCl2·2H2O + Citric acid at 1.10 + 0.71 + 1.87 + 

1.00 + 0.99 + 2.00 g/L, respectively. The measured activities were compared with the 

blank standard reaction. The reaction of lactose hydrolysis affected by those effects 

was periodically observed at 0, 15, 30, 45 and 60 minutes after continuously agitation 

in a refrigerator. D-glucose as a product from lactose hydrolysis was measured by the 

GOD/POD assay. This assay provided the lactose content which could be calculated 

to be the percentage of lactose hydrolysis following (Mahoney, 1997): 

 

Percentage hydrolysis =                              × 100 

 
 

5.3.4 Lactose hydrolysis and transgalactosylation 

The presence of lactose, glucose, galactose and galacto-

oligosaccharides (GalOS) was detected in reduced fat milk using non-tagged purified 

1 
 

t 

(Vlactose+ Venzyme) 
 

Venzyme 
Dil 

Total monosaccharides 

Original lactose concentration 
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recombinant β-galactosidase from L. bulgaricus and commercial enzyme (5 U/mL of 

reaction mixture). The reactions were incubated at 4°C and continuously agitated at 

300 rpm. Samples were collected periodically (at 0, 3, 6, 9, 12, 15 and 18 hours), and 

the composition of lactose, glucose, galactose and GalOS were analyzed by the high-

performance liquid chromatography (HPLC; Phenomenex, Rezek RNM Carbohydrate 

column, 7.8 × 300 mm, CA, USA) following Osiriphun, (2010). A carbohydrate 

analysis column consisted of a refractive index detector (Waters model 410; Waters 

Corp., MA, USA), a pump (M510; Waters Corp., MA, USA), a column oven and a 

system for data analysis (Chromatopac CR-5A, Shimadzu Corp., Kyoto, Japan). The 

eluent used was pre-degassed distilled water at 80°C and fed at flow rate 0.4 ml/min. 

The degree of hydrolysis (DH) was calculated following the equation (Mahoney, 

1997): 

 

Degree of hydrolysis  =         × 100 

 
 

5.3.5 Lactose-hydrolyzed milk for milk composition, thin layer 

chromatography, microbiological quality, and sensory evaluation 

Low-fat (1.5% fat) and regular-fat pasteurized milk (full fat; 3.5% fat) 

samples were supplied by Dairy Home Co., Ltd (Nakorn Ratchasima, Thailand). The 

crude enzyme of recombinant β-galactosidase, the purified enzyme from chapter 4, 

and the commercial enzyme (Lactozym 2600L, β-galactosidase from K. lactis, 

Novozymes, Denmark) purchased from Sigma-Aldrich (CA, USA) were used for the 

preparation of the lactose-hydrolyzed milk samples. The crude, purified, and 

commercial enzymes were added into 200 mL of low-fat and regular-fat milk at         

Total monosaccharides 

Original lactose concentration 
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5 U/mL of reaction mixture. All milk lactose hydrolysis reactions were stirred at 

200 rpm (Magnetic stirrer MSH300, Biosan, Riga, Latvia) with controlled 

temperatures at 4°C in a refrigerator. After 24 hours of hydrolysis reaction, the 

samples were collected and pasteurized at 80°C for 15 sec and then, cooled to 4°C in 

refrigerator for further analysis (thin layer chromatography detection, microbiological 

quality, lactose-hydrolyzed milk sensory evaluation, and detection of lactose-crystal).  

5.3.6 Thin layer chromatography (TLC) detection of lactose hydrolysis 

TLC was used for detecting the sugar derivatives from milk lactose 

hydrolysis. The sugar derivatives on chromatogram of TLC were dried and then 

sprayed with ninhydrin solution. Then, ninhydrin reacted with the amino acids and 

gave the colored, mainly brown and purple, compounds. 

For sample preparation, 1,000 µL of either low-fat or regular-fat 

pasteurized milk samples were aliquoted into 1.5 mL Eppendorf microcentrifuge 

tubes. Lactose hydrolysis was performed using 5 U/mL concentrations for                  

β-galactosidases (crude, purified, and commercial enzymes) in an orbital rotation 

shaker (Certomat TCC, B. Braun Biotech International, Germany) at 200 rpm, at 4°C. 

Lactose-hydrolyzed milk samples (100 µL) from the hydrolysis reaction were 

collected at 6, 9, 12, 18, and 24 hours for the TLC detection for which the lactose-

hydrolyzed milk samples were heat-inactivated at 99°C for 5 minutes, then cooled to 

4°C in refrigerator. 

The sugar standards (glucose, galactose, and lactose) and lactose-

hydrolyzed milk samples were analyzed by thin layer chromatography (TLC). TLC 

was carried out using high-performance TLC silica plates (HPTLC Lichrospher silica 

gel 60 F254S, Merck). The sugar standards were prepared in 1g/L concentration, and    
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5 µL of these standards were applied to the TLC plate. The lactose-hydrolyzed milk 

samples were diluted 1:2 with dH2O, and 2 µL were loaded on the TLC plate. The 

samples were applied to the marked start edge of the TLC plate (normally at 1.5 cm 

height from lower edge of the plate). The plate was then allowed to be air-dried for 10 

min before its transferring to the TLC tank for the development. 

The plate was run two times in solvent (n-butanol/n-propanol/ethanol/ 

water = 2:3:3:2) and dried in between. The plate was dipped quickly into the staining 

solution (ethanol/sulfonic acid = 19:1) and dried for 5 min at 130°C until black spots 

were visible. In addition to qualitative results, TLC provides a chromatogram 

measurement known as an Rf value. The Rf value is the “retardation factor” value 

expressed as a decimal fraction. The Rf value can be calculated following the equation 

(Spangenberg et al., 2011): 

 
     Rf = 

 
 

Where: zs is the distance of the substance zone from the sample origin 

(mm), zf is the solvent front migration distance (mm), and z0 is the distance between 

immersion line and sample origin (mm). 

5.3.7 Lactose-hydrolyzed milk composition 

The determination of lactose-hydrolyzed milk composition was 

analyzed by Milko Sonic S/N: 5798 (supplied by Dairy Home Co., Ltd.). 

5.3.8 Microbiological quality of lactose-hydrolyzed milk  

Twenty-five mL of the lactose-hydrolyzed milk samples was added to 

225 mL of sterile water and shaken to make a homogenous mixture (Andrews 1992). 

Serial dilutions were made to 10-2 and 10-3 for all samples and spread plate technique 

zs 
zf - z0 

 

 

 

 

 

 

 

 



158 
 

was employed for determination of total plate count (3M™ Petrifilm™ Aerobic Count 

Plates), E. coli, Coliform (3M™ Petrifilm™ E. coli/Coliform Count Plates), and yeast 

and mold (3M™ Petrifilm™ Rapid Yeast and Mold Count Plates). The inoculation 

and interpretation of 3M™ Petrifilm™ was followed by Petrifilm guides 

(Microbiology Products, 3M Health Care Ltd.). 

5.3.9 Lactose-hydrolyzed milk sensory evaluation 

The lactose-hydrolyzed milk sample used for sensory evaluation was 

stored in a refrigerator approximately 24 hours prior to analysis. Each 600 mL sample 

of lactose-hydrolyzed milk was incubated in a temperature of less than 4-8°C, verified 

by digital thermometer (Shenzhen Shining Electric Technology Co., Ltd), prior to 

sensory evaluation. 

The lactose-hydrolyzed milk samples from low-fat and regular-fat milk 

were separately served. Each set of servings consisted of a control sample, a lactose-

hydrolyzed milk by crude enzyme-hydrolyzed milk, purified enzyme-hydrolyzed 

milk, and commercial enzyme-hydrolyzed milk. Approximately 20 mL of each 

lactose-hydrolyzed milk were poured into transparent plastic glasses Aro (makro, 

Nakhon Ratchasima, Thailand) labeled with random three-digit numbers and stored at 

room temperature for 5 minutes prior to the sensory session. 

The sensory evaluations of low-fat and regular-fat lactose-hydrolyzed 

milk were analyzed by serving samples to 30 trained panelists (aged 20–45 years). 

Lactose-hydrolyzed milk samples were served simultaneously and in random order. 

Panelists were asked to taste the lactose-hydrolyzed milk samples in order to evaluate 

the attributes of milk by using 9-point hedonic test (Nelson and Trout (1964), which 

were color, aoma, sweetness, overall acceptance as shown in Appendix A (Figure 
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1A). A glass of water was also served to cleanse the palate between tasting each 

sample. Panelists could write additional comments on the bottom of the sensory 

evaluation form. The scores of each sample’s attributes (color, aroma, sweetness, and 

overall acceptance) were averaged and used for comparing the lactose-hydrolyzed 

pasteurized milks derived from the different β-galactosidase types (Clarke, 2004; 

Wood, 2011; Abbasi and Saeedabadian, 2013). 

5.3.10 Ice cream preparation 

Five hundred mL of lactose-hydrolyzed milk was prepared from low-

fat (1.5% fat) and regular-fat milk (3.5% fat) using the different enzyme types (crude 

and purified enzymes) at 5 U/mL reaction mixture. This ice cream was prepared 

following the method for lactose-hydrolyzed milk production in section 5.3.4. The 

commercial enzyme was not used to apply for this section since it gave the same 

results on enzyme ability as the purified enzyme did.  

Lactose-hydrolyzed milks were used as a main ingredient in ice cream 

production. Low-fat and regular-fat milks were used as experimental controls. To 

prepare the ice cream, the milk (73.9 w/w %), glucose syrup (11.4 w/w%; 10-12 DE), 

and butter milk (9.5 w/w%) were mixed and heated to 60 °C, then a mixture of sugar 

(4.8 w/w%) and stabilizer (0.4 w/w%; fulfil 400, SKW Biosystems Co., LTD, French) 

were added until the mix had fully melted. Afterwards, the mix was pasteurized using 

a batch pasteurizer (15 sec at 80°C) and was then homogenized (1500/500 bar; 

APV Gaulin Homogenizer, Model: 1515MR-8TA, SPX FLOW, Inc., NC, USA). For 

purposes of aging, the mix was cooled to 4°C and then refrigerated at 4°C for at least 

4 hours. After aging, the aeration process was performed by a Batch Ice Cream 

Freezer (Single Flavor Model104 – 40, Taylor, USA). The ice cream was drawn        
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at -5°C (approximately 15 minutes of whipping and freezing process). Then the ice 

creams were packed in 30 ml Aro plastic cups (Makro, Nakhon Ratchasima, Thailand) 

and stored (-30°C, 24 hours) for hardening in a freezer at -22°C (NT34T/404/43, 

Montecchio, Italy) prior to analysis (Abbasi and Saeedabadian, 2013; Marshall et al. 

2003). 

5.3.11 Characterization of ice cream qualities  

5.3.11.1 Overrun of ice cream 

The percentage of overrun was calculated following this 

equation (Marshall et al. 2003):  

 

Overrun (%) =                             × 100 

 
 

5.3.11.2 Particle size analysis of ice cream 

The particle size analysis of ice cream was used to measure 

fat globule size distribution in ice cream mix and ice cream. This measure was used 

either as an indicator of homogenizer performance or as a benchmark for fat 

destabilization (Goff and Hartel, 2013).  

Two drops of melting ice cream samples (∼20µL) were 

dropped in the laser scattering particle size distribution analyzer (HORIBA LA-960, 

HORIBA Scientific, Kyuto, Japan) operating transmittance (R) of 90.5%, 

transmittance (B) of 76.6%, circulation speed of 5 rpm, agitation speed of 10 rpm, and 

ultra-sonic of 2 minutes. 

 

 

weight of mix – weight of equal volume of ice cream 
 
               weight of equal volume of ice cream 
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5.3.11.3 Microbiological quality of ice cream 

The ice cream samples (25 g) was added to 225 mL of sterile 

water and shaken to make a homogenous mixture (Andrews 1992). Serial dilutions 

were made to 10-2 and 10-3 for all samples and spread plate technique was employed 

for determination of total plate count (3M™ Petrifilm™ Aerobic Count Plates),        

E. coli, Coliform (3M™ Petrifilm™ E. coli/Coliform Count Plates), and yeast and 

mold (3M™ Petrifilm™ Rapid Yeast and Mold Count Plates). The inoculation and 

interpretation of 3M™ Petrifilm™ was followed the Petrifilm guides (Microbiology 

Products, 3M Health Care Ltd.). 

5.3.11.4 Sensory evaluation 

The lactose-hydrolyzed ice cream samples from low-fat and 

regular-fat lactose-hydrolyzed milk were separately served. Each set of servings 

consisted of a control sample, crude enzyme-hydrolyzed milk, purified enzyme-

hydrolyzed milk, and commercial enzyme-hydrolyzed milk. The ice cream samples 

stored in a freezer (-22°C) was then moved into a refrigerator (PTV19T/43, 

Montecchio, Italy) at 4°C for 30 minutes before sensory evaluation. Each sample of 

lactose-hydrolyzed ice cream was verified while at a temperature of less than -7 to -

6°C by digital thermometer (Shenzhen Shining Electric Technology Co., Ltd). Ice 

cream samples consisted of approximately 30 mL of lactose-hydrolyzed ice cream in 

plastic cups and were labeled with random three-digit numbers prior to the sensory 

session. 

The sensory evaluations of lactose-hydrolyzed ice creams 

were analyzed by serving samples to 30 trained panelists (aged 20–45 years). Lactose-

hydrolyzed ice cream samples were served simultaneously and in random order. 
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Panelists were asked to taste the lactose-hydrolyzed milk samples in order of the 

sensory evaluation form placed on the tray. Each lactose-hydrolyzed ice cream sample 

was evaluated for 7 sensorial attributes: color, aroma, sweetness, firmness, 

meltability, sandiness, and overall acceptance as shown in Appendix A (Figure 2A) 

using a 9-point hedonic scale as mentioned in 5.3.9. A glass of tea was served to 

cleanse the palate between tasting each ice cream sample. Panelists could write 

additional comments on the bottom of the sensory evaluation form. The scores of each 

sample’s attributes (Color, Aroma, Sweetness, Firmness, Meltability, Sandiness, and 

Overall acceptance) were averaged and used for comparing the lactose-hydrolyzed ice 

creams derived from the different β-galactosidase types (Clarke, 2004; Wood, 2011; 

Abbasi and Saeedabadian, 2013). 

5.3.12 Statistical analyses 

All experiments and measurements were performed at least in 

duplicate. Analysis of variance (ANOVA) was determined using SPSS program 

(SPSS version 16, Windows version). Duncan Multiple Range Testing (DMRT) was 

used to compare differences among the means at P < 0.05. 

 

5.4 Results and discussion 

5.4.1 Application of crude enzyme of recombinant β-galactosidase for 

lactose hydrolysis in the milk buffer 

The effects of different crude enzyme concentrations (1, 5, and 10 

U/mL), different lactose concentrations (125 for low-fat milk and 165 mM for 

regular-fat milk), and different temperatures (4 and 65°C) on lactose hydrolysis in 

milk buffer were determined. These temperatures were mimicked to the pre- and post- 
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treatment pasteurization, respectively for lactose hydrolysis in a general dairy 

manufacturing. However, the reaction time of lactose hydrolysis in this study was 

fixed at 1 hour because, from preliminary work, the crude enzyme was considered for 

the heat denaturation when the temperature was at 65°C and above.  

For the effect of the concentration of crude enzyme on lactose 

hydrolysis, the result showed that the higher concentration of crude enzyme was used, 

the more percentage of lactose hydrolysis was found. The highest percentage of 

lactose hydrolysis (98.7%) in this study was found when using enzyme concentration 

at 10 U/mL and l25 mM of lactose was used as a substrate at 65°C. However, the 

lactose hydrolysis increased up to 99.8% when l65 mM of lactose was used as a 

substrate at the same temperature (Table 5.1). The percentage of lactose hydrolysis 

from using different concentrations of crude enzyme, thus, was significantly different 

as shown by ANOVA in Appendix B (Table 1B). Theoretically, the concentration of 

enzyme increases the percentage of lactose hydrolysis increases even though the 

substrate concentration is constantly maintained (Whitaker, 1994). This result agrees 

with Nagaraj and co-workers (2009) which reported that the increasing of                  

β-galactosidase concentration from yogurt starter culture of S. thermophilus and        

L. bulgaricus could increase the percentage of lactose hydrolysis. Similarly, a work of 

Bosso and co-workers (2016) showed that the increase of β-galactosidases 

concentrations from K. lactis and A. oryzae gave a higher hydrolysis rate than that of 

using the lower concentrations. Also, a work of Sener and co-workers (2008) showed 

that the increase of β-galactosidase concentration as a commercial β-galactosidase 

from K. marxianus lactis provided more milk lactose hydrolysis rate compared to the 

use of a lower concentration.  
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Regarding the effect of lactose concentration on lactose hydrolysis, the 

result showed that the percentage of lactose hydrolysis with the lactose concentration 

about 125 mM and 165 mM as the substrate and with different crude enzyme 

concentrations was in the range 34.8–98.7% at 4°C and 35.4–99.8% at 65°C, 

respectively (Table 4.9). This might be because the lactose concentration used in this 

study (125 and 165 nM) was pretty close to each other, consequently the rate of 

lactose hydrolysis from using both concentrations was not significant difference as 

shown in ANOVA Table (Table 2C). 

According to the effect of temperature on the lactose hydrolysis, the 

result showed that the lactose hydrolysis at 4°C was lower than that at 65°C. The 

percentage of lactose hydrolysis at 4 and 65°C with different lactose concentrations 

was in the range of 34.8–99.8% (Table 5.1). The percentage of lactose hydrolysis at    

4 and 65°C with different lactose concentrations was significantly different as shown 

by ANOVA (Table 3C). Increase of the temperature could affect the reaction rate of 

lactose hydrolysis, resulting in more reaction rate as collision theory. This result 

agrees with Peterson and co-workers (1989) which showed that the high temperatures 

(40°C) augmented the lactose hydrolysis reaction when the immobilized                    

β-galactosidase was used when compared to the low temperature (15°C). Similarly, a 

work of Bosso and co-workers (2016) revealed that higher temperature gave much 

higher percentage of lactose hydrolysis when the commercial β-galactosidase was 

used. Also, Rosolen and co-workers (2015) reported that the increase of temperature 

(55°C) could hydrolyze milk lactose by K. lactis β-galactosidase more than that at low 

temperature (10°C). 
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Thus, from the result of lactose hydrolysis by crude enzyme in this 

study, it shows that crude enzyme could be used to hydrolyze milk in both pre- (4°C) 

and post- (65°C) for a treatment of pasteurization. However, the lactose hydrolysis at 

4°C is preferred as it still provides sufficient reaction time to complete lactose 

hydrolysis in milk. 

 

Table 5.1  The effects of different crude enzyme concentrations, different lactose 

concentrations, and different temperatures on lactose hydrolysis in milk 

buffer  

Temperature 
Enzyme 

concentration 

Lactose 

concentration 

Percentage of 

lactose hydrolysis 

4°C 

1 U/mL 
125 mM 34.8±0.1 

165 mM 35.4±0.6 

5 U/mL 
125 mM 50.0±0.9 

165 mM 55.8±0.2 

10 U/mL 
125 mM 63.0±1.4 

165 mM 75.1±0.1 

65°C 

1 U/mL 
125 mM 34.4±0.7 

165 mM 38.3±0.1 

5 U/mL 
125 mM 90.4±2.0 

165 mM 92.3±0.7 

10 U/mL 
125 mM 98.7±1.2 

165 mM 99.8±0.3 
 

Note:  Experiments were performed in quadruplicate, and the standard deviation was 

<5%.  
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5.4.2 Determination of lactose hydrolysis and transgalactosylation 

The different recombinant β-galactosidase forms (crude and purified 

enzymes) and commercial enzyme (Lactozym 2600L) were applied for lactose 

hydrolysis at 4°C. This temperature was the imitation of milk-pasteurized process 

condition that was a temperature of cooling tank before the pasteurization process. 

The β-galactosidase application was a pre-treatment of enzyme before the 

pasteurization process for lactose-hydrolyzed milk production. The hydrolysis of 

lactose of recombinant β-galactosidase with different concentrations (1, 5 and 10 

U/ml) was studied in low fat milk containing 1.5% milk fat at 4°C. The lactose, 

glucose, galactose, and galacto-oligosaccharides (GalOS) content from milk lactose 

hydrolysis were measured by RP-HPLC. The percentage of lactose hydrolysis (Figure 

5.1 and Table 5.2) and the GalOS content (Figure 5.2 and Table 5.3) of low-fat 

lactose-hydrolyzed milk was compared in different concentrations of crude, purified 

and commercial enzymes at 4°C. 

The lactose content at 0 hour was 54.3 mg/mL that was defined as 100% of 

remaining lactose content. The glucose and galactose content at 0 hours were 6.96 and 

4.33 mg/mL, respectively. Galacto-oligosaccharides (GalOS) content was not detected 

in low-fat milk at zero hour. Lactose hydrolysis of β-galactosidase from crude enzyme 

at 4°C for 18 hours (final hydrolysis reaction time) with 1, 5, and 10 U/mL of enzyme 

concentration showed the percentage of remaining lactose content to be 15.9, 13.2, 

and 11.2%, respectively. The use of commercial enzyme for milk lactose hydrolysis at 

4°C for 18 hours with 1, 5, and 10 U/mL of enzyme concentration showed the 

percentage of remaining lactose content to be 6.2, 4.5, and 3.2%, respectively. The use 

of purified β-galactosidase for milk lactose hydrolysis at 4°C for 18 hours with 1, 5, 
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and 10 U/mL of enzyme concentration showed the percentage of remaining lactose 

content to be 10.3, 7.9, and 6.2%, respectively. β-galactosidase types ordered in terms 

of efficient lactose-hydrolyzation of milk from highest to lowest are commercial 

enzyme, purified enzyme, and crude enzyme. Nonetheless, all types of β-galactosidase 

with various concentrations hydrolyzed at least 80% of milk lactose within 6 hours 

and more than 85% by the final hydrolysis reaction time (18 hours). However, β-

galactosidase concentration at 5 U/mL was chosen to continue for the lactose-

hydrolyzed milk production because the lactose hydrolysis from using enzyme at 

using 5 and 10 U/mL (at 4°C for 18 hours) gave the same result. However, 

preliminarily, the use of enzyme concentration at 10 U/mL gave a little bit bitter and 

harsh taste rather than that at 5 U/mL. Thus, the enzyme concentration at 5 U/mL was 

chosen for a further study. 

This result agrees with a work of Rhimi and co-workers (2009) that showed 

that mutated-type acidotolerant β-galactosidase from L. delbrueckii subsp. bulgaricus 

ATCC 11842 expressed in E. coli system had more efficient lactose-hydrolysis than 

wild-type β-galactosidase. The mutated β-galactosidase hydrolyzed 89% of milk 

lactose at 42°C after 10 hours while the wild-type β-galactosidase hydrolyzed 80% of 

milk lactose under the same condition. Pan and co-workers (2010) found that the cold-

adapted β-galactosidase lacZ from L. acidophilus hydrolyzed 73% of milk lactose 

within 30 hours at 10°C. Moreover, Jokar and Karbassi (2011) revealed that the crude 

enzyme of β-galactosidase from L. bulgaricus CHR Hansen Lb-12 and commercial 

enzyme (Maxilact, DSM, Netherlands) could produce lactose-hydrolyzed milk in a 

Ultra High Temperature (UHT) condition but the commercial enzyme gave the higher 

lactose hydrolysis than the crude one. Matioli and co-workers (2003) reported that the 
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commercial enzyme from K. fragilis (Lactozym 3000 LAU/L, Novozymes, Denmark) 

could hydrolyze 70 -80% of lactose from substrate solution within 2-3 hours at 40°C. 

However, the commercial enzyme was suggested to be not available after 6 hours 

because of the inactivation of milk protein and possible microbial contamination at 

40°C. 

The highest formation of GalOS from milk lactose hydrolysis reaction 

occurred in the range 1.5-3 hours. The crude and purified enzymes were more 

productive than the commercial enzyme for GalOS formation. There was no 

difference in GalOS formation (ranging from 2.83-3.63 mg/mL) among different 

enzyme concentrations (1, 5, and 10 U/mL). All types of enzyme with 1 U/ml of 

enzyme concentration showed the highest GalOS production. 

The crude enzyme of β-galactosidase for lactose hydrolysis in this study is 

agreed with a GalOS production work of Vasiljevic and Jelen (2003). They reported 

that the crude enzyme of β-galactosidase from L. delgaricus DMF 3078, L. delgaricus 

ATCC 11842 and Streptococcus thermophilus 143 synthesized GalOS from a 5% 

(w/w) lactose concentration in skim milk salt buffer at 50°C within 120 minutes, the 

GalOS was a range of 3.59-4.79 mg/mL. In addition, Matinez-Villaluenga and co-

workers (2008) reported that the GalOS production by β-galactosidase from the 

commercial enzyme (Lactozym 3000L HP G) had affected the reaction conditions, 

resulting in different formations of di- and tri-saccharides. Thus, the different 

compositions of GalOS were dependent upon the assayed conditions. However, the 

GalOS compounds from lactose hydrolysis using β-galactosidase from those studies 

were received from a very high concentration of other not-milk lactose sources     

(140-1000 mM) while the concentration of lactose in milk (∼4.8% of milk) was about 
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133 mM (Vasiljevic and Jelen, 2003; Nguyen et al., 2007; Martinez-Villaluenga et al., 

2008; Iqbal et al, 2010; Maischberger et al., 2010; Nguyen et al., 2011). Also, the 

condition of GalOS formation in those studies were different form our study 

condition, resulting in the difference of GalOS content (Vasiljevic and Jelent, 2003; 

Splechtna et al., 2007; Ganzle, 2012).  

Thus, from this study, the purified enzyme had similar efficiency to the 

commercial enzyme. Even though, the percentage of lactose hydrolysis using crude 

and purified enzymes was slightly lower than that of using commercial one, crude and 

purified enzymes were found to be better for GalOS formation than commercial 

enzyme. However, lactose hydrolysis for lactose-hydrolyzed milk products and GalOS 

formation also depended on enzyme characterization, enzyme concentration, reaction 

time, temperature, substrates, and conditions of hydrolysis reaction. 
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Figure 5.1 The percentage of lactose hydrolysis of low-fat lactose-hydrolyzed milk 

in different concentrations of crude, purified and commercial enzymes at 

4°C. 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21

R
es

id
ua

l l
ac

to
se

 (%
)

Time (hour)

reduced fat milk (control) crude enzyme 1 U/ml
crude enzyme 5 U/ml crude enzyme 10 U/ml
purified enzyme 1 U/ml purified enzyme 5 U/ml
purified enzyme 10 U/ml commercial enzyme 1 U/ml
commercial enzyme 5 U/ml commercial enzyme 10 U/ml

 

 

 

 

 

 

 

 



171 
 

 

 
Figure 5.2 Galacto-oligosaccharides content (mg/ml) of low-fat lactose-hydrolyzed 

milk in different concentrations of crude, purified and commercial 

enzymes at 4°C. 
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Table 5.2   Percentage of remaining lactose content during milk lactose hydrolysis using different types of β-galactosidase in low-fat milk 

(1.5% fat). 

Time (h) Concentration 0 0.5 1.5 3 6 9 12 18 

Low-fat milk  100 ±2.0ns 100±2.0ns 100±1.9ns 100±0.9ns  100±1.9ns 100±2.1ns 100±1.7ns 100±1.1ns 
crude enzyme  1 U/mL 100 ±2.0g 76.6±2.3f 47.8±1.4e 39.9±1.6d 29.7±0.2c 28.3±1.3c 24.0±0.2b 15.9±0.1a 
commercial enzyme  1 U/mL 100 ±2.0h 87.6±1.8g 73.4±1.9f 48.6±2.2e 37.1±0.1d 20.6±1.6c 11.2±0.2b 6.2±0.1a 
purified enzyme  1 U/mL 100 ±2.0h 76.7±1.1g 68.5±2.3f 54.4±1.5e 29.4±0.2d 19.8±0.3c 16.3±0.2b 10.3±0.2a 
crude enzyme  5 U/mL 100 ±2.0h 64.6±1.2g 43.1±1.6f 31.6±1.3e 24.0±0.1d 21.6±0.2c 16.5±0.9b 13.2±0.2a 
commercial enzyme  5 U/mL 100 ±2.0h 82.2±0.90g 66.0±1.1f 43.7±1.5e 31.1±0.2d 16.4±0.1c 10.3±0.2b 4.5±0.2a 
purified enzyme  5 U/mL 100 ±2.0h 74.3±1.5g 55.9±2.8f 39.3±1.6e 24.2±0.2d 17.3±0.3c 10.3±0.9b 7.9±0.3a 
crude enzyme  10 U/mL 100 ±2.0g 53.2±2.0f 37.8±3.2e 28.2±1.3d 21.6±0.9c 16.2±0.1b 15.9±0.2b 11.2±0.1a 
commercial enzyme  10 U/mL 100 ±2.0g 80.2±1.8f 53.1±2.1e 33.7±1.3d 17.5±0.2c 7.3±0.2b 7.2±0.2b 3.2±0.2a 
purified enzyme  10 U/mL 100 ±2.0g 68.4±2.2f 47.4±1.7e 33.4±1.7d 20.4±0.2c 15.3±0.3b 7.2±0.1a 6.2±0.1a 

 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Different letters indicate means with significant 

differences (P<0.05). 
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Table 5.3   Galacto-oligosaccharides content (mg/mL) during lactose hydrolysis using different types of β-galactosidase in low-fat milk 

(1.5% fat). 

Time(h) concentration 0 0.5 1.5 3 6 9 12 18 

crude enzyme  1 U/mL 0.00 3.30±0.1c 3.57±0.2c 3.54±0.1c 3.36±0.2c 2.89±0.1ab 2.39±0.2a 2.27±0.1a 

commercial enzyme  1 U/mL 0.00 3.37±0.1c 3.46±0.2c 3.38±0.1c 2.48±0.2ab 2.17±0.1a 2.04±0.1a 2.00±0.11a 

purified enzyme  1 U/mL 0.00 3.01±0.1b 3.27±0.2c 3.63±0.2c 3.25±0.1c 2.78±0.1ab 2.40±0.2a 1.99±0.2a 

crude enzyme  5 U/mL 0.00 3.06±0.1b 3.34±0.1c 3.19±0.2c 2.79±0.1ab 2.41±0.3ab 2.17±0.2a 2.06±0.2a 

commercial enzyme  5 U/mL 0.00 2.91±0.1b 3.16±0.1c 3.09±0.2c 2.38±0.2ab 2.02±0.1a 1.90±0.2a 1.77±0.1a 

purified enzyme  5 U/mL 0.00 3.19±0.1c 3.61±0.1c 3.52±0.1c 3.11±0.2c 2.53±0.1ab 1.93±0.2a 1.58±0.1a 

crude enzyme  10 U/mL 0.00 2.57±0.2bc 2.83±0.2c 2.72±0.2c 2.47±0.3b 2.28±0.2 a 2.02±0.1a 1.81±0.2 a 

commercial enzyme  10 U/mL 0.00 2.33±0.1 a 2.91±0.2ab 3.23±0.2b 3.00±0.1ab 2.55±0.1 a 2.33±0.2a 2.17±0.2a 

purified enzyme  10 U/mL 0.00 1.85±0.1a 2.78±0.1c 3.26±0.2c 2.99±0.2bc 2.40±0.1b 1.83±0.2a 1.45±0.3a 
 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Different letters indicate means with significant 

differences (P<0.05). 
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5.4.3 Thin layer chromatography detection of lactose hydrolysis 

Thin layer chromatograpy (TLC) detection was used to qualitatively 

confirm the lactose hydrolysis at 4°C for 24 hours (Figures 5.3-5.6). The retardation 

factor of sugar derivatives from lactose hydrolysis was shown in Table 5.4 as well. 

Both low-fat lactose-hydrolyzed milk and the regular-fat lactose-

hydrolyzed milk using different enzyme types showed similar pattern of the 

presenting glucose and galactose bands on the TLC chromatogram. Also, there was no 

appearance of the band of lactose on the TLC plate after 18 hours of lactose 

hydrolysis. This confirmed that lactose in milk was completely hydrolyzed at that 

condition. 

The retardation factor (Rf) of standard sugars and sugar derivatives 

from milk lactose hydrolysis was provided from TLC chromatogram. The Rf values of 

standard sugars were 0.71 of lactose, 0.82 of glucose, and 0.78 of galactose, 

respectively. The low-fat lactose-hydrolyzed milk and regular-fat lactose-hydrolyzed 

milk showed the similar Rf values of glucose and galactose, which were in a range of 

0.80 – 0.83 and of 0.77 - 0.80, respectively, whereas the Rf value of lactose was 0.70 

and 0.71 for low-fat milk and regular-fat milk, respectively. 

This result agrees with the work of Bosch-Reig and co-workers (1992) 

which reported that the Rf values of sugars in aqueous solutions were 0.48 of lactose, 

0.69 of glucose, and 0.65 of galactose. Smith and Dawson (1987) reported that the Rf 

values of different sugars in milk extract were 0.16 of lactose, 0.41 of glucose, 0.40 of 

galactose, and 0.16 of milk extract. Dafam and co-workers (2014) reported that the Rf 

values of sugars in Anacardium occidentale gum in solvent (butanol-ethanol-water) 

were 0.29 of lactose, 0.55 of glucose, and 0.48 of galactose, while Skalska-Kamińska 
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and co-workers (2009) found that the retardation factors (Rf) of Malva arborae 

hydrolysate were 0.43 of lactose, 0.67 of glucose, and 0.60 of galactose. The different 

Rf values obtained from the same type of sugar was the characteristic for each 

substance in these specific chemical reactions. The Rf values from these literatures 

were different from the result found in this study since the study conditions such as 

chamber saturation, constant composition of solvent mixtures, and constant 

temperature were different from the literatures (Sherma and Fried, 1996). However, 

these Rf values demonstrate similarities when arrayed in descending order: glucose, 

galactose, and lactose. The different Rf values of each sugar was the difference of raw 

material or experimental method. Even though there was a difference of Rf values in 

each a previous work, these values seemed to show the similarities when arrayed in 

descending order: glucose, galactose, and lactose that depended on raw material and 

experimental details which they used in each study. 
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Table 5.4  The retardation factor (Rf) of sugar derivatives from lactose hydrolysis at 24 hours. 

 
Rf 

 
Standard lactose Standard glucose Standard galactose 

 

0.71 ± 0.001 0.82 ± 0.015 0.78 ± 0.015 

Low-fat milk (control) 0.70 ± 0.003 - - 

Low-fat lactose-hydrolyzed milk with crude enzyme   - 0.82 ± 0.01 0.77 ±0.015 

Low-fat lactose-hydrolyzed milk with purified enzyme   - 0.81 ± 0.015 0.78±0.02 

Low-fat lactose-hydrolyzed milk with commercial enzyme - 0.83 ± 0.03 0.79±0.01 

Regular-fat milk (control) 0.71 ± 0.023 - - 

Regular-fat lactose-hydrolyzed milk with crude enzyme   - 0.81± 0.02 0.80 ±0.015 

Regular-fat hydrolyzed milk with purified enzyme   - 0.82± 0.015 0.79 ±0.03 

Regular-fat lactose-hydrolyzed milk with commercial enzyme - 0.80± 0.01 0.78 ±0.03 
 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. 
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Figure 5.3 TLC Chromatogram of low-fat lactose hydrolyzed milks by crude 

enzyme (Lane 1, lactose standard; Lane 2, glucose standard; Lane 3, 

galactose standard; Lane 4, low-fat milk; Lane 5, lactose-hydrolyzed 

milk for 6 hour; Lane 6, lactose-hydrolyzed milk for 9 hour; Lane 7, 

lactose-hydrolyzed milk for 12 hour; Lane 8, lactose-hydrolyzed milk for 

18 hour; Lane 9, lactose-hydrolyzed milk for 25 hour). 
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Figure 5.4 TLC Chromatogram of low-fat lactose hydrolyzed milks by purified 

enzyme (Lane 1, lactose, glucose, and galactose standard; Lane 2, low-

fat milk; Lane 3, lactose-hydrolyzed milk for 6 hour; Lane 4, lactose-

hydrolyzed milk for 9 hour; Lane 5, lactose-hydrolyzed milk for 12 hour; 

Lane 6, lactose-hydrolyzed milk for 18 hour; Lane 7, lactose-hydrolyzed 

milk for 24 hour). 
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Figure 5.5 TLC Chromatogram of low-fat lactose hydrolyzed milks by commercial 

enzyme (Lane 1, lactose, glucose, and galactose standard; Lane 2, low-

fat milk; Lane 3, lactose-hydrolyzed milk for 6 hour; Lane 4, lactose-

hydrolyzed milk for 9 hour; Lane 5, lactose-hydrolyzed milk for 12 hour; 

Lane 6, lactose-hydrolyzed milk for 18 hour; Lane 7, lactose-hydrolyzed 

milk for 24 hour).  

 

 

 

 

 

Lane 1        2              3             4            5          6          7 

Glucose 
 

Galactose 
 

Lactose 

 

 

 

 

 

 

 

 



180 
 

 

 

 

Figure 5.6 TLC Chromatogram of regular-fat lactose hydrolyzed milks (Lane 1, lactose standard; Lane 2, glucose standard; Lane 3, 

galactose standard; Lane 4, commercial lactose-hydrolyzed milk (Chokchai brand); Lane 5, regular-fat milk; Lane 6–10, 

lactose-hydrolyzed milk by crude enzyme at different time of lactose hydrolysis (6, 9, 12, 18, and 24 hours, respectively); 

Lane 11, regular-fat milk; Lane 12–16, lactose-hydrolyzed milk by purified enzyme at different time of lactose hydrolysis 

(6, 9, 12, 18, and 24 hours, respectively); Lane 17, regular-fat milk; Lane 18–22, lactose-hydrolyzed milk by commercial 

enzyme at different time of lactose hydrolysis (6, 9, 12, 18, and 24 hours, respectively). 
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5.4.4 Milk composition of lactose-hydrolyzed milk 

 The composition of lactose-hydrolyzed milk is shown in Table 5.5. 

This revealed that all parameters of milk composition obtained from this study were in 

the acceptable range for the consumption following Thai agricultural standard (TAS 

6003-2010). 

 

Table 5.5  Determination of lactose-hydrolyzed milk composition. 

Parameter Reference* Raw material 

Regular-fat 

lactose-hydrolyzed 

milk 

Low-fat 

lactose-hydrolyzed 

milk 

freezing point ≤-0.520°C -0.514±0.003ns -0.522±0.006ns -0.519±0.005ns 

specific gravity (20°C) >1.028 1.026±0.002a 1.033±0.002b 1.030±0.005ab 

Temperature 30-37°C 30.7±0.2b 5.3±0.2a 5.8±0.2a 

%Fat >3.35% 5.04±0.04c 3.85±0.05b 1.48±0.03a 

%SNF >8.25% 8.07±0.08a 9.09±0.01c 8.91±0.01b 

%Protein >3.00% 2.85±0.06a 3.24±0.1b 3.11±0.09b 

Ph 6.6-6.9 6.7±0.1ns 6.7±0.1ns 6.7±0.1ns 
 

∗ Reference obtained from Thai agricultural standard (TAS 6003-2010). 

Note:  Experiments were performed in triplicate, and the standard deviation was <5%. 

Values in each attribute category marked with the same letter are not 

statistically different.  

 

5.4.5 Microbiological quality and milk composition of lactose-

hydrolyzed milk 

The microbiological quality of milk samples was determined before the 

sensory evaluation to ensure the safety for consumer consumption (Table 5.6-5.8). 

The microbial results showed that the amount of microbial colonies was in the 
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acceptable level for the consumption following Thai agricultural standard (TAS 6003-

2010) and Ministry of Public Health (No. 265) B.E. 2545 (2002).  

 

Table 5.6  Microbiological quality of raw milk. 

Sample Dilution 

Standard 

plate count 

(cfu/mL) 

Coliform 

(cfu/mL) 

E.coli 

(cfu/mL) 
Yeast & Mold 

Reference* - < 600,000 < 10,000 unidentified unidentified 

Raw milk** 1x10-4 2.7 × 105 undetected undetected undetected 
 

*Reference obtained from Thai agricultural standard (TAS 6003-2010). 

**Data obtained from Dairy Home Co., Ltd. 

Note:  Experiments were performed in duplicate, and the standard deviation was 

<5%. Values in each attribute category marked with the same letter are not 

statistically different.  
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Table 5.6   Microbiological quality of low-fat pasteurized milk. 

Sample Sample 

dilution 

Total plate 

count (cfu/mL) 

Coliform E. coli Yeast & Mold 

Reference pasteurize milk** - 
< 10,000  

 colony/mL 

< 100 

colony/mL 

Not found 

in 0.1 mL 
unidentified 

Low-fat pasteurize milk∗ 1x10-2 mL 4.0 × 102 undetected undetected undetected 

Low-fat lactose-hydrolyzed pasteurize milk  

by crude enzyme 
1x10-2 mL 6.9 × 102 ± 9 undetected undetected undetected 

Low-fat lactose-hydrolyzed pasteurize milk  

by purified enzyme  
1x10-2 mL 5.6 × 102 ± 4 undetected undetected undetected 

Low-fat lactose-hydrolyzed pasteurize milk  

by commercial enzyme 
1x10-2 mL 7.5 × 102 ± 8 undetected undetected undetected 

*Reference obtained from Notification of the Ministry of Public Health (No. 265) B.E. 2545 (2002) 

**Data obtained from Dairy Home Co., Ltd. 

Note: Experiments were performed in duplicate, and the standard deviation was <5%. Values in each attribute category marked with the 

same letter are not statistically different. Values marked with different letters are statistically different (P<0.05). 
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Table 5.7 Microbiological quality of regular-fat pasteurized milk 

Sample 
Sample 

dilution 

Total plate 

count (cfu/mL) 
Coliform E. coli Yeast & Mold 

Reference pasteurize milk** - 
< 10,000  

 colony/mL 

< 100 

colony/mL 

Not found 

in 0.1 mL 
unidentified 

Regular-fat pasteurize milk∗ 1x10-2 6.0×102 undetected undetected undetected 

Regular-fat lactose-hydrolyzed pasteurize milk  

by crude enzyme 
1x10-2 8.1 × 102 ± 14 undetected undetected undetected 

Regular-fat lactose-hydrolyzed pasteurize milk  

by purified enzyme 
1x10-2 7.8 × 102 ± 11 undetected undetected undetected 

Regular-fat lactose-hydrolyzed pasteurize milk  

by commercial enzyme 
1x10-2 7.4 × 102 ± 12 undetected undetected undetected 

*Reference obtained from Notification of the Ministry of Public Health (No. 265) B.E. 2545 (2002) 

**Data obtained from Dairy Home Co., Ltd. 

Note: Experiments were performed in duplicate, and the standard deviation was <5%. Values in each attribute category marked with the 

same letter are not statistically different. Values marked with different letters are statistically different (P<0.05).
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5.4.6 Sensory evaluation of lactose-hydrolyzed milk  

 The mean sensory scores of the control low-fat milk and the milks 

hydrolyzed by crude, purified, and commercial enzymes are shown in Table 5.9. The 

sensory scores for color, aroma, sweetness and overall acceptance ranged from     

8.05-7.96, 7.33-7.14, 7.11-6.03, and 7.05-6.68 respectively. No significant differences 

were observed between the control and lactose-hydrolyzed milk samples in color and 

aroma (p>0.05). However, the mean score of sweetness of samples prepared by crude 

enzyme was significantly different from that of the samples prepared by the rest of 

enzymes (p<0.05). 

The overall acceptance scores of lactose-hydrolyzed milk samples 

prepared by the three different enzyme types were significantly different from the 

control’s (p<0.05). The sweetness score of lactose-hydrolyzed milk by the crude 

enzyme was slightly less, “6 like slightly”, whereas the other samples was “7 like 

moderately”. This lower sweetness score may be the result of the relatively high 

volume of crude enzyme used, which was necessary to achieve the desired enzyme 

activity concentration of 5 U/mL of reaction mixture. The more volume of crude 

enzyme used in this study (10 U/mL), the more bitter flavor might occur. The overall 

acceptance score of the control, “7 like moderately”, was slightly better than that of 

other three samples, which all scored at “6 like slightly”. This might be because the 

add-flavors from hydrolysis such as glucose and galactose were predominant in 

lactose-hydrolyzed milk rather than in the control. 

For the regular-fat milk, the mean sensory scores of the control and the 

milks hydrolyzed by crude, purified, or commercial enzymes are shown in Table 5.9. 
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The sensory scores for color, aroma, sweetness and overall acceptance ranged from 

8.10-7.97, 7.30-7.17, 7.37-6.27, and 7.67-6.07 respectively.  

The sweetness and overall acceptance scores of sample prepared by the 

crude enzyme were higher than those of the other β-galactosidase hydrolyzed samples. 

No significant differences were observed for color and aroma between the control and 

lactose-hydrolyzed milk samples (p>0.05). The overall acceptance score of the control 

was “7 like moderately”, whereas the regular-fat lactose-hydrolyzed milk samples by 

the three different enzyme types were “6 like slightly”. However, the overall 

acceptance score of lactose-hydrolyzed milk samples varied significantly (P<0.05) 

among the different types of enzymes used for lactose hydrolysis. This result agrees 

with a work of Jokar and Karbassi (2011) which showed that the UHT milk (control) 

was more acceptable than the lactose-hydrolyzed milks prepared from crude enzyme 

of L. bulgaricus CHR Hansen Lb-12 and the commercial enzyme. 

Thus, there is a possibility that low-fat and regular-fat lactose-

hydrolyzed milks prepared from recombinant β-galactosidase can be successfully 

marketed. Although the overall acceptance scores of low-fat and regular-fat lactose-

hydrolyzed milks were lower than those of the control, they still scored positively.  
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Table 5.9  Sensory characteristics of low-fat lactose-hydrolyzed pasteurized milk. 

Attributes 

Low-fat 

milk 

(control) 

Low-fat 

lactose-hydrolyzed 

milk by 

crude enzyme 

Low-fat 

lactose-hydrolyzed 

milk by 

purified enzyme 

Low-fat lactose-

hydrolyzed milk 

by commercial 

enzyme 

Color 8.05±1.6ns 7.96±1.3 ns 7.98±1.9 ns 8.01±2.1 ns 

Aroma 7.25±1.3 ns 7.14±1.7 ns 7.19±2.3 ns 7.33±1.6 ns 

Sweetness 7.08±1.4a 6.03±1.9b 7.07±1.7a 7.11±1.6a 

Overall acceptance 7.05±1.7a 6.04±1.6b 6.39±1.3b 6.68±1.6b 
 

Note: Values in each attribute category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 

 

Table 5.10  Sensory characteristics of regular-fat lactose-hydrolyzed pasteurized milk. 

Attributes 

Regular-

fat milk 

(control) 

Regular-fat 

lactose-hydrolyzed 

milk by 

crude enzyme 

Regular-fat 

lactose-hydrolyzed 

milk by 

purified enzyme 

Regular-fat 

lactose-hydrolyzed 

milk by 

commercial 

enzyme 

Color 8.10±1.5ns 7.97±1.9ns 8.03±1.4ns 8.00±1.2ns 

Aroma 7.30±1.7ns 7.27±1.2ns 7.30±1.5ns 7.17±2.0ns 

Sweetness 6.67±1.1a 6.27±1.3a 7.23±1.5b 7.37±1.8b 

Overall acceptance 7.67±1.9d 6.07±1.4a 6.57±1.2b 6.80±1.6c 
 

Note: Values in each attribute category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 
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5.4.7 Characterization of ice cream qualities  

5.4.7.1  Overrun of ice cream 

The overrun results of lactose-hydrolyzed ice cream are shown 

in Table 5.11. The overrun of regular-fat lactose-hydrolyzed ice cream was higher 

than the overrun of low-fat lactose-hydrolyzed ice cream because of the higher fat 

content. The average percentage of lactose hydrolyzed in lactose-hydrolyzed milk 

samples for ice cream was about 90%, which affected the overrun. The different       

β-galactosidase types significantly decreased the overrun in each milk types. The 

overrun of ice cream from low-fat lactose-hydrolyzed milk could be ordered from 

highest to lowest as follows: low-fat milk (control sample), lactose-hydrolyzed milk 

with crude enzyme, and lactose-hydrolyzed milk with purified enzyme. The overrun 

of ice cream from regular-fat lactose-hydrolyzed milk could be ordered from highest 

to lowest as follows: regular-fat milk (control sample), lactose-hydrolyzed milk with 

crude enzyme, and lactose-hydrolyzed milk with purified enzyme. The results of 

overrun in this study aligned with the work of Abbasi and Saeedabadian (2013), 

which revealed that the ice cream hydrolyzed with lactase at 75% had the overrun of 

107% while the ice cream without lactose hydrolysis had the overrun around 92%. 

Whereas, a work of Morr and Barrantes (1998) revealed that the presence of low-

lactose whey powder in ice cream decreased overrun when compared to the control 

sample. However, a work of El-Neshawy and co-workers (1988) reported that the 

samples containing hydrolyzed lactose reconstituted milk (about 50% and 75% lactose 

hydrolysis) had higher overrun and better organoleptic properties than the control. The 

lactose-hydrolyzed ice cream exhibited less overrun but high in the hardness 

(Marshall et al. 2003; Clark, 2012). The hardness of ice cream was attributed to the 
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overrun (Muse & Hartel, 2004). The increase of glucose and lactose from lactose 

hydrolysis contributed to increase of total solids content of ice cream mix. This could 

increase the amount of unfrozen water in ice cream, resulting in the harder texture of 

ice cream than normal ice cream when it was frozen in the ice cream process 

(Hagiwara & Hartel, 1996; Tanaka et al., 1972; Goff et al., 1995; Wilbey et al., 1998). 

The lactose-hydrolyzed milk for making ice cream could 

decrease the overrun and increased the hardness of ice cream. However, for ice cream 

manufacturing, the sensory evaluation had to be concerned for the final consideration 

of such enzyme application. 

 

Table 5.11  The overrun of lactose-hydrolyzed ice cream 

Milk type 

Ice cream 

from milk 

control 

Ice cream from 

lactose-hydrolyzed 

milk by crude 

enzyme 

Ice cream from 

lactose-hydrolyzed 

milk by purified 

enzyme 

Ice cream from 

lactose-hydrolyzed 

milk by commercial 

enzyme 

Low-fat milk 39.8 ± 1d 38.4 ± 1.2c 37.6 ± 0.8b 35.8 ± 1.3a 

Regular-fat milk 41.3 ± 1.5c 40.5 ± 2.0b 37.3 ± 1.2a 39.6 ± 0.8ab 
 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. 

Values in each milk type category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 

 

5.4.7.2 Particle size analysis of ice cream 

The particle size analysis of lactose-hydrolyzed ice creams 

was measured by the laser scattering particle size distribution analyzer. The particle 

size obtained from low-fat lactose-hydrolyzed ice-cream samples ranged from     

 

 

 

 

 

 

 

 



190 
 

0.63–0.67 µm (Table 5.12). No significant differences were observed among the low-

fat ice cream (control), ice-cream from low-fat lactose-hydrolyzed milk by crude 

enzyme, and ice-cream from low-fat lactose-hydrolyzed milk by purified enzyme 

(p<0.05). The particle size of regular-fat lactose-hydrolyzed ice-cream samples was in 

the rage of 1.21–1.23 µm. The particle size of regular-fat ice cream (control) was 

different from that of ice-cream from regular-fat lactose-hydrolyzed milk by crude 

enzyme, and ice-cream from regular-fat lactose-hydrolyzed milk by purified enzyme. 

The particle size of ice cream from the low-fat lactose-

hydrolyzed milk was smaller than that of ice cream from the regular-fat lactose-

hydrolyzed milk which might be due to the fat content in milk. The mean diameter of 

the fat globules of low-fat lactose-hydrolyzed ice-cream mix in this study was slightly 

less than 1 µm while the fat globule size of regular-fat milk was around 2–3 µm (Goff 

and Hartel, 2013). 

The larger particle size of regular-fat lactose-hydrolyzed ice-

cream could contribute a pronounced flocculation of ice cream mixes than low-fat 

lactose-hydrolyzed ice-cream. 
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Table 5.12  The particle size analysis of lactose-hydrolyzed ice cream. 

Milk type 

Particle size (µm) 

Ice cream 

from milk 

control 

Ice cream from 

lactose-hydrolyzed 

milk by crude 

enzyme 

Ice cream from 

lactose-hydrolyzed 

milk by purified 

enzyme 

Ice cream 

from lactose-

hydrolyzed milk 

by commercial 

enzyme 

Low-fat milk 0.67±0.036ns 0.66±0.024ns 0.63±0.015ns 0.64±0.021 ns 

Regular-fat milk 1.33±0.013c 1.27±0.038bc 1.24±0.054ab 1.21±0.029ab 
 

Note:  Experiments were performed in duplicate, and the standard deviation was 

<5%. Values in each milk type category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 

 

5.4.7.3 Microbiological quality of lactose-hydrolyzed ice cream 

The microbiological quality of lactose-hydrolyzed ice cream 

were evaluated in order to confirm the hygienically production and a safe for 

consumption as shown in Table 5.13. 
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Table 5.13  Microbiological quality of lactose-hydrolyzed ice cream.  

Milk type β-galacotsidase type Dilution TPC Coliform E.coli Yeast & Mold 

low-fat 
milk 

without β-galacotsidase 1x10-3 7.5 × 102 ± 14 Undetected undetected undetected 

crude enzyme 1x10-3 7.0 × 102 ± 21 Undetected undetected undetected 

purified enzyme  1x10-3 6.3 × 102 ± 28 Undetected undetected undetected 

regular-fat 
milk 

without β-galacotsidase 1x10-3 9.4 × 102 ± 11 Undetected undetected undetected 

crude enzyme 1x10-3 1.1 × 103 ± 21 Undetected undetected undetected 

purified enzyme  1x10-3 9.8 × 102 ± 18 Undetected undetected undetected 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Values in each attribute category marked 

with the same letter are not statistically different. Values marked with different letters are statistically different (P<0.05). 
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5.4.7.4 Ice Cream Sensory Evaluation 

The mean sensory scores of the low-fat ice cream (control), 

the ice cream from low-fat lactose-hydrolyzed milk by crude enzyme and the ice 

cream from low-fat lactose-hydrolyzed milk by purified-enzyme are shown in Table 

5.14. The sensory scores for color, aroma, sweetness, firmness, meltability, sandiness, 

and overall acceptance varied from 5.69-6.44, 4.31-5.69, 6.14-6.44, 5.19-5.88, 5.31-

5.69, 4.81-5.38, and 5.07-6.29, respectively. No significant differences of meltability 

were observed among the control, the ice cream from low-fat lactose-hydrolyzed milk 

by crude enzyme, and the ice cream from low-fat lactose-hydrolyzed milk by purified 

enzyme (p<0.05). However, the overall acceptance showed significant differences 

among them but the use of lactose-hydrolyzed milks for ice cream did not provide 

sufficient change in sweetness to warrant a statistical difference between the control 

and lactose-hydrolyzed pasteurized milk samples. Similar results were observed in the 

study of Sutton and co-workers (1995) in which the lactose reduction did not produce 

a perceived increase in sweetness among custard samples that were treated with 

lactase. Also, Lindamood and co-workers (1989) reported that the lactose and/or 

sucrose hydrolysis in the range of 0-78% used for ice cream making were not 

considered too sweet for ice cream, as untrained panels were unable to discern a 

difference. 

The mean sensory scores of the regular-fat ice cream (control) 

and the ice creams hydrolyzed by crude and purified enzymes are shown in Table 

5.15. The sensory scores for color, aroma, sweetness, firmness, meltability, sandiness, 

and overall acceptance varied from 6.89-7.19, 5.19-5.50, 5.50-6.38, 5.56-6.06, 5.56-

6.44, 5.38-5.75, and 6.43-6.60, respectively. No significant differences were observed 
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among the control, and ice cream samples with lactose hydrolysis for color, aroma, 

sandiness, and overall acceptability (p<0.05). The firmness of the control was 

significantly higher than that of the other ice cream samples made from lactose-

hydrolyzed milks by crude or purified enzymes. This was possibly due to the higher 

levels of glucose and galactose in the lactose-hydrolyzed milks existed more than that 

found in the control. Increasing the amounts of monosaccharides in the ice cream mix 

could increase viscosity but decrease free water content, resulting in a decreased 

firmness. Consequently, the texture of the lactose-hydrolyzed ice cream was softer 

than that of the control. However, the higher sugar levels (polysaccharides) caused a 

smoother texture by lowering the freezing point, resulting in decreasing the amount of 

frozen material, decreasing free water content, and increasing viscosity (Abdullah et 

al., 2003; Marshell and Arbuckle, 1996). This result agrees with a work of Lindamood 

and co-workers (1989) which reported that firmness values of non-hydrolyzed ice 

cream samples were higher than that of lactose-hydrolyzed ice cream samples while 

Matak (1999) showed that the firmness of the ice cream control was lower than that of 

83% lactose-hydrolyzed ice cream. Moreover, Guy (1980) revealed that firmness 

values of ice cream decreased significantly while increasing the percentage of lactose-

hydrolyzed sweet whey in the formulation. 

Thus, the production of ice cream from regular-fat lactose-

hydrolyzed milk is possible. This means that the application of recombinant β-

galactosidase from this study can used in both forms of crude and purified enzymes. 

However, it seemed to be that the purified enzyme was suitable for low-fat lactose-

hydrolyzed ice cream rather than the crude one.  
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Table 5.14  Sensory characteristics of low-fat lactose-hydrolyzed ice cream. 

Attributes 
Ice cream from 

low-fat milk 

Ice cream from 

low-fat lactose-

hydrolyzed milk by 

crude enzyme 

Ice cream from low-

fat lactose-

hydrolyzed milk 

by purified enzyme 

Color 6.44±1.5b 5.69±1.5a 6.31±1.6b 

Aroma 5.69±1.8b 4.31±2.0a 5.38±1.9b 

Sweetness 6.44±1.6ns 6.14±2.4ns 6.38±2.0ns 

Firmness 5.63±1.9b 5.19±1.8a 5.88±2.0b 

Meltability 5.69±1.8ns 5.31±1.8ns 5.44±1.9ns 

Sandiness 4.81±2.4a 5.38±1.8b 5.25±1.9b 

Overall acceptance 5.93±1.4b 5.07±1.3c 6.29±2.0a 
 

 

Note: Values in each attribute category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 
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Table 5.15  Sensory characteristics of regular-fat lactose-hydrolyzed ice cream. 

Attributes 

Ice cream from 

regular-fat 

milk 

Ice cream from 

regular-fat lactose-

hydrolyzed milk by 

crude enzyme 

Ice cream from 

regular-fat lactose-

hydrolyzed milk by 

purified enzyme 

Color 7.19±1.0ns 6.89±1.2ns 7.09±1.1ns 

Aroma 5.19±1.9ns 5.25±1.3ns  5.50±2.1ns  

Sweetness 5.81±1.2a 5.50±1.1a 6.38±1.5b 

Firmness 6.06±2.3b 5.94±1.2b 5.56±1.5a 

Meltability 5.56±2.0a 5.88±1.3a 6.44±1.5b 

Sandiness 5.75±1.8ns  5.38±1.6ns  5.50±1.4ns  

Overall acceptance 6.60±1.5ns  6.43±0.7ns 6.60±1.4ns  
 

Note: Values in each attribute category marked with the same letter are not 

statistically different. Values marked with different letters are statistically 

different (P<0.05). 

 

5.5 Conclusions 

The recombinant β-galactosidase can be used in either the crude or purified 

forms to produce lactose-hydrolyzed milk. In addition, crude and purified enzymes 

were more productive than the commercial enzyme for the GalOS formation. The 

hydrolyzed milk can be used to produce the low-lactose ice cream. The possibility of 

ice cream production from lactose-hydrolyzed milks was well-confirmed by their 

physical, microbiological, and sensory qualities.  

 

 

 

 

 

 

 

 

 

 

 



197 
 

5.6 References 

Abbasi, S. and Saeedabadian, A. (2013). Influences of lactose hydrolysis of milk and 

sugar reduction on some physical properties of ice cream. Journal of Food 

Science and Technology. DOI 10.1007/s13197-013-1011-1. 

Abdullah, M., Saleem-ur-Rehman, Zubai, H., Saeed, H.M., Kousar, S. and Shahid, M. 

(2003). Effect of Skim Milk in Soymilk Blend on the Quality of Ice Cream. 

Pakistan Journal of Nutrition. 2(5): 305-311. 

Andrews, W. (1992). Manual of Food Control 4 Rev 1 Microbiological Analysis. 

Rome: Food and Agriculture Organization of the United Nations (FAO). 

Aguilar, C.A. and Ziegler, G.R. (1993). Lactose Crystallization in Spray-Dried 

MilkPowders Exposed to Isobutanol. Food Structure. 12: 43-50. 

Asraf, S.S. and Gunasekaran.P. (2010). Current trends of ß-galactosidase research and 

application . Current Research, Technology and Education Topics in 

Applied Microbiology and Microbial Biotechnology. Formatex Research 

center. 880-890. 

Bosch-Reig, F., Marcote, M.J. and Minana, M.D. (1992). Separation and 

identification of sugars and maltodextrines by thin layer chromatography: 

Application to biological fluids and human milk. Talanta. 39(11): 1493-1498. 

Bosso, A., Morioka, L.R.I., Santos, L.F., and Suguimoto, H.H. (2016). Lactose 

hydrolysis potential and thermal stability of commercial β-galactosidase in 

UHT and skimmed milk. Food Science and Technology. doi:10.1590/1678-

457X.0085.  

Clarke, C. (2004). The science of ice cream (1st ed.). Cambridge, UK: RSB. (pp. 104-

134). 

 

 

 

 

 

 

 

 



198 
 

Clarke, C. (2012). The science of ice cream (2nded.). Cambridge, UK: RSC. (pp. 

180). 

Dafam, D.G., Nuhu, H. Ohemu, T.L., Olotu, P.N., Kagaru1, D.C. and Abubakar, M.S. 

(2014). Pharmacognostic Studies and Chromatographic Analysis of the Gum 

of Anacardium occidentale L (Anacardiaceae). Journal of Applied 

Pharmaceutical Science. 4(2): 61-63. 

Dekker, P.J.T. and Daamen, C.B.G. (2003). Enzymes exogenous to milk in dairy, β-

D-galactosidase. In Fuquay, J.W., Fox, P.F., McSweeney, P.L.H. (Eds.). 

Encyclopedia of Dairy Sciences.  London, UK: Academic Press. (pp. 907–

914). 

El-Neshawy, A.A., Abdel Baky,A.A., Rabie, A.M. and Metwally, S.A. (1988). 

Organoleptic and physical properties of ice cream made from hydrolysed 

lactose reconstituted milk. Food Chemistry. 27(2): 83-93.  

Ganzle, M.G. (2012). Enzymatic synthesis of galacto-oligosaccharides and other 

lactose derivatives (hetero-oligosaccharides) from lactose. International 

Dairy Journal. 22: 116–122. 

Goff, H. D., Freslon, B., Sahagian, M. E., Hauber, T. D., Stone, A. P., and Stanley, D. 

W., (1995). Structural development in ice cream dynamic rheological 

measurements. Journal of Texture Studies. 26: 517–536. 

Goff, H.D. and Hartel, R.W. (2013). Ice Cream (7th ed.). New York, US: Springer 

Science & Business Media. (pp. 142, 413-419). 

Guy, E.J. (1980). Partial replacement of nonfat milk solids and cane sugar in ice 

cream with lactose hydrolyzed sweet whey solids. Journal of Food Science. 

45: 129-133. 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/journal/03088146


199 
 

Hagiwara, T., and Hartel, R. W., (1996). Effect of sweetener, stabilizer and storage 

temperature on ice recrystallization in ice cream. Journal of Dairy Science. 

79: 735–744. 

Hernando, I., Perez-Munuera, I., Quiles, A. and Lluch, M.-A. (2010). Microstructure. 

In Nollet, L.M.L., Toldra, F. (Eds.). Dairy Foods Analysis. New York, US: 

CRS Press. (pp. 298-299). 

Illanes, A. (2008). Applications of Enzymes. Enzyme as Process Catalysts. Enzyme 

Biocatalysis: Principles and Applications. Springer Science & Business 

Media. (pp. 23). 

Iqbal, S., Nguyen, T.H., Nguyen, T. T., Maischberger, T. and Haltrich, D. (2010). β-

Galactosidase from Lactobacillus plantarum WCFS1: biochemical 

characterization and formation of prebiotic galactooligosaccharides. 

Carbohydrate Research. 345: 1408−1416. 

Iqbal, S., Nguyen, T.H., Nguyen, H.A, Nguyen, T.T., Maischberger, T., Kittl, R. and 

Haltrich, D. (2011). Characterization of a heterodimeric GH2 β-galactosidase 

from Lactobacillus sakei Lb790 and formation of prebiotic galacto-

oligosaccharides. Journal of Agricultural and Food Chemistry. 59: 

3803−3811. 

Jelen, P. and Tossavainen, O. (2003). Low lactose and lactose-free milk and dairy 

products – prospects, technologies and applications. The Australian Journal 

of Dairy Technology. 58: 161–165. 

Jokar, A. and Karbassi. A. (2011). In-house Production of Lactose-hydrolysed Milk 

by Beta-galactosidase form Lactobacillus bulgaricus. Journal of Agricultural 

Science and Technology.13: 577-584. 

 

 

 

 

 

 

 

 



200 
 

Kunst, A., Draeger, B. and Ziegernhorn, J. (1988). Colorimetric methods with glucose 

oxidase and peroxidase. In Bergmeyer, H. U., Bergmeyer, J., Grassl, M. 

(Eds.). Methods of Enzymatic Analysis (3rd ed.). Weinheim, Germany: VCH 

Publishers. (pp. 178- 185). 

Lindamood, J.B., Grooms, D.J., and Hanson, P.M.T. (1989). Effect of hydrolysis of 

lactose and sucrose on firmness of ice cream. Food Hydrocolloids. 3(5): 379-

388. 

Mahoney, R.R. (1997). Lactose: Enzymatic modification. In Fox P.F. (Ed.). 

Advanced Dairy Chemistry, Vol. 3, Lactose, Salts, Water and Vitamins. 

London, UK: Chapman & Hall Press. (pp. 77–126). 

Mahoney, R.R. (2003). Enzymes exogenous to milk in dairy, β-D-galactosidase. In 

Fuquay, J.W., Fox, P.F., McSweeney, P.L.H. (Eds.). Encyclopedia of Dairy 

Sciences. London, UK: Academic Press. (pp. 907–914). 

Maischberger, T., Leitner, E., Nitisinprasert, S., Juajun, O., Yamabhai, M., Nguyen, 

T. H. and Haltrich, D. (2010). β-Galactosidase from Lactobacillus pentosus: 

purification, characterization and formation of galacto-oligosaccharides. 

Biotechnology Journal. 5: 838−847. 

Marshall, R.T. and W.S. Arbuckle. (1996). Ice Cream (5th ed.). New York, US: 

Chapman & Hall.  

Marshall, R. T., Goff, H. D. and Hartel, R. W. (2003). In Marshall, R. T., Goff, H. D. 

and Hartel, R. W. (Eds.). Ice Cream (6th ed.). New York, US: Kluwer 

Academic, Plenum Publishers. (pp. 11-54, 149-168, 295-324). 

Martinez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A. and Villamiel, M. 

(2008). Optimization of conditions for galactooligosaccharide synthesis during 

 

 

 

 

 

 

 

 



201 
 

lactose hydrolysis by β-galctosidase from Kluveromyces lactis (Lactozym 

3000 L HP G). Food chemistry. 107: 258-264. 

Matak, K.E. (1999). Lactose hydrolysis by fungal and yeast lactase: Influence on 

freezing point and dipping characteristics of ice cream. Dissertation of M.S. 

Virginia Polytechnic Institute and State University. Blacksburg, Va. 

Publisher. 

Matioli, G., de Moraes, F.F. and Zanin, G.M. (2003). Operation stability and kinetics 

of lactose hydrolysis by β-galactosidase from Kluyveromyces fragilis. Portal 

Acta Scientiarum. 25(1): 7-12. 

Morr, C.V. and Barrantes, L. (1998). Lactose-hydrolyzed cottage cheese whey 

nanofiltration retentate in ice cream. Milchwissenschaf. 53(10): 568–572. 

Muse, M. R., and Hartel, R. W., (2004). Ice Cream Structural Elements that Affect 

Melting Rate and Hardness. Journal of Dairy Science. 87, 1-10. 

Nagaraj, M., Sharanagouda, B., Manjunath, H., and Manafi, M. (2009). 

Standardization of different levels of lactose hydrolysis in the preparation of 

lactose hydrolyzed yoghurt. Iranian Journal of Veterinary Research, Shiraz 

University. 10(2): 132-136. 

Nakayama, T. and Amachi, T. (1999). Β-Galactosidase, enzymology. In Flickinger, 

M. C. and Drew, S. W. (Eds.). Encyclopedia of bioprocess technology: 

Fermentation, biocatalysis, and bioseparation. New York, US: John Wiley 

and Sons Press. 3: 1291-1305. 

Neelakantan, S., Mohanty, A. K. and Kaushik, J. K.  (1999). Production and use of 

microbial enzymes for dairy processing. Current science. 77(1): 143-148. 

 

 

 

 

 

 

 

 



202 
 

Nelson, J.A. and Trout, G.M. (1964). Judging dairy products (4th ed). Wilwaukee, 

WI: Olsen Publishing Co. (pp. 357).  

Nguyen, T.H., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K.D., Divne, C. and 

Haltrich, D. (2007). Characterization and molecular cloning of a heterodimeric 

beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22. 

FEMS Microbiology Letters. 269(1): 136-144. 

Nguyen, T.H., Splechtna, B., Steinböck, M., Kneifel, W., Lettner, H. P., Kulbe, K. 

D., Haltrich, D. (2006). Purification and characterization of two novel β-

galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food 

Chemistry. 54: 4989−4998. 

Nguyen, T.T., Nguyen, H.A., Arreola, S.L., MLynek, K.D.-C., Mathiesen, G., 

Nguyen, T.H., Haltrich, D. (2012). Homodimeric β-galactosidase from 

Lactobacillus delbrueckii subsp. bulagricus DSM20081: Expression in 

Lactobacillus plantarum an Biochemical Characterization. Journal of 

Agricultural and Food Chemistry. 60: 1713–1721. 

Nguyen, T.T., Nguyen, T.H., Maischberger, T., Schmelzer, P., Mathiesen, G., 

Eijsink, V. G., Haltrich, D. and Peterbauer, C. K. (2011). Quantitative 

transcript analysis of the inducible expression system pSIP: comparison of 

the overexpression of Lactobacillus spp. β-galactosidases in Lactobacillus 

plantarum. Microbial Cell Factories. DOI:10.1186/1475-2859-10-46. 

Oliveira, C., Guimarães, P.M.R., Domingues, L. (2011). Recombinant microbial 

systems for improved β-galactosidase production and biotechnological 

applications. Biotechnology Advances. 29: 600–609. 

 

 

 

 

 

 

 

 



203 
 

Osiriphun, S. (2010). Purification and characterization of Beta-Galactosidase from 

stain B1.2 Dissertation of M.S. Silapakorn University, Thailand. 

Pan, Q., Zhu, J., Liu, L., Cong, Y., Hu, F., Li, J. and Yu, X. 2010. Functional 

identification of a putative beta-galactosidase gene in the special lac gene 

cluster of Lactobacillus acidophilus. Current Microbiology. 60(3):172-178. 

Peterson, R.S., Hill, C.G.Jr. and Amundson, C.H. (1989). Effects of temperature on 

the hydrolysis of lactose by immobilized beta-galactosidase in a capillary bed 

reactor. Biotechnology and Bioengineering. 34(4): 429-437. 

Pivarnik, L.F., Senecal, A.G., and Rand, A.G. (1995). Hydrolytic andtransgalactosylic 

activities of commercial β-galactosidase (lactase) in food processing. In 

Kinsella, J.E. and Taylor, S.L. (Eds.). Advances in Food and Nutrition 

Research, Vol. 38. San Diego, CA: Academic Press. (pp. 1–102). 

Rand, A.G, Jr. (1981) Enzyme technology and the development of lactose-hydrolyzed 

milk. In Paige, D.M. and Bayless, T.M. (Eds.). Lactose Digestion – Clinical 

and Nutritional Implications. London, UK: Johns Hopkins University Press. 

(pp. 219–230). 

Rhimi, M., Aghajari, N., Jaouadi, B., Juy, M., Boudebbouze, S., Maguin, E., Haser, R. 

and Bejar, S. (2009). Exploring the acidotolerance of beta-galactosidase from 

Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose 

bioconversion. Research in Microbiology.  160(10):775-784. 

Rosolen, M.D., Gennari, A., Volpato, G. and Volken de Souza, C.F. (2015). Lactose 

Hydrolysis in Milk and Dairy Whey Using Microbialβ-Galactosidases. 

Enzyme Research. doi:10.1155/2015/806240. 

 

 

 

 

 

 

 

 



204 
 

Saito, Z. (1988). Lactose crystallization in commercial whey powders and in spray-

died lactose. Food Microstructure. 7: 75 -81.  

Schwab, C. and Ganzle, M.G. (2011). Lactic acid bacteria fermentation of human 

milk oligosaccharide components, human milk oligosaccharides and galacto-

oligosaccharides. FEMS Microbiology Letters. 315: 141-148. 

Senadisai, P., Trimetsoontorn, J. and Fongsuwan, W. (2015). Lactose Free Milk and 

Dairy Product Purchasing Habit Variables of Bangkok Thailand Metropolitan 

Consumers. Research Journal of Business Management. 9(2): 364-377. 

Sener, N., Krlrç Apar, D., Demirhan, E. and Özbek, B. (2008). Milk Lactose 

Hydrolysis in a Batch Reactor: Optimisation of Process Parameters, Kinetics 

of Hydrolysis and Enzyme Inactivation. Chemical and Biochemical 

Engineering Quarterly. 22(2): 185–193. 

Seo, M.D., Kim, S.-Y., Eom, H.-J. and Han, N.S. (2007). Synbiotic synthesis of 

oligosaccharides during milk fermentation by addition of Leuconostoc starter 

and sugars. Journal of Microbiology and Biotechnology. 17: 1758-1764. 

Sherma, J. and Fried, B. (1996). Handbook of Thin Layer Chromatography. New 

York, US: Marcel Dekker, Inc. 

Skalska-Kamińska, A., Matysik, G., Wójciak-Kosior, M., Donica, H., Sowa, I. (2009). 

Thin-layer chromatography of sugars in plant material. Annales Universitatis 

Mariae Curie-Skłodowska Lublin-Polonia. Sectio DDD, N4(2): 17-24. 

Smart, J.B. (1991). Transferase reactions of the β-galactosidase from Streptococcus 

thermohohilus. Applied Microbiology and Biotechnology. 34: 495-501. 

 

 

 

 

 

 

 

 



205 
 

Smith, C.A. and Dawson, M.M. (1987). An Investigation of Milk Sugar. In Wood, 

E.J. (Ed.). Practical Biochemistry for Colleges. Oxford, UK: Pergamon 

Press. (pp. 201-201). 

Spangenberg, B., Poole, C.F., and Weins, C. (2011). Theoretical Basis of Thin Layer 

Chromatography (TLC). Quantitative Thin-Layer Chromatography A 

Practical Survey. Heidelberg, Germany: Springer Science & Business Media. 

(pp. 13-52). 

Splechtna, B., Nguyen, T. H., Steinbock, M., Kulbe, K. D., Lorenz, W. and Haltrich, 

D. (2006). Production of prebiotic galacto-oligosaccharides from lactose using 

β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and 

Food Chemistry. 54 (14): 4999–5006.  

Splechtna, B., Nguyen, T.H., Zehetner, R., Lettner, H.P., Lorenz, W. and Haltrich, D. 

(2007). Process development for the production of prebiotic 

galactooligosaccharides from lactose using beta-galactosidase from 

Lactobacillus sp. Biotechnology Journal. 2(4): 480-485. 

Stevenson, D.K. Crawford, J.S. and Carroll, J.O. (1983). Enzymatic hydrolysis of 

lactose in ice-cream. Journal of Dairy Science. 66: 75–78. 

Sutton, T.D., Duncan, S.E., Brochetti, D., and Ogura, A. (1995). Quality and 

sweetness of baked custards made with lactose-reduced milks. Journal of 

Food Quality. 18: 379-387. 

Tanaka, M., Pearson, A. M., and deMan, J. M., (1972). Measurement of ice cream 

with a constant speed penetrometer. Canadian Institute of Food Technology 

Journal. 5(2): 105–110. 

 

 

 

 

 

 

 

 



206 
 

Tieking, M., Ehrmannn, M.A., Vogel, R.F. and Ganzle, M.G. (2005). Molecular and 

functional characterization of a levansucrase from the sourdough isolate 

Lactobacillus sanfranciscensis TMW1.392. Applied Microbiological and 

Biotechnology. 66: 655-663. 

Vasiljevic, T. and Jelen, P. (2001). Production of β-galactosidase for lactose 

hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. 

Innovative Food Science & Emerging Technologies. 2: 75-85 

Vasiljevic, T. and Jelen, P. (2003). Oligosaccharide production and proteolysis during 

lactose hydrolysis using crude cellular extracts from lactic acid bacteria. 

Dairy Science & Technology. 8: 453–467. 

Whitaker, J.R. (1994). Effect of Enzyme Concentration on Rates of Enzyme-

Catalyzed Reactions. Principles of Enzymology for the Food Sciences. New 

York, USA: Marcel Dekker, Inc. (pp. 201-240). 

Wilbey, R. A., Cooke, T., and Dimos, G., (1998). Effects of solute 

concentration, overrun and storage on the hardness of ice cream. In Ice 

Cream Proceedings of the International Symposium held in Athens, 

Greece, 18–19 September 1997. International Dairy Federation. 

Buchheim, W. (Ed.); Brussels, Belgium. 186–187. 

Wood, J.M. (2011). Sensory evaluation of ice cream made with prebiotic ingredients 

substituted for sugar. Nutrition & Health Sciences Dissertations & Theses. 

University of Nebraska-Lincoln. 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER VI 

Summary 

 

Beta-galactosidase is an important enzyme in the dairy industry. This study 

developed a recombinant β-galactosidase (lacZ) from L. delbrueckii subsp. bulgaricus 

DSM 20081, expressed in L. plantarum TLG2 through a pSIP vector system for used 

as a food grade expression system. This is an essential step towards food-grade 

production of β-galactosidase in L. plantarum. The expression plasmids (pSIP609-

lacZ and pSIP609–lacZ-His) were successfully constructed by replacing the erm gene 

with the alr gene from L. plantarum, resulting in efficient overproduction of                

β-galactosidases. The purified β-galactosidase from L. plantarum TLG02 harboring 

pSIP609-lacZ-histag was determined for the biochemical characteristics. The optimal 

temperature of this β-galactosidase was 55-60°C and 50°C, using lactose and oNPG as 

a substrate. The kinetic parameters of β-galactosidase were determined in milk buffer 

at different temperatures (4–65°C). The temperature at 30 and 50°C were the suitable 

temperature for giving the Michaelis-Menten constant (Km) and the catalytic 

efficiency (kcat/KM) values, respectively. The presence of Mg2+ in the buffer could 

extend the catalytic stability (half-life time) of the enzyme but its stability could 

rapidly lose activity beyond 45°C with or without Mg2+. All types of β-galactosidase 

with various concentrations (1-5 U/mL) hydrolyzed more than 85% of milk lactose 

within 18 hours at 4°C. All enzyme preparations (1–10 U/mL) could produce the 

highest GalOS content at 3 hours. Crude and purified enzymes provided more GalOS 
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content than the commercial one. The overall acceptance of such lactose-hydrolyzed 

milk was scored in “like slightly”. For the production of lactose-hydrolyzed milk, 

crude and purified enzymes could be used and substituted to the commercial enzyme. 

The overall acceptance of lactose-hydrolyzed ice cream was scored in “like slightly”. 

However, the purified enzyme seemed to be suitable for the production of lactose-

hydrolyzed ice cream. 

Thus, in this study, the production and application of the recombinant             

β-galactosidase has a very high potential for using in dairy industry for producing the 

low-lactose product.  
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Sensory evaluation form of lactose-hydrolyzed milk 
 

Name:……………………………………. Date:………………….Panelist no. …… 

Instructions: You are presented with four samples of lactose-hydrolyzed milk which 

labeled with three-digit numbers code in order to taste four sensorial attributes (Color, 

Aroma, Sweetness, and Overall acceptance).  Taste the sample and give the score 

which best describes your feeling. Rinse your mouth with tea between samples. Pease 

write down any comments. 

Score value assigned: 9 = like extremely, 8 = like very much, 7 = like moderately,  

6 = like slightly, 5 = neither like nor dislike, 4 = dislike slightly, 3 = dislike 

moderately, 2 = dislike very much, 1 = dislike extremely.  

Attributes Code 
    

Color     

Aroma     

Sweetness     

Overall acceptance     

 

Comment:………………………………………………………………………………

………………………………….………………………………………………………

………………………………………………………………………………………… 

 

Figure 1A:  Sensory evaluation form of lactose-hydrolyzed milk. 
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Sensory evaluation form of lactose-hydrolyzed ice cream 
 

Name:………………………………………Date:………………….Panelist no. …… 

Instructions: You are presented with four samples of lactose-hydrolyzed ice cream 

which labeled with three-digit numbers code in order to taste seven sensorial attributes 

(Color, Aroma, Sweetness, Firmness, Meltability, Sandiness, and Overall acceptance).  

Taste the sample and give the score which best describes your feeling. Rinse your 

mouth with tea between samples. Pease write down any comments. 

Score value assigned: 9 = like extremely, 8 = like very much, 7 = like moderately,  

6 = like slightly, 5 = neither like nor dislike, 4 = dislike slightly, 3 = dislike 

moderately, 2 = dislike very much, 1 = dislike extremely.  

Attributes Code 
    

Color     

Aroma     

Sweetness     

Firmness     

Meltability     

Sandiness     

Overall acceptance     

 

Comment:………………………………………………………………………………

………………………………….………………………………………………………

………………………………………………………………………………………… 

 

Figure 2A:  Sensory evaluation form of lactose-hydrolyzed ice cream. 
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Table 1B  ANOVA Table (The effect of crude enzyme concentrations on lactose 

hydrolysis). 

 

Tests of Between-Subjects Effects 

Dependent Variable: result     

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 13539.449a 4 3384.862 39.487 .000 

Intercept 98259.205 1 98259.205 1.146E3 .000 

Temp 3260.836 1 3260.836 38.041 .000 

Enzyme 10171.298 2 5085.649 59.329 .000 

Lac 107.315 1 107.315 1.252 .277 

Error 1628.679 19 85.720   

Total 113427.332 24    

Corrected Total 15168.127 23    

a. R Squared = .893 (Adjusted R Squared = .870)   

 
 

Table 2B  ANOVA Table (The effect of lactose concentrations on lactose hydrolysis). 

 

Tests of Between-Subjects Effects 

Dependent Variable: result     

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 107.315a 1 107.315 .157 .696 

Intercept 98259.205 1 98259.205 143.532 .000 

Lac 107.315 1 107.315 .157 .696 

Error 15060.812 22 684.582   

Total 113427.332 24    

Corrected Total 15168.127 23    

a. R Squared = .007 (Adjusted R Squared = -.038)   
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Table 3B  ANOVA Table (The effect of temperatures on lactose hydrolysis). 

 

Tests of Between-Subjects Effects 

Dependent Variable: result     

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 3260.836a 1 3260.836 6.025 .022 

Intercept 98259.205 1 98259.205 181.544 .000 

Temp 3260.836 1 3260.836 6.025 .022 

Error 11907.291 22 541.241   

Total 113427.332 24    

Corrected Total 15168.127 23    

a. R Squared = .215 (Adjusted R Squared = .179)   
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Table 1C  Lactose content (mg/mL) during lactose hydrolysis using different types of β-galactosidase in low-fat milk (1.5% fat). 

Time (h) Concentration 0 0.5 1.5 3 6 9 12 18 

crude enzyme  1 U/mL 54.3±0.8g 41.6±1f 25.9±0.8e 21.7±0.9d 16.2±0.6cd 15.3±0.7c 13.1±1b 8.61±0.2a 

commercial enzyme  1 U/mL 54.3±0.8h 47.6±0.7g 39.8±0.9f 26.4±0.7e 20.2±0.6d 11.2±0.5c 6.11±0.1b 3.38±0.1a 

purified enzyme  1 U/mL 54.3±0.8g 41.6±1 f 37.2±1e 29.5±1d 16.0±0.5c 10.7±0.5bc 8.85±0.4b 5.59±0.1a 

crude enzyme  5 U/mL 54.3±0.8g 35.1±1f 23.4±1e 17.2±0.6d 13.0±0.6cd 11.7±0.6c 8.98±0.3b 7.16±0.2a 

commercial enzyme  5 U/mL 54.3±0.8h 44.7±0.5g 35.9±0.6f 23.7±0.8e 16.9±1d 8.90±0.2c 5.60±0.2b 2.46±0.1a 

purified enzyme  5 U/mL 54.3±0.8g 40.4±0.9f 30.4±1e 21.3±0.7d 13.1±0.5c 9.41±0.3b 5.59±0.2a 4.27±0.1a 

crude enzyme  10 U/mL 54.3±0.8g 28.9±0.6f 20.6±0.9e 15.3±0.8d 11.7±0.4c 8.78±0.2b 8.61±0.2b 6.11±0.1a 

commercial enzyme  10 U/mL 54.3±0.8g 43.6±0.8f 28.8±0.7e 18.3±0.9d 9.5±0.1c 3.94±0.1b 3.93±0.1b 1.73±0.04a 

purified enzyme  10 U/mL 54.3±0.8f 37.1±1e 25.8±0.9d 18.1±0.9c 11.1±0.2b 8.32±0.2a 3.93±0.1a 3.38±0.1a 
 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Different letters indicate means with significant 

differences (P<0.05). 
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Table 2C  Glucose content (mg/mL) during lactose hydrolysis using different types of β-galactosidase in low-fat milk (1.5% fat). 

Time(h) Concentration 0 0.5 1.5 3 6 9 12 18 

crude enzyme  1 U/mL 6.96±0.1a 7.59±0.3ab 10.9±0.2b 15.3±0.5c 18.5±0.3d 19.2±0.4e 19.5±0.4f 19.5±0.5g 

commercial enzyme  1 U/mL 6.96±0.1a 8.42±0.4b 10.35±0.7c 15.2±0.5d 18.5±0.3e 19.8±0.5ef 20.1±0.3f 20.6±0.3f 

purified enzyme  1 U/mL 6.96±0.1a 7.61±0.3ab 11.5 ±0.7b 16.7±0.3c 18.5±0.6cd 19.2±0.3d 19.7±0.5d 20.6±0.4d 

crude enzyme  5 U/mL 6.96±0.1a 8.61±0.4b 12.4 ±0.4c 16.9±0.2e 18.9±0.5f 19.2 ±0.5f 19.5±0.3f 20.2 ±0.6f 

commercial enzyme  5 U/mL 6.96±0.1a 8.52±0.3b 12.9 ±0.5c 16.9±0.9d 19.4±0.7e 20.2±0.3f 20.7±0.3f 20.8 ±0.5f 

purified enzyme  5 U/mL 6.96±0.1a 9.32±0.4b 13.0 ±0.3c 16.9±0.2d 18.7 ±0.3e 19.7±0.7ef 20.1±0.8f 20.5 ±0.4f 

crude enzyme  10 U/mL 6.96±0.1a 8.67±0.5b 14.5±0.6c 18.1±0.3d 19.0±0.3de 19.7±0.4e 19.8±0.4e 20.6 ±0.3e 

commercial enzyme  10 U/mL 6.96±0.1a 10.12±0.6b 15.0 ±0.3c 17.9±0.4d 19.8±0.7e 20.8±0.4ef 21.0±0.3f 21.1±0.4f 

purified enzyme  10 U/mL 6.96±0.1a 10.74±0.3b 14.4 ±0.3c 17.9±0.7d 19.2 ±0.6e 19.8±0.8f 20.3±0.3f 20.6±0.5f 

 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Different letters indicate means with significant 

differences (P<0.05). 
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Table 3C  Galactose content (mg/mL) during lactose hydrolysis using different types of β-galactosidase in low-fat milk (1.5% fat). 

Time(h) Concentration 0 0.5 1.5 3 6 9 12 18 

crude enzyme  1 U/mL 4.33±0.3a 4.88±0.4b 11.7±0.7c 16.1±0.7d 19.0±0.5e 21.1±0.7ef 21.5±1ef 22.9±0.4f 

commercial enzyme  1 U/mL 4.33±0.3a 6.38±0.3b 10.7±0.4c 16.8±0.7d 22.1±0.6e 23.3±0.7ef 24.4±0.5f 25.0±0.8f 

purified enzyme  1 U/mL 4.33±0.3a 10.8±0.3b 16.9±0.5c 19.0±0.5d 21.4±0.5e 22.9±0.8f 23.3±0.3f 23.5±0.3f 

crude enzyme  5 U/mL 4.33±0.3a 7.56±0.8b 14.3±0.8c 18.3±0.8d 20.0±0.3e 21.6±0.4f 22.4±0.7f 24.0±0.6g 

commercial enzyme  5 U/mL 4.33±0.3a 9.12±0.5b 16.1±0.7c 22.1±0.7d 24.1±0.6e 25.5±0.8f 26.9±0.7g 27.6±0.6g 

purified enzyme  5 U/mL 4.33±0.3a 11.6±0.5b 19.0±0.3c 22.3±0.7d 24.0±0.9e 24.0±0.6e 25.5±0.4f 26.5±0.2f 

crude enzyme  10 U/mL 4.33±0.3a 8.93±0.5b 16.8±0.5c 18.8±0.7d 21.5±0.9e 22.3±0.6ef 23.1±0.4f 24.1±0.8f 

commercial enzyme  10 U/mL 4.33±0.3a 10.3±0.6b 19.6±0.4c 23.3±0.6d 26.0±0.7e 27.6±0.6f 28.8±0.7f 28.5±0.5f 

purified enzyme  10 U/mL 4.33±0.3a 17.4±0.3b 20.0±0.9c 24.4±0.4d 24.9±0.3d 26.9±0.5e 27.6±0.7e 29.5±0.5f 
 

Note:  Experiments were performed in duplicate, and the standard deviation was <5%. Different letters indicate means with significant 

differences (P<0.05). 
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