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Abstract 

Explicit formulae and recurrence relations for the calculation of generalized B-splines (GB-splines) of arbitrary order 
are given. We derive main properties of GB-splines and their series, i.e. partition of unity, shape-preserving properties, 
invariance with respect to affine transformations, etc. It is shown that such splines have the variation diminishing property 
and are Chebyshevian splines. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Fitting curves and surfaces to functions and data requires the availability of methods which pre- 
serve the shape of the data. In practical calculations, we usually deal with data given with prescribed 
accuracy. Therefore, we need to develop methods for constructing fair-shape-preserving approxima- 
tions that satisfy given tolerances and inherit major geometric properties of the data such as positivity, 
monotonicity, convexity, presence of linear sections, etc. Such approximations, based on GB-splines 
[ 121 with automatic choice of tension parameters are suggested in [ 111. 

Until recently, local support bases for computations with generalized splines have been available 
only for some special types of splines [3, 13, 151. This limits the choice of methods when using 
generalized splines. In [7-91 local support basis functions for exponential splines were introduced 
and their application to interpolation problems was considered. A recurrence relation for rational 
B-splines with prescribed poles was obtained in [5]. In [ 10, 121 one of the authors constructed 
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GB-splines for tension generalized splines allowing the tension parameters to vary from interval to 
interval. 

In this paper, we expand the main results in [12] to GB-splines of arbitrary order. These 
GB-splines are nonnegative functions with supports of minimal length which form a partition of 
unity. We get explicit formulae for such GB-splines and develop recurrence algorithms for their 
calculation. In the particular case of polynomial B-splines, we recover the well-known recurrence 
relation for such B-splines [l]. The main properties of GB-splines and their series such as shape- 
preserving properties, invariance with respect to affine transformations, etc., are investigated. It is 
shown that the GB-spline series is a variation diminishing function and the systems of GB-splines 
are weak Chebyshevian systems. 

2. GB-splines of arbitrary degree 

Let a partition d:a=xO<xl< ... cxN = b of the interval [a, b] be given to which we associate 
a space of splines S,” whose restriction to a subinterval [Xi,Xi+l], i = 0,. . . ,N- 1 is spanned by the 
system on linearly independent functions { 1, x, . . . , xne3, @i,n, Yi,,}, n 2 2, and where every function 
in S,” has n-2 continuous derivatives. 

Definition 2.1. A generalized spline of order y1 is a function S E Sf such that 
(i) for anyXEIXj,Xi+l], i=O ,..., N- 1, 

S(X) = Pj,n-_2(X) + Sc”-2’(Xi)@i,n(X) + Sc”-2’(Xi+1)E,,(X), 

where Pi,n-2 is a polynomial of order n-2, and 

~“(Xi+l) = Ye” = 0 z,n r,n I , r = 0,. . . ,y1 - 2 , 

@!rnv2’(Xi) = Y~~-2)(Xi+l ) = 1; 

(ii) S E CnP2[a, b]. 

(1) 

(2) 

The functions @+ and fl,, depend on tension parameters. In practice, we choose @i,n(X)= @&J~,x), 
flJx) = K,,(qi,X), 0 <pi, qi < 00. In the limiting case when pi, qi -+ cc we require that lim,,, 
@i,n(pi,X) = 0, X E h~i+ll and lim,,- !t$,(qi,x) = 0, x E [xi, xi+l] SO that the function S in formula 
(1) turns into a polynomial of the order n-2. Additionally, we require that if pi=qi=O for all i we get 
a conventional polynomial spline of degree n with @i,~(X)=-‘“,~~;i$‘, Yi,n(X)=$$&!p hi=xi+l -xi. 

Consider now the problem of constructing a basis in the space S,” consisting of functions with 
local supports of minimal length. For this, it is convenient to extend the mesh A by adding points 
x-,+1 < * * * <X-l <a, b<xj,r+, < *.a <xN+,_-. As dim(S,G)=(n)N-(n- l)(N- l)=N+n- 1, it 
is sufficient to construct a system of linearly independent GB-splines Bj,,, j = -n + 1,. . . , N - 1, in 
S,” such that Bj,,(x)>O if x E (x~,x~+~) and Bj,n -0 outside (~j,xi+~). 

For n > 2 we require the fulfillment of the normalization condition 
N-l 

C Bj,n(x) - 1 for x E [a, b]. (3) 
j=--n+l 
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According to (l), on the interval [x~+[,x~+~+~], I = 0,. . . , n - 1, the GB-spline Bj,n has the form 

Bj,,(X) = J’i,l,n-~(~) + B~~2’(x~+l)@~+/,~(~) + B;:i2)(xj+l+~ )yj+l,n(x), (4) 

where Pj,[,n_z is a polynomial of order n-2. 
Taking into account the continuity conditions for neighboring polynomials Pj, I- l,n-2 and Pj, l,n_z, 

I=1 , . . . , n - 1, in (4), we have the relations 

n-3 

Pj,~,,-2(x)=Pj,,_~,n-2(X)+B~~~2’(~j+,)C~~~,n(X-~j+,)~/~!, l=l,..., n-1 
r=O 

(5) 

with zI;: n = Y”’ j+[-l,n(Xj+l) - @72,,n(X,+/)v y = 0,. . . ,n-3. 
As Bj,‘,(x) = 0 if x6(x, x, ,, ,+n+2) and by (5), the polynomials Pj,l,n-2 are identical to zero when 

I= 0 and I= n. Then by repeated application of formula (5) we have 

In 

IX- C B~~~2)(Xj+,,) C z~!,,~(x - xj+lt)r/r!, I= 1,. . . ,n - 2. 
I’=!+1 r=O 

particular, the following identity is valid: 

(6) 

II-1 n-3 

C B:yi2)(xj+/) C z~,,~(x - xj+/)r/r! E 0. (7) 
I=1 r=O 

Using the expansion of polynomials by powers of x we can rewrite (7) in the form 

Now by equating the coefficients of the monomials xa, a = 0, 1, . . . , n-3, in (8) to zero, we arrive 
at a system of n-2 linear algebraic equations which defines the unknown quantities B~~~~2’(Xj+~), 
I= l,...,n - 1, 

To obtain the unique solution of this system we can use the normalization condition (3). Substi- 
tuting formula (4) into the identity (3) written for x E [Xi,Xi+r], we obtain 

i i-1+1 i i-l 

C Bj,,(X) = @i,n(x) C BjT,-2’(Xi) + E,,(X) C Bj,“i2)(Xi+l) + C Pj,i-j,n-2(X) E 1. 
j=i-n+l j=i-nfl j=i--n-t2 j=i--n+2 

Since according to (3) 
i-l 

C B;TJ2’(xi) = 2 B~~~2’(xi+l) = 0, 
j=i--n+l j=i-nf2 
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it follows from (6) that 

i-l i-l i-j n-3 

C Pj,i_j,n_*(X) = C C B~~~2)(Xj+/) C ZF[,,(X - Xj+[)r/r! Z 1. 
j=i-nf2 j=i--n+Z I=1 r=O 

This gives us the system of linear equations 

= ‘&ET cI = o,**.,n - 3, 

j=i--n+2 I=1 

where do,, is the Kronecker symbol. 
We can eliminate the unknowns analogously as has been done in [ 10, 121. Having computed the 

unknowns &r-2’ Cxj+I>, 1 = l,..., n - 1, we find the coefficients of the polynomials Pj,,,n-2, 1 = 
1 , . . . , II - 2, ‘,h (4) by using formulae (6). In this way, the computation of the coefficients of the 
polynomials Pj,/,n_2 can be realized starting from either the left or right endpoint of the support 
interval. 

3. Recurrence algorithm for the cakulation of GB-splines 

Let us define 

Bj,2(X) = I 
the function 

Yj(,~-2’(X)~ Xj<X<Xj+], 

@~~~~~(X), Xj+l dx <Xi+29 

0, x Fc txj, Xj+2 >T 

(9) 

where the functions Y!‘-2’ and cD’?-~’ J>n J+,,n are assumed to be positive and monotone on (xj, xj+l ) and 
(Xj+l, Xj+&7) respectively. 

We will consider the sequence of GB-splines defined by the recurrence formula 

Bj,kCX) = J ’ Bj,k-l(r) dz _ 

J 

’ Bj+l,k--l(Z) dr, k=3 ,..., n, 
xi cj,k--l x,+1 Cj+l,k-I 

where 

J x,+n- I 

cj,k-1 = Bj,k-l(T) dz. 
xi 

In practical calculations, an alternate representation of 

Bj,k(X) = - J "+'-' 'j,~&~~" dz + " J Bj+l,k(T) dz 
3 

x JY x Cj+l,k-1 

is useful. 
By differentiating formula (10) we obtain 

formula ( lo), 

k=3,...,n 

(10) 

(11) 
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Theorem 3.1. The recurrence formulae (9) and (10) define the sequence of GB-splines of the form 

’ B~~~-*‘(x~+,)Y~~-~‘(x), xj<X<Xj+l, 

Pj,l,k-z(X) + B~~*‘(xj+r)~~+~,~‘(x) 

Bj,k(X) = { +BjyL*)(xj+,+l) y$;,k’(X) Xj+[<X<Xj+[+l,I= l,...,k-2, (12) 

$-*)(xj+~ )@zi,:)(x), xj+k-l dx <xj+k, 

\ 0, x $ (xj, xj+k 1, 

k = 2,. . . , n, where 

Pj,[,k_*(X) = k B~~~*'(Xj+/') 2 Zzlt,n(X - Xj+[/ >I-n’k/(r - n i- k)! 
I’=1 r=n-k 

k-l n-3 

=- C Bj:k-*)(Xj+,t) C z~,,~(x - xj+[r )r--nfk/(r - n + k)! 
I’d+1 r=n-k 

and 
k-l n-3 

C$L*)(Xj+/) C $$,,,(X - Xj+l)renfk/(r - n + k)! E 0, k = 3,. . . ,n. 

(13) 

(14) 
l=l r=n-k 

Proof. For k = 2 the formula (12) takes the form 

I 

Bj,2(xj+I)‘J$~-*‘(X), xj Qxdxj+l, 

Bj,*(x) = Bj,2(Xj+l)@KIf)(x), xj+l dx<xj+2, 

0, x til (xj,xj+2 )a 

We choose Bj,z(Xj+l) = 1, and then by (2), this formula coincides with (9). 
Using mathematical induction, we assume that the assertion of the theorem is fulfilled for some 

k’=k-l<n- 1 (k=3,..., n- 1). Let us show its validity for k d n. According to ( 10) and ( 12) 
we have 

Bj,k(X) = Fi*;B:“1,-*‘(xj+,)~~:-*‘-“(X), X E [Xj,Xj+ll, 
j. 

Bj,k(X) = -- ’ Bj:l;rkz)(Xj+k’)~~~k’n-l’(X), 
Cj+l,k’ 

X E [xj+k’,xj+k’+Il. 

By virtue of (11) and because GB-splines have local supports, 

B:fi*)(Xj+I ) = B~~~,-*‘(Xj+l)/Cj,k,, 

Bj;k,-*)(Xj+k_l) = -Bjk:~~~(Xj+k’)/cj+I,k’. 
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Therefore, 

Bj,k(X) = ~~~~2’(Xi+l)~!“n-k’(X), X E [xj,-Xj+l], 

Bj,k(X) = BykT2)(X,+k-I >@~+~?,,n(X>, 
(15) 

x E [Xj+k-l,Xj+k]* 

Let now formula ( 12) be fulfilled in [xi+/, xj+,+l ] for some l’=l-l<k-2 (1=1,2,...,k-2). 
We must show its validity for I,< k-2. According to (lo), and by the induction assumption for 
x E [xj+l,xj+[+ll, we have 

Bj,k(X)=Pj,I-l,k-Z(Xj+l) 

1 x 
s 

1 x 
+- 

cj,k-1 Xi+/ 
Bj,+,(T)dT - - J Cj+l,k-I Xj+/ 

Bj+l,k-l(T)dT 
1 

=Pj,l-l,k-2(Xj+/) + ~~~2’(xj+r>~~~~~,~(xj+~) + - 
cj,k-1 

where 
l-l n-3 

I= ~B~~;rk2!(~~+~+~,) C z.,+I,,n (’ -Xj+l+~~)r-~+~‘+’ * 

I’=1 r=n-k’ (r-n+k’+ l)! x+, .I 
i- n+k ’ 

= &$~[~?(xj+,t) 2 zz,,,n ‘~~~~‘~ k,, . 
I’=1 r=n-k’ xj+/ 

Using the formula of differentiation (11) we obtain 

BFL2)(Xj+l) = B~~~T2’(Xj+,)/Cj,k~ - B~~,T:,)(xi+l)/C,+l,~/. 

This permits us to transform expression ( 16) into the form 
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I’=1 

=Pj,l,k-Z(X) + ~~e2'(xj+l )$t;,k’(x) + q:-')(Xj+/+l )qt;,k’(x)* 
We have now proved formula (12) with 

(17) 

Taking into account the conditions for continuity we obtain the validity of the formula (17) for 
I=k--1. However, according to (l5), Pj,k_l,k__2-0. So from (17) for l=k-1 we obtain the identity 
( 14). By subtracting this identity from (17) we arrive at the second formula in (13). This proves 
the theorem. 0 

To use formulae (12) and ( 13) for calculations we first need to find the quantities B$,iP2i(xj+l ), 
1= l,..., k- 1; k=3,..., n. According to (1 l), 

~~-2’(Xj+l)=BJ~~~‘(Xj+l)/cj,k-l -~~;:‘l(Xj+l)/cj+l,k-l, 1~ l,...,k- 1, k=J,...,n. (18) 

In particular, it follows from here with Bjz(xj+l) = 1 that 

Bil,3Cxj+l > = &P 
1 

qyh(Xj+l) = - 
I, Cj,2Cj,3 ’ 

1 
qt3(Xj+2) = -- 

cj+1,2 ’ 
qyJ(Xj+2) = -_....-L 

cj+1,2 (t+$J 
qyd(xj+3 ) = 

1 
3 

cj+2,2Cj+1,3 

etc. Therefore, to find the required values of the derivatives of the GB-splines in the interior nodes of 
their support intervals, it is necessary to know the quantities cj,k, i.e., the integrals of the GB-splines 
Bj,k, k=2 ,..., n- 1. 

Theorem 3.2. The integrals cj,k = JxT’k Bj,k(r)dr of GB -s pl ines are given by the formula 

k-l n-3 r n+kfl 
cj,k = C q:e2)(Xj+l ) C cc= l,..., k- 1, k=2 ,..., n- 1. (19) 

I=1 r=n-k-l 

Z~I,, (~~‘_-nx~~), 1 ), 3 
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Proof. For k = 2 according to (9) we obtain 

x,+2 
Cj,2 = 

J 
4,2(z) dr = Bj,2(Xj+l I$;,?, 4,2(Xj+1> = 1, 

xi 

which corresponds to the formula (19). Let us suppose by induction that the formula (19) holds for 
all k’=k- 1 <y1- 1 (k=3 ,...,n--1). Wemustproveitsvalidityfork’+l=k6n-l.Byformula(12), 

J x,+r 
cj,k = g,k(z)dz = $~p2)(Xj+l)!$~-k-‘)(Xj+l) 

XI 

pression (20) into the form 

+ $ie2)(Xj+l+l > q:;:)(T)] dT - $ip2)(Xj+k_ 1 )$~~!~~‘(Xj+k_l )a (20) 

Choosing the knot xj+cc E SUppBj,k, 1 d M: < k - 1 and using formulae (13) we can transform ex- 

(z - xj+p )r-n+k+l I! 
x,+/+1 

I=1 lTn (Y - n + k + l)! Xj+l 
k-2 k-l xj+/+l 

+c 
- 

I=Ci i’=hl I * x,+1 
Collecting here the terms with $~-2’(Xj+l ), I= 1,. . . , k - 1, we have 

This proves the theorem. 0 

Theorem 3.3. If Cj,k, k = 2,. . . , n - 1, are integrals of GB-splines Bj,k then the following equalities 
are valid: 

(21) ct=o,..., k-2, k=2 ,..., n-2, 

where 60,a is the Kronecker symbol. 
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Proof. We can write these identities 
k-l n-3 

cj,k = Fj,k(X) = c i$-2)(xj+l ) c zzl,, E 1;; ;--+;;; 3 k=2,...,n- 1. 
I=1 en-k- 1 

(22) 

For k=2, formula (22) does not depend on x and coincides with (19). According to Theorem 3.2, 
the polynomial Fj,k - cj,k, 2 < k < n - 1, of order k - 1 takes zero values at the points Xj+a) o! = 
1 ,..*, k - 1. Therefore, by the Fundamental Theorem of Algebra it must be identically equal to zero. 

Using the expansion of polynomials in (22) by powers of x we obtain 

k-l k-2 a 

cj,k = C~~a2'(Xj+l)C > E Z~,,~(~(I~~~~'~'~~),, k=2,...,n - 1. 
I=1 a=0 . r=n-k--l+cc 

The right-hand side is a polynomial of order k - 1 for fixed j, k while the left-hand side is constant. 
It follows that the coefficient of xa equals cj,k when c1= 0 and equals zero otherwise. From this we 
obtain the equalities (21). This proves the theorem. 0 

To construct the GB-spline &, k = 3,. . . , n, we can formulate an algorithm by applying formulae 
(18) and (19), and requiring the calculation of the following quantities for GB-splines: 

Bj,2Cxj+l) . . . 

*,* 

b+n-k.2(xj+u-k+l> ’ ’ * ’ 

(a= l,...,n - 1) 
qti:i,k(xj+n-k+cx) 

B,+n-2.Z(xj+n) 

.,. (a= 1 ,...,k - 1) 

and the integrals of GB-splines 

Cj.2 ‘*’ cj,k ‘.. Cj,n-l 

cj+1,2 ” ’ Cj+l,k ” * Cj+l,n-I 

cj+n-k,2 ’ . . Cjin-k,k 

Algorithm 1. (a) Form the diagonal matrix A = {aij}, i, j = 1,. . . , n - 1, with diagonal elements 
ul+l,l+l =Bj+l,l(Xj+l+2)= l, ~=O,.*., n - 2. Attach to the matrix A at the left an additional column 
with elements a~+l,o = Cj+[,2, 1= 0,. . . ,n - 2 calculated by formula (19). 

(b) For k = 3,. . . , n, using formula (18) we find the elements a,/+1 = $:~~~k_2~,k(xj+a), OL = I+ 
3 -k,..., 1+1,l=n-2 , . . . , k - 2, and place them on the main diagonal and on the first k - 2 
upper off-diagonals of the matrix A. At every step k (for k < n - 1) we also calculate the elements 
ai+l,k-2 = Cjil-(k-2),k, 1 = n - 2,. .a, k - 2, using formula (19) and place them into the (k - 2)nd 
column of the lower triangular part of the matrix A. 
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As a result the matrix A is transformed to the form 

A= Cjfk-2,2 Cjik-3,3 *'* $kk_')(xj+k_l) '*' $t-‘)(xj+k- 1) 

cj, 2 Bj,2(xj+l) *** q%p2)(Xj+I ) ’ . ’ 

Cjin-2,2 cj+n-3,3 ’ . ’ Cj+n-I-k,k+l ’ * ’ I 
The (k- 1 )st column of the upper triangular part of the matrix A contains the quantities qsP2’(x/ia), 

a = l,..., k - 1, k = 2,..., n. This permits us to construct the GB-splines Bj,k, k = 2,. . . ,n, using 
formulae (12) and (13). The integrals for these GB-splines are located along the main diagonal of 
the matrix A. 

The supports of the GB-splines Bj,k, k = 2,. . . , n, begin at the point xi. We can also consider an 
alternative version of the above algorithm in which the GB-splines Bj+k,n_k, k = n - 2,. . . ,O, whose 
supports end at the point Xj+n are calculated. 

Algorithm 2. (a) Form the diagonal matrix A of dimension (n - 1) x (n - 1) with diagonal elements 
al+l,/+l =Bj+[,~(xj+l+l) = 1, 1 = O,***, IZ - 2. Attach to A the additional (n)th row with elements 
a,/+~ = Cj+1,29 1 = 0,. . . , n - 2, calculated by formula (19). 

(b) For k = 3,. . . ,n, I = 0,. . . ,IZ - k, we find a~+l,l+, = Bi(:j-i)(Xj+l+a), O! = k - 1,. . . , 1 and (for 
k<n - 1) ‘&_k+2,1+1 =cj+l,k by formulae (18) and (19). 

As a result the matrix A takes the form 

A= cj,k+l 

cj, 3 

cj, 2 

’ * * $ti!i,k(xj+l+n-k) ’ ’ ’ $~;;lhk(xj+n-1) 

. . . cjin-k,3 ’ * * 4+n-2,2(XI+n-1) 

. . . cj+n-k,2 . . . Cjin-2.2 

The elements of the (n - k + 1 )th row in the upper triangular part of the matrix A permit us to 
construct the GB-splines Bj+n-k,k, k = 2,. . . , n, using formulae (12) and ( 13). The integrals of these 
GB-splines are located along the main diagonal of the matrix A. 

4. Another representation for GB-splines 

According to (12) and (13) the expressions for Bj,k, k = 3,. . . ,n, in the subintervals [Xj+,_l,Xj+r] 
and [xj+r ,Xj+l+l] differ by the quantity 
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By summing over the jumps we arrive at the representation 

k-l 

Bj,k(X) = c s2,+i,k(X)B,$-*‘(~j+, ), k = 3,. . ., n (23) 
I=1 

with 

’ e(x - Xj+l > - @~~~,k’(x)Q(x - xj+l+l )Y (24) 

e(x - y) = 
i 

1, xay, 
0, x<y. 

As 0(x - y) = 1 - O(y - x) we obtain 

k-l 

Bj,k(X) = - c fij+l,k(X)B,lk,-2’(xj+~) + Rj,k(x)> (25) 

where Sij+,,, iS derived from Qj+[,k by replacing 0(x - Xi+*) with 0(X,+, - x), m = 1 - 1, I,1 + 1. 
Now according to (14) 

k-l 

Rj,k(X) = ~$-*)(x~+~) 2 z$+(;~-~$;;:” ~0, k = 3,...,n 

I=1 r=n-k 

and it followS from formulae (23) and (25) that Bj,k(x) E 0 if x 4. (xj,xj+k). Any of these formulae 
can be used to define the GB-spline of order k, 3 < k < n. 

We will transform the expression for the function L?j+[,k 
the functions @!nPk) If,,n , Y$‘r,“’ with th 

in (24). Using the Taylor expansion of 
e remainder in integral form and the properties (2) we have 

’ s (’ - T)k-2 @t-l) tz> dz 

I,+, (k - 2)! ‘+‘-‘sn 1 
X8(X -Xj+l) - I e(x -xj+r+l)* 

From here we obtain for polynomial splines with 

q,“(x) = _ cx - xj+r’ 
(n- l)!hj ’ 

lun(x)= (x-~~-’ 
’ (n - I)! hj 
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Q?l,!N = (&+1 -X,-1 h?k[Xi %n-1,&,&l+11, m=j+l, 

gk(x,y)=(-l)k(x-Y)t+‘/(k- l)!, z+ =max(O,z) 

thus (23) is transformed to 

Bj,k(x)=(xj+k -xjkIk[X; xj,...,Xj+kl, k = 3,. . . , n. 

The recurrence formula (10) takes the form [ 141 

Bj,k(X) = x -xj Bj,k_,(X) + xj+k -x Bj+l,k-1(X) 
xj+k-I - xj xj+k - xj+l 

with 

I 

x,+k 
cj,k = 

Xl 
Bj,k(X) dx = ‘jikk- ‘j. 

5. Properties of GB-splines 

Let us formulate some properties of GB-splines which are similar to those of polynomial B-splines 

[141. 

Theorem 5.1. The functions Bj,k, k = 2,. . . , n, have the following properties: 
(i) q&(X)>0 ifXE(xj,Xj+k) and&(x)=0 ifx@(xj,xj+k); 

(ii) the splines Bj,k have k - 2 continuous derivatives; 
(iii) for k > 3 and x E [a, b], ~~z_!k+l &(x) = 1; 
(iv) for x E [xj9xj+ll, 

II--r-l 
4,&X), Q;:?(X) = n (-Cj-k+l,k&-n+l+r,n-r(X) 

k=2 

s X,+k 

j=O,..., N - 1, r = 0,. . . , n - 2, where cj,k = Bj,k(T) dz. 
XI 

Proof. The functions B. ]+a,~ given by formula (9) are positive if x E (xj+,,Xj+,+z), while Bj+M,Z(X) = 0 
if x # (xi+,, xi+,+2 ), an d are monotone on the intervals [Xj+y+,,xj+l+/+r], I= 0,l; ct = 0,. . . , k - 2. 

Let US SUppOSe by induction that Bj+a,k-1 (X) > 0 if x E (xj+,,xj+,+k-1 ), Bj+a,k-1 E 0 if X $? (Xj+,, 

Xj+a+k-1 ) and $:,:‘I (x> is monotone on the intervals [xj+~+~,xj+~+l+l], 1 = 0,. . . , k - 2 with 
(-l)'+'~~~~'l(Xj+il+i) >O, 1 = l,... , k - 2, cc = 0,l. Then by formula (11) the function Bjie2) 
is monotone in [Xj+/,Xj+l+r], l=O,...,k- 1, and in addition (-l)‘f1B,lk,-2’(Xj+,)>0, l=l,...,k- 1. 

Therefore Bj(tP2) has exactly k - 2 zeros in (xj,xj+k) and by Rolle’s theorem, Bj,k does not vanish 
on (Xj,Xj+L). ‘Taking formula (10) into account, we have Bj,k(X) >0 if x E (xj,xj+k) and Bj,k(X) = 0 if 
x @(xj,Xj+k)* 
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Property (ii) is obvious by virtue of the recurrence formula ( 10) and by continuity of the func- 
tion Bj,z. 

According to (12) for x E [xj,xj+l], 

4,,(X) = q:p2)(Xj+l >‘yi.n(X>, Bj-n+l,n(X> = 4Yit',3,(Xj)@j,n(X)- (26) 

Applying the differentiation formula ( 11) we obtain 

k=l 

$1’,+,,,1(~) = fi (-CI-~+l+k,n-k)Bi-~+Ifr,nr(X), 
(27) 

XE[Xj)Xj+l], Y=1,2,...,n-2 
k=l 

and in particular, 

Therefore, if x E [xj,xj+l] then according to (26)-(28) we have 

n-r-l n-r-l 

y;‘,)(X) = n Cj,kBj,n-r(X), @j;:(X) = n (-Cj-k+l,k)&+l+r,n-r(X), f’ = 0,. . . ,n - 2. 
k=2 k=2 

Applying the recurrence formula (10) for k > 2, we have for x E [a, b]: 

J ’ B-k+,,k-l(T) dz _ 

J 

’ &cc-l(r) J X0 = dz = B-k+l,k-l(T) dz = 1 
9 

X-k+1 C-k+l,k-1 4% CN,k-I X-k+1 C-k+l,k--l 

i.e., 

N-l 

c Bj,k+&)-1, k=3 ,..., n if XE[a,b]. 
j=-k+l 

This proves the theorem. 0 

Corollary 5.2. The following identities are valid: 

(28) 

(29) 

i-l i-j 
n-3 (r) (X - Xj+/)r-n+k 

C C$~m2’(Xj+/) C Zj+l,n (r_n+k), ~1, k=3,...,n. 
j=i-k+2 I=1 en-k 
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Proof. Substituting formula (12) into the identity (29) written for x E [,q,xifl], we obtain 

i i-l i 

C Bj,k(X) = @j,t-k'(X) C qji-*)(Xi) + !@",-k'(X) C Bj~~-*)(Xi+~) 
j=i-kfl j=i-k+l j=i-kf2 

l-l 

+ C f$,,i_j,k_2(x)_ 1. 
j=i-k+2 

According to (29) 
i-l i 

C Bjtt-*)(Xi) = C qti-*)(Xi+l) = 0. 
j=i-k+l j=i-k+2 

Then using ( 13) one obtains 
i-1 i-l i-j 

C q,.,i-j,k-2(X)= C CBiik,-*'(Xj+,) !fJ Z~~\,n(~rp~~~~~~k E 1. 
j=i-k+2 j=i-k+2 I=1 r=n-k 

This proves the corollary. 0 

Corollary 5.3. Let Fj,k, k = 2,. . . , n - 1, be polynomials as dejned in (22). Then the following 
equalities are valid: 

N-l 
&(X)dX = c Fj,k(x)= b - a, k=2 ,..., n - 1. 

j=-k+l 

Proof. Integrating the identity (29) on the interval [a, b] and using (22) we obtain 

Ne /-bgik(X) dx = Ne s”+k+’ Bj,k(X) dX 
j=-k+l a j=-k+l ‘1 

N-l N-l 

ZZ c q,k = c Fj,k(x)= b - a. 
j=-kfl j=-k+l 

This proves the corollary. 0 

Theorem 5.4. The GB-splines Bj,k, k = 2,. . . , n, have supports of minimum length. 

Proof. It follows from the explicit formula (9) that the support of the GB-spline Bj,2 cannot be 
reduced. Let us suppose that the assertion of the theorem is fulfilled for some k’ = k - 1 <n (k = 
3 , . . . , n). Using mathematical induction we will prove its validity for k’ + 1 = k dn. 

By the properties of the functions @j+,,n, Yj+,,,, 0 < 1 < k - 1, and by formula (12), a GB-spline 
Bj,k cannot be different from zero on only a part of the subinterval [Xj+l,Xj+l+l], 06 1 <k - 1. If we 
suppose that Bj,k is zero on interval [x ,x I+1 ,+1+& O< 1 <k - 1, then due to the continuity of B$-*), 
we have B!k-2’ ],k (xj+r) = $i-*)(Xj+/+l) = 0. 
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Using formula (11) one can show, however, that (- l)“‘$~-*‘(~~+~) ~0, 1 = 1,. . . , k - 1. For 
k=2 we have 4,2(~i+l)= 1. Suppose by induction that (-l)“‘B;r~-*‘(Xj+~)>O~ 1 = l,...,k’ - 1, 
for 1 <k’<k - 1. By formula (11) we get 

(-l)'+'Bj,i-*'(Xj+l) = (-1) 
IfI 1 

=(-1) 
I+* $kk:-*)(xj+l> 

+ (-1) 
,~(:i>~)(xi+l+(I-1,) ,. 

) I=1 )...) k-l. 
cj,kf Cj+l,k’ 

We have obtained a contradiction. This proves the theorem. 0 

Theorem 5.5. The GB-splines Bj,k, j= -k+ l,..., N - 1, k=2 ,..., n, are linearly independent and 
form a basis for the space Sk” of generalized splines. 

Proof. Let us assume to the contrary that there exist constants bj,,k, j = -k+ 1,. . . , N - 1, k = 2,. . . , n, 
which are not all equal to zero and such that 

b--k+,,kB--k+,&) + * * * + b-l,,&-l,k+l(X) = 0, x E [a,bl. (30) 

According to formula (9), and taking into account the properties of the functions @J;,~ and !& in 
(2) we obtain from (30) for k = 2 

N-l 

c 
bj,ZBj,2(Xi)=bi-l,2=0, i=O ,..., N. 

j=-1 

Thus, bj,*=O, j=-l,..., N - 1, and the functions Bj,2, j = - 1,. . . , N - 1, are linearly independent. 
Suppose by induction that the functions q,k’, j = -k’, . . . , N - 1 are linearly independent for some 

k’=k-l<n (k=3,..., n). We will prove the assertion of theorem for k’ + 1 = k d n. Differentiating 
the equality (30) and using the recurrence formula (10) we have 

N-l N-l 

c ~J$~(x) = c bj,k 

j=-k+l j=-k+l 

4;;:) _ Bj+W(X) 

I3 Ci+l,k-I 1 
N-l 

= b-k+l,k 
B--k+l,k-l(X) 

C-k+l,k-1 

+ c (b,k - bj_‘,k)‘;+$’ - bN-,,kBN’k--l(X) = 0. 
j=-ki2 1. CN,k-I 

(31) 

The supports of the GB-splines Bj,k-I, j = -k + 1, N, however, are outside the interval [a, b]. By 
the induction assumption, the GB-splines Bj,+_I, j = -k + 2,. . . , N - 1 are linearly independent and 
thus from (31) We get bj,k+,,k=o, j=-kf2 ,..., N-l Or bj,k=c=cOUSt, j=-k+l,..., N-l. 
By Theorem 5.1, the GB-splines Bj,,k, j = -k + 1,. . . , N - 1 give a partition of unity on the interval 
[a, b]. Using this property, and Eq. (29), we arrive at the equality 

N-l N-l 

c bj,kBj,k(X) = C c &(X) = c * 1 = 0. 
j=-kil j=-k+l 
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Therefore, bj,k = 0, j = -k + 1 ,..., N-l andtheGB-splines&, j=-k+l,..., N-l, k=2 ,..., n, 
are linearly independent. 

Since by Definition 2.1, dirn(Sf ) = (k)N - (k - l)(N - 1) =N + k - 1, we see that the GB-splines 
l$k~Sf, j=-k+ 1 , . . . ,N - 1 form a basis of this space. This proves the theorem. 

By virtue of this theorem, any spline S E SF, k = 2,. . . , n, can be uniquely written in 

N-l 
S(X) = C b&k(X) for x E [a, b] 

j=-k+l 

for some constant coefficients bj,k. 

0 

the form 

(32) 

Corollary 5.6. Any spline S $ 0 in Sf, k =2,. . . ,n, with Jinite support of minimal length coincides 
with a GB-spline up to a constant multiplier. 

Proof. By Theorem 5.4 the minimal support of a spline S E Sf, k = 2,. . . , n different from identical 
zero, is an interval (Xi,Xi+k), i = 0,. . . , N - k. Using representation (32) we get 

S(X) = bi-k+l,kBi-k+l,k + ’ * * + bi+k-l,kBi+k-i,k(X)* 

As S 5 0 for x # (xi, Xi+k), when choosing sequentially x E (x~,x~+, ), p = i - k + 1,. . . , i - 1, we 
obtain bp,k = 0. In the same manner, bp,k = 0 for p = i + k - 1,. . . , i + 1. Therefore, S(X) = bi,kBi,k(X). 
This proves the corollary. ??

6. Series of GB-splines 

In practical applications such as approximation of functions, discrete data etc., one considers linear 
combinations of GB-splines. According to Theorem 5.5, any generalized spline S E SF, k = 2,. . . , n, 
can be uniquely represented in the form 

N-l 

s(x) = c bj,kBj,k(X) for X E [a, b] (33) 
j=-k+l 

with some constant coefficients bj,k. 
Let us study how the behaviour of a spline S depends on the coefficients bj,k. Since GB-splines 

are local, from (33) we obtain the inequalities 

min i-k+1 <j<i bj,k ’ ‘cx) = c bj,kBj,k(X) G i_kyF& bj,k, Xi < X < Xi+,, k = 2,. . . , n. (34) 
j=i-kfl 

Hence it follows that the behaviour of the spline S on the interval [xi,Xi+l] is determined by the 
coefficients bi-k+l,k, . . . , bi,k. In particular, in order for a spline S to be zero at a point of the interval 
[Xi,Xi+l], it is necessary that bj,kbj+l,k <O for some i - k + 1 <j < i. 
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The estimate (34) can be substantially improved on. Applying the differentiation formula ( 1 1 ), we 
obtain for r d k - 2 

N-l 

S”‘(X) = c lgl&(X), 
j=-k+r+l 

(35) 

where 

( bi.k, 1 = 0, 

b!*’ = 
J$k 

b<*-1) _ b(*-1) 
/.k j-1,k 

) 1=1,2 )...) I-. 
cj,k-l 

Lemma 6.1. If&>O(<o), j=-k+l,..., N-1; k=2 ,..., n,thenS(x)3O(~O)forallx. 

The conclusion is obvious, because the GB-splines Bj,k are nonnegative. 

Lemma 6.2. Ifbj,k>bj-,,k (b/,k<bj_,,k), j=-k+2 ,..., N- 1, k=3 ,..., n, then thefunction s is 
monotonically increasing (decreasing). 

Proof. According to formulae (35) and (36), we have 

N-l 

s’(x) = c $$$k_,(X), $!‘k’ = skc;k~,-l’k. 

j=-ki2 J? 

Because the GB-splines Bj+_l) k = 3,. . . , n, are nonnegative, the formula above and Lemma 1 imply 
that S is monotonic. This proves the lemma. 0 

Lemma 6.3. If #,i’>$l’,,, ($$I <$!‘,,,), j = -k + 3,. . . , N - 1; k = 4,. . . , n, then the function S is 
convex downwards (upwards). 

Proof. By virtue of (35) and (36), we have 

N-l b!” _ b!” 
s”(x) = c $2k)&2(X), G’,’ = J’kC, ,_;-“‘- 

j=-k+3 J, 
(37) 

Because the GB-splines Bj,k_z, k =4,. . . , n, are nonnegative, taking into account Lemma 1 we obtain 
that S is convex. This proves the lemma. 0 

Let Zra,b]( f) denote the number of isolated zeros of a function f on the interval [a, b]. 

Lemma 6.4. If the spline S(x) = zy=tk &&(x), k = 2,. . . , n, is not identically zero on any subin- 
terval of [a, b], then 

Zl,#) d N + k - 2. 
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Proof. According to (35) and (9), for x E [xi,xi+l], we have 
N-l 

S(k-2yX) = c lp$J(x) = bl”_;.‘+g,y2’(x) + bj;k-2’Y$;-2’(X). 

This function has at most one zero on [Xi,xi+l], because the functions @&W2’ and !P$-2) are monoto- 
nous and nonnegative on this subinterval. Hence Z,,bl(S @-‘)) d N. Then, according to Rolle’s 
theorem [ 141, we find 2,&S) < N + k - 2. This proves the lemma. 0 

Denote by supp& = {X&~(X) # 0}, k = 2,. . . ,n, the support of GB-spline &, i.e. the interval 
(Xj,Xj+k)* 

Theorem 6.5. Assume that r_k+l <~_..k+~ < . . . -CZ~-~, k = 2,. . . ,n. Then 

D = det(q,k(ri)) # 0, i, j = -k + 1,. . . ,N - 1 

if and only if 

zjEsuppBj,k, j=-k+ I,..., N+ 1. (38) 

If condition (38) is satis$ed, then D >O. 

Proof. Let us prove the theorem by induction. It is clear that the theorem holds for a single basis 
function. Assume that it also holds for l-l basis functions. Let us show that if (38) is satisfied, 
then D # 0 for 1 basis functions. 

Let ri 4 supp Bl,k. If zI lies to the left (right) with respect to the support of B,,k then the last 
column (line) of the determinant D consists of zeros, i.e., D = 0. If ZI E supp Bl,k and D = 0, then 
there exists a nonzero vector c = (c-k+l,k,. . . , c[_k,k) such that 

i-k 

S(Zp)= C Cj,kBj,k(Tp)=O, p=-k+ l,...,l-k, 
j= -k+l 

i.e., the spline S has 1 isolated zeros. But this contradicts Lemma 6.4, which states that S can have 
no more than l- 1 isolated zeros. Hence c = 0 and D # 0. 

Now it only remains to prove that D > 0 if (38) is satisfied. Let us choose xP < rP <x~+~ for all p. 
Then the diagonal elements of D are positive and all the elements above the main diagonal are 
zero, i.e., D > 0. It is clear that D depends continuously on q,, p = -k + 1,. . . ,I - k, and D # 0 
fOl- Tp E SUppBp,k. Hence the determinant D is positive if condition (38) is satisfied. This proves the 
theorem. 0 

The following three statements follow immediately from Theorem 6.5. 

Corollary 6.6. The system of GB-splines {Bj,k}, j = -k + 1,. . . ,N - 1, k = 2,. . . ,n, is a weak 
Chebyshevian system in the sense of [6], i.e., for any z_k+l <z__~+~ < . . . <z,+~ we have D 2 0, 
and D>O if and only if condition (38) is satisfied. If the latter is satisjed, then the generalized 
spline S(x) = Cy=-J k+l bj.kBj,k(X), k = 29 * * * 3 n, has no more than N + k - 2 isolated zeros. 
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Corollary 6.7. If the conditions of Theorem 6.5 are satisfied, the solution of the interpolation 
problem 

S(ri) = fi, i=-k+1 ,...,N- 1, fiE[W (39) 

exists and is unique. 

LetA={aij}, i=l,..., m, j=l,..., n, be a rectangular (m x n) matrix with m d n. The matrix 
A is said to be totally nonnegative (totally positive) [4] if the minors of all orders of the matrix are 
nonnegative (positive), i.e., for all 1 d 1 d m we have 

det(ai,j,)>O(>O) for all 1 dil<...<i,drn, 1 <j,<...<j,<n. 

Corollary 6.8. For arbitrary integers -k + 1 < v_k+l < . . . < V[_k <N - 1 and z_k+l -C T-k+2 < . . . 
<ZI-k,k = 2,.. .,n, we have 

Dl = det{B,,,k(ri)} > 0, i,j = -k + 1,. . . , I - k, 

and D, > 0 if and only if 

‘CjESUppBv,,k, j=-k+l,..., l-k, 

i.e., the matrix {Bj,k(Zi)}, i, j = -k + 1,. . . , N - 1 is totally nonnegative. 

The last statement is proven by induction on the basis of Theorem 6.5 and the recurrence relations 
for the minors of the matrices {Bj,k(Zi)}, k = 2,. . . , n. The proof does not differ from that described 
by Schumaker [14]. 

Since the supports of GB-splines are compact, the matrix of the system (39) is a banded matrix 
and has 2k - 1 nonzero diagonals in general. If the knots of the spline xi, i = -k + 1,. . . , N - 1, are 
placed in a suitable manner, then the number of nonzero diagonals of this matrix can be reduced 
to k- 1. 

De Boor and Pinkus [2] proved that linear systems with totally nonnegative matrices can be 
solved by Gaussian elimination without choosing a pivot element. Thus, the system (39) can 
be solved efficiently by the conventional Gauss method. 

Denote by S-(u) the number of sign changes (variations) in the sequence of components of the 
vector u = (vr,..., v,,), with zero being neglected. Karlin [6] showed that if a matrix A is totally 
nonnegative, then it decreases the variation, i.e. 

S-(Au) < S(u). 

By virtue of Corollary 6.8, the totally nonnegative matrix {Bi,k(Zi)}, i, j = -k + 1,. . . ,N - 1, k = 
2 >“., n, formed by the GB-splines decreases the variation. 

For a bounded real function f, let S-(f) be the number of sign changes of the function f on 
the real axis R’ without taking into account the zeros 

S_(f) = supS_[f (TI), . . ., f (~,>I, z1 <z2< -* * <zp. 
P 
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Theorem 6.9. The generalized spline S(x) = Cy<!,+, bj,kBj,k(X), k = 2,. . . , n, is a variation dimin- 
ishing function, i.e., the number of sign changes of S does not exceed the one in the sequence of 
its coefJicients 

Proof. We use the approach proposed by Schumaker [14]. Let S-(b) = d - 1. Let us divide the 
coefficients bj,k into d groups: 

b_ k+l,k,. . . bkz,k, bkz+l,k,. . . , b kl,k>***> kd+l,k,***,bN-l,k. b 

In each group at least one coefficient is not zero, and all the nonzero coefficients have the same 
sign. 

Putting kl = -k and kd+ , = N - 1, we define the function 

i=k, + I 

Then for arbitrary z1 < z2 < . . . < rd we have 

det(bj,k(ri))&=, = 2 
ki+l 

* * * C Ib,,kl.. . Jhd,kIdet(Bj,k(~i)) 2 0, 
v,=k,+l y,,=k& I 

i=l ,..., d, j=vl ,...) vd, k=2 ,..., n 

by virtue of Corollary 6.8 and because at least one coefficient bi,k is not zero in each group. It is 
clear that we can choose zl cr2 < . . . < zd such that det(ij,k(ri)) >O. Hence the functions Bj,k are 
linearly independent. 

Assume that 6= f 1 is the sign of the first group of the coefficients bi,k. Let us take hi,k =(- l)‘-‘6, 
i= 1,2 ,..., d. Then 

S(X) = f: hi,kfii,k(X) E S(X) = Ne bj,kBj,k(X)* 
i=l j=-k+l 

Applying Lemma 6.4, we obtain 

z(j~+,bj3kBj3k) =Z(~~i,kBi,k)id-l=s-(b*lr ,..., bN_l,k), k=2 ,..., n. 

This proves the theorem. 0 

The statement of Theorem 6.9 can be refined, namely we can point out a relation between the 
point at which the spline changes its sign and the corresponding spline coefficient. The coefficient 
corresponds to the GB-spline whose support includes the point of the sign change [see (34)]. 
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Theorem 6.10. Assume that the inequalities (- 1 )‘S(ri) > 0, i = 1,2,. . . , d, are valid for the gener- 
alized spiine S(x) = Eyr?k+, bj,kBj,k(x) at some 71 < 72 < . - . < zd. Then there exist -k + 1 < j, < j2 
< . . . < jd d N - 1 such that 

(-l)ibj,,kBj,,k(~i)>O, i=l d. ,.“, 

The proof of this statement does not differ from the proof of the corresponding theorem for poly- 
nomial B-splines [ 141. 

7. Invariance of generalized spiines with respect to afFine transformations 

In some applications of spline approximation we encounter affine transformations of the inde- 
pendent variable: J? = px + q, where p # 0 and q are constant. It is well-known that the usual 
Lagrange-Newton, Chebyshev, etc., polynomials are invariant with respect to such transformations. 
Let us show that generalized splines also have this property. 

Let 3,” be a set of generalized splines on the mesh 2 = {ii 1 ii = pxi + q, i = 0,. . . , N} which is 
obtained from the linear space S’,G by affine transformation of the variable x. 

Theorem 7.1. An approximating generalized spline S E 5’2 is invariant with respect to ajtine trans- 
formations of the real axis R = (--00, 00). 

Proof. The function Bj.2 in (9) can be written in the form 

Bj,2(x) = 

Xj < X B Xj+l, 

Xj+l < X < Xj+Z, 

otherwise, 

where 

Using the change of the variable i = px + q we get 
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Therefore, ~j,2(~)=~j,Z(~). Let the equality Z3j,~(x)=hi,r(.?) be fulfilled for Z=k- 1 <n (k=3,. . . ,n). 
By virtue of the recurrence relation (10) we have 

J 
x 

Bj,k(X) = 
xi 

Bj,k-l(r) 
cj,k-1 

dr - Bj+l,k-l(r) 
Cj+l,k-1 

dz, k=3 ,..., n, 

with 

J 

xj+t-I 

cj,k-1 = Bj,k-l(T) dz. 
XI 

Using the substitution ? = pz + q we obtain by induction 

cj,k-1 = 

If now SE S: and SE 3,” are approximating splines on the meshes A and a, respectively, con- 
nected by an affine transformation 2 = px + q, then by the uniqueness of the spline representation 
as a linear combination of GB-splines we obtain 

(40) 
j j 

Therefore, the approximating generalized spline 5’ is invariant with respect to affine transformations 
of its variable. This proves the theorem. 0 

It was shown above that Bj,k(X) =&j,,(a), k = 2,. . . , n. By differentiation of this equality we obtain 

$[Bj,k(X)] = i[&j,k(?)] = $[dj,k(a)]E = pBJ,k(f)], k = 3,. . . ,n. 

Differentiating now the equality (40), we can write down 

S’(X) = C bjBj,,(X) = C bjp%,(f) = PP(i). 
j j 

By repeated differentiation of the last and next to last equalities we arrive at 

Scr’(x) = C b,B::i(X) = C bjp’BTi(f) = P’S’)(i), r = 1, a e e 3 n - 2. 

j i 

8. Local approximation by GB-splines 

Using the locality of GB-splines one can reduce the representation of a spline S as a linear 
combination of GB-splines (33) for k = n to the form 

S(X) = C bj,nBj,,(X), X E [Xi,Xi+l], i = 0, 1, . . . ,N - 1. (41) 
j=i--n+l 
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Theorem 8.1. The restriction (41) of the spline S to the interval [Xi,Xi+l] can be written in the 
f orm 

S(X) = J’i,n-z(X) + b)“_;~~Qii,~(x) + b~,“,-2’K,,(x)y (42) 

where 
i-l i-j n-3 

Pi,n-2(X) = C 

j=i-nf2 

bj,n C B:[Ti2)(xj+/,) CZ~,,,~(” -:“’ )‘, 

I’=1 r=O 

b!k) = byn-2’ - b(k-2) j-1,n 

J.” 
) k= I,... 

cj,n-k 
, n - 2, b:yi = bj,,, j = i - n + 1,. . . , i. 

Proof. We use induction on n. According to formula (9), the representation (42) holds for n = 2: 

S(X) = bi-l,2Bi-l,2(X) + bi,zBi,z(X) = bi-l,2@i,2(X) + bi,2F,2(x), X E [Xi,Xi+l]* (43) 

Suppose that (42) holds for n = 1 - 1. Then for n = 1 one has from (41) 

S(X)= C bj,rBj,l(x), X E [Xi,Xi+lI* 
j=i-I+1 

Using (4) for n = 1, one obtains 

S(X) = 2 bj,/[pj,i-j,l-z(x) + $~;“(xi>@i,/(x) + $~;2’(xi+l>E,I(x)] 
j=i-I+1 

=pi,l-2(X) + IT 

where according to (6) 
i-l i-j 

Pi,i_2(X)= C bj,l C8:(;2’(xj+,,)~Z:;)I,,i(x -pi’) 
j=i-it2 I’=1 r=O 

and 
i-l 

I= @i,r(X) C bj,lBj:;2’(xi) + T,l(X) 2 bj,,BJ,‘;“(xi+l). 
j=i-It I j=i-It2 

By applying the formula of differentiation (11) one gets 
i-l 

I= @i,dX) C bj,l 
Bj(;_3,)(Xi) B:!+II:/_ 1 (Xi) 

- 

j=i-!+I cj,l-l cj+l,l-l 1 
+ F,,(X) 2 bj,l 

$~;_3/(&+1) B:k<:;- 1 (Xi+1 ) 
- 

j=i-It2 cj,l-l Cj+l,l-1 1 

(43) 

(44) 

= @i,/(x) bi-ltl,/ 
Bj!II,3)_ 1 (xi) i-1 bj,l - bj-l,l (l-3) Blf;_:‘(xi) 

Ci--l+l,l-1 
t-c 

j=i-I+2 Cj,l-1 
Bj,,-l(Xi) - bi-l,r 

Ci,l-1 1 
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+ T,!(X) bi-1+2,1 
@fiYl\,,-,(xi+~) bj,l - bj-I,[ (l-3) B~~~~/- 1 (xi+ 1) 

Ci--1+2,l-I 
+It 

j=i-1+3 cj,l-l 
Bj,/-l(xi+l) - bi,r 1 Ci+l,l-I . 

(45) 

Because B!‘-‘) ~-l+,~+l,l-~(Xi+~~) =B~~~~)-~(~i+r) = 0, 1’ = 0, 1, expression (45) can be rewritten in the form 

i-l 

I= @i,r(x) C bj;‘)Bj;‘z/(xi) + F,~(x) 2 b~.,ljB~(~~~(x,,,) 
j=i-I+2 j=i-/+3 

with 

j = i - 1 + 2,. . . , i. 

By the assumption of induction however, 

i-l+? 

c bj,[-1Bj(:j(xi+l’) = bj!IIy/,,,-,, l’=O, 1. 
j=i-(l--2)fl’ 

Therefore one gets 

and using (44), we can write down (43) in the form 

S(X) =Pi,l-2(x) + b!L<y/@i,/(x) + b~,‘~e2’K,~(x)* 

This is formula (42) in the assertion of the theorem for n = 1. This proves the theorem. 0 

Theorem 8.2. In formula (42) the polynomial Pi,n-2 can be written in the form 

n-3 

Pi,n-2(x) = C bjk_‘,+2+k,,ej”_?-k’(x), 
k=O 

where 

Qi,n-2(x>/ci-2,1, k = 0, 

Q!,:-26) = Q~,‘,‘_,(x) - Q/,:1:‘(x), k = 1 2,. . . ,n _ 3 
9 , 

Ci-k-l,k+f 

Qj,,-2(X)= ~Jz~~~‘~ I,x’y, j=i-n+3 ,..., i, Qj”,732’(x)~l. 
I=0 

This assertion is new even for polynomial splines, and can be proven by induction. 
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9. Examples 

Let us give examples of the defining functions $,(x) and !P&(x) in (1) which are most commonly 
used. In the examples given below they depend on the parameters 

@i,n(X> = Vi,n(t)hrw2 = Vhz(‘n(pi9 l - t)(-hiY-2, 
%4x> = $i,n(w;-2 = Mqi, oh;-29 

where t = (X - xi)/hi and 0 < pi,qi < 00. 
By Definition 2.1 the function $i,n(t) satisfies the conditions 

k!;)(o)=o, r=O )...) n-2, t&2’(1)=1. 

( 1) Rational splines: 

f-1 
cl,n(C7i) 

tw) = (a - I)! 1 + qi( 1 - t)’ 

where 

CL_, = 
n-2 

( ) j 

is the usual binomial coefficient. 

(2) Exponential splines: 

n I 
&At)= (nt_-l)!e -““-‘)C2,n(qi), 

(3) Hyperbolic splines: 

&,Jt) = @At) 
qy-2 Siti ’ 

where 

n-2 

c;;t = cc;_2$, 

j=O 

n-2 

c<i(4i)= CC~-2(i~‘l),. 
j=o 

@&n(t) = 
SiIlh(git) - c/m_~2~ if Iz = 2m, 

cosh(qit) - EyEi2 $$ ifn=2m- 1. 

(4) Splines with additional nodes: 

t4dt) = (n _ l)! 
I+% p!__)n_l. 

! 

(46) 

Ifwe take Cri=(l+pi)-’ andji=l--(l+qi)-‘, then thepointsXil=.q+aihi andXi2=Xi+/3ihi 
fix the positions of two additional nodes of the spline on the interval [xi,xi+l]. By moving them, we 
can go from a spline of the order n to a spline of the order n - 2. 

The constants Ck,n(qi), k = 1,2, in the expressions for the function &Jt) above are calculated 
from the condition h$-2’( 1) = 1 in (46). 
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