นฤชี สอนสะอาด : แบคเทอริโอซินจากแบคทีเรียกรดแล็กติกที่แยกได้จากผลิตภัณฑ์ปลาหมัก (BACTERIOCINS FROM LACTIC ACID BACTERIA ISOLATED FROM FERMENTED FISH PRODUCTS) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ ดร. จิรวัฒน์ ยงสวัสดิกุล, 164 หน้า。

แบคเทอริโอซินเป็นสารเพปไทด์ที่สังเคราะห์จากโปรตีน มีฤทธิ์ในการยับยั้งจุลินทรีย์ซึ่งผลิตได้ทั้งแบคทีเรียแกรมลบและแกรมบวก วัตถุประสงค์ของการศึกษานี้คือ เพื่อคัดแยกแบคทีเรียกรดแล็กติกที่ผลิตแบคเทอริโอซินจากอาหารปลาหมักพื้นบ้านไทยได้แก่ ปลาส้ม ส้มไข่ ปลา ปลาร้า และกุ้งจ่อม เพื่อศึกษาสภาพที่เหมาะสมสำหรับผลิตแบคเทอริโอซิน ทำบริสุทธิ์และสกัดคุณลักษณะของแบคเทอริโอซินที่ได้ ศึกษาโอกาสการออกฤทธิ์จากจำนวนทั้งหมด 285ไอโซเลท ที่คัดเลือกได้เมื่อคัดกรองจากการวิเคราะห์แบคเทอริโอซินพบว่า 4 ไอโซเลทแสดงการยับยั้งListeria monocytogenes เป็นอย่างมาก เมื่อวิเคราะห์ด้วยเทคนิคแพร่กระจายของสารในเนื้อตับ (ซึ่งทำบน ผ้านวมแข็ง) ได้แก่ ไอโซเลท CN-25, CY-20, MSKC-13 และ MSK-3-18 โดยทั้ง 4 ไอโซเลทนี้ถูกระบุได้โดยการวิเคราะห์ด้วยเทคนิคยีนวิเคราะห์แบคเทอริโอซิน 16S rRNA gene เป็นEnterococcus faecium, Lactococcus lactis subsp. lactis และ Pediococcus pentosaceus ซึ่งเป็นแบคเทอริโอซินที่แยกจากส้มไข่ปลาและผลิตแบคเทอริโอซินที่สามารถยับยั้ง L. monocytogenes นอกจากนี้ได้พบยีนที่ควบคุมการสร้างสารเอนเทอโรซินเอและสารเอนเทอโรซินบีในE. faecium CN-25 ซึ่งมีความเหมือนร้อยละ 100 กับลำดับนิวคลีโอไทด์ของยีนที่ควบคุมการสร้างสารเอนเทอโรซินของE. faecium CRL1385 และสารเอนเทอโรซินเอในE. faecium T136 การผลิตแบคเทอริโอซินเกิดขึ้นในสภาพเครื่องมือที่มีความชื้นร้อยละ 0.5 น้ำตาลยูทิสแซลส์ร้อยละ 0.2 สารสกัดยีสต์ร้อยละ 0.5 ไตรแอมโมเนียมซิเตรทร้อยละ 0.2 โซเดียมอะซิเตทร้อยละ 2.0 ไตรแอมโมเนียมแซลส์ซัลเฟทร้อยละ 0.2 แมงกานีสซัลเฟทร้อยละ 0.05 และโพลีซอเบท (Tween 80) 0.1 มิลลิลิตร การผลิตแบคเทอริโอซินเกิดขึ้นสูงสุดที่ 1828.15 AU ต่อมิลลิลิตร ที่ลักษณะที่ร่อรรคนั้นร้อยละ 0.5 และอุณหภูมิ 25 องศาเซลเซียส ขณะการใช้ร่องระยะที่เข้าสู่ระยะที่เข้าสู่ระยะที่เข้าสู่ระยะที่เข้าสู่ระยะใดก็ตามที่ช่วงพื้นที่ 2-11 และมีความเสถียรต่อความร้อนช่วงกว้างแต่กิจกรรมลดลงเมื่อถึง 121 องศาเซลเซียส ที่นี่เป็นเวลา 15 นาที ถ้ากิจกรรมลดลงเมื่อถึง 121 องศาเซลเซียส เนื่องจากแบคเทอริโอซินที่ออกฤทธิ์ได้จะไม่คงคุณค่าในการใช้ในอุณหภูมิที่สูงขึ้น มีความบริสุทธิ์ที่สูงขึ้น 8.1 เท่า โดยมีค่าความเข้มข้นสูงสุดที่น้อยกว่าการเจริญได้ของ L. monocytogenes ได้สมบูรณ์ (MIC)เท่ากับ 2.34 ไมโครกรัมต่อมิลลิลิตร ศึกษาโอกาสการยับยั้งของสารเหนือ-CN-25 ต่อการที่กล้า
เซลล์ของ L. monocytogenes โดยการตรวจวัดการเหนียวทานให้เกิดการไหลออกของสารอะดีโนซิน ไตรฟอสเฟต (ATP) ออกมาจากเซลล์และการเปลี่ยนแปลงของแรงขับเคลื่อนโปรตอน (proton motive force) ในเซลล์ พบว่าเพปไทด์ CN-25 สามารถลดค่าพลังงานทั้งหมดของเซลล์ L. monocytogenes แต่ไม่พบการไหลออกของสารให้พลังงานออกมาจากเซลล์ และพบการลดลงของแรงที่เกิดจากความต่างศักย์เยือหุ้ม (ΔΨ) แต่ไม่มีผลต่อการลดลงของแรงที่เกิดจากความแตกต่างของความเข้มข้นของโปรตอนด้านในและด้านนอกเยือหุ้ม (ΔpH) เมื่อเติมเพปไทด์ CN-25 ปริมาณ 914.2 AU ต่อมิลลิลิตรลงในน้ำนมที่ผ่านการพาสเจอไรซ์ พบว่า L. monocytogenes ในน้ำนมพาสเจอไรซ์ลดจำนวนจาก 4.1 log CFU ต่อมิลลิลิตรเหลือ 3.7 log CFU ต่อมิลลิลิตร (p<0.05) ในระยะเวลา 5 วัน ของการเก็บรักษา ดังนั้นเพปไทด์ที่ผลิตโดย E. faecium CN-25 สามารถใช้เป็นสารต่อต้านจุลชีพในน้ำนม เพื่อควบคุมการเจริญของ L. monocytogenes
BACTERIOCIN/LACTIC ACID BACTERIA/FERMENTED FOOD

Bacteriocins are ribosomally-synthesized peptides with antimicrobial activity, produced by both Gram-negative and Gram-positive bacteria. The objectives of this study were to isolate bacteriocin-produced by lactic acid bacteria from traditional Thai fermented fish products, namely pla-som, somkai-pla, pla-ra and kong-jom, and to optimize the bacteriocin production of selected isolates. In addition, the objectives were to purify and elucidate their stability and modes of action of bacteriocins produced by the selected isolate. A total of 285 isolates were obtained and screened for bacteriocin production. Four isolates which produced remarkably wide zones of inhibition based on the agar well diffusion technique against *Listeria monocytogenes* were CN-25, GY-20, MSKC-13 and MSK-3-18. These isolates were identified on the basis of 16S rRNA gene sequence as *Enterococcus faecium*, *Lactococcus lactis* subsp. *lactis* and *Pediococcus pentosaceus*. This is the first report of *E. faecium* isolated from somkai-pla, which produced bacteriocins and showed *L. monocytogenes* inhibition as compared to other isolates. Therefore, this strain was selected for the production and characterization of the antibacterial compounds. *E. faecium* CN-25 was found to harbour genes encoding for enterocin A and enterocin B with a similar sequence (100%) homology to gene encoding enterocin A of *E. faecium* CRL1385 and enterocin B of *E. faecium* T136. *E. faecium* CN-25 showed the maximum bacteriocin production in
a modified broth containing 0.5% rice bran, 0.2% glucose, 0.5% yeast extract, 0.2% tri-ammonium citrate, 2% sodium acetate, 0.2% di-potassium hydrogen phosphate, 0.02% magnesium sulfate, 0.05% manganese sulfate and 0.1 ml polysorbate (Tween 80). The optimal bacteriocin production for *E. faecium* CN-25 was at 0.5% inoculum and 25 °C. Maximum production of bacteriocin of 1828.15 AU/ml was reached at the beginning of the stationary phase and the cell growth was determined to be 9.4 log CFU/ml. The bacteriocin CN-25 had stable activity with a wide pH range of 2-11. The activity was largely stable to heating, however, it decreased when treated at 121°C for 15 min. It was found that the antibacterial activity was sensitive to various proteinases. Purification of CN-25 peptide by ammonium sulfate precipitation and anion exchange chromatography increased specific activity by 8.1 folds. The lowest concentration at which bacteriocin completely inhibited *L. monocytogenes* (MIC) was 2.38 µg/ml. The mode of action of CN-25 peptide on *L. monocytogenes* was investigated based on the efflux of intracellular ATP and the change of the proton motive force (PMF) in cell membranes. The CN-25 peptide decreased the total ATP of *L. monocytogenes*, but had no significant effect on the efflux of intracellular ATP. In addition, it depleted the cellular ΔΨ (transmembrane electrical potential) but had no effect on the ΔpH (pH gradient). The CN-25 peptide at 914.2 AU/ml reduced *L. monocytogenes* in inoculated pasteurized milk from 4.1 to 3.7 log CFU/ml (p<0.05) during 5 day storage. The peptide produced by *E. faecium* CN-25 could be used in milk as an antimicrobial agent for controlling *L. monocytogenes*.

School of Food Technology Student’s Signature ____________
Academic Year 2013 Advisor’s Signature ____________
 Co-advisor’s Signature ____________