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 วทิยานิพนธ์ฉบบัน้ีมีวตัถุประสงคห์ลกัสามประการคือ (1) เพื่อก าหนดวิธีท่ีเหมาะสมท่ีสุด
ส าหรับการจดัท าแผนท่ีความอ่อนไหวต่อการเกิดดินถล่มเหนือพื้นท่ีศึกษาท่ีตอ้งการ คือ พื้นท่ีลุ่มน ้ า
เขาพนมเบญจาในเขตจงัหวดักระบ่ี จากรายการของตวัเลือกท่ีไดรั้บการเสนอ (2) เพื่อพฒันาแผนท่ี
ความเส่ียงต่อการเกิดดินถล่มและความเส่ียงต่อการเกิดความเสียหายท่ีเก่ียวพนักบัเหตุการณ์ดงักล่าว
ส าหรับพื้นท่ีโดยการประยุกต์วิธีท่ีเหมาะสมท่ีสุดซ่ึงพบก่อนน้ี (3) เพื่อประเมินความเส่ียงต่อการ
เกิดดินถล่มแบบโคลนหลากรุนแรงส าหรับพื้นท่ีโดยการประยุกต์แบบจ าลอง Flow-R ท่ีตอ้งการ 
ทั้งน้ี เพื่อใหบ้รรลุวตัถุประสงคแ์รก ไดมี้การประเมินและเปรียบเทียบความถูกตอ้งของผลงาน ท่ีได้
จากวิธีสร้างแผนท่ีความอ่อนไหวท่ีมีช่ือเสียงจ านวนเจ็ดวิธี คือ วิธี conventional weighted linear 
combination (WLC) วธีิ  analytical hierarchy process (AHP) วธีิ frequency ratio (FR) วธีิ integrated 
FR-fuzzy วิ ธี  multiple logistic regression (MLR) วิ ธี  artificial neural network (ANN) และ  วิ ธี  
integrated ANN-fuzzy โดยในทุกกรณีจะใช้ปัจจยัเก้ือหนุนส าคญัต่อการเกิดดินถล่มในเขตโซน
ร้อนจ านวน 10 ประเภท เป็นขอ้มูลน าเขา้เพื่อสร้างแผนท่ีความอ่อนไหวท่ีตอ้งการ ไดแ้ก่ ความสูง 
ความลาดชัน ทิศด้านลาด ความโคง้พื้นผิว ดัชนีความช้ืนเชิงภูมิประเทศ ระยะห่างจากทางน ้ า 
ลกัษณะทางธรณีวิทยา ระยะห่างจากแนวรอยเล่ือนของแผ่นดิน ลกัษณะเน้ือดิน และลกัษณะของ
การใชป้ระโยชน์ท่ีดินและตวัส่ิงปกคลุมดิน (LULC) ทั้งน้ี การประเมินความถูกตอ้งด าเนินการโดย
ใช้วิธีการท่ีต่างกันจ านวน 2 วิธี  คือวิธี  Area-Under-Curve (AUC) และวิธี  Receiver Operating 
Characteristic (ROC) curve analysis 
  จากการศึกษาพบวา่หากพิจารณาเร่ืองของความถูกตอ้งเฉล่ียของแผนท่ีผลผลิตจากแต่ละวธีิ 
วธีิซ่ึงประสบความส าเร็จมากท่ีสุด 4 ล าดบัแรก คือ วธีิ FR (93.98%) วธีิ MLR (92.98%) วธีิ FR-
Fuzzy (92.84%) วธีิ ANN-Fuzzy (92.47%) และในขณะท่ีวธีิซ่ึงประสบความส าเร็จนอ้ยท่ีสุดคือ 
AHP (83.37%) อยา่งไรก็ตาม ถึงแมท้ั้งส่ีวธีิซ่ึงประสบความส าเร็จมากท่ีสุด จะมีค่าความถูกตอ้งของ
แผนท่ีผลลพัธ์ท่ีใกลเ้คียงกนัมาก แต่ทา้ยท่ีสุดวธีิ FR ไดรั้บการพิจารณาวา่เป็นวิธีท่ีเหมาะท่ีสุด
ส าหรับการศึกษาขั้นต่อไป เน่ืองมาจากการมีโครงสร้างการท างานท่ีเรียบง่ายท่ีสุด รวมถึงการมีหลกั
ของการท างานท่ีเขา้ใจไดง่้ายท่ีสุดดว้ย ทั้งน้ี ไดมี้การตรวจสอบผลของการเพิ่มขอ้มูลน ้าฝนสองแบบ 

 

 

 

 

 

 

 

 



II 

 

(ค่าเฉล่ียรายปีระยะยาวและค่าสะสมระยะสั้น 3 วนั)   ต่อการสร้างแผนท่ีความเส่ียงดว้ย ซ่ึงพบวา่มนั
ส่งผลกระทบต่อระดบัความถูกตอ้งในระดบัต ่า (มีการผนัแปรของค่าความถูกตอ้งเฉล่ีย < 0.5%) 
 จากนั้นไดมี้การสร้างแผนท่ีความเส่ียงต่อการเกิดดินถล่มของพื้นท่ีข้ึน โดยการบูรณาการแผนท่ี
ความอ่อนไหวท่ีสร้างมาจากวธีิ FR ก่อนนั้น เขา้กบัแผนท่ีโอกาสของการเกิดฝนเหนือพื้นท่ีศึกษา
สองกรณี คือปริมาณฝน 100 มม./วนั และ 300 มม./3 วนั ซ่ึงเป็นค่าวกิฤติของการเร่ิมตน้เกิดดินถล่ม
ท่ีก าหนด ซ่ึงผลท่ีไดรั้บจากแผนท่ีดงักล่าวท่ีผา่นการจ าแนกระดบัแลว้จากทั้งสองวธีิ บ่งช้ีวา่มีพื้นท่ี
เพียงส่วนนอ้ยเท่านั้น (< 10%) ซ่ึงมีความเส่ียงดงักล่าวในระดบัสูงถึงสูงมาก ขณะท่ีพื้นท่ีประมาณ 
80% ตั้งอยูใ่นเขตซ่ึงท่ีมีความเส่ียงในระดบัต ่ามากถึงต ่า ซ่ึงแผนท่ีความเส่ียงต่อภยัดินถล่มดงักล่าว 
ไดรั้บการบูรณาการกบัแผนท่ีความเปราะบางต่อความเสียหายของพื้นท่ี เพื่อสร้างเป็นแผนท่ีเส่ียง 
ต่อการเกิดความเสียหายขององคป์ระกอบหา้ประเภท คือ อาคารท่ีพกัอาศยั ยางพารา พืชสวน พืชไร่ 
และนาขา้ว ผลจากแผนท่ีความเส่ียงต่อความเสียหายท่ีไดรั้บของทั้งสองกรณี แสดงให้เห็นวา่มีพื้นท่ี
เพียงประมาณ 0.005% ซ่ึงตั้งอยูใ่นเขตท่ีมีค่าความเส่ียงสูงถึงสูงมาก ขณะท่ีพื้นท่ีเกือบ 100% ตั้งอยู่
ในเขตท่ีมีความเส่ียงต ่ามากถึงต ่า นอกจากนั้น ไดมี้การสร้างแผนท่ีเส่ียงภยัจากโคลนหลากรุนแรง
ข้ึนมาดว้ยโดยใชแ้บบจ าลองเชิงประจกัษ ์Flow-R เพื่อก าหนดเขตเส่ียงต่อภยัดงักล่าวสูงของพื้นท่ีซ่ึง
พบวา่แผนท่ีซ่ึงไดรั้บจากแบบจ าลองดงักล่าว มีความสอดคลอ้งกบัหลกัฐานของเหตุการณ์ท่ีพบบน
ภาพดาวเทียมความละเอียดสูงซ่ึงใชอ้า้งอิงเป็นอยา่งดี 
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 There are three principal objectives for this thesis work: (1) to identify optimal 

method for the formulation of landslide susceptibility map of the preferred study area, 

Khao Phanom Bencha in Krabi Province, from list of proposed candidates, (2) to develop 

the associated landslide hazard and risk maps for the study area through application of 

the optimal approach found earlier, (3) to assess landslide-induced runout hazard for 

the area through application of the preferred Flow-R runout model. To achieve the first 

objective, seven prominent methods were evaluated and compared for accuracy of the 

eventual output. These are, the conventional weighted linear combination (WLC), 

analytical hierarchy process (AHP), frequency ratio (FR), integrated FR-fuzzy, multiple 

logistic regression (MLR), artificial neural network (ANN), and integrated ANN-fuzzy 

models. In all cases, ten important contributing factors to landslide occurrence in the 

tropical region were utilized as input data for the generation of the susceptibility maps, 

i.e., elevation, slope gradient, slope aspect, slope curvature, topographic wetness index, 

distance from drainage, lithology, distance from lineament, soil texture and land use/land 

cover (LULC). The accuracy assessment were done using two different methods; the 

Area-Under-Curve (AUC) and the Receiver Operating Characteristic (ROC) curve analysis.  
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 It was found that, in terms of average accuracy of the yielded maps, the four 

most successful methods are FR (93.98%), MLR (92.98%), FR-Fuzzy (92.84%), ANN-

Fuzzy (92.47%)  and while the least productive one is AHP (83.37%). Through, these 

top four methods are highly comparable in terms of achieved accuracy, however, FR 

was finally considered to be an optimal candidate regarding to its simplest and most 

comprehensible concept. Effects of rainfall incorporation in the construction of the 

preferred susceptibility map in two cases (long-term annual average and short-term       

3-days accumulated) were also examined with relatively low impact evidenced (< 0.5% 

change in average accuracy). 

 Landslide hazard maps were then derived based on integration of the obtained 

FR-based susceptibility map and rainfall probability of occurrence maps in two cases; 

100 mm/day and 300 mm/3-days (assumed critical conditions for landslide initiation in 

the area). The classified maps of both cases indicated that only small proportion of land 

(< 10%) located in the high to very high hazard zone while about 80% situated in the 

very low to low hazard one. The landslide risk maps for five groups of the element at 

risk (i.e. building, para rubber, horticulture, field crop, paddy field) were then made 

through the integration of the produced hazard and vulnerability maps. Results in both 

cases indicated that just about 0.005% of the total area stayed in the high to very high 

risk zone while nearly 100% had very low to low risk level. In addition, the associated 

runout hazard map was also produced through the empirical Flow-R model to identify 

area at high risk from landslide-induced runout. The output map seemed to agree well 

with evidences seen on the reference high-resolution satellite imagery. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Problem background and significance of the study  

 Landslide is a well-known natural phenomenon involving a mass movement of 

soil (in forms of earth or debris) or rock downward along the slope under gravitational 

influence (Varnes, 1984; Cruden, 1991). At present, it has been regarded as being one 

of the most destructive hazards which causes substantial loss of life and great damage 

to property and natural environment worldwide (Dilley, Chen and Deichmann, 2005; 

Petley, 2012). Therefore, prior knowledge of the areas prone to substantial landslide is 

highly essential to most countries, especially those situated in tropical region, to help 

preparing proper strategies for effective prevention or mitigation of potential landslide 

occurrences or their associated risk. Conventionally, a detailed map illustrating spatial 

distribution of these landslide-prone areas is called a landslide susceptibility map. 

 Attention on the identification of landslide prone areas (or susceptibility 

analysis) and the assessment of its potential impacts on human and environment (risk 

analysis) has been risen dramatically in recent decades due to mounting public concern 

on these issues. And, as validity of a derived landslide susceptibility map depends 

principally on the used methods and their input data, comparative study to evaluate 

efficiency of several recommended methods in the preparation of landslide 

susceptibility maps for an area of interest was reported more often in recent years, such 
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as, in Yilmaz (2009); Choi, Oh, Lee, Lee, and Lee (2012); Xu, Xu, Dai, and Saraf 

(2012); and Park, Choi, Kim, and Kim (2013). Main objectives of these studies are to 

identify capability and of the evaluated methods in generating a satisfied landslide 

susceptibility map for the preferred area from which most effective procedure can then 

be identified for further use in the subsequent hazard and risk analysis afterwards.  

 In Thailand, landslide has also become constant threat to large number of people 

residing in mountainous region, especially those located in the northern and southern 

parts. Prominent landslide events normally occur during monsoon months of May to 

early October for most parts of the country due to high influence of the heavy rainfall 

over a susceptible area. However, an exception was evidenced for major landslides on 

eastern side of southern Thailand which usually took place during local rainy months 

of October to January. For examples, in August 2001, strong flashflood and disastrous 

landslide (in the form of debris flow) struck a remote village in Phetchabun Province at 

night which led to at least 136 deaths and more than 5 million US dollars in damage of 

property (Figure 1.1) (Yumuang, 2006). In May 2006, similar incidences occurred in 

Uttaradit, Phrae and Sukhothai Province resulted in 87 deaths and damages of more 

than 10 million US dollars (Asian Disaster Preparedness Center, 2006). List of some 

past notable landslide incidences is summarized in Table 1.1. 

 Through, imminent impact of landslide phenomenon to people and environment 

situating within the landslide-prone area is well acknowledged in Thailand at present, 

however, publications of research work on this issue are still relatively infrequent and 

mostly attributed to the preparation of landslide susceptibility maps by a single chosen 

method in which a validation process of the derived map was often ignored. However, 
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development of the associated landslide risk map was rarely found (e.g. in Tanavud, 

Yongchalermchai, Bennui and Navanugraha, 2000; Soralump and Kulsuwan, 2006). 

 Therefore, to broaden traditional scope of the research on landslide 

susceptibility mapping and landslide risk analysis in Thailand, this thesis shall conduct 

comparative efficiency assessment for several widely-acknowledged methods in the 

formulation of landslide susceptibility maps for a concerned area from which the 

optimum algorithm shall be identified by the attained accuracy of their output maps 

along with associated benefits from their applications. This preferred methodology 

shall be then applied to build the landslide susceptibility maps for the entire area which 

are used as a basis for generating the associated landslide hazard and risk maps 

afterwards. 

 The area of interest in this study is the Khao Phanom Bencha Watershed in Krabi 

Province which experienced several devastated landslide incidences in recent decades 

(Figures 1.2 and 1.3). As mentioned earlier, this area was selected as case study based 

on previous reports of the expansive landslide activity found therein due to its rather 

rough mountainous landscape and fairly high amount of annual rainfall (DMR, 2011). 

Rapid changes in land use of the area due to continuous conversion of the forest lands 

into several kinds of economic agricultural plantations (e.g. para rubber and oil palm) 

and communities into the known landslide-prone locations have also become a cause 

for high public concern in recent years. This is because forest clearance for expansive 

plantations of the shallow-rooted crops, orchards, or trees, might enable more frequent 

appearances of massive landslide incidence with greater losses of human lives or high 

amount of the gross damages to the important infrastructures and natural environment 

(Tanavud et al., 2000; Soralump, 2010a). 
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Figure 1.1 Massive landslide runout at Nam Ko Yai village in Phetchabun Province 

due to the prolonged heavy rainfall in August 2001 (Yumuang, 2006). 

 

Table 1.1 List of some past prominent landslide incidences in Thailand (data acquired 

from Soralump, 2007 and DMR, 2012). 

Date Place Losses 

November 22, 1988 Phipun/LanSaka District, 

Nakhon Si Thammarat 
 

242 deaths; 1,612 houses destroyed 

September 11, 2000 Lomsak/Muang District,  

Petchaboon 
 

10 deaths 

May4, 2001 Wang Chin District,Phrae 
 

43 deaths; 18 houses destroyed 

August 11, 2001 Lomsak District, Petchaboon 
 

136 deaths, 188 houses destroyed 

October 18, 2004 Mueang District, Krabi 
 

3 deaths; 25 houses destroyed 

May 22, 2006 Tha Pla/Lablae/Mueang District, 

Uttaradit 
 

75 deaths; 483 houses destroyed 

November 6, 2009 Si Sakhon District, Narathiwat 
 

10 deaths; 3 houses destroyed 

March 30, 2011 Khao Phanom District, Krabi 
 

10 deaths; many houses destroyed 

August 3, 2011 Sop Moei District, Mae Hong Son 
 

9 deaths; many houses destroyed 

September 9, 2011 Nam Pat District, Uttaradit 
 

6 deaths; > 50 houses destroyed 
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Source: DMR, http://www.krobkruakao.com, http://www.oknation.net 

Figure 1.2 Photographs of landslide evidences seen within the study area. 
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Source: DMR, http://www.oknation.net  

Figure 1.3 Photos of landslide runout over flat downstream zone in the study area.  
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 In this research, seven different methods are primarily chosen for conducting 

the landslide susceptibility assessment and susceptibility map formation for the study 

area based on their widely-acknowledged merit and apparently distinct working 

concepts. These are the conventional weighted linear combination (WLC), analytical 

hierarchy process (AHP), frequency ratio (FR), integrated FR-fuzzy, multiple logistic 

regression (MLR), artificial neural network (ANN), and integrated ANN-fuzzy models. 

Among these, the first two methods (WLC and AHP) are of the qualitative type, 

conceptually, while the rest are of quantitative type. Here, concept of fuzzy logic is to 

be integrated to the FR and ANN models to evaluate its capability to improve mapping 

accuracy of these referred methods. In risk analysis part, the associated hazard maps 

(developed from susceptibility map of the identified optimal method) and 

corresponding landslide risk maps are prepared from which main interest of the analysis 

is on apparent impact of mapped landslide incidences to economic activities (crop 

plantation) and buildings or infrastructure within the area, in particular.   

 It is hoped that results gained from this study can provide better understanding 

on efficiency of the evaluated methods for landslide susceptibility mapping of the 

studied area. The preferred optimal candidate can then be implemented to formulate 

credible susceptibility maps along with the associated hazard and risk maps that can be 

used to support formulation of fruitful strategic planning on the prevention and 

mitigation of landslide occurrence and risk in the area by responsible agencies and local 

authorities. Knowledge on relationship of land use pattern and landslide activity within 

the area is also essential for issuing proper land use control in the near future.  
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1.2 Research objectives 

 Principal objectives of the thesis are as follows: 

 1.2.1 To identify optimal method for the formulation of landslide 

susceptibility map for the study area from a list of proposed candidates, 

 1.2.2 To develop the associated landslide hazard and risk maps for the study 

area through application of the optimal approach found earlier,  

 1.2.3 To assess landslide-induced runout hazard for the area through 

application of the preferred Flow-R runout model. 

 

1.3 Scope and limitations of the study 

 Scope and limitations of this study can be summarized as follows: 

 1.3.1 Susceptibility, hazard, and risk maps are prepared for the landslide 

activity in general, not for a particular type of the landslide phenomenon existing in the 

area. In addition, all observed landslide traces were included in the analysis regardless 

of their original dates of formation (old or new scares).    

 1.3.2 The location-based nature of landslide occurrence, difficulty in 

identifying proper causative factors for mapped landslide activities, and lack of known 

data about past landslide occurrences over the area. 

 1.3.3 Lack of measured rainfall data due to limited amount of rain-

measurement stations existing within the study area and its vicinity might lead to the 

less realistic of the interpolated rainfall maps. Similarly, lack of fine detailed land 

characteristics within the defined slope complex areas might also make this study less 

fruitful.  
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 1.3.4 Differences in original scale of the input data maps might make the 

analysis less credible and appropriate rescaling might be required as appropriate. 

 

1.4 Study area 

 1.4.1 Location 

  The preferred area is the Khao Phanom Bencha Watershed, Krabi 

Province, on the Andaman Coast of southern Thailand covering area of about 987.53 

km2. This is the mountainous region with highest elevation of 1,400 meter above mean 

sea level. The watershed territory is surrounding the central mountain network that 

aligns along the north-south direction, approximately, comprising parts of five nearby 

districts and several sub-districts, i.e., (1) Plai Phraya District (Plai Phraya, Khao Khen 

and Khiri Wong Sub-district), (2) Ao Luk District (Na Nuea, Khlong Hin, Ao Luk 

Nuea, Khao Yai,  Khlong Ya and Ban Klang Sub-district), (3) Khao Phanom District 

(Khao Phanom, Khao Din and Na Khao Sub-district ), (4) Mueang District (Krabi Noi, 

Khao Khram, Khao Thong, Thap Prik, Sai Thai Sub-district), (5) Mueang municipality, 

and (6) Nuea Khlong District (Nuea Khlong and Huai Yung Sub-district) (Figure 1.4).  

 1.4.2 Climate 

  Due to strong influence of tropical monsoons on both sides (i.e., 

northeast monsoon on the Gulf-of-Thailand side and southwest monsoon on the 

Andaman side), only two dominant seasons exist in this area; dry season (from January 

to April) and wet season (from May to December). Temperatures range is between 17-

37°C. 
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 1.4.3 Land use patterns 

  Land use (LU) in 2009 was dominated by just two LU categories: 

economic agricultural plantations (para rubber and oil palm, in particular) and dense 

forest area whose land proportions are as follows; oil palms (44.36%), para rubber 

(25.94%), and dense evergreen forest (23.83%) (Figure 3.2j) 

 1.4.4 Landslide incidence 

  Main focus is on the case of tragic landslide incidence taken place in 

Khao Phanom Bencha Watershed due to unusual heavy rainfall during 27-31th March 

2011 which led to several deaths and expansive damage to the properties and 

infrastructures within the area (Figure 1.3).  

 

1.5 Benefits of the study 

 1.5.1 Knowledge on the comparative efficiency of all incorporated methods 

and the optimal candidate for producing landslide susceptibility map of the study area.  

 1.5.2 Credential landslide susceptibility, hazard and risk maps of the area that 

can provide better understanding on landslide activity along with its potential impact 

over the area to aid effective warning, prevention and mitigating of future landslide 

hazard. 
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Figure 1.4 Location map of the study area (Khao Phanom Bencha Watershed).  

 

 

 

 

 

 

 

 



 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEW 

 

 Basic concepts and relevant literatures are here reviewed in this chapter 

including (1) definition of landslide, (2) type of landslides, (3) landslide initiation 

mechanism, (4) principal causative factors, (5) concept of landslide risk analysis, (6) 

relevant landslide susceptibility mapping methods, (7) validation of the model 

application results, (8) the runout concepts, and (9) roles of GIS and remote sensing in 

landslide risk analysis. 

 

2.1 Definition of landslide 

 Landslide is conventionally defined as a mass movement of soil (in forms of 

earth or debris) or rock downward along surface slope under gravitational influence 

(Varnes, 1984; Cruden, 1991). At present, it has become vital hazard in most 

mountainous and hilly areas around the world especially those in the tropics and 

earthquake-influenced zones, as well as areas along the considerably steep river bank 

or coastline. Landslide impacts depend fundamentally on their size and speed (or 

momentum), elements at risk within their paths and vulnerability condition of those 

elements. Every year, landslide incidences have generated large number of deaths and 

injuries to the at-risk people and substantial damages to the infrastructures (e.g. road, 
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railway, pipeline) and properties (e.g. building, agricultural land) (European Soil Portal, 

2013). 

 Landslide phenomenon is conceptually a direct product of slope instability due 

to the gravitation as when the gravitational stresses exceed the strength of rock or soil 

that holds the surface soil layer together, slope failure shall often occur as a 

consequence. Most landslides are initiated by some triggering factors that shall increase 

stress and weaken strength of slope materials which include: (1) heavy rainfall, rapid 

snowmelt, or irrigation that load slopes with water, (2) shaking by earthquake, (3) 

natural erosion or human activities that increase slope angles or undercut the toes of 

surface slopes, e.g. road construction, (4) removal of the vegetation cover on land 

surface by, e.g. wildfire, logging, agriculture, or overgrazing, and (5) loading of slopes 

with huge piles of rock, ore, or mining waste (Idaho Geological Survey, 2013). Among 

these factors, the most predominant ones around the world are two natural processes; 

heavy rainfall and strong earthquake (Corominas and Moya, 2008). 

 

  

(a) General landslide (b) Debris flow 

Figure 2.1 Principal components of (a) general landslide and (b) typical debris flow 

(Witt, 2005; NCGS, 2012). 
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 Figure 2.1(a) illustrates principal components of the general landslide structure 

which include tension cracks that appear when land is gradually pulling apart from the 

hillside. With time, the ground surface on one side of these cracks may slide downhill 

forming a scarp and if the ground moves far enough, it shall leave an apparent mark 

called a scar. Typically, a fresh scar often has lighter color without vegetation cover if 

compared to the surrounding slopes. Landslide volume can vary greatly from less than 

a cubic kilometer (km3) for the small and medium-size landslides to more than tens of 

cubic kilometers for the gigantic ones while speed might vary from a few centimeters 

per year for the slow-moving slides to several tens of kilometers per hour for the fast 

and destructive ones (Highland and Bobrowsky, 2008; European Soil Portal, 2013). 

Typically, the most destructive landslide incidences are often in form of the debris or 

mud flows as seen in Figure 2.1(b). These flows usually have rather rapid movement 

with combination volume of loose soil, rock, organic matter, air, and water mixed in 

the intense surface-water flow due to heavy precipitation or snow-melt. 

 

2.2 Types of landslides  

 Landslides can be broadly classified into two fundamental categories: shallow 

type and deep-seated type. Shallow landslides normally involve sudden fail of top soil 

layer and upper regolith zone while deep-seated ones additionally include bedrock at 

higher depth and gradually develop over a relatively longer time period. Most natural 

shallow landslides are triggered by prolonged heavy rainfall that critically increase soil 

water pressure or accelerated ground due to earthquakes at tectonic fault nearby. Most 

deep-seated landslides tend to fail incrementally, rather than in the catastrophic manner 

of the shallow landslide. Their major causes are accumulated rainfall over a long period 
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(e.g. weeks to years) and also massive ground acceleration experienced during large 

magnitude earthquakes. The latter is commonly found in the seismically active regions 

around the world (NMFS, 2012). 

 Standard classification scheme of the existing landslide types has been 

developed based principally on work of Varnes (1978). In this system, landslides are 

categorized based on basis of their predominant composed material type (i.e., rock, 

debris, earth, or mud) in the first term and their movement type (i.e., fall, topple, 

avalanche, slide, flow, or spread) in the second term. Thus, the landslides can be 

identified using these terms that refer respectively to their major material and 

movement mode, e.g. rock fall, debris flow, earth slide, and so forth. In general, the 

material in landslide mass is either rock or soil (or both); the latter is described as 

“earth” if mainly composed of the sand-sized or finer particles (with ≥ 80% of the 

particles are < 2 mm) and “debris” if composed of coarser fragments (with 20% to 80% 

of known particles are > 2 mm and the remainder are < 2 mm). Figure 2.2 and Table 

2.1 provide information on dominant landslide types according to Varnes (1978) 

mentioned earlier (USGS, 2004; AGS, 2007b). 

 From Figure 2.2, slides consist of blocks of material moving on well-defined 

shear planes and there is a distinct zone of weakness that separates slide material from 

more stable underlying material. These are divided into the rotational slides that move 

along concave surface and translational slides that often move parallel to the referred 

ground surface. Falls are the sudden release of rocks or soils dropping freely through 

the air with little contact with other surfaces until impact. Topples are similar to falls 

except that initial movement involves forward rotation of the associated mass. Lateral 

spreads occur when liquefaction in underlying materials causes surface rocks or soils 
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to move down gentle slopes. Flows move entirely by shearing within the transported 

mass and act like viscous fluids. They consist of five kinds: 

 (1) Debris flow-a fast moving landslide in form of liquefied material of mixed 

and unconsolidated water and debris [as illustrated in Figure 2.1(b)]. 

 (2) Debris avalanche-a variety of very rapid to extremely rapid debris flow. 

 (3) Earth flow-movement of slope material that liquefies and runs out forming 

a bowl or depression at the head and have a characteristic of “hourglass” shape. 

 (4) Mudflow-an earth flow consisting of the material wet enough to flow rapidly 

and contains at least 50% sand, silt, and clay-sized particles. In some cases, mudflows 

and debris flows are commonly referred to as “mudslides”. 

 (5) Creep-a slow, steady downward movement of slope-forming soil or rock. 

 The movement is called complex landslide if it involves combination of two or 

more types of the integrated movement. Debris flow and mudflow are among the most 

dangerous landslide-related incidences to life and property of the affected community, 

especially those in the tropical countries, due to the high speeds and sheer destructive 

force of their flow (USGS, 2004; AGS, 2007b). 
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Figure 2.2 Major types of landslide according to Varnes (1978) (AGS, 2007b). 

  

 

 

 

 

 

 

 

 



18 

Table 2.1 Major types of landslides according to Varnes (1978) (USGS, 2004). 

Type of Movement 

Type of Material 

Bedrock 

Engineering Soils 

Predominantly coarse Predominantly fine 

FALLS Rock fall Debris fall Earth fall 

TOPPLES Rock topple Debris topple Earth topple 

SLIDES 

ROTATIONAL 

Rock slide Debris slide Earth slide 

TRANSLATIONAL 

LATERAL SPREADS Rock spread Debris spread Earth spread 

FLOWS 
Rock flow Debris flow Earth flow 

(deep creep) (soil creep) 

COMPLEX Combination of two or more principal types of movement 

 

2.3 Landslide initiation mechanism 

 As stated earlier, landslide incidence is a direct product of the slope instability 

due to gravitation. Theoretically, this phenomenon shall occur when the driving force 

(from gravity) overcomes the resisting force within the slope (from strength, or 

cohesion, of vegetation roots/slope materials and surface friction) which results in slope 

failure and landslide initiation. To quantify stability level of a particular slope, a widely-

used index called the “factor of safety” (FS), or “safety factor” (SF), was introduced to 

support engineering purpose based on the following definition: 

 

direction on tangent forcegravity 

friction)(soil/rootcohesion 

stress)(shear  force Driving

strength)(shear  force Resisting
FS


 . (2.1) 

 

 In principle, areas with FS > 1 are considered safe for landslide activity as the 

slope is in a stable state while those with FS < 1 are believed to be prone to landslide 
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initiation as the slope is now considered as unstable (De Blasio, 2011). Normally, the 

FS values of 1.2-1.5 might be needed to support safe engineering construction on a 

natural slope (Hong Kong Geotechnical Engineering Office, 2000). 

 To determine slope instability level in terms of the FS parameter, the infinite-

slope stability analysis is normally applied. In this situation, the studied landslides are 

assumed to be infinitely long, with depth of the failure surfaces is small compared to 

their length and width, and are destabilized by expansive areas of positive pore-water 

pressure (Gorsevski, Gessler, Boll, Elliot and Foltz, 2006; Godt et al., 2008). Several 

models were developed based on this assumption from which the widely-used one is 

called “SINMAP” (Stability INdex MAPping). SINMAP used infinite-slope stability 

model to balance destabilizing components of the gravitation against stabilizing parts 

of friction and cohesion on a failure plane parallel to ground surface. The safety factor 

(SF) is defined by ratio of the stabilizing forces (shear strength) to destabilizing forces 

(shear stress) on a failure plane parallel to the surface (Deb and Kadi, 2009): 

 

  
 

θθgDρ

φg)Dρg(ρ)Dg(DρθCC
SF

s

wwswssr

cossin

tancos2 
 , (2.2) 

 

where Cr is root cohesion (N/m2), Cs is soil cohesion (N/m2),  is slope angle (o), s is 

wet soil density (kg/m3), w is density of water (kg/m3), g is gravitational acceleration 

(9.81 m/s2), D is vertical soil depth (m), Dw is vertical height of the water table within 

soil layer (m), and ϕ is the internal friction angle of the soil (°). θ is arc tangent of the 

slope S, expressed as a decimal drop per unit horizontal distance.  
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 Figure 2.3 illustrates geometry assumed in Eq. (2.2). Relationship of soil 

thickness, h(m), and soil depth D is h = Dcosθ, which produces dimensionless form of 

the infinite-slope stability model: 

 

  
 
θ

φwrθC
SF

sin

tan1cos 
 , (2.3) 

 

where w = Dw/D = hw/h is the relative wetness, C = (Cr+Cs)/(hsg) is the combined 

cohesion (root/soil) made dimensionless relative to the perpendicular soil thickness, 

and r =w/s is the water-to-soil density ratio.  

 The yielded SF values are typically classified into 3 classes of the slope stability 

status as follows: (SF < 1) ≡ unstable slope conditions, (SF = 1) ≡ slope is at the critical 

point of failure, and (SF > 1) ≡ stable slope conditions. 

 

 

 

Figure 2.3 Diagrams showing geometry of the assumed infinite-slope stability model 

(SINMAP) and parameters seen in Eq. (2.2) (Deb and Kadi, 2009).  
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2.4 Principal causative factors 

 As stated earlier, formulation of landslide susceptibility map is often 

accomplished based on prior knowledge of past landslide activities over an area and 

their association to environmental characteristics of the evaluated area. As a result, 

recognition of actual contributing factors that control the occurrence of a landslide over 

a specific location is of primary importance. In general, prominent factors that 

determine the probability of landslide occurrence might be grouped into two categories:  

 (1) The contributing variables, or the environmental factors, which make slope 

susceptible to failure without actually initiating it. These are factors that control slope 

stability and landslide potential such as geology, slope gradient and aspect, elevation, 

soil geotechnical properties, vegetation cover, and drainage pattern. 

 (2) The triggering variables which shift slope condition from a marginally stable 

to an unstable state and thereby initiating slope failure over a susceptible area. The most 

important ones are prolonged heavy rainfall and strong earthquake. 

 As landslide initiation is complex mechanism involving interaction among 

several influencing factors to yield critical slope instability and landslide of a certain 

type as an outcome, therefore, knowledge on the landslide mechanism along with its 

contributing factors are essential for the effective preparation of a susceptibility map. 

In general, selection of proper factors for the landslide susceptibility assessment 

depends on types of the concerned landslide and availability of the existing data and 

resources. The most prominent input factors for this stated task are as follows (Van 

Westen, Castellanos and Kuriakose 2008; Kanungo, Arora, Sarkar and Gupta, 2009): 

 (1) Slope gradient. Naturally, steeper slopes tend to be more susceptible to slope 

failure due to their higher gravity-induced shear stress in the colluviums or residual soil 

 

 

 

 

 

 

 

 



22 

[as described in Eq. (2.1)]. However, at high slope angles, the terrain usually comprises 

of stable weathered rock unit which make them less prone to the landslide occurrence. 

As a consequence, landslide frequency [as defined in terms of the frequency ratio: FR 

described in Eq. (2.14)] is often found to gradually increase with the slope gradient until 

a maximum value is achieved followed by a notably decrease at higher- slope category 

(e.g. in Dai and Lee, 2002; Vijith and Madhu, 2008; Yilmaz, 2009; Regmi, Giardino 

and Vitek, 2010; Kannan, Saranathan and Anabalagan, 2012), 

 (2) Slope aspect. An aspect is conventionally defined as a compass direction 

that a geographic slope faces, usually measured in degrees from north. Or, in other 

words, the direction of maximum slope of a surface. In general, aspect defines exposure 

level of an area to the sunlight, local wind and wind-driven rainfall, which are important 

for activities like vegetation growth, weathering process and soil erosion process. These 

in turn can have implicit influence on landslide occurrence, especially in arid or semi-

arid environment (Sidle and Ochiai, 2006).The importance of slope aspect to landslide 

frequency were clearly evidenced in several previous works; e.g. Dai, Lee and Ngai 

(2002); Vijith and Madhu (2008); Pradhan and Lee (2010). However, no distinct 

influence of aspect on landslide frequency was also reported in Oh, Lee, 

Chotikasathien, Kim, and Kwon (2009); Hasekiogullar and Ercanoglu (2012); Choi et 

al. (2012), for examples. 

 (3) Elevation. Elevation is usually associated indirectly to landslides by virtue 

of other factors like slope gradient, precipitation, erosion, weathering, soil thickness, 

and land use. Typically, at high elevations, e.g. near mountain top, terrain usually 

consist of rather solid and stable rocks with low potential to generate immediate 

landslide while at the intermediate elevations, sloped surfaces tend to be covered by 
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thin colluvium that make them more prone to landslide. Human activity on the gentle 

slopes at these levels, like crop plantation, could enhance chances of having landslide 

occurrence also. On the contrary, at low elevations, landslide frequency is often low 

because terrain is relatively flat and often covered with thick colluvium or residual soils. 

These facts are emphasized in works of, for examples, Yilmaz (2009); Yalcin, Reis, 

Aydinoglu and Yomralioglu (2011); Solaimani, Mousavi and Kavian (2012). In 

addition, elevation is also used as primary proxy for average rainfall that increases with 

height due to orographic effects. In this regard, high elevations are preferentially 

susceptible to the landslides because they receive greater amounts of rainfall than those 

at lower elevations.  

 (4) Lithology. This factor indicates properties of the slope-forming materials 

such as strength, permeability and weathering potential which, therefore, should affect 

the likelihood of slope failure (and landslide activity). According to Soralump (2007), 

observed landslides in Thailand were identified most frequently in the Jurassic granite 

and sandstone, shale, mudstone, conglomerate, and chert rock groups. Similar result 

was also found in Intarawichian and Dasananda (2011). As illustrated in work of 

Tanavud, Yongchalermchai and Navanugraha (2000), mountainous terrain with granite 

bedrock is more prone to the slope failure as the weathered rock shall be dominantly 

converted to a thin layer of sandy soil which has little or no cohesion. 

 (5) Distance from fault (or lineament). This factor is a crucial characteristic one 

of ground surface which normally indicates highly fractured terrain over which unstable 

slopes could be developed and encourage landslide formation. As a consequence, areas 

situating close to prominent fault or lineament (e.g. at < 1000 m) should be potentially 
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prone to landslide occurrence as reported in, for examples, Lee and Talib (2005); Lee 

and Sambath (2006); Oh et al. (2009).  

 (6) Distance from drainage (stream). Stream has become well-known landslide 

contributing factor as it initiates gully erosion and undercutting of a slope base along 

the stream bank which can undermine slope stability of the adjacent area. In addition, 

increasing level of ground water close to the stream body can saturate lower soil layer 

which makes the affected area more susceptible to slope failure. Furthermore, debris 

and soil material close to drainage channel are prone to collapse during heavy rainfall.  

Therefore, landslide occurrence is supposed to be more frequent within an area close to 

the stream body (e.g. at < 500 m) as shown in, e.g. Lee and Talib (2005); Oh et al. 

(2009); Jadda, Shafri, Mansor, Sharifikia and Pirasteh (2009). However, some reports 

have found no conclusive relation on this issue like Lee and Sambath (2006); Pradhan 

and Lee (2010); Yalcin et al. (2011); Park, Choi, Kim and Kim (2013).  

 In addition, some works also included stream density, usually defined as ratio 

of the total length of the stream to the area of stream basin in the analysis, e.g. Yalcin 

and Bulut (2007); Yalcin (2008). Typically, the higher in stream density indicates the 

lower in infiltration and the faster in the movement of surface flow. 

 

 

Figure 2.4 Landslide mechanisms due to road construction (van Westen, 2013). 
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 (7) Distance from road or settlement. These factors involve human activities that 

can influence slope instability and landslide formation. Landslides may occur on slopes 

adjacent to the roads due to extensive slope excavation for the construction of the roads 

that greatly reduces load both on the topography and on the slope heel. This change can 

induce soil instability in the slope layer because of some negative effects such as water 

ingress (as illustrated in Figure 2.4). The frequent vibrations by vehicle movement can 

also affect slope stability that eventually leads to landslide incidence. This effect makes 

areas located fairly close to road network (e.g. at < 100 m distance) more susceptible 

to landslide occurrence than usual as evidenced in several works, e.g. Mancini, Ceppi, 

and Ritrovato (2010); Sujartha, Rakamanickam, Kumaravel and Saramathan (2011); 

Regmi et al. (2010); Solaimani et al. (2012). However, some reports had found different 

conclusions on this issue like Yalcin et al. (2011); Akgun (2012). For the settlement, 

proximity to the settlement is typically believed to influence landslide probability also 

as human activities on vulnerable areas, like fragile hillslopes, might increase chances 

for slope instability and slope failure. However, this factor was not used much so far, 

e.g. in Bai, Lu, Wang, Zhou and Ding (2011); Hasekiogullar and Ercanoglu (2012). 

 (8) Land use and land cover (LULC). In principle, LULC patterns have 

significant role in determining slope stability as they can influence both the shear stress 

and shear strength conditions of the natural slope through relevant mechanical and 

hydrological mechanisms. Focus of the analysis is often on role of the vegetation cover, 

e.g. forest, in controlling landslide formation over a vulnerable region. Generally, 

vegetation can increase slope stability through three different processes; (1) the 

enforcement of soil internal strength by its complex and strong root system, (2) the 

interception of rainfall which reduces infiltration into the ground, and (3) by removing 
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soil moisture through evapotranspiration (ET). In this regard, capability of particular 

vegetation to improve slope stability varies greatly with its type. For examples, trees 

should be more capable than shrubs, which should be better than grass. Therefore, 

vegetation clearance for land development or agricultural activities which results in 

rather exposed soil shall have greater chances for soil erosion and slope instability. 

However, increasing load on the slope by weight of existing plants or trees can make 

them less stable than usual at the same time. Commonly, it was often reported that thick 

forest with strong and large root systems is having less susceptibility from landslide 

activity than average, for examples, in Kanungo, Arora, Sarkar and Gupta (2006); 

Dahal et al. (2007); Ercanoglu and Temiz (2011); Sujartha et al. (2011); Yalcin et al. 

(2011). 

 In some cases, vegetation abundance might be represented by index called 

NDVI (normalized difference vegetation index) with original scale of -1 to 1 where 

positive values closer to 1 indicate more vegetation abundance, for examples, in works 

of Lee and Talib (2005); Lee and Pradhan (2007); Pradhan and Lee (2010); 

Intarawichian and Dasanada (2011); Pradhan (2011); Hasekiogullar and Ercanoglu 

(2012); Choi et al., 2012. However, general conclusion on relationship of NDVI to 

landslide frequency is still inconclusive based on reviewed literature so far. In some 

research, characteristics of trees or forest density were integrated explicitly in the 

preparing process of landslide susceptibility maps, i.e., Young, Jin and Choi (2003).   

 (9) Soil properties. Soil can influence landslide activity in a particular area 

through the cohesion strength and some geotechnical properties like porosity, and 

permeability and grain-size distribution (McKenna, Santi, Amblard and Negri, 2011). 

In general, each soil type often has different internal strength to hold soil material 
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together (called soil cohesion) to resist landsliding. This property for the wet soil is 

called soil plasticity. The relatively loose soil texture, or ones with low plasticity, 

should be more susceptible to landsliding, e.g. the loose and unconsolidated alluvial or 

colluvial soil layer deposited on hillslope. Through, soil properties are necessary for the 

analysis process of landslide susceptibility by deterministic approach [like SINMAP 

model described in Eq. (2.2)], but not many reports were appeared to include them for 

the analysis through different approaches (in terms of soil group, soil texture, soil depth, 

or soil plasticity); e.g. Wang and Sassa (2005); Lee and Lee (2006); Lee (2007); Lee 

and Pradhan (2007); Regmi et al. (2010); Oh and Pradhan (2011); Bai et al. (2010). It 

should be noted that, majority of landslides usually happen within the hilly or remote 

mountainous areas which often have limited surveyed soil data for the use in the 

landslide susceptibility analysis. This deficiency can make the analysis procedure less 

fruitful, e.g. in Pradhan and Lee (2010); Intarawichian and Dasananda (2011). 

 (10) Landform. Landform is an another variable often used in the quantification 

of landslide susceptibility at a specific area due to its crucial role in controlling 

dynamics of the evaluated surface flow (e.g. deceleration, acceleration, convergence, 

divergence) and, therefore, shall also influence the subsequent gully erosion, 

deposition, and slope instability resulted from the flow interaction. Inclusion of 

landform data in the landslide susceptibility analysis in most published reports can be 

categorized into three different processes as detailed below.   

 The first one is to apply geomorphology characteristics of the examined area 

into the analysis process directly as reported in, e.g., Vijith and Madhu (2008); Jadda 

et al. (2009); Kannan et al. (2012). The second one is processed through the use of 

defined slope curvature characteristics in which two well-known types are normally 
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considered: plan curvature and profile curvature (as illustrated in Figure 2.5). Plan 

curvature might be called contour curvature as it described rate of change in direction 

of a hypothetical contour line while passing through a specific location, e.g. an image 

pixel. The profile curvature is defined by rate of change of the slope along direction of 

a maximum slope. In addition, their combination to provide total curvature for a given 

pixel is also useful (Schmidt, Evans and Brinkmann, 2003; ESRI, 2010). 

 The curvature values describe morphology of the terrain which can be divided 

into three categories: convex, concave, or flat (as illustrated in Figure 2.6). Typically, 

the plan curvature influences convergence and divergence of flow across a surface 

while the profile curvature affects acceleration and deceleration of the surface flow as 

well as associated erosion and deposition of the landslide material and water along 

direction of landslide motion. In principle, erosion (and slope instability) should prevail 

in areas with convex profile curvature and deposition should be favorable over those 

locations with concave curvature (ESRI, 2010; Regmi et al., 2010). In most studies, the 

convex curvature areas were found most susceptible to landsliding followed by the 

concave curvature ones, while flat areas often found much less susceptible if compared 

to both aforementioned zones, e.g. in Lee and Talib (2005); Lee and Lee (2006); Lee 

and Pradhan (2006); Lee (2007); Lee and Pradhan (2007); Vijith and Madhu (2008); 

Pradhan and Lee (2010); Lepore, Kamal, Shanahan and Bras (2012).  
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Source: Transport Scotland (2008) 

Figure 2.5 Visual representation of plan curvature and profile curvature. 

 

 
(a) Profile curvature 

 

 
(b) Plan curvature 

Source: ESRI (2010) 

Figure 2.6 Three fundamental types of (a) profile and (b) plan, or contour, curvature 

which are convex, concave and flat (or uniform) (+/- signs are as used in ArcGIS10). 

 

 The third approach involves the use of some water-relatated factors, such as 

flow accumualtion, flow/slope length, runoff, topographic wetness index (TWI) and 

stream power index (SPI) as predictors for lanslide susceptibility. Among these, TWI 
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and SPI were found most popular in the reviewed literature. These indices are used to 

describe the wetness and stream power over an area, respectively, and conceptually 

defined as a function of the slope gredient and upstream contributing area of the flow 

(throug a given pixel) as follows (Yilmaz, 2009); 

  βASPI tan , (2.4) 

  )tanln β(A/TWI  , (2.5) 

where A is the upslope water contributing area per unit contour length for a particular 

pixel and tan  is the local slope of that pixel.   

 By definition, the stream power index (SPI) is a measure for the erosive power 

of overland flow at a given location of the topographic surface. As a contributing area 

and slope gradient increase, amount of surface water contributed by the upslope areas 

and its flow velocity increase, hence the SPI and erosion risk increase (Moore, Grayson 

and Ladson, 1991). For the topographic wetness index (TWI), it is a measure of the 

water accumulation potential at a site which correlates to the amount of soil moisture 

content. Therefore, higher TWI values indicate greater water content (and pore water 

pressure) in slope material from which soil strength and soil stability shall be 

diminished, e.g. in Yilmaz (2009); Regmi et al. (2010); Oh and Pradhan (2011). The 

slope length or flow length; a distance of surface flow from origin till the end, is also 

attracted more interest, e.g. Vijith and Madhu, 2008; Regmi et al., 2010. Typically, 

larger slope length indicates more water accumulates at the ending part of the 

considered flow which probably leads to more erosion and landslide activity. 

 Systematic combination of these aforementioned contributing factors through 

an appropriate methodology can lead to production of the landslide susceptibility map 

as needed. Among these, lithology and slope gradient were usually found to attain top 
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priority in most works, on the contrary, aspect, distance to stream and distance to road 

were  among  the least favourable ones in the analysis. It should be noted here that, as 

rainfall is categorized as being a triggering factor therefore, in principle, it should not 

be included in the formulation of the susceptibility map in the first step which should 

be involved the landslide contributing factor only. However, integration or the annual-

mean rainfall data into the analysis shall generate the general hazard map for an area as 

the resulted map is not only detailed spatial likelihood of slope failure over the area but 

also the temporal probability as well (from nature of the rainfall data) as evidenced in, 

for examples, Lee and Pradhan (2006); Pradhan and Lee (2007); Bagherzadeh and 

Daneshvar (2012); Thanh and Smedt (2012). 

 

2.5 Concept of landslide risk analysis 

 By definition described in Varnes (1984), landslide risk analysis is a systematic 

process to determine expected loss in terms of human death or injury, property damage, 

and disruption of economic activity due to landslide over a particular area and reference 

period (e.g. a year). These losses can be expressed both in qualitative or quantitative 

manner. In the qualitative assessment, losses are evaluated and expressed in qualitative 

terms (e.g. high, medium, low) based on a set of some pre-determined criteria while in 

quantitative assessment, relevant losses shall be presented in quantitative or numerical 

terms (e.g. amount of death or injury, or monetary loss from property). Between these, 

the qualitative method is normally easier to perform but it is rather subjective in nature 

as the used criteria are traditionally drawn from expert judgment (AGS, 2000). 

 Conceptually, when dealing with physical losses, risk can be quantified as a 

direct product of three main factors: probability of occurrence of the concerned 
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phenomenon (at a given magnitude or intensity), cost or amount of the defined elements 

at risk, and vulnerability of those elements to impact of the examined phenomenon. 

According to this definition, total landslide risk (LR) can be determined using following 

formula, 

 

  Total landslide risk (LR) = E x (H x V). (2.6) 

 

 Here, E (Element at risk) often includes population, properties, economic 

activities and public services at risk within the area, H (Hazard) represents probability 

of occurrence within a specific period of time (e.g. a year) and within an expected 

influencing area of landslide phenomenon, and V (Vulnerability) is degree of loss to a 

specific element at risk resulting from a referred landslide having scale from 0 (no 

damage) to 1 (total loss). Term H x V is called specific risk for each individual at-risk 

element (Varnes, 1984). 

 Definition of the landslide risk given by Varnes (1984) seems straightforward 

in essence; however, to implement it fruitfully in reality is still proved rather difficult 

so far, especially at medium mapping scales between 1:10,000 and 1:50,000 (van 

Westen, van Asch and Soeters, 2006). The difficulty is arisen mainly from the frequent 

lack of essential data or information to complete the key tasks required at each step of 

the risk analysis process, which generally comprises of five main successive works as 

follows. 

 The first step is to establish a landslide inventory map to portray locations and 

areal extent of past landslide occurrences. These acquired inventory data are preferred 

in the development of landslide susceptibility and its associate hazard maps for the 
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interested area afterwards. The second step is to establish a landslide susceptibility map 

to inform spatial probability (or likelihood) of potential future landslide activity in the 

area based on knowledge of past landslide events and a set of preferred terrain and 

environmental parameters, e.g. slope, elevation, soil data, lithology or land use pattern.  

 The third step is to formulate the hazard map that describes probability of 

landslide occurrence at a specific location within the area during a reference period of 

time from the referred susceptibility map yielded in the second step. The fourth step is 

to construct a comprehensive map of an at-risk element along with its associated 

vulnerability maps for the area. These maps usually include information of population, 

economic activities, properties (e.g. houses or buildings), and public infrastructure (e.g. 

roads or bridges) prone to having tangible effect from landslide activity in the area.  

 And the final step of the process is to develop a preferred landslide risk map 

which is a direct product of the hazard map and the vulnerability map [as detailed in 

Eq. (2.6)] to present expected amount, or level, of life loss and damage cost throughout 

the area during the considered time period (AGS, 2000; Dai, Lee and Ngai, 2002; van 

Westen et al., 2006, Abella, 2008; van Westen et al., 2008). 

 Figure 2.7 exhibits general conceptual framework for landslide risk analysis and 

management expressed in Dai et al. (2002) and Figure 2.8 illustrates main aspects of 

risk analysis process described earlier. Typically, after having landslide risk map for an 

area, the found risk value must be taken into process of risk assessment to judge whether 

it is acceptable or not (based on the reference risk tolerance criteria). And if not, some 

strategies to control or reduce the known risk should be implemented which is a crucial 

part of the risk management process (AGS, 2007b). 
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Figure 2.7 General conceptual framework for landslide risk analysis and management 

(Dai et al., 2002). 

 

Figure 2.8 Main aspects of risk analysis process (van Westen et al., 2006). 

 

 As preparing process of a landslide risk map is still a considerably laborious 

task, most works seen on landslide zonation analysis are normally focused on the 

derivation of preferred landslide susceptibility map for a specific area of interest only 
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(or step 2 of the full process). However, risk mapping at regional scale is still 

conceptually appealed to attain broad information of the potential at-risk area from 

landslide activity which is essential for the planning of appropriate land use managing 

policy as well as effective emergency response strategy (Michael-Leiba, Baynes, Scott 

and Granger, 2003). In this aspect, according to van Westen et al. (2006), main purpose 

of the analysis should be to acquire primary data to support site-selection process for 

the new development over the area (to minimize potential landslide risk), or to identify 

concerned at-risk locations to aid the proper implementation of risk management 

policy. Definitions for common terms used in the landslide zoning are given in 

Appendix A. 

 The qualitative risk analysis is commonly recommended for work at regional 

scale due to its less demand in detailed input data and less complex computing 

procedure in which the eventual risk classification are reported in the form of qualitative 

terms (e.g. high, moderate and low) based on the pre-determined criteria. In addition, 

the medium-scale risk map should include a description of its practical implications and 

it should be prepared for a single type of landslide only each time. It is also further 

recommended that mapping process should be directed toward the investigation on 

geomorphological evidences related to aspects that influence the considered risk such 

as runout distance, size and depth of the landslide, progressive movement of the 

concerned landslide within a considered environmental setting (van Westen et al., 

2006). Information about typical landslide zoning mapping scales and their applications 

is presented in Table 2. 
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Table 2.2 Typical landslide zoning mapping scales and the applications (AGS, 2007a). 

Scale 

Category 

Scale 

Range 
Examples of Zoning Application 

Zoning Area 

(km2) 

Small 

(National) 
< 1:100,000 

Landslide inventory and susceptibility to inform 

policy makers and the general public 
>10,000 

Medium 

(Regional) 

1:100,000 

to 

1:25,000 

Landslide inventory and susceptibility zoning for 

regional and local development or very large scale 

engineering projects. Preliminary level hazard 

mapping for local areas. 

1,000-10,000 

Large 

(Local) 

1:25,000 

to 

1:5,000 

Landslide inventory, susceptibility and hazard 

zoning for local areas. Preliminary level risk zoning 

for local areas and the advanced stages of planning for 

large engineering structures, roads and railways. 

10-1,000 

Detailed 

(Site-specific) 
> 1:5,000 

Intermediate and advanced level hazard and risk  

zoning for local and site specific areas and for  

the design phase of large engineering structures, 

roads and railways. 

Several 

hectares to 

tens of km2 

 

 2.5.1 Preparation of landslide inventory maps 

  The first step in processing landslide risk analysis is to develop an 

appropriate inventory map of past landslides in the study area. Landslide inventories 

are commonly regarded as the simplest form of landslide mapping in which locations, 

occurrence dates and types of past landslides that took place and still left discernable 

traces over an area are assembled (Hansen, 1984; Guzzetti, 2002). These maps could 

be prepared either by collecting available historical information on individual landslide 

incidences (making landslide archives), or from rigorous analysis of the aerial 

photographs or appropriate satellite images, coupled with data acquired from the 

coverage field surveys of the area (making landslide distribution map). These maps can 
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be separated into two broad types (Malamud, Donald, Guzzetti and Reichenbach, 

2004): 

 (1) Landslide-event inventory. This consists of all landslide events associated 

with a single trigger, such as an earthquake, rainstorm or snowmelt.  

 (2) Historical landslide inventory. This includes all observed landslide events 

over a period of many years, e.g. tens or hundreds years. 

 If time period of the acquired landslide data is known, e.g. from information of 

temporal aerial photos or satellite images, “multi-temporal inventory” maps can then 

be prepared. Similarly, if type of slope failure can be identified, the required map can 

be prepared separately according to the identified types of landslide (Figure 2.9). 

 Recent landslide data can be readily acquired from the visual interpretation of 

apparent landslide-induced scarps on aerial photos or high/very-high resolution satellite 

images (e.g. those with spatial resolution < 5 m). Among these, the disrupted or absent 

vegetation cover anomalous with the surrounding terrain is usually an obvious sign of 

the landslide traces (like those in Figure 1.2). Recently, several automatic classification 

technique for landslide traces were developed based on knowledge of distinct landslide 

spectral or spatial characteristics, e.g., change vector analysis, the maximum likelihood 

classifier, normalized differential vegetation index (NDVI), the principal component 

analysis, and object-based image analysis (Mondini, Chang and Yin, 2011). However, 

evidences of old landslides, especially the relatively small ones, might still be difficult 

to identify straightforwardly as they might be obscured by surface erosion, vegetation, 

urbanization, or human activities, as time passes (Guzzetti, Cardinali, Reichenbach and 

Carrara, 2000; Malamud et al., 2004). Knowledge of past landslide data are crucial for 

the associated susceptibility analysis in three aspects: (1) for calibration of the applied 

 

 

 

 

 

 

 

 



38 

model, (2) as reference for the operating of used model (quantitative type in particular), 

and (3) as reference for the validation of the yielded susceptibility map.  

 For detailed landslide inventory maps, common information should include, for 

examples, state of the activity, type of slope movement, certainty of identification, 

primary direction of the movement, estimated volume, size, predominant material, and 

occurrence date for each individual registered landslide (Wieczorek, 1983). In addition 

information of the geological structure or relevant environmental characteristics of each 

mapped landslide location should also be included for further analysis on the potential 

landslide prone locations over an area through both qualitative approach (expert-based) 

and quantitative approach (data-based). 

 

 

Source: http://serc.carleton.edu/details/images/14949.html 

Figure 2.9 Example of the landslide inventory map.  

 

 

 

 

 

 

 

 



39 

 2.5.2 Preparation of landslide susceptibility maps 

  Landslide susceptibility mapping is the most popular activity of 

landslide zoning known so far as it can be carried out straightforwardly using plenty of 

existing methods. Main purpose of the task is to systematically locate areas that are 

susceptible to having concerned landslide activities based on knowledge of past 

landslide events over the area and their mutual relations to a set of reference 

environmental factors (causative factors). The landslide susceptibility maps normally 

display spatial probability, or probabilistic likelihood, of the studied area to having 

slope failures under the assumed relationship of the input predisposing factors and the 

formation of landslide activity (see for reviews in Aleotti and Chowdhury, 1999; 

Guzzetti, Carrara, Cardinali and Reichenbach, 1999; Dai, Lee and Ngai, 2002; Kanungo 

et al., 2009). 

 Construction of a landslide susceptibility map is fundamentally based on three 

common assumptions (Varnes, 1984; Kanungo et al., 2009; Guzzetti, 2012): 

 (1) landslides are likely to take place over the same areas as seen in the past;  

 (2) landslides are likely to originate in places with similar contributing factors; 

e.g. topographical, geological or hydrological conditions, to past landslide locations; 

 (3) landslides activity can be explained through the slope-stability theory which 

involves complex interaction of several land internal factors known as the causative or 

contributing factors, e.g. lithology, geography, soil property, and the external factors 

called triggering factors, such as rainfall or earthquake.       

 From these assumptions, plenty of techniques were invented and productively 

implemented to prepare landslide susceptibility maps around the world. Nevertheless, 

success of the landslide susceptibility zoning might be still limited by some problems 
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like the location-based nature of landslide occurrence, difficulty in identifying proper 

causative factors for found landslide activities, and still lack of data about past landslide 

occurrences over the interested area (Aleotti and Chowdhury, 1999). 

 Traditionally, landslide susceptibility evaluating methods can be divided into 

two broad groups: qualitative and quantitative (as detailed in Table 2.3). In qualitative 

or heuristic methods, final decision on landslide potential over an area is determined 

based principally on the collective expert opinion (on nature of landslide characteristics 

experienced within an area). The most common procedure is called geomorphological 

mapping method in which landslide prone areas are identified by the researchers from 

sites that have similar properties of contributing factors to those used to have landslide 

activity before, like topography, geology, or hydrology under some reference criteria 

(Kanungo et al., 2009). This method is called a direct approach which has been widely-

used as a basic methodology to the construction of initial landslide susceptibility zoning 

by landslide researchers for long time. However, in recent decades, more complicated 

methods of the qualitative type were introduced to build more sophisticated and realistic 

susceptibility maps for an interested area like the weighted linear combination (WLC) 

or analytical hierarchy process (AHP) methods. 

 These stated methods have improved the decision rule on landslide probability 

by introducing different numerical influencing weights to each concerned contributing 

factors and their respective attributes. These weight values are judged by the assessed 

importance of these factors, or their attributes, on landslide formation within the area. 

Linear combination of the weight product for each contributing factor and its relevant 

attribute shall be used as a basis to calculate landslide susceptibility score for each land 

unit which implicitly indicates susceptible level of the area to landslide initiation. Main 
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advantage of the qualitative methods is no explicit need for past landslide data but their 

concept could lead to an uncertainty in the attained outcome due to subjective nature of 

the expert judgments. This makes the interpretation on actual importance of each factor 

in use sometimes difficult to achieved (Yalcin, 2008; Kanungo et al., 2009). 

 For the quantitative methods, their approaches for the formulation of landslide 

susceptibility maps rely principally on numerical expressions of apparent relationship 

appeared between a group of contributing factors and data of past landslide occurrences. 

Generally, there are two broad categories of the quantitative methods: deterministic and 

statistical (Aleotti and Chowdhury, 1999). Typically, the deterministic methods depend 

on engineering principles of slope instability expressed in terms of the predefined index 

called “factor of safety” (FS). This factor is often quantified using some simple models 

of the groundwater flow in combination with infinite slope stability analysis to estimate 

potential or instability condition of surface slopes within the region  (like the SINMAP 

model mentioned earlier in Section 2.3). Significant advantage of these methods is their 

realistic and theoretically-sound working concept which can be directly implemented 

to perform physically-based landslide susceptibility analysis (for engineering purpose). 

However, they are normally most effective if applied to small area due to the exhaustive 

need in physical and hydrological information as input data (Fall, Azam and Noubactep, 

2006; Ho, Lee, Chang, Wang and Liao, 2012). 
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Table 2.3 Classification of well-known landslide susceptibility determination methods 

(Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; Kanungo et al., 2009). 

Category Sub-category Prominent methods 

Qualitative  

or 

Heuristic 

(knowledge-

based) 

Geomorphological analysis 

(direct approach) 
Geomorphological mapping 

Qualitative map combination 

(or semi-quantitative)  

Weighted linear combination (WLC) 

Analytical hierarchy process (AHP) 

Quantitative 

(data-based) 

Deterministic Slope-stability analysis (FS assessment) 

Statistical 

Bivariate 

Information Value (InfoVal) 

Probabilistic frequency ratio (FR) 

Probabilistic weight of evidence (WoE) 

Multivariate 

Discriminant Function Analysis 

Multiple logistic regression 

Artificial neural network (ANN) 

Others Fuzzy logic, neuro-fuzzy, SVM, decision tree 

 

 Comparatively, the statistical methods are more popular than the deterministic 

ones at present, in which spatial relationship between past landslide activities and their 

contributing factors is determined through some preferred statistical analysis methods 

which can be structured into two major groups: bivariate and multivariate. In bivariate 

statistical analysis, existing relationship of the contributing factors to the formation of 

past landslides are assessed independently one by one based primarily on distribution 

pattern in amount of past landslides with respect to the listed attributes of each factor. 

The most notable methods are frequency ratio (FR) and weight-of-evidences (WOE) 

methods (Regmi et al., 2010; Yalcin et al., 2011; Lee et al., 2012). 

 In multivariate statistical analysis, the inherent relationship of past landslides 

and a set of the contributing factors is assessed through the found optimal interrelation 
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pattern among all used factors that can satisfactorily predict the occurrence chances of 

the past landslides. This task can be accomplished through the use of several standard 

statistical procedures such as discriminant function analysis, multiple linear regression 

method, multiple logistic regression method, and the artificial neural network analysis 

(Guzzetti et al., 1999). Among these, the multiple logistic regression analysis is most 

favored at present due to its ability to include both numerical data and categorical data 

(as independent variables) in the assessment of landslide occurrence likelihood over an 

area which is not able in the discriminant analysis or multiple linear regression analysis 

(Nandi and Shakoor, 2009; Pradhan, 2010). For artificial neural network (ANN), it has 

gained more interest in recent years due to its distinct ability to identify relationship of 

past landslide occurrences and a set of the chosen contributing factors automatically in 

a nonlinear fashion using predefined logic without prior assumption on the distributing 

pattern of the used input data. This capability makes it theoretically able to analyze 

complicated relationship between past landslide events and their predisposing factors 

better than the conventional approaches of this type like discriminant function analysis 

or multiple logistic regression. Also, ANN can process data at varied measuring scales 

frequently encountered in practical landslide susceptibility mapping, e.g., continuous, 

ordinal and categorical data (Kanungo, Arora, Sarkar and Gupta, 2006).  

 Main superiority of the statistical methods is the straightforward approach to 

identify appropriate relationships between past landslides and the applied contributing 

factors which can be applied to develop landslide susceptibility map over large areas, 

e.g. at regional scale. Their noted inferiority is the critical need for sufficient knowledge 

of past landslide incidences to produce highly credible susceptibility map. In general, 

quantitative methods can be used to reduce subjectiveness in weight assessment process 
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used in the qualitative methods and provide more accountable interpretation on defined 

importance scale of the used factors (or attributes). In addition, in terms of risk analysis, 

statistical methods are effective in assessing spatial probability of the hazard occurrence 

for risk analysis, but might have problems in the evaluation of its temporal probability 

of the occurrence (van Westen et al., 2006). 

 Apart from the aforementioned methods, fuzzy logic has been implemented in 

the production of landslide susceptibility maps also as seen in, for examples, Saboya, 

Alves and Pinto (2006); Gorsevski and Jankowski (2010); Pourghasemi, Pradhan and 

Gokceoglu (2012). Fuzzy logic is attractive due to its ability to justify the likelihood of 

slope failure based on the imprecise determination criteria defined by experts or from 

knowledge inherited from other relevant methods. Apart from these standard methods, 

several new landslide susceptibility assessment methods have been introduced in recent 

years for being an alternative or a comparative approach to the conventional ones,  e.g. 

neuro-fuzzy (Oh and Pradhan, 2011; Pradhan, 2011; Sezer, Pradhan and Gokceoglu, 

2011), support vector machine (SVM) (Yao, Tham and Dai, 2008; Yilmaz, 2010; 

Ballabio and Sterlacchini, 2012); and the decision tree approach (Yeon, Han and Ryu, 

2010; Bui et al., 2012). Details of the methods implemented in this study (WLC, AHP, 

FR, LR, ANN, fuzzy logic) are given in later section. They were chosen due principally 

to their wide use, well-approved capability, and the rather distinct working concepts to 

reach the preferred solution (credible landslide susceptibility mapping). 

 2.5.3 Preparation of landslide hazard maps 

  Landslide hazard mapping is a successive process from landslide 

susceptibility mapping towards the construction of the corresponding landslide risk 

map for an area (as illustrated in Figure 2.7) According to Varnes (1984), ‘‘hazard” is 
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the probability of occurrence of a potentially damaging phenomenon (such as landslide, 

flood) within a specified period of time and within a given area of interest. This means 

the temporal probability of having landslide over an area must be included in the 

susceptibility map for the formulation of the needed hazard map for the area (AGS, 

2007a).  

  Normally, landslide hazard is usually defined as probability of 

occurrence for a particular type of the landslide at a certain magnitude, or of a particular 

type, within a specific period of time (Guzzetti et al., 1999). In this respect, all landslide 

activities that can affect an area should be considered including those originally initiate 

outside but might eventually travel into the area during its development. In principle, 

landslide hazard mapping takes an output from the landslide susceptibility analysis, and 

assigns an estimated frequency (e.g. annual probability) to the considered landslides. 

Temporal probability of the landslide occurrence over an area can be evaluated through 

the use of slope stability analysis to identify probability of slope failure based on 

knowledge about the recurrent period of the triggering factor (mostly rainfall and 

earthquake). The other well-known method for this task is the frequency analysis of 

past landslide incidences (of certain type or magnitude). This analysis may be processed 

directly through records of the identified landslide seen within the area, or, indirectly 

through knowledge about the recurrence of triggering events (Corominas and Moya, 

2008).  However, in reality, determining temporal probability is considerably difficult 

due to lack of landslide records or information of triggering events (van Westen et al., 

2006).  

  Commonly, the small landslides should happen more often than the large 

ones which make them have higher occurring frequency. The magnitude-frequency 
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relation of the landslide incidences is well examined as depicted in Figure 2.10 for 

example. In case of rainfall-induced landslide, amount of the accumulated rainfall over 

an area that can trigger typical landslide (of certain type or magnitude) usually varies 

with locations (Guzzetti, Peruccacci, Rossi and Stark, 2007; 2008; Corominas and 

Moya, 2008). However, a minimum rainfall threshold that can activate this process can 

be estimated either by using the process-based methods or the empirical methods 

(Guzzetti et al., 2007). In the first approach, this value is determined through the slope 

stability analysis theory using knowledge of the hydrological system and the relevant 

slope structure of an area while in the second approach, the answer is extracted from 

the analysis of past landslide records in relation to characteristics of the rainfall events 

that cause them. 
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Figure 2.10 Typical found relationship of the magnitude-frequency relation observed 

in landslide inventories. Magnitude often displays in terms of landslide size (e.g. km2) 

while frequency (non-cumulative) usually reports based on number of events per year. 

Note that, the solid line represents theoretical prediction but there is a large deviation 

from theory at small landslide magnitude (often under 10,000 m2) called a rollover, or 

inflection, effect. This situation implies that observed number of the relatively small 

landslides is crucially lower than expected from the adopted theory but actual causes of 

this phenomenon are still under active investigation (Corominas and Moya, 2008). 

 

 Results from these investigations have established the rainfall intensity-duration 

(ID) threshold for explaining critical situation of the rainfall event that might be able to 

activate landslide phenomenon over an area of interest which can be written in general 

form as follows (Guzzetti et al., 2007): 

 

 

 

 

 

 

 

 



48 

  βαD cI   (2.7) 

where I is the average rainfall intensity, D is the rainfall duration, and c  0,  and  

are proper parameters of the analysis (in most cases, c = 0 is applied). Typical ranges 

of these variables are about 1 to 200 mm (for intensity) and 1 to 100 hours (for duration).  

 As described in Guzzetti et al. (2007, 2008) and Corominas and Moya (2008); 

the rainfall threshold depends significantly on landslide mechanism. High-intensity and 

short-duration rainfall normally trigger shallow landslides and their associated debris 

flow for slope covered with permeable materials in which the build-up and dissipation 

of positive pore pressures is very rapid. Also, the low to moderate intensity rain storms 

lasting for several days or weeks might trigger landslide and its subsequent debris flow 

in low permeability soil. In this case, the antecedent rainfall shall have important role 

in reducing soil cohesion and increasing the positive pore-water pressure that leads to 

the eventual slope failure. Therefore, thresholds based on the antecedent rainfall were 

also established in several works, often examined in conjunction with the rainfall data 

at failure day (see Figure 2.11 for an example). However, the preferred period of rainfall 

accumulation is still inconclusive.    

 In theory, hazard map must include areas affected by the landslide runout in its 

detail also. This requirement needs accurate prediction of the runout behavior of a 

landslide, e.g. how far and how fast a landslide travels once mobilized. Typically, 

several parameters related to landslide runout are of interest in the study of risk analysis, 

e.g. runout distance (a distance from landslide source area to distal toe of the deposition 

area), damage corridor width (width of an area subjected to landslide damage in the 

distal part of the landslide path where impact on buildings and other facilities occurs; 

velocity (within the damage corridor which determines the potential damage to facilities 
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and the design parameters of any required protective measures), depths of the moving 

mass and of the deposit (which influence the impact of landslide runout  within the 

damage corridor) (see more details in Dai et al., 2002). 

 

 

Figure 2.11 Relationship of daily rainfall at the failure and antecedent rainfall in Korea 

(Kim, Hong and Kim, 1992). Note that, landslides in the central area are influenced by 

the antecedent rainfall the most while for those southern side is daily rainfall.  

 

 2.5.4 Preparation of landslide risk maps 

  In essence, landslide risk zoning shall take outcomes from the hazard 

mapping and assess potential damage to each concerned element at risk resided within 

the area (comprising mainly of people, properties, and services) from a considered 

hazard, with temporal and spatial probability of the hazard occurrence and vulnerability 

to the hazard of the at-risk element taken into account (as shown in Figure 2.12). In 

case of landslide hazard, it might be necessary to formulate susceptibility, hazard and 
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risk zoning maps separately for different types of the landslides affecting the area; e.g., 

rock falls, small shallow landslides and deep-seated larger landslides (AGS, 2007a). 

 

 

Figure 2.12 Conceptual relationship between hazard, elements at risk, vulnerability and 

risk (Alexander, 2002). 

 

 To prepare the landslide risk map, information of all the elements at risk must 

be systematically identified and mapped first. These data normally include population, 

buildings, economic activities, public services, utilities, infrastructure, etc., which are 

at risk from landslide activities in a considered area. The emphasis is mostly given to 

population, buildings, and infrastructure. Rapid inventory of the database for elements 

at risk generally uses high-resolution images. Each of the listed elements has its own 

characteristics, which can be spatial (the location in relation to the hazard), temporal 

(such as population amount that might differ in time at a certain location) and thematic 

characteristics (such as the material type of the buildings/houses, or the age distribution 

of the population) (van Westen et al., 2006).  

 The next step of the risk analysis process is quantification of the vulnerability 

for the elements at risk. The concept is to perform an assessment on degree of damage 
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that may result from the occurrence of a particular landslide of a given type/volume. 

Vulnerability is a crucial component in the evaluation of landslide risk often defined as 

the level of potential damage, or degree of loss, of a particular element (expressed on a 

scale of 0 to 1) subjected to a landslide event of a given intensity (Varnes, 1984; Crozier 

and Glade, 2005). The assessment involves understanding of the interaction between 

the considered landslide and affected elements. Generally, the vulnerability to landslide 

influence depends mainly on (a) runout distance; (b) volume and velocity of the sliding; 

(c) elements at risk (buildings and other structures), nature and proximity to the slide; 

and (d) elements at risk (persons), proximity to the slide, nature of the building/road 

that they are in, and where they are in. With this method, the vulnerability of an element 

at risk depends principally on characteristics of the landslide and technical resistance 

of that element to landslide impact, such as the type, nature, age, etc. (Dai et al., 2002). 

 Ultimately, combination of hazard and vulnerability information shall define 

values of a specific risk as preferred (Eq. (2.6)). Combination of the data for one specific 

type of landslide and one specific type of the elements at risk results in a specific risk. 

Integration of all specific risks for all landslide types and volumes and all the elements 

at risk results theoretically in the total risk (Varnes, 1984; van Westen et al., 2006). 

 

2.6 Relevant landslide susceptibility mapping methods 

 As several landslide susceptibility assessment methods are of interest to be 

applied in this thesis, therefore, knowledge on general concept and working procedure 

of these methods are necessary for the appropriate preparation of the subsequent work 

and this shall be described in this section as follows.  
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 2.6.1 Conventional weighted linear combination (WLC) 

  Conventional weighted linear combination (WLC) is one of the widely-

used qualitative methods for landslide susceptibility analysis, especially at a regional 

scale (Glade and Crozier, 2005). In this approach, contributing factors and their 

attributes are directly assessed for their relative importance in the initiation of landslide 

activity found within the examined area based on assembled expert opinions or from 

literature review. The comparative importance is normally represented by the assigned 

numerical values for the relevant factors and their corresponding attributes [e.g. using 

ordinal scale from 0 (not important) to 9 (most important)]. These values are typically 

called factor weight (for the factors) and class weight, or rating, (for the attributes). 

Higher values of weight (or rating) indicate greater influence of the concerned factors 

(or attributes) on landslide occurrence over the area (Lee, Ryu, Won and Park, 2004). 

Product of factor weight and corresponding class weight (of a specific attribute) is 

represented the net contributing weight of that attribute to landslide occurrence therein 

(see Table 2.4 for example).   

   To construct the required landslide susceptibility map, the net 

contributing weight from each input factor (i.e. that of the apparent attribute) are 

accumulated on a pixel-based basis and the result is called landslide susceptibility index 

(LSI) which is different for each considered pixel, the higher LSI indicates the greater 

probability of landsliding. This process can be written as follows: 
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where LSI is a landslide susceptibility score for a considered pixel, FWi and CWi are 

corresponding factor weight and class weight for a contributing factor i of that pixel 

and n is number of the causative factors in use.  

 Figure 2.13 shows example of the flow diagram presented in work of Kanungo 

et al. (2006) which used the WLC method for landslide susceptibility classification in 

Darjeeling Himalayas hill region. There were six main input factors considered in this 

case with different preferred factor and attribute weights as detailed in Table 2.3 from 

which the drainage buffer was given the highest priority (with factor weight of 9) and 

aspect was considered having lowest priority in the analysis (with factor weight of 1). 

 

 

Figure 2.13 Flow diagram for the landslide susceptibility assessment procedure using 

the conventional weighted linear combination method (Kanungo et al., 2006). 
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Table 2.4 Examples of factor weights and class weights (or rating) for input thematic 

layers and their attributes for the WLC method as reported in Kanungo et al. (2006). 

Thematic layers Attributes 
Factor weight 

(FW) 

Class weights 

(CW) 

Net contributing  

weights 

(FWCW) 

Drainage buffer First order 
9 

9 81 

Second order 5 45 

Lineament buffer 0-125 m 

8 

9 72 

125-250 m 7 56 

250-375 m 5 40 

375-500 m 3 24 

>500 m 1 8 

Slope 0-15° 

7 

1 7 

15-25° 3 21 

25-35° 5 35 

35-45° 7 49 

>45° 9 63 

Lithology Darjeeling gneiss 

6 

7 42 

Feldspathic greywacke 3 18 

Paro gneiss 5 30 

Lingse granite gneiss 9 54 

Paro quartzite 1 6 

Reyang quartzite 1 6 

LULC Agriculture land 

4 

5 20 

Tea plantation 3 12 

Thick forest 1 4 

Sparse forest 7 28 

Barren land 9 36 

Habitation 2 8 

 

 2.6.2 Analytic hierarchy process (AHP)  

  Another popular qualitative method in landslide susceptibility 

evaluation is the analytic hierarchy process (AHP). This method was first developed by 

Saaty (1977, 1980) as supporting tool for solving of the encountered multi-criteria 

decision situation. The method has gained broad application so far especially in the 

research fields of site selection, suitability analysis, regional planning, and landslide 
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susceptibility analysis (Vaidya and Kumar, 2006; Ho, 2008; Long and De Smedt, 

2012). 

 

  

 

Figure 2.14 A hierarchical structure of the analytic hierarchy process method (AHP) 

(Cortes, Serna and Martinez, 2012). 

 

  According to Malczewski (1999); fundamental concept of the AHP 

method is based on the three principles: decomposition, comparative judgment, and 

synthesis of priorities. In the first task, a target problem must be broken down into a 

conceptual hierarchical order (or successive level) of its decision-making components, 

beginning with the ultimate objective, or goal, of the decision strategy given at Level 

1, followed by details of the applied decision-making components in the subsequent 

levels, starting with the broadest categories first (at Level 2) followed by the 

subcategories (or criteria) at higher levels. The final layer comprises a list of the 

alternative options, or solutions, under consideration (as illustrated in Figure 2.14).  
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  In the second task, the priority score (or weight) for each listed 

component at a specific level must be determined using a pairwise comparison method 

in which all considered elements at each hierarchical order are judged for their initial 

preferences in pair describing by the scale from 1 to 9 (see Table 2.5 for detail). These 

results are then further processed to identify priority score for each applied element 

later using the gain pairwise comparison matrix, or the preference matrix. The final task 

is to rank priority of each potential option based on the total priority score associated to 

the considered option, i.e., the multiplication of all original scores at each defined level 

of the hierarchical order (Saaty and Vargas, 2001; Saaty, 2008). 

 

Table 2.5 Scale of preference between pair of factors in pairwise comparison process 

of the AHP method (Saaty and Vargas, 2001). 

Scale Degree of preference Explanation 

1 Equally Two activities contribute equally o the objective 

3 Moderately 
Experience and judgment slightly to moderately favor one 

activity over another 

5 Strongly 
Experience and judgment strongly or essentially favor one 

activity over another 

7 Very strongly 
An activity is strongly favored over another and its dominance 

is showed in practice 

9 Extremely 
The evidence of favoring one activity over another is of the 

highest degree possible of an affirmation 

2,4,6,8 Intermediate 
Used to represent compromises between the preference in 

weight 1,3,5,7 and 9 

Reciprocals Opposites Used for inverse comparison 

 

 AHP has been often applied to landslide susceptibility analysis in which it was 

used principally to determine appropriate factor weights and class weights for all 
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included contributing factors, such as, Yoshimatsu and Abe (2006); Yalcin et al. (2011); 

Intarawichian and Dasananda (2011); Long and De Smedt, (2012); Bagherzadeh and 

Daneshvar (2012). Clear advantage of the AHP in landslide susceptibility analysis is its 

capability to include all kinds of contributing factor into the analysis process and the 

preference order of the factors (and their attributes) can be established automatically 

through application of used pairwise comparison method. In addition, the consistency 

of judgment in comparison process can be directly verified to determine credibility of 

the applied methodology. However, main disadvantage of AHP is its lack of generality 

in the applied preference judgment rules for each pair of the listed contributing factors 

due to subjective nature of decision in the standard pairwise comparison method which 

is usually depended on the collective expert opinion or on the group consensus (Long 

and De Smedt, 2012). After final weights of all factors and their attributes are known, 

susceptibility map can be constructed as a consequence from the pixel-based landslide 

susceptibility index (LSI) computation using Eq. (2.8).  

  The formal procedure of the AHP method to landslide susceptibility 

analysis can be summarized in conclusive details as follows (Triantaphyllou and Mann, 

1995; Bachri and Shresta, 2010; Long and De Smedt, 2012): 

  (1) Construction of the pairwise comparison matrix used for the 

determination of the preferred factor weights and class weights. In this process, all 

relevant elements are compared in pair and a preference scale is given to each pair of 

data ranging from 1 to 9 (as detailed in Table 2.5). These results are then put in order 

to create a pairwise comparison matrix of size n (n is number of used elements) (like 

ones in Table 2.6). 
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  (2) Determination for the appropriate factor and class weights. At this 

step, priority score for each factor (and their listed attributes) are quantified. This can 

be done through several methods as stated in Gao, Zhang and Cao (2009) but the most 

popular ones are the eigenvector method, sum method and geometric mean method.  

   (2.1) Eigenvector method. This one is from the basis of the AHP 

theory originally described in Satty (1980) where preference vector ω is introduced to 

fulfill the following relation: 

 

  Aω = λmax ω, (2.9) 

 

here, A is pairwise comparison matrix of order n denoted by A = (aij) where i and j are 

the row and column indices, respectively, and n is the number of total contributing 

factors (or attributes) in use. The matrix member aij is a preference scale for compared 

factors (or attributes) i and j with constrains: aij = 1/aji, for i  j, and aii = 1, for all i, 

which make A being a reciprocal matrix. In this case, ω is an eigenvector and λmax is a 

maximum eigenvalue of matrix A corresponding to ω. By solving Eq. (2.9), members 

of vector ω could be identified and their normalized values (by dividing the original 

ones with their sum) shall become respective weight values for the considered factors 

(or attributes) by matching one by one for each row of A and ω. 

   (2.2) Sum method. This might be called the normalized-sum-

average method as the first task is to normalize all members of the original preference 

matrix by dividing each matrix element by net sum of all elements found in its column. 

Then, the priority score for each listed factor (or attribute) is derived from the average 
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of all elements in a row that the studied factor (or attribute) is belonged. This 

aforementioned procedure can be written as: 
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   (2.3) Geometric mean method. In this case, the priority scores are 

first determined by multiplying all elements in each row of the preference matrix and 

take the n-th root of the product result. These yielded data are then normalized by 

dividing them with their sum to attain respective weights for each listed element as an 

outcome (matching row by row). This stated procedure can be written as: 
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 (2.11) 

 

  (3) Assessment for consistency of the judgment. Before the resulted 

weights in previous step are put in use, satisfied consistency of the comparison must be 

ensured. For the ideal performance with a perfect consistency in the comparison, i.e. 

aijajk = aik, λmax = n, but for the general cases with some inconsistency in the judgment, 

λmax > n. Degree of the inconsistency in the used judgment can be quantified by using 

an index called the consistent ratio index (CR) defined as: 
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RI

CI
 CR  , (2.12) 

where CI is the defined consistency index and RI is called the random index; which is 

the consistency index of a randomly-generated pairwise comparison matrix. And, as 

discussed in Saaty (1980), if the CR is significantly low (i.e. CR  0.1), this means the 

overall judgment is rather reliable and the achieved factor (or attribute) weights can be 

accepted for further use. However, if CR > 0.1 (or 10%), it indicates that subjective 

judgment in use is still too inconsistent and needed to be revised accordingly.  

  The consistency index (CI) was introduced to be a measure of the 

consistency of the pairwise comparison preferences in use which is defined as: 

  CI 
)(n-

-nλ
 

1

max , (2.13) 

value of λmax can be identify directly from Eq. (2.9) provided that matrices A and ω are 

already known form earlier works [as explained in Coyle (2004)] and standard values 

of random index are listed in Table 2.6 as a function of matrix size. 

 

Table 2.6 Random index (RI) given by Saaty (1980) as a function of matrix size (n).  

n 1 2 3 4 5 6 7 8 9 10 11 12 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 

n 13 14 15          

RI 1.56 1.57 1.59          

 

 To illustrate applied procedure of the AHP method to landslide susceptibility 

analysis in more details, resulted preference matrix reported in work of Thanh and De 

Smedt (2012) for their study area in central Vietnam is presented here as an example in 
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Table 2.7. It was found that, among nine factors included in the study; slope angle and 

precipitation were having top priority at weights of 0.303 and 0.236, respectively. And 

elevation and drainage distance are the two factors with lowest priority with weights of 

0.021 and 0.025 respectively. For the slope category, the highest rank was evidenced at 

slope > 35o with weight of 0.347 and for land use group, shrubs/bare hills and afforest 

land were found most important with the total weights of 0.615 and 0.255, respectively.  

Table 2.8 describes information of essential variables used in the consistency analysis 

of this work. Note that, half of the preference matrix was left empty but actual members 

are just a respective reciprocal of the shown preference scale for the same pair of data.  
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Table 2.7 Example of the pair-wise comparison matrix, or preference matrix, reported 

in Thanh and De Smedt (2012) along with the corresponding normalized eigenvector 

(representing factor, or attribute, weights of the analysis).  

 

 

Table 2.8 Information of essential variables used in the consistency analysis reported 

in Thanh and De Smedt (2012). 
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 2.6.3 Frequency ratio (FR) 

   Frequency ratio (FR) is a popular quantitative approach (of bivariate 

type) in landslide susceptibility evaluation, e.g. in Lee and Sambath (2006); Vijith and 

Madhu (2007); Oh et al. (2009); Pradhan and Lee (2010); Intarawichian and Dasananda  

(2011); Yalcin et al. (2011); Park, Choi, Kim and Kim (2013). This method is famous 

for its simple concept and straightforward calculation of landslide susceptibility index 

which can be performed by most widely-used GIS softwares. In principle, it works by 

finding relative importance of each incorporated factor’s attribute (defined as a class 

weight) in producing past landslides independently and describes it in terms of the FR 

index. The index is simply defined by a ratio of the landslide occurrence percentage 

and area occupation percentage for that attribute compared to the whole area, or, 

 

  

 
(TLP/TA)

(CLP/CA)

(CA/TA)

) CLP/TLP(
 FR  , (2.14) 

 

where CLP is number of landslide pixels seen in a specific class (of a certain factor), 

TLP is number of total number of the observed landslide pixels, CA is the associated 

total class area and TA is total study area.  

  By definition seen in Eq. (2.14), FR shall represent the landslide 

frequency over a unit area of a considered attribute compared to that of the entire area. 

In this case, FR can be any number from 0 onwards. For FR < 1, it means landslide 

occurrence per unit area of that factor’s attribute (or class) is lower than the determined 

average value (for the entire area), which implies that it is less important in producing 

landslide over the area. For FR > 1, it means this attribute has higher landslide 
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frequency than average (indicating greater influence in producing landslide) and FR = 

1 means the result is comparable to average (Lee, 2005).  

  After the FR values for all attributes of used factors are determined, they 

can be applied to quantify landslide susceptibility index (LSI) on a pixel-based basis 

using the following formula: 

 

  

 
1





n

i

iFR LSI , (2.15) 

 

where FRi is the FR value for the corresponding attribute of factor i of the considered 

pixel and n is the total number of used factors. The accumulated LSI values in a study 

area can be applied for the formulation of the landslide susceptibility map for the area 

afterwards using the chosen mapping method of interest.  

  Though FR model is widely adopted at present for the creation of 

landslide susceptibility map worldwide, this method still contains some distinct 

shortcomings in itself. For examples, it evaluates the importance of each causative 

factor individually and ignores any spatial autocorrelation between them. As a result, 

some areas might be overemphasized of their proneness to having landslide activity 

(with higher LSI values) if two or more dominant factors (with relatively high FR score) 

are highly correlated to each other. In addition, it needs sufficient and well-distributed 

reference landslide data in order to determine the FR index more realistically (with less 

bias) (Intarawichian and Dasananda, 2011). 

  Table 2.9 shows examples of the frequency ratio (FR) value given in 

work of Vijith and Madhu (2008) for a study area in Western Ghats of Kerala, southern 

India. The result indicates strong correlation of landslide activity with slope angle of 
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30-35o (FR = 2.86), slope aspect along the N and W directions (FR = 2.01, 2.22), slope 

range of > 750 m (FR = 2.06), lithology in the quartzite class (FR = 2.84), and land use 

in natural vegetation class (FR = 2.51). 

 

Table 2.9 Frequency ratio (FR) index found in work of Vijith and Madhu (2008). 
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 2.6.4 Logistic regression (LR) 

  Logistic regression is one of the well-known multivariate analysis 

methods for making landslide susceptibility maps in recent years, e.g. Nefeslioglu, 

Gokceoglu and Sonmez (2008); Akgun, Kıncal and Pradhan (2011); Ercanoglu and 

Temiz (2011); Yalzin et al. (2011); Akgun (2012). In essence, the logistic regression is 

an extension of the ordinary linear regression in which the considered dependent 

variable is not of a continuous type as usual but becomes a categorical type with some 

certain number of its possible states (or values). If only two states are possible, e.g., 

presence/absence, men/women, success/failure, 0/1, this case shall be called a binomial 

(or binary) logistic regression, but if more states are also an option for being an eventual 

outcome, this shall be called multinomial logistic regression (Czepiel, 2013).        

  Logistic regression is superior to the ordinary regression in terms of the 

able input data (as independent variables) that include both numerical and categorical 

type. Main objective of the analysis is to identify a suitable regression function (of the 

used independent variables) that can satisfactorily describe probability of having a 

certain outcome of the dependent variable. These properties of the logistic regression 

method suit the landslide susceptibility analysis well, as in this work, the dependent 

variable is the presence or absence of landslide incidence at a specific pixel over the 

study area which is assumed to be resulted from the complex interaction of several 

contributing factors of both numerical and categorical types. Hence, it might be possible 

to assess landslide occurrence likelihood for each pixel assumed that the relation of 

independent factors, one that actually determines the absence or presence of the 

landslide activity in the area, can be evaluated through the binary logistic regression 

method (Ayalew and Yamagishi, 2005; Lee, 2005; Pradhan, 2010). 

 

 

 

 

 

 

 

 



67 

  Common concept of the method is based on assumption that the 

probability of having a landslide incidence at a particular pixel (p) can be quantified 

through the use of a specific function called log-odds or Logit(p) defined as (Lee, 2005): 

 

  )
-p

p
( Logit(p) L 

1
ln . (2.16) 

 

  This function is conceptually assumed to have linear regression relation 

with the used dependent variables, or, 

 

  nn xc...xcxc cL  22110 . (2.17) 

 

  The crucial task here is to find the proper values of the coefficients c0, 

c1, ... cn from the reference landslide data and their associated contributing factors x1, 

x2, ..., xn. This process is usually achieved by using maximum likelihood estimation 

technique to solve for appropriate values of parameters that best fit the landslide data 

as detailed in Dayton (1992) and Czepiel (2013). The known value of L for each pixel 

can be used to calculate the probability p as follows: 
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  These pixel-based probability values (of 0-1) can be used as landslide 

susceptibility index (LSI) for making susceptibility map of the area afterwards. 

 

 

 

 

 

 

 

 



68 

  Note that, it is commonly desired that all continuous variables have the 

same scale in the multivariate statistical analyses. From this reason, all continuous 

variables (like slope, elevation, and proximity) should be normalized to have values in 

the range of [0, 1]. And for the categorical data (like land use or soil type), they are 

expressed in binary format (presence/absence) with respect to each attribute of the 

referred factor, similar to that of the dependent variable. One of the main requests of 

the multivariable statistical applications is equal sampling of the training data set (of 

reference landslide data). This means that the ratio of presence (1) to absence (0) should 

be equal to 1 in the training data sets (Nefeslioglu et al., 2008). 

  Table 2.10 presents final results (FR values and logistic regression 

coefficients) of the landslide hazard analysis using FR and logistic regression methods 

reported in Lee and Pradhan (2007) for an area in Selangor, Malaysia. From this study, 

the proper relationship of Logit function L with the used influencing factors was found 

to be: 

 

          16.4726.ionPrecipitat0.0043      

LandcoverNDVI1.3633Lineament0.0001Lithology      

Drainage0.0048Curvature0.0032AspectSlope0.0780 L







 (2.19) 
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Table 2.10 Example landslide susceptibility analysis using FR and logistic regression 

models by Lee and Pradhan (2007) in Selangor, Malaysia. 

 

 2.6.5 Artificial neural network (ANN) 

  An artificial neural network (ANN) is generally defined as a 

computational mechanism able to acquire, represent, and compute a mapping from one 

multivariate space of information to another, given a set of data representing that 

mapping (Garrett 1994). ANN works by finding optimal paths to connect several input 

data to a trained correct output and uses them as a reference to predict correct output 

for a given set of input afterwards. Therefore, there are two stages involved in using 

ANN for multi-source classification: the training stage and the classifying stage (Figure 

2.16).  
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 The structure of ANN is comprised of a multi-layered neural network, which 

consists of an input layer, hidden layers, and an output layer (Figure 2.15). Input data 

are fed through the complex hidden layer that will process them to gain most correct 

output during the training session of the system.  In the process, the hidden and output 

layer neurons shall process their inputs by multiplying each input by a corresponding 

weight, summing up the product, then processing the sum using a nonlinear transfer 

function to produce a definite result. This network gradually learn to know the proper 

weighs (for each input factor) that lead to the correct results by adjusting the internal 

weights between neurons to reduce errors between actual output values and the target 

output values. At the end of this training phase (after a large number of tries), the neural 

network provides an appropriate model that is able to predict a target value correctly 

from a given input value. Typically, the back-propagation algorithm is appliied to train 

the network where the training session continues until some targeted minimal error is 

achieved between the desired and actual output values of the network. Once the training 

is complete, the network is used as a feed-forward structure to produce a classification 

for the entire data (Paola and Schwengerdt, 1995). 

 The ANN approach for landslide susceptibility mapping has attracted more 

attention in recent years, e.g. in Kanungo et al. (2006); Lee and Evangelista (2006), 

Yilmaz (2009); Pradhan, Lee and Buchroithner (2010); Paval, Nelson and Fannin 

(2011), due to its distinct ability to identify a nonlinear relationship of the past landslide 

data and a set of the chosen contributing factors automatically which cannot be achieved 

by the conventional methods like the FR or logistic regression. And, due to the ability 

of the ANN method to incorporate the imprecise and fuzzy data, hence, they can work 

with numerical, categorical and binary data without violating any prior assumptions. 
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Generally, a three-layer feed-forward network consisting of an input layer, one hidden 

layer and one output layer was found appropriate as an ANN structure for the analysis 

of landslide susceptibility for an interested area (Yilmaz, 2009). 

 

 

Figure 2.15 Typical ANN architecture for landslide classification (Yilmaz, 2009). 
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Figure 2.16 Typical ANN work flowchart for landslide susceptibility classification 

comprising of two steps; training and classifying (Kanungo et al., 2006). 

 

 2.6.6 Fuzzy logic approach 

  The fuzzy set theory proposed by Zadeh (1965) is one of the standard 

tools for solving complex problem containing vague information. The most notable 

aspect of this methodology is its possibility of capturing, in a mathematical model, the 

intuitive concepts which are the base of consistent judgment (Saboya, Alves and Pinto, 

2006). The method has been widely applied for many scientific studies in different 

disciplines including landslide susceptibility analysis, such as, Saboya et al. (2006); Lee 
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(2007); Gorsevski and Jankowski (2010); Guettouche (2012); Pourghasemi et al. 

(2012). Fuzzy logic is attractive due to its capability to justify likelihood of the slope 

failure based on the imprecise determination criteria defined by experts or from the 

knowledge inherited from other relevant methods. 

  Main concept of this theory is based on a mathematical theory of fuzzy 

sets, which is an extension of the classical sets to sets defined imprecisely. A fuzzy set 

can be described as a set containing elements that have varying degrees of membership 

in the set whose corresponding mathematical expression can be written as follows 

(Ross, 1995; Ercanoglu and Temiz, 2011): 

 

    Xx; (x))μ(x,A A  , (2.20) 

 

where A is a given fuzzy set,  is a membership function, and x is the element of X 

universe. The fuzzy set theory is different from the classical set theory as in the latter 

case, membership values of an element for a specific set are either 1 (being a member) 

or 0 (not being a member), but in the first case (fuzzy set), possible membership values 

of an element regarding to that set have a continuous scale from 1 (for full membership) 

to 0 (for full non-membership), reflecting degree of certainty of being membership (see 

the illustration in Figure 2.17 for example). 

  For the landslide susceptibility analysis, an attribute of a specific 

contributing factor shall be considered as being a member of the landslide producer set 

with a certain fuzzy-membership value. These values can be assessed by some data-

driven methods, such as the frequency ratio (FR) model mentioned earlier (e.g. Lee, 
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2007; Regmi et al., 2010; Aksoy and Ercanoglu, 2012) or the cosine amplitude method 

(e.g. Ercanoglu and Gokceoglu, 2004; Kanungo et al., 2006; Ercanoglu and Temiz, 

2011), or by the expert-based judgments through the application of the defined if-then 

rules (e.g. Saboya, Alves and Pinto, 2006; Pourghasemi et al., 2012). Table 2.11 gives 

examples of the FR-based fuzzy membership values of attributes presented in works of 

Lee (2007); Bui, Pradhan, Lofman, Revhaug and Dick (2012), respectively. 

 

 

Figure 2.17 Example of the fuzzy set and its complement with the membership values 

of 0 to 100% (for “cool” and “not cool” conditions) (Fano, 2011). 
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 To produce a susceptibility map, the fuzzy membership values from each used 

factor (i.e., that of a corresponding attribute for a considered pixel) are then integrated 

to yield a landslide susceptibility index (LSI) outcome for each unit area (or a pixel).  

This task can be accomplished by using five fuzzy operators: fuzzy-OR, fuzzy-AND, 

fuzzy algebraic sum, fuzzy algebraic product, and fuzzy-gamma, which can be written 

mathematically as follows (Regmi et al., 2010): 
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where μi is the fuzzy-membership function for the i-th factor map, and i = 1, 2, 3,..., n 

and  = [0, 1]. 

  From these standard definitions, it is obvious that, for the fuzzy-OR 

operator, the yielded result at any particular location is controlled by the maximum 

input fuzzy membership function. On the contrary, for the fuzzy-AND operator, this 

output result is controlled by the smallest value of the input data. These operators are 

appropriate if the landslide activity at a particular location is controlled mostly by a 

single dominant contributor, otherwise, the other three operators (sum, product, and 

gamma) should be more suitable for the application. Note that, operation gamma is a 

compromise between the increase tendency of the fuzzy algebraic sum and the decrease 

tendency of the fuzzy algebraic product in which   = 0 is giving pure fuzzy product 

and  = 1 is giving actual fuzzy sum operator (Figure 2.18) (Lee, 2007; Regmi et al., 

 

 

 

 

 

 

 

 



76 

2010). In literature review, the gamma and product operators often found most effective 

in formulating the credible landslide susceptibility map compared to the other operators 

(Table 2.12); e.g. in Lee (2007); Regmi et al. (2010); Ercanoglu and Temiz (2011). 

 

Table 2.11a Examples of the FR-based fuzzy membership values for the respective 

attributes of a specific contributing factor presented in Lee (2007). 
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Table 2.11b Examples of the FR-based fuzzy membership values for the respective 

attributes of a specific contributing factor presented in Bui et al. (2012). 

 

 

 

Figure 2.18 Graph showing example of the combination of three fuzzy factors  

(μA = 0.8, μB = 0.6, μC = 0.4) by fuzzy-gamma operation (Regmi et al., 2010). 
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Table 2.12 Report of accuracy scales for used fuzzy logic operators in Lee (2007). 

 

 

2.7 Accuracy assessment of yielded susceptibility maps 

 All attained susceptibility maps from each preferred method were eventually 

assessed for their accuracy with two popular methods: The Area-Under-Curve (AUC) 

and Receiver Operating Characteristic (ROC) curves analysis. The acquired degree of 

accuracy shall be taken as primary indicator of efficiency for each evaluated model in 

the construction of the credential susceptibility map for the study area.  

 2.7.1 The Area-Under-Curve (AUC) method 

  The AUC works by creating a specific rate curve illustrating percentage 

of known landslides that falls into each defined level of the susceptibility rank (LSI 

values) and displays it as cumulative frequency diagram. To build the rate curve, the 

LSI values of all pixels on the assessed map are sorted in descending order (from high 

to low) and divided into 100 classes with equal number of member for each defined 

class. The rate curve can be produced as a plot between the defined LSI rank  
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(i.e., 1-100) on the x-axis (higher rank means lower LSI values) and the accumulated 

percentage of the reference landslide pixels at each LSI rank on the y-axis (see Figure 

2.19 for example). Total area under a rate curve (AUC) is used to determine prediction 

accuracy of the susceptibility map qualitatively in which larger area means higher 

accuracy achieved. And, in order to compare results quantitatively, the AUC data are 

typically re-scaled to have total area of 1 (means perfect prediction, or 100% accuracy). 

There were two reference datasets of observed landslides being used in this assessment 

process: (1) data that were used to formulate the examined susceptibility map before, 

(2) other dataset prepared for the use in the accuracy assessment process only. 

Accuracies acquired from the first and second dataset are called “success rate” and 

“prediction rate” of the verification, respectively (Vijith and Madhu, 2008; 

Intarawichian and Dasananda, 2010, 2011). 
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Figure 2.19 Examples of the cumulative freauency diagram in AUC method showing 

landslide susceptibility index rank (x-axis) in relation to the cummulative percent of 

landslide occurance (y-axis) (Intarawichian and Dasananda, 2011) 

 

 2.7.2 Receiver Operating Characteristic (ROC) curves 

  Basically, the ROC curve is introduced and used as a measure of 

performance of a predictive rule. The graphs provide a diagnostic that might be used to 

distinguish between two classes of events, and to visualize classifier performance 

(Swets, 1988). In essence, the ROC curve is a plot of the probability of having a true 

positive versus the probability of having a false positive. For example, on the landslide 

prediction issue, a true positive is a prediction of having a slide for a location whereupon 

a slide actually occurred, while a false positive is a prediction of a slide for location 

where no  slide did occur. An ideal model would have an area equal to 1 (100% 

accuracy), because in this case the probability of the true-positive case is 1 and of the 

false-positive is 0 regardless of the cutoff point (Williams et al., 1999).  
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  Each point on the ROC curve may be related to a specific decision 

criterion for how much risk that a user is willing to take regarding the accuracy of the 

prediction. This referred point might vary among observers because their decision 

criteria can vary even when their concerned ROC curves are the same (Swets, 1988).  

 

Table 2.13 Contingency table for ROC curve analysis method. 

  Reference data  

  
In class of interest 

(1) 

Not in class of interest 

(0) 

Simulated 

data 

In class of interest 

(within threshold) 
A (true positive) B (false positive) 

Not in class of interest 

(not with threshold) 
C (false negative) D (true negative) 

 

  ROC is a summary statistic extracted from a comparison of simulated 

data with the reference data (as described in Table 2.13). Practically, ROC curve can 

be derived by computing the True Positive (TP) and False Positive (FP) rates from the 

contingency tables (for both dataset) associated to different proposed cut off values 

using following formulas (SafeLand- FP7, 2011): 

 

  True positive rate (TP) = sensitivity = 
FNTP

TP


 =

P

TP
, (2.21) 

 

  False positive rate (FP) = 1- specificity =
TNFP

FP


 =

N

FP
, (2.22) 

 

where specific meaning of all relevant parameters are as detailed in Table 2.14. 

 

 

 

 

 

 

 

 



82 

  The primary goal of using ROC curve analysis is to find a cutoff value 

that will, in some way, minimize number of false predictions (positive/negative), or, 

maximizing the sensitivity and specificity of the prediction.  

 

Table 2.14 Symbol description of ROC curves on landslide prediction issue. 

Symbol Measuring Description 

TP True Positive rate Proportion of pixels correctly predicted as landslide occurrences 

TN True Negative rate Proportion of pixels correctly predicted as non-landslide 

occurrences 

FP False Positive rate Proportion of pixels incorrectly predicted as landslide 

occurrences 

FN False Negative rate Proportion of pixels incorrectly predicted as non-landslide 

occurrences 

P Positive Proportion of pixels correctly predicted as landslide occurrences 

N Negative Proportion of pixels correctly predicted as non-landslide 

occurrences 

 

  On landslide prediction issue, “sensitivity” is the probability that a 

landslide cell is correctly identified, and is plotted on the y-axis, while “specificity” is 

the probability that a non-slide cell is correctly classified, and is displayed along the x-

axis of the curve. Hence, 1-specificity then defines the false positive rate. The area 

under the ROC curve in this case represents the probability that the gained susceptibility 

value for a randomly chosen landslide cell would exceed result for a randomly chosen 

non-landslide cell.  

  Similar to the AUC, The area under ROC curve can be approximated by 

adding areas of polygons between thresholds. Eq. (2.23) use integral calculus’ 

trapezoidal rule to compute the area (Pontius and Schneider, 2001). 

 )/
i

-y
i

y
i

(y)ixi(x AUC
n

i

2
11

1


 



, (2.23) 

 

 

 

 

 

 

 

 



83 

where xi  is the rate of false positives for the threshold i, yi is the rate of true positive for 

threshold i, and n is number of thresholds. By changing the cut off values, it is possible 

to obtain different contingency tables which correspond to different points in the ROC 

curve (Figure 2.20). 

 

 

Figure 2.20 Example of contingency tables for different values (cut off) of membership 

probability of a landslide susceptibility assessing model and the associated ROC curve 

(of the true/false positive rates) (SafeLand - FP7, 2011). 

 

2.8 Concept of the landslide-induced runout analysis 

  Landslide-induced runout has often become fundamental source of destruction 

for people’s lives and properties of the affected community, therefore, knowledge of its 

development and resulted debris flow is crucial for preventing or reducing such losses.  

Runout is typically defined by means of the debris flow source which makes up of soil, 

rock, and water. As such, the reduction of potential losses can be pursued by prediction 

of their velocities and the runout distances. Indeed, runout prediction provides a mean 

of defining the realistic susceptible areas through the estimation of debris flow intensity 
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and its expansion over gentle terrain (which are necessary for conduction risk analysis). 

This knowledge is important for working design of the appropriate protective measures 

and, at the same time, the reliable predictions of runout characteristics can help avoiding 

exceedingly conservative or sensitive decisions regarding the pro-urban development 

of the potentially at-risk areas (Cascini et al., 2005). 

  Generally, the debris flow characteristics depend on the water content, sediment 

size and/or sorting, and on the dynamic interaction between the solid and fluid phases 

where modelling of such interaction still becomes a quite difficult task which relies on 

the use of some advanced empirical or numerical models (Pirulli1 and Sorbino, 2008). 

In this study, the runout hazard analysis was carried out through the application of high 

popularity Flow-R (Flow path assessment of gravitational hazards at a Regional scale) 

model. Flow-R is a distributed empirical model for regional susceptibility assessments 

of debris flows, developed at the University of Lausanne and was successfully applied 

worldwide so far. Flow-R is a free software with no limitation in scope of use that was 

built to process GIS-based regional susceptibility assessments of debris flows in which 

the identification of potential source areas and corresponding propagation extent are 

allowed. Marked characteristics of the software are (1) limited requirement of datasets 

(Figure 2.21) and (2) customization of inputs, algorithms, and the parameters, through 

a graphical user interface (Horton et al., 2013). 

  To fulfil its main objectives, two distinctive steps are needed for the application 

of the model (Iverson and Denlinger, 2001):  

  (1) Identification of source area (based on topography and user-

defined criteria),   
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  (2) Analysis on the propagation mechanism of the induced debris 

flows from their sources on basis of frictional laws and flow direction algorithms.  

 Generally, two types of algorithms are necessary in the propagation assessment 

(Huggel et al., 2003):  

  (1) Spreading algorithms for the identification of path/spreading of 

debris flows, 

  (2) Friction laws for the determination of the runout distance. 

 

 

Figure 2.21 Conceptual diagram of the Flow-R model (Park et al., 2013). 

 

 

 

 

 

 

 

 

 



86 

 

Figure 2.22 Illustration of the spreading of susceptibility value to the neighboring cells 

(Horton et al., 2013). 

 

 2.8.1 Algorithms for the spreading assessment 

  Typically, path and spreading of the debris flow are under control of the 

flow direction algorithms and persistence functions as detailed below.  

  (1) Flow direction algorithms 

   Flow direction algorithms determine the direction of the flow from 

one cell to its eight neighboring cells. Concerning the angle of spreading, Holmgren 

(1994) adds a parameter to multiple flow direction algorithms as an exponent which 

controls the convergence of the flow that can be expressed as follows: 
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where i, j are the defined flow directions (1-8),  p
fd

i  is susceptibility proportion (0-1) 

in direction i, tan βi  is slope gradient between the central cell and cell in direction i, and 

x is the variable exponent. Higher exponent indicates more convergent of the flow. 

When x = 1, it turns into basic multiple flow direction, and when x → ∞, it becomes a 

single flow direction. 

  (2) Persistence function 

   Based on Gamma (2000), the persistence function aims at 

reproducing behavior of inertia, and weights the flow direction based on the change in 

direction with respect to the previous direction (see Figure 2.22) using the following 

formula: 

 

  w α(i)

p

ip  , (2.24) 

 

where i is flow direction (1-8),  p
p

i is flow proportion  (0-1) in direction i and α(i) is the 

angle between the former direction and the direction from the central cell to other cell 

i. Three implementations of the persistence were chosen (Table 2.15): the first is called 

proportional, the second one uses a cosine, and the third one is based on Gamma (2000). 

In every persistence distribution, the cell opposed to the given flow direction is nulled 

(w180 = 0) to avoid eventual backward propagation, and thus to save computing time. 
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Table2.15 Implemented weightings of the persistence function in the assessment of the 

flow spreading. 

 w0 w45 w90 w135 w180 

Proportional 1 0.8 0.4 0 0 

Cosines 1 0.707 0 0 0 

Gamma (2000) 1.5 1 1 1 0 

 

  (3) Overall susceptibility 

   The values given by the flow direction algorithm and the 

weighting of the persistence are combined according as follows: 
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where i, j are flow directions (1-8),  p
i is the susceptibility value (0-1) in direction i, 

 p
fd

i is flow proportion from flow direction algorithm,  p
p

i is flow proportion according 

to the persistence, and p
0
is previously determined flow proportion value of the central 

cell. 

 2.8.2 Runout distance assessment 

  Runout distance algorithm is based on simple frictional laws; as the 

source mass is unknown, the energy balance is unitary (Eq. (2.26)). The processing 

takes place at cell level and controls which other cells the flow would be able to reach. 

Thus, these algorithms control runout distance and, in addition, may reduce lateral 
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spreading (when a cell on the border of the spreading cannot be reached because of 

insufficient energy). 

  Structure of the relevant energy balance scenario can be expressed as 

follows: 

 

  EEΔE E
i
f

i
potkin

i
kin  0

, (2.26) 

 

where E
i
kin  is the kinetic energy of the cell in direction i, Ekin

0  is the kinetic energy of 

the central cell, EΔ
i
pot  is the change in potential energy to cell in direction i, and E

i
f  is 

the energy lost in friction to the cell in direction i.  

  Two main algorithms are available for the friction loss: the two 

parameters friction model by Perla et al. (1980) and a simplified friction-limited model 

(SFLM). Both can result in similar propagation areas, depending on the parameters 

choice. 

(1) Perla’s two parameters friction model 

   The friction model from Perla et al. (1980) was developed for 

avalanches, but has also been used for debris flows. 
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where µ is the friction parameter, ω is mass-to-drag ratio, originally expressed as M/D, 

βi is the slope angle of the segment, V0 is the velocity at the beginning of the segment, 

Li is the length of the segment, and g the acceleration due to gravity. 

(2) Simplified friction-limited model 

   The simplified friction-limited model is based on the maximum 

possible runout distance, which is characterized by a minimum travel angle, also called 

angle of reach. It is the angle of the line connecting the source area to the outmost 

distant point reached by the debris flow, along its path: 

 

  tanxg E
f
i  , (2.28) 

 

where E
f
i is the energy lost in friction from the central cell to other cell in direction i, 

x is the increment of horizontal displacement, tan is the gradient of the energy line, 

and g is the acceleration due to gravity.  

   This approach may result in improbable runout distances in steep 

catchments due to unrealistic energy amounts reached during the propagation. To keep 

the energy within reasonable values, a maximum limit can be introduced to ensure not 

to exceed realistic velocities (Figure 2.23), which can be expressed as follows: 

 

   }VxghgV , V{=i maxtan22min
2
0  , (2.29) 

 

where h is the difference in elevation between the central cell and the cell in direction 

i, maxV is the given velocity limit.  
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Figure 2.23 Illustration of the travel angle and the velocity limitation of the simplified 

friction-limited model (SFLM) (Horton et al., 2013). 

 

   The probable maximum runout is characterized by an average 

slope angle or shadow angle which is the average slope between the starting and end 

points, following the debris flow path. A constant friction loss has been considered, 

corresponding to this angle, which would result in a runout distance equal to the 

probable maximum runout.  

 

2.9 Roles of GIS and remote sensing in landslide risk analysis 

 In recent decades, remote sensing (RS) and Geographic Information Systems 

(GIS) technologies have played an important role in rapid advance of landslide research 

field which mainly involves three following aspects (van Westen et al., 2006):   

 (1) Detection, classification, and mapping of past landslides,  

 (2) Monitoring occurrences of new landslides and activity of the existing ones,  

 (3) Analysis and prediction of the prone areas to landslide activity in terms of 

both spatial distribution (space) and temporal distribution (time).  
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 These three broad groups of activities are of great interest to landslide 

researchers where both RS and GIS tools were frequently applied to fulfill these tasks. 

Brief details of their roles are summarized here for an example.  

 2.9.1 Applications of GIS technology 

  In the past three decades, the rapid advance in landslide mapping 

methodology (i.e. inventory mapping, susceptibility mapping, hazard mapping and risk 

mapping) is contributed tremendously to the advent of the Geographic Information 

Systems (GIS) (van Westen et al., 2006; Chacon, Irigaray, Fernandez, and Hamdouni, 

2006). GIS was defined by Burrough (1986) as “powerful set of tools for collecting, 

storing, retrieving at will, transforming, and displaying spatial data from the real world 

for particular set of purposes”, by Star and Estes (1990) as “an information system 

designed to work with data referenced by spatial or geographic co-ordinates”, and by 

Bonham-Carter (1996) as “a computer system for managing spatial data”. This means 

GIS is a specifically-built geographic-data processing system with an intention to 

extract useful information from its processed data which can be separated into two 

general types: vector (for those existed in point, line, and polygon format) and raster 

(for those of the contiguous data) (as illustrated for examples in Figures 2.24). 

Traditionally, a GIS structure shall consist of five processing components, i.e., (1) data 

collection; (2) data input and verification; (3) data storage, database manipulation and 

data management; (4) data transformation and analysis; and (5) data output and 

presentation (Sgzen, 2002).  
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Figure 2.24 Examples of the geographic input data (vector/raster types) for the GIS 

operation (Schuurman 2004; NOAA, 2013). Vector structure is preferable for data with 

definite location (point) like house position, direction (line) like street/water channels, 

or boundary (polygon), like land parcel while raster structure is appropriate for spatial 

data with continuous values in space such as elevation or land use information.  

 

 GIS powerful capability in processing spatial data of most kinds and also in 

simulating specific interaction among them was found crucially benefit for the landslide 

risk analysis as initiation of slope failure often depends on complex interactions among 

several contributing factors themselves as well as with the associated triggering factors, 

in which the GIS can have cruciall role in extracting that relationship information using 

its powerful data processing technology. This makes GIS become an essential tool for 
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facilitating landslide susceptibility or hazard mapping regardless of the methods in use. 

In addition, landslide runout data can also be extracted from the GIS-based simulation 

models (Chacon et al., 2006; van Westen et al., 2006).  

 According to Guzzetti et al. (2012), GIS has become an excellent platform for 

constructing of detailed landslide inventory maps in which landslide locations along 

with their descriptions (or attributes) crucial for the landslide susceptibility mapping; 

e.g. size, volume, age, type, environmental condition, can be conveniently recorded, 

modified, and displayed as an individual GIS-based data layer by the able GIS software. 

This ability has solved several persistent problems related to the production, update and 

visualization of landslide maps often encountered in the traditional approach. Similarly, 

GIS efficiency can be effectively implemented to produce detailed map of the elements 

at risk from landslide activities over an area, which is very necessary for the preparation 

of the vulnerability and risk maps afterwards (through the integration with hazard map). 

General reviews about GIS applications to the research field of landslide mapping are 

seen in, e.g., Carrara and Guzzeti (1995); Carrara, Guzzetti, Cardinali and Reichenbach 

(1999); van Westen (2000); Huabin, Gangiun, Weiya and Gonghui (2005). 

 2.9.2 Applications of remote sensing technology 

  In general, RS data have been widely utilized at all steps of landslide 

risk analysis stated earlier (i.e., inventory mapping, susceptibility/hazard/risk 

assessment). In the landslide inventory preparation, high resolution aerial photos 

(usually in the form of orthophoto) or satellite images (like those from the IKONOS, 

QuickBird, or GeoEye satellites) are normally employed to identify location and spatial 

distribution of existing landslide evidences in a particular area (see Figure 2.25 as 

example) based on the direct visual interpretation or the developed automatic 
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classifying method (Malamud, Donald, Guzzetti and Reichenbach, 2004; Duman et al., 

2005; Mondini et al., 2011; Rau, Chang, Shao and Lau, 2012). 

 

 

Source: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=49976 

Figure 2.25 Satellite image of the 2011 landslide evidences in Krabi Province, southern 

Thailand from the NASA-Advanced Land Imager (ALI) sensor aboard EO-1 satellite.  

 

  In recent years, the advanced technologies of radar observing system 

called “InSAR” (Interferometric Synthetic Aperture Radar) system (Richard, 2007; 

Ferretti, Monti-Guarnieri, Prati and Rocca, 2007) and the “LiDAR” system (LiDAR-

UK, 2013) operating onboard surveying airplane or earth-observing satellies were also 

applied to identify small-scale landslides in several works, e.g. Colesanti and Wasowski 

(2006); Strozzi, Ambrosi and Raetzo (2013); Ghuffar, Szekely, Roncat and  Pfeifer 

(2013).  
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  Remote sensing data have also become a primary source for the 

extraction of several landslide contributing factors, for examples: 

  (1) Topography and landform properties. These data can be acquired 

from the original DEM (digital elevation model) data generated from the InSAR or 

LiDAR systems (both airborne and space-borne types). For examples, the InSAR radar 

system in SRTM project (NASA-Shuttle Radar Topographic Mission) can be used to 

generate DEM data around the world at good spatial resolution of 90 meters (CGIAR-

CSI, 2013) which is noticeably useful for landslide susceptibility mapping at the 

regional to global scales (Hong, Adler and Huffman, 2007; Kirschbaum et al., 2011). 

  (2) LULC data, especially those related to vegetation like forest or 

plantation. These data can be found through visual interpretation of aerial photos or 

high-resolution satellite images, or from automatic classification of medium-resolution 

satellite images (like those from Landsat or SPOT satellites). Similarly, vegetation 

indices (like NDVI) can be derived from suitable satellite images (both high and 

medium resolution types). The importance of LULC as a prominent landslide 

contributing factor and influence of LULC changes over a particular area on landslide 

activity were highlighted in several works, e.g. Glade (2003); van Beek and van Asch 

(2004);  Fell et al. (2008); Karsli et al. (2009); Chen and Huang (2013).  

  (3) Precipitation data. At present rainfall characteristics (in both 

spatial and temporal aspects) can be estimated from the ground-based or satellite-based 

weather radar, like those in the Tropical Rainfall Measuring Mission (TRMM) satellite 

(NASA-TRMM, 2013). Knowledge of the immediate rainfall information provided by 

advanced radar systems can support rapid evaluation of potential landslide danger area 
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introduced by that rainfall event (in corporation with the known landslide susceptibility 

locations of the area) (Kirschbaum et al., 2012). 

  Reviews on roles of remote sensing on landslide analysis are provided 

in, e.g. Zhang, Gong, Zhao and Zhang (2005); Metternicht, Hurni and Goru (2005); 

Joyce, Bellis, Samsonov, McNeill and Glassey (2009); Zhong, Li, Xiang, Su and Huang 

(2012); Tofani, Gegoni, Agostini, Catani and Casagli (2013). 

 2.9.3 Landslide activity in Thailand 

  Landslide is a recurrent and devastated incidence commonly 

encountered in Thailand especially within the mountainous regions in the northern and 

southern parts of the country (GERD, 2006; Soralump, 2010b). Generally, the 

predominant types of landslides over high areas with thick residual soil layer are mostly 

the debris avalanche and rotational slide but for areas having relatively shallow residual 

soil, the translational slide is prevalent (DMR, 2010). And as massive landslides 

evidenced in Thailand were induced mostly by the prolonged heavy rainfall in rainy 

season, this can result in rapid movement of soil cover downhill to the surrounded 

lowland area in forms of earth flow or debris flow. During this period, the landslide 

might transform itself into a destructive debris avalanche, with increasing velocity and 

volume. If the debris flows move down to a gully at the hill’s base, then the runout of 

their material could move over fairly long distance (up to several kilometers) 

(Revellino, Hungr, Guadagno and Evans, 2004). 

  According to DMR (2010, 2011), landslide activity in Thailand is 

controlled by four important factors: geology (lithology and lineament in particular), 

topography (slope, elevation, and aspect in particular), rainfall intensity (amount and 

duration) and environment (vegetation, land-use type/activity, and agricultural practice 
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in particular). For lithology, it was found that the most susceptible rock type to landslide 

occurrence (in average) is the Jurassic granite. This is followed by a group of the 

sedimentary rock (e.g. sandstone, mudstone, shale) while the least susceptible one is 

the Carboniferous-Permian granite (Soralump, 2007). For rainfall intensity, the general 

triggering rates (for warning purpose) were set to be 100 mm/day, or 300 mm/3-day. In 

conclusion, the most susceptible areas for landsliding were found to be steep slope in 

hilly regions with relatively thick and loose residual soil layer and without vegetation 

cover. 

  Due to the catastrophic nature of the recurrent massive landslide in 

Thailand especially for people who live in the vulnerable area, the preparation of a 

strategic plan for the prevention and mitigation of landslide risk and impacts has 

become a declared priority of the recent Thai governments (NESDB, 2011). Some of 

the notable activities are the derivation and implementation of the landslide 

susceptibility maps nationwide, especially for the mountain-dominated provinces in the 

northern and the southern parts of the country DMR (2010, 2011), and the application 

of an effective landslide warning system to numerous areas with high landslide 

potential (DWR, 2013). These maps were synthesized qualitatively based on crucial 

knowledge of susceptible geologic structure, slope gradient, and vegetation cover in 

combination over an area from which the highly-concerned ones are those areas with 

comprising of the thick residual soil, lack of root cohesion, and steep slope (i.e. > 30o).  

In general, researches on landslide activity in Thailand were usually focused on the 

production of the susceptibility and hazard maps (with inclusion of the annual rainfall 

data). However, the applied methods are still considerably limited among which the 

most widely-used ones are the simple weighted linear combination (WLC), e.g. in 
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Tanavud et al. (2000); Soralump (2007); Soralump, Pungsuwan, Chantasorn, Inmala 

and Alambepola (2010), the systematic factor overlay method, e.g. in Akkrawintawong, 

Chotikasathien, Daorerk and Charusiri (2008); DMR (2011); and the slope stability 

analysis (or the deterministic approach), e.g. in Mairiang and Thaiyuenwong (2010); 

Soralump et al. (2010); Tanang, Sarapirome and Plaiklang (2010), Ono, Kazama, and  

Ekkawatpanit (2014). Some other methods previously reported are the frequency ratio 

(FR), logistic regression, and the analytical hierarchy process (AHP) as illustrated in 

works of Oh et al. (2009); Intarawichian and Dasananda (2010, 2011), for examples. 

  Figure 2.26 presents two distributed susceptibility maps developed by 

DMR and GERD based at Kasetsart University (KU). The DMR map was originally 

derived based on presumed conditions of potential slope instability within the area 

derived from knowledge of four main causative components: lithology, topography, 

rainfall amount, and predominant LULC aspect, while the GERD map was built from 

the engineering principles of slope instability which expressed in terms of the “factor 

of safety” (FS), or the deterministic method, as explained in Section 2.3.  
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(a) DRM susceptibility map (b) GERD susceptibility map 

Figure 2.26 Classified landslide susceptibility maps prepared by the DMR and GERD 

using equal-interval classification technique. 

 

 The case study of March 2011 event 

 The most recent occurrence of deadly landslide incidence at Khao Phanom 

Bencha Watershed was taken place in late March 2011 due to the unseasonably heavy 

rainfall happening over a week earlier which led to several tragic deaths and expansive 

damage to the properties and infrastructures in the area. This unusual phenomenon was 

initiated by the powerful storm from an active low pressure cell over southern Thailand, 

bringing up to 1,200 mm of rain in just over a week over some places (Figure 2.27) and 

introducing widespread torrential floods, massive landslide, and powerful debris flow, 

within an area of the eight southern provinces of Thailand, including, Chumphon, Surat 
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Thani, Nakhon Si Thammarat, Songkhla, Patthalung, Narathiwat, Yala, Trang, Phang 

Nga, Krabi, and Satun.  

 

 

 

 

Source: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=49929 

Figure 2.27 TRMM map of accumulated rainfall data over southern Thailand during 

period of 23th-30th March 2011.  

 

 As a consequence, more than 20 people were reported dead and nearly a million 

people were in need of immediate help (reliefwep, 2014). In Krabi Province, especially 

in the vicinity of Khao Phanom Bencha mountain range, the large landslide patches and 

devastated outcome from strong floods and debris flows were obviously evidenced over 

the area from which several villages were partly destroyed and at least 10 people were 

reported dead. Therein, expansive deposition area of flow material were experienced 

with flow length of about 2.5‐3.0 km were encountered with maximum width of up to 

500 meters (as illustrated in Figures 1.2 and 1.3).  

 

 

 

 

 

 

 

 



 

CHAPTER III 

RESEARCH METHODOLOGY 

 

 The entire thesis work has been divided into 4 principal parts in accordance with 

the two objectives described in Chapter I involving the systematically construction and 

evaluation of the landslide inventory map, susceptibility map, hazard map and risk map 

consecutively as illustrated by the work flowchart shown in Figure 3.1. Comprehensive 

description of the work process can be summarized as follows. 

 

3.1 Data preparation 

 3.1.1 The necessary data were acquired from the responsible agencies and 

from other relevant resources (as detailed in Table 3.1) and then restructured to have a 

proper format for further use (in form of a GIS-based dataset). Ten notable contributing 

factors for landslide occurrence in tropical zone were included in the construction of 

the needed susceptibility map: elevation, slope gradient, slope aspect, slope curvature, 

topographic wetness index (TWI), distance from drainage, distance from lineament, 

lithology, soil texture, and land use/land cover (LULC) (Figures 3.2a-j). These factors 

can be separated into three broad categories: geological, topographical, and 

environmental groups. Here, elevation and all slope-related maps (Figures 3.2a-e) were 

created from digital elevation model (DEM) data of the area. This map was built using 
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triangular irregular network (TIN) system based on the 20-m interval contours extracted 

from the official 1:50,000-scale topographic map acquired from the RTSD. 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  LSZ  Landslide susceptibility zoning; LHZ   Landslide hazard zoning;  

 LRZ  Landslide risk zoning. 

Figure 3.1 Conclusive work flowchart. 
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Table 3.1 List of necessary data and their respective sources. 

Classification GIS 

Data Type 

Scale or 

Resolution 

Original 

sources 
Note 

Data category Details 

Past landslide data Field survey Point - GPS Fig.3.8 

THEOS Grid 2m x 2m GISTDA Fig.3.4a 

EO-1 Grid 10m x 10m NASA Fig.3.4b 

Google Earth Grid - Google 

Earth 

Fig.3.4c 

Bing Map Grid - Bing Map Fig.3.4d 

Land use / Land 

cover 

LULC-2009 Polygon 1:25,000 LDD Fig.3.2j 

Topography Elevation Point/Line 1:50,000 RTSD Fig.3.2a 

Slope gradient Fig.3.2b 

Slope aspect Fig.3.2c 

Slope curvature Fig.3.2d 

Landform TWI Fig.3.2e 

Stream Stream network Fig.3.2f 

Geology Lithology Polygon 1 : 250,000 DMR Fig.3.2h 

Lineament Line 1 : 250,000 DMR Fig.3.2g 

Soil Soil texture Polygon 1 : 100,000 LDD Fig.3.2i 

Triggering factor Rainfall Point - TMD, RID, 

DMR 

Fig.3.10 

Fig.3.11 

Socio-economics  Building 

Subsidy 

Point 

- 

- 

- 

Google 

Earth 

MOAC 

Fig.3.12a 

Fig.3.14 

Administrative 

data 

Administrative 

boundary 

Polygon 1:50,000 RTSD Fig.1.4 

Note: DMR  Department of Mineral Resources; GISTDA  Geo-informatics and Space Technology 

Development Agency; LDD  Land Development Department; MOAC  Ministry of Agriculture and 

Cooperatives; RID  Royal Irrigation Department; RTSD  Royal Thai Survey Department; TMD  Thai 

Meteorological Department.  
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Figure 3.2a Elevation map of the study area based on DEM data from topographic map 

of 1:50,000 scale.  
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Figure 3.2b Slope gradient map of the study area based on DEM data from topographic 

map of 1:50,000 scale. 
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Figure 3.2c Slope aspect map of the study area based on DEM data from topographic 

map of 1:50,000 scale. 
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Figure 3.2d Slope curvature map of the study area based on slope data of topographic 

map of 1:50,000 scale. 
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Figure 3.2e Topographic wetness index (TWI) map of the study area based on the slope 

and water accumulation data from the topographic map of 1:50,000 scale.  
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Figure 3.2f Distance-from-drainage map of the study area based on DEM data from 

the topographic map of 1:50,000 scale. 
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Figure 3.2g Distance from lineament map of the study area (at 1:250,000 scale). 
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Figure 3.2h Lithology map of the study area at 1:250,000 scale. Detailed explanation 

of each listed lithological type is given in Table 3.2. 
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Figure 3.2i Soil texture map of the study area modified from LDD soil data at 

1:100,000 scale.  

 

 

 

 

 

 

 

 



115 

 

 

Figure 3.2j LULC map of the study area in 2009 modified from the original LDD data 

at 1:25,000 scale. 
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   All maps displayed in Figure 3.2 were prepared mainly through the 

appropriate functions of the ArcGIS software in which slope gradient was determined 

from steepest downhill slope for a location on surface calculated for each triangle unit 

in TIN  and for each referred rater cell. For TIN, this is the maximum rate of change in 

elevation across each triangle unit. For raster cell, this is the maximum rate of change 

in elevation found towards its eight surrounding neighbors. Typically, slope gradient 

can be presented in degrees from horizontal (0-90), or in percent slope [defined by ratio 

of the terrain rise (or vertical distance) to the run (or horizontal distance), multiplied by 

100]. In this case, a slope of 45 degrees equals 100 percent slope (vertical distance = 

horizontal distance). Lower slope gradient means flatter terrain; the higher one indicates 

steeper terrain. 

   Slope aspect was referred to the steepest downslope direction for each 

rater cell towards its neighbor cells (one with maximum rate of change in slope value). 

The aspect output was defined based on the known closest compass direction measured 

clockwise in degrees, which are, 0 (north), 45 (northeast), 90 (east), 135 (southeast), 

180 ( south), 225 (southwest), 270 (west), 315 (northwest), and 360 (north). However, 

for flat areas with no exact downslope direction, they are usually given a specific aspect 

value of -1. Slope curvature was defined from the 2nd derivative of a surface, or the rate 

of change of slope values over a unit area of interest. It represents the combination of 

two main types of the curvature: the profile curvature (along the direction of the 

maximum slope), and the plan curvature (along direction perpendicular to direction of 

maximum slope). The curvature values describe terrain morphology in three forms: 

convex, concave, flat. The positive value indicates the surface is upwardly convex at 
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that cell while a negative one indicates an upwardly concave, and 0 indicates flat surface 

(Figures 2.5-2.6). 

  Topographic Wetness Index (TWI) for a raster cell was calculated from 

Eq. (2.5). It is normally used to define influence of the water accumulation on ground 

stability at a specific location. Higher TWI values indicate greater amount of existing 

water content (and pore water pressure) in slope material from which soil strength and 

soil stability shall be diminished which potentially support the occurrence of landslide 

over the area. Drainage lines were extracted from the topographical sheet used for DEM 

generation. The ordering of the drainage has been performed on the basis of Strahler's 

classification scheme Drainages up to 5th order have been observed in the study area 

and buffered at 50-meter interval while distance from lineament was buffered at 500-

meter interval.  

  The lithology map was made from original data prepared by the 

Department of Mineral Resources (DMR) for Krabi Province. Eventually, seven 

principal lithological types were identified and shown on the output map (Figure 3.2h): 

Igneous rocks, Kaeng Krachan, Krabi, Ratburi, Saibon Formation, Quaternary 

Sediments, Thung Yai (more information is given in Table 3.2).  

  The soil textural classes from lower soil classification category is not 

bring to use but the soil-texture identification process began with the quantification of 

soil plasticity and depth from the LDD soil series based on the relevant in each soil 

description profile data provided in the LDD Soil Information Reference and in 

website: http://www.mcc.cmu.ac.th/dinthai/layers.asp. Knowledge of plasticity 

property and soil profile led to the estimation of sand, silt, clay combination and soil 

texture, eventually (as described in the USDA’s soil texture pyramid below).  
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Source: http://www.todayshomeowner.com/diy-soil-texture-test-for-your-yard/ 

Figure 3.2k Soil texture pyramid chart. 

 

  The soil texture map (Figure 3.2i) was prepared from the LDD’s 

1:100,000 scale soil data map of the from which 11 types of soil texture were found: 

Clay, Clay loam, Loam, Loamy sand, Sand, Sandy loam, Sandy clay loam, Silty clay, 

Silty clay loam, Silty loam, and Slope complex area (i.e., one with slope gradient > 

35%). 

  The LULC map was derived based on the original 1:25,000 LULC map 

in 2009 of the province prepared by the LDD (before the referred landslide incidence 

in March 2011 taking place). Five LULC classes were identified and mapped as an 

output: dense evergreen forest, disturbed evergreen forest, oil palm, para rubber, and 

miscellaneous (paddy field, water body, and built-up area).  

 3.1.2 The mapped data were converted to have a raster-grid format with pixel 

size of 30m × 30m for further use in the landslide susceptibility evaluating process 

based on several chosen susceptibility mapping methods of interest.    
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  According to data reported in Table 3.3, predominant topography of the 

study area is flat terrain which occupies about 36.47% of the total area whereas about 

73.38% of land has slope gradient of < 10º. In addition, most areas situate at low land 

of altitude < 200 meters above mean sea level (about 83.64%) with only 5.34% of land 

that locates at altitude greater ≥ 400 meters, mostly in area of Khao Phanom Bencha 

mountain range (as illustrated in Figure 3.2a). About half of the total area (52.94%) is 

classified as being “Quaternary Sediments” lithological type and three types of soil 

textures; clay, sandy loam, slope complex, were commonly found over an area with 

proportion of 20.99%, 19.58%, and 28.11%, respectively. Major types of the identified 

LULC data in 2009 are oil palms (44.36%), para rubber (25.94%), and dense evergreen 

forest (23.83%). 

 

Table 3.2 Lithological description of Krabi Province (DMR). 

Formation/ 

Group 
Symbol Explanation Period 

Age 

(my.) 

  Sediment, Sedimentary and metamorphic rocks   

- Qa Alluvial and flood plain deposits: sand, silt, gravel and 

clay 

Quaternary 0.01 -

1.6 

- Qb Beach deposits: loose sand, fine-grained, well sorted, 

abundant plant remains and shell fragments 

- Qmc Mangrove clay deposits; Peaty clay, silt clay, grey or 

greenish-grey, cover with mangrove 

- Qt Terrace deposits: coarse sand and fine gravel intercalated 

with clay, silt and fine sand 

- Qc Colluvial deposits: silt, sand, clay, laterite and rock 

fragment 

Krabi Gp. Tkb Mudstone, peaty mudstone, thin-bedded, calcareous; 

fossilliferous mudstone; marlstone; lignite; and semi-

consolidated sandstone 

Paleocene 1.6 -

66.4 

Phum Phin 

Fm., Thung 

Yai Gp. 

Kp Sandstone, brick-red, fine to medium grained, arkosic 

and micaceous, medium bedded, through cross bedding 

and intercalation 

Cretaceous 66.4 -

140 

Sam Chom 

Fm., Thung 

Yai Gp. 

Ksc Conglomerate and sandstone, coarse grained, thick 

bedded, cross dedding, mudstone, reddish-brown, plant 

remains 

Lam Thap 

Fm., Thung 

Yai Gp. 

Klt Sandstone, light brown, reddish-brown, fine/medium-

grained, arkosic, thin to medium bedded, cross bedding, 

mudstone, reddish-brown 
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Table 3.2 (Continued). 

Formation/ 

Group 

Symbol Explanation Period Age 

(my.) 

Khlong Min 

Fm., Thung 

Yai Gp. 

Jkm Sandstone, siltstone, shale, and  limestone, greenish gray, 

pale green, reddish purple to dark gray, thin to medium 

bedded, ripple mark, burrows, fossils of bivalve, 

Pavamusium 

Jurassic 140 -

210 

Saibon 

Formation 

Fm. 

TRsb Siltstone, brick-red, thin bedded, dolomitic limestone 

lenses, with fossil of pelecypods and plants remains; 

sandstone, light brown, fine-to- medium grained, 

quartzitic, thin to medium bedded 

Triassic 210 -

245 

Um Luk Fm., 

Ratburi Gp. 

Pul Limestone, dolomitic limestone, gray and dark grey, 

massive, with chert lenses 

Permian 245 -

286 

Phap pha Fm,, 

Ratburi Gp. 

Ppp Limestone, dolomitic limestone, gray and dark gray, thin 

to medium bedded with fossils of bryozoas, fusulinids, 

corals and crinoids, partly chert lenses intercarate 

  

Ratburi Gp. P Shale, gray; sandstone, yellowish-brown and limestone. 

Gray lense or bedded; with fossils of fusulinids, 

brachiopods and corals and plant remains 

Permian  

to Carboni-

ferous 

245 -

360 

Khao Chao 

Fm., Kaeng 

Krachan Gp. 

CPkc Arkosic sandstone, white to light gray, good sorted,  

medium-grained, thin bedded, with Posidnomya sp.   

Khao Phra 

Fm., Kaeng 

Krachan Gp. 

CPkp Sandstone, siltstone, greenish gray, massive to laminated 

bedded, bioturbated, silt to fine-sized, angular to 

subrounded, poor to moderate sorting; mudstone, 

greenish-gray, thin bedded to massive, imestone lenses, 

fossil of bryozoa 

  

Ko He Fm., 

Kaeng  

Krachan Gp. 

CPkh Pebbly sandstone, pebbly mudstone, greenish gray to 

gray, with clasts of  quartz, sandstone, siltstone, granite, 

shale, schist and limestone, subangular to round, matrixes 

of clay mineral, chlorite, sericite, feldspar, biotite, quartz, 

calcite and iron oxide 

  

Laem Mai 

Phai Fm.,  

Kaeng 

Krachan Gp. 

CPlp Mudstone, dense, black, thin bedded, well bedded, with 

silt lamination, intercalated with lithic sandstone; 

quartzitic sandstone, siltstone and pebbly mudstone, 

black, reddish brown and gray, thin bedded to massive 

  

Kaeng 

Krachan Gp. 

CPk Shale, light brown, thin-bedded; sandstone, arkosic, light 

brown, fine to coarse grained, thick-bedded; siltstone and 

chert with bryozoas, foraminiferous, crinoid and 

gastropods, limestone  

were found in the upper part 

  

  Igneous rocks   

- gy Geyserite, milky white, cryptocrystalline quartz and 

feldspar, brecciated 

Quaternary 0.01-

1.6 

- sy Syenite, dark gray, porphyritic, mainly feldspar, quartz 

and hornblende, crystalline feldspars, maximum 2 cm., 

with shallow extrusive rock 

Tertiary 
1.6 -

66.4 

- kgr Khao Phanom granite: granite, porphyry, consisting of 

quart, feldspar, and biotite, feldspar phenocryst, 

subhedral, 2-5 cm, some foliation 

Cretaceous 
66.4 -

140 
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Table 3.3 Proportion of land for each type of the input factor. 

Factors Class 
Area 

Factors Class 
Area 

m2 % m2 % 

Elevation < 200 m 

200 m - 400 m 

400 m - 600 m 

600 m - 800 m 

800 m - 1,000 m 

> 1,000 m 

825,963.3 

108,863.1 

33,528.6 

11,840.4 

4,388.4 

2,946.6 

83.64 

11.02 

3.40 

1.20 

0.44 

0.30 

Slope 

gradient 

0º - 10º 

10º - 20º 

20º - 30º 

30º - 40º 

40º - 50º 

> 50º 

724,701.6 

121,362.3 

91,974.6 

36,180.0 

10,846.8 

2,465.1 

73.38 

12.29 

9.31 

3.67 

1.10 

0.25 
        

Slope 

aspect 

Flat 

North 

Northeast 

East 

Southeast 

South 

Southwest 

West 

Northwest 

360,195.3 

59,090.4 

78,685.2 

92,162.7 

94,161.6 

65,843.1 

78,502.5 

86,49.9 

71,939.7 

36.47 

5.98 

7.97 

9.33 

9.54 

6.67 

7.94 

8.81 

7.29 

Slope 

curvature 

Concave (-) 

Flat (0) 

Convex (+) 

646,574.4 

0.0 

340,956.0 

65.47 

0.00 

34.53 

        

Topographic 

wetness 

index 

(TWI) 

0 - 2.5 

2.5 - 5.0 

5.0 - 7.5 

7.5 - 10.0 

10.0 - 12.5 

> 12.5 

6.3 

86,101.2 

288,927.9 

184,322.7 

146,898.0 

281,274.3 

0.00 

8.72 

29.26 

18.66 

14.88 

28.48 

Drainage 

(Distance 

from 

drainage) 

< 50 m 

50 m - 100 m 

100 m - 150 m 

150 m - 200 m 

200 m - 250 m 

> 250 m 

380,292.3 

309,343.5 

203,735.7 

69,272.1 

21,922.2 

2,964.6 

38.51 

31.33 

20.63 

7.01 

2.22 

0.30 
        

Lineament 

(Distance 

from 

lineament) 

< 500 m 

500 m - 1000 m 

1000 m - 1500 m 

1500 m - 2000 m 

2000 m - 2500 m 

2500 m - 3000 m 

> 3000 m 

246,398.4 

186,186.6 

113,625.9 

83,300.4 

67,513.5 

46,690.2 

243,815.4 

24.95 

18.85 

11.51 

8.43 

6.84 

4.73 

24.69 

Lithology Thung Yai 

Ratburi 

Quaternay 

Sediments 

Kaeng 

Krachan 

Igneous rocks 

Krabi 

Saibon 

Formation 
 

136,994.4 

70,267.5 

522,804.6 

 

168,712.2 

57,576.6 

2,121.3 

29,053.8 

13.87 

7.12 

52.94 

 

17.08 

5.83 

0.22 

2.94 

 

Soil texture Clay 

Silty clay 

Loamy sand 

Sandy loam 

Silty clay loam 

Sand 

Sandy clay loam 

Clay loam 

Silty loam 

Loam 

Slope complex 

207,291.6 

64,061.1 

27,146.7 

193,401.0 

40,239.9 

17,924.4 

113,548.5 

23,261.4 

15,800.4 

7,281.0 

277,574.4 

20.99 

6.49 

2.75 

19.58 

4.07 

1.82 

11.50 

2.36 

1.60 

0.74 

28.11 

LULC Para rubber 

Oil palm 

Dense 

evergreen 

forest 

Disturbed 

evergreen 

forest 

Miscellaneous 

256,185.9 

438,069.6 

235,363.5 

 

640.8 

 

57,270.6 

25.94 

44.36 

23.83 

 

0.07 

 

5.80 

Note: Total amount of the study area is 987.53 km2. 
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3.2 Construction of landslide inventory map  

 3.2.1 The landslide inventory map was made based on accumulated data of 

past landslide occurrences within the area, mainly from the devastated incidences 

reported in March 2011 (see Figure 3.3 for a work flowchart). These data were visually 

extracted from distinctive landslide scars found in the high-resolution satellite imagery 

like those of the THEOS (or Thaichote) satellite recorded on 15th April 2011 (at spatial 

resolution of 2.0 meters) or NASA’s EO-1 satellite taken on 4th April 2011 (at spatial 

resolution of 10 meters). Also, the distributed satellite imagery recorded over the area 

around that time (with landslide traces evidenced) from the Google Earth and Bing Map 

websites were also incorporated in the analysis. Figure 3.4 demonstrates compared 

examples of several distinctive landslide scares on the used satellite imagery assembled 

from those four aforementioned sources. Only cloud-free satellite images were used for 

this task. 

 

 

 

 

 

 

 

 

 
 

Figure 3.3 Work flowchart of the landslide inventory mapping process. 
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  The identification of potential landslide trace on the applied satellite 

images was achieved principally through rigorous examination of the distinct terrain 

properties like contrast, adjacency feature, shape, and the morphological expression 

that might signify the existing landslide trace. The contrast means the difference in 

spectral characteristics between the landslides and the surrounding areas. Normally, 

fresh landslide is usually well recognized based on its sharp outer edge and bright 

appearance (compared to its background environment) due critically to explicit 

exposure of its soil or rock content. Older slope failures may have degraded features 

such as rounded head scarps and worn edges along with evidences of ongoing 

weathering and erosional processes (Figure 3.5). The landslide axis is normally parallel 

to general flow direction. Type of the movement was assigned using shape criteria, such 

as length/width ratio and asymmetry. Upstream landslide can be transformed into debris 

flow that is often resulted in large runout over flat downstream area (Figure 1.3). In 

addition, landslide traces can also be located by their distinctive fan shape or sharp lines 

of break in topography, and sometimes a local drainage anomaly. For morphological 

features, appearance such as clear breaks on steep scarps, disrupted/disordered forest 

cover and bare soil can be used to identify landslide.  

 3.2.2 The located landslide evidences over the area gained from all four 

sources of high-resolution satellite imagery mentioned earlier (THEOS, EO-1, Google 

Earth, and Bing Map) were eventually merged to formulate an integrated landslide 

inventory map of the area which contains information of all notes landslide locations 

(uppermost part of each individual landslide scare) along with their approximated 

extent boundary (like in Figure 3.6). The underlined assumption was that each 

individual landslide scare was originated from large land subsidence at the uppermost 
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part and descended as flow downward by gravity towards, or along, the adjacent 

drainage routes. This inventory map (in raster format) was built to accommodate 

evaluation of landslide susceptibility zone afterwards. 

 

  

(a) THEOS (b) EO-1 

  

(c) Google Earth (d) Bing Map 

Figure 3.4 Examples of the high-resolution satellite images from four different sources; 

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website, 

showing landslide traces within the study area (from the incidence in late March 2011). 
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(a) THEOS (b) EO-1 

  

(c) Google Earth (d) Bing Map 

Figure 3.4 Examples of the high-resolution satellite images from four different sources; 

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website, 

showing landslide traces within the study area (from the incidence in late March 2011) 

(Continued). 

  

 

 

 

 

 

 

 

 



126 

 

  

(a) THEOS (b) EO-1 

  

(c) Google Earth (d) Bing Map 

Figure 3.4 Examples of the high-resolution satellite images from four different sources; 

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website, 

showing landslide traces within the study area (from the incidence in late March 2011) 

(Continued). 
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(a) Fresh landslide  

  

(b) Old landslide  

Figure 3.5 Different characteristics between fresh and old landslide scars as shown on 

the THEOS satellite imagery. 
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Figure 3.6 Examples of the evidenced landslide inventory map of the area. 
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 Finally, a total of 700 landslide incidences (location and extent) were identified 

and mapped. Most of them were found concentrated in Khao Phanom Bencha mountain 

range, especially in the middle portion close to the summit (as depicted in Figure 3.7) 

due to the highly susceptible land characteristics for slope failures of the area. Records 

of this landslide inventory data were then split into 70% (or 490 locations) for modeling 

of the desired susceptibility maps and 30% (or 210 locations) for the validation of those 

derived maps. This 70:30 proportion was recommended in Huberty (1994).  

 Note that, field surveys of landslide prone area  in the vicinity of Khao Phanom 

Bencha mountain network were also managed but exact positions of the seen landslide 

scars were difficult to justify then due to their frequently inaccessible locations (situated 

mostly at high elevation and on the steep terrain) (Figure 3.8). Also, mapped locations 

of landslide incidences in the area compiled by the Department of Disaster Prevention 

and Mitigation (DDPR) and the Department of Mineral Resources (DMR) were 

considered but were not directly put in use due to the still uncertainty in their validity. 
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Figure 3.7 Location map of the 700 identified landslide spots within the study area. 
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Figure 3.8 Examples of photos taken during the field survey of the study area in which 

evidences of landslide occurrences over the mountain’s terrain are clearly visible.  
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Figure 3.9 Work flowchart for the construction and verification of the susceptibility maps 

to find an optimal method for further application in subsequent work. 
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3.3 Construction and verification of the landslide susceptibility 

maps 

 This part consists of two principal tasks. The first one is to formulate the 

landslide susceptibility maps for the area using several chosen methods (both of the 

qualitative and quantitative types). The second task is to assess for accuracy of resulted 

maps gained from each applied method and determine the optimal one for further use 

in the subsequent work (hazard and risk mapping). Flowchart of main work in this part 

is shown in Figure 3.9. 

 All output susceptibility maps were established based on knowledge of the 

normalized susceptibility score (NSS), ranging from 0 to 1, in which five main classes 

(for five different susceptibility zones) were established. These include (1) very low 

susceptibility (VLS) for NSS = 0.0-0.2, (2) low susceptibility (LS) for NSS = 0.2-0.4, 

(3) moderate susceptibility (MS) for NSS = 0.4-0.6, (4) high susceptibility (HS) for 

NSS = 0.6-0.8, and (5) very high susceptibility (HS) for NSS = 0.8-1.0. Note that, the 

equal-interval classification technique (of NSI data) was applied as a standard for the 

making of all output maps regardless of the method involved. NSS data for each 

corresponding pixel on the map was quantified based on its original landslide 

susceptibility score (LSS), or probability, obtained for each pixel by each preferred 

method. The analysis process carried out in this part was mostly achieved through the 

use of the ArcGIS and Weka softwares (Hall et al., 2009).  

 3.3.1 Necessary input data for each preferred susceptibility mapping method 

were prepared in form of the appropriate GIS dataset in raster format as described 

earlier. These stated methods can be separated into 2 groups, which are,  

  (1) the qualitative type, including, 
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    (1.1) Conventional weighted linear combination (WLC), 

   (1.2) Analytical hierarchy process (AHP), 

  (2) the quantitative type, including,  

   (2.1) Frequency ratio (FR) model, 

   (2.2) Integrated FR-fuzzy model, 

   (2.3) Multiple logistic regression (MLR), 

   (2.4) Artificial neural network (ANN),  

   (2.5) Integrated ANN-fuzzy model. 

 3.3.2 Suitable factor and class (or attribute) weights for the two qualitative 

methods, WLC and AHP, were determined from the independent judgment of 8 experts 

in this field collected through the reply of distributed questionnaires for each stated 

method (as detailed in Appendices B-D). Net contributing weight [= factor weight (FW) 

x class weight (CW)], or NCW, for each attribute of a considered factor was then 

assessed (for each method) and used as a basis for the generation of landslide 

susceptibility score (LSS) and the normalized susceptibility score (NSS) for a specific 

pixel as follows (for 10 contributing factors): 
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where LSSi is the LSS value for pixel ith on the map, LSSmax and LSSmin are the maximum 

and minimum values of LSS found on the map, respectively.  

 3.3.3 For the frequency ratio (FR) method, the corresponding FR values (for 

each attribute of each identified factor) were computed (through Eq. (2.14)) and used 

to determine the landslide susceptibility score (LSS) for each pixel on the final map 

(through Eq. (2.15)). The LSS dataset was then changed to be the equivalent NSS 

dataset for classifying purpose using similar conversion formula illustrated in Eq. 

(3.1b).  

 3.3.4 An attribute of a specific contributing factor shall be considered as being 

a member of the landslide producer set with a certain fuzzy-membership value. These 

values can be assessed by some data-driven methods, such as the frequency ratio (FR) 

model (e.g. Lee, 2007; Regmi et al., 2010; Aksoy and Ercanoglu, 2012) or the cosine 

amplitude method (e.g. Ercanoglu and Gokceoglu, 2004; Kanungo et al., 2006; 

Ercanoglu and Temiz, 2011), or by the expert-based judgments through the application 

of the defined if-then rules (e.g. Saboya, Alves and Pinto, 2006; Pourghasemi et al., 

2012). Here, the fuzzy-membership values were found based on the FR method instead 

of the traditional expert-based if-then rules as it is more convenient and might be more 

suitable in this case as most reference landslides were originated from unusually heavy 

rainfall over an area which is not often experienced by the experts in the field, therefore, 

the evidence-based like FR might be more effective in evaluating the incidence.  

  The FR dataset obtained in the earlier analysis (in Step 3.3.3) were then 

used as proxy for the determination of the membership value through the linearly 

transformation function expressed below (for the use in the FR-Fuzzy mapping model):  
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  ))Min(MV(C))Min(MV(C))Max(MV(C
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ij 



 , (3.2) 

 

where MV(Cij) is the fuzzy membership value, Max(MV(Cij)) and Min(MV(Cij)) are the 

upper and lower normalization bounds, respectively. 

  This transformation shall result in membership values in the range of 

0.1-0.9 similar to methodology used in Bui et al. (2012). Susceptibility maps in this 

case were synthesized through the utilization of five main fuzzy operators detailed in 

Section 2.6.6: OR, AND, algebraic sum, algebraic product, and gamma with varying 

values of λ function (0-1). The corresponding NSS dataset was gained through 

conversion of output from each operation (pixel-based) using the formula likes that of 

Eq. (3.1b). Final map with the highest obtained accuracy was then used as a 

representative of the output resulted from this method. 

 3.3.5 For the MLR method, input data to the model were separated into 2 

groups: (1) the continuous data (e.g., slope, elevation, or proximity), which were 

normalized to have new values in the range of [0, 1], and (2) the categorical data (e.g., 

land use or soil type), which were administrated in basic binary format (i.e., presence = 

1/absence = 0) for each respected attribute of the referred factor (like input landslide 

incidence data). All 490 locations of the known landslide incidences were used as 

training samples along with another 490 locations of the landslide-free pixels found by 

random sampling. After initial processing, proper relationship of the Logit function L, 

as expressed in Eq. (2.17), for all input factors was established along with knowledge 

of probability (p) of landslide occurrence for a pixel (through Eq. (2.18)). This 
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parameter “p” was then used as a proxy of the NSS for the preparation of the 

susceptibility map afterwards.   

 3.3.6 For the ANN mapping method, the input data were prepared like those 

done for the MLR method explained earlier (30 layers in total of independent data and 

1 layer of the dependent data). These data were then systematically processed to gain 

the appropriate weights (or coefficient) for each included input layer. These weights 

were then integrated and applied in the form of their equivalent absolute values. These 

obtained weights were then normalized (using formula similar to that described in Eq. 

(3.2)) to aid the determination of the LSS value for each pixel on the map through this 

linear combination format: 

 

  
nn xw...xwx wLSS  2211
. (3.3) 

 

  The coefficients w0, w1, ... wn (n = 1-30) are the normalized weights 

(NW) of each used factor (for the numerical type) or attribute (for categorical type) 

while x1, x2, ..., xn are their associated input values, respectively (real data for the 

numerical type and binary-format data for the categorical type). The equivalent NSS 

dataset was finally generated through the use of the following formula: 
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where LSSi is the LSS value for pixel ith on the map. 
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 3.3.7 For the ANN-fuzzy method, the normalize weights obtained for each 

layer of input data in the ANN method were applied, along with the known membership 

value for each attribute (or each layer of input data) from the FR-fuzzy method, to 

determine the final net contributing weight (NCW) like that of the MLR or AHP 

methods [NCW = normalized weight (w) x membership value (MV)], similar to that 

reported in Kanungo et al. (2006). The susceptibility map could then be made 

straightforwardly through the yielded datasets of LSS and NSS (from NCW data) 

through the use of formulas detailed in Eq. (3.1a and b), respectively. The susceptibility 

maps in this case were prepared like those done for the FR-fuzzy method explained 

earlier. 

 3.3.8 All derived landslide susceptibility maps (from each preferred method) 

were then compared and evaluated about the similarity or differences in terms of 

featured general characteristics and contents. In this regard, the obtained landslide 

susceptibility maps built by the responsible government agencies, or the relevant 

research groups, for the study area were also taken into the consideration and 

discussion. 

 3.3.9 To validate for their credential, accuracy assessment of all susceptibility 

maps were carried out based on two popular methods: the Area-Under-Curve (AUC) 

method and the Receiver Operating Characteristic (ROC) method detailed in Chapter 

II. 

 3.3.10 An optimal method for landslide susceptibility mapping for the area was 

finally identified based primarily on the obtained accuracy of each generated map (from 

each method). However, as levels of the found accuracy for the top methods in average 

were rather comparable (i.e. < 3% in the difference), therefore, other criteria were added 
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to judge for the preferred choice of optimal method, which are, the ease in their similar 

application and the superiority in the interpretability of the output. 

 3.3.11 Two different datasets of rainfall amount (i.e., the long-term annual 

mean record during 1951-2012 period and the event-based record during 27-29 March 

2011) seen at 17 rainfall stations operated both in and nearby the provincial area (Figure 

3.10) were used to prepare rainfall maps for the area using kriging interpolation method 

(as shown in Figure 3.11). Noted that, rainfall map over an area might be established 

from the satellite data (like TRMM satellite) or from the radar observations during the 

chosen time period, however, due to their relatively coarse solutions (if compared to 

actual size of the study area), they were then not included in this analysis. The original 

rainfall data of interest were gained from Thai Meteorological Department (TMD), 

Royal Irrigation Department (RID) and the Department of Mineral Resources (DMR) 

(Table 3.4-3.6). These built rainfall maps were then used as an additional layer of input 

data for making a new susceptibility map by the optimal method identified earlier, 

followed by accuracy assessment process of the achieved maps regarding to this action 

to evaluate influence of the integrated rainfall data on the yielded susceptibility map for 

the area in terms of the average accuracy from all assessing methods in use.  
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Table 3.4 Statistics of rainfall at the nearby rainfall station (data for 1951-2012). 

ID Station name Province 
Annual average 

(millimeter) 

551006 Phrasaeng Surat thani 1,766.9 

551011 Phanom Surat thani 1,706.0 

552008 Thung Yai Nakhon si thammarat 1,544.2 

561001 Phang nga Phang nga 2,352.4 

561002 Thap Put Phang nga 2,126.5 

561006 Takua Thung Phang nga 2,886.9 

561008 Ko Yao Phang nga 2,174.6 

Source: The Thai Meteorological Department, Office of Water Management and Hydrology, Royal 

Irrigation Department. 

 

Table 3.5a List of rainfall stations in Krabi Province and their annual mean of rainfall. 

Rainfall station Annual mean : millimeter 

ID Station District Number 

of year 

Total 

rain 

Wet 

season 

Dry 

season 

15012 Krabi Mueang 48 1,807.3 1,171.5 635.8 

15022 Khlong Thom Khlong Thom 45 2,092.1 1,356.7 735.4 

15032 Ao Luek Ao Luek 33 2,184.1 1,439.2 744.9 

15042 Ko Lanta Ko Lanta 45 2,168.1 1,479.4 688.6 

15052 Todlongyangnaichong  Ao Luek 52 2,564.5 1,638.5 926.0 

15060 Pakasai Dam Mueang 33 1,830.7 1,189.1 641.6 

15070 Sai Kao Dam Khlong Thom 32 2,016.4 1,338.1 678.3 

15080 Nam Daeng Dam Khao Phanom 24 1,556.5 1,009.5 547.0 

15093 Ko Lanta Meteorology Ko Lanta 23 2,170.9 1,475.5 695.5 

15123 Krabi Meteorology Mueang 8 2,119.7 1,402.9 716.8 
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Table 3.5b Statistics of monthly mean rainfall of Krabi Province at the listed stations. 

Station 

ID 

Monthly mean rainfall : millimeter 

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 

15012 112.8 203.6 217.2 217.6 231.3 283.2 246.4 146.9 46.1 24.0 23.2 55.0 

15022 128.4 253.0 244.0 246.4 279.4 313.1 271.2 185.6 61.1 23.8 19.4 66.9 

15032 130.7 220.5 249.6 292.9 294.1 323.0 283.5 184.0 61.7 34.5 35.7 73.9 

15042 95.0 261.7 254.8 296.3 319.6 373.1 306.6 138.9 45.0 12.8 25.6 38.7 

15052 189.9 289.1 278.9 314.0 337.7 385.7 337.7 194.4 69.0 36.3 36.7 95.0 

15060 113.9 235.6 191.3 206.7 238.1 254.1 242.7 172.8 74.7 25.2 16.0 59.6 

15070 110.4 245.9 233.8 261.3 269.8 314.6 268.2 163.5 60.7 29.8 17.4 41.0 

15080 92.8 198.0 136.5 145.2 180.1 203.8 215.5 191.5 73.4 30.5 25.6 63.5 

15093 118.1 260.8 226.1 285.4 306.3 345.9 322.5 166.6 48.7 13.4 21.3 55.8 

15123 167.4 180.2 229.5 202.9 308.6 267.3 359.2 183.9 81.0 28.9 54.5 56.3 

Source: Office of Water Management and Hydrology, Royal Irrigation Department. 

 

Table 3.6 Statistics of rainfall during 2011 landslide event (during 27th-29th March). 

ID Station name Province 
Daily rainfall data for 27th-29th March 2011 

27th 28th 29th 3 days 

551202 Surat Thani Surat Thani 

 

6.00 148.20 241.50 395.7 

551301 Surat Thani Agromet 7.80 250.00 247.30 505.1 

551401 Phra Sang 2.80 61.40 0.00 64.2 

552201 Nakhon Sri Thammarat Nakhon 

Sri 

Thammarat 

 

6.8 249.4 91.4 347.6 

552401 Chawang 1.5 70.8 104.2 176.5 

27013 Ban Bangpu - 61.8 44.9 106.7 

27401 Ban Hua Na 0 234.5 148.7 383.2 

27551 Ban Wang Sai 13.3 128.7 146.2 288.2 

- Waag Aai Wow  2.8 43.6 55.8 102.2 

- Tha Lao Tha lone 1.2 49 100.8 151.0 

566001 Krabi Krabi 

 

20.6 130.8 161.4 312.8 

566002 Ko Lanta 6 45.6 12 63.6 

- Thub Prik - 60.0 200.0 260.0 

- Kao Phanom 21.0 131.0 161.0 313.0 

- Kao Khram - - 320.0 320.0 

567201 Trang Trang 1.9 121.1 108.4 231.4 

561004 Takua Pa Phang nga 33.1 74.2 105.2 212.5 

34052 Khukkhak Sub-district 33.1 74.2 105.2 212.5 

Source: Thai Meteorological Department; Department of Mineral Resources; Royal Irrigation 

Department (RID). 
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(a)  

(b)  

Figure 3.10 Location maps of the applied rainfall stations for (a) during 27th-29th March 

2011 and (b) long-term average for the period 1951-2012. 
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(a)   

(b)   

 

Figure 3.11 Representative rainfall maps of the area for (a) during 27th-29th March 2011 

and (b) long-term average for the period 1951-2012. 
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3.4 Construction of the hazard, vulnerability, and risk maps  

 3.4.1 The landslide hazard maps for the study area were produced by 

integrating annual rainfall probability (ARP) data for the critical rainfall values of 100 

mm/day and 300 mm/3-days (DMR, 2011) (Table 3.7a and Figure 3.12). These 

threshold values are specific for the study area but for the other areas different values 

might be more suitable.  

  These ARP data were extracted from known return-period data of those 

rainfall criteria for the area (given by the RID) (Table 3.7b), with the original landslide 

susceptibility score (LSS) data (not the normalized data, or NSS): 

 

  Hazard index (HI) = ARP x LSS. (3.4)  

 

  The hazard maps (for each rainfall criterion) were then established based 

on application of the equal-interval method on the known values of the HI on the map.  

 3.4.2 The concerned elements at risk within the identified hazard areas (in 

both cases), which are building and economic LULC components like paddy field, field 

crop (maize), horticulture (coffee, rambutan, durain, oil palm, coconut, mangosteen, 

mixed orchard, mixed perennial, and orange) and para rubber were mapped (Figure 

3.13). 

 3.4.3 The vulnerability map was then derived based on data of the normalized 

vulnerability score (NVS) defined for each group of the defined elements at risk based 

on their estimated economic values of loss per unit area by the responsible government 

agency (mainly for the compensation purpose).  
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 3.4.4 The landslide risk maps were then constructed through the combination 

of the hazard map (from each considered source) and the vulnerability map yielded 

earlier based on the following calculation of the risk index (pixel-based): 

 

  Risk index (RkI) = HI x NVS. (3.5) 

 

  The equal-interval technique was applied to classify risk data (RkI) 

existing on the map into five different zones: very high; high; moderate; low; and very 

low, respectively. 

 

Table 3.7a Statistics of annual rainfall probability at measuring stations in Krabi 

Province. 

ID 
Rainfall station Number 

of year 

Annual rainfall probability 

Station District 100 mm/day 300 mm/3-days 

15012 Krabi Mueang 54 0.33 0.003 

15022 Khlong Thom Khlong Thom 47 0.50 0.013 

15032 Ao Luek Ao Luek 35 0.33 0.100 

15042 Ko Lanta Ko Lanta 49 0.50 0.100 

15052 Tod  Long Yang Ao Luek 52 0.50 0.020 

15060 Pakasai Dam Mueang 33 0.33 0.003 

15070 Sai khao Dam Khlong Thom 33 0.33 0.013 

15080 Nam Dang Dam Khao Phanom 26 0.20 0.002 

15093 Ko Lanta Meteorology Ko Lanta 23 0.50 0.013 

15123 Krabi Meteorology Mueang 8 0.50 0.100 

Source: Office of Water Management and Hydrology, Royal Irrigation Department. 
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Table 3.7b Statistics of return period for maximum rainfall at measuring stations in Krabi Province. 

Rainfall station Number 
of year 

Max.rainfall 
day 

Return period (year) for rainfall in millimeter /year 

ID Station District 2 3 5 10 25 50 75 100 200 300 500 750 1000 

15012 Krabi Mueang 54 
1 94.2 107.9 123.2 142.4 153.2 166.6 184.6 195.0 202.4 225.9 243.7 254.1 261.4 

2 118.2 133.0 149.4 170.1 181.7 196.2 215.6 226.8 234.8 260.1 279.3 290.4 298.4 
3 140.3 157.3 176.2 200.0 213.4 230.0 252.2 265.2 274.3 303.4 325.4 338.3 347.4 

15022 Khlong Thom Khlong Thom 47 

1 100.8 115.3 131.5 151.8 163.3 177.5 196.6 207.7 215.5 240.4 259.2 270.2 278.0 

2 139.7 160.6 183.9 213.1 229.6 250.1 277.5 293.4 304.7 340.6 367.6 383.4 394.6 
3 168.5 193.3 220.9 255.6 275.2 299.4 332.0 350.9 364.2 406.7 438.8 457.6 470.9 

15032 Ao Luek Ao Luek 35 

1 98.2 113.6 130.9 152.5 164.7 179.9 200.2 211.9 220.3 246.8 266.8 278.5 286.8 

2 139.5 166.7 196.9 234.9 256.4 283.0 318.6 339.4 354.0 400.6 435.8 456.3 470.9 
3 171.0 214.1 262.1 322.4 356.5 398.7 455.2 488.1 511.4 585.3 641.1 673.7 696.9 

15042 Ko Lanta Ko Lanta 49 

1 114.8 134.5 156.5 184.1 199.7 219.1 245.0 260.0 270.7 304.6 330.1 345.1 355.7 

2 157.0 187.2 220.9 263.2 287.1 316.7 356.4 379.4 395.8 447.6 486.8 509.6 525.9 
3 185.5 220.3 259.0 307.6 335.0 369.1 414.6 441.1 459.9 519.5 564.5 590.8 609.4 

15052 Tod  Long Yang Ao Luek 52 

1 102.9 119.9 138.8 162.6 176.1 192.7 215.0 228.0 237.2 266.4 288.4 301.3 310.4 

2 148.0 169.5 193.5 223.5 240.5 261.5 289.7 306.1 317.7 354.5 382.3 398.6 410.1 
3 182.6 209.3 238.9 276.2 297.2 323.3 358.2 378.5 392.9 438.6 473.0 493.2 507.5 

15060 
Pakasai Dam 

 
Mueang 33 

1 90.3 104.2 119.7 139.1 150.1 163.7 181.9 192.5 200.0 223.8 241.8 252.3 259.8 

2 118.9 134.9 152.7 175.1 187.7 203.3 224.3 236.5 245.1 272.5 293.2 305.3 313.9 
3 142.4 159.4 178.4 202.3 215.8 232.5 254.9 268.0 277.2 306.5 328.6 341.5 350.6 

15070 Sai khao Dam Khlong Thom 33 

1 97.4 114.7 134.0 158.1 171.8 188.7 211.3 224.5 233.8 263.5 285.8 298.9 308.2 

2 139.3 160.1 183.2 212.2 228.6 248.9 276.2 292.0 303.2 338.8 365.6 381.3 392.5 
3 160.4 182.1 206.2 236.5 253.7 274.9 303.3 319.8 331.5 368.6 396.7 413.1 424.7 

15080 Nam Dang Dam Khao Phanom 26 

1 80.4 89.7 100.0 112.9 120.2 129.3 141.4 148.4 153.4 169.3 181.2 188.2 193.2 

2 106.5 122.4 140.2 162.5 175.0 190.6 211.5 223.7 232.3 259.6 280.2 292.3 300.8 
3 128.7 146.3 166.0 190.8 204.8 222.1 245.3 258.8 268.3 298.7 321.6 334.9 344.4 

15093 Ko Lanta Meteorology Ko Lanta 23 

1 118.5 134.3 151.9 174.1 186.6 202.0 222.8 234.9 243.4 270.5 291.0 303.0 311.5 

2 147.9 168.8 192.1 221.4 237.9 258.4 285.8 301.7 313.0 348.9 375.9 391.8 403.0 
3 173.5 196.0 221.1 252.6 270.4 292.5 322.0 339.2 351.4 390.0 419.2 436.2 448.3 

15123 Krabi Meteorology Mueang 8 

1 101.8 119.2 138.6 163.0 176.7 193.7 216.6 229.8 239.2 269.1 291.6 304.8 314.1 

2 143.0 171.1 202.3 241.6 263.7 291.1 327.9 349.3 364.5 412.6 448.9 470.1 485.2 
3 177.0 222.8 273.8 337.8 374.0 418.8 478.8 513.7 538.4 616.9 676.2 710.8 735.4 

Source: Office of Water Management and Hydrology, Royal Irrigation Department.
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(a)   

(b)   

Figure 3.12 Annual rainfall probability maps: (a) 100 mm/day and (b) 300 mm/3-days. 
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 (a)  

(b)  

Figure 3.13 Element at risk maps for (a) building (houses) and (b) LULC. 
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3.5 Construction of the runout map 

 The additional susceptibility map originating from the subsequent runout caused 

by the occurrence of massive landslides upstream was also formulated from knowledge 

of the runout susceptibility (RS) of debris flow integrated in the Flow-R model (as 

detailed in Chapter II). All input data were in the ASCII format and landslide scare data 

were recorded in binary format as 0 (no scare) and 1 (scare).  The mapping process 

comprised of three main distinct steps (as outlined in the framework shown in Figure 

3.14): 

 (1) The directions of flow were identified on the basic of DEM and user-defined 

datasets while the propagation of their masses (as debris flow) over the topography was 

determined using a probabilistic and energy approach, respectively.  

 (2) Spreading area of the flow was determined based on probabilistic spreading 

(by means of the flow direction algorithms), and also on a basic energy balance which 

defines maximal runout distance.  

 (3) The yielded runout prediction map was compared to the satellite-based one 

for identifying the distinctive similarities or differences.  

 To calibrate the maximum probable debris flow runout, the March 2011 event 

that affected Phanom Bencha Mountain was used as a reference. THEOS satellite 

imagery in late March 2011 were used to calibrate the possible maximum runout using 

the edge of alluvial fans where previous debris flows were observed and historical 

events from DMR in form of GIS shape file. In this research, main input data included 

DEM, slope gradient, flow accumulation, and the landslide scare data. The propagation 

assessment comprises of two crucial parts: spreading algorithm and energy analysis. In 

 

 

 

 

 

 

 

 



150 

1
5
0
 

 

 

the first part, models involved are direction algorithm modified from Holmgren (1999) 

and inertial algorithm with weight of the persistence function in the assessment of flow 

spreading defined from Gamma (2000) type. In the second part, the simplified friction-

limited model was used for the determination of runout distance based on the maximum 

possible runout distance charecterized by a minimum travel angle, also called angle of 

reach. In case of energy limitation, maximum limit of the potential energy was defined 

to ensure the realistic outcome of the flow velocity (see Figure 3.15 for an example of 

the model’s main user interface). 

 Propagation parameters were taken from the literature in case of well supported 

by both physical and empirical backgrounds. For examples, velocity threshold of 15 

m/s and the friction loss function: SFLM, with a travel angle of 11°. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Flowchart of the runout analysis work. 
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Figure 3.15 Example of the main user interface of the Flow-R model. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 This chapter reports conclusive results of the overall thesis work in accordance 

with the objectives stated in Chapter I and research procedure illustrated in Chapter III. 

Content of the report is separated into three main consecutive parts which focus on three 

main tasks. These are, (1) the construction of landslide susceptibility maps (using  seven 

proposed methods) and the identification of the optimal method, (2) the formulation of 

hazard maps (from the output landslide susceptibility map of the named optimal method 

and the annual rainfall probability maps) and risk maps (from the vulnerability map of 

the identified elements at risk located in the area and the formulated hazard maps), and 

(3) the analysis on potential risk arisen from the landslide-induced runout phenomenon 

on the mapped element at risks over the area. The associated discussion on the presented 

results of each aforementioned issue of interest is also given accordingly therein. 

 

4.1 Establishment of landslide susceptibility maps 

 Work in this part was planned in respect to the first stated objective of the thesis 

which is to identify optimal method for the construction of landslide susceptibility map 

for the study area (the Khao Phanom Bencha Watershed, Krabi Province) from a set of 

the preferred methods, which are, (1) weighted linear combination (WLC), (2) 

analytical hierarchy process (AHP), (3) frequency ratio (FR), (4) integrated FR-fuzzy, 
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(5) multiple logistic regression (MLR), (6) artificial neural network (ANN), and (7) 

integrated ANN-fuzzy. The accomplished results are as follows. 

 4.1.1 Application of the weighted linear combination (WLC) method  

  The WLC method was chosen as a representative of the widely-used 

qualitative approach (along with the AHP method) whose decision is relied mainly on 

the surveyed opinion of experts in the field, rather than on objective evidence of the 

concerned issue itself. For this method,  the appropriate preference score (or weight) 

for each input factor and its associated attributes were identified based on independent 

judgment of 8 experts in this field collected through the reply of distributed 

questionnaires (detailed in Appendix C). The primary scores were prescribed in order 

from 1 (not important) to 5 (most important) and the average values were put in use, 

which include, factor weight (FW), class weight (CW) and net contributing weights 

(NCW = FWCW) (as detailed in Table 4.1). 

  According to this definition, possible values of NCW rank from 1 to 25 

from which higher value indicates greater contribution towards the landslide occurrence 

over the area. From data given in Table 4.1, in terms of priority, slope gradient, 

lithology, and soil texture were rated highest by the associated experts with FW of 4.50, 

4.29, and 3.88, respectively. Meanwhile, elevation, slope aspect, and slope curvature 

were given the lowest priority ones with FW of 2.38, 2.38, and 2.75, respectively. And, 

at attribute level, the preferable areas for the landslide incidence (with CW ≥ 4.00) were 

those with elevation > 800 m, slope gradient > 40º, TWI > 10.0, distance from drainage 

< 200 m and from lineament < 1,000 m, and igneous rocks as their foundation. Two top 

favorites for the aspects here are the southwest and west directions with equal CW of 
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3.63. Also, for the LULC, para-rubber planting was considered most significant cause 

of landsliding found in the area (with CW = 4.00). Eventually, in terms of NCW, 

igneous rock, slope gradient of > 50º, and slope gradient of 40º-50º, were considered 

the most important ones in this respect with the NCW values of 21.45, 19.71, and 18.58, 

respectively. 

 

Table 4.1 Expert-based factor and class (attribute) weights for the WLC method. 

Thematic layers Attributes 
Factor weight 

(FW) 

Class weights 

(CW) 

Net 

contributing 

weights 

(FWCW) 

 

Elevation < 200 m 

200 m – 400 m 

400 m – 600 m 

600 m – 800 m 

800 m – 1,000 m 

> 1,000 m 

2.38 

1.25 

2.13 

2.88 

3.88 

4.63 

4.50 

2.9750 

5.0694 

6.8544 

9.2344 

11.0194 

10.7100 

Slope gradient 0º – 10º 

10º – 20º 

20º – 30º 

30º – 40º 

40º – 50º 

> 50º 

4.50 

1.00 

2.00 

3.00 

3.88 

4.13 

4.38 

4.5000 

9.0000 

13.5000 

17.4600 

18.5850 

19.7100 

Slope aspect Flat 

North 

Northeast 

East 

Southeast 

South 

Southwest 

West 

Northwest 

2.38 

1.00 

1.50 

2.50 

2.88 

2.50 

3.00 

3.63 

3.63 

2.25 

2.3800 

3.5700 

5.9500 

6.8544 

5.9500 

7.1400 

8.6394 

8.6394 

5.3550 

Slope curvature Concave (-) 

Flat (0) 

Convex (+) 

2.75 

2.50 

1.38 

3.50 

        6.8750 

        3.7950 

        9.6250 

Topographic wetness 

index (TWI) 

0 – 2.5 

2.5 – 5.0 

5.0 – 7.5 

7.5 – 10.0  

10.0 – 12.5 

> 12.5 

2.88 

1.00 

2.00 

3.00 

3.75 

4.75 

5.00 

   2.8800 

5.7600 

8.6400 

10.8000 

13.6800 

14.4000 

Drainage  

(Distance from drainage) 

< 50 m 

50 m – 100 m 

100 m – 150 m 

150 m – 200 m 

200 m – 250 m 

> 250 m 

2.88 

4.88 

4.13 

3.25 

2.25 

1.38 

1.00 

14.0544 

11.8944 

9.3600 

6.4800 

3.9744 

2.8800 
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Table 4.1 (Continued).  

Thematic layers Attributes 

Factor 

weight 

(FW) 

Class 

weights 

(CW) 

Net contributing  

weights 

(FWCW) 

 

Lithology Thung Yai 

Ratburi 

Quaternary sediments 

Kaeng Krachan 

Igneous rocks 

Krabi 

Saibon Formation 

4.29 

3.14 

1.57 

1.57 

3.71 

5.00 

3.00 

3.00 

13.4706 

6.7353 

6.7353 

15.9159 

21.4500 

12.8700 

12.8700 

Lineament 

(Distance from lineament) 

< 500 m 

500 m – 1,000 m 

1,000 m – 1,500 m 

1,500 m – 2,000 m 

2,000 m – 2,500 m 

2,500 m – 3,000 m 

> 3,000 m 

3.00 

5.00 

4.13 

2.88 

2.13 

1.63 

1.25 

1.13 

15.0000 

12.3900 

8.6400 

6.3900 

4.8900 

3.7500 

3.3900 

Soil Texture Clay 

Silty clay 

Loamy sand 

Sandy loam 

Silty clay loam 

Sand 

Sandy clay loam 

Clay loam 

Silty loam 

Loam 

Slope complex area 

3.88 

1.88 

2.13 

3.25 

3.13 

3.00 

3.25 

3.13 

2.38 

2.63 

2.88 

3.63 

7.2944 

8.2644 

12.6100 

12.1444 

11.6400 

12.6100 

12.1444 

9.2344 

10.2044 

11.1744 

14.0844 

LULC Dense evergreen forest 

Disturbed evergreen forest 

Oil palm 

Para rubber 

Miscellaneous 

3.00 

1.38 

2.88 

3.50 

4.00 

3.50 

4.1400 

8.6400 

10.5000 

12.0000 

10.5000 

 

The factor’s order of priority (in terms of the factor weight) found in this work 

was rather similar to that presented in several WLC-based works reported earlier, 

especially on the top two candidates (slope gradient and lithology) and the usual bottom 

members (slope aspect, slope curvature, distance to drainage), e.g., in Tanavud et al. 

(2000), Wachal and Hudak (2000), Sarkar and Kanung (2004), Matori et al. (2011), and 

Kayastha et al. (2013). For the attribute’s merit (in terms of the attained class weight) 

of each listed factors, it often conforms well to conventional believes or prevalent 

theories. For examples, areas with higher slope gradient should be more susceptible to 
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the slope failure as well as those located closer to the drainage or lineament. Also, areas 

with igneous-rock foundation and those situated in slope complex area are believed to 

most prone to landslide occurrence. 

  Figure 4.1 exhibits the final classified landslide susceptibility map 

resulted from the WLC method in which five levels of the susceptible states were 

presented from very low (VLS) to very high (VHS). Proportion of land belonged to 

each classified category of this susceptibility map is described in Table 4.2 from which 

about 43% were situated in the very low to low susceptibility zones and about 17% 

were in the high to very high susceptibility zones (mostly at Khao Phanom Bencha 

mountain network).  

 

Table 4.2 Landslide susceptibility classification of land based on the WLC method. 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

54.59 - 68.50 

68.50 - 82.40 

82.40 - 96.30 

96.30 - 110.31 

110.31 - 124.12 

0.00-0.20 

0.20-0.40 

0.40-0.60 

0.60-0.80 

0.80-1.00 

2.11 

40.75 

39.66 

16.28 

1.21 

20.84 

402.39 

391.61 

160.79 

11.91 
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Figure 4.1 Classified landslide susceptibility map yielded from the WLC method. 
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 4.1.2 Application of the analytical hierarchy process (AHP) method 

  Similar to the WLC method, the AHP method is also a very popular 

qualitative approach in decision-making analysis. However, apart from the expert-

based judgment on value of the possible option, the consistency of this judgment by an 

individual expert is also examined. In this method, the pair-wise comparison matrix 

was established first from the comparative judgment of each corresponding expert, to 

attain preference scale of these factors (and their respective attributes) given in terms 

of the normalized weight between 0 and 1. In this case, validity of each given judgment 

was determined and those with CR < 0.10 were included in the further analysis (see 

more details in Appendix D). Tables 4.3 and 4.4 presents the output normalized weights 

for all input factors and their respective set of attributes, while Table 4.5 summarizes 

yielded values of the factor and class weights (FW and CW) reported earlier in Tables 

4.3 and 4.4. 

  From data shown in Table 4.3, slope gradient, lithology, and soil texture 

were still on top in terms of the preference, like in the WLC method, with FW of 0.1733, 

0.1756 and 0.1184, respectively, while the three least scores now were aspect, drainage, 

and elevation with FW of 0.0517, 0.0545, and 0.0550, respectively. And at attribute 

level, the favorite areas for landslide activity were found resemble to those of the WLC 

method, e.g., ones with high elevation, steep slope, close distance to lineament and 

drainage system, high TWI, or igneous rocks as their foundation. Two most preferred 

candidates for the aspect were still the southwest and west, and for LULC, these were 

oil palm and para-rubber planting. The eventual output of the AHP approach are 

reported in Figure 4.2 (classified susceptibility map) and Table 4.6 (proportion of 
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coverage area). And, similar to that of the WLC-based map, about 56% of land on the 

AHP-based map were found situating in the very low to low susceptibility zones and 

only about 9% were resided in the high to very high susceptibility categories (mostly 

in the mountainous regions). 

 

Table 4.3 Factor weights from pair-wise comparison matrix yielded from 8 experts. 

Factors 

(Input layer) 

Factor weights from individual expert’s judgment 
Mean 

weights 

(CR < 

0.1) 
1 2 3 4 5 6 7 8 

Elevation 0.0227 0.0735 0.0460 0.0551 0.0206 0.0181 0.0802 0.0200 0.0550 

Slope gradient 0.2796 0.2431 0.2652 0.0468 0.2601 0.2807 0.2015 0.1101 0.1733 

Slope aspect 0.0600 0.0171 0.0276 0.0776 0.1790 0.0194 0.0692 0.0671 0.0517 

Slope curvature 0.0297 0.1179 0.0295 0.0806 0.1292 0.0346 0.0355 0.1127 0.0752 

TWI 0.0415 0.0332 0.0718 0.0692 0.0271 0.0933 0.0423 0.1807 0.0794 

Drainage 0.1625 0.0170 0.0918 0.0702 0.0457 0.0626 0.0395 0.0540 0.0545 

Lithology 0.1014 0.2511 0.1646 0.1663 0.1327 0.0986 0.0211 0.2750 0.1756 

Lineaments 0.0675 0.1513 0.1815 0.0522 0.0413 0.0813 0.0478 0.0908 0.1047 

Soil texture 0.1529 0.0588 0.1011 0.1481 0.1047 0.1498 0.2314 0.0526 0.1184 

LULC 0.0820 0.0370 0.0211 0.2339 0.0595 0.1617 0.2314 0.0370 0.1121 

Consistency 

ratio 
0.15 0.07 0.09 0.09 0.14 0.12 -0.03 0.07  

Note: Only judgments with CR < 0.1 were used to calculate mean weight. 
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Table 4.4 Class weights from pair-wise comparison matrix based on expert opinions. 

Factors 

Class weights (of each factor) from individual expert’s judgment 
Mean 

weight 

(CR < 

0.1) 
1 2 3 4 5 6 7 8 

Elevation (m) 

(1) < 200  0.0408 0.0260 0.0499 0.0469 0.0372 0.0434 0.0580 0.0268 0.0387 

(2) 200 – 400 0.0633 0.0471 0.1656 0.0677 0.0478 0.0655 0.0872 0.0498 0.0724 

(3) 400 – 600 0.1344 0.0886 0.1937 0.1132 0.0971 0.1024 0.1226 0.0864 0.1165 

(4) 600 – 800 0.4186 0.1660 0.3159 0.1132 0.1684 0.1604 0.1677 0.1824 0.2179 

(5) 800 – 1,000 0.1965 0.3362 0.1523 0.2140 0.2532 0.2488 0.2302 0.2077 0.2298 

(6) > 1,000 0.1464 0.3362 0.1225 0.4449 0.3962 0.3794 0.3344 0.4469 0.3246 

Consistency ratio 0.08 0.05 0.03 0.10 0.03 0.02 0.11 0.05  

Slope gradient 

(1) 0º – 10º 0.0484 0.0269 0.0464 0.0458 0.0361 0.0309 0.0379 0.0301 0.0378 

(2) 10º – 20º 0.0731 0.0488 0.1658 0.0712 0.0549 0.0428 0.0591 0.0567 0.0733 

(3) 20º – 30º 0.1868 0.1137 0.3998 0.1018 0.0767 0.0720 0.1001 0.0707 0.1459 

(4) 30º – 40º 0.3730 0.1875 0.2452 0.1636 0.1397 0.1564 0.1562 0.1323 0.1997 

(5) 40º – 50º 0.1494 0.3116 0.0956 0.1636 0.2543 0.2759 0.2464 0.2503 0.2144 

(6) > 50º  0.1693 0.3116 0.0472 0.4541 0.4384 0.4219 0.4003 0.4599 0.3289 

Consistency ratio 0.06 0.02 0.04 0.10 0.06 0.07 0.13 0.05  

Slope aspect 

(1) Flat 

 
0.0372 

 
0.0208 

 
0.0271 

 
0.0358 

 
0.0230 

 
0.0252 

 
0.0340 

 
0.0141 0.0298 

(2) North 0.0432 0.0345 0.0362 0.0358 0.0317 0.0252 0.0404 0.1801 0.0386 

(3) Northeast 0.2485 0.0695 0.1945 0.0674 0.0718 0.0566 0.0471 0.2047 0.1399 

(4) East 0.1879 0.0336 0.0530 0.1678 0.0742 0.2243 0.0471 0.0996 0.0804 

(5) Southeast 0.0849 0.0336 0.1945 0.0843 0.2001 0.1948 0.0814 0.0396 0.0986 

(6) South 0.0503 0.2054 0.0530 0.1662 0.2998 0.0793 0.1263 0.1369 0.1087 

(7) Southwest 0.1696 0.3730 0.1945 0.0843 0.1486 0.0564 0.2533 0.2293 0.2476 

(8) West 0.1181 0.1960 0.0530 0.2523 0.0832 0.2762 0.2533 0.0727 0.1551 

(9) Northwest 0.0603 0.0336 0.1945 0.1061 0.0676 0.0621 0.1172 0.0231 0.1014 

Consistency ratio 0.07 0.04 0.04 0.20 0.18 0.21 0.05 0.22  

Slope curvature 

(1) Concave (-) 0.5247 0.1749 0.2521 0.1285 0.1062 0.2605 0.4286 0.2605 0.2691 

(2) Flat (0) 0.1416 0.0472 0.0726 0.2766 0.2605 0.1062 0.1429 0.1062 0.1544 

(3) Convex (+) 0.3338 0.1113 0.6752 0.5949 0.6333 0.6333 0.4286 0.6333 0.4812 

Consistency ratio:  0.05 0.10 0.11 0.00 0.03 0.03 0.00 0.03  

Topographic wetness 

index 

(1) < 2.5 0.3915 0.0248 0.0563 0.0469 0.0408 0.3451 0.0379 0.0249 0.0387 

(2) 2.5 – 5.0 0.0638 0.0435 0.4276 0.0677 0.0530 0.2093 0.0591 0.0439 0.1271 

(3) 5.0 – 7.5 0.0739 0.0789 0.3305 0.1132 0.0920 0.1474 0.1001 0.0956 0.1420 

(4) 7.5 – 10.0 0.1031 0.1385 0.0933 0.1132 0.1522 0.1132 0.1562 0.1574 0.1309 

(5) 10.0 – 12.5 0.1502 0.2330 0.0487 0.2140 0.2475 0.1044 0.2464 0.3904 0.2267 

(6) > 12.5 0.2176 0.4814 0.0436 0.4449 0.4144 0.0805 0.4003 0.2879 0.3344 

Consistency ratio 0.14 0.10 0.05 0.10 0.07 0.15 0.13 0.10  

Drainage  

Distance from drainage (m) 

(1) < 100 0.3425 0.4625 0.4996 - 0.3598 0.4467 0.0249 0.3763 0.3408 

(2) 100 – 200 0.2067 0.2550 0.2944 - 0.2154 0.1893 0.0439 0.2959 0.2223 

(3) 200 – 300 0.1448 0.1403 0.0872 - 0.1514 0.1408 0.0956 0.1542 0.1193 

(4) 300 – 400 0.1260 0.0736 0.0409 - 0.1013 0.1033 0.1574 0.1011 0.0932 

(5) 400 – 500 0.1003 0.0343 0.0389 - 0.0911 0.0728 0.3904 0.0455 0.1273 

(6) > 500 0.0798 0.0343 0.0389 - 0.0810 0.0471 0.2879 0.0270 0.0970 

Consistency ratio:  0.17 0.05 0.06 - 0.2 0.12 0.10 0.08  

Note: Only judgments with CR < 0.1 were used to calculate mean weight. 
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Table 4.4 (Continued). 

 

  

Factors 1 2 3 4 5 6 7 8 

Mean 

weight 

(CR < 

0.1) 

Lithology 

(1) Thung Yai 0.1660 0.0672 0.0977 0.1075 0.2016 0.1030 - 0.1980 0.1362 

(2) Ratburi 0.0328 0.0626 0.0217 0.0742 0.0685 0.0525 - 0.0540 0.0602 

(3) Quaternary sediments 0.0578 0.0626 0.0219 0.0433 0.0319 0.0348 - 0.1170 0.0650 

(4) Kaeng Krachan  0.1185 0.1195 0.2323 0.1228 0.0905 0.1773 - 0.0785 0.1262 

(5) Igneous rocks 0.3778 0.4019 0.4135 0.2267 0.3622 0.3383 - 0.3614 0.3088 

(6) Krabi 0.1309 0.2241 0.0828 0.2128 0.0959 0.1919 - 0.0217 0.1421 

(7) Saibon Formation 0.1162 0.0620 0.1300 0.2128 0.1494 0.1023 - 0.1694 0.1615 

Consistency ratio 0.20 0.28 0.17 0.02 0.12 0.02 - 0.08  

Lineament 

Distance from lineament 

(m) 

(1) < 500 0.3231 0.3176 0.5302 0.1692 0.2952 0.3817 0.4007 0.3515 0.3455 

(2) 500 – 1,000 0.2482 0.3176 0.1864 0.2429 0.1897 0.2486 0.1772 0.2367 0.2467 

(3) 1,000 – 1,500 0.1644 0.1675 0.1100 0.2376 0.1391 0.1349 0.1371 0.1630 0.1629 

(4) 1,500 – 2,000 0.1152 0.0944 0.0450 0.1776 0.1232 0.0860 0.1059 0.0933 0.1019 

(5) 2,000 – 2,500 0.0614 0.0515 0.0433 0.0576 0.1012 0.0792 0.0804 0.0893 0.0637 

(6) 2,500 – 3,000 0.0495 0.0257 0.0475 0.0576 0.0844 0.0441 0.0587 0.0456 0.0450 

(7) > 3,000 0.0382 0.0257 0.0376 0.0576 0.0672 0.0256 0.0399 0.0206 0.0342 

Consistency ratio 0.07 0.04 0.06 -0.02 0.14 0.02 0.12 0.07  

Soil Texture 

(1) Clay 

 

0.0224 

 

0.0155 

 

0.0314 

 

0.0783 

 

0.2734 

 

0.1318 

 

0.0218 

 

0.0174 0.0494 

(2) Silty clay 0.0722 0.0155 0.2020 0.0939 0.3119 0.0701 0.0332 0.0311 0.0743 

(3) Loamy sand 0.1155 0.1817 0.0372 0.0511 2.8293 0.0585 0.1367 0.0873 0.0921 

(4) Sandy loam 0.1341 0.1817 0.0387 0.0567 2.1233 0.0561 0.1103 0.1438 0.0979 

(5) Silty clay loam 0.0514 0.0532 0.1683 0.0991 1.7464 0.1038 0.0491 0.0532 0.0878 

(6) Sand 0.2871 0.1817 0.0317 0.0318 1.0172 0.0262 0.2161 0.2175 0.1175 

(7) Sandy clay loam 0.1125 0.0946 0.1620 0.0991 0.8624 0.0488 0.0888 0.0356 0.0882 

(8) Clay loam 0.0400 0.0155 0.0344 0.1512 0.5413 0.1252 0.0483 0.0995 0.0790 

(9) Silty loam 0.0779 0.0256 0.0405 0.1512 0.4499 0.0772 0.0562 0.1624 0.0855 

(10) Loam 0.0550 0.0532 0.0403 0.1512 0.4898 0.0731 0.0562 0.0831 0.0762 

(11) Slope complex area 0.0317 0.1817 0.2135 0.0365 3.3229 0.2292 0.1833 0.0692 0.1522 

Consistency ratio 0.11 0.03 0.04 -0.28 0.14 0.08 0.08 -0.29  

LULC 

(1) Dense evergreen forest 0.1106 0.0299 0.3512 0.0661 0.5158 0.0494 0.0912 0.0334 0.1439 

(2) Disturbed evergreen 

forest 0.2052 0.0855 0.1613 0.2303 0.0858 0.0806 0.1280 0.0679 0.0896 

(3) Oil palm 0.2339 0.3600 0.0542 0.2910 0.2133 0.4561 0.3548 0.1748 0.3118 

(4) Para rubber 0.4002 0.3600 0.1939 0.2773 0.1422 0.2616 0.3548 0.2508 0.2739 

(5) Miscellaneous 0.0501 0.1646 0.2394 0.1352 0.0428 0.1523 0.0713 0.4731 0.1808 

Consistency ratio 0.11 0.05 0.14 0.19 0.09 0.04 0.08 0.04  
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Table 4.5 Factor and class (attribute) weights of all input factors from the AHP method. 

Thematic layers Attributes 

Factor 

weight 

(FW) 

Class 

weights 

(CW) 

Net 

contributing 

weights 

(FWCW) 

Elevation < 200 m 

200 m – 400 m 

400 m – 600 m 

600 m – 800 m 

800 m – 1,000 m 

> 1,000 m 

0.0550 

0.0387 

0.0724 

0.1165 

0.2179  

0.2298 

0.3246 

0.0021 

0.0040 

0.0064 

0.0120 

0.0126 

0.0179 

Slope gradient 0º – 10º 

10º – 20º 

20º – 30º 

30º – 40º 

40º – 50º 

> 50º 

0.1734 

0.0378 

0.0733 

0.1459 

0.1997 

0.2144 

0.3289 

0.0066 

0.0127 

0.0253 

0.0346 

0.0372 

0.0570 

Slope aspect Flat 

North 

Northeast 

East 

Southeast 

South 

Southwest 

West 

Northwest 

0.0517 

0.0298 

0.0386 

0.1399 

0.0804 

0.0986 

0.1087 

0.2746 

0.1551 

0.1014 

0.0015 

0.0020 

0.0072 

0.0042 

0.0051 

0.0056 

0.0142 

0.0080 

0.0052 

Slope curvature Concave (-) 

Flat (0) 

Convex (+) 

0.0753 

0.2691 

0.1544 

0.4812 

0.0203 

0.0116 

0.0362 

Topographic 

wetness index 

(TWI) 

0 – 2.5 

2.5 – 5.0 

5.0 – 7.5 

7.5 – 10.0  

10.0 – 12.5 

> 12.5 

0.0794 

0.0387 

0.1271 

0.1420 

0.1309 

0.2267 

0.3344 

0.0031 

0.0101 

0.0113 

0.0104 

0.0180 

0.0266 

Drainage  

(Distance from 

drainage) 

< 50 m 

50 m – 100 m 

100 m – 150 m 

150 m – 200 m 

200 m – 250 m 

> 250 m 

0.0545 

0.3408 

0.2223 

0.1193 

0.0932 

0.1273 

0.0970 

0.0186 

0.0121 

0.0065 

0.0051 

0.0069 

0.0053 

Lithology Thung Yai 

Ratburi 

Quaternary sediments 

Kaeng Krachan 

Igneous rocks 

Krabi 

Saibon Formation 

0.1756 

0.1362 

0.0602 

0.0650 

0.1262 

0.3088 

0.1421 

0.1615 
 

0.0239 

0.0106 

0.0114 

0.0222 

0.0542 

0.0250 

0.0284 
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Table 4.5 (Continued). 

Thematic layers Attributes 

Factor 

weight 

(FW) 

Class 

weights 

(CW) 

Net 

contributing  

weights 

(FWCW) 

Lineament 

(Distance from 

lineament) 

< 500 m 

500 m – 1,000 m 

1,000 m – 1,500 m 

1,500 m – 2,000 m 

2,000 m – 2,500 m 

2,500 m – 3,000 m 

> 3,000 m 

0.1047 

0.3455 

0.2467 

0.1629 

0.1019 

0.0637 

0.0450 

0.0342 

0.0362 

0.0258 

0.0171 

0.0107 

0.0067 

0.0047 

0.0036 

Soil Texture Clay 

Silty clay 

Loamy sand 

Sandy loam 

Silty clay loam 

Sand 

Sandy clay loam 

Clay loam 

Silty loam 

Loam 

Slope complex area 

0.1184 

0.0493 

0.0743 

0.0721 

0.0979 

0.0878 

0.1175 

0.0882 

0.0790 

0.0855 

0.0762 

0.1522 

0.0058 

0.0088 

0.0085 

0.0116 

0.0104 

0.0139 

0.0104 

0.0094 

0.0101 

0.0090 

0.0180 

LULC Dense evergreen forest 

Disturbed evergreen forest 

Oil palm 

Para rubber 

Miscellaneous 

0.1121 

0.1439 

0.0896 

0.3118 

0.2739 

0.1808 
 

0.0161 

0.0100 

0.0350 

0.0307 

0.0203 

 

Table 4.6 Landslide susceptibility classification of land based on the AHP method. 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.08 – 0.12 

0.12 – 0.15 

0.15 – 0.18 

0.18 – 0.22 

0.22 – 0.26 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

7.37 

48.48 

35.37 

8.03 

0.76 

72.75 

478.73 

349.29 

79.30 

7.46 
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Figure 4.2 Classified landslide susceptibility map yielded from the AHP method. 
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 4.1.3 Application of the frequency ratio (FR) method  

  As mentioned in Chapter II, the frequency ratio (FR) method has become 

one of the well-known quantitative approaches for building landslide susceptibility 

maps worldwide due mainly to its simple concept and straightforward determination of 

the susceptibility index through most GIS software. In this work, the appropriate FR 

values for a set of associated attributes of each individual input factor were determined 

based on Eq. (2.14) and obtained results are displayed in Table 4.7. Initial analysis of 

these results indicated that order of the priority at attribute level of many factors found 

in the FR method were rather dissimilar from that encountered in the WLC and AHP 

methods due significantly to the difference in fundamental concepts of weight 

assessment (expert judgment-based and evidence-based). For examples, for slope 

gradient, the two outstanding peak values were evidenced at 20o-40o instead of at 

steeper slopes previously suggested in the WLC and AHP methods. Or, for the TWI, 

the two most favorites were remarked at the ranges of 2.5-5.0 (FR = 3.7451) and 5.0-

7.5 (FR = 2.0786), while at the higher ranges of TWI, the discovered FR values were 

appeared to drop dramatically (to be much less than 1.0).  And for the LULC, only one 

feature was found to be notably far superior than the others in this group as main 

landslide contributor in the area which was dense evergreen forest (FR = 3.9817) while 

para rubber and palm oil had much lower scores with FR of 0.1337 and 0.0368, 

respectively. Though this finding might seem to contradict the conventional believe 

held by most corresponding experts as reported in the WLC and AHP methods, 

however, this result should not be interpreted literally to diminish potential contribution 

of these tree plantations on landslide proneness over the area as in this case the planting 
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places should also be taken into serious consideration (e.g. not on physically vulnerable 

areas per se like on the highly-sloped or high elevation area). 

  Apart from the aforementioned results, many accomplished findings did 

support usual believes about the should-be landslide susceptible locations in the 

evaluated area (as indicated by the associated FR values), such as ones with the 

westward slope-facing, convex-type slope curvature, and igneous rock basis, also those 

situate at high altitude,  close to the lineament, and in the classified slope complex area. 

 

Table 4.7 Frequency ratio (FR) and associated membership value (MV) in fuzzy logic. 

Factors Class 

Total number 

of pixels 

Landslide 

occurrence point 
Frequency 

ratio 

(FR) 

 

Membership 

value 

(FR-Fuzzy) Number % Number % 

Elevation < 200 m 

200 m – 400 m 

400 m – 600 m 

600 m – 800 m 

800 m – 1,000 m 

> 1,000 m 

917737 

120959 

37254 

13156 

4876 

3274 

83.6393 

11.0238 

3.3952 

1.1990 

0.4444 

0.2984 

53 

184 

140 

69 

30 

14 

10.8163 

37.5510 

28.5714 

14.0816 

6.1224 

2.8571 

0.1293 

3.4064 

8.4152 

11.7446 

13.7775 

9.5755 

0.1000 

0.2921 

0.5857 

0.7808 

0.9000 

0.6537 

Slope gradient 0º – 10º 

10º – 20º 

20º – 30º 

30º – 40º 

40º – 50º 

> 50º 

805224 

134847 

102194 

40200 

12052 

2739 

73.3852 

12.2895 

9.3136 

3.6637 

1.0984 

0.2496 

13 

102 

280 

90 

4 

1 

2.6531 

20.8163 

57.1429 

18.3673 

0.8163 

0.2041 

0.0362 

1.6938 

6.1354 

5.0134 

0.7432 

0.8176 

0.1000 

0.3174 

0.9000 

0.7528 

0.1927 

0.2025 

Slope aspect Flat 

North 

Northeast 

East 

Southeast 

South 

Southwest 

West 

Northwest 

400217 

65656 

87428 

102403 

104624 

73159 

87225 

96611 

79933 

36.4744 

5.9837 

7.9679 

9.3326 

9.5351 

6.6675 

7.9494 

8.8048 

7.2848 

0 

63 

77 

59 

17 

23 

60 

102 

89 

0.0000 

12.8571 

15.7143 

12.0408 

3.4694 

4.6939 

12.2449 

20.8163 

18.1633 

0.0000 

2.1487 

1.9722 

1.2902 

0.3639 

0.7040 

1.5404 

2.3642 

2.4933 

0.1000 

0.7894 

0.7328 

0.5140 

0.2167 

0.3259 

0.5942 

0.8586 

0.9000 

Slope 

curvature 

Concave (-) 

Flat (0) 

Convex (+) 

718416 

0 

378840 

65.4747 

0.0000 

34.5261 

181 

0 

309 

36.9388 

0.0000 

63.0612 

0.5642 

0.0000 

1.8265 

0.3471 

          0.1000 

0.9000 

Topographic 

wetness index 

(TWI) 

0 – 2.5 

2.5 – 5.0 

5.0 – 7.5 

7.5 – 10.0  

10.0 – 12.5 

> 12.5 

7 

95668 

321031 

204803 

163220 

312527 

0.0006 

8.7188 

29.2576 

18.6650 

14.8753 

28.4826 

0 

160 

298 

25 

6 

1 

0.0000 

32.6531 

60.8163 

5.1020 

1.2245 

0.2041 

0.0000 

3.7451 

2.0786 

0.2733 

0.0823 

0.0072 

0.1000 

0.9000 

0.5440 

0.1584 

0.1176 

0.1015 

Drainage 

(Distance 

from 

drainage) 

< 50 m 

50 m – 100 m 

100 m – 150 m 

150 m – 200 m 

200 m – 250 m 

> 250 m 

422547 

343715 

226373 

76969 

24358 

3294 

38.5094 

31.3250 

20.6308 

7.0147 

2.2199 

0.3002 

176 

152 

87 

58 

17 

0 

35.9184 

31.0204 

17.7551 

11.8367 

3.4694 

0.0000 

0.9327 

0.9903 

0.8606 

1.6874 

1.5629 

0.0000 

0.5422 

0.5695 

0.5080 

0.9000 

0.8409 

0.1000 
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Table 4.7 (Continued). 

Factors Class 
Total number 

of pixels 

Landslide 

occurrence 

point 

Frequency 

ratio 

(FR) 

 

Membership 

value 

(FR-Fuzzy) 

  Number % Number %   

Lithology Thung Yai 

Ratburi 

Quaternary sediments 

Kaeng Krachan 

Igneous rocks 

Krabi 

Saibon Formation 

152216 

78075 

580894 

 

187458 

63974 

2357 

32282 

13.8724 

7.1155 

52.9406 

 

17.0843 

5.8304 

0.2148 

2.9421 

80 

9 

0 

 

218 

183 

0 

0 

13.3265 

1.8367 

0.0000 

 

44.4898 

37.3469 

0.0000 

0.0000 

1.1769 

0.2581 

0.0000 

 

2.6041 

6.4056 

0.0000 

0.0000 

0.2470 

0.1322 

0.1000 

 

0.4252 

0.9000 

0.1000 

0.1000 

Lineament 

(Distance 

from 

lineament) 

< 500 m 

500 m – 1,000 m 

1,000 m – 1,500 m 

1,500 m – 2,000 m 

2,000 m – 2,500 m 

2,500 m – 3,000 m 

> 3,000 m 

273776 

206874 

126251 

92556 

75015 

51878 

270906 

24.9510 

18.8538 

11.5061 

8.4352 

6.8366 

4.7280 

24.6894 

242 

125 

38 

35 

19 

11 

20 

49.3878 

25.5102 

7.7551 

7.1429 

3.8776 

2.2449 

4.0816 

1.9794 

1.3531 

0.6740 

0.8468 

0.5672 

0.4748 

0.1653 

0.9000 

0.6238 

0.3243 

0.4005 

0.2772 

0.2365 

0.1000 

Soil 

texture 

Clay 

Silty clay 

Loamy sand 

Sandy loam 

Silty clay loam 

Sand 

Sandy clay loam 

Clay loam 

Silty loam 

Loam 

Slope complex area 

230324 

71179 

30163 

214890 

44711 

19916 

126165 

25846 

17556 

8090 

308416 

20.9909 

6.4870 

2.7489 

19.5843 

4.0748 

1.8151 

11.4982 

2.3555 

1.6000 

0.7373 

28.1079 

0 

0 

0 

0 

0 

0 

9 

0 

0 

0 

481 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

1.8367 

0.0000 

0.0000 

0.0000 

98.1633 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.1597 

0.0000 

0.0000 

0.0000 

3.4924 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1366 

0.1000 

0.1000 

0.1000 

0.9000 

LULC Dense evergreen 

forest 

Disturbed evergreen 

forest 

Oil palm 

Para rubber 

Miscellaneous  

261515 

 

712 

486744 

284651 

63634 

23.8335 

 

0.0649 

44.3601 

25.9421 

5.79994 

465 

 

0 

8 

17 

0 

94.8980 

 

0.0000 

1.6327 

3.4694 

0.0000 

3.9817 

0.0000 

0.0368 

0.1337 

0.0000 

0.9000 

0.1000 

0.1074 

0.1269 

0.1000 

Note: Total number of pixels in study area: 1,097,256. Number of landslide occurrence points: 490. 

           FR = % Landslide occurrence points / % Number of pixels 

 

Table 4.8 Landslide susceptibility classification of land based on the FR method. 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.90 – 9.77 

9.77 – 18.63 

18.63 – 27.50 

27.50 – 36.36 

36.36 – 45.23 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

67.31 

13.09 

12.70 

5.39 

1.51 

664.69 

129.25 

125.40 

53.23 

14.95 
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Figure 4.3 Classified landslide susceptibility map yielded from the FR method. 
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  The FR-based landslide susceptibility map is displayed in Figure 4.3 

along with its data on covering area of each susceptibility degree in Table 4.8. Though 

the overall outlook of the derived map seemed resemble to those of the WLC and AHP 

methods, especially on areas with high and very high probability to having landslide 

formation (6.90% in total, mostly in mountainous regions). However, in this case, areas 

belonged to the very low susceptibility category were notably large compared to the 

other existing classes (67.31%) that led to a stark contrast in the predominant tones of 

the susceptible  classes on the presented map (high/very high against low/very low 

portions). 

 4.1.4 Application of the integrated FR and fuzzy logic (FR-Fuzzy method) 

  As described in Chapter II, fuzzy logic has been applied in some 

previous works to improve capability of the FR model in the formulation of landslide 

susceptibility map for an interested area (e.g. Lee, 2007; Regmi et al., 2010; Aksoy and 

Ercanoglu, 2012). In this study, its benefit in this regard was also examined by 

integrating its membership value (MV) concept to the FR model as detailed in Chapter 

III. First, the proper MV data for all affiliated attributes of each input factor were 

assessed from the original FR values using Eq. (3.2) whereupon the final MV scores 

shall be in the range of 0.1-0.9 as outlined in Bui et al. (2012) from which gained results 

are presented in Table 4.7. 

 To build a susceptibility map, the candidate MV data from all factors were then 

integrated to yield a landslide susceptibility score (LSS) for each unit area (pixel basis) 

on the map through five fuzzy operators: OR, AND, algebraic sum, algebraic product, 

and fuzzy-gamma for λ values between 0.0-1.0 (see mathematical details in Chapter II). 
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The yielded susceptibility maps for each examined case of an operator mentioned above 

are shown in Figure 4.4 along with the achieved accuracy detailed in Table 4.9. 

 As seen in Table 4.9, the gamma operator (λ = 0.9) was found most effective in 

the preparation of landslide susceptibility map for the study area with average accuracy 

of 92.77%, hence, it was chosen to be a candidate operator for the FR-Fuzzy approach. 

This finding was similar to what reported earlier in several papers that the most efficient 

fuzzy operators for this task is gamma operator with notably high λ values (close to 1), 

e.g. Lee (2007); Regmi et al. (2010); Ercanoglu and Temiz (2011), and Pradhan (2011). 

The optimal susceptibility map yielded in this case is presented in Figure 4.4(n) along 

with its relevant details of classified land proportion shown in Table 4.10. Note that, 

general map outlook in this case quite resembles that of the FR method (in Figure 4.3) 

as well as reported proportion of area for each classified susceptibility class (Table 4.8). 

 

Table 4.9 Achieved map accuracies of the considered fuzzy operators (FR-Fuzzy). 

Fuzzy operation Success accuracy 

(%) 

Prediction accuracy  

(%) 

ROC 

(%) 

Average 

(%) 

AND 53.88 45.40 61.30 53.53 

OR 99.50 99.50 66.10 88.37 

Algebraic sum 98.35 98.26 62.50 86.37 

Algebraic product  88.11 82.79 55.80 75.57 

Gamma (λ) = 0.00 

Gamma (λ) = 0.10 

Gamma (λ) = 0.20 

Gamma (λ) = 0.30 

Gamma (λ) = 0.40 

Gamma (λ) = 0.50 

Gamma (λ) = 0.60 

Gamma (λ) = 0.70 

Gamma (λ) = 0.80 

Gamma (λ) = 0.90 

Gamma (λ) = 0.99 

Gamma (λ) = 1.00 

89.45 

90.15 

91.08 

92.01 

92.40 

91.66 

91.64 

91.64 

92.63 

92.64 

92.62 

95.72 

82.66 

85.05 

87.28 

89.79 

90.07 

89.07 

89.07 

88.08 

91.07 

91.08 

91.07 

97.27 

55.80 

56.80 

58.30 

60.30 

62.30 

67.60 

74.40 

83.60 

92.00 

94.60 

90.60 

62.50 

75.97 

77.33 

78.89 

80.70 

81.59 

82.78 

85.04 

87.77 

91.90 

92.77 

91.43 

85.16 
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(a) FR-Fuzzy (AND) (b) FR-Fuzzy (OR) 

  

(c) FR-Fuzzy (algebraic sum) (d) FR-Fuzzy (algebraic product) 

Figure 4.4 Classified landslide susceptibility maps yielded from the FR-Fuzzy method. 
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(e) FR-Fuzzy (λ = 0.0) (f) FR-Fuzzy (λ = 0.1) 

  

(g) FR-Fuzzy (λ = 0.2) (h) FR-Fuzzy (λ = 0.3) 

Figure 4.4 Classified landslide susceptibility maps yielded from the FR-Fuzzy method 

(Continued).  
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(i) FR-Fuzzy (λ = 0.4) (j) FR-Fuzzy (λ = 0.5) 

  

(k) FR-Fuzzy (λ = 0.6) (l) FR-Fuzzy (λ = 0.7) 

Figure 4.4 Classified landslide susceptibility map yielded from the FR-Fuzzy method 

(Continued). 
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(m) FR-Fuzzy (λ = 0.8) (n) FR-Fuzzy (λ = 0.9) 

  

FR-Fuzzy (λ = 0.99) (p) FR-Fuzzy (λ = 1.0) 
 

Figure 4.4 Classified landslide susceptibility maps yielded from the FR-Fuzzy method 

(Continued). 
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Table 4.10 Landslide susceptibility classification of land (FR-Fuzzy method: λ = 0.90). 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.07 – 0.23 

0.23 – 0.40 

0.40 – 0.56 

0.56 – 0.73 

0.73 – 0.90 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

59.13 

20.62 

12.36 

6.84 

1.05 

583.97 

203.65 

122.02 

67.52 

10.38 

 

Table 4.11 Coefficients of each input parameter in the MLR and ANN methods. 

Factors Attributes (class) MLR 

coefficients 

ANN 

Normalized 

weight 

Elevation  8.8295 0.1856 

Slope gradient  8.2866 0.1407 

Slope aspect  0.9868 0.0130 

Slope curvature  -18.4705 0.1710   

Topographic wetness index  -3.9702 0.0106 

Distance from drainage  -2.0935 0.0479 

Distance from lineament  3.2612 0.0241 

Lithology Krabi 

Kaengkrachan 

Thungyai 

Igneous rocks 

Quaternary sediments 

Saibon formation 

Ratburi 

0.0379 

4.9638 

5.4886 

4.9266 

-10.5122 

-13.1543 

1.7239 

0.0085 

0.0409 

0.0218  

 0.0171 

0.0232 

0.0543 

0.0351 

Soil texture Clay 

Silty clay 

Loamy sand 

Sandy loam 

Silty clay loam 

Sand 

Sandy clay loam 

Clay loam 

Silty loam 

Loam 

Slope complex area 

-2.4604 

-22.3430 

1.2647 

-1.3786 

-49.7757 

-8.1044 

14.7247 

-117.5437 

12.5615 

-197.1351 

14.8102 

0.0221 

0.0210 

0.0097 

0.0158 

0.0116 

0.0090 

0.0111 

0.0083  

0.0080  

0.0080  

0.0299    

LULC Dense evergreen forest 

Disturbed evergreen forest  

Oil palm 

Para rubber 

Miscellaneous 

1.3958 

0.0000 

0.5037 

0.7696 

-17.2292 

0.0016 

0.0001 

0.0123 

0.0074 

0.0128 
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 4.1.5 Application of multiple logistic regression (MLR) method 

  Similar to the FR method, the multiple logistic regression (MLR) 

method is also highly popular for landslide susceptibility mapping worldwide due 

mainly on its ability to include both numerical and categorical types of contributing 

factor into its analysis fairly conveniently. The first task on this issue was to establish 

the appropriate log-odds or login function L in a linear regression form as detailed in 

Eq. (2.17) to further quantify the needed pixel-based landslide occurrence probability 

p for the area through Eq. (2.18). 

These referred probability values (of 0-1) were then used as representative of landslide 

susceptibility score (LSS) for making susceptibility map of the area afterwards.   

  Regarding to this stated process, the proper relationship of logit function 

L with the preferred causative factors (30 layers in total as listed in Table 4.11) was 

given as: 

 

L = [-10.8212 + (8.8295elevation) + (8.2866slope gradient) + (0.9868slope aspect) 

 - (18.4705slope curvature) - (3.9702TWI) - (2.0935distance from drainage) 

 + (3.2612distance from lineament)] + [(24.8784krabi) + (4.9638kaengkrachan) 

 + (5.4886thungyai) + (4.9266igneous rocks) - (10.5122quaternary sediments) 

 - (13.1543saibon formation) + (1.7239ratburi)\ + (12.5615silty loam)  

 - (49.7757silty clay loam) - (22.3430silty clay) - (1.3786sandy loam)  

 + (14.7247sandy clay loam) - (8.1044sand) + (14.8102slope complex area)  

 + (1.2647loamy sand) + (33.3336sandy clay) - (197.1351loam)  

 - (117.5437clay loam) - (2.4604clay) + (0.5037oil palm) + (0.7696para rubber) 

 - (17.2292miscellaneous) + (1.3958dense evergreen forest)]. (4.1)  
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  Herein the first bracket contains all numerical-type data (7 layers) and 

the second one gathers all relevant categorical data (22 layers). In principle, positive 

coefficients tend to support more landslide activity (higher probability of occurrence) 

while the negative ones signify the opposite outcome (Ayalew and Yamagishi, 2005). 

 

Table 4.12 Landslide susceptibility classification of land based on the MLR method.  

Landslide susceptibility classes LSS values NSS values 
Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

76.30 

3.76 

3.35 

4.34 

12.25 

753.51 

37.12 

33.07 

42.84 

121.00 

 

  According to the coefficient data listed in Table 4.11, strong positive 

influences of several well-known predisposing factors and attributes stated earlier, e.g. 

elevation, slope gradient, distance from lineament, igneous rock, slope complex 

property, were still noticeably acknowledged in the derived logit function L (Eq. (4.1)) 

while the marked negative influencing factors or attributes were slope curvature, TWI, 

clay or clay-loam types of soil texture, distance from drainage, quaternary sediments or 

saibon formation of bedrock. Note that, in LULC group, relatively weak positive 

influence was evidenced for dense evergreen forest, oil palm and para-rubber 

plantations. Also, several extreme values might be difficult to explain true meaning 

(e.g. Krabi formation or clay loam). 

 

 

 

 

 

 

 

 

 



178 

1
7
8
  

 

 

Figure 4.5 Classified landslide susceptibility map yielded from the MLR method. 
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  Figure 4.5 and Table 4.12 shows results of the obtained landslide 

susceptibility maps from the MLR method described earlier. In general, though 

conclusive outlook of the established map was somewhat similar to those of the FR and 

F-Fuzzy methods reported earlier, however, the most distinguish appearance on the 

MLR-based map was the expansive coverage of land with very high susceptibility 

status (12.25%) compared with only 1.0-1.5% in cases of FR and FR-Fuzzy methods. 

This finding implies more work must be utilized to identify the actual should-be 

concerned areas (e.g. village or important facilities/services) from landslide hazard if 

this map is to be implemented. 

 4.1.6 Application of the artificial neural network (ANN) method  

  The artificial neural network (ANN) method has advantage in its distinct 

ability to identify existing nonlinear relationship of past landslide data and a set of the 

chosen causative factors automatically which is still lack in the conventional methods 

like FR or logistic regression (as addressed in Chapter II). In this work, ANN model 

was applied to find appropriate weights of the input data (30 layers in total as listed in 

Table 4.11) and then proceed to build the preferred susceptibility map of the entire 

study area from knowledge of these output weights based on the linear combination 

stated in Eq. (3.3). Here, a three-layer system consisting of input layer (30 neurons), 

one hidden layer (17 neurons) and one output layer was used as a network structure of 

30-16-1 in which 980 training samples (490 landslide locations and 490 landslide-free 

locations) were used as reference dataset in the weight adjustment process.  

  Tables 4.13 summarizes the input-hidden-output weights at each gradual 

stage of the experimented working process. These are (1) Input-Hidden connection 
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weights, (2) Hidden-Output connection weights, and (3) Connection weight products 

defined as WP = (1) x (2). Absolute value from the combination of these weight 

products for each incorporated input layer (called the “absolute weight”: AW) was then 

applied as a basis to determine corresponding normalized weights (NW) using the 

following procedure: 

 

  







30

1

and

i

i

i

iii

AW

AW
   NW    WPAW . (4.1) 

 

  Table 4.13c shows the corresponding NW data for all layers (I1-I30) of 

input data based on its known absolute weight (AW) along with ranking in terms of 

weight’s priority.  

  Regarding to the accomplished NW dataset, elevation and slope 

curvature were considered having top priority with given weights of 0.1856 and 0.1710. 

For lithology, saibon formation type was most valued with weight of 0.0543 while that 

of igneous rocks was just 0.0171 which seems rather contrary to conventional believe 

as reflected in the WLC and AHP method (Tables 4.1 and 4.4) and also to what found 

in the FR method (Table 4.7). Strong roles of slope gradient and distance from drainage 

were also found with relatively high weights of 0.1407 and 0.0479, in their respective 

groups. 

  To produce the preferred landslide susceptibility map, the pixel-based 

landslide susceptibility scores (LSS) were determined from this linear function (from 

Eq. (3.3)):  
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LSS = [(0.1856elevation) + (0.1407slope gradient) +  

 (0.0130slope aspect) + (0.1710slope curvature) +  

 (0.0280TWI) + (0.0479distance from drainage) +  

 (0.0241distance from lineament)] + [(0.0085krabi) +  

 (0.0409kaengkrachan) +  (0.0218thungyai) +  

 (0.0171igneous rocks) + (0.0232quaternary sediments) +  

 (0.0543saibon formation) + (0.0351ratburi) + (0.0080silty loam) +  

 (0.0116silty clay loam) + (0.0210silty clay) + (0.0158sandy loam) +  

 (0.0111sandy clay loam) + (0.0090sand) + (0.0299slope complex) +  

 (0.0097loamy sand) + (0.0080loam) + (0.0083clay loam ) +  

 (0.0221clay) + (0.0123oil palm) + (0.0074para rubber) +  

 (0.0001disturb evergreen forest), (4.2) 

 

where the first bracket contains all numerical-type data (7 layers) and the second one 

gathers all relevant categorical data (23 layers). The obtained LSS data for the whole 

area were then transformed to be equivalent NSS data for the productions of landslide 

susceptibility map as depicted in Figure 4.6 whereas amount of classified land for each 

defined susceptibility class of land is illustrated in Table 4.14. 
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Table 4.13a Input-hidden-output connection weights (ANN method). 

[1] Input (I)-Hidden (H) connection weights 

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

I1 0.0323 -1.8739 4.3677 0.0803 0.5449 2.2436 -3.8683 5.8515 5.2228 0.0346 0.0564 -3.8490 9.0584 -5.0653 -1.6500 -0.6350 

I2 0.1190 1.5979 -3.7399 0.1146 -1.1949 -3.2912 2.9885 -2.0954 1.6510 5.4760 0.3090 10.9592 -8.9873 2.2625 2.3403 2.9341 

I3 0.0329 7.3274 -4.0271 0.0517 2.4779 -0.2931 3.7725 2.9316 -2.2348 4.6067 1.6977 -7.5454 -11.0484 13.7005 3.5283 0.1055 

I4 -0.1694 4.5383 -2.6979 0.0178 2.4729 9.1058 -5.7405 -8.5303 5.2137 8.0244 -2.0186 -2.9513 -1.6892 8.2052 -5.0892 -1.5668 

I5 0.0134 1.7370 2.2134 0.0369 -1.0067 -0.1153 2.8838 1.4845 -1.2230 -2.7571 -3.1611 -2.0702 1.0825 -0.9476 3.2278 -2.5587 

I6 0.4125 -7.1486 0.7399 0.1368 -2.3372 -9.0484 0.6383 4.1667 -10.5820 -5.9454 6.1185 2.0298 -8.8467 -3.8444 0.5291 4.8745 

I7 0.0443 -5.5308 -6.4394 0.0346 0.6776 11.8575 -9.5417 -3.0525 8.8666 -3.5933 3.7371 -2.6576 -1.2823 2.2225 -9.9219 0.8453 

I8 0.1148 -0.1316 0.1083 0.1910 -0.0304 -0.8248 0.4354 0.2948 -0.8113 -0.4549 0.4182 0.5436 -0.0617 0.1434 0.3745 0.0692 

I9 0.1628 -0.3713 0.2809 0.1413 -0.1667 -1.1522 0.6469 0.4020 -1.0336 -0.8081 0.4194 0.9943 -0.4232 -0.2607 0.5465 0.2470 

I10 0.0884 0.3050 -0.2246 0.0832 0.2128 1.0948 2.2049 -1.2782 0.3109 1.9796 0.0097 2.3369 1.7409 2.5653 1.7511 -0.1015 

I11 0.0823 -0.0538 -0.0167 0.1088 0.0668 -0.6672 0.2980 0.1310 -0.6956 -0.3934 0.3098 0.4052 0.0928 0.2146 0.3131 -0.0772 

I12 0.1533 -0.5190 3.6152 0.1142 -0.2678 -2.6315 -2.0981 0.9228 -2.8742 0.4749 -0.2105 -0.4311 -4.1418 -0.6283 -1.4306 1.5082 

I13 -0.1003 -0.1097 -0.5300 -0.0415 -0.3037 -1.0621 -2.6410 0.3612 -1.4284 -2.8126 -0.3452 -1.5660 -0.3399 -1.2546 -1.2106 -0.3453 

I14 0.1426 -0.6482 1.5157 0.1659 -0.4066 -1.6578 2.3278 2.1137 -1.8093 -1.2049 0.7923 1.4235 -0.9923 -1.5223 1.1790 0.6079 

I15 0.0195 -0.0011 -0.0373 0.0464 0.0397 0.0168 -0.0411 0.0318 0.0088 -0.0405 0.0298 0.0469 0.0205 0.0342 0.0480 0.0062 

I16 0.1066 -0.3136 0.3622 0.0918 -0.1591 -1.0821 0.8319 0.5212 -1.1265 -0.6529 0.4744 0.8944 -0.3397 -0.3050 0.7395 0.1776 

I17 0.0539 0.3489 -0.7737 0.1217 0.2263 0.5542 0.6096 -0.8654 1.4175 0.2499 0.1038 1.1255 2.7543 1.3560 0.7517 -0.1527 

I18 0.1304 0.2054 0.0682 0.1166 0.4560 2.9948 0.2886 2.6479 3.4164 0.5870 0.3377 -2.9791 3.7748 -1.7582 0.8769 -1.1594 
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Table 4.13a (Continued). 

[1] Input (I)- Hidden (H) connection weights (continued) 

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

I19 -0.1748 0.5784 -4.6710 0.0106 0.4893 -0.8946 -0.8143 -4.6197 -1.7236 -0.9263 -0.0197 1.5609 -0.3715 3.8750 -1.1340 -1.2084 

I20 0.0548 -0.0941 0.0440 0.1642 0.0479 -0.7425 0.2773 0.2099 -0.6172 -0.3182 0.2989 0.3574 0.0804 0.2010 0.2248 0.0121 

I21 0.1422 -0.0637 -0.0161 0.1755 0.0554 -0.7017 0.2774 0.1403 -0.6369 -0.3633 0.3101 0.3591 0.0886 0.1992 0.2565 -0.0512 

I22 0.0821 -0.1917 0.7346 0.1581 0.2300 -0.5519 0.5921 1.0464 0.5556 0.6299 0.5796 -0.6496 -1.0964 -0.8642 -0.4583 0.3952 

I23 0.1382 -0.0740 0.0613 0.1253 0.0396 -0.7642 0.3414 0.1764 -0.7096 -0.4123 0.3150 0.3934 0.0873 0.1659 0.3511 -0.0207 

I24 -0.1136 -0.2895 -1.1802 -0.0670 -0.4444 -0.9031 -0.5416 -1.5058 0.7973 -0.2141 -0.3208 -2.4192 0.7965 1.6299 -1.7170 -0.5085 

I25 0.0764 -0.0692 -0.0024 0.2023 0.0238 -0.6937 0.3607 0.1624 -0.6912 -0.4042 0.3260 0.3750 0.1117 0.1807 0.3380 -0.0326 

I26 0.0279 0.8521 0.2918 0.1382 1.1023 2.0916 -0.7379 0.5920 0.2839 1.2287 -0.0109 0.8508 0.6178 -0.1958 0.4057 -0.1570 

I27 0.0954 -0.1650 0.1665 0.1129 -0.0635 -0.9422 0.5503 0.3852 -0.8914 -0.5078 0.4231 0.6264 -0.1512 0.0463 0.4884 0.0668 

I28 0.1049 -0.1956 0.3122 0.1071 -0.0651 -1.1132 0.7571 0.5200 -0.9938 -0.5425 0.4901 0.8294 -0.2311 -0.1874 0.7159 0.1610 

I29 0.1371 -0.1402 0.1248 0.1038 -0.0172 -0.8164 0.4297 0.2021 -0.7188 -0.3985 0.3143 0.5205 0.0481 0.1139 0.3982 -0.0162 

I30 0.1342 -0.0948 0.0466 0.1766 0.0892 -0.7070 0.2801 0.1331 -0.6185 -0.3423 0.3478 0.3781 0.1086 0.2447 0.2216 -0.0515 

[2] Hidden-Output connection weights 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

output -0.3349 4.3524 -6.6676 -0.1745 1.6852 5.7799 -6.0184 -7.2152 3.0076 4.6310 -3.2303 -4.9782 6.0578 3.4103 -6.1401 -0.9885 
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Table 4.13b Connection weight products (WP) for each input layer and their associated absolute weight (AW) (ANN method). 

[3] Connection weight products (WP): [1]x[2] AW = 

WP
 

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

I1 -0.0108 -8.1562 -29.1221 -0.0140 0.9183 12.9677 23.2809 -42.2196 15.7082 0.1603 -0.1821 19.1611 54.8745 -17.2739 10.1309 0.6277 40.8507 

I2 -0.0399 6.9547 24.9359 -0.0200 -2.0136 -19.0227 -17.9858 15.1190 4.9656 25.3598 -0.9982 -54.5568 -54.4437 7.7156 -14.3696 -2.9003 81.2998 

I3 -0.0110 31.8919 26.8507 -0.0090 4.1757 -1.6939 -22.7047 -21.1519 -6.7215 21.3336 -5.4842 37.5620 -66.9297 46.7221 -21.6638 -0.1043 22.0623 

I4 0.0567 19.7525 17.9882 -0.0031 4.1672 52.6303 34.5488 61.5481 15.6808 37.1612 6.5205 14.6921 -10.2327 27.9819 31.2479 1.5487 315.2892 

I5 -0.0045 7.5601 -14.7580 -0.0064 -1.6965 -0.6662 -17.3558 -10.7108 -3.6783 -12.7685 10.2111 10.3060 6.5574 -3.2314 -19.8192 2.5292 47.5319 

I6 -0.1382 -31.1137 -4.9334 -0.0239 -3.9385 -52.2987 -3.8418 -30.0634 -31.8268 -27.5332 -19.7644 -10.1047 -53.5919 -13.1104 -3.2489 -4.8183 290.3501 

I7 -0.0148 -24.0722 42.9351 -0.0060 1.1419 68.5350 57.4261 22.0244 26.6673 -16.6408 -12.0719 13.2300 -7.7680 7.5793 60.9214 -0.8355 239.0511 

I8 -0.0384 -0.5729 -0.7224 -0.0333 -0.0513 -4.7673 -2.6201 -2.1272 -2.4399 -2.1065 -1.3508 -2.7061 -0.3736 0.4891 -2.2993 -0.0684 21.7885 

I9 -0.0545 -1.6159 -1.8729 -0.0247 -0.2808 -6.6593 -3.8935 -2.9003 -3.1087 -3.7423 -1.3548 -4.9500 -2.5640 -0.8890 -3.3553 -0.2442 37.5100 

I10 -0.0296 1.3276 1.4974 -0.0145 0.3586 6.3278 -13.2701 9.2223 0.9351 9.1677 -0.0312 -11.6333 10.5462 8.7483 -10.7522 0.1003 12.5004 

I11 -0.0275 -0.2342 0.1116 -0.0190 0.1125 -3.8566 -1.7936 -0.9449 -2.0922 -1.8218 -1.0008 -2.0171 0.5620 0.7319 -1.9224 0.0763 14.1357 

I12 -0.0513 -2.2590 -24.1048 -0.0199 -0.4513 -15.2097 12.6271 -6.6581 -8.6445 2.1995 0.6799 2.1463 -25.0905 -2.1426 8.7838 -1.4908 59.6860 

I13 0.0336 -0.4774 3.5338 0.0072 -0.5117 -6.1390 15.8947 -2.6059 -4.2960 -13.0255 1.1152 7.7960 -2.0589 -4.2786 7.4333 0.3413 2.7623 

I14 -0.0478 -2.8214 -10.1057 -0.0290 -0.6852 -9.5816 -14.0095 -15.2505 -5.4417 -5.5799 -2.5594 -7.0865 -6.0111 -5.1913 -7.2392 -0.6009 92.2408 

I15 -0.0065 -0.0047 0.2489 -0.0081 0.0669 0.0970 0.2477 -0.2296 0.0264 -0.1878 -0.0964 -0.2333 0.1244 0.1165 -0.2947 -0.0062 0.1394 

I16 -0.0357 -1.3649 -2.4148 -0.0160 -0.2680 -6.2544 -5.0069 -3.7609 -3.3882 -3.0237 -1.5323 -4.4525 -2.0578 -1.0400 -4.5405 -0.1755 39.3322 

I17 -0.0180 1.5187 5.1589 -0.0212 0.3814 3.2033 -3.6687 6.2437 4.2632 1.1573 -0.3354 -5.6030 16.6851 4.6244 -4.6158 0.1509 29.1246 

I18 -0.0437 0.8941 -0.4545 -0.0204 0.7684 17.3094 -1.7368 -19.1051 10.2753 2.7185 -1.0908 14.8302 22.8669 -5.9960 -5.3844 1.1460 36.9773 
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Table 4.13b (Continued). 

 [3] Connection weight products (WP): [1]x[2] AW = 

WP
 

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

I19 0.0586 2.5175 31.1443 -0.0018 0.8246 -5.1705 4.9010 33.3317 -5.1840 -4.2896 0.0635 -7.7703 -2.2504 13.2147 6.9626 1.1944 69.5464 

I20 -0.0184 -0.4097 -0.2932 -0.0287 0.0807 -4.2914 -1.6689 -1.5147 -1.8565 -1.4735 -0.9655 -1.7793 0.4871 0.6853 -1.3806 -0.0120 14.4392 

I21 -0.0476 -0.2772 0.1073 -0.0306 0.0933 -4.0557 -1.6693 -1.0126 -1.9156 -1.6825 -1.0016 -1.7878 0.5364 0.6792 -1.5747 0.0506 13.5884 

I22 -0.0275 -0.8345 -4.8982 -0.0276 0.3877 -3.1900 -3.5634 -7.5497 1.6709 2.9173 -1.8723 3.2336 -6.6415 -2.9472 2.8140 -0.3906 20.9189 

I23 -0.0463 -0.3222 -0.4085 -0.0219 0.0667 -4.4171 -2.0546 -1.2730 -2.1343 -1.9093 -1.0175 -1.9583 0.5290 0.5656 -2.1559 0.0205 16.5371 

I24 0.0380 -1.2599 7.8689 0.0117 -0.7490 -5.2198 3.2597 10.8648 2.3981 -0.9916 1.0361 12.0433 4.8251 5.5582 10.5424 0.5027 50.7287 

I25 -0.0256 -0.3011 0.0163 -0.0353 0.0401 -4.0097 -2.1707 -1.1718 -2.0788 -1.8720 -1.0531 -1.8669 0.6766 0.6161 -2.0753 0.0322 15.2791 

I26 -0.0094 3.7088 -1.9458 -0.0241 1.8575 12.0894 4.4412 -4.2715 0.8538 5.6901 0.0352 -4.2355 3.7425 -0.6676 -2.4909 0.1552 18.9289 

I27 -0.0319 -0.7180 -1.1102 -0.0197 -0.1069 -5.4456 -3.3122 -2.7796 -2.6809 -2.3518 -1.3667 -3.1181 -0.9160 0.1580 -2.9987 -0.0660 26.8645 

I28 -0.0351 -0.8511 -2.0816 -0.0187 -0.1096 -6.4344 -4.5566 -3.7519 -2.9889 -2.5124 -1.5830 -4.1287 -1.3998 -0.6390 -4.3956 -0.1591 35.6456 

I29 -0.0459 -0.6101 -0.8324 -0.0181 -0.0289 -4.7184 -2.5863 -1.4581 -2.1620 -1.8456 -1.0152 -2.5912 0.2911 0.3885 -2.4450 0.0160 19.6614 

I30 -0.0449 -0.4127 -0.3105 -0.0308 0.1503 -4.0866 -1.6857 -0.9605 -1.8603 -1.5850 -1.1236 -1.8821 0.6578 0.8344 -1.3605 0.0509 13.6500 
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Table 4.13c Normalized weight (NW) data for each input attribute layer based on the known absolute weight (AW) (ANN method). 

 

Note:

Factor AW NW Rank Factor  AW  NW Rank Factor AW NW Rank 

I1 40.8507 0.0241 10 I11 14.1357 0.0083 25 I21 13.5884 0.0080 26 

I2 81.2998 0.0479 5 I12 59.6860 0.0351 7 I22 20.9189 0.0123 19 

I3 22.0623 0.0130 17 I13 2.7623 0.0016 28 I23 16.5371 0.0097 22 

I4 315.2892 0.1856 1 I14 92.2408 0.0543 4 I24 50.7287 0.0299 8 

I5 47.5319 0.0280 9 I15 0.1394 0.0001 29 I25 15.2791 0.0090 23 

I6 290.3501 0.1710 2 I16 39.3322 0.0232 11 I26 18.9289 0.0111 21 

I7 239.0511 0.1407 3 I17 29.1246 0.0171 15 I27 26.8645 0.0158 16 

I8 21.7885 0.0128 18 I18 36.9773 0.0218 13 I28 35.6456 0.0210 14 

I9 37.5100 0.0221 12 I19 69.5464 0.0409 6 I29 19.6614 0.0116 20 

I10 12.5004 0.0074 27 I20 14.4392 0.0085 24 I30 13.6500 0.0080 26 

I1  Distance from lineament I11  Clay loam I21  Loam 

I2  Distance from  drainage I12  Ratburi I22  Oil palm 

I3  Slope aspect I13  Dense evergreen forest I23  Loamy sand 

I4  Elevation I14  Saibon formation I24  Slope complex area 

I5  Topographic wetness index I15  Disturb evergreen forest I25  Sand 

I6  Slope curvature I16  Quaternary sediments I26  Sandy clay loam 

I7  Slope gradient I17  Igneous rock I27  Sandy loam 

I8  Miscellaneous I18  Thungyai I28  Silty clay 

I9  Clay I19  Kaengkragan I29  Silty clay loam 

I10  Para rubber I20  Krabi I30  Silty loam 
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Figure 4.6 Classified landslide susceptibility map yielded from the ANN method. 
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Table 4.14 Landslide susceptibility classification of land based on the ANN method. 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.11 – 0.19 

0.19 – 0.26 

0.26 – 0.33 

0.33 – 0.41 

0.41 – 0.49 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

12.60 

69.71 

16.29 

1.32 

0.08 

124.46 

688.42 

160.86 

13.03 

0.77 

 

  The highly distinguish appearances on this developed map were the 

predominant of lands in low susceptibility category (69.71%) and the noticeably small 

proportion of area with very high susceptibility condition (0.08%) as well as the very 

low one (1.32%). Therefore, unlike the seen MLR-based map (Figure 4.5) which 

promoted dominancy of the very low and very high susceptibility portions of the 

examined area, the ANN method seemed to be biased towards output map without 

notably high or low landslide susceptibility scores. 

 4.1.7 Application of the integrated ANN and fuzzy logic (ANN-Fuzzy 

model) 

  Integration of fuzzy logic and ANN model to formulate landslide 

susceptibility map for an interested area was also reported in some previous works with 

encouraging results on the improvement in accuracy of map derived through the ANN 

model alone, e.g. in Kanungo et al. (2006) and Gupta, Kanungo, Arora, and Sarkar 

(2008). To assess capability of the fuzzy logic on this stated matter, integration of the 

achieved FR-Fuzzy MV scores (in Table 4.7) and the ANN-based normalized weights 

(in Table 4.11) was implemented to establish a new set of MV data for the ANN-Fuzzy 

method as detailed in Table 4.15. These data were then supplied as input to several 

types of fuzzy operators as listed in Table 4.16 through which the landslide 
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susceptibility maps could be derived as end product (like that of the FR-Fuzzy method 

carried out earlier in Section 4.1.4). 

  All these maps are displayed in Figure 4.7 whereas their average 

accuracies are reported in Table 4.16 from which the Gamma operator (with λ = 0.90) 

was considered the most effective candidate due to its highest average accuracy of 

90.03%. Therefore, susceptibility map of this case as seen in Figure 4.7n was used as 

representative product from the ANN-Fuzzy method whereas proportion data of the 

occupied land by each susceptibility class on this map are provided in Table 4.17. 

 

Table 4.15 Membership values at attribute level in the ANN-Fuzzy method. 

Thematic layers 
Weight 

(ANN) 

Membership value 

(FR-Fuzzy) 

Membership value 

(ANN-Fuzzy) 

Elevation 

(1) < 200 m 

(2) 200 m – 400 m 

(3) 400 m – 600 m 

(4) 600 m – 800 m 

(5) 800 m – 1,000 m 

(6) > 1,000 m 

0.1856 

 

 

 

 

 

 

 

0.1000 

0.2921 

0.5857 

0.7808 

0.9000 

0.6537 

 

0.0186 

0.0542 

0.1087 

0.1449 

0.1670 

0.1213 

Slope gradient 

(1) 0º – 10º 

(2) 10º – 20º 

(3) 20º – 30º 

(4) 30º – 40º 

(5) 40º – 50º 

(6) > 50º  

0.1407 

 

 

 

 

 

 

 

0.1000 

0.3174 

0.9000 

0.7528 

0.1927 

0.2025 
 

 

0.0141 

0.0447 

0.1266 

0.1059 

0.0271 

0.0285 

Slope curvature 

(1) Concave (-) 

(2) Flat (0) 

(3) Convex (+) 

0.0728 

 

 

 

 

0.3471 

0.1000 

0.9000 
 

 

0.0253 

0.0073 

0.0655 

Slope aspect 

(1) Flat 

(2) North 

(3) Northeast 

(4) East 

(5) Southeast 

(6) South 

(7) Southwest 

(8) West 

(9) Northwest 

0.0264 

 

 

 

 

 

 

 

 

 

 

0.1000 

0.7894 

0.7328 

0.5140 

0.2167 

0.3259 

0.5942 

0.8586 

0.9000 

 

0.0026 

0.0208 

0.0193 

0.0136 

0.0057 

0.0086 

0.0157 

0.0227 

0.0238 
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Table 4.15 (Continued).  

Thematic layers 
Weight 

(ANN) 

Membership value 

(FR-Fuzzy) 

Membership value 

(ANN-Fuzzy) 

TWI 

(1) < 2.5 

(2) 2.5 – 5.0 

(3) 5.0 – 7.5 

(4) 7.5 – 10.0 

(5) 10.0 – 12.5 

(6) > 12.5 

0.0106 

 

 

 

 

 

 

 

0.1000 

0.9000 

0.5440 

0.1584 

0.1176 

0.1015 

 

0.0011 

0.0095 

0.0058 

0.0017 

0.0012 

0.0011 

Distance from drainage 

(1) < 50 m 

(2)   50 m – 100 m 

(3) 100 m – 150 m 

(4) 150 m – 200 m 

(5) 200 m – 250 m 

(6) > 250 m 

 

0.0646 

 

 

 

 

 

 

0.5422 

0.5695 

0.5080 

0.9000 

0.8409 

0.1000 

 

0.0350 

0.0368 

0.0328 

0.0581 

0.0543 

0.0065 

Lithology 

(1) Krabi 

(2) Kaeng Krachan 

(3) Thung Yai 

(4) Igneous rocks 

(5) Quaternary sediments 

(6) Saibon Formation 

(7) Ratburi 

 

0.0085 

0.0409 

0.0218 

0.0171 

0.0232 

0.0543 

0.0351 

 

0.1000 

0.4252 

0.2470 

0.9000 

0.1000 

0.1000 

0.1322 

 

0.0009 

0.0174 

0.0054 

0.0154 

0.0023 

0.0054 

0.0046 

Distance from lineament  

(1) < 500 m 

(2)    500 m – 1,000 m 

(3) 1,000 m – 1,500 m 

(4) 1,500 m – 2,000 m 

(5) 2,000 m – 2,500 m 

(6) 2,500 m – 3,000 m 

(7) > 3,000 m 

0.0241 

 

 

 

 

 

 

 

 

0.9000 

0.6238 

0.3243 

0.4005 

0.2772 

0.2365 

0.1000 

 

0.1364 

0.0945 

0.0491 

0.0607 

0.0420 

0.0358 

0.0152 

Soil Texture 

(1) Silty loam 

(2) Silty clay loam 

(3) Silty clay 

(4) Sandy loam 

(5) Sandy clay loam 

(6) Sand 

(7) Slope complex area 

(8) Loamy sand 

(9) Loam 

(10) Clay 

(11) Clay loam 

 

0.0080 

0.0116 

0.0210 

0.0158 

0.0116 

0.0090 

0.0299 

0.0097  

0.0080  

0.0221 

0.0083 

 

0.1000 

0.1000 

0.1000 

0.1000 

0.1366 

0.1000 

0.9000 

0.1000 

0.1000 

0.1000 

0.1000 

 

0.0008 

0.0012 

0.0021 

0.0016 

0.0016 

0.0009 

0.0269 

0.0010 

0.0008 

0.0022 

0.0008 

LULC 

(1) Dense evergreen  forest 

(2) Disturbed evergreen forest 

(3) Oil palm 

(4) Para rubber 

(5) Miscellaneous 

 

0.0016 

0.0001 

0.0123 

0.0074 

0.0128 

 

0.9000 

0.1000 

0.1074 

0.1269 

0.1000 

 

0.0014 

0.0000 

0.0013 

0.0009 

0.0013 
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Table 4.16 Achieved map accuracies of the considered fuzzy operators (ANN-Fuzzy). 

Fuzzy operation 
Success accuracy 

(%) 

Prediction accuracy 

(%) 

ROC 

(%) 

Average 

(%) 

AND 

OR 

Algebraic sum 

Algebraic product 

Gamma (λ) = 0.00 

Gamma (λ) = 0.10 

Gamma (λ) = 0.20 

Gamma (λ) = 0.30 

Gamma (λ) = 0.40 

Gamma (λ) = 0.50 

Gamma (λ) = 0.60 

Gamma (λ) = 0.70 

Gamma (λ) = 0.80 

Gamma (λ) = 0.90 

Gamma (λ) = 0.99 

Gamma (λ) = 1.00 

57.56 

63.72 

87.21 

89.43 

79.00 

82.78 

85.59 

88.82 

89.70 

89.98 

90.16 

90.24 

90.20 

90.05 

88.29 

89.12 

53.03 

60.30 

83.17 

82.95 

69.41 

75.46 

80.04 

83.03 

85.43 

86.64 

87.01 

86.94 

86.71 

86.13 

82.99 

83.08 

85.30 

89.10 

94.70 

56.50 

11.70 

57.00 

57.80 

60.00  

63.50 

68.00 

72.70 

80.10 

87.50 

94.30 

89.60 

89.20 

65.30 

71.04 

88.36 

76.29 

55.37 

71.75 

74.48 

77.28 

79.54 

81.54 

83.29 

85.76 

88.14 

90.16 

86.96 

87.13 

 

Table 4.17 Landslide susceptibility classification for the ANN-Fuzzy method (λ = 0.90). 

Landslide susceptibility  

classes 
LSS values NSS values 

Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.0000 - 0.0024 

0.0024 - 0.0049 

0.0049 - 0.0074 

0.0074 - 0.0099 

0.0099 - 0.0125 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

72.99 

15.07 

8.24 

3.25 

0.45 

720.77 

148.77 

81.42 

32.10 

4.47 

 

  From Table 4.17 and Figure 4.7n, the ANN-Fuzzy based landslide 

susceptibility map was dominated by the very low susceptibility portion of land 

(72.99%) while very small proportion was identified as the high and very high 

susceptibility zones (3.70%). Therefore, the ANN-Fuzzy method seems to suppress the 

proneness to landslide hazard over the area significantly if compared with obtained 

maps of other previous methods. Also, an integration of fuzzy logic to the ANN model 

did transform general outlook of the yielded map greatly (to be in great favor of the low 

to very low susceptibility states). 
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(a) ANN-Fuzzy (AND) (b) ANN-Fuzzy (OR) 

  
(c) ANN-Fuzzy (algebraic sum) (d) ANN-Fuzzy (algebraic product) 

Figure 4.7 Classified landslide susceptibility maps from the ANN-Fuzzy method 

(Continued) 
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(e) ANN-Fuzzy (λ = 0.0) (f) ANN-Fuzzy (λ = 0.1) 

  
(g) ANN-Fuzzy (λ = 0.2) (h) ANN-Fuzzy (λ = 0.3) 

Figure 4.7 Classified landslide susceptibility maps from the ANN-Fuzzy method 

(Continued). 
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(i) ANN-Fuzzy (λ = 0.4) (j) ANN-Fuzzy (λ = 0.5) 

  

(k) ANN-Fuzzy (λ = 0.6) (l) ANN-Fuzzy (λ = 0.7) 

Figure 4.7 Classified landslide susceptibility maps from the ANN-Fuzzy method 

(Continued). 
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(m) ANN-Fuzzy (λ = 0.8) (n) ANN-Fuzzy (λ = 0.9) 

  

(o) ANN-Fuzzy (λ = 0.99) (p) ANN-Fuzzy (λ = 1.0) 

Figure 4.7 Classified landslide susceptibility map from the ANN-Fuzzy method 

(Continued). 
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4.2 Comparison and verification of the yielded susceptibility maps 

 In this part, all derived landslide susceptibility maps as the output products from 

seven listed methods reported earlier (Figures 4.1-4.7) were compared with each other. 

Accuracy assessment of obtained maps was also performed independently according to 

the two popular methods, i.e., the AUC and ROC methods to aid the decision on optimal 

approach of interest. 

 4.2.1 Map comparison and discussion  

  As described in Section 4.1, there were seven proposed methods to be 

examined for their capability in building credible landslide susceptibility map for the 

whole study area (Khao Phanom Bencha Watershed, Krabi Province), which are, the 

WLC, AHP, FR, FR-Fuzzy, MLR, ANN, and ANN-Fuzzy. Due to the conceptual 

differences in their working principles, their accomplished outputs in the form of 

landslide susceptibility map were intuitively expected to exhibit obvious distinctions in 

the predominant characteristics also as can be seen in Figures 4.8a-g, accompanied by 

the proportion of classified land data on the referred maps in Table 4.18 and Figure 

4.10. The corresponding NSS histograms of these maps are also given in Figures 4.9a-

g in which the equal-interval type of susceptibility classification was applied in all 

cases. Here, some methods tended to favor low to very-low susceptibility outcome, i.e., 

AHP, FR, FR-Fuzzy, MLR, ANN, ANN-Fuzzy, but some did bear the more moderate 

outcome one, i.e., WLC, AHP and some predicted noticeably high portion of land with 

high to very high landslide susceptibility scores over an area (e.g. > 10%), i.e., WLC 

(17.49%) and MLR (16.59%). 
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(a) WLC-based map (b) AHP-based map 

  

(c) FR-based map (d) FR-Fuzzy based map 

Figure 4.8 Classified landslide susceptibility maps based on all examined methods. 
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(e) MLR-based map (f) ANN-based map 

 

(g) ANN-Fuzzy based map 

Figure 4.8 Classified landslide susceptibility maps based on all examined methods 

(Continued). 
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(a) WLC 

 

(b) AHP 

Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8. 
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(a) FR 

 
(b) FR-Fuzzy 

Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8. 

(Continued). 
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(a) MLR 

 
(b) ANN 

Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8. 

(Continued). 
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(a) ANN-Fuzzy 

Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8. 

(Continued). 

 

  From Figures 4.9a-g and Table 4.18, it is obvious that the two tested 

qualitative methods, WLC and AHP, exhibited an apparent preference towards the low 

to moderate level of susceptibility on their resulted maps while most evaluated 

quantitative methods (except the ANN) tended to create maps dominated by the very-

low susceptibility land. The explanation for this difference might be about the way these 

maps were built as for the qualitative-type methods, the associated weights (both at 

factor and attribute levels) were judged from opinions of the surveyed experts, not from 

data of the past incidences as did in the quantitative-type methods, which made several 

factors (and their attributes) be somewhat overrated, or underrated, regarding to real 

situation observed in the area. For example in case of LULC, weights were distributed 
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to all classes under examination focusing on oil palm and para rubber (Tables 4.1 and 

4.4), however, in reality just only about 5% of the reference landslide pixels were 

evidenced therein while another 94%           were identified in the dense evergreen forest 

area, which was significantly less favored in both the WLC and AHP methods (but 

highly ranked by the FR and ANN methods).  

 

Table 4.18 Landslide susceptibility classification of land for all examined methods. 

Landslide susceptibility  

classes 
NSS 

Area (%) 

WLC AHP FR 
FR-

Fuzzy 
MLR ANN 

ANN-

Fuzzy 
Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.0 – 0.2 

0.2 – 0.4 

0.4 – 0.6 

0.6 – 0.8 

0.8 – 1.0 

2.11 

40.75 

39.66 

16.28 

1.21 

7.37 

48.48 

35.37 

8.03 

0.76 

67.31 

13.09 

12.70 

5.39 

1.51 

59.13 

20.62 

12.36 

6.84 

1.05 

76.30 

3.76 

3.35 

4.34 

12.25 

12.60 

69.71 

16.29 

1.32 

0.08 

72.99 

15.07 

8.24 

3.25 

0.45 

 

  In addition, the correlation level (r) of the NSS data among tested 

methods was also determined as reported in Table 4.19.  These data show prominently 

high correlation (of 0.93) between the two used qualitative-type methods (WLC and 

AHP), and also among the FR-based methods (FR, FR-Fuzzy, and ANN-Fuzzy). This 

high conformation among them led to resemble results on the derived maps as seen in 

Figures 4.8, 4.9 (map outlook and histogram pattern) and Table 4.18 (land classification 

outcome). 

 

 

 

 

 

 

 

 



204 

2
0
4
  

 

 

Figure 4.10 Proportion of land on classified susceptibility maps for all used methods. 

 

Table 4.19 Correlation level (r) of the NSS data among all examined methods.  

Methods WLC AHP FR 
FR-

Fuzzy 
MLR ANN 

ANN-

Fuzzy 

WLC 1.00       

AHP 0.93 1.00      

FR 0.71 0.68 1.00     

FR-Fuzzy 0.73 0.71 0.97 1.00    

MLR 0.61 0.54 0.88 0.85 1.00   

ANN 0.56 0.55 0.89 0.87 0.78 1.00  

ANN-Fuzzy 0.71 0.70 0.95 0.98 0.82 0.87 1.00 

 

  In terms of the hazard and risk management, maps with noticeably high 

portion of the land affixed with high to very high susceptibility level like those of the 

WLC (17.49%) and MLR (16.59%) might have less applicable value in practice as 

much effort than usual might be needed on the monitoring or examining of landslide 

condition in those areas for the prevention or mitigation purposes. Also, in principle, 
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this kind of result might lead to an overestimation of landslide proneness over an area 

as a high percentage of the observed landslides shall be more likely to be correctly 

identified on these obtained map with the drawback of producing many false alarms (or 

high sensitivity but low specificity). 

  Conversely, if the applied models emphasize too much on the very low 

to low outcome of the susceptibility prediction (i.e., FR, MLR, or ANN-Fuzzy), they 

might have less false alarm cases but number of landslides correctly predicted tend to 

be decreased also (low sensitivity and high specificity) (Segoni, Martelloni, and Catani, 

2013).  

  However, at this stage, the applicable merit of each listed method 

mentioned earlier was still not yet conclusive as only the general outlook of the 

classified map was evaluated and compared so far. More definite judgment can be 

achieved through accuracy assessment of the formulated maps in which two popular 

methods, the AUC and ROC, shall be applied as detailed in following section. Noted 

that, in case of LULC, associated experts put high weights on para rubber and oil palm 

plantations but not on dense forest, however, the FR value for the dense forest was the 

highest one among others. This difference might arise from the fact that FR is the 

evidence-based analysis while WLC and AHP are knowledge-based ones, therefore in 

case of the 2011 incidence which was induced by the unusually high amount of rainfall, 

LULC might not be a key factor to determine chances of landslide occurrence compared 

to the topographic condition ones. As a consequence, the evidence-based methods, like 

FR, might be more effective to explain the real going-on circumstances over an area 

than the qualitative-type ones. 
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 4.2.2 Map validation and optimal method identification  

  To assess for the applicable credibility of the gained susceptibility maps 

displayed in Figure 4.8, their respective accuracy in predicting reference landslide 

incidences was determined by two well-known methods: the Area-Under-Curve (AUC) 

and the Receiver Operating Characteristic (ROC) methods detailed in Chapter II. Here, 

in case of the AUC, two groups of reference dataset were applied: (1) data that were 

used to build the evaluated map before (490 points) and (2) data that were reserved for 

accuracy assessment only (210 points), but for the ROC, only the second dataset was 

incorporated. And for the AUC case, accuracy scores received from the first and second 

reference dataset are called “success rate” and “prediction rate”, respectively. Primary 

goal of the AUC method is to quantify the accurate prediction rate of the method in use 

while for the ROC curve analysis is to find a cutoff value that shall somehow minimize 

number of existing false predictions (positive/negative), or, maximizing sensitivity and 

specificity of the prediction. Figures 4.11 and 4.12 presents yielded outcome of 

accuracy assessment from all evaluated cases stated earlier (AUC-success/prediction 

rates, ROC). 

 

 

Figure 4.11 Comparative illustration of accuracies achieved by all examined methods. 

WLC AHP FR
FR-

Fuzzy
MLR ANN

ANN-

Fuzzy

Success accuracy (%) 87.76 85.28 93.47 92.64 93.00 91.10 91.50

Prediction accuracy (%) 84.51 80.13 92.17 91.08 89.33 90.88 91.41

ROC 87.10 84.70 96.30 94.80 96.60 88.70 94.50

Average 86.46 83.37 93.98 92.84 92.98 90.23 92.47
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(a) AUC-Success rate 

 
 

(b) AUC-Predictive rate 

Figure 4.12 Graphic illustrations of the accuracy quantification by all three considered 

cases: (a) AUC-success rate, (b) AUC-predictive rate, and (c) ROC. 
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(c) ROC 

Figure 4.12 Graphic illustrations of the accuracy quantification by all three considered 

cases: (a) AUC-success rate, (b) AUC-predictive rate, and (c) ROC (Continued). 

 

  In general, it was found that all utilized methods were well capable of 

producing susceptibility maps for the chosen area with remarkably high accuracy 

(mostly > 85%) in all cases though their generated map outlook and land classification 

results might be still somewhat different (as evidenced in Figures 4.8-4.9 and Table 

4.18). However, if consider in terms of average accuracy, the FR method seemed to 

perform the best in all cases under consideration which led to average accuracy of 

93.98%. This was closely followed by MLR (at 92.98%), FR-Fuzzy (at 92.84%), and 

ANN-Fuzzy (at 92.47%). The least successful ones evidenced here were those of both 

qualitative-type methods; the WLC (at 86.02%), and the AHP (at 83.94%). However, 

these apparent accuracy levels still look quite impressive under normal standard (of 

80% up).  
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  Through, the found top four methods (FR, FR-Fuzzy, MLR, and ANN-

Fuzzy) are highly comparable in terms of attained average accuracy (93.98%, 92.84%, 

92.98%, 92.47%), however, the FR was eventually considered to be an optimal 

candidate (to aid further construction of the associated landslide hazard and then risk 

maps for an area) due to its simplest structure and most comprehensible working 

concept if compared to the other two listed choices, as well as on the rather realistic 

outlook of its final output susceptibility map (Figure 4.3). These stated distinct abilities 

are of notable advantage in building in-depth understanding on complicated mechanism 

of landslide formation seen within the area, especially for the prevention, warning, and 

mitigation purposes. However, it should be noted that different works at different places 

and/or with different mapping, or classifying tools, might find different optimal method 

as an outcome, for examples, this was ANN model in work of Park, Choi, Kim, and 

Kim (2013), and Yilmaz (2013), or the support vector regression method in that of 

Kavzoglu, Sahin, and Colkesen (2015). 

  In addition, between the two studied qualitative methods, WLC and 

AHP, it seems WLC was the better one in terms of the yielded average accuracy 

(86.46% to 83.37%). This might be arisen from the weighting methodology at both 

factor and attribute levels as for the WLC, all opinions of all experts regarding to used 

factors and their associated attributes were included in the weighting analysis while for 

the AHP one, only opinions that passed the CR threshold of 0.1 were chosen for weight 

quantification at both levels. 

  However, high correlation between the yielded landslide susceptibility 

scores (of 0.93) suggest high similarity of their map products nevertheless. And for the 

used FR method, the reference landslide input data should be distributed well over the 
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area with sufficient amount needed to increase, or ensure, effectiveness of the mapping 

process. 

 4.2.3 Factor sensitivity analysis  

  As this study so far did not focus on finding most appropriate factors to 

be used in the mapping analysis but concentrated on finding the most effective mapping 

method for the study area based on ten chosen conventional causative factors as stated 

earlier. However, this kind of factor’s sensitivity analysis shall conduct somehow in 

this part of the thesis to evaluate apparent effects of some prominent contributing 

factors in the building of landslide susceptibility maps for the area by the preferred FR 

model. These included the determination of relative importance of each used 

contributing factors and the factor-preferred formulation of the susceptibility map for 

the study area. In the first case, the importance of a particular factor of interest was 

judged by excluding it from the mapping process and compare the newly-achieved 

accuracy result with that of the original one (93.38%) and the finding outcome is as 

illustrated in the Table 4.20, in which low impact on original accuracy ( 0.51%) were 

found in all cases. This means no factors came up as clear favorites as their perceived 

impact was equally negligible.  

  Through, all ten input factors were found to have rather comparable 

importance in the building of landslide susceptibility map by the FR method (as seen 

in Table 4.20), however, different combination of these factors in the map formulating 

procedure might lead to noticeable changes in map outlook and also accuracy outcome 

as demonstrated and reported in Figure 4.13 and Table 4.21 for four interesting cases. 

This combination list was guided by the perceived comparative importance of each 

individual input factor by the reviewed experts reported in Table 4.1. These results 
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indicated that the accuracy of 88.08% could be achieved using slope gradient alone and 

integration of more factors tended to gradually increase yielded accuracy to the 

reference value of 93.98%.   

 

Table 4.20 Accuracy outcome in case of the sensitivity analysis for each used factor.  

FR excluded 
Accuracy (%) 

Rank 
Success  Prediction  ROC Average Change 

None (reference case) 93.47 92.17 96.30 93.98 0.00 - 

Elevation                              92.96 91.95 95.50 93.47 -0.51 1 

Slope gradient 93.01 91.60 95.90 93.50 -0.48 2 

Slope aspect                         93.26 91.95 96.30 93.84 -0.14 6 

Slope curvature 93.49 92.22 96.20 93.97 -0.01 7 

TWI                                     93.57 92.16 96.20 93.98 0.00 8 

Distance from drainage 93.49 92.18 96.30 93.99 +0.01 9 

Lithology 93.40 91.94 95.90 93.75 -0.23 4 

Distance from lineament 93.41 92.21 96.50 94.04 +0.06 10 

Soil texture                           93.33 91.83 95.60 93.59 -0.39 3 

LULC 93.44 92.17 95.80 93.80 -0.18 5 

 

Table 4.21 Accuracy outcome in case of the factor-preferred map formulation. 

Combination pattern 
Accuracy (%) 

Success  Prediction  ROC Average Change 

Slope gradient 87.37 84.66 92.20 88.08 - 5.90 

Slope gradient + Lithology 90.85 89.78 94.40 91.68 - 2.30 

Slope gradient + Lithology + Soil texture 91.74 91.01 95.70 92.82 - 1.16 

Slope gradient + Lithology + Soil texture  

+ LULC + Distance from lineament 

92.70 91.63 95.40 93.24 - 0.74 

All factors included (reference case) 93.47 92.17 96.30 93.98 0.00 
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(a) Slope gradient (b) Slope gradient + Lithology 

  
(c) Slope gradient + Lithology + Soil texture (d) Slope gradient + Lithology + Soil texture + 

LULC + Distance from lineament 

Figure 4.13 FR-based output maps form different combination of input factors. 
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4.3 Effects of rainfall integration on the susceptibility analysis  

 As mentioned in Chapter II, some reports on landslide susceptibility mapping 

had incorporated rainfall data as an individual input layer in their analysis also, e.g., in 

Lee and Pradhan (2006), Intarawichian and Dasananda (2011), and Thanh and de Smedt 

(2012). In theory, the inclusion of rainfall distribution data in the susceptibility analysis 

can lead to the formation of more dynamic output map (as the relevant rainfall scenarios 

can change rapidly with space and time). In this thesis, effects of rainfall integration in 

the FR-based formulation of landslide susceptibility map in two cases were examined, 

which are, (1) the long-term annual mean rainfall data between A.D. 1951- 2012, and 

(2) the event-based data receiving during 27th-29th March 2011 (as seen in Figure 3.11).  

 To accomplish this task, first, the appropriated FR values were assessed for each 

classified range of rainfall data in both cases and results are as expressed in Table 4.22. 

It was found that, in general, no outstanding classes of rainfall data in both cases (with 

noticeably high FR values) were evidenced wherein maximum FR stood at 2.12 only 

and higher FR values did not indicate higher chances for landslide activity in both cases. 

Due to the relatively low FR values of all considered rainfall classes over the entire area 

(around 1 in average), their combination to the original pixel-based NSS values existing 

on the original FR-based susceptibility map (Figure 4.3) to attain a new set of LSS data 

for the formulation of the new associated susceptibility map tended to have rather low 

impact on general outlook of the gained susceptibility maps as illustrated in Figure 4.14 

and Tables 4.23 and 4.24. These results indicate that combination of the rainfall data in 

the FR-based landslide susceptibility mapping here may did not initiate tangible benefit 

per se compared to the original map without them included both in terms of map outlook 

and average accuracy of these maps (as detailed in Figure 4.15). 
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Table 4.22 FR values for the listed rainfall attributes in both cases. 

Factors Class 

Total number of 

pixels 

Landslide 

occurrence point FR  

values 
Number % Number % 

Rainfall  

(long-term 

annual mean) 

< 1,750 mm 

1,750 mm – 1,942 mm 

1,941mm – 2,132 mm 

2,132 mm – 2,323 mm 

> 2,323 mm 

22147 

156684 

697931 

196246 

24348 

2.0184 

14.2705 

63.6069 

17.8852 

2.2190 

0 

22 

387 

77 

4 

0.0000 

4.4898 

78.9796 

15.7143 

0.8163 

0.0000 

0.3146 

1.2417 

0.8786 

0.3679 

Rainfall  

(event-based) 

< 269 mm 

269 mm –  270 mm 

270 mm  – 271 mm 

 > 271 mm  

59686 

243915 

575331 

218324 

5.4396 

22.2295 

52.4336 

19.8973 

18 

15 

353 

104 

3.6735 

3.0612 

72.0408 

21.2245 

0.6753 

0.1377 

1.3739 

1.0667 

Note: Total number of pixels in study area: 1,097,256. Number of landslide occurrence points: 490. 

             FR = % Landslide occurrence points / % number of pixels 

 

Table 4.23a FR-based landslide susceptibility classification with the long-term annual 

mean rainfall data during 1951-2012 over the area integrated. 

Landslide susceptibility classes LSS values NSS values 
Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

1.25 – 10.33 

10.33 – 19.41 

19.41 – 28.49 

28.49 – 37.56 

37.56 – 46.65 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

66.21 

13.83 

12.72 

5.68 

1.56 

653.80 

136.62 

125.62 

56.09 

15.40 

 

Table 4.23b FR-based landslide susceptibility classification with event-based rainfall 

data during 27th-29th March 2011 over the area integrated. 

Landslide susceptibility classes LSS values NSS values 
Area 

% km2 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

1.03 – 10.18 

10.18 – 19.33 

19.33 – 28.48 

28.48 – 37.63 

37.63 – 46.78 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.60 

0.60 – 0.80 

0.80 – 1.00 

65.70 

14.27 

13.14 

5.28 

1.61 

648.84 

140.88 

129.76 

52.17 

15.89 
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(a) Long-term rainfall case (b) Event-based rainfall case 

Figure 4.14 FR-based classified landslide susceptibility maps in two cases of rainfall 

data integration (long-term annual mean and event-based data). 

 

Table 4.24 Comparison of area allocation on three FR-based susceptibility maps under 

consideration (original, with rainfall data integrated-long-term case, event-based case). 

Landslide susceptibility  

classes 
LSS values 

% of Area 

FR 

(original) 

FR 

(long-term) 

FR 

(event-based) 

Very low susceptibility (VLS) 

Low susceptibility (LS) 

Moderate susceptibility (MS) 

High susceptibility (HS) 

Very high susceptibility (VHS) 

0.0 – 0.2 

0.2 – 0.4 

0.4 – 0.6 

0.6 – 0.8 

0.8 – 1.0 

67.31 

13.09 

12.70 

5.39 

1.51 

66.21 

13.83 

12.72 

5.68 

1.56 

65.70 

14.27 

13.14 

5.28 

1.61 
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Figure 4.15 Comparison of accuracies achieved from the three FR-based susceptibility 

maps (original, with rainfall data integrated-long-term case, event-based case). 

 

4.4 Establishment of landslide hazard and risk maps 

 As the ultimate goal of this present study (as stated in Objective 2 in Chapter I) 

was to build landslide hazard and risk maps for the study area based on the availability 

of landslide susceptibility map derived through the identified optimal method (i.e., FR), 

therefore this section shall be devoted to full report and discussion on accomplishments 

of this aforementioned issue in conclusive details.   

 4.4.1 Construction and evaluation of the landslide hazard maps 

  First, the time-dependent hazard maps for the area were constructed 

from a direct pixel-based product of the annual rainfall probability (ARP) data for the 

critical rainfall threshold of 100 mm/day and 300 mm/3-days (Figure 3.12) and the FR-

based landslide susceptibility score (LSS). This relation can be written as: 

FR FR-Longterm FR-Event based

Success accuracy (%) 93.47 93.47 93.63

Prediction accuracy (%) 92.17 91.68 92.37

ROC 96.30 96.30 95.50

Average 93.98 93.82 93.83
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  Hazard index (HI) = ARP x LSS. (3.4) 

 

  The classified hazard maps (for each used rainfall criterion) were then 

established based on application of the equal-interval classifying method on the HI 

dataset and important outcomes are presented in Figures 4.16a and b and Table 4.25, 

respectively.  

  It was clear from these stated maps that, chances of having rainfall 

intensity of 100 mm/day in the area per year changed greatly from about 0.2 (in the 

southeastern part) to about 0.5 (in the southwestern part). Similarly, for a case of the 

rainfall intensity of 300 mm/3-days, chances of the success per year were found much 

lower than those of the 100 mm/day case, wherein peak values of about 0.054 were 

seen at the far south portion of the map and the lowest ones of about 0.022 were attained 

in the southeastern part. However, as critical rainfall data tended to happen over the low 

susceptibility part, both hazard maps seemed to highly resemble that of their 

susceptibility counterparts in terms of both the outlook (Figure 4.16) and distribution 

of occupied area (Table 4.25). 

   And according to very high correlation (of 0.99) between hazard scores 

from both cases, this suggests that their map products can be applied interchangeably. 

However, as chances of reaching the 100 mm/day threshold are typically much higher, 

therefore, attendance should be primarily given to map generated in this case first than 

that of the 300 mm/3-days case which should be more concerned about if that threshold 

is likely to be achieved during some unusual circumstances (like in the March 2011 

incidence investigated in this thesis work). 
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(a) FR-based susceptibility map (b) Annual rainfall probability map  

(100 mm/day)  

 

Figure 4.16a Landslide hazard map (case of critical rainfall threshold 100 mm/day). 
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(a) FR-based susceptibility map (b) Annual rainfall probability map 

(300 mm/3-days) 

 

Figure 4.16b Landslide hazard map (case of critical rainfall threshold 300 mm/3-days). 
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Table 4.25 Landslide hazard classification for two cases of rainfall critical thresholds. 

Landslide hazard  

classes 

100 mm/day 300 mm/3-days 

HI values Area (%) HI values Area (%) 

Very low hazard (VLH) 

Low hazard (LH) 

Moderate hazard (MH) 

High hazard (HH) 

Very high hazard (VHH) 

0.30 – 3.55 

3.55 – 6.80 

6.80 – 10.05 

10.05 – 13.30 

13.30 – 16.55 

66.06 

12.53 

11.80 

8.29 

1.31 

0.02 – 0.36 

0.36 – 0.69 

0.69 – 1.02 

1.02 – 1.34 

1.34 – 1.67 

67.86 

13.27 

12.54 

5.05 

1.28 

 

 4.4.2 Construction and evaluation of the landslide risk maps 

  Commonly, landslide hazard might put some valued components within 

the area at various degree of risk, depending on their natural vulnerability to the exposed 

hazard. In this work, the landslide risk maps for five crucial element-at-risk groups of 

the area (i.e., building, paddy field, field crops, horticulture, and para rubber) were 

established qualitatively for the two investigated cases of the rainfall thresholds 

reported earlier (in Figures 4.16a and b). The vulnerability degree of these elements 

was judged from their estimated economic value per given unit by the responsible 

government agency (mainly for compensation purpose) in the form of normalized 

vulnerability score (NVS) ranging from 0.1 to 0.9 as detailed in Table 4.26 and Figure 

4.17. The utilized transformation formula was similar to that described in Eq. (3.2). 

Then, the corresponding risk map for each case was constructed from the following 

definition of the risk index (pixel-based): 

 

  Risk index (RkI) = HI x NVS. (3.5) 
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  And, as usual, the equal-interval classifying method was used to 

categorize the obtained RkI data on the map into five different zones from very low to 

very high and results are as illustrated in Figure 4.18 and Table 4.27.  

 

Table 4.26 Normalized vulnerability score (NVS) of each considered element at risk. 

Element at risk Subsidy rate NVS 

(1) Building 

(2) Para rubber 

(3) Horticulture 

(4) Field crop 

(5) Paddy field  

30,000 baht/unit 

6,007 baht/rai 

1,690 baht/rai 

1,148 baht/rai 

1,113 baht/rai 

0.9000 

0.2355 

0.1160 

0.1010 

0.1000 

Source:  Management’s guide to disaster assistance in agriculture.  

 

 

Figure 4.17 Normalized vulnerability score map of all examined element at risks. 
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Figure 4.18a Landslide risk map (case of critical rainfall threshold 100 mm/day). 
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Figure 4.18b Landslide risk map (case of critical rainfall threshold 300 mm/3-days). 
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Table 4.27 Landslide risk classification for two cases of rainfall critical thresholds. 

Landslide risk 

classes 

100 mm/day 300 mm/3-days 

RI values 
Area 

(%) 

Area 

(km2) 
RI values 

Area 

(%) 

Area 

(km2) 

Very low risk (VLR) 

Low risk (LR) 

Moderate risk (MR) 

High risk (HR) 

Very high risk (VHR) 

0.00 – 2.29 

2.29 – 4.59 

4.59 – 6.89 

6.89 – 9.19 

9.19 – 11.49 

99.6566 

0.3259 

0.0129 

0.0044 

0.0003 

984.1392 

3.2184 

0.1269 

0.0432 

0.0027 

0.00 – 0.20 

0.20 – 0.40 

0.40 – 0.61 

0.61 – 0.81 

0.81 – 1.02 

99.5785 

0.3984 

0.0182 

0.0045 

0.0004 

983.3679 

3.9348 

0.1800 

0.0441 

0.0036 

 

Table 4.28 Distribution of classified element-at-risk land on the derived hazard map. 

Element at  

risk 

Area (%): 100 mm/day Area (%): 300 mm/3-days 

VLH LH MH HH VHH VLH LH MH HH VHH 

(1) Building 

(2) Para rubber 

(3) Horticulture  

(4) Field crop 

(5) Paddy field 

95.12 

78.53 

89.14 

100.00 

100.00 

4.39 

17.34 

9.74 

0.00 

0.00 

0.47 

3.89 

1.09 

0.00 

0.00 

0.02 

0.24 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

96.45 

80.66 

91.10 

100.00 

100.00 

3.27 

16.74 

8.25 

0.00 

0.00 

0.26 

2.57 

0.64 

0.00 

0.00 

0.01 

0.03 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

 

  In principle, landslide risk map at medium-scale is specifically preferred 

to aid the development planning and emergency response planning in respect to the 

incidence (Michael-Leiba, Baynes, Scott, and Granger, 2003). However, the eventual 

risk maps resulted in this work for both cases of the referred rainfall threshold were 

found to have only about 0.005% of the total area with high to very high risk while 

about 99.9% were located in the very low risk zone. This outcome of the map derivation 

is understandable as the most at-risk element in this case (building) covered only small 

portion of the total land (Table 3.8) while other considered at-risk elements (para 

rubber, horticulture, field crop, and paddy field) were having relatively low priority and 

distributing principally on the low to very low hazard areas (Table 4.28). In this 

circumstance, these yielded maps seem to have low practical benefit to accommodate 
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the aforementioned tasks as most at-risk elements were found situating in the low to 

very low hazard zones which finally led to the very low risk outcome as reported earlier.  

  Therefore, to make this thesis work more applicable in the effective 

preparation of landslide warning and mitigation programs in the area, associated 

landslide hazard due to the potential runout originating from landslide incidence 

upstream was evaluated using the FLOW-R model and results are to be reported in the 

following section. 

 

4.5 Runout hazard analysis 

 As landslide-induced debris flow runout has frequently become a major source 

of huge losses evidenced worldwide, including within the chosen study area, therefore, 

prediction of its strength (especially, velocity and runout distance) to reduce such losses 

is very necessary. In this work, the runout hazard resulted from the landslide incidences 

upstream over the study area was evaluated and mapped numerically using the popular 

Flow-R model as detailed in Chapter II and III wherein the appropriated flow characters 

and deposition outcome were determined and presented as a runout hazard map for the 

area. This map was classified (using equal interval technique) to represent five groups 

of the runout-related hazard level, from the very low to very high as seen in Figure 4.19 

(for the entire study area) and Figures 4.20a-f.  

 From these maps, it is rather clear that the highly-concerned areas with high to 

very high hazard level identified were usually located along the main drainage channels 

with peak hazrd shown in mid-stream portion. And the hazard seemed to gradually drop 

with distance towards the downstream zone due to the reduced water speed from runout 

expansion over gentle terrain and the strong deposition of the carried debris material.  
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Eventually, as reported in Table 4.29, about 80% of the area was associated with very 

low to low hazard level while about 9% was possessing the high to very high level one. 

In terms of risk analysis, the highest priority in runout risk mitigation should be placed 

upon the safety of local residences living in the high-risk houses or building in the area. 

In this regards, the distribution of houses on the hazard-classfied land was assessed and 

result is reported in Table 4.29 from which nine of them were found staying on the high 

to very high runout hazard zone. 

 

Table 4.29 Distribution of land on classified runout-induced hazard map. 

Runout  hazard classes Runout index values 
Area Number of houses 

% km2 Number % 

Very low hazard (VLH) 

Low hazard (LH) 

Moderate hazard (MH) 

High hazard (HH) 

Very high hazard (VHH) 

0.00 – 758.80 

758.80 – 1517.62 

1517.62 – 2276.42 

2276.42 – 3035.22 

3055.22 – 3794.04 

54.44 

25.08 

11.75 

5.37 

3.36 

5.48 

2.53 

1.18 

0.54 

0.34 

23 

16 

11 

9 

2 

37.70 

26.23 

18.03 

14.75 

3.28 

 

 To demonstrate applicability of this formulated runout hazard map on the study 

of actual runout incidences wihtin the area, the close-up maps over some specific parts 

of the area at subdistric level are presented in  Figures 4.21a-f, which are, the Nakhao, 

Thapprik, Khlonghin, Khaophanom, and Krabinoi subdistricts. These stated places 

were reported to experiance serious danger from the runout hazard during the 2011 

landslide episode which resutled in 10 deaths and 58 houses destroyed (DMR, 2011).  

In this study, the high-resolution satellite images of the 2011 landslide and runout traces 

from THEOS and Google map resources are also presented as a background for further 

comparison with the derived runout hazard map. 
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 In general, from the generated runout hazard maps, the top two subdistricts with 

the most severe impact from the runout hazard identified were found to be the Nakhao 

and Thapprik respectively, while the others did not find such serious hazard prediction 

much. And also, the used Flow- R model seemed to be able to produce the runout hazard 

map that conform rather well with the actual runout evidences (along the main drainage 

channels) and their apparent deposit downstream which were visually identified on the 

high-resolution satellite imagery (THEOS and Google map). As such, capability of this 

hazard map on runout warning purpose should be explored in more details in the future. 
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Figure 4.19 Runout hazard map based on hill-shad showing qualitative information on 

the runout spreading probabilities by the Flow-R model. 
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Figure 4.20a A closer look over some specific parts on the yielded runout hazard map 

of the area (subdistrict-level). The high-resolution satellite images of the 2011 landslide 

incidences from THEOS and Google map resources are also presented as background. 

(a) 

(b) 

(c) (d) 
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Figure 4.20b A case of Nakhao subdistrict. 

(a) 
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Soruce: http://www.bloggang.com 

Figure 4.20b Evidences at Ban Ton Han village (Continued).  
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Figure 4.20c A case of Nakhao subdistrict. 

 

(b) 
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Source: https://pongphun.wordpress.com/2011/04/01 

Figure 4.20c Evidences at Ban Huay Nam Kaew village (Continued).  
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Figure 4.20d A case of Thapprik and Klonghin  subdistrict. 

 

(c) 
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Source: http://www.krobkruakao.com 

Figure 4.20d Evidences at Ban Chong Mai Dam village (Continued). 
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Source: http://www.numthang.org 

Figure 4.20d Evidences at Ban Huay Toh village (Continued). 
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Figure 4.21e A case of Khaophanom subdistrict. 

 

 

(d) 
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Source: https://www.gotoknow.org/posts/440202 

Figure 4.21e Evidences at Ban Klong Hang village (Continued).  
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Figure 4.21f A case of Krabinoi subdistrict. 

 

 

(e) 

 

 

 

 

 

 

 

 



 

CHAPTER V 

CONCLUSION AND RECOMMENDATION  

 

 This chapter summarizes the achievements of all works carried out in this thesis 

in accordance with the three objectives outlined in Chapter I, which are, (1) to identify 

optimal method to aid the formulation of landslide susceptibility map for the study area 

from a list of seven candidates, (2) to construct the associated landslide hazard and risk 

maps for the referred area through application of the optimal method identified earlier, 

and (3) to generate landslide-induced runout hazard zones for the examined area based 

on results obtained from the empirical Flow-R runout model. The overall achievements 

of each objective stated above are conclusively detailed as follows. 

 

5.1 Landslide susceptibility maps formulation and evaluation 

 In this thesis work, the Khao Phanom Bencha Watershed in Krabi Province was 

chosen as a study area due to its frequent occurrences of devastated landslides and their 

severe debris flow consequences in recent decades. Seven well-acknowledged methods 

were included as candidates in the preparation of most accurate landslide susceptibility 

maps for the study area, including, (1) weighted linear combination (WLC), (2) 

analytical hierarchy process (AHP), (3) frequency ratio (FR), (4) integrated FR-fuzzy, 

(5) multiple logistic regression (MLR), (6) artificial neural network (ANN), and (7) 

integrated ANN-fuzzy. Ten contributing factors were incorporated as input dataset for 
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the determination of probability of landslide occurrences over entire area by each 

applied model whereas  a total of 700 identified landslide locations were uses as a 

reference for map production (490 samples) and validation (210 samples) purposes. 

 5.1.1 Factor priority analysis  

  It was found that, in terms of the factor preference, both qualitative-type 

methods (WLC and AHP) placed highest weights on the slope gradient, lithology, and 

soil texture while elevation and slope aspect were among the least favorite ones. And 

at attribute level, both stated methods considered high elevation, steep slope, close 

distance to lineament and drainage, high TWI, westward slope facing, and igneous-rock 

structure, as most effective landslide indicators in the area. For the LULC case, para 

rubber and oil palm plantations were judged as topmost landslide indicators in this 

category while dense evergreen forest attained relatively low priority one. In general, 

the appeared orders of preference at both factor and attribute levels (with respect to 

their affixed weights) did conform rather well to the prevalent believes on this issue 

found in most mainstream literature. 

  However, for the quantitative-type methods, which made a prediction of 

landslide occurring probability based on evidences of past landslide events observed 

within the area, the weight-based order of priority (both at factor and attribute levels) 

did vary from model to model, and sometimes not in a strong agreement with those of 

the qualitative-type ones, due crucially to the differences in main working concept of 

weight assessment process. For examples, for the FR method, some specific attributes 

were outstandingly valued with high FR score, e.g. (with FR > 3.0), elevation  400 

meters, slope gradient at 20o-40o range, TWI of 2.5-5.0, igneous-rock basis, and slope-

complex area condition. However, for the LULC category, on the contrary to what 
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found in the WLC and AHP analysis, highest weight was seen at dense evergreen forest, 

with FR of 3.98, while those of the oil palm and para rubber were in much less favor, 

with FR of 0.04 and 1.13, respectively. This contradiction seemed to highlight the 

importance of method type in use as the FR based its analysis on number of actual 

landslide locations in which about 94.90% were found in this forest class.        

  For the MLR method, associated weights were quantified for 30 layers 

of the input data, including 7 layers at factor level for the numerical type and 23 layers 

at attribute level for the categorical type (i.e., lithology, soil texture, and LULC), and 

expressed in the form of coefficient for each used parameter. In principle, positive 

coefficients indicate positive correlation between that parameter and probability of 

landslide occurrence over an area while the negative ones signify the opposite outcome. 

Accomplished results from work in this case revealed strong positive impact of several 

well-known contributing factors and attributes referred to earlier, e.g. elevation, slope 

gradient, distance from lineament, igneous-rock basis, slope complex area condition, 

while the noble negative influencing ones were slope curvature, TWI, clay/clay-loam 

soil type, distance from drainage, quaternary sediments or saibon formation of bedrock. 

And for the LULC category, weak positive influences were expressed for dense 

evergreen forest, oil palm, and para-rubber plantations, which is rather contrary to that 

suggested by the FR model (in case of dense evergreen forest). 

  Similar to the MLR method, the ANN model in use tried to assess 

appropriate weights for all 30 layers of input data based on the found complex 

relationship of these parameters that could explain the occurrences of past landslide 

event within the area. Here, a three-layer ANN system consisting of one input layer (30 

neurons), one hidden layer (16 neurons) and one output layer was adopted to 
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accomplish this task. Regarding to the apparent normalized weights (0 to 1) of these 

parameters, elevation and slope curvature were found having top priority with weights 

of 0.1856 and 0.1710. For lithology, saibon formation type was most valued with 

weight of 0.0543 while that of igneous rocks stood at just 0.0171 which was somewhat 

different from results discovered in most aforementioned methods. Strong role of slope 

gradient and the distance from drainage were also noticed with relatively high weights 

of 0.1407 and 0.0479. 

 5.1.2 Susceptibility map comparison and evaluation 

  The susceptibility maps were produced as an end product by each listed 

method wherein five levels of landslide susceptibility were mapped based on the equal-

interval classifying technique (from very low to very high). In general, all yielded maps 

indicated that lands with high susceptibility were located along the Khao Phanom 

Bencha mountain network mostly where peak values appeared around the summit 

region of the mountain range in the upper southern portion of the area. However, 

associated data of the classified land on each map expressed obvious distinctions in the 

predominant characteristics of map product from which some methods tended to favor 

low to very-low susceptibility outcome, i.e., AHP, FR, FR-Fuzzy, MLR, ANN, ANN-

Fuzzy, but some showed the more moderate outcome one, i.e., WLC, AHP, and some 

generated noticeably high portion of land with high to very high susceptibility level, 

e.g., WLC (17.49%), and  MLR (16.59%). In addition, the correlation level (r) of the 

NSS data among all examined methods was also determined from which prominently 

high correlation (of 0.93) between the two used qualitative-type methods (WLC and 

AHP) were obtained, and also among the FR-based methods (FR, FR-Fuzzy, and ANN-

 

 

 

 

 

 

 

 



244 

Fuzzy). This mutually high conformation among them led to highly resemble map 

outlook as well as distribution of classified land data outcome.  

  In principle, maps with relatively high proportion of high susceptibility 

lands might lead to an overestimation of landslide proneness within the area because 

high percentage of the reference landslides is likely to be correctly identified on these 

maps with drawback of producing many arisen false alarms (or high sensitivity but low 

specificity). Conversely, if the model’s output map emphasizes too much on low 

susceptibility, they might have less false alarm occurrences but total number of the 

correctly-predicted landslides tend to be decreased also (or low sensitivity but high 

specificity). 

 5.1.3 Map accuracy assessment and optimal method identification 

  All yielded susceptibility maps were assessed for their respective 

accuracies in predicting the referred landslide incidences through the use of two well-

known methods: the Area-Under-Curve (AUC) and the Receiver Operating 

Characteristic (ROC) analysis, in which, for the AUC case, accuracy product was 

differentiated into two distinct types called the “success rate” and “prediction rate” with 

respect to the difference in dataset of the reference landslides in use. In general, it was 

found that all applied methods were well capable of producing maps with remarkably 

high accuracy (mostly > 85%) in all cases regardless of the still differences in map 

outlook and land classification outcome. However, if consider in terms of average 

accuracy, the FR method seemed to perform the best in all cases under consideration 

which led to average accuracy of 93.98%. This was closely followed by the MLR (at 

92.98%), FR-Fuzzy (at 92.84%), and ANN-Fuzzy (at 92.47%). The least successful 

ones evidenced here were those of both qualitative-type methods; the WLC (at 86.02%) 
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and the AHP (at 83.94%). However, these accomplished accuracy levels still look quite 

impressive under normal standard (of 80% up).  

  Through, the four most successful methods (FR, FR-Fuzzy, MLR, and 

ANN-Fuzzy) were highly comparable in terms of average accuracy, however, the FR 

one was eventually chosen as an optimal candidate due to its simplest structure and 

most comprehensible working concept, as well as on its rather realistic appearance of 

the achieved susceptibility map, with percentage of land for different level of 

susceptibility as follows: 67.31 (very low), 13.09 (low), 12.70 (moderate), 5.39 (high), 

and 1.51 (very high). In addition, addition of the rainfall data (long-term annual mean 

and short-term event-based) into the normal FR-based production of the susceptibility 

map yielded no appreciable merit in terms of accuracy improvement (< 0.5% change in 

average accuracy). 

 

5.2 Landslide hazard and risk maps formulation and evaluation 

 To produce the landslide hazard map for the study area, temporal probability of 

landslide occurrence within the area, in terms of the annual rainfall probability (ARP) 

for the critical rainfall threshold (for slope failure) of 100 mm/day and 300 mm/3-days, 

was integrated with the FR-based susceptibility map formulated beforehand to generate 

the associated hazard map for the area based on the equal interval classification method 

and data of the computed hazard index. From the ARP maps, chances of having rainfall 

intensity of 100 mm/day per year over the entire area changed significantly from about 

0.2 (in the southeastern part) to about 0.5 (in the southwestern part). Similarly, in case 

of the rainfall intensity of 300 mm/3-days, chances of the success per year were found 

much lower than that of the 100 mm/day case, wherein peak values of about 0.054 were 
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seen at the far south portion of the map and the lowest ones of about 0.022 were attained 

in the southeastern part. However, as most rainfall input layer possessed rather low FR 

values (of about 1 or lower) and the most intense ones tended to distribute over the low 

susceptibility part of the area, both obtained classified hazard maps were found highly 

resemble to that of their susceptibility counterpart in terms of both general map outlook 

and distribution of the classified land over the entire area.   

 The yielded hazard maps in both cases of the ARP mentioned earlier were then 

proceeded to establish the preferred landslide risk map for the area by integration with 

the vulnerability map derived for five groups of the element at risk (i.e., housing, paddy 

field, field crops, horticulture, and para rubber). Vulnerability degree for each element 

was judged from estimated economic value contributed by relevant government agency 

and expressed as normalized scores ranging from 0.1 to 0.9. Risk maps were produced 

from the classified risk index (RkI) over the area using equal interval method. 

 It was found that, on the contrary to what gained in the associated susceptibility 

and hazard maps, risk maps derived for both cases of the ARP contained extremely low 

percentage of land with high to very high risk level (about 0.005%), compared to about 

6-10% in the susceptibility and hazard maps, while about 99.9% of land area belonged 

to the very low risk zone. This outcome stemmed from the fact that most at-risk element 

under consideration (housing) occupied very small portion of the total area while other 

at-risk elements (i.e. paddy field, field crops, horticulture, and para rubber) were having 

relatively low priority and distributing principally on the low to very low hazard areas. 

As such, the resulted hazard index tended to have extremely low values over the entire 

area except those locations that associated with housing utility. 
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5.3 Runout hazard zonation 

 Landslide-induced runout was also a case of interest in this study and its nhazard 

map was produced for the study area through application of the popular Flow-R model. 

From this map, it was rather obvious that the highly-concerned areas with high to very 

high hazard level identified were usually located along the main drainage channels with 

peak hazrd predicted at around mid-stream portion (with highest runout intensity). And 

the simulated hazard level (from its peak location) shall gradually decline with distance 

towards the downstream region due to the reduced water speed from runout expansion 

over gentle terrain and strong deposition of the transported debris material. Eventually, 

about 80% of the mapped area were identified with very low to low hazard level while 

about 9% were having the high to very high hazard level. In addition, the close-up maps 

over some specific parts of the area which experienced serious runout-induced damage 

during the refered 2011 landslide incidence showed rather good conformation between 

mapped hazard zone and the visible runout traces in the high resolution satellite images.  

 Figures 5.1-5.6 illustrate crucial maps to help preparing proper strategies for 

effective prevention or mitigation of potential landslide occurrences or their associated 

risk by responsible agencies and local authorities. 
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Figure 5.1 Landslide susceptibility map from the FR method. 
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Figure 5.2 Landslide hazard map (case of critical rainfall threshold 100 mm/day). 
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Figure 5.3 Landslide hazard map (case of critical rainfall threshold 300 mm/3-days). 
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Figure 5.4 Landslide risk map (case of critical rainfall threshold 100 mm/day). 
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Figure 5.5 Landslide risk map (case of critical rainfall threshold 300 mm/3-days). 
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Figure 5.6 Runout hazard map based on hill-shad. 
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5.4 Reccomendations  

 Though, the achievement of this study has satisfactorily fulfilled all needs stated 

in the prior objectives, however, several related interesting issues still worth exploring 

more in the future to support landslide activity assessment and associated risk reduction 

in Thailand and elsewhere as follows: 

 (1) Impact of LULC conversion on the probability of landslide occurrence under 

similar topological and environmental conditions (e.g. from fertile forest to crop field) 

which has still not been throughly investigated in this study.  

 (2) Effect of the inclusion or exclusion of initial contributing factors on accuracy 

of the yielded maps from other map producing method apart for the FR presented here 

(e.g.WLC, AHP, MLR, or ANN) to find potential best combination (if existing).  

 (3) Effect of classifying schemes (e.g. equal interval, equal area, natural break) 

on map outlook and accuracy determination.  

 (4) Application of the advanced runout zonation modelling to some other 

hotspot landslide susceptible areas in different parts of the country.   

 (5) Systematic and effective process to apply knowledge gained from this study 

in the prevention or reduction of landslide hazard and risk for local people in the area. 

 (6) Size and contained characteristics of the used study area should have direct 

effect on outcome of the mapping analysis, e.g. amount of flat terrain over an area, 

which needs more investigaion to elucidate on this issue.     

 (7) Validity of the gained rainfall data should also be verified by a standard 

method like double mass curve analysis before putting in use.  

 (8) Instead of the distance from drainage system, or from the lineament, their 

density per unit area might be applied instead as seen in several reports to judge for 
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their effciency in the mapping of landlside susceptibility over an interested area 

(compared to the distance-based one applied here). 
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 Definitions for common terms used in landslide zoning and risk management 

given here are followed those reported in AGS (2007a), which are:  

 Landslide. A movement of mass of rock, debris, or earth (soil) down a slope. 

 Landslide inventory. An inventory of location, classification, volume, activity 

and date of occurrence of individual landslides in an area.  

 Landslide susceptibility. A quantitative or qualitative assessment of the 

classification, volume (or area) and spatial distribution of the landslides which exist or 

may potentially arise in an area. Susceptibility may also include description of velocity 

and intensity of the existing or potential landsliding.  

 Hazard. A condition with potential for causing an undesirable consequence. 

Description of landslide hazard should have location, volume (or area), classification 

and velocity of potential landslides and any detached material and probability of their 

occurrence within a given period of time. Landslide hazard includes landslides which 

have their source in the area, or, may have their source outside the area but may travel 

on to or regress into the area.  

 Risk. A measure of the probability and severity of an adverse effect to health, 

property or the environment. Risk is often estimated by the product of probability and 

consequences. However, a more general interpretation of risk involves a comparison of 

the probability and consequences in a non-product form.  

  For these guidelines risk is further defined as:  

  (a)  For life loss, the annual probability that the person most at risk will lose 

his/her life taking account of the landslide hazard and the temporal spatial probability 

and vulnerability of the person.  
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  (b)  For property loss, the annual probability of a consequence (or annualized 

loss) to elements at risk, their temporal spatial probability and vulnerability.  

  Elements at Risk. The population, buildings and engineering works, economic 

activities, public services utilities, infrastructure, environmental features in the area 

potentially affected by the landslide hazard.  

 Vulnerability. The degree of loss to a given element or set of elements within 

the area affected by the landslide hazard. It is expressed on a scale of 0 (no loss) to 1 

(total loss). For property, the loss will be the value of the damage relative to the value 

of the property; for persons, it will be the probability that a particular life (the element 

at risk) will be lost, given the person(s) is (are) affected by the landslide.  

  Zoning. The division of land into homogeneous areas or domains and their 

ranking according to degrees of actual (or potential) landslide susceptibility, hazard or 

risk. The word ‘landslide’ implies both existing (or known landslides) and potential 

landslides which a practitioner might reasonably predict based on relevant geology, 

geometry and slope forming processes. Such potential landslides may be of varying 

likelihood of occurrence. The term landslip is sometimes used to describe landslides 

but is not the recommended term.  
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QUESTIONNAIRE 

 

The questionnaire is composed of 4 parts:  

Part I: Briefly general expert information,  

Part II: General information of the research,  

Part III: Compare the importance of the parameters in relation, and  

Part IV: Comments and suggestions.  

This information is useful and important as primary data of the research. Your opinion 

will not be disclosed. 
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Part I: Briefly expert information 

1.1 Name and surname: .......................................................................................... 

1.2 Position: .............................................................................................................. 

1.3 Education background:  

 1.3.1 Bachelor degree...................................................................................... 

 1.3.2 Master degree......................................................................................... 

 1.3.3 Doctoral degree....................................................................................... 

1.4 Work experience: .............................................................................................. 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

1.5 Email address: ................................................................................................... 

1.6 Mobile phone number: ...................................................................................... 
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Part II: General information of the research 

 

2.1 Thesis title: Optimal landslide susceptibility and risk analyses at Kho Phanom 

Bencha, Krabi province, Thailand. 

2.2 Objective 

 This part of the research used conventional weighted linear combination (WLC) 

and analytical hierarchy process (AHP). 

 WLC is one of the widely-used qualitative methods for landslide susceptibility 

analysis, especially at a regional scale. The comparative importance is normally 

represented by the assigned numerical values for the relevant factors and their affixed 

attributes like using ordinal scale from 1 (not important) to 5 (most important). These 

values are typically called factor weight (for factors) and class weight, or rating, (for 

attributes). Higher values of weight (or rating) indicate greater influence of the factors 

(or attributes) on landslide occurrence within the area. 

 AHP is a semi-qualitative method, which involves a matrix-based pair-wise 

comparison of the contribution of different factors for landslide. The analytical 

hierarchy process (AHP) is a Multi-Criteria Decision Making (MCDM) tool at the core 

of which lies a method for converting subjective assessments of relative importance to 

a set of overall scores or weights. Analytical hierarchy process (AHP) was developed 

by Saaty (1980). To get factor weights in AHP, one has to build a pair-wise comparison 

matrix with scores. 
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Table B1 Scale of preference between two parameters in AHP (Saaty, 2000). 

Scales Degree of preferences Explanation 

1 

3 

 

5 

 

7 

 

9 

 

2, 4, 6, 8 

 

Reciprocals 

Equally 

Moderately 

 

Strongly 

 

Very strongly 

 

Extremely 

 

Intermediate values 

 

Opposites 

Two activities contribute equally to the objective. 

Experience and judgment slightly to moderately favor one 

activity over another. 

Experience and judgment strongly or essentially favor one 

activity over another. 

An activity is strongly favored over another and its 

dominance is showed in practice. 

The evidence of favoring one activity over another is of the 

highest degree possible of an affirmation. 

Used to represent compromises between the preferences in 

weights 1, 3, 5, 7 and 9. 

Used for inverse comparison. 

 

In this study, there are ten landslide inducing parameters which are considered for 

landslide susceptibility analysis. These parameters are elevation, slope gradient, slope 

aspect, slope curvature, topographic wetness index, distance from drainage, lithology, 

distance from lineament, soil texture, and land use and land cover. 
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Part III: Compare the importance of the parameters in relation 

For example of the factor weight and class weight 

 Please input scale with values from 1 to 5 to rate the relative preferences. Assign as 1 = very low; 2 = low; 3 = moderate; 4 = high; 

and 5 = very high. 

 

Explanation: Elevation is the factors affecting on the landslide occurrence show a moderate level number equal to 3. Hence divided by 

height range into individual classes that greater heights values became more vulnerable to landslides.  

  

Factor Factor weight Class Class weight 

1 2 3 4 5 1 2 3 4 5 

Elevation (meter)      0-200      

200-400      

400-600      

600-800      

800-1,000      

>1,000      
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3.1 Fill   for assign value of the factor weight and class weight in the blank according to the method of WLC. 

Assign as 1 = very low; 2 = low; 3 = moderate; 4 = high; and 5 = very high. 

Factor 
Factor weight 

Class 
Class weights 

1 2 3 4 5 1 2 3 4 5 

Elevation (meter)           

0-200           

200-400           

400-600           

600-800           

800-1,000           

>1,000           

Slope aspect           

Flat            

North            

Northeast            

East            

Southeast            

South            

Southwest           

West            

Northwest            
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Factor 
Factor weight 

Class 
Class weights 

1 2 3 4 5 1 2 3 4 5 

Slope gradient (degree)           

0-10           

ต.ค.-20           

20-30           

30-40           

40-50           

> 50           

Slope Curvature           

Concave (-)           

Flat (0)           

Convex (+)           

Topographic wetness index (TWI)           

0-2.5           

2.5-5.0           

5.0-7.5           

7.5-10           

10-12.5           

>12.5           

 

  

 

 

 

 

 

 

 

 



 

 
2
9
9
  

 

Factor 
Factor weight 

Class 
Class weights 

1 2 3 4 5 1 2 3 4 5 

Distance from drainage (meter)           

0-50           

50-100           

100-150           

150-200           

200-250           

>250           

Soil Texture           

Clay           

Silty clay           

Loamy sand           

Sandy loam           

Silty clay loam           

Sand           

Sandy clay loam           

Clay loam           

Silt loam           

Loam           

Slope complex area           
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Factor 
Factor weight 

Class 
Class weights 

1 2 3 4 5 1 2 3 4 5 

Lithology           

Thung Yai           

Ratburi           

Quaternary Sediments           

Kaeng Krachan           

Igneous rocks           

Krabi           

Saibon Formation           

Distance from Lineament (meter)            

0-500           

500 -1,000           

1,000 -1,500           

1,500 -2,000           

2,000 -2,500           

2,500 -3,000           

> 3,000           

Land Use and Land Cover (LULC)           

Disturbed evergreen forest            

Dense evergreen forest            

Para rubber           

Oil palm           

Miscellaneous           
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For example of the class weight according to the method of AHP. 

 

Factor Class No. 1 2 3 

Slope Curvature concave 1 1 5 1/3 

 flat 2 1/5 1  

 convex 3 3  1 

 

Explanation: 1. Concave class have a priority rather than flat class is numerically equal to 5, compared to the same flat class is to be 1/5 

of the concave class. 

2. Convex class have a priority rather than concave class is numerically equal to 3, compared to the same concave class is to be 1/3 of the 

convex class. 
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3.2 Please indicate the rating of the importance of factors according to the method of AHP. 

 

Factor elevation slope aspect curvature TWI distance from  

drainage 

lithology distance from 

lineament 

soil texture LULC 

elevation 1          

slope   1         

aspect   1        

curvature    1       

TWI     1      

distance from 

drainage 

     1     

lithology       1    

distance from 

lineament 

       1   

soil texture         1  

LULC          1 

Remark: The evaluation scale must be 1, representing equally preferred criteria when comparing anything to itself. 
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3.3 Please indicate the rating of the importance of factors in each class according 

to the method of AHP.  

Factor Class No. 1 2 3 4 5 6 

Elevation 

(meter) 

0-200 1 1      

200-400 2  1     

400-600 3   1    

600-800 4    1   

800-1,000 5     1  

>1,000 6      1 

 

Factor Class No. 1 2 3 4 5 6 

Slope Gradient 

(degree) 

0-10 1 1      

10-20 2  1     

20-30 3   1    

30-40 4    1   

40-50 5     1  

> 50 6      1 

 

Factor Class No. 1 2 3 4 5 6 7 8 9 

Aspect 

 

Flat  1 1         

North  2  1        

Northeast  3   1       

East  4    1      

Southeast  5     1     

South  6      1    

Southwest 7       1   

West  8        1  

Northwest  9         1 
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Factor Class No. 1 2 3 

Slope 

curvature 

Concave (-) 1 1   

Flat (0) 2  1  

Convex (+) 3   1 

 

Factor Class No. 1 2 3 4 5 6 

Topographic Wetness Index 

(TWI) 

0-2.5 1 1      

2.5-5.0 2  1     

5.0-7.5 3   1    

7.5-10 4    1   

10-12.5 5     1  

>12.5 6      1 

 

Factor Class No. 1 2 3 4 5 6 

Distance from 

drainage 

(meter) 

0-50 1 1      

50-100 2  1     

100-150 3   1    

150-200 4    1   

200-250 5     1  

>250 6      1 

 

Factor Class No. 1 2 3 4 5 6 7 

Lithology Thung Yai 1 1       

Ratburi 2  1      

Quternary Sediments 3   1     

Kaeng Krachan 4    1    

Igneous rocks 5     1   

Krabi 6      1  

Saibon Formation 7       1 
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Factor Class No. 1 2 3 4 5 6 7 

Distance from lineament 

(meter) 

0-500 1 1       

500 -1,000 2  1      

1,000 -1,500 3   1     

1,500 -2,000 4    1    

2,000 -2,500 5     1   

2,500 -3,000 6      1  

> 3,000 7       1 

 

Factor Class No. 1 2 3 4 5 

LULC Disturbed evergreen forest  1 1     

Dense evergreen forest  2  1    

Para rubber 3   1   

Oil palm 4    1  

Miscellaneous 5     1 

 

Factor Class No. 1 2 3 4 5 6 7 8 9 10 11 

Soil 

texture 

 

clay 1 1           

silty clay 2  1          

loamy sand 3   1         

sandy loam 4    1        

silty clay loam 5     1       

sand 6      1      

sandy clay loam 7       1     

clay loam 8        1    

silty loam 9         1   

loam 10          1  

slope complex area 12           1 
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Part IV: Comments and suggestions 

 

4.1 Do you agree with the above determining factors involved in the landslide 

occurrence? 

  Agree     Not agree; because 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

 

4.2 Do you agree with class interval defined for each factor? 

   Agree    Not agree; because 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 
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4.3 More comments 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

..........................................................................................................................................  

..........................................................................................................................................  

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

.......................................................................................................................................... 

 

 

Please contact the researcher, if you have any doubt on above questionnaires or need 

more explanation. 

For any details, please contact: Miss Thidapath Anucharn (Researcher).  

Tel. 081-2662784. 
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Table B3 List of experts. 

No. Name Position Office 

1 Assoc. Prof. Dr. Charlie  

Navanugraha 

Lecturer Faculty of Environment and 

Resource Studies, Mahidol 

University 

 

2 Assist.Prof.Dr.Chao 

Yongchalermchai 

Lecturer Department of Earth, Faculty of 

Natural Resources, Prince of Songkla 

University 

 

3 Mr.Sirisart Yangsanphu Geologist  Geotechnical Engineering Research 

and Development center (GERD), 

Department of Civil Engineering, 

Faculty of Engineering, Kasetsart 

University 

4 Mr.Worawat Thowiwat Geotechnical 

5 Assist. Prof. Dr. Sodchol 

Wonprasaid 

Lecturer School of Plant Science, Institute of 

Agricultural Technology, Suranaree 

University of Technology 

6 Dr.Rawee Rattanakom Lecturer Faculty of Technology and 

Environment, Prince of Songkla 

University Phuket Campus 

7 Dr.Narumon  Intarawichian Lecturer Faculty of Geoinformatics, Burapha 

University 

8 Ms.Sirilak Tanang  School of Remote Sensing, Institute 

of Science, Suranaree University of 

Technology 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

APPENDIX C 

CONVENTIONAL WEIGHTED LINEAR 

COMBINATION METHOD: WLC’S FACTOR WEIGHTS 

AND WLC’S CLASS WEIGHTS 
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Table C1 Factor weights from questionnaires. 

No. Criteria 
Expert  

Weight 1 2 3 4 5 6 7 8 

1 Elevation 3 3 3 2 2 1 4 1 2.38 

2 Slope gradient 5 5 5 5 4 4 5 3 4.50 

3 Slope aspect 4 1 3 2 3 1 3 2 2.38 

4 Slope curvature 2 4 3 3 3 2 2 3 2.75 

5 Topographic wetness index 4 2 3 3 2 3 2 4 2.88 

6 Distance from drainage 4 1 4 1 3 4 4 2 2.88 

7 Soil texture 5 3 4 4 4 4 5 2 3.88 

8 Lithology 4 5 4 4 4 4 - 5 4.29 

9 Distance from lineament 2 4 4 1 3 3 4 3 3.00 

10 Land use and land cover 4 2 2 4 3 4 3 2 3.00 

 

Table C2 Elevation’s weights from questionnaires. 

No. Criteria  
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 0 m - 200 m 1 1 3 1 1 1 1 1 1.25 

2 200 m - 400 m 2 2 3 2 2 2 2 2 2.13 

3 400 m - 600 m 3 3 3 3 3 2 3 3 2.88 

4 600 m - 800 m 5 4 4 3 4 3 4 4 3.88 

5 800 m - 1,000 m 5 5 4 4 5 4 5 5 4.63 

6 >1,000 m 4 5 3 4 5 5 5 5 4.50 

 

Table C3 Slope gradient’s weights from questionnaires. 

No. Criteria 1 
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 0 ° - 10° 
1 1 1 1 1 1 1 1 1.00 

2 10° - 20° 
2 2 2 2 2 2 2 2 2.00 

3 20° - 30° 
3 3 4 3 3 3 3 2 3.00 

4 30° - 40° 
5 4 3 4 4 4 4 3 3.88 

5 40° - 50° 
4 5 1 4 5 5 5 4 4.13 

6 > 50° 
4 5 1 5 5 5 5 5 4.38 
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Table C4 Slope aspect’s weights from questionnaires. 

No. Criteria 
Expert 

 Weight 
1 2 3 4 5 6 7 8 

1 Flat  1 1 1 1 1 1 1 1 1.00 

2 North  1 1 2 1 2 1 1 3 1.50 

3 Northeast  4 1 3 2 2 3 1 4 2.50 

4 East  3 1 2 5 4 4 1 3 2.88 

5 Southeast  2 1 4 2 4 3 2 2 2.50 

6 South  1 4 2 4 5 1 4 3 3.00 

7 Southwest 4 5 3 2 3 2 5 5 3.63 

8 West  3 4 2 5 2 5 5 3 3.63 

9 Northwest  2 1 4 2 2 2 3 2 2.25 

 

Table C5 Slope curvature’s weights from questionnaires. 

 

Table C6 Topographic wetness index’s weights from questionnaires. 

No. Criteria  
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 0 – 2.5 1 1 1 1 1 1 1 1 1.00 

2 2.5 – 5.0 2 2 2 2 2 2 2 2 2.00 

3 5.0 – 7.5 3 3 3 3 3 3 3 3 3.00 

4 7.5 – 10.0  4 4 4 3 4 3 4 4 3.75 

5 10.0 – 12.5 5 5 5 4 5 4 5 5 4.75 

6 >12.5 5 5 5 5 5 5 5 5 5.00 

 

  

No. Criteria 1 
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 Concave (-) 2 3 3 3 2 2 3 2 2.50 

2 Flat (0) 1 1 1 2 3 1 1 1 1.38 

3 Convex (+) 2 5 2 5 4 4 3 3 3.50 
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Table C7 Distance from drainage’s weights from questionnaires. 

No. Criteria  
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 0 m – 50 m 5 5 4 5 5 5 5 5 4.88 

2 50m – 100 m 5 4 3 4 4 4 4 5 4.13 

3 100 m – 150 m 4 3 2 3 3 4 3 4 3.25 

4 150 m – 200 m 3 2 1 2 2 3 2 3 2.25 

5 200 m – 250 m 2 1 1 1 1 2 1 2 1.38 

6 >250 m 1 1 1 1 1 1 1 1 1.00 

 

Table C8 Lithology’s weights from questionnaires. 

No. Criteria 
Expert 

 Weight 
1 2 3 4 5 6 7 8 

1 Thung Yai 3 3 2 3 4 3 - 4 3.14 

2 Ratburi 1 1 1 2 2 2 - 2 1.57 

3 Quaternary Sediment 3 1 1 1 1 1 - 3 1.57 

4 Kaeng Krachan 4 3 4 4 4 4 - 3 3.71 

5 Igneous rocks 5 5 5 5 5 5 - 5 5.00 

6 Krabi 4 4 2 3 3 4 - 1 3.00 

7 Saibon Formation 3 2 2 3 4 3 - 4 3.00 

 

Table C9 Distance from lineament’s weights from questionnaires. 

No. Criteria 
Expert 

 Weight 
1 2 3 4 5 6 7 8 

1 0 m - 500 m 5 5 5 5 5 5 5 5 5.00 

2 500 m  - 1,000 m 4 5 3 4 4 4 4 5 4.13 

3 1,000 m - 1,500 m 3 4 2 3 3 3 1 4 2.88 

4 1,500 m - 2,000 m 2 3 2 2 2 2 1 3 2.13 

5 2,000 m - 2,500 m 1 2 2 1 1 2 1 3 1.63 

6 2,500 m - 3,000 m 1 1 2 1 1 1 1 2 1.25 

7 > 3,000 m 1 1 2 1 1 1 1 1 1.13 
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Table C10 Soil texture weights from questionnaires. 

No. Criteria 
Expert 

 Weight 
1 2 3 4 5 6 7 8 

1 Clay 1 1 1 4 2 4 1 1 1.88 

2 Silty clay 2 1 3 3 2 3 1 2 2.13 

3 Loamy sand 3 5 2 2 5 2 4 3 3.25 

4 Sandy loam 3 5 2 2 5 2 3 3 3.13 

5 Silty clay loam 3 3 3 4 3 4 2 2 3.00 

6 Sand 5 5 1 1 4 1 5 4 3.25 

7 Sandy clay loam 4 4 3 4 3 2 3 2 3.13 

8 Clay loam 3 1 1 3 2 4 2 3 2.38 

9 Silty loam 3 2 1 3 3 3 2 4 2.63 

10 Loam 3 3 1 3 4 3 3 3 2.88 

11 Slope complex area 2 5 4 1 4 5 5 3 3.63 

 

Table C11 Distance from drainage’s weights from questionnaires. 

No. Criteria  
Expert 

Weight 
1 2 3 4 5 6 7 8 

1 Disturbed evergreen forest 5 3 2 2 4 2 3 2 2.88 

2 Dense evergreen forest 4 1 1 1 1 1 1 1 1.38 

3 Para rubber 4 5 3 4 3 4 5 4 4.00 

4 Oil palm 3 5 2 3 2 5 4 4 3.50 

5 Miscellaneous 2 4 1 5 5 3 3 5 3.50 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

APPENDIX D 

THE PAIR-WISE COMPARISON METHOD: 

AHP’S FACTOR WEIGHTS 
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Example of calculation for the AHP method 

 

The procedure consists of three major step for each factor 

Step I: Generation of the pair-wise comparison matrix. 

1. Suppose that slope is strongly preferred over the elevation attribute; that is the 

comparison results in a value of 5. 

2. Suppose that aspect is moderately to strongly preferred to elevation; that is the 

comparison results in a value of 4. 

3. Slope attribute compared to aspect and suppose that the former is moderately 

preferred to the latter, a score of 3 

Criteria elevation slope aspect 

elevation 1 1/5 1/4 

slope  5 1 3 

aspect 4 1/3 1 

 
 

Step II: Computation of the criterion weights. 

1. Sum the values in each column of the pairwise comparison matrix 

2. Divide each element in the matrix by its column total (the resulting matrix is 

referred to as the normalized pairwise comparison matrix) 

3. Compute the average of the elements in each row of the normalized matrix, that 

is, divide the sum of normalized scores for each row by 3  

 
 

Criteria 
Step I Step II Step III 

e s a e s a Weight 

Elevation (e) 1.00 1/5 1/4 0.10 0.13 0.60 (0.10 + 0.13 + 0.60) /3 = 0.10 

slope (s) 5.00 1.00 3.00 0.50 0.65 0.71 (0.50 + 0.65 + 0.71) /3 = 0.62 

aspect (a) 4.00 1/3 1.00 0.40 0.22 0.24 (0.40 + 0.22 + 0.24) /3 = 0.28 

Total 10.00 1.53 4.25 1.00 1.00 1.00 1.00 
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Step III: Estimation of the consistency ratio  

1. Compute the weight sum vector 

2. Compute the consistency vector 

 

Compute values for two more terms, lambda () and the consistency index (CI) 

Lambda () = 
n

CV
;  () =  06.3

3

3.14 + 3.15 + 2.90
    

Number of criteria (n) = 3    

Calculation of CI is based on the observation that  is always greater than or 

equal to the number of criteria under consideration (n) for positive, reciprocal matrixes, 

and  = n if the pairwise comparison matrix is a consistent matrix. Accordingly,  - n 

can be considered as a measure of the degree of inconsistency.  

Consistency Index (CI) = 03.0
13

33.06

1n

nλ










 

The CI term, referred to as the consistency index, provides a measure of 

departure from consistency. Further, we can calculate the consistency ratio (CR), which 

is defined as follows: 

Consistency Ratio (CR) = 0.05
0.58

0.03

RI

CI
  

  RI   =   random index, depends on the number of elements being compared 

Random Index (RI) for n = 3 is 0.58 

 

 

Criteria Step I  Step II  

elevation (e) (0.10)(1.00) + (0.62)(0.20) + (0.28)(0.25) = 0.29 0.29 / 0.10= 2.90 

slope (s) (0.10)(5.00) + (0.62)(1.00) + (0.28)(3.00) = 1.95 1.95 / 0.62 = 3.15 

aspect (a) (0.10)(4.00) + (0.62)(0.33) + (0.28)(1.00) = 0.88 0.88 / 0.28 = 3.14 

 

 

 

 

 

 

 

 



317 

 

Table D1 Factor weights from questionnaires. 

No. Criteria 1 Criteria 2 
Expert 

1     2     3     4     5     6     7     8     

1     EL EL 1     1     1     1     1     1     1     1     

2     EL SL  1/5  1/5  1/4  1/3  1/5  1/7  1/3  1/5 

3     EL AS  1/4 5     2     1      1/5 1     3      1/6 

4     EL CT  1/3  1/3 2      1/3  1/3  1/2 3      1/5 

5     EL TWI  1/3 3      1/3 0      1/3  1/5 3      1/7 

6     EL DD  1/4 5      1/3 2      1/3  1/8 1      1/2 

7     EL LT  1/4  1/5  1/5  1/2  1/7  1/7   1/7 

8     EL DL  1/4  1/3  1/4 2      1/5  1/7 1      1/5 

9     EL ST  1/5 3     1      1/2  1/7  1/7  1/3  1/4 

10     EL LULC  1/3 3     2      1/5  1/5  1/7  1/3  1/3 

11     SL SL 1     1     1     1     1     1     1     1     

12     SL AS 5     9     5      1/2 5     7     5     2     

13     SL CT 5     3     5     1     3     6     5     1     

14     SL TWI 5     7     4     0     7     3     5      1/2 

15     SL DD 4     9     4      1/3 5     6     5     2     

16     SL LT 4     1     2      1/4 3     3       1/3 

17     SL DL 5     3     3      1/3 5     5     5     3     

18     SL ST 5     5     7      1/4 3     3     1     2     

19     SL LULC 5     7     8      1/4 5     6     1     3     

20     AS AS 1     1     1     1     1     1     1     1     

21     AS CT 4      1/7 1     3     3      1/3 1      1/2 

22     AS TWI 4      1/3  1/4 0     5      1/5 1      1/4 

23     AS DD  1/3 1      1/5 2     5      1/5 3     2     

24     AS LT  1/3  1/9  1/7  1/2 3      1/5   1/5 

25     AS DL  1/3  1/7  1/6  1/2 5      1/4 3      1/3 

26     AS ST  1/4  1/5  1/5  1/2 3      1/5  1/3 2     

27     AS LULC  1/3  1/5 2      1/2 5      1/8  1/3 2     

28     CT CT 1     1     1     1     1     1     1     1     

29     CT TWI  1/4 5      1/3 0     3  1/3  1/3  1/3 

30     CT DD  1/5 7      1/3 3     3  1/2 1     2     

31     CT LT  1/4  1/3  1/7  1/4 3  1/5   1/5 

32     CT DL  1/4  1/3  1/5 3     3  1/2 1     2     

33     CT ST  1/4 3      1/5  1/4 3  1/4  1/5 4     

34     CT LULC  1/3 5     2      1/4 5  1/4  1/5 5     

35     TWI TWI 1     1     1     1     1     1     1     1     

36     TWI DD  1/5 3      1/3 3      1/3 2     1     4     
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Table D1 (Continued). 

No. Criteria 1 Criteria 2 
Expert 

1     2     3     4     5     6     7     8     

37     TWI LT  1/3  1/7  1/7  1/4  1/5  1/2   1/2 

38     TWI DL  1/3  1/5  1/6 3      1/3 4     1     3     

39    TWI ST  1/4  1/3 1      1/4  1/5  1/2  1/5 3     

40     TWI LULC  1/4 1     5      1/4  1/3  1/2  1/5 3     

41     DD DD 1     1     1     1     1     1     1     1     

42     DD LT 4      1/9  1/2  1/2  1/5  1/2   1/5 

43     DD DL 3      1/7  1/3 2     3      1/3 1      1/4 

44     DD ST 3      1/5  1/2  1/2  1/5  1/2  1/5 2     

45     DD LULC 3      1/3 5      1/2  1/3  1/5  1/5 3     

46     LT LT 1     1     1     1     1     1     1     1     

47     LT DL 3 3      1/2 4 5      1/3  4     

48     LT ST  1/4 7      1/2 1     3      1/2  5     

49    LT LULC 4     7     7     1     5      1/4  5     

50     DL DL 1     1     1     1     1     1     1     1     

51     DL ST  1/5 5     3      1/4  1/5  1/6  1/5 2     

52     DL LULC  1/4 5     5      1/4  1/3  1/6  1/5 2     

53     ST ST 1     1     1     1     1     1     1     1     

54     ST LULC 5 3     3      1/5 3     2     1     3     

55     LULC LULC 1     1     1     1     1     1     1     1     

 

Remark:   EL = Elevation       SL = Slope angle       AS = Slope aspect        

                  CT = Slope curvature     TWI = Topographic wetness index  

                 DD = Distance from Drainage       LT = Lithology        

                 DL = Distance from lineament       ST = Soil texture        

                 LULC = Land use/Land cover     
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THE PROCEDURE CONSISTS OF THREE MAJOR STEPS FOR EACH FACTOR 

Expert 1 

Table D2 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC 

 

elevation 1.00 0.20 0.25 0.33 0.33 0.25 0.25 0.25 0.20 0.33 

slope  5.00 1.00 5.00 5.00 5.00 4.00 4.00 5.00 5.00 5.00 

aspect 4.00 0.20 1.00 4.00 4.00 0.33 0.33 0.33 0.25 0.33 

curvature 3.00 0.20 0.25 1.00 0.25 0.20 0.25 0.25 0.25 0.33 

TWI 3.00 0.20 0.25 4.00 1.00 0.20 0.33 0.33 0.25 0.25 

distance from drainage 4.00 0.25 3.00 5.00 5.00 1.00 4.00 3.00 3.00 3.00 

lithology 4.00 0.25 3.00 4.00 3.00 0.25 1.00 3.00 0.25 4.00 

distance from 

lineament 

4.00 0.20 3.00 4.00 3.00 0.33 0.33 1.00 0.20 0.25 

soil texture 5.00 0.20 4.00 4.00 4.00 0.33 4.00 5.00 1.00 5.00 

LULC 3.00 0.20 3.00 3.00 4.00 0.33 0.25 4.00 0.20 1.00 

Total 36.00 2.90 22.75 34.33 29.58 7.23 14.75 22.17 10.60 19.50 
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Table D3 Step II: Computation of the criterion weights for each factor.  

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.03 0.07 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.2275 0.0227 2.2746 

slope  0.14 0.34 0.22 0.15 0.17 0.55 0.27 0.23 0.47 0.26 2.7960 0.2796 27.9600 

aspect 0.11 0.07 0.04 0.12 0.14 0.05 0.02 0.02 0.02 0.02 0.6001 0.0600 6.0015 

curvature 0.08 0.07 0.01 0.03 0.01 0.03 0.02 0.01 0.02 0.02 0.2974 0.0297 2.9742 

TWI 0.08 0.07 0.01 0.12 0.03 0.03 0.02 0.02 0.02 0.01 0.4153 0.0415 4.1529 

distance from drainage 0.11 0.09 0.13 0.15 0.17 0.14 0.27 0.14 0.28 0.15 1.6255 0.1625 16.2547 

lithology 0.11 0.09 0.13 0.12 0.10 0.03 0.07 0.14 0.02 0.21 1.0135 0.1014 10.1351 

distance from lineament 0.11 0.07 0.13 0.12 0.10 0.05 0.02 0.05 0.02 0.01 0.6753 0.0675 6.7534 

soil texture 0.14 0.07 0.18 0.12 0.14 0.05 0.27 0.23 0.09 0.26 1.5290 0.1529 15.2898 

LULC 0.08 0.07 0.13 0.09 0.14 0.05 0.02 0.18 0.02 0.05 0.8204 0.0820 8.2039 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D4 Step III: Estimation of the consistency ratio for each factor. 

 
Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC weight sum 

vector 

Weight Consistency 

Vector 
elevation 0.03 0.07 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.2582 0.0227 11.3519 

slope  0.14 0.34 0.22 0.15 0.17 0.55 0.27 0.23 0.47 0.26 3.6177 0.2796 12.9389 

aspect 0.11 0.07 0.04 0.12 0.14 0.05 0.02 0.02 0.02 0.02 0.6681 0.0600 11.1314 

curvature 0.08 0.07 0.01 0.03 0.01 0.03 0.02 0.01 0.02 0.02 0.3196 0.0297 10.7453 

TWI 0.08 0.07 0.01 0.12 0.03 0.03 0.02 0.02 0.02 0.01 0.4472 0.0415 10.7684 

distance from 

drainage 
0.11 0.09 0.13 0.15 0.17 0.14 0.27 0.14 0.28 0.15 2.1726 0.1625 13.3663 

lithology 0.11 0.09 0.13 0.12 0.10 0.03 0.07 0.14 0.02 0.21 1.2955 0.1014 12.7819 

distance from 
lineament 

0.11 0.07 0.13 0.12 0.10 0.05 0.02 0.05 0.02 0.01 0.7771 0.0675 11.5067 

soil texture 0.14 0.07 0.18 0.12 0.14 0.05 0.27 0.23 0.09 0.26 2.0551 0.1529 13.4413 

LULC 0.08 0.07 0.13 0.09 0.14 0.05 0.02 0.18 0.02 0.05 1.0218 0.0820 12.4553 

Total               120.4872 

 

Number of criteria (n) = 10           Lambda () = 05.12
10

4872.120
  

Consistency Index (CI) = 23.0
110

1005.12

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 15.0
49.1

23.0


RI

CI
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Expert 2 

Table D5 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil texture LULC 

elevation 1.00 0.20 5.00 0.33 3.00 5.00 0.20 0.33 3.00 3.00 

slope  5.00 1.00 9.00 3.00 7.00 9.00 1.00 3.00 5.00 7.00 

aspect 0.20 0.11 1.00 0.14 0.33 1.00 0.11 0.20 0.20 0.14 

curvature 3.00 0.33 7.00 1.00 5.00 7.00 0.33 0.33 3.00 5.00 

TWI 0.33 0.14 3.00 0.20 1.00 3.00 0.14 0.20 0.33 1.00 

distance from drainage 0.20 0.11 1.00 0.14 0.33 1.00 0.11 0.14 0.20 0.33 

lithology 5.00 1.00 9.00 3.00 7.00 9.00 1.00 3.00 7.00 7.00 

distance from lineament 3.00 0.33 7.00 3.00 5.00 7.00 0.33 1.00 5.00 5.00 

soil texture 0.33 0.20 5.00 0.33 3.00 5.00 0.14 0.20 1.00 3.00 

LULC 0.33 0.14 5.00 0.20 1.00 3.00 0.14 0.20 0.33 1.00 

Total 18.40 3.57 52.00 11.35 32.67 50.00 3.52 8.61 25.07 32.48 
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Table D6 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.05 0.06 0.10 0.03 0.09 0.10 0.06 0.04 0.12 0.09 0.7353 0.0735 7.3528 

slope  0.27 0.28 0.17 0.26 0.21 0.18 0.28 0.35 0.20 0.22 2.4309 0.2431 24.3087 

aspect 0.01 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.00 0.1712 0.0171 1.7117 

curvature 0.16 0.09 0.13 0.09 0.15 0.14 0.09 0.04 0.12 0.15 1.1792 0.1179 11.7918 

TWI 0.02 0.04 0.06 0.02 0.03 0.06 0.04 0.02 0.01 0.03 0.3319 0.0332 3.3194 

distance from drainage 0.01 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.1704 0.0170 1.7040 

lithology 0.27 0.28 0.17 0.26 0.21 0.18 0.28 0.35 0.28 0.22 2.5107 0.2511 25.1066 

distance from lineament 0.16 0.09 0.13 0.26 0.15 0.14 0.09 0.12 0.20 0.15 1.5126 0.1513 15.1258 

soil texture 0.02 0.06 0.10 0.03 0.09 0.10 0.04 0.02 0.04 0.09 0.5875 0.0588 5.8753 

LULC 0.02 0.04 0.10 0.02 0.03 0.06 0.04 0.02 0.01 0.03 0.3704 0.0370 3.7040 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       

 

 

 

 

 

 

 

 



 

 
3

2
4
 

 

Table D7 Step III: Estimation of the consistency ratio for each factor. 

 
Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC weight sum 

vector 

Weight Consistency 

Vector 
elevation 0.05 0.06 0.10 0.03 0.09 0.10 0.06 0.04 0.12 0.09 0.8198 0.0735 11.1498 

slope  0.27 0.28 0.17 0.26 0.21 0.18 0.28 0.35 0.20 0.22 2.7621 0.2431 11.3627 

aspect 0.01 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.00 0.1790 0.0171 10.4559 

curvature 0.16 0.09 0.13 0.09 0.15 0.14 0.09 0.04 0.12 0.15 1.3202 0.1179 11.1956 

TWI 0.02 0.04 0.06 0.02 0.03 0.06 0.04 0.02 0.01 0.03 0.3412 0.0332 10.2798 

distance from 

drainage 
0.01 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.1774 0.0170 10.4101 

lithology 0.27 0.28 0.17 0.26 0.21 0.18 0.28 0.35 0.28 0.22 2.8796 0.2511 11.4696 

distance from 
lineament 

0.16 0.09 0.13 0.26 0.15 0.14 0.09 0.12 0.20 0.15 1.7743 0.1513 11.7306 

soil texture 0.02 0.06 0.10 0.03 0.09 0.10 0.04 0.02 0.04 0.09 0.6188 0.0588 10.5320 

LULC 0.02 0.04 0.10 0.02 0.03 0.06 0.04 0.02 0.01 0.03 0.3755 0.0370 10.1366 

Total               108.7227 

Number of criteria (n) = 10           Lambda () = 87.10
10

7227.108
  

Consistency Index (CI) = 10.0
110

1087.10

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 07.0
49.1

10.0


RI

CI
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Expert 3 

Table D8 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.20 0.17 0.20 0.14 0.50 0.14 0.20 0.25 0.33 

slope  5.00 1.00 2.00 1.00 0.50 2.00 0.33 3.00 2.00 3.00 

aspect 6.00 0.50 1.00 0.50 0.25 2.00 0.20 0.33 2.00 2.00 

curvature 5.00 1.00 2.00 1.00 0.33 2.00 0.20 2.00 4.00 5.00 

TWI 7.00 2.00 4.00 3.00 1.00 4.00 0.50 3.00 3.00 3.00 

distance from drainage 2.00 0.50 0.50 0.50 0.25 1.00 0.20 0.25 2.00 3.00 

lithology 7.00 3.00 5.00 5.00 2.00 5.00 1.00 4.00 5.00 5.00 

distance from lineament 5.00 0.33 3.00 0.50 0.33 4.00 0.25 1.00 2.00 2.00 

soil texture 4.00 0.50 0.50 0.25 0.33 0.50 0.20 0.50 1.00 3.00 

LULC 3.00 0.33 0.50 0.20 0.33 0.33 0.20 0.50 0.33 1.00 

Total 45.00 9.37 18.67 12.15 5.48 21.33 3.23 14.78 21.58 27.33 
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Table D9 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.04 0.08 0.05 0.06 0.01 0.02 0.02 0.04 0.07 0.05 0.46 0.0460 4.5967 

slope  0.18 0.31 0.14 0.15 0.17 0.30 0.24 0.49 0.48 0.20 2.65 0.2652 26.5245 

aspect 0.02 0.06 0.03 0.03 0.01 0.01 0.02 0.03 0.01 0.05 0.28 0.0276 2.7559 

curvature 0.02 0.06 0.03 0.03 0.01 0.02 0.02 0.03 0.01 0.05 0.29 0.0295 2.9457 

TWI 0.13 0.08 0.11 0.09 0.04 0.02 0.02 0.03 0.07 0.13 0.72 0.0718 7.1750 

distance from drainage 0.13 0.08 0.14 0.09 0.13 0.07 0.06 0.05 0.03 0.13 0.92 0.0918 9.1751 

lithology 0.22 0.15 0.19 0.22 0.30 0.15 0.12 0.08 0.03 0.18 1.65 0.1646 16.4638 

distance from lineament 0.18 0.10 0.16 0.15 0.26 0.22 0.24 0.16 0.20 0.13 1.81 0.1815 18.1499 

soil texture 0.04 0.04 0.14 0.15 0.04 0.15 0.24 0.05 0.07 0.08 1.01 0.1011 10.1060 

LULC 0.02 0.04 0.01 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.21 0.0211 2.1075 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D10 Step III: Estimation of the consistency ratio for each factor. 

Number of criteria (n) = 10           Lambda () = 20.11
10

9765.111
  

Consistency Index (CI) = 13.0
110

1020.11

1











n

n
 

Random Index (RI) for n = 10 is 1.49,          Consistency Ratio (CR) = 09.0
49.1

13.0


RI

CI
 

 

 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil 

texture 

LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.04 0.08 0.05 0.06 0.01 0.02 0.02 0.04 0.07 0.05 0.50 0.0460 10.9279 

slope  0.18 0.31 0.14 0.15 0.17 0.30 0.24 0.49 0.48 0.20 3.14 0.2652 11.8305 

aspect 0.02 0.06 0.03 0.03 0.01 0.01 0.02 0.03 0.01 0.05 0.29 0.0276 10.3584 

curvature 0.02 0.06 0.03 0.03 0.01 0.02 0.02 0.03 0.01 0.05 0.31 0.0295 10.5148 

TWI 0.13 0.08 0.11 0.09 0.04 0.02 0.02 0.03 0.07 0.13 0.77 0.0718 10.6669 

distance from 

drainage 
0.13 0.08 0.14 0.09 0.13 0.07 0.06 0.05 0.03 0.13 1.04 0.0918 11.2925 

lithology 0.22 0.15 0.19 0.22 0.30 0.15 0.12 0.08 0.03 0.18 1.90 0.1646 11.5451 

distance from 
lineament 

0.18 0.10 0.16 0.15 0.26 0.22 0.24 0.16 0.20 0.13 2.21 0.1815 12.1764 

soil texture 0.04 0.04 0.14 0.15 0.04 0.15 0.24 0.05 0.07 0.08 1.18 0.1011 11.6589 

LULC 0.02 0.04 0.01 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.23 0.0211 11.0051 

Total               111.9765 
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Expert 4 

 

Table D11 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.33 1.00 0.33 0.00 2.00 0.50 2.00 0.50 0.20 

slope  3.00 1.00 0.50 1.00 0.00 0.33 0.25 0.33 0.25 0.25 

aspect 1.00 2.00 1.00 3.00 0.00 2.00 0.50 0.50 0.50 0.50 

curvature 3.00 1.00 1.50 1.00 0.00 3.00 0.25 3.00 0.25 0.25 

TWI 0.67 1.00 1.50   1.00 3.00 0.25 3.00 0.25 0.25 

distance from drainage 1.00 3.00 1.00 0.33 0.33 1.00 0.50 2.00 0.50 0.50 

lithology 0.50 4.00 2.00 4.00 4.00 2.00 1.00 4.00 1.00 1.00 

distance from lineament 2.00 3.00 0.50 0.33 0.33 0.50 0.25 1.00 0.25 0.25 

soil texture 0.50 4.00 2.00 4.00 4.00 2.00 1.00 4.00 1.00 0.20 

LULC 5.00 4.00 2.00 4.00 4.00 2.00 1.00 4.00 5.00 1.00 

Total 17.67 23.33 13.00 18.00 13.67 17.83 5.50 23.83 9.50 4.40 
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Table D12 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.06 0.01 0.08 0.02 0.00 0.11 0.09 0.08 0.05 0.05 0.55 0.0551 5.5139 

slope  0.17 0.04 0.04 0.06 0.00 0.02 0.05 0.01 0.03 0.06 0.47 0.0468 4.6795 

aspect 0.06 0.09 0.08 0.17 0.00 0.11 0.09 0.02 0.05 0.11 0.78 0.0776 7.7621 

curvature 0.17 0.04 0.12 0.06 0.00 0.17 0.05 0.13 0.03 0.06 0.81 0.0806 8.0630 

TWI 0.04 0.04 0.12 0.00 0.07 0.17 0.05 0.13 0.03 0.06 0.69 0.0692 6.9184 

distance from drainage 0.06 0.13 0.08 0.02 0.02 0.06 0.09 0.08 0.05 0.11 0.70 0.0702 7.0217 

lithology 0.03 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.11 0.23 1.66 0.1663 16.6282 

distance from lineament 0.11 0.13 0.04 0.02 0.02 0.03 0.05 0.04 0.03 0.06 0.52 0.0522 5.2173 

soil texture 0.03 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.11 0.05 1.48 0.1481 14.8100 

LULC 0.28 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.53 0.23 2.34 0.2339 23.3859 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D13 Step III: Estimation of the consistency ratio for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil texture LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.06 0.01 0.08 0.02 0.00 0.11 0.09 0.08 0.05 0.05 0.62 0.0551 11.3164 
slope  0.17 0.04 0.04 0.06 0.00 0.02 0.05 0.01 0.03 0.06 0.51 0.0468 10.8881 
aspect 0.06 0.09 0.08 0.17 0.00 0.11 0.09 0.02 0.05 0.11 0.91 0.0776 11.7092 
curvature 0.17 0.04 0.12 0.06 0.00 0.17 0.05 0.13 0.03 0.06 0.91 0.0806 11.3297 
TWI 0.04 0.04 0.12 0.00 0.07 0.17 0.05 0.13 0.03 0.06 0.77 0.0692 11.1790 
distance from drainage 0.06 0.13 0.08 0.02 0.02 0.06 0.09 0.08 0.05 0.11 0.77 0.0702 10.9911 
lithology 0.03 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.11 0.23 1.87 0.1663 11.2256 
distance from lineament 0.11 0.13 0.04 0.02 0.02 0.03 0.05 0.04 0.03 0.06 0.56 0.0522 10.8054 
soil texture 0.03 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.11 0.05 1.68 0.1481 11.3405 
LULC 0.28 0.17 0.15 0.22 0.29 0.11 0.18 0.17 0.53 0.23 2.71 0.2339 11.5760 
Total                         112.3610 

 

 

Number of criteria (n) = 10           Lambda () = 24.11
10

3610.112
  

Consistency Index (CI) = 14.0
110

1024.11

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 09.0
49.1

14.0


RI

CI
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Expert 5 

Table D14 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.20 0.20 0.33 0.33 0.33 0.14 0.20 0.14 0.20 

slope  5.00 1.00 5.00 3.00 7.00 5.00 3.00 5.00 3.00 5.00 

aspect 5.00 0.20 1.00 3.00 5.00 5.00 3.00 5.00 3.00 5.00 

curvature 3.00 0.33 0.33 1.00 3.00 3.00 3.00 3.00 3.00 5.00 

TWI 3.00 0.14 0.20 0.33 1.00 0.33 0.20 0.33 0.20 0.33 

distance from drainage 3.00 0.20 0.20 0.33 3.00 1.00 0.20 3.00 0.20 0.33 

lithology 7.00 0.33 0.33 0.33 5.00 5.00 1.00 5.00 3.00 5.00 

distance from lineament 5.00 0.20 0.20 0.33 3.00 0.33 0.20 1.00 0.20 0.33 

soil texture 7.00 0.33 0.33 0.33 5.00 5.00 0.33 5.00 1.00 3.00 

LULC 5.00 0.20 0.20 0.20 3.00 3.00 0.20 3.00 0.33 1.00 

Total 44.00 3.14 8.00 9.20 35.33 28.00 11.28 30.53 14.08 25.20 
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Table D15 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.02 0.06 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.21 0.0206 2.0624 

slope  0.11 0.32 0.63 0.33 0.20 0.18 0.27 0.16 0.21 0.20 2.60 0.2601 26.0093 

aspect 0.11 0.06 0.13 0.33 0.14 0.18 0.27 0.16 0.21 0.20 1.79 0.1790 17.8978 

curvature 0.07 0.11 0.04 0.11 0.08 0.11 0.27 0.10 0.21 0.20 1.29 0.1292 12.9249 

TWI 0.07 0.05 0.03 0.04 0.03 0.01 0.02 0.01 0.01 0.01 0.27 0.0271 2.7116 

distance from drainage 0.07 0.06 0.03 0.04 0.08 0.04 0.02 0.10 0.01 0.01 0.46 0.0457 4.5710 

lithology 0.16 0.11 0.04 0.04 0.14 0.18 0.09 0.16 0.21 0.20 1.33 0.1327 13.2711 

distance from lineament 0.11 0.06 0.03 0.04 0.08 0.01 0.02 0.03 0.01 0.01 0.41 0.0413 4.1324 

soil texture 0.16 0.11 0.04 0.04 0.14 0.18 0.03 0.16 0.07 0.12 1.05 0.1047 10.4654 

LULC 0.11 0.06 0.03 0.02 0.08 0.11 0.02 0.10 0.02 0.04 0.60 0.0595 5.9541 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D16 Step III: Estimation of the consistency ratio for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil texture LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.02 0.06 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.23 0.0206 11.1462 
slope  0.11 0.32 0.63 0.33 0.20 0.18 0.27 0.16 0.21 0.20 3.28 0.2601 12.6133 
aspect 0.11 0.06 0.13 0.33 0.14 0.18 0.27 0.16 0.21 0.20 2.30 0.1790 12.8642 
curvature 0.07 0.11 0.04 0.11 0.08 0.11 0.27 0.10 0.21 0.20 1.69 0.1292 13.0734 
TWI 0.07 0.05 0.03 0.04 0.03 0.01 0.02 0.01 0.01 0.01 0.30 0.0271 11.1133 
distance from drainage 0.07 0.06 0.03 0.04 0.08 0.04 0.02 0.10 0.01 0.01 0.51 0.0457 11.1819 
lithology 0.16 0.11 0.04 0.04 0.14 0.18 0.09 0.16 0.21 0.20 1.65 0.1327 12.4250 
distance from lineament 0.11 0.06 0.03 0.04 0.08 0.01 0.02 0.03 0.01 0.01 0.44 0.0413 10.6294 
soil texture 0.16 0.11 0.04 0.04 0.14 0.18 0.03 0.16 0.07 0.12 1.23 0.1047 11.7728 
LULC 0.11 0.06 0.03 0.02 0.08 0.11 0.02 0.10 0.02 0.04 0.68 0.0595 11.4240 
Total                         118.2436 

 

 

Number of criteria (n) = 10           Lambda () = 82.11
10

2436.118
  

Consistency Index (CI) = 20.0
110

1082.11

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 14.0
49.1

20.0


RI

CI
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Expert 6 

Table D17 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance 

from 

drainage 

lithology distance 

from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.14 1.00 0.50 0.20 0.13 0.14 0.14 0.14 0.14 

slope  7.00 1.00 7.00 6.00 3.00 6.00 3.00 5.00 3.00 6.00 

aspect 1.00 0.14 1.00 0.33 0.20 0.20 0.20 0.25 0.20 0.13 

curvature 2.00 0.17 3.00 1.00 0.33 0.50 0.20 0.50 0.25 0.25 

TWI 5.00 0.33 5.00 3.00 1.00 2.00 0.50 4.00 0.50 0.50 

distance from drainage 8.00 0.17 5.00 2.00 0.50 1.00 0.50 0.33 0.50 0.20 

lithology 7.00 0.33 5.00 5.00 2.00 2.00 1.00 0.33 0.50 0.25 

distance from lineament 7.00 0.20 4.00 2.00 0.25 3.00 3.00 1.00 0.17 0.17 

soil texture 7.00 0.33 5.00 4.00 2.00 2.00 2.00 6.00 1.00 2.00 

LULC 7.00 0.17 8.00 4.00 2.00 5.00 4.00 6.00 0.50 1.00 

Total 52.00 2.99 44.00 27.83 11.48 21.83 14.54 23.56 6.76 10.63 
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Table D18 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.02 0.05 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.18 0.0181 1.8137 

slope  0.13 0.33 0.16 0.22 0.26 0.27 0.21 0.21 0.44 0.56 2.81 0.2807 28.0690 

aspect 0.02 0.05 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.19 0.0194 1.9407 

curvature 0.04 0.06 0.07 0.04 0.03 0.02 0.01 0.02 0.04 0.02 0.35 0.0346 3.4580 

TWI 0.10 0.11 0.11 0.11 0.09 0.09 0.03 0.17 0.07 0.05 0.93 0.0933 9.3309 

distance from drainage 0.15 0.06 0.11 0.07 0.04 0.05 0.03 0.01 0.07 0.02 0.63 0.0626 6.2583 

lithology 0.13 0.11 0.11 0.18 0.17 0.09 0.07 0.01 0.07 0.02 0.99 0.0986 9.8573 

distance from lineament 0.13 0.07 0.09 0.07 0.02 0.14 0.21 0.04 0.02 0.02 0.81 0.0813 8.1266 

soil texture 0.13 0.11 0.11 0.14 0.17 0.09 0.14 0.25 0.15 0.19 1.50 0.1498 14.9762 

LULC 0.13 0.06 0.18 0.14 0.17 0.23 0.28 0.25 0.07 0.09 1.62 0.1617 16.1695 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D19 Step III: Estimation of the consistency ratio for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil texture LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.02 0.05 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.19 0.0181 10.5643 
slope  0.13 0.33 0.16 0.22 0.26 0.27 0.21 0.21 0.44 0.56 3.53 0.2807 12.5687 
aspect 0.02 0.05 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.21 0.0194 10.8489 
curvature 0.04 0.06 0.07 0.04 0.03 0.02 0.01 0.02 0.04 0.02 0.38 0.0346 10.8867 
TWI 0.10 0.11 0.11 0.11 0.09 0.09 0.03 0.17 0.07 0.05 1.13 0.0933 12.1486 
distance from drainage 0.15 0.06 0.11 0.07 0.04 0.05 0.03 0.01 0.07 0.02 0.65 0.0626 10.4007 
lithology 0.13 0.11 0.11 0.18 0.17 0.09 0.07 0.01 0.07 0.02 1.04 0.0986 10.5831 
distance from lineament 0.13 0.07 0.09 0.07 0.02 0.14 0.21 0.04 0.02 0.02 0.97 0.0813 11.9343 
soil texture 0.13 0.11 0.11 0.14 0.17 0.09 0.14 0.25 0.15 0.19 1.93 0.1498 12.8574 
LULC 0.13 0.06 0.18 0.14 0.17 0.23 0.28 0.25 0.07 0.09 2.09 0.1617 12.8965 
Total                         115.6892 

 

Number of criteria (n) = 10           Lambda () = 57.11
10

6892.115
  

Consistency Index (CI) = 17.0
110

1057.11

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 12.0
49.1

17.0


RI

CI
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Expert 7 

Table D20 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.33 3.00 3.00 3.00 1.00 - 1.00 0.33 0.33 

slope  3.00 1.00 5.00 5.00 5.00 5.00 - 5.00 1.00 1.00 

aspect 0.33 0.20 1.00 1.00 3.00 3.00 - 3.00 0.33 0.33 

curvature 0.33 0.20 1.00 1.00 0.33 1.00 - 1.00 0.20 0.20 

TWI 0.33 0.20 0.33 3.00 1.00 1.00 - 1.00 0.20 0.20 

distance from drainage 1.00 0.20 0.33 1.00 1.00 1.00 - 1.00 0.20 0.20 

lithology  - -  -  -  -   - 1.00 1.00 0.20 0.20 

distance from lineament 1.00 0.20 0.33 1.00 1.00 1.00 1.00 1.00 0.20 0.20 

soil texture 3.00 1.00 3.00 5.00 5.00 5.00 5.00 5.00 1.00 1.00 

LULC 3.00 1.00 3.00 5.00 5.00 5.00 5.00 5.00 1.00 1.00 

Total 13.00 4.33 17.00 25.00 24.33 23.00 12.00 24.00 4.67 4.67 
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Table D21 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.08 0.08 0.18 0.12 0.12 0.04 0.00 0.04 0.07 0.07 0.80 0.0802 8.0161 

slope  0.23 0.23 0.29 0.20 0.21 0.22 0.00 0.21 0.21 0.21 2.02 0.2015 20.1543 

aspect 0.03 0.05 0.06 0.04 0.12 0.13 0.00 0.13 0.07 0.07 0.69 0.0692 6.9220 

curvature 0.03 0.05 0.06 0.04 0.01 0.04 0.00 0.04 0.04 0.04 0.36 0.0355 3.5518 

TWI 0.03 0.05 0.02 0.12 0.04 0.04 0.00 0.04 0.04 0.04 0.42 0.0423 4.2336 

distance from drainage 0.08 0.05 0.02 0.04 0.04 0.04 0.00 0.04 0.04 0.04 0.39 0.0395 3.9464 

lithology 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.04 0.04 0.21 0.0211 2.1071 

distance from lineament 0.08 0.05 0.02 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.48 0.0478 4.7797 

soil texture 0.23 0.23 0.18 0.20 0.21 0.22 0.42 0.21 0.21 0.21 2.31 0.2314 23.1445 

LULC 0.23 0.23 0.18 0.20 0.21 0.22 0.42 0.21 0.21 0.21 2.31 0.2314 23.1445 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D22 Step III: Estimation of the consistency ratio for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil texture LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.08 0.08 0.18 0.12 0.12 0.04 0.00 0.04 0.07 0.07 0.83 0.0802 10.3557 
slope  0.23 0.23 0.29 0.20 0.21 0.22 0.00 0.21 0.21 0.21 2.08 0.2015 10.3034 
aspect 0.03 0.05 0.06 0.04 0.12 0.13 0.00 0.13 0.07 0.07 0.71 0.0692 10.3273 
curvature 0.03 0.05 0.06 0.04 0.01 0.04 0.00 0.04 0.04 0.04 0.37 0.0355 10.2968 
TWI 0.03 0.05 0.02 0.12 0.04 0.04 0.00 0.04 0.04 0.04 0.42 0.0423 9.8931 
distance from drainage 0.08 0.05 0.02 0.04 0.04 0.04 0.00 0.04 0.04 0.04 0.40 0.0395 10.1671 
lithology 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.04 0.04 0.16 0.0211 7.6619 
distance from lineament 0.08 0.05 0.02 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.42 0.0478 8.8354 
soil texture 0.23 0.23 0.18 0.20 0.21 0.22 0.42 0.21 0.21 0.21 2.04 0.2314 8.8293 
LULC 0.23 0.23 0.18 0.20 0.21 0.22 0.42 0.21 0.21 0.21 2.04 0.2314 8.8293 
Total                         95.4993 

 

Number of criteria (n) = 10           Lambda () = 55.9
10

4993.95
  

Consistency Index (CI) = 05.0
110

1055.9

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 03.0
49.1

05.0





RI

CI
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Expert 8 

Table D20 Step I: Generation of the pair-wise comparison matrix for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC 

elevation 1.00 0.20 0.17 0.20 0.14 0.50 0.14 0.20 0.25 0.33 

slope  5.00 1.00 2.00 1.00 0.50 2.00 0.33 3.00 2.00 3.00 

aspect 6.00 0.50 1.00 0.50 0.25 2.00 0.20 0.33 2.00 2.00 

curvature 5.00 1.00 2.00 1.00 0.33 2.00 0.20 2.00 4.00 5.00 

TWI 7.00 2.00 4.00 3.00 1.00 4.00 0.50 3.00 3.00 3.00 

distance from drainage 2.00 0.50 0.50 0.50 0.25 1.00 0.20 0.25 2.00 3.00 

lithology 7.00 3.00 5.00 5.00 2.00 5.00 1.00 4.00 5.00 5.00 

distance from lineament 5.00 0.33 3.00 0.50 0.33 4.00 0.25 1.00 2.00 2.00 

soil texture 4.00 0.50 0.50 0.25 0.33 0.50 0.20 0.50 1.00 3.00 

LULC 3.00 0.33 0.50 0.20 0.33 0.33 0.20 0.50 0.33 1.00 

Total 45.00 9.37 18.67 12.15 5.48 21.33 3.23 14.78 21.58 27.33 
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Table D21 Step II: Computation of the criterion weights for each factor. 

 

 

 

 

 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil 

texture 

LULC Total Weight Weight (%) 

elevation 0.02 0.02 0.01 0.02 0.03 0.02 0.04 0.01 0.01 0.01 0.20 0.0200 2.0008 

slope  0.11 0.11 0.11 0.08 0.09 0.09 0.10 0.20 0.09 0.11 1.10 0.1101 11.0105 

aspect 0.13 0.05 0.05 0.04 0.05 0.09 0.06 0.02 0.09 0.07 0.67 0.0671 6.7122 

curvature 0.11 0.11 0.11 0.08 0.06 0.09 0.06 0.14 0.19 0.18 1.13 0.1127 11.2747 

TWI 0.16 0.21 0.21 0.25 0.18 0.19 0.15 0.20 0.14 0.11 1.81 0.1807 18.0705 

distance from drainage 0.04 0.05 0.03 0.04 0.05 0.05 0.06 0.02 0.09 0.11 0.54 0.0540 5.3961 

lithology 0.16 0.32 0.27 0.41 0.37 0.23 0.31 0.27 0.23 0.18 2.75 0.2750 27.4994 

distance from lineament 0.11 0.04 0.16 0.04 0.06 0.19 0.08 0.07 0.09 0.07 0.91 0.0908 9.0790 

soil texture 0.09 0.05 0.03 0.02 0.06 0.02 0.06 0.03 0.05 0.11 0.53 0.0526 5.2584 

LULC 0.07 0.04 0.03 0.02 0.06 0.02 0.06 0.03 0.02 0.04 0.37 0.0370 3.6984 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00       
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Table D22 Step III: Estimation of the consistency ratio for each factor. 

Factor elevation slope aspect curvature TWI distance from 

drainage 

lithology distance from 

lineament 

soil texture LULC weight sum 

vector 

Weight Consistency 

Vector 

elevation 0.02 0.02 0.01 0.02 0.03 0.02 0.04 0.01 0.01 0.01 0.2115 0.0200 10.5699 
slope  0.11 0.11 0.11 0.08 0.09 0.09 0.10 0.20 0.09 0.11 1.2356 0.1101 11.2217 
aspect 0.13 0.05 0.05 0.04 0.05 0.09 0.06 0.02 0.09 0.07 0.7161 0.0671 10.6686 
curvature 0.11 0.11 0.11 0.08 0.06 0.09 0.06 0.14 0.19 0.18 1.2571 0.1127 11.1499 
TWI 0.16 0.21 0.21 0.25 0.18 0.19 0.15 0.20 0.14 0.11 2.0421 0.1807 11.3008 
distance from drainage 0.04 0.05 0.03 0.04 0.05 0.05 0.06 0.02 0.09 0.11 0.5780 0.0540 10.7105 
lithology 0.16 0.32 0.27 0.41 0.37 0.23 0.31 0.27 0.23 0.18 3.0869 0.2750 11.2254 
distance from lineament 0.11 0.04 0.16 0.04 0.06 0.19 0.08 0.07 0.09 0.07 1.0092 0.0908 11.1161 
soil texture 0.09 0.05 0.03 0.02 0.06 0.02 0.06 0.03 0.05 0.11 0.5480 0.0526 10.4209 
LULC 0.07 0.04 0.03 0.02 0.06 0.02 0.06 0.03 0.02 0.04 0.3860 0.0370 10.4360 
Total                         108.8199 

 

Number of criteria (n) = 10           Lambda () = 89.10
10

8199.108
  

Consistency Index (CI) = 10.0
110

1089.10

1











n

n
 

Random Index (RI) for n = 10 is 1.49 

Consistency Ratio (CR) = 07.0
49.1

10.0


RI

CI
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Table D23 Mean weight from expert that CR < 0.1. 

Expert Mean weight 

CR<0.1 1 2 3 4 5 6 7 8 

0.0227 0.0735 0.0460 0.0551 0.0206 0.0181 0.0802 0.0200 0.0550 

0.2796 0.2431 0.2652 0.0468 0.2601 0.2807 0.2015 0.1101 0.1733 

0.0600 0.0171 0.0276 0.0776 0.1790 0.0194 0.0692 0.0671 0.0517 

0.0297 0.1179 0.0295 0.0806 0.1292 0.0346 0.0355 0.1127 0.0752 

0.0415 0.0332 0.0718 0.0692 0.0271 0.0933 0.0423 0.1807 0.0794 

0.1625 0.0170 0.0918 0.0702 0.0457 0.0626 0.0395 0.0540 0.0545 

0.1014 0.2511 0.1646 0.1663 0.1327 0.0986 0.0211 0.2750 0.1756 

0.0675 0.1513 0.1815 0.0522 0.0413 0.0813 0.0478 0.0908 0.1047 

0.1529 0.0588 0.1011 0.1481 0.1047 0.1498 0.2314 0.0526 0.1184 

0.0820 0.0370 0.0211 0.2339 0.0595 0.1617 0.2314 0.0370 0.1121 

0.1500 0.0700 0.0900 0.0900 0.1400 0.1200 -0.0300 0.0700  
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