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Abstract

Group classification of viscous gas equations in two-dimensional case is made. Exact solutions of simplified equations
and complete equations of viscous gas are compared on the one model problem. This comparison shows that simplified
equations have the same order as boundary layer equations. ( 1998 Published by Elsevier Science Ltd. All rights
reserved.
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1. Introduction

One of the important and difficult problem of
computational aerodynamics is investigation of the
flows near bodies. The viscous gas dynamics equa-
tions allow us to obtain full information about the
structures of flows with the usual temperature and
pressure. Yet despite progress in numerical
methods and techniques, the calculation of com-
plex flows remains a difficult problem.

Numerical methods, powerful and irreplaceable
tools in solving new problems, are frequently diffi-
cult to justify and are labor intensive. The necessary
reasonable interpretation and representation of re-

sults of mass calculations on the computer, and
explanation of various mathematical difficulties,
encountered during computations, is closely tied
with deep analytical theory of mathematical nature.
Research of specific problems involve the overcom-
ing of significant mathematical difficulties mainly
due to either nonlinearity, or the presence of a large
number of variables in the initial equations. There-
fore, the analytic study of properties of partial dif-
ferential equations (PDE) play an important role in
applied mathematics and mathematical physics.
Among these methods, analytical research based on
knowledge of separate classes of the partial solu-
tions have received widespread attention. Each
exact solution has value, first, as the exact descrip-
tion of the real process in frameworks of the given
model; secondly, as a model to compare various
numerical methods; thirdly, as theory to improve
the used models.
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2When the article was written author noticed that if B"

A/p!1 then from Eq. (2.2) the e"e (p/o) is obtained.

Besides the complete viscous gas equations, sim-
plified equations are used as well. There are simpli-
fied equations from the complete set through
eliminating some elements using various assump-
tions concerning the character of flows [1—4]. One
of the most simple of the simplified equations is the
boundary layer model. Another approach is based
on the consideration of parabolic Navier—Stokes
equations, considered accurate in a wider range of
parameters of the flow. The precise range of ap-
plicability of these simplified equations remains an
unresolved theoretical problem. The numerical re-
search of various models is frequently hampered by
the difficulty involved in distinguishing errors due
to the numerical method involved from the descrip-
tion of the model itself.

The first part of our article is devoted to the
group classification of two-dimensional stable vis-
cous gas equations. In the second part we consider
the one invariant exact solution of the complete
equations of viscous gas and some of their simplifi-
cations. We then compare these solutions with re-
spect to various entrance parameters.

2. General statement of a problem

We consider the two-dimensional stable viscous
gas equations
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Here o is the density; p is the pressure; k is the
coefficient of viscosity; i is the coefficient of heat
conductivity; e is the internal energy of viscous gas;
¹ is the temperature; l"0 for the plane flows and
l"1 for the axi-symmetrical flows;

A"

p!o2eo
oe

p

, B"

1
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p

. (2.2)

If gas is perfect (i.e. it obeys to the Clapeyron
equation ¹"p/(Ro)), then e"e(¹ ) and A"

p(1#e@)/e@, B"A/p!1. For our considerations,
the coefficients of viscosity and heat conductivity
depend only on p/o

k"k(p/o), i"i (p/o), (2.3)

the function A"A(p, o) is arbitary function and

B"

A!p

p
.

We wish to obtain a group classification with
respect to arbitrary elements k, i, A2 for the Eqs.
(2.1). The gas is considered essentially viscous and
conductivity: kO0, iO0.

We will use a classical group analysis for con-
structing solutions of the system of Eqs. (2.1). The
advanced approach to this kind of problems is
given in [5].

The application of group analysis implies some
steps. The first step is group classification. An ad-
missible group is found at this step. The next step is
a construction of an optimal system of subalgebras.
Then one can attempt to find an invariant solution
for each subalgebra of the optimal system.

The group classification problem consists in
searching for admissible group of transformations,
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which is admitted for all arbitrary elements of the
system (in our case it is an arbitrary state equation
A(p, o)) and all specifications of arbitrary elements.
Specialization of arbitrary elements can extend the
admissible group.

For each subalgebra of admissible algebra we
can try to find an invariant solution. There are an
infinite number of subalgebras. But if two subalgeb-
ras are similar, i.e., they are connected to each other
by a transformation from the symmetry group, then
their corresponding invariant solutions are connec-
ted with each other by the same transformation.
Since the set of subalgebras can be divided into
classes of similar subalgebras, therefore, it is suffi-
cient to find only one representative solution from
each similar class of subalgebras. A set of represen-
tatives of equivalent subalgebra classes is called the
optimal system of subalgebras.

Here we will give some comments on the applica-
tion of group analysis to the two-dimensional
steady gas flow equations (2.1).

3. Equivalence transformations

The first stage of group classification requires
determining the groups of equivalence transforma-
tions of Eqs. (2.1). An equivalence transformation is
a nondegenerate change of dependent and indepen-
dent variables and arbitrary elements, which trans-
forms any system of differential equations of a
given class to the system of equations of the same
class. It allows us to use the simplest representation
of given equations. We will follow the new ap-
proach to the calculation of equivalence trans-
formations [6].

Since arbitrary elements satisfy restrictions (2.3)
and A"A(p, o), we will have to adjoin the equa-
tions
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to the Eqs. (2.1). Here we give a construct to the
group of equivalence transformations without re-

strictions on the representation of equivalence
transformations [7], so that all coefficients of infini-
tesimal generator
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are dependent on all independent, dependent vari-
ables and arbitrary elements [6]
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With the following notation:

u1"u, u2"v, u3"o, u4"p,

a1"A, a2"k, a3"i

and

z1"x, z2"y, z3"u, z4"v, z5"o, z6"p,

the coefficients of the prolonged operator

XM %"X%#+
i

(fuixL
uix
#fuiyL

uiy
)#+

k, j

fakzjL
akzj
#2

can be constructed with the prolongation formulas:

fuix"D
x
fui!ui

x
D

x
mx!ui

y
D

x
my,

fuiy"D
y
fui!ui

x
D

y
mx!ui

y
D

y
my,

fuixx"D
x
fuix!ui

xx
D

x
mx!ui

xy
D

x
my,

fuixy"D
y
fuix!ui

xx
D

y
mx!ui

xy
D

y
my,

fuiyy"D
y
fuiy!ui

xy
D

y
mx!ui

yy
D

y
my,

fakzj"D%
zj
fak!+

a
ak
za
D%

zj
fza.

Here operators D
x
, D

y
denote the total derivative

operator with respect to x and y, respectively. For
example,
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When we use the operator D%
zj

we consider
z1, 2 , z6 as independent variables and a1, a2, a3 as
dependent variables, we obtain:

D%
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"L

zj
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All necessary calculations were carried on the
computer using the symbolic manipulation pro-
gram REDUCE [8].
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Table 1
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The calculation showed that the group of equiva-
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4. The admissible group
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The kernel of the fundamental Lie algebra is
made up of the following generators: for the axi-
symmetric flows (l"1):
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Extension of the kernel of the main Lie algebra
occurs by specializing the functions k (p/o), i (p/o)
and A(p, o).
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stants), then group classification is broader. The
study of Eq. (4.1) is completed in the same way as
for ideal inviscous gas [9]. The results of group
classification are represented in the Table 1.
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form as shown in Table 3.
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Here r denotes the subalgebra dimension. The

latter column presents the identificator of nor-
malizer shown in a given line of subalgebra. The
first number in the normalizer indentificator de-
notes its dimension, the second number is its num-
ber among the subalgebras of a given dimension.
Self-normalized subalgebras are marked by the sign
of equality.
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6. Some invariant solutions

Now, we consider one plane (l"0) invariant
exact solution of model problem of viscous gas and
some simplifications. In dimensionless form, they
appear as
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Here Ma is Mach number, Re is Reynolds number,
Pr is Prandtl number, a is equal to 1 or 0. If the
coefficient of dynamic viscosity is constant, then we
may assume that it is equal to 1. These equations
are obtained from the complete equations of vis-
cous compressible gas with the same assumptions
about character of flows, as those of the equations
of a boundary layer. Thus, in the equation of con-
servation of a pulse in cross direction (on an axis y)
we retain only the terms of order 1/JRe. They
include Euler equations and boundary layer equa-
tions.

As the tests for numerical methods [2, 10] fol-
lowing problem was considered:
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and with speed and temperature included, we have
a system of ordinary differential equations
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for complete Eqs. (2.1)
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4k
3Re

u#bf, b"
1

Re P
1

0

k(¹(u)) du.

These results imply that for small values m
0

DP
1
!P

2
D)DP

2
!P

1
D.
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