

การดดัแปลงการค้นหาแบบตาบูเชิงปรับตวับนพื�นฐานของการหาค่าเหมาะสม

ที"สุดแบบการเสาะหาอาหารของแบคทีเรีย: การพฒันา การขนาน

และการประยุกต์

นางสาวเนื�อเพชร สาระศิริ

วทิยานิพนธ์นี�เป็นส่วนหนึ"งของการศึกษาตามหลกัสูตรปริญญาวศิวกรรมศาสตรดุษฎีบัณฑิต

สาขาวชิาวศิวกรรมไฟฟ้า

มหาวทิยาลัยเทคโนโลยสุีรนารี

ปีการศึกษา 2557

MODIFICATIONS TO ADAPTIVE TABU SEARCH

BASED-ON BACTERIAL FORAGING OPTIMIZATION

ALGORITHMS: DEVELOPMENT PARALLELIZATION

AND APPLICATIONS

Nuapett Sarasiri

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Electrical Engineering

Suranaree University of Technology

Academic Year 2014

MODIFICATIONS TO ADAPTIVE TABU SEARCH BASED-ON

BACTERIAL FORAGING OPTIMIZATION ALGORITHMS:

DEVELOPMENT PARALLELIZATION AND APPLICATIONS

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

เนื�อเพชร สาระศิริ : การดดัแปลงการคน้หาแบบตาบูเชิงปรับตวับนพื�นฐานของการหาค่า
เหมาะสมที$สุดแบบการเสาะหาอาหารของแบคทีเรีย: การพฒันา การขนานและการประยกุต์
(MODIFICATIONS TO ADAPTIVE TABU SEARCH BASED-ON BACTERIAL
FORAGING OPTIMIZATION ALGORITHMS: DEVELOPMENT
PARALLELIZATION AND APPLICATIONS) อาจารยที์$ปรึกษา : ผูช่้วยศาสตราจารย ์
ดร.เผด็จ เผา่ละออ, GHI หนา้.

งานวจิยัวทิยานิพนธ์นี�นาํเสนอวิธีการดดัแปลงอลักอริธึมการคน้หาแบบตาบูเชิงปรับตวั บน
พื�นฐานแนวคิดของการหาค่าเหมาะสมที$สุดแบบการเสาะหาอาหารของแบคทีเรีย รวมทั�งพฒันาการ
ทาํงานของอลักอริธึมในเชิงขนาน และประยกุตก์บัปัญหาจริงทางดา้นวิศวกรรมศาสตร์ การดดัแปลง
อลักอริธึมกระทาํใน N โครงสร้าง ไดแ้ก่ การทาํงานร่วมกนัของอลักอริธึมการเคลื$อนที$แบบแบคทีเรีย
กับการค้นหาแบบตาบูเชิงปรับตัว ทาํให้เกิดอลักอริธึมแบบผสมเรียกว่า cooperative bacteria
foraging-tabu search หรือ BF-TS และการดดัแปลงอลักอริธึมการคน้หาแบบตาบูเชิงปรับตวั ดว้ยการ
ใช้กลไกการเคลื$อนที$คล้ายกบัแบคทีเรียผลิตคาํตอบค่าใกล้เคียงเรียกว่า modified adaptive tabu
search หรือ modified ATS อลักอริธึม BF-TS มีการผสมผสานกลไกการเคลื$อนที$ของแบคทีเรียแบบ
การสุ่มกบักลไกการปรับรัศมีการคน้หา และการยอ้นรอยของคาํตอบ ส่วนอลักอริธึม modified ATS
ผสมผสานกลไกการเคลื$อนที$หาคําตอบแบบสุ่มด้วยช่วงก้าวที$ เหมาะสมขึ� นอยู่กับค่าฟังก์ชัน
วตัถุประสงค์ โดยไม่ใช้กลไกการปรับรัศมีการคน้หา แต่ยงัคงใชก้ลไกการยอ้นรอบของคาํตอบไว ้
อลักอริธึม modified ATS ได้รับการวิเคราะห์คุณสมบติัการลู่เขา้ตามแนวทางเสถียรภาพของ
ไลอาพูนอฟ

วิทยานิพนธ์นี� ยงันาํเสนอการประเมินสมรรถนะการคน้หาคาํตอบของอลักอริธึมต่างๆ ที$
เกี$ยวขอ้ง โดยอาศยัฟังก์ชนัทางคณิตศาสตร์อนัเป็นนามธรรม และปัญหาจริงทางวิศวกรรมต่างๆ ที$
ซับซ้อน ในองค์รวม รูปแบบของปัญหาจึงเป็นปัญหาการหาค่าเหมาะสมที$สุดแบบผสมผสาน
(combinational optimization) ที$มีและไม่มีเงื$อนไขบงัคบั โดยไดใ้ช้อลักอริธึม BF-TS อลักอริธึม
modified ATS อลักอริธึม ATS อลักอริธึมเชิงพนัธุกรรม (genetic algorithm, GA) อลักอริธึมการ
คน้หาค่าเหมาะสมที$สุดแบบแบคทีเรียเชิงปรับตวั (adaptive bacterial foraging optimization, ABFO)
และอัลกอริธึมการค้นหาค่าเหมาะสมที$สุดแบบการแพร่กระจายของวชัพืช (invasive weed
optimization, IWO) เพื$อประเมินสมรรถนะการคน้หา ในภาพรวมพบวา่ อลักอริธึม modified ATS
ใหส้มรรถนะการทาํงานที$เหนือกวา่อลักอริธึมอื$นๆ ทั�งในดา้น การลู่เขา้หาคาํตอบในจาํนวนรอบการ
คน้หาที$นอ้ยกวา่ และสามารถหลีกเลี$ยงคาํตอบติดล็อกไดดี้กวา่ แต่อลักอริธึม modified ATS ใชเ้วลา

NUAPETT SARASIRI : MODIFICATIONS TO ADAPTIVE TABU

SEARCH BASED-ON BACTERIAL FORAGING OPTIMIZATION

ALGORITHMS: DEVELOPMENT PARALLELIZATION AND

APPLICATIONS. THESIS ADVISOR : ASST. PROF. PADEJ PAO-LA-OR,

Ph.D., 408 PP.

ADAPTIVE TABU SEARCH/MODIFICATION/PARALLELIZATION/MULTI-

OBJECTIVE/SURROGATED CONSTRAINT OPTIMIZATION

 This research thesis presents modifications to adaptive tabu search (ATS)

based-on the concepts of bacterial foraging (BF) optimization algorithm. The works

also cover a parallel implementation and applications of the proposed algorithms to

some real-world engineering problems. The modifications consider two structural

approaches, i.e. a straight-forward combination of the BF and the ATS resulting in a

hybrid or cooperative BF-TS algorithms, and the ATS embedded with a bacterial

movement alike for neighbour-solution generation so called a modified ATS. The BF-

TS incorporates the bacterial random movement, the adaptive search radius (AR) and

the back tracking (BT) mechanisms of the ATS. The modified ATS proposes a random-

walk front-end simplified from the bacterial random movement accommodating

suitable searching steps depending on cost values. The modified ATS abandons the AR

mechanism while utilizing the BT. The convergence of the modified ATS has been

analysed via the Lyapunov’s stability method.

 Search performance assessment of multiple algorithms is also an important

issue addressed by the thesis. The assessment has utilized abstract mathematical

V

ACKNOWLEDGEMENTS

First of all, I would like to express my most sincere gratitude to Professor Wing

Commander Dr. Sarawut Sujitjorn (formerly with School of Electrical Engineering,

Suranaree University of Technology, Thailand, currently Director of Synchrotron Light

Research Institute, Thailand) for the role he has played as my thesis supervisor. His

precious advices and numerous discussions have enhanced my knowledge and

scientific inspiration. He was guidance of this thesis from the start to success.

I very much appreciate Assistant Professor Dr. Padej Pao-la-or for his role in

looking after my course of action on-behalf of Professor Sarawut. His strong support

has been gratefully acknowledged.

With gratitude, I acknowledge the expert advice of all teachers in my childhood.

I also thank the faculty and staff of Suranaree University of Technology, for providing

support in a multitude of forms, and my colleagues at the EE laboratories for their

company and encouragement.

This research has been supported financially by the Royal Golden Jubilee (RGJ)

PhD Program of the Thailand Research Fund (TRF). The support is gratefully

acknowledged. In addition, this scholarship has fully supported me to conduct research

in the Department of Electrical and Electronic Engineering at the University of

Nottingham, United Kingdom during 1
st
 September 2011 to 29

th
 February 2012.

For some guidances and discussions, I am grateful to Professor Dr. Pericle

Zanchetta in the Department of Electrical and Electronic Engineering at the University

VI

of Nottingham for his academic support for some parts of the works. I am also thankful

for the support and useful advice from Professor Dr. Chris Gerada in the Department of

Electrical and Electronic Engineering at the University of Nottingham. I also would

like to thank the University of Nottingham for their support of my research activities as

a Visiting Research Scholar in the Power Electronics, Machines and Control

(PEMC) Research Group.

I would like to thank Dr. Butsakorn Yodkhumlue, Mr. Peter Bint and Mr.

Eduardo Reyes Moraga, who have helped as my language reviewers.

Finally, I am most grateful to my dearly beloved parents and sister for their

encouragements. They helped me to regain enthusiasm, strength and determination

during the difficult times. Thanks for being there for me and believing in me, always. I

dedicate this work to my grandmother, who now rests in serenity.

Nuapett Sarasiri

TABLE OF CONTENTS

Page

ABSTRACT (THAI)……………………………………………….…………..…..……I

ABSTRACT (ENGLISH)…………………………………………………………..….III

ACKNOWLEDGEMENTS………………………………………………………….....V

TABLE OF CONTENTS…………………….……………………………………….VII

LIST OF TABLES...XVI

LIST OF FIGURES...XXI

SYMBOLS AND ABBREVIATIONS …...XXX

CHAPTER

 I INTRODUCTION……………………………………...…….…….....1

 1.1 Significance of the Problem…………………………….……...…1

 1.2 Research Objectives...…………………………………………….2

 1.3 Research Hypothesis……………………………………………...3

 1.4 Basic Assumptions………………………………………………..3

 1.5 Scope and Limitations of the Study………………….…...............3

 1.6 Expected Usefulnesses.…………………………………………...4

 1.7 Research Procedures……………………………………………...4

 1.8 Organization of the Thesis……………………….……………….5

 II LITERATURE SURVEY……………………………………….…....8

 2.1 Introduction……………………………………………………….8

VIII

 TABLE OF CONTENTS (Continued)

 Page

 2.2 Applications of the BFO algorithm………………………………9

 2.3 Applications of the ABFO algorithm………………………...…10

 2.4 Applications of the hybrid BFO algorithm with

 the inspired metaheuristics………………………..…………….12

 2.5 Applications of the TS algorithm…………………………….…13

 2.6 Applications of modifications to the TS algorithm……………..14

 2.7 Applications of the hybrid TS algorithm with

 the inspired metaheuristics……………………………………...16

 2.8 Conclusion……………………………………………………....19

 III METAHEURISTICS...……………………..………………………..20

 3.1 Introduction……………………………………………………...20

 3.2 Combinatorial Optimization Problems…..…………..………….21

 3.2.1 NP-Complete Problems…….…………………..……….23

 3.2.2 NP-Hard Problems……..……………..…………………24

 3.3 Heuristic Methods…………………………...…………………..25

 3.3.1 A Brief History …………………...………………….....25

 3.3.2 Constructive Heuristics………………………………….26

 3.4 Local Search ………...………………………………………….27

 3.4.1 Selection of the Neighbour………………………...……30

 3.4.2 Escaping from Local Optima………………..………..…31

IX

TABLE OF CONTENTS (Continued)

 Page

 3.5 Metaheuristics……………………………………….…………..33

 3.5.1 Classification of Metaheuristics……………………...…35

 3.5.2 Single-Solution Based Metaheuristics………………..…37

 3.5.3 Population-Based Metaheuristics…………………….…39

 3.6 Conclusion………………………………………………………40

 IV DESCRIPTIONS OF THE ALGORITHMS....................................41

4.1 Introduction…………………………………………………...…41

 4.2 Bacterial Foraging Optimization Algorithm ……………………42

 4.3 Tabu Search Algorithm………………………………….………51

 4.4 Cooperative Bacterial Foraging-Tabu Search Algorithm……….56

 4.5 Modifications to Adaptive Tabu Search based-on Adaptive

 Random Movement of Bacterial foraging Optimization

 Approach…………………………………………….………......61

 4.6 Invasive Weed Optimization Algorithm…………………...........69

 4.7 Genetic Algorithm………………………………………………74

 4.8 Conclusion……………………………………………………....76

V CONVERGENCE OF MODIFICATIONS TO ADAPTIVE

 TABU SEARCH BASED-ON BACTERIAL FORAGING

 OPTIMIZATION APPROACH………………………………….....78

 5.1 Introduction………………………………………………….…..78

X

TABLE OF CONTENTS (Continued)

 Page

 5.2 Importance of Random Walks…………………………………..79

 5.3 Convergence Analysis of the Modification to Adaptive Tabu

 Search Based-on Adaptive Random Movement of Bacteria……84

 5.3.1 Convergence Analysis of Bacterial Random

 Movement……………………………………………….85

 5.3.2 Convergence of the Tabu Search with Backtracking

 Mechanism………………………………………………97

 5.4 Conclusion………………………………………………………97

 VI SEARCH PERFORMANCE COMPARISONS …….………….....99

 6.1 Introduction…….………….………….………….……………...99

 6.2 Surface Optimization Functions ………………………………100

 6.3 Tuning Search Factors of the Proposed Algorithms…………...102

 6.4 Search Performance Comparisons Analysis …..………………123

 6.5 Conclusion…….....…..…………..…………..………...…..…..141

 VII APPLICATIONS OF THE PROPOSED ALGORITHMS

 TO ENGINEERING PROBLEMS……….……………………….143

 7.1 Introduction…….………….………….………….…………….143

 7.2 Abstract Mathematical Constraint Problems………………..…144

 7.3 Hard Disk Drive Control Design Applications…………..….…154

 7.3.1 Single R/W Head………………………………………156

XI

TABLE OF CONTENTS (Continued)

 Page

 7.3.2 R/W Head-Stacks ………………………………..….....166

 7.4 Brake Control of Heavy-Duty Truck…………...…………...…175

 7.4.1 Conventional Brake Control of a Heavy-Duty Truck….175

 7.4.2 Braking Control of Truck Based-on Search……..…….178

 7.5 Stability Analysis Problem………..……………………...……182

 7.6 Identification Problems………………………………………...189

 7.6.1 Identification of Nonlinear Friction Model……………190

 7.6.2 Identification of Actuator Model in a Servo Track

 Writing System………………………………………...198

 7.7 Multi-objective Design Optimization of a Permanent Magnet

Synchronous Motor Drive …………………….……………....207

 7.7.1 Multi-objective Design Optimization………………….211

 7.7.2 Results and Discussions….…………………………….215

 7.8 Conclusion…………………..…………………………………226

 VIII PARALLELIZATION AND APPLICATIONS............................228

 8.1 Introduction……………….………….………….……………..228

 8.2 Definitions of Parallelization ………….....................................229

 8.2.1 Parallel Processing or Parallel Computing…………….229

 8.2.2 Parallel Programming………………………………….231

 8.2.3 Parallel Metaheuristics…………………………………232

XII

 TABLE OF CONTENTS (Continued)

 Page

 8.3 Parallel Computing MATLAB Toolbox ……...……………….233

 8.3.1 Parallel for-loop………………………………………..235

 8.3.2 Single Program Multiple Data (SPMD) Block………...236

 8.3.3 Distributed Array………………………………………237

 8.4 Applications of Parallel Computing Toolbox to

 the Modified ATS Algorithm...243

 8.4.1 Implementation of Parallel Process…………………...244

 8.4.2 Results and Discussions...…………………………….251

 8.5 Conclusion……………………………………………………..256

 IX CONCLUSIONS…………………………………..…………..…..258

 9.1 Conclusions…………………………………………………….258

 9.2 Future Works………………………………….……………….262

 9.2.1 Algorithm Development……………………………....263

 9.2.2 Search Performance Assessment……………………...263

 9.2.3 Convergence of Algorithms……………………..……264

 9.2.4 Parallel Computer Clusters…………………………....265

 9.2.5 Applications ………………………………………......265

REFERENCES………………………………………………………………………..266

XIII

TABLE OF CONTENTS (Continued)

 Page

APPENDICES

 APPENDIX A HARD DISK DRIVE CONVENTIONAL

 CONTROL DESIGNS AND ANTI-RESONANCE

 FILTERS……………………………………………...286

 A.1 Notch Filter for Single R/W Head………….…287

 A.2 Compensation Design for Single R/W Head.…288

 A.3 Anti-Resonance Filters for R/W Head-

 Stacks..292

 A.4 Compensation design for R/W Head-Stacks.…293

 APPENDIX B CONVENTIONAL CONTROL DESIGN FOR A

 HEAVY-DUTY TRUCK……………………………..296

 B.1 SIMC method…………………………………297

 B.2 Ziegler-Nichol method………………………..299

 B.3 Cohen-Coon method……………………….…300

 APPENDIX C NONLINEAR FRICTION MODEL AND

 EXPERIMENTAL SETUP…………………………...302

 C.1 Nonlinear Friction Model……………………..303

 C.2 Experimental Setup…………………………...304

XIV

TABLE OF CONTENTS (Continued)

 Page

 APPENDIX D SYSTEM OF PERMANENT MAGNET

 SYNCHRONOUS MOTOR DRIVE…………………307

 D.1 Permanent Magnet Synchronous Motor………308

 D.2 Parameters of Permanent Magnet

 Synchronous Motors……………………….…311

 D.3 Back-to-Back Converter…………………...….312

 D.4 DQ Analysis Model of PWM Rectifier and

 PMSM………………………………………...314

 D.4.1 The dq Analysis Model of PWM

 Rectifier……………………………….316

 D.4.2 The dq Analysis Model of PMSM…....319

 D.5 Control Designs of Back-to-Back Converter

 and PMSM…………………………………....323

 D.5.1 Control of Back-to-Back Converter..…323

 D.5.2 Control of PMSM……………………..328

 D.6 Multi-objective Function……………………..331

 D.6.1 Input and Output Current Qualities…...332

 D.6.2 Total Power Losses…………………...333

 D.6.3 Line Input Current Controller………...337

 D.6.4 DC-Link Voltage Controller……….…339

XV

TABLE OF CONTENTS (Continued)

 Page

 D.6.5 Load Current Controller………………340

 D.6.6 Speed Controller……………………....341

 APPENDIX E PROGRAM-CODE LISTS……………...……………343

 E.1 Code List of the BF-TS Algorithm ...…..…….344

 E.2 Code List of the Modified ATS Algorithm…...356

 E.3 Code List of the Parallel Version of the Modified

ATS Algorithm………………………………..365

 APPENDIX F RECOMMENDATION OF SUPERVISOR FROM

 THE UNIVERSITY OF NOTTINGHAM 380

 APPENDIX G LIST OF PUBLICATIONS…………………………..382

BIOGRAPHY…...……………………………………………………………………408

LIST OF TABLES

Table Page

6.1 Summary of the functions used for performance test……………………..….101

6.2 ATS parameters……………………………………………………………….102

6.3 IWO parameters………………………………………………………………104

6.4 Results of a positive constant α related to step size (inner parameters of

 step size, C)…...……………………………………………………………...108

6.5 Results of number of iterations to be carried out in chemotactic events…...…110

6.6 Results of a number of bacterial population………………………………..…111

6.7 ABFO parameters……………………………………………………………..113

6.8 Results of a positive constant
2

α related to step size (inner parameters

 of step size, 2C) …………………………...………………………...………..115

6.9 Numbers of adaptive random movement 2C
N for generating neighbour

 solution …………………………………………………………………….…119

6.10 Numbers of bacteria 2S for generating neighbour solutions……………...…121

6.11 Modified ATS parameters…………………………………………………….123

6.12 Comparison of generated initial solutions among the ATS, BF-TS and

 modified ATS on surface optimization problems (averaged over 50 trials) ….126

6.13 Occurrence of deadlocks in average (averaged over 50 trials)……………….133

XVII

LIST OF TABLES (Continued)

Table Page

6.14 Summary of the results of average search time, search rounds and number

 of objective function evaluations (averaged over 50 trials)…..…………..…..134

6.15 Solutions obtained from different algorithms (averaged over 50 trials)……...136

7.1 Search parameters of the BF-TS for constrained optimization problems…….146

7.2 Search parameters of the modified ATS for constrained optimization

 problems………………………………………………………………………147

7.3 Summary of the results obtained from the BF-TS and the modified ATS

 for constrained optimization problems (averaged over 50 trials)…………….150

7.4 Summary of the average search time, search round and local deadlocks

 of the BF-TS and modified ATS approaches for constrained optimization

 problems (averaged over 50 trials)……………………………………………151

7.5 Boundaries and search parameters of the BF-TS for the single R/W head…...160

7.6 Boundaries and search parameters of the modified ATS for

 the single R/W head…………………………………………………………..160

7.7 Summary of the compensators and the corresponding responses of

 the single-head using the BF-TS algorithm………………………..…………161

7.8 Summary of the compensators and the responses of the single-head

 using the modified ATS algorithm……………………………………………163

7.9 Boundaries and search parameters of the BF-TS for the R/W head stacks…...169

XVIII

LIST OF TABLES (Continued)

Table Page

7.10 Boundaries and search parameters of the modified ATS for the R/W

 head stacks……………………………………………………………………170

7.11 Summary of the compensators for the head-stacks using

 the BF-TS algorithm………………………………………………………….170

7.12 Summary of the compensators for the head-stacks using

 the modified ATS algorithm………………………………………………….172

7.13 Summary of performance indices and stability margins based-on

 conventional PI-controllers for a truck braking system………………………178

7.14 Boundaries and search parameters of the BF-TS for the truck braking

 system………………………………………………………………………....179

7.15 Boundaries and search parameters of the modified ATS for the truck

 braking system………………………………………………………………..180

7.16 Summary of the PI-controllers, performance indices and stability margins

 obtained from the BF-TS and the modified ATS algorithms…………………181

7.17 Boundaries and search parameters of the BF-TS for the stability analysis…...185

7.18 Boundaries and search parameters of the modified ATS for

 the stability analysis…………………………………………………………..185

7.19 Boundaries and search parameters of the BF-TS for identification

 of the nonlinear Stribeck friction model……………………………………...192

XIX

LIST OF TABLES (Continued)

Table Page

7.20 Boundaries and search parameters of the BF-TS for identification of

 the hard-disk head actuator…………………………………………………...201

7.21 Search parameters of the modified ATS for identification of the hard-disk

 head actuator……………………………………………………………….....202

7.22 Summary of parameters for the actuator model based on the BF-TS and

 the modified ATS algorithms…………………………………………………205

7.23 Boundaries and search parameters of the BF-TS for multi-objective

 design optimization of a PMSM drive………………………………………..214

7.24 Boundaries and search parameters of the modified ATS for multi-objective

 design optimization of a PMSM drive………………………………………..215

7.25 Parameters of the back-to-back converter for simulation…………………….215

7.26 Summary of the filter components and the controller parameters obtained

 from searches and conventional designs……………..……………………….216

7.27 Summary of the final cost values for each objective function obtained from

 the BF-TS and the modified ATS algorithms………………………………….226

8.1 Summary of the filter components and the controller parameters obtained

 from conventional designs and the proposed algorithms ……………..........….252

8.2 Comparison of constraint results obtained from the proposed algorithms .……254

XX

LIST OF TABLES (Continued)

Table Page

8.3 Comparison of the final cost values for each objective function obtained

 from the proposed algorithms....……………………...…………….……….…256

D.1 Parameters of the permanent magnet synchronous motor by MotorSolve…….311

D.2 Parameters of conduction and switching losses from the datasheets………….336

LIST OF FIGURES

Figure Page

3.1 Classical optimization algorithms (Talbi, 2009)……………………………….23

3.2 Generic algorithm of constructive heuristic……………………………………26

3.3 Generic local search algorithm…………………………………………………28

3.4 Basic iterative improvement scheme…………………………………………...29

3.5 Framework of iterative improvement local search……………………………..29

3.6 Family of strategies for escaping from local optima…………………………...31

3.7 Diversification-intensification spectrum of metaheuristics…………………….35

3.8 Procedural list of single-solution based metaheuristics……………………..…38

3.9 Framework of population-based metaheuristics……………………………….39

4.1 Swimming and tumbling movements……………………………………..……46

4.2 Flowchart of the ABFO algorithm………………………………………….….51

4.3 Flowchart of the ATS algorithm……………………………………………….55

4.4 Flowchart of the BF-TS algorithm……………………………..……………....60

4.5 Structure of the modified ATS……………….………………………………...64

4.6 Flowchart of the modified ATS algorithm: (a) the whole algorithm,

(b) the random selection of neighbour solutions …..…………………………..68

4.7 Seed production procedure in a colony of weeds………………………………70

4.8 Flowchart of the IWO algorithm………………………….……………………73

XXII

LIST OF FIGURES (Continued)

Figure Page

4.9 Flowchart of GA algorithm………………………………………………….....76

5.1 Random movements of the ATS……………………………………………….82

5.2 Random movements of the modified ATS……………………………………..83

6.1 Random movement solutions inspired by bacteria on (a) BF, (b) RF,

 (c) SF, (d) SchF and (e) ShuF surfaces ……………………………………….125

6.2 Neighbour solution movements of ATS; (a) initial solutions randomly

 generated 600 solutions, (b) 1
st
 iteration, (c) 10

th
 iteration,

 (d) 18
th

 iteration, (e) 42
th

 iteration and (f) the final iterations

 (number of neighbour solution, N = 30)…………………….……………...…128

6.3 Neighbour solution movements of BF-TS; (a) initial solutions generated

by the proposed random movement front-end,
C

N = 20 and S = 30,

(b) 1
st
 iteration, (c) 2

nd
 iteration, (d) 16

th
 iteration, (e) 19

th
 iteration

and (f) the final iterations (number of neighbour solution, N = 30)……….….129

6.4 Neighbour solution movements of modified ATS; (a) initial solutions

generated by the proposed random movement front-end,
C

N = 20 and S = 30,

(b) 1
st
 iteration, (c) 3

rd
 iteration, (d) 5

th
 iteration, (e) 7

th
 iteration

and (f) the final iteration (2C
N =100 and 2S =2)……………….………..…….131

6.5 Convergence curves of the proposed algorithms ……………………………..131

XXIII

LIST OF FIGURES (Continued)

Figure Page

6.6 Comparisons of average deadlocks between the ATS and the modified

ATS algorithms with the same neighbour solution numbers………………....138

6.7 Average search time comparisons between the ATS and the modified ATS

algorithms with the same neighbour solution numbers……………………….139

6.8 Average search round comparisons between the ATS and the modified ATS

algorithms with the same neighbour solution numbers……………………….139

6.9 Comparisons of the search time per iteration of the ATS and the modified

 ATS algorithms with the same neighbour solution numbers…………………140

7.1 Objective functions: (a) Fcon1, (b) Fcon2 and (c) Fcon3.……………………148

7.2 Comparisons of the search time per iteration of the BF-TS and

 modified ATS algorithms for abstract mathematical constraint problems…...152

7.3 Comparison of convergences between the BF-TS and the modified ATS

algorithms: (a) Fcon1, (b) Fcon2 and (c) Fcon3.…………………………..…153

7.4 Control structures: (a) 1-DOF, (b) 2-DOF type 1and (c) 2-DOF type 2……...155

7.5 Structure of single R/W head……………………………..………………..…156

7.6 Open-loop responses: (a) time-domain and (b) frequency-domain…………..157

7.7 Objective function of the single R/W head…………………………………...161

7.8 Compensated responses of single R/W head using the BF-TS:

 (a) time-domains and (b) frequency-domains……………..………….……....162

XXIV

LIST OF FIGURES (Continued)

Figure Page

7.9 Compensated responses of single R/W head using the modified ATS:

 (a) time-domains and (b) frequency-domains………..……………………….163

7.10 Comparisons of convergence curves between the results of the BF-TS and

 the modified ATS on the single R/W head: (a) 1-DOF structure,

 (b) 2-DOF type 1 structure and (c) 2-DOF type 2 structure.………………….165

7.11 Mechanical structure of a hard-disk head-stack………………………………166

7.12 Open-loop responses: (a) time-domain and (b) frequency-domain…………..168

7.13 Compensated responses of R/W head-stacks using the BF-TS:

 (a) time-domains and (b) frequency-domains………………………………...171

7.14 Compensated responses of R/W head-stacks using the modified ATS:

 (a) time-domains and (b) frequency-domains……….……………………….172

7.15 Comparisons of convergence curves between the results of the BF-TS

 and the modified ATS for the R/W head-stacks: (a) 1-DOF structure,

 (b) 2-DOF type 1 structure and (c) 2-DOF type 2 structure…………………..174

7.16 Truck braking control loop…………………………………………………....176

7.17 Open-loop responses of truck braking system: (a) time-domain and

 (b) frequency-domain…………………………………………………………177

7.18 Responses of truck braking system with conventional PI-controllers

 (a) time-domains and (b) frequency-domain……………………………….…178

7.19 Objective function of the truck braking system………………………………180

XXV

LIST OF FIGURES (Continued)

Figure Page

7.20 Response plots of the truck braking system with PI-controllers via search:

 (a) time-domain and (b) frequency-domain…………………………………..181

7.21 Comparisons of convergence curves between the BF-TS and

 the modified ATS for the truck braking system………………………………182

7.22 Objective function of the stability analysis…………………………………...185

7.23 Phase portraits and regions of attraction: (a) obtained from BF-TS algorithm

 and (b) obtained from modified ATS algorithm.…………………………….187

7.24 Comparisons of convergence curves between the BF-TS and

 the modified ATS for the stability analysis…………………………………...188

7.25 Identification results of ramp-up command at 5 mm/s: (a) convergence

 curve, (b) displacement and (c) force exerted by motor. (Note: positions

 in the range of 112-295 mm)………………………………………………….193

7.26 Identification results of ramp-down command at -5 mm/s:

 (a) convergence curve, (b) displacement and (c) force exerted by motor.

 (Note: positions in the range of 325-127 mm)………………………………..194

7.27 Validation results of ramp-up command: (a) displacement (44-112 mm),

 (b) force exerted by motor (44-112 mm), (c) displacement (295-352 mm)

 and (d) force exerted by motor (295-352 mm)………………………………..196

XXVI

LIST OF FIGURES (Continued)

Figure Page

7.28 Validation results of ramp-down command: (a) displacement (352-325- mm),

 (b) force exerted by motor (352-325 mm), (c) displacement (127-68 mm)

 and (d) force exerted by motor (127-68 mm)…………………………………197

7.29 Plots of friction force curves (ramp command of 5 mm/s)…………………..197

7.30 Block diagram of self-servo writing process………………………………….199

7.31 Block Diagram of hard-disk actuator………………………………………....199

7.32 Frequency responses of the hard-disk head actuator (courtesy of

Hitachi Global Storage, Prachinburi, Thailand)…………………………..…..200

7.33 Plots of models against recorded data (validation)…………………...………205

7.34 Comparisons of convergence curves between the BF-TS and

the modified ATS for the hard-disk head actuator………………………..…..206

7.35 Equivalent system of back-to-back converter topology………………………207

7.36 A whole control structure based-on the dq reference frame of

back-to-back converter (Wu et al., 2008).…………………………………….209

7.37 Program lists of the multi-objective optimizations…………………………...213

7.38 Comparisons of the input current qualities: (a) conventional design,

(b) BF-TS approach and (c) modified ATS approach………………………...218

7.39 Comparisons of the motor current qualities: (a) conventional design,

 (b) BF-TS approach and (c) modified ATS approach………………………...219

7.40 Comparison of the closed-loop responses of line input current………………220

XXVII

LIST OF FIGURES (Continued)

Figure Page

7.41 Comparison of the DC-link voltage responses………………………………..221

7.42 Comparison of the closed-loop responses of motor current…………………..222

7.43 Comparison of the motor speeds……………………………………………...222

7.44 Comparison of the motor speeds with variable load torques…………………223

7.45 Comparisons of convergence curves of the proposed algorithms………...…..224

7.46 Curves of multi-cost functions for the BF-TS algorithms……………………225

7.47 Curves of multi-cost functions for the modified ATS algorithms……………225

8.1 Structure models of parallel computing level: (a) a shared-memory

and (b) a distributed-memory………………………………………………....230

8.2 MATLAB pool structure……………………………………………...………235

8.3 Code list for an SPMD block…………………………………………………237

8.4 Instruction of distributed array…………………………………………….….238

8.5 A result obtained from distributed array……………………………………...239

8.6 Instruction of codistributed array……………………………………………..240

8.7 A result obtained from codistributed array…………………………………...241

8.8 An example code of using a for-drange loop…………………………………242

8.9 Flow diagram of the parallel version of the modified ATS………………..…245

8.10 Code list for parallel computing of multi-objective functions. ……..………..247

8.11 Code list for parallel computing of generating an elite initial solution ……....249

XXVIII

LIST OF FIGURES (Continued)

Figure Page

8.12 Comparison of frequency responses of input filters obtained from

different methods………………..……………………………………….......253

8.13 Comparison of convergence curves of the proposed algorithms.…………….255

8.14 Curves of multi-cost functions for the parallel modified ATS.…………….…256

A.1 Frequency responses of the single R/W head without and with notch filter….288

A.2 Frequency responses of the single R/W head with notch filters…………...…289

A.3 Responses of the single R/W head with anti-resonance filters and the third-

order phase-lead compensator; (a) step response and (b) bode plot.................291

A.4 Bode plots of the R/W head-stacks with and without notch filters…………...292

A.5 Bode plot of the R/W head-stacks with notch filters………………………....293

A.6 Responses of the R/W head-stacks with anti-resonance filters and the

3-stage phase-lead compensator: (a) time-domain and (b) bode plot………...295

B.1 Standard feedback control system………………………………………….…297

B.2 Close loop system for tuning sustained oscillation…………………………...300

B.3 Sustained oscillation with period, 0T ………………………………...……….300

C.1 Stribeck friction curve……………………………………………………...…303

C.2 Circuit diagram representing the experimental setup courtesy of

K. Suthamno, 2004…………………………………………………………....306

D.1 The Y-connected model of the three-phase PMSM…………………………..308

D.2 Back-to-back converter topology…………………………………………..…312

XXIX

LIST OF FIGURES (Continued)

Figure Page

D.3 Simulated input current waveform of a 10-pole machine…………………….314

D.4 Control structure for a 3-phase PWM rectifier based-on

the dq reference frame (Wu et al., 2008)……………………………………...317

D.5 Transformation between the abc stationary reference frame and

the dq rotating reference frame…………………………………………….....320

D.6 Block diagram of three-phase PWM inverter controllers for

the PMSM drive based-on the dq reference frame (Wu et al., 2008)………...322

D.7 Three-phase PWM rectifier…………………………………………………...323

D.8 DC-link voltage control loop for back-to-back converter…………………….325

D.9 Current control loops for back-to-back converter…………………………….327

D.10 PI speed control loop for PMSM……………………………………………..328

D.11 PI current control loops for PMSM…………………………………………...330

D.12 Closed-loop response of line input current…………………………………...338

D.13 DC-link voltage of a 10-pole PMSM…………………………………………339

D.14 Closed-loop current responses of a 10-pole PMSM………………………….341

D.15 Speed of a 10-pole PMSM……………………………………………………342

E.1 Simulink model of whole drive system……………………………………….377

E.2 Sub-models of whole drive system: (a) control system 1 for PWM rectifier,

 (b) control system 2 for PWM inverter, (c) current and speed control loops

and (d) switching system ……………………………………………………..379

SYMBOLS AND ABBREVIATIONS

A. Algorithms

countmax = maximum iteration

dattract = coefficient representing the depth of attractant released

dim = dimension of parameters

hrepellant = coefficient representing the height of the repellant effect

itmax = maximum number of iterations

n = nonlinear modulation index

n_re_back = k
th

 backtracking solution retrieved from the TL

p = number of parameters to be optimized

pmax = maximum number of plant population

rand = random number on [0,1]

smax = maximum number of seeds

smin = minimum number of seeds

wattract = coefficient representing the width of the attractant signal

wrepellant = coefficient representing the width of the repellant by the cell

AR = adaptive radius

BT = frequency of solution cycling

C(i,j) = step size taken in random direction specified by the tumble

(,)J i j = cost value of i
th

 bacterium

N = number of the neighbourhood

XXXI

SYMBOLS AND ABBREVIATIONS (Continued)

N
c
 = number of iterations to be carried out in a chemotactic loop

N
ed

 = maximum number of elimination and dispersal events

N0 = number of initial populations

N
re = number of reproduction loop

N
s = swimming length after tumbling of bacteria in a chemotactic

loop

P
ed

 = probability with which the elimination and dispersal continues

R = search radius

S = number of bacteria in the population

Sr = a half of number of bacteria (S/2)

TL = tabu list

()i∆ = random vector on [-1,1]

α = a positive constant

iθ = position of i
th

 bacterium

σfinal = final value of standard deviation

σinitial = initial value of standard deviation

B. Identification problem

a = gear ratio = 5.9

i = motor current (A)

spring
k = gravity constant (N/mm)

XXXII

SYMBOLS AND ABBREVIATIONS (Continued)

l = ball screw lead = 5 mm

m = mass (kg)

n = number of data

v = velocity (mm/s)

vss = crossover velocity (mm/s)

i
x = displacement of spring (mm)

d
x = displacement of mass (mm)

m
D = viscous friction coefficient= 6

2.60 10 / / secNm rad
−

×

C
F = coulomb friction (N)

ex
F = external input force (N)

f
F = friction force (N)

_f motor
F = friction force of motor (N)

in
F = internal input force (N)

_m motor
F = force equivalent to the inertia of motor (N)

kt
K = intertia to force conversion factor = 2

(2 /)
b cvn

K a lK π η η× =

n
K = linear to angular velocity conversion factor = 2πa/l (rad/m)

Kt = torque constant of motor = 3
18.2 10 /N A

−
×

v
K = torque to ball screw force conversion factor = 2 /

b c
a lπη η

P = moment (Nm)

XXXIII

SYMBOLS AND ABBREVIATIONS (Continued)

S
F = static friction (N)

V
F = viscous friction (Ns/mm)

m
J = inertia of motor= 6 2

4.17 10 .kg m
−

×

Xtest = displacement from measured (mm)

dv± = velocity band around zero velocity = 0.1 /mm s±

dp± = momentum band (dv m± ×)

b
η = gear box efficiency = 0.81

c
η = ball screw efficiency = 0.925

k̂ = proportional controller gain

C. Inverter and PMSM

as
i ,

bs
i ,

cs
i = 3-phase stator currents

d
i ,

q
i = d- and q-axis stator currents

d
f ,

q
f , 0f = ,d− q − and 0 axis− components

fα , fβ , 0f = ,α− β − and 0 axis− components

s
f = switching frequency

t
k = torque constant

as
v ,

bs
v ,

cs
v = 3-phase stator voltages

*

d
v , *

q
v = input terminal voltages in the dq-frame

XXXIV

SYMBOLS AND ABBREVIATIONS (Continued)

d
v ,

q
v = d- and q-axis stator voltages

m
B = viscous coefficient (motor)

DC
E = DC-link voltage

J = moment of inertia (motor)

m
L∆ = half amplitude of the sinusoidal variation of the magnetizing

inductance

aa
L ,

bb
L ,

cc
L = 3-phase self-inductances of stator windings

ab
L ,

ac
L ,

ba
L ,

bc
L ,

ca
L ,

cb
L = mutual inductances between the stator phases

d
L ,

q
L = d- and q-axis inductances

f
L = input filter inductance

line
L = input inductance of each phase

ls
L = stator leakage inductance

m
L = average value of the magnetizing inductance

s
L = stator inductance

Nm = motor speed

P = number of poles

f
R = internal resistance of input filter inductor

line
R = input resistance each phase

s
R = stator resistance

XXXV

SYMBOLS AND ABBREVIATIONS (Continued)

e
T = electromagnetic torque

Tm = mechanical torque

L
T = external load torque

s
V = input voltage

as
ψ ,

bs
ψ ,

cs
ψ = 3- phase flux linkages

d
ψ ,

q
ψ = d- and q-axis stator flux quantities

m
ψ = flux linkage of the permanent magnet mounted on the rotor shaft

ω = angular frequency of the rotor

e
ω = angular frequency of the rotating dq reference frame

m
ω = mechanical angular velocity of the rotor

θ = angle between the rotor d-axis and q-axis

m
θ = mechanical angular position of the rotor

r
θ = angular rotor position

ζ = damping factor

CHAPTER I

INTRODUCTION

1.1 Significance of the Problem

 It is well-known that some complex problems like hard combinatorial

optimization problems contain many local solutions and constraints. While

conventional optimization methods often fail to solve such problems, metaheuristic

techniques are strong alternative means for finding the optimal or sub-optimal solutions

with reasonable computing time. For NP-hard problems, search tasks are still very

tedious for metaheuristics. Therefore, this thesis aims to study and improve the search

performance of metaheuristic algorithms namely the adaptive tabu search (ATS) and

the adaptive bacterial foraging optimization (ABFO) algorithms. The ABFO is known

for its attractive explorative characteristic. Using its chemotaxis strategy, the algorithm

visits many high-quality solutions dispersed over the search space in a short duration.

On the contrary, the ATS is known for its good exploitative behaviour. It is capable of

tracking down an elite solution in a short duration due to its adaptive radius (AR)

mechanism, but it lacks a capability of focusing an initial solution of high-quality.

Regarding this, a simple random number generation has been used to coarsely generate

initial solutions. Consequently, some parts of the search space containing high-quality

solutions may not be found. As a result, the algorithm requires a considerable long time

to achieve a final elite solution. In contrast, the ABFO via its adaptive chemotaxis step

can exhaustively explore various parts of the entire search space. This provides a better

2

opportunity to obtain at least one elite solution at the very beginning of the search

providing that the initial exploration is not repeated too many times. Search time will

be significantly prolonged, if the initial exploration is many times repeated. Algorithm

complexity and possibility of being locked by local solutions are additional drawbacks

of ABFO. Some of these disadvantages can be overcome by the backtracking (BT) and

the AR mechanisms of the ATS. Therefore, the two algorithms can be combined to

form new metaheuristics called cooperative bacterial foraging-tabu search or BF-TS.

Furthermore, generation of neighbour solutions of the ATS within a limited search

radius can be replaced by the adaptive chemotaxis step of the ABFO to improve the

explorative characteristic. This newly proposed version of the ATS is called modified

ATS. To evaluate the search performances, the algorithms have been tested against

several abstract and real-world problems. Parallelization has been made to the proposed

algorithms based-on MATLAB and Parallel Computing Toolbox to significantly reduce

search time.

1.2 Research Objectives

 The objectives of this research are as follows:

 - To combine the ABFO algorithms and the ATS such that new algorithms

work in cooperative manner.

 - To develop a modified version of the ATS.

 - To investigate performances among the proposed algorithms, the ABFO, the

ATS, the GA, and the IWO by using unconstrained surface optimization problems.

- To apply the proposed algorithms to abstract mathematical constrained

problems, control problems, nonlinear stability analysis and identifications.

3

 - To accomplish a parallel application of the proposed version of the ATS.

- To apply the proposed algorithms to a complex engineering problem under

parallel computing environment.

1.3 Research Hypothesis

 The proposed cooperative BF-TS algorithm and the new version of ATS

achieve a superior performance when compared with the ATS. The proposed

algorithms can be effectively applied to various engineering optimization problems.

1.4 Basic Assumptions

 The approximate algorithms presented in this thesis can effectively handle

combinatorial optimization problems. Relevant computing tasks are carried out by

using MATLAB
®

and MATLAB Parallel Computing Toolbox
TM

.

1.5 Scope and Limitations of the Study

 - Studies of some existing metaheuristic algorithms covering the ABFO, the

ATS, the genetic algorithm (GA) and the invasive weed optimization (IWO).

 - Search performance comparisons of the above and our proposed algorithms

can be conducted against some unconstrained optimization problems to determine

average search time, average search rounds and quality of solutions. These

unconstrained problems include the minimization of the Bohachevsky, Rastrigin,

Shekel’s fox-holes, Schwefel and Shubert functions.

4

 - Application problems are limited to three abstract mathematical constraint

problems, optimal control design of hard-disk heads (single-head and head-stacks),

optimal control design of a truck braking system, stability analysis of nonlinear

systems, identification problems of hard-disk head actuator and nonlinear Stribeck

friction model, and optimal design of a power drive system.

 - Parallelization of the modified ATS has been performed on Intel quad-core

CPUs to access its performance.

- The paralleled version of the modified ATS has been applied to solve the

multi-objective design optimization of power drive system with many constraints.

1.6 Expected Usefulnesses

 - The proposed algorithms are effective and efficient for solving abstract

optimization problems as well as real-world complex problems.

- The proposed algorithms with parallelization are effective, outperform and

applicable to a complex engineering problem.

1.7 Research Procedures

 - Studies of existing metaheuristic algorithms including the ABFO, the ATS,

the IWO and the GA.

 - Conduct search performance tests against some unconstraint surface

optimization problems including BF, RF, SF, SchF and ShuF, which stand for

Bohachevsky, Rastrigin, Shekel’s fox-holes, Schwefel and Shubert functions,

respectively.

5

 - Combine the ABFO and ATS algorithms to work as cooperative bacterial

foraging-tabu search (BF-TS), simplify the algorithms to obtain a modified ATS, and

compare search performances among the ABFO, the ATS, the IWO and the GA

algorithms by using the unconstraint surface optimization problems.

 - Analyse the convergence of the modified ATS based-on Lyapunov’s direct

method.

 - Use the proposed algorithms to solve compensator designs for a single R/W

head and R/W head-stacks, controller designs for braking of a heavy-duty truck,

nonlinear stability analysis, identification of an actuator model of a servo track writing

system, identification of a nonlinear friction model, minimization of three abstract

mathematical constraint problems and a multi-objective design optimization of a

permanent magnet synchronous motor (PMSM) drive system.

 - Apply the modified ATS to a multi-objective design optimization of the

PMSM drive system under parallel computing environment.

1.8 Organization of the Thesis

This thesis is organized as follows. Chapter I defines the objectives, problems,

rationalities, and the methodology of the research.

Chapter II presents literature reviews of metaheuristics including single-

solution based and population-based metaheuristics, respectively. The main concepts of

those metaheuristics are explained in this Chapter II.

Chapter III describes the important concept of combinatorial optimization

problems, and gives a detailed explanation of metaheuristics covering single-solution

based and population-based metaheuristics.

6

Chapter IV explains the following metaheuristics in details: the adaptive

bacterial foraging optimization (ABFO), the adaptive tabu search (ATS), the invasive

weed optimization (IWO) and the genetic algorithm (GA), respectively. Moreover, the

proposed cooperative algorithms based-on the ABFO and the ATS denoted as bacterial

foraging-tabu search (BF-TS), and modified ATS, respectively, are highlighted in

details.

Chapter V briefly describes different types of random walks and mathematical

approaches to convergence analysis of algorithms. The Chapter presents proof of the

convergence of the random walk front-end employed by the proposed algorithms

based-on Lyapunov’s method. Convergence of the overall algorithms is then analysed

due to the fact that the tabu search with BT mechanism has been known for its

convergence property.

Chapter VI presents comparison studies of search performances among the

proposed algorithms, the ABFO, the ATS, the BF-TS, the modified ATS, the IWO and

the GA against benchmarking surface optimization problems. The performances have

been considered in terms of number of local locks, number of search rounds, number of

objective function evaluations, quality of initial solutions, quality of global solutions

obtained, search time, and time consumed per search round.

Chapter VII reports the results of applying the proposed algorithms to solve

various constrained abstract real-world problems. These are optimal control designs of

hard-disk heads and a second-order system with delay, stability analysis of a nonlinear

system, identification problems of hard-disk head actuator and a nonlinear friction

model, as well as design of a power drive system. The computational results are

compared between the proposed BF-TS and the modified ATS algorithms.

7

Chapter VIII describes relevant details of parallelization including parallel

processing or computing, parallel programing along with parallel metaheuristics. In

addition, the Parallel Computing Toolbox of MATLAB and its significant functions are

explained in this Chapter. To reduce computing time consumed by the modified ATS

for solving the drive problem, parallelization of the algorithm has been applied.

Implementation, results and discussions appear in this Chapter.

Chapter IX summarizes all the findings and contributions of the thesis. The

Chapter also brings recommendations for future works into attention.

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

 Engineering computational intelligence has been a fast growing research

domain in recent years. Many algorithms have been successfully applied to give

optimal solutions to complex and NP-hard problems in engineering. The most popular

methods are population-based metaheuristics and single-solution based metaheuristics.

The current study employs population-based metaheuristics to examine the attention on

bacterial foraging optimization (BFO), whereas an adaptive version of tabu search

known as the adaptive tabu search (ATS) has been proposed as single-solution based

metaheuristics. The study eventually leads to a new version of the ATS in which

population-based search mechanisms are missed at an initial phase of algorithmic

execution.

 Most of the population-based metaheuristics are natural-inspired algorithms,

which include bacterial foraging optimization algorithm. The bacterial foraging

optimization was introduced in 2002 for solving distributed optimization and control

problems (Passino, 2002; Liu and Passino, 2002). The algorithm mimics the foraging

behavior of Escherichia coli (E.coli) bacteria and the computer codes can be found in

http://www2.ece.ohio-state.edu/~passino/ICbook/ic_code.html. This algorithm consists

of four main steps namely chemotaxis, swarming, reproduction and elimination-

9

dispersal, respectively. The chemotaxis mechanism simulates the movement of an

E.coli bacterium cell for swimming and tumbling via flagella. The swarming

mechanism uses activation based on cell-to-cell signaling and foraging. This can be

achieved through an objective function adjustment depending on the relative distance

between each bacterium and the healthiest one. For the reproduction, the objective

function is sorted in ascending order, and the unhealthy bacteria, i.e. ones with high

objective values, will be eliminated. Afterward, the healthy group of bacteria is

reproduced by splitting into two at the same location. Thus, this process maintains the

population of the bacteria. For the elimination-dispersal process, the weak bacteria are

eliminated, while the healthiest ones obtained from the reproduction process are

randomly dispersed to new locations within the search space according to the

probability P
ed

.

2.2 Applications of the BFO algorithm

 The BFO has been applied to several real-world optimization problems as

follows:

• In 2006, Tripathy et. al. applied the BFO to solve, the optimum location and

the amount of series injected voltage for the unified power flow controller (UPFC) and

the best values of the taps present in the system (Tripathy et. al., 2006).

• In 2007, Mishra and Bhende used the BFO to optimize the coefficients of

proportional plus integral (PI) controllers for active power filters. The BFO technique

has been compared with the genetic algorithm (GA). The results were obtained to

converge faster than GA to reach the global optimum solution (Mishra & Bhende,

2007).

10

• In 2007, Munoz et al. used the BFO for the dynamical resource allocation

in a multiple input/output experimentation platform, which mimicked a temperature

grid plant and was composed of multiple sensors and actuators organized in zones

(Munoz et al, 2007).

• In 2007, Ulagammai et al. applied the BFO to train a wavelet-based neural

network (WNN) and used the same for identifying the inherent non-linear

characteristics of power system loads (Ulagammai et al., 2007).

• In 2010, Dasgupta et al. used the BFO for the automatic detection of circular

shapes from complicated and noisy images without using the conventional Hough

transform methods. The proposed algorithm was able to detect single or multiple circles

from a digital image through one shot of optimization (Dasgupta et al, 2010).

2.3 Applications of the ABFO algorithm

 However, the original BFO sometimes does not converge into a high-quality

solution, particularly when applied to complicated problems. Furthermore, the original

BFO algorithm involves many iterations and consequently needs more computational

time. Since the introduction of BFO, various modifications have been attempted to

improve its performances primarily through adaptive chemotaxis strategy and

hybridization with other optimization algorithms as follows:

• In 2005, Mishra proposed a Takagi-Sugeno type fuzzy inference scheme for

selecting the optimal chemotactic step-size in BFO. The resulting algorithm, referred to

as fuzzy bacterial foraging (FBF), was shown to outperform both classical BFO and the

GA when had applied to the harmonic estimation problem. However, the performance

of the FBF crucially depended on the choice of the membership function and the fuzzy

11

rule parameters and there was no systematic method (other than trial and error) to

determine these parameters for a given problem (Mishra, 2005).

• In 2007, Li et al. proposed a modified bacterial foraging algorithm with

varying population (BFAVP) and applied to the optimal power flow (OPF) problems.

The BFAVP also incorporated the mechanisms of bacterial proliferation and quorum

sensing, which allowed a varying population in each generation of bacterial foraging

process (Li et al., 2007).

• In 2007, Tripathy and Mishra proposed an improved BFO algorithm for

simultaneous optimization of the real power losses and voltage stability limit (VSL) of

a mesh power network. In their modified algorithm, instead of the average value, the

minimum value of all chemotactic cost functions was retained for deciding the

bacterium’s health. Simulation results indicated the superiority of the proposed

approach over classical BFO for the multi-objective optimization problem involving

the unified power flow controller (UPFC) location, its series injected voltage, and the

transformer tap positions as the variables (Tripathy and Mishra, 2007).

• In 2008, Tang et al. also presented a dynamic bacterial foraging algorithm

(DBFA) for solving an OPF problem in a dynamic environment in which system loads

were changing. DBFA was based on the recently proposed BFO which mimicked the

basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's

reproduction was employed in DBFA, which explored the self-adaptability of each

bacterium in the group searching activities (Tang et al., 2008).

• In recent year, Dasgupta et al. modified chemotactic movement of the BFO

to become an adaptive mechanism, and hence the name adaptive bacterial foraging

optimization, or ABFO. The significance of proposed mechanism was to avoid

12

oscillation, especially on flat fitness landscapes, when a bacterium cell was close to the

optima and to accelerate the convergence speed of the group of bacteria near global

optima. The results over several numerical benchmarks indicated that the ABFO

obtained better convergence behavior, as compared to the classical BFO. (Dasgupta et

al., 2009; Dasgupta et al., 2010; Majhi et al., 2009).

 In this thesis, we focus on the recent modification of ABFO to enhance the

performance of BFO. More details of the ABFO will be described in Chapter IV.

2.4 Applications of the hybrid BFO algorithm with the inspired

metaheuristics

 Hybridization of BFO with other optimization algorithms has been found in

some researches which most of them are combined with naturally inspired

metaheuristics as concisely described as follows:

• In 2007, Kim et al. proposed a hybrid approach involving GA and BFO

algorithms for function optimization to improve the mutation and crossover operations

in order to increase speed of convergence. The proposed algorithm outperformed both

GA and BFO algorithms over a few numerical benchmarks and a practical PID

controller design problem (Kim et al., 2007).

• In 2007, Biswas et al. proposed a synergism of the BFO algorithm with

another very popular swarm intelligence algorithm well-known as the particle swarm

optimization (PSO). The new algorithm, named by the authors as bacterial swarm

optimization (BSO). This proposed approach used mutated of the PSO algorithm for

each bacterium after undergoing the chemotactic step. The chemotactic movement

operation of the BFO was performed like the local search whereas the PSO was

13

performed like the global search over the entire search space. The significant approach

balances between exploration and exploitation. This proposed algorithm was shown to

perform in a statistically significantly better way as compared to both of its classical

counterparts over several numerical benchmarks (Biswas et al, 2007).

• In 2008, Saber and Venayagamoorthy presented a hybrid version of BFO

and PSO. The main of this hybrid algorithm was to propose a modified version of

bacterial foraging technique (BFT), which was suitable for economic load dispatch

(ELD) problems in huge multi-dimensional space. Random velocity of BFT was

improved by using PSO movement (evolution). Best cell (or particle) biased velocity

(vector) was applied in the proposed method to reduce randomness in movement

(evolution) and to increase swarming called BFT with PSO biased evolution (BFT-

PSOBE). This study was shown that the BFT-PSOBE was enough scope to work on a

real ELD application in unit commitment problems within practical execution time

limit (Saber and Venayagamoorthy, 2008).

• In 2009, Shao and Chen proposed an alternative solution integrating

bacterial foraging optimization algorithm and tabu search (TS) algorithm called TS-

BFO to solve motif discovery problem. The proposed hybrid algorithms had used tabu

list to contain elitist selections for reproduction step of the BFO and also to conquer the

trouble of local extremum which arises in the original BFO with higher probability

(Shao and Chen, 2009).

2.5 Applications of the TS algorithm

 The sample of single-solution based metaheuristics in this thesis is the adaptive

tabu search. The original tabu search was generated by Glover (Glover, 1989; Glover,

14

1990) which has become one of the most efficient metaheuristic methods. It

incorporates two major strategies: intensification and diversification. Successful

applications of the TS have appeared in various fields, e.g. food processing (Zhang et

al, 2003), optimal power flow (Kulworawanichpong and Sujitjorn, 2002), parameter

estimation (Yao et al., 2001), flow shop problems (Nowicki and Smutnicki, 1996), etc.

2.6 Applications of modifications to the TS algorithm

 For some complex systems containing many local optima, the simplistic TS is

usually unable to release the search move from a local entrapment. This problem has

been overcome by using different modifications made to the TS. These examples can

be concisely described as follows:

• In 1994, Battiti and Tecchiolli published the reactive tabu search (RTS)

which maintain the basic step of tabu search by varying the length of the tabu list in

order to avoid repeated solutions. RTS had feedback-based tuning of the length of the

tabu list and an automated balance of diversification and intensification. In this process,

all searched states were stored. After the move was executed, the algorithm checks

whether the current searching point had already been found. The length of the tabu list

increases if a searching point was repeated. On the contrary, the tabu list decreases if no

repetitions occurred during a sufficiently long period (Battiti and Tecchiolli, 1994).

• In 1998, Chiang and Chiang proposed the probabilistic tabu search (PTS).

PTS was an extension of the tabu search mechanism based on random neighbour at

each iteration with probability. The PTS had a candidate buffer with the length of

neighbourhood. At each exchange process, the PTS selected the neighbourhood which

was the top ranked candidate of the selected moves and stored them in the candidate

15

buffer in order of best to worst. The selected moves should not be in the tabu list or the

avoidance list. After all the moves were selected, a “campaign” was conducted. First,

the best move was selected according to probability. If the best move was rejected, the

second best would be selected with probability. This process continues until a move

was picked or the last move was tested. If all the moves were rejected, a randomly

selected move or the best move could be selected as the next move. In order to improve

the campaign process, a probability table was created (Chiang and Chiang, 1998).

• In 2006, Sujitjorn et al. proposed the adaptive tabu search (ATS) consisting

of two major additional strategies made to the conventional TS. These were

backtracking (BT) and adaptive search radius (AR) mechanisms, respectively. The

former strategy assisted the TS to release itself from being locked by a local solution. It

looked up the tabu list (TL), i.e. short-term memory, for a visited elite solution, and

used this solution to start a new search move. The latter strategy enhanced the focusing

characteristic of the TS. This strategy decreased the search radius gradually as the

search came close to a solution of high-quality having the potential of being the optimal

one. However, too short a search radius could result in a slow search.

Recommendations for the selection of search parameters are in Sujitjorn et al. (Sujitjorn

et al., 2006).

 In this thesis, the ATS has been studied. This has been used for various

successful applications such as signal and system identification (Puangdownreong and

Sujitjorn, 2006; Puangdownreong et al., 2005; Kulworawanichpong et al., 2004),

control engineering (Puangdownreong et al., 2006; Sujitjorn and Khawn-on, 2006;

Sarasiri et al., 2010), and signal processing (Sriyingyong and Attakitmongcol, 2006).

16

2.7 Applications of the hybrid TS algorithm with the inspired

metaheuristics

 In the last decade, the hybrid versions of the tabu search have been published in

many journals. Most applications have been combined with the population-based

metaheuristics following instances.

• In 1999, Thangiah developed the hybrid algorithm that combined the

genetic algorithms, the simulated annealing (SA) and the tabu search methods for

solving the vehicle routing problem with time windows (VRPTW). In the beginning,

the genetic algorithms had been used as a global search method to find an initial

solution. The next process, the initial solution was improved using a customer

interchange method guided by tabu search combined with non-monotonic simulated

annealing with an evaluation function that allowed for acceptance of infeasible

solutions with a penalty. This hybrid algorithm was structured in the exploitation

manner to strengthen the metaheuristic search strategies (Thangiah, 1999).

• In 2001, Lin et al. integrated the evolutionary programing (EP), the tabu

search and the quadratic programing (QP) algorithms to solve nonconvex economic

dispatch (NED) problem. This proposed hybrid algorithm had been divided in two

phases. The first phase was the hybrid EP and TS to solve the combinatorial

optimization, and the QP was used to solve the nonlinear optimization, especially the

NED problem. Therefore, the QP algorithm was used to calculate the main cost

function and evaluate the fitness function, while as the new feasible population was

created by the mutation of the EP. Moreover, this hybrid algorithm used the feature of

17

the TS which are a memory structure and the tabu list strategy to avoid the local

solutions during searching (Lin et. al., 2001).

• In 2007, Xiang et al. combined the heuristic algorithms between the tabu

search and particle swarm optimization as the hybrid optimization algorithm. This

proposed hybrid algorithm was based on the excellence of both the tabu search and the

particle swarm optimization. The new hybrid algorithm had been defined in two stages.

In the first stage, it was based on the sacrifice and memory property of the particle

swarm optimization to make a global exploration. In the second stage, the tabu search

was applied in finding the better particle around the global best particle for its

efficiency in searching. This proposed algorithm achieved the termination when the

setting maximal iteration times were reached (Xiang et al., 2007).

• In 2011, Di and Ze proposed a hybrid algorithm which had been combined

the advantage of global search ability of GA with the self-adaptive merit of the TS to

solve scheduling problems in flexible production environment. The TS algorithm was

embedded in genetic algorithm, which made those individuals with effective gene

deletion, and to balance the exploration and exploitation abilities of simple GA (Di and

Ze, 2011).

• In 2011, Jat and Yang also published the hybrid genetic algorithm and tabu

search approach denoted as HGATS to solve the post enrolment course timetabling

problem (PECTP). The proposed HGATS algorithm works in two phases. The first

phase was used to involve a population of candidate solutions by a guided search

genetic algorithm (GSGA). In addition, some new neighbourhood structures and

relevant local search strategies were integrated into the GSGA. The hybrid approach

had also employed a second phase, where feasible solutions were found during the first

18

phase. The second phase had been inspired from the TS heuristic to improve the

optimality of the solution. The experimental results had shown that the proposed hybrid

approach was better than or comparable to all other tested methods (Jat and Yang,

2011).

• In recent year, Xiuli and Yanchi developed the new hybrid heuristic

procedure based on the greedy random adaptive search procedure (GRASP), and the

tabu search algorithm. This proposed hybrid algorithm had been applied to the irregular

flight recovery which is a kind of NP-hard problems. The GRASP phase was used to

improve the solution and also allowed the procedure to go on along the cost reduced

direction in order to achieve the optimal solution. If the current solution found from the

GRASP was not in the local optimization, the TS algorithm would execute the

following steps via updated tabu list until a fixed given number of non-improving

consecutive iterations is achieved. According to the comparison of the original GRASP

method, the proposed hybrid algorithm had been shown quite high global optimization

capability (Xiuli and Yanchi, 2012).

• In 2012, Katsigiannis et al. investigated the hybridization of two

metaheuristic algorithms, namely the simulated annealing and the tabu search (SA-TS)

for solving the small autonomous power systems (SAPS) sizing problem. This

proposed hybrid SA-TA method had been combined the advantages of individual

optimization methods in order to find the optimal solution in a fast and effective

manner. The hybrid SA-TA algorithm used the SA to provide the initial solution.

According to the inferiority of the SA, it is a kind of a stochastic method, but its

performance does not quickly converge to the optimum region. For this reason, the SA

was combined with the TS to proceed iteratively from one solution to another until a

19

given termination criterion is satisfied. According to the adaptive memory of the TS

ensures that the search can escape from local optima. As the results showed that the

proposed hybrid method had improved the solution quality without increasing

significantly the number of required simulations (Katsigiannis et al., 2012).

2.8 Conclusion

Most of the literatures of hybrid metaheuristic algorithms have been combined

between the population-based metaheuristics and the local search to solve various

optimization problems. If only pure population-based metaheuristic, like the adaptive

bacterial foraging optimization, may be not well suited to fine-tuned search in highly

combinatorial problems and also weak in the exploitation of the solution found. In

contrast, single-solution based metaheuristic such as the adaptive tabu search has no

outstanding of exploration to entire search space. Therefore, the ability of the ABFO in

term of exploration into the search space can be combined with the local search like the

ATS with ability of exploitation in order to enhance the convergence rate and improve

the quality of the solutions. The modified algorithms will be further explained in

Chapter IV.

CHAPTER III

METAHEURISTICS

3.1 Introduction

The first proposed heuristic tried to help computer for testing a huge amount of

combinations in short time duration. However, heuristic algorithms may fail to solve

some complex optimization problems like NP-hard problems. In 1986, Glover

developed heuristics firstly called modern heuristics and finally became metaheuristics.

Unlike exact methods, metaheuristics are used to solve large-size problem instances by

delivering satisfactory solutions in a reasonable time. A disadvantage of metaheuristics

is that there is no guarantee to find (near) global optimal solutions or even bounded

solutions but is rather reach to good solutions easily. Metaheuristics have received

more and more popularity over the past 20 years. Examples of theses approaches are

simulated annealing (Kirkpatrick et al., 1983), tabu search (Glover, 1989), iterated local

search (Martin et al., 1992), and various population-based models such as evolutionary

algorithms (Forgel, 1962), genetic algorithms (Holland, 1992), scatter search (Glover et

al., 2000) and ant colony optimization (Dorigo et al. 1996) etc. Most metaheuristics

have two contradictory criteria that must be taken into account: exploration of the

search space (diversification) and exploitation of the best solutions found

(intensification). Morever, there are many classification criteria that may be applied to

metaheuristics. For examples, various criteria for classification could be nature-inspired

versus non-nature inspired, population-based search versus single-solution search, one

21

versus various neighbourhood structures, memory usage versus memoryless methods,

deterministic versus stochastic and iterative versus greedy. In this thesis, we describe

the most important metaheuristics according to the population-based search versus

single-solution search, which are divided into single-solution based metaheuristics and

population-based metaheuristics, respectively. Thus, the purpose of this chapter is to

introduce the metaheuristic search methods for solving hard combinatorial optimization

problems. We start with a discussion on combinatorial optimization problems, and

explain the classical optimization algorithms in Section 3.2. In this thesis, we focus on

the approximate algorithms for both heuristics and local search. Thus, we present a

concise history of the general principles of heuristics in Section 3.3, and the

development of local search algorithms in Section 3.4. It is well-known that solutions

of some cases of hard combinatorial optimization problems may not be improved by

general approximate algorithms. Therefore, we end this chapter with an introduction to

metaheuristics and a classification of metaheuristics. Moreover, this last Section also

describes the common concepts of single-solution based and population solution-based

metaheuristics.

3.2 Combinatorial Optimization Problems

An optimization problem is either a maximization or a minimization problem

sometimes regarded as a problem of extremum solution finding, in which there is an

objective function f on a set S of feasible solutions. If the S contains a finite set of

feasible solutions and a cost function over the solutions, the problem is known as a

combinatorial optimization problem. Combinatorial optimization problems in general

can be defined by the couple P= (S, f), where S represents the set of feasible solutions

22

or objects and the objective function to optimize f: S→ R . The goal is to find a global

optimal solution * ,s S∈ which has a better cost value than that of any other solution in

S, that is *, () ()s S f s f s∀ ∈ < . Most combinatorial optimization problems appear in

many real-world applications. The algorithmic approaches to combinatorial

optimization problems can be classified as either an exact (complete) algorithm or an

approximate (heuristic) algorithm. Exact algorithms are guaranteed to find a (an

optimal) solution in finite time but they might need exponential computation times in

worst case. Examples of these are branch and bound algorithms, also known as A
*
 (A

*
,

IDA
*
− iterative deepening algorithm), constraint programming and dynamic

programming, etc. However, when the size of the problem instance increases, many of

them belong to the NP-hard problems (or non-deterministic polynomial time), the exact

algorithms can take up so much computing time that it becomes unacceptable. Thus,

algorithms need to be designed for solving these problems, which require a reasonable

amount of time and effort to achieve an optimal solution. As such, approximate

methods are often an alternative, while these methods generate high-quality solutions

within short computational time. Approximate methods are often used to find

approximate solutions for the NP-hard problems. Although, they cannot guarantee a

globally optimal solution, they provide near optimal solutions to a wide range of

optimization problem in significantly reduced amount of time. There are two basic

types of approximate methods, heuristic and approximation algorithms (Alba, 2005;

Talbi, 2009). The classical algorithms for solving combinatorial optimization problems

can be viewed as a branch chart in Figure 3.1.

23

Figure 3.1 Classical optimization algorithms (Talbi, 2009).

3.2.1 NP-Complete Problems

 The abbreviation of NP stands for to nondeterministic polynomial time.

NP-complete problems are a set of each NP-problem (decision problems) which can be

reduced in polynomial time, and whose solution may still be verified in polynomial

time. This means that any NP problem can be transformed into any of the NP-complete

problems. Basically, NP-complete problem is NP problem that is at least as hard as any

other problem in NP. In the past, many decision problems were reduced their

complexities which all these problems have a common property. This means that

P NP⊆ , where P is the set of problems which can be solved by polynomial time

algorithms, and NP is the set of NP problems. If there are polynomial time algorithms

Optimization methods

Exact methods Approximate methods

Dynamic

programming

A
*
, IDA

*
 Heuristic

algorithms

Approximation

algorithms
Branch and X

Branch and

cut

Branch

and price

Metaheuristics Problem-specific

heuristics

Single-solution based

metaheuristics

Population-based

metaheuristics

Constraint

programming

Branch and

bound

24

for any NP-complete problems then P = NP, and every NP problems can be solved in

polynomial time. In some cases, NP may be equivalently defined as the set of decision

problems that can be solved in polynomial time on a non-deterministic turing machine.

The common belief nowadays is that P≠ NP that can be solved with non-

deterministic polynomial time algorithms or other algorithms running in super

polynomial time. This is to say that NP-complete is a subset of NP. Thus, it is often

said that the NP-complete problems are harder or more difficult than NP problems in

general. For instances, some well-known NP-complete problems are travelling

salesman problem, boolean satisfiability problem, n-puzzle, knapsack problem and

vertex cover problem (Cook, 1971; Kann, 1992).

3.2.2 NP-Hard Problems

The NP-hard is an abbreviation of nondeterministic polynomial time

hard. A problem which is harder than all NP problems or at least as hard as the hardest

problems in NP. Such problems need not be in NP and indeed, they may not even be

decision problems. It is called NP-hard problems, which are partly similar but more

difficult problems than NP-complete problems. They do not belong to the class NP but

all problems in the class can be reduced to them. Normally, the NP-hard problems

require exponential computing time or even worse. Notice that NP-complete problems

are a subset of NP-hard problems, and NP-complete problems are sometimes called

NP-hard. The NP-complete and NP-hard are defined by the complexity theory studied

within computer science. Both classes of NP-complete and NP-hard have been

extensive efforts to find polynomial time algorithms. However, there remain a large

number of problems in NP that defy such attempts, seeming to require super

25

polynomial time or exponential time. Whether these problems really are undecidable in

polynomial time is one of the greatest open questions in computer science. It may

happen that a problem nowadays known to be an NP-hard, will be proved to be an NP-

complete in the future. This is due to new knowledge and advancement in computing

innovation. Application problems of NP-hard are exampled as data mining, process

monitoring and control, planning and tutoring systems as well as decision support

(Hamalainen, 2006).

3.3 Heuristic Methods

 3.3.1 A Brief History

The word heuristic originates from the old Greek word heuriskein,

which means the art of discovering new strategies to solve problems. The first proposed

heuristics tried to systematize decision-making processes and to help computers with

testing a huge amount of combinations in a short amount of time. Heuristic strategies

can also be designed to develop algorithms for optimization problems. The technical

meaning of heuristic has undergone several changes in the history of artificial

intelligence (AI). Originally, the term of heuristic was used to refer to the study of

methods for discovering and inventing problem-solving techniques, especially those

can be used to find mathematical proofs. In addition, heuristic was used as the opposite

of algorithmic. It was defined as a process that may solve a problem, but offers no

guarantee of solving it. Note that there is nothing random or nondeterministic about a

heuristic search algorithm. Heuristic techniques dominated early applications of AI,

which were viewed as rules of thumb that domain experts could use to generate good

solutions without exhaustive searches (Russell and Norvig, 1995).

26

 3.3.2 Constructive Heuristics

Constructive heuristics are typically the fastest approximate algorithms

for solving combinatorial optimization problems. These algorithms generate solutions

from scratch by adding opportunely defined solution components at each step starting

from an empty initial solution. This algorithm is used until the solution is complete or

the process is stopped by some criteria. The algorithm of a constructive heuristic is

shown in Figure 3.2.

Figure 3.2 Generic algorithm of constructive heuristic.

Referring to Figure 3.2, first specifies the set of possible extensions for each

feasible (partial) solution .
p

s A set of solution components ()p
sℜ can be derived for the

extension of .
p

s At each step, one of the possible extensions is chosen until ()p
s φℜ = ,

which means either that p
s is a solution or that p

s is a partial solution that cannot be

extended to a feasible solution. A notable example of a constructive heuristic is a

p
s = ()

Determine ()p
sℜ

while ()p
sℜ φ≠ do

 c←ChooseFrom(()p
sℜ)

p

s ← extend
p

s by appending solution component c

 Determine ()p
sℜ

 End while

 Output: constructed solution.

27

greedy heuristic, which implements procedure ChooseFrom(()p
sℜ) by applying a

weighting function. As a result a weighting function is a function that sometimes

depends on a current (partial) solution and at each step assigns a heuristic value ()cη to

each solution component c ()p
s∈ℜ (Alba, 2005).

3.4 Local Search

Local search has become a widely accepted technique for the solution of hard

combinatorial optimization problems. The strategy of local search algorithms starts

from some solutions and iteratively tries to find a better solution in an appropriately

defined neighbourhood of the current solution. A better solution is replaced the current

solution, and the local search is continued from there until no better solution can be

found in the neighbourhood of the current solution, meaning a local minimum is

reached. The neighbourhood is formally defined as follows (Alba, 2005):

Definition 1 : A neighbourhood structure is a function N : S 2
s→ that assigns to each

s S∈ at set of neighbouring solutions N(s)⊆S, where N(s) is the neighbourhood of s.

Often, neighbourhood structures are implicitly defined by specifying the changes that

must be applied to a solution s in order to generate all its neighbours. The application

of such an operator that produces a neighbour s
*

()N s∈ of a solution s is commonly

called a move.

A neighbourhood with an instance of the problem defines a search space. A

search space can be represented by a graph in which the nodes are solutions that are

28

labelled by the value of the objective function, and the arcs represent the

neighbourhood relation between solutions. A solution s
*

S∈ is called globally minimal

solution (or global minimum) if for all s S∈ it holds that f(s
*
)≤ f(s).

Definition 2: A locally minimal solution (or local minimum) with respect to a

neighbourhood structure N is a solution ŝ such that ˆ ˆ() : () ().s N s f s f s∀ ∈ ≤ And ŝ is

a strict locally minimal if ˆ ˆ() : () ().s N s f s f s∀ ∈ <

The template of a local search algorithm is shown in Figure 3.3. The algorithm

generates an initial solution s0 as a sequence s1, s2, …, sn.

s=s0 ; Generate an initial solution s0

 While not Termination_Criterion Do

 Generate N(s); Generation of candidate neighbours

 If there is no better neighbour Then Stop

 s= s′ ; Select a better neighbour s′ ∈N(s)

 Endwhile

 Output Final solution found (local optima).

Figure 3.3 Generic local search algorithm.

Local search can be seen as a descent walk on a directed graph representing the

search space, which the movements connect each point with all its neighbours. The

basic version of a local search is iterative improvement. This search starts with an

initial solution, then selects a good neighbourhood for replacing the current solution,

29

and the search continues. If a local optimum is reached, the algorithm returns to the

optimal solution.

Figure 3.4 Basic iterative improvement scheme.

Figure 3.5 Framework of iterative improvement local search.

Figures 3.4-3.5 show a graphical depiction and framework of basic iterative

improvement, respectively. Note that iterative improvement may not render a local

optimal. To improve this, there are several variations made to the basic algorithm to

define the initial solution and the neighbourhood, as explained below.

s←GenerateInitialSolution()

while ()s N s′∃ ∈ such that () ()f s f s′ < do

s←ChooseImprovingNeighbour(N(s))

end while

output: s

30

 3.4.1 Selection of the Neighbour

There are several strategies to improve the selection function for a better

neighbour ChooseImprovingNeighbour(N(s)). It is commonly found in the literatures,

that researchers use first improvement, best improvement and random selection

strategies.

• First improvement: In this strategy, the neighbourhood is generated

incrementally and selected the first of better cost than the current solution s. In a cyclic

exploration, the neighbourhood is evaluated in a deterministic way following a given

order of generating the neighbourhood.

• Best improvement (steepest descent): This strategy exhaustively

explores the neighbourhood and selects the best solution with the lowest cost

(minimization problem) within the neighbourhood. However, the exploration of a large

neighbourhood may be very time-consuming.

• Random selection: In this strategy, a random selection is applied to

choose the next neighbour. This approach is rather different from the others described

so far in that it attempts to improve the current solution based on the corresponding

cost.

 To improve the quality of the solutions and the search time, one may use the

first improvement strategy when the initial solution is randomly generated, and the best

improvement strategy when the initial solution is generated using a greedy procedure.

Based on many observed cases, the first improvement strategy leads to solutions of the

same quality, whereas the best improving strategy uses a shorter computational time.

Moreover, the probability of convergence speed to local optima is less important in the

first improvement strategy. (Talbi, 2009)

31

 3.4.2 Escaping from Local Optima

 The local search is widely applied to hard combinatorial optimization

problems because this method is easy to design and implement, and renders an elite

solution in a considerably short time. Local search works well if there are not too many

local optima in the search space or the qualities of the different local optima are more

or less similar. Nevertheless, this kind of algorithm has a major drawback, i.e. it may

converge to a local optimum, or it may stop and exit with a solution of poor quality.

Moreover, this algorithm can be very sensitive to an initial solution. Thus in 1980s,

there were many alternative algorithms proposed to improve search performance as

summarized by the diagram in Figure 3.6.

Figure 3.6 Family of strategies for escaping from local optima.

Strategies for improving local search

Change landscape

of the problem

Accept non-improving

neighbours
Iterate with

 different solutions

Iterative local

search, GRASP

Changes the objective

function or the data input
Uses different

neighbourhoods

Simulated

annealing

Noisy

 method

Smoothing

method

Variable neighbourhood

search

Multistart

local search
Tabu

 search

Guided local

search

32

• Iterating with different initial solutions: This strategy is applied in

multistart local search, iterated local search, GRASP etc.

• Accepting non-improving neighbours: These approaches provide a

chance for the search to avoid being trapped by local minima. However, they may

move out of the terrain containing a local optimum. Simulated annealing and tabu

search are popular representatives of this class of algorithms.

• Changing the neighbourhood: The idea of these approaches

consists of changing the neighbourhood during the search such as variable

neighbourhood search strategies.

• Changing the objective function or the input data of the

problem: In this strategy, the problem is transformed by perturbing the input data of

the problem, and the objective function or the constraints to solve the original problem

more efficiently. This approach has been implemented in the guided local search, the

smoothing strategies, and the noisy method.

To avoid other possible shortcomings of the iterative improvement algorithms,

one may employ one (or more) of the following tactics: (i) accept worse solutions in

order to escape from a local entrapment, (ii) generate some good starting solutions to

guide the search towards a better solution in subsequent iterations, (iii) accumulate

search experiences (not possible with memoryless search) and use them to guide the

search to achieve the goal efficiently. In general, these schemes are referred to as

metaheuristics, which is explained next.

33

3.5. Metaheuristics

For over 20 years, a new kind of approximate algorithm has emerged which

tries to combine basic heuristic methods in higher level frameworks aimed at efficiently

and effectively exploring a search space. These methods are nowadays commonly

known as metaheuristics (this word was firstly coined by Glover in 1986 (Glover,

1986)). The suffix meta, a Greek word, means upper level methodology. Before this

term was adopted, metaheuristics were called modern heuristics. Metaheuristics may be

viewed as upper level general methodologies that can be used as a guiding strategy for

designing heuristics to solve combinatorial optimization problems by iterative attempts.

Metaheuristics are powerful optimization techniques for solving a wide range of

computationally complex optimizations and decision-making applications. Moreover,

one can view metaheuristics as algorithms that perform directed random searches for

possible solutions (near optimal) to a problem until a termination criterion is met. The

goals of these algorithms are to escape from local minima efficiently in order to

proceed with the explorations of the search space and to move on to find other better

local minima. However, there is no guarantee of finding globally optimal solutions or

even bounded solutions.

Successful metaheuristics rely on a good balance between diversification and

intensification strategies. The term diversification is referred to as the exploration of the

search space to identify regions with high quality or near optimal solutions, while the

term intensification means the exploitation of the best solutions found. The balance

between the two strategies is important because at first the search has to quickly

identify regions in the search space with high quality solutions and, as the search goes

on, it should avoid wasting too much time with already explored regions or with those

34

that fail to provide high quality solutions. Promising regions are determined by

obtaining good solutions. A good balance between intensification and diversification

should be found during the selection of the best solutions to improve the rate of

algorithm convergence. The selection of the best ensures that solutions will converge

to the optimum, while diversification via randomization allows the search to escape

from local optima and, at the same time, increases the diversity of solutions. A good

combination of these two major components will usually ensure that global optimality

is achievable. In terms of intensification, the promising regions of search space are

explored more thoroughly which are extremely local search. In diversification, all

regions of the search space are evenly explored so that the search is not confined to

only a reduced number of regions. Some of the well-known search methods explained

later in this chapter can be classified along a spectrum line of diversification-

intensification as shown in Figure 3.7. Random search leans toward diversification,

whilst local search is rather an intensification-based method. Random search generates

a random solution within search space without search memory. On the other hand, local

search selects the best solution that improves the current solution. Population-based and

single-solution based methods lie in the middle of the spectrum. In general, basic

single-solution based searches are more intensification (or exploitation) oriented,

whereas basic population-based searches are more diversification (or exploration)

oriented (Alba, 2005; Talbi, 2009). The diagram in Figure 3.7 below is helpful for the

researcher to select or design metaheuristics to suit applications.

35

Figure 3.7 Diversification-intensification spectrum of metaheuristics.

3.5.1 Classification of Metaheuristics

There are different ways to classify and describe metaheuristic

algorithms refer to (Alba, 2005; Blum and Roli, 2003; Talbi, 2009):

• Nature-inspired versus non-nature inspired: Many algorithms are

actually inspired by naturally occurring phenomena. The algorithmic approaches try to

imitate these phenomena to efficiently achieve elite solutions for combinatorial

optimization problems. There are several nature-inspired algorithms, including

evolutionary algorithms, evolution strategies, evolutionary programming, neural

networks, genetic algorithms, ant colony optimization, simulated annealing, bacterial

foraging optimization and invasive weed optimization, etc. Non-nature inspired

algorithms include tabu search, iterated local search, guided local search, variable

neighbourhood search and greedy randomized adaptive search procedures (GRASP),

for instance.

• Single-solution search versus population-based search: The

distinction between these methods is the number of solutions used at a time.

Algorithms working on single solution are called trajectory-based methods, and

encompass local search-based metaheuristics, like tabu search, iterated local search,

Random search
Population-based

 methods

Single-solution based

methods Local search

Diversification Intensification

36

simulated annealing and variable neighbourhood search. They all share the property of

describing a trajectory in the search space during the search process. On the contrary,

population-based algorithms perform search processes which describe the evolution of

a set of points in the search space.

• One versus various neighbourhood structures: Most

metaheuristic algorithms are based on a single neighbourhood structure. In other words,

the fitness landscape topology does not change in the course of the algorithm. This

approach may limit diversification of the search. Other metaheuristics, such as variable

neighbourhood search, use a set of neighbourhood structures which gives the

possibility of diversifying the search by swapping between different fitness landscapes.

• Memory usage versus memoryless methods: One distinctive

feature making the search methods different is whether they have memory or not. Some

memoryless methods are local search, simulated annealing and GRASP, for instance.

The search moves of these methods rely on the current information about the solution

and the search trajectory. Search history cannot be stored or retrieved elsewhere even

though it could be useful in accelerating the search. Some metaheuristics use memory

to influence the future search direction. As a common case, the memory contains some

useful information, such as visited elite solutions etc., that can be extracted online to

accelerate the search. An example is tabu search that uses short-term and long-term

memories.. Short-term memory is used to forbid revisiting recently found solutions and

to avoid cycling, while long-term memory is used for diversification and intensification

features.

• Deterministic versus stochastic: A deterministic metaheuristic is

used to solve an optimization problem by making deterministic decisions like local

37

search and tabu search etc. Some random rules of a stochastic metaheuristic are applied

during the search, like simulated annealing and evolutionary algorithms etc. In the case

of deterministic metaheuristic, using the same initial solution will lead to the same final

solution, whereas in stochastic metaheuristic, different final solutions may be obtained

from the same initial solution.

• Iterative versus greedy: Iterative algorithms start with a complete

solution or a population of solutions, and transform every iteration. Greedy algorithms

start from an empty solution, and construct a solution by assigning values to one

decision variable of a problem at each step until a complete solution is obtained. In

general, most of the metaheuristics are iterative algorithms.

3.5.2 Single-Solution Based Metaheuristics

 As mentioned before, the single-solution based approach is classified as

a trajectory method because the search process can be characterized by search paths or

search trajectories through the search space. Trajectories are performed by iterative

procedures that move from the current solution to another. The common concepts of

the single-solution based metaheuristics are represented by the procedural list in Figure

3.8. At the first start, an initial solution s0 is randomly generated. Next, the algorithm

produces current solutions s defined as a set of candidate solutions. This set C(s) is

generally obtained by local transformations of the solutions. In the replacement

process,

38

Figure 3.8 Procedural list of single-solution based metaheuristics.

a solution ()s C s′∈ is selected to replace the current solution, and designated as new

solution. The generation and the replacement processes maybe memoryless. In such a

case, they are based only on the current solution. Otherwise, some searches employ

memory for storing the historical generation of the candidate solution list and the

historical selection of the new solution for further use. The most popular examples of

the single-solution based metaheuristics are local search, simulated annealing and tabu

search.

Input: Initial solution s0.

t = 0;

Repeat

 Generate(C(st)) ; Generate candidate solutions (partial or

 complete neighbourhood) from st

st+1 = Select(C(st)) ; Select a solution from C(s) to replace the

 current solution st

t=t+1;

Until Stopping criteria satisfied

Output: Best solution found

39

3.5.3 Population-Based Metaheuristics

Population-based metaheuristics can be viewed as an iterative

improvement of a population of solutions. The search process starts from an initial

population of solutions usually generated randomly. Then, a new population is

generated and replaced by selection of the current population. The process is stopped

when a given condition is satisfied. The generation and the replacement processes are

based on the current population if they do not employ memory. Otherwise, historical

information about visited elite solutions and search moves can be memorized and

retrieved for search improvement. For those algorithms imitating biological breeding

processes, they are referred to as evolutionary algorithms. Most of population-based

metaheuristics are natural-inspired algorithms, for example evolutionary algorithms,

ant colony optimization, scatter search, estimation of distribution algorithms, particle

swarm optimization, bee colony, and artificial immune system. The procedural list

shown in Figure 3.9 provides the framework for this family of algorithms.

Figure 3.9 Framework of population-based metaheuristics.

P = P0 ; Generation of the initial population

t = 0;

Repeat

 Generate(
t

P′) ; Generation a new population

 1t
P+ = select-Population(

t t
P P′∪) ; Select new population

 t = t+1;

Until Stopping criteria satisfied

Output: Best solution (s) found

40

3.6 Conclusion

This chapter has presented the background to metaheuristics. It explains

combinatorial optimization problems, and gives a summary of algorithms used to solve

these problems. Metaheuristics play a major role in solving these problems usually NP-

hard ones in an approximate manner. This chapter presents a brief historical

background to heuristics, and elaborates on heuristic and metaheuristic algorithms,

respectively. Generic algorithms of some important metaheuristics are also given.

Noticeably, metaheuristic methods will gain more and more popularity in the future as

optimization problems are increasing in size and in complexity.

CHAPTER IV

DESCRIPTIONS OF THE ALGORITHMS

4.1 Introduction

 In recent years, researchers have used many metaheuristic algorithms to solve

complex optimization and NP-hard problems. Some of those algorithms are inspired by

nature and, among those, the bacterial foraging optimization (BFO) is well-known.

Some published papers have reported a deficit of the original BFO in that under some

situations it takes a very long time to render an elite solution, in other words, the BFO

needs a very large number of iterative loops to track down the global solution. This

problem has been resolved by introducing an adaptive jump in the chemotaxis step of

the BFO. The modified version is known as the adaptive BFO, or ABFO, later

presented in Section 4.2.

 Tabu search (TS) is one of the single-solution based metaheuristics that has

demonstrated many successful real-world applications as evidenced by a vast number

of publications worldwide. The simplistic TS occasionally encounters an undefeatable

local trap. Correspondingly, the algorithm moves around a local solution endlessly

without any improvement, otherwise hits the iteration limits. The drawback has been

overcome by introducing the backtracking (BT) and the adaptive search radius (AR)

mechanisms into the TS. This modified version of the TS has been referred to as the

adaptive tabu search, or ATS, later described in Section 4.3. Based on previous

descriptions, the explorative characteristic of the ATS is rather limited due to the preset

42

length of the search radius. In contrast, the ABFO algorithms with the chemotaxis

mechanism provide a rather thorough exploration on the search space. Therefore, both

algorithms could complement each other to achieve an efficient search. Thus this thesis

proposes cooperative algorithms based on the ABFO and the ATS, which are detailed

in Section 4.4 and Section 4.5. Moreover, Sections 4.6 and Section 4.7 of this chapter

also describe the algorithms used for comparison studies of the search performance that

include invasive weed optimization algorithm (IWO) and genetic algorithm (GA),

respectively.

4.2 Bacterial Foraging Optimization Algorithm

 The BFO algorithm is regarded as a population-based method and imitates the

foraging behaviour of bacteria. It consists of four main steps namely chemotaxis,

swarming, reproduction and elimination-dispersal, respectively. The chemotactic step is

regarded as the major step of the BFO that imitates the swift movement of bacteria by a

fixed distance or height. It is a foraging strategy that implements a type of local

optimization procedure, and resembles a biased random walk mode. Since the basic

BFO is usually unable to provide a fine-quality local solution and oscillates when it

approaches the global optimum point in case of a large step size, and thus has low

accuracy. On the other hand, if a small step size is defined, the speed of convergence of

the algorithm becomes slower. Moreover, under some complex circumstances, this

basic BFO may take very long time to reach a satisfactory solution. To resolve this,

some modifications have been made to the BFO to have an adaptive chemotatic step.

Thus, a suitable strategy to cope with this problem is to apply a big step size when the

cost function value is large so that the bacterium climbs down the hill faster and then

43

apply a very small step size when the bacterium is near the optimum point to ensure the

bacterium is able to find the optimum point. There is an interesting modification from

literature survey (Dasgupta et al., 2009; Dasgupta et al., 2010; Majhi et al., 2009)

which has been known as the adaptive BFO or ABFO algorithm. This modified version

is more efficient than the conventional BFO. The chemotactic step size varying as a

function of current fitness value can provide a fine-quality solution with a better

convergence rate than that achieved with a fixed step size, i.e., the value of chemotactic

step size changes based on the cost function (nutrient value). If the cost function value

is high then the step size is large and if the cost function value is low then the step size

is small. By applying this mechanism, the ABFO will be faster in convergence and will

also be able to reach the global optimum. Based on this concept, the adaptive step size,

C(i), is defined by

max max

. ()
()

() 1
()

i

i

i

C J C
C i

J

J

θ
αθ α
θ

= =
+ +

 (4.1)

where α is a positive constant. maxC is tune-able maximum chemotactic step size

which is applied to a large search space. If the global optimum of the cost function is

equal to zero, from equation (4.1). J(
iθ) → 0, then C(i) → 0. Therefore, there would

be no oscillation if the bacterium reaches an optimum point because the random search

term vanishes as C(i) → 0. The functional form given in equation (4.1) causes C(i) to

vanish near the optimum. On the other hand, when J (
iθ) is large, α / |J(

iθ) | → 0, and

consequently C(i) → maxC (> 0). The adaptive chemotatic step in equation (4.1) has an

44

important physical significance that this adaptation scheme helps to avoid the

oscillation of the bacterium near optima and accelerates its convergence speed. If the

magnitude of the objective function is large for an individual bacterium, it is in the

vicinity of a noxious substance. It will then try to move to a place with better nutrient

concentration by taking large steps. On the other hand, when the bacterium is in a

nutrient-rich zone, i.e. with small magnitude of the objective value, it tries to retain its

position. Naturally, its step size becomes small. Dasgupta et. al. have illustrated the

effectiveness of the above mentioned adaptive scheme over several benchmark

functions (Dasgupta et. al., 2009; Dasgupta et. al., 2010). The ABFO algorithm consists

of 4 main mechanisms as follows:

• Chemotaxis-This mechanism imitates the swimming and tumbling

movements of a bacterium via flagella. Biologically an E.coli bacterium can move in

two different ways. Let j be the index for the chemotactic step, k be the index for the

reproduction step, and l

be the index of the elimination-dispersal event. Define

{ }(, ,) (, ,) 1,2,...,i
P j k l j k l i Sθ= = (4.2)

to represent the position of each member in the population of the S bacteria at

the th
j chemotactic step, th

k reproduction step, and th
l elimination-dispersal event. Here,

let (, , ,)J i j k l denote the cost at the location of the th
i bacterium (, ,)i p

j k lθ ∈ℜ . Let Nc

be the length of the lifetime of the bacteria as measured by the number of chemotactic

steps they take during their life. To represent a tumble, a unit length random

direction, () () () ()
T

j i i iφ = ∆ ∆ ∆ , is generated; this will be used to define the direction

45

of movement after a tumble. An E.coli bacterium can move in two different ways: it

can swim (run) for a period of time in the same direction or it may tumble, and

alternates between these two modes of operation for the entire lifetime. In the BFO, a

unit walk with random direction represents a tumble, and a unit walk in the same

direction indicates a run showing in Figure 4.1. In computational chemotaxis, the

movement of the i
th

 bacterium after one step is represented as

(1, ,) (, ,) () ()i i
j k l j k l C i jθ θ φ+ = + (4.3)

so that C(i) is the size of the step taken in the random direction specified by the tumble

(see equation (4.1)). If at (1, ,)i
j k lθ + the cost (, 1, ,)J i j k l+ is better (lower) than that at

(, ,)i
j k lθ , then another step of size C(i) in this same direction will be taken, and again,

if that step results in a position with a better cost value than at the previous step,

another step will be taken. This swim continues as long as the cost continuously

decreases, but only up to the maximum number of steps, Ns. This represents that the

bacterium will tend to keep moving if it is headed in the direction of increasingly

favorable environments (Passino, 2002; Liu and Passino, 2002).

46

Figure 4.1 Swimming and tumbling movements.

• Swarming-When one bacterium presents itself in an elite position, i.e. a

local hill or valley, it attracts the other bacteria to that location. Regarding this, the E.

coli cells send attraction signals to each other so that they swarm together. Two stimuli,

i.e. cell-to-cell signaling and foraging, affect the swarming pattern. In terms of

algorithmic approach, this swarming to an elite location is achieved through an

objective function adjustment depending on the relative distance between each

bacterium and the healthiest one. Swarming helps bacteria congregate into groups and

move as concentric patterns. Simultaneously, each bacterium also releases repellant to

signal the others nearby. Thus, all of them will have a cell-to-cell attraction via

attractant, and cell to cell repulsion via repellant. The attractive and the repellent effects

are modeled as weighted summation of exponential terms representing the objective

function, Jcc. The cell-to-cell signaling in E. coli swarm can be mathematically

represented by

Unit walk

47

() ()

()

()

1

2

11

2

11

, (, ,) , (, ,)

 exp

exp

S

CC CC

i

pS

attract attract m m

m

pS

m mrepellent repellent

m

i i

i

i

i

i

J P j k l J j k l

d w

h w

θ θ θ

θ θ

θ θ

=

==

==

+

=

= − − −

− −

∑

∑ ∑

∑ ∑

 (4.4)

where (), (, ,)
CC

J P j k lθ can be seen as an updating term to the actual objective

function that would be minimized to represent a time varying objective function. The

terms dattract, wattract, hrepellant and wrepellant control the strength of the cell-to-cell

signaling. More specifically dattract is the depth of the attractant released by the cell,

wattract is a measure of the width of the attractant signal (a quantification of the diffusion

rate of the chemical), hrepellant = dattract is the height of the repellant effect (a bacterium

cell also repels a nearby cell in the sense that it consumes nearby nutrients, and it is not

physically possible to have two cells at the same location), and wrepellant is a measure of

the width of the repellant. The weighting factors are dattract, wattract, hrepellant and wrepellant,

and can be chosen arbitrarily. As Passino’s suggestion, the swarming parameters are

constantly considered such that dattract =hrepellant = 0.1, wattract = 0.2 and wrepellant = 10.

• Reproduction-After all Nc chemotactic steps have been covered, a

reproduction step is taken. Let Nre be the number of reproduction step to be taken. The

bacteria are classified during the computing process as healthy and unhealthy due to

their cost values. For the sake of convenience, we assume that the number of bacteria in

the population, S, is a positive even integer. Define / 2
r

S S= be the number of

population members with sufficient nutrients so that they will reproduce (split into two)

with no mutations. During the process of reproduction, the bacterial population are

48

sorted in order to ascend accumulated cost values, then the worse half of the

population, Sr, containing the least healthy bacteria, dies while the other of the better

half Sr split into two at the same location. This keeps the population of the bacteria

constant.

• Elimination and dispersal-Since bacteria may stick around the initial or

local optimum positions, it is required to diversify the bacteria either gradually or

suddenly so that the possibility of being trapped into local minima is eliminated or

reduced. Therefore, after the reproduction process, the healthy bacteria are dispersed

randomly within the search space with the probability Ped, whereas the unhealthy ones

are discarded. With this approach, it is expected that the search could escape from a

local entrapment.

 The procedural list below provides the ABFO algorithm (see the flowchart in

Figure 4.2).

Step0: Initialization of parameters: p, search space, S, N
c
, N

s
, N

re
, N

ed
,α ,dattract,

wattract, hrepellant and wrepellant.

Step1: Iterative algorithm for optimization.

Elimination-dispersal loop: l = l + 1.

 Reproduction loop: k = k + 1.

 Chemotaxis loop: j = j + 1.

 (a) For i = 1,2,…,S, take a chemotactic step for bacterium i as follows:

 (a.1) Compute and update objective functions according to (4.5).

49

 ()(, , ,) (, , ,) (, ,), (, ,)
CC

i
J i j k l J i j k l J j k l P j k lθ= + (4.5)

 Jlast = (, , ,)J i j k l (4.6)

(a.2) Tumble: generate randomly ([-1,1]) the elements of the random vector

() ,
p

m
i∆ ∈ℜ m=1,2,…,p.

 (a.3) Move: compute the adaptive step size, C(i), according to (4.1) and

update the location, iθ , of a bacterium.

T

()
(1, ,) (, ,) ()

() ()

i i i
j k l j k l C i

i i

θ θ
∆

+ = +
∆ ∆

 (4.7)

 (a.4) Compute the objective function

 ()(, 1, ,) (, 1, ,) (1, ,), (1, ,)
CC

i
J i j k l J i j k l j k l P j k lJ θ+ = + + + + (4.8)

 (a.5) Swim: reset swim length counter, m=0; while m < N
s
 update m, if

(, 1, ,)J i j k l+ < Jlast, assign Jlast = (, 1, ,)J i j k l+ and compute

T

()
(1, ,) (1, ,) ()

() ()

i i i
j k l j k l C i

i i

θ θ
∆

+ = + +
∆ ∆

 (4.9)

50

 Use the (1, ,)i
j k lθ + and compute the new (, 1, ,)J i j k l+ according to (4.5).

Go to step (a.1), if m =
S

N .

Step2: If j < N
c
, repeat the chemotaxis loop in step 1. (Continue chemotaxis since the

lives of the bacteria are not over).

 Step3: Reproduction:

 For i = 1,2,…,S.

 - For the given k and l, and for each i = 1,2,…,S, compute

1

1

(, , ,)
cN

i

health

j

J J i j k l

+

=

= ∑ (4.10)

- Do max-min sorting for Jhealth.

- Classify half of the Sr bacteria as healthy (with low values of Jhealth) and the

other half as weak; split the healthy ones into two at their current locations.

Step4: If k < N
re

, repeat the reproduction loop in step1.

Step5: Elimination-dispersal:

 - Dispose the weak bacteria resulted from the classification in step3 (ones with high

values of Jhealth).

 - Assign P
ed

= 0.25. For i=1,2,...,S: randomly generate rand; if P
ed

>rand disperse

the bacteria to random locations iθ , else do nothing.

Step6: If l < N
ed

 repeat the elimination-dispersal loop in step1; otherwise end.

The flowchart of ABFO is illustrated in Figure 4.2.

51

()i∆

()i∆

(1, ,)
i

j k lθ +

Figure 4.2 Flowchart of the ABFO algorithm.

4.3 Tabu Search Algorithm

 The TS is suitable for combinatorial optimization problems containing many

local solutions. Through an iterative process of neighbourhood search, the TS moves

52

toward better and better local solutions. The search stops according to some termination

criteria that could be maximum iteration, cost threshold, etc. As a memory-based

method, the TS employs a memory block called tabu list (TL) storing the characteristics

of elite solutions previously visited. Judicious design of the TL and how to utilize it

leads to a fast and efficient search. In general, two main strategies recommended for

efficient searches are intensification and diversification strategies, respectively (Glover,

1989; Glover, 1990). The conventional TS is usually unable to escape from a local trap,

or may succeed with a considerably long time taken. One efficient modification to

resolve the problem is the approach used by the ATS, in which the backtracking (BT)

and the adaptive search radius (AR) mechanisms have been added. The BT mechanism

permits the search to use an elite solution sorted in the TL as a new initial solution. The

search can immediately escape from a solution deadlock, and thus increase the search

efficacy. However, the new solution which is selected as the current solution is not

necessary to be the best solution in the current search space. The AR mechanism

decreases the search radius during the process running until the search comes close to

the global optimum. A long radius is suitable for a sparse visit to neighbouring

solutions in order to find some solution candidates while the quality is not a prime

interest. To find a high-quality solution, a short radius is more appropriate. The search

radius should be adjusted to suit the problems, and increase the effectiveness of the

ATS. The following procedural lists represent the ATS algorithms.

Step0: Initialize search parameters: R, search space, N, TL, countmax, BT, n_re_back,

best_neighbour, best_error, Ri and
i
ε . Define S0 = best_neighbour.

53

Step1: Randomly or heuristically select an initial solution S0 from the search space. Set

S0 as a current solution or best_neighbour with its cost J0.

Step2: Generate a neighbourhood.

 For count = 1,2,…, countmax.

Generate a neighbourhood with an initial search radius R. Set N solutions as the

members of the set S1(r).

Step3: Evaluate the objective function (J) of each member in S1(r). Define S1 =

best_neighbour1 as a neighbour solution with the minimum cost, J1.

Step4: If J1< J0, store S0 in the TL, assign S0 = S1, otherwise, store S1 in the TL.

Step5: Invoke the BT when a solution deadlock occurs. If the current solution has been

repeated a number of times as defined by n= 1,2,…, BT.

 BT: if n≥BT

 n=n+1

 best_error = RANK(TL)

 look back in the TL, then retrieve the n_re_back
th

 solution from the TL.

 else

 n=0

 define S0 = best_neighbour

 best_error = best_error

 end if

(A better solution is selected as a new initial solution for the next search to start with.)

Step6: If the termination criterion is met, exit with the global solution.

Step7: Invoke the AR when the current solution S0 is relatively close to a local

minimum.

54

AR: if best_error<
1
ε

 R=R1 where R<R1.

 end

 if best_error<
2
ε

 R=R2 where R2<R1 and
2
ε <

1
ε .

 end

 …

 if best_error<
n
ε

 R=Rn where Rn<Rn-1 and
n
ε <

1n
ε − .

 end

Step8: Update iteration counter (count), and go to Step2.

The flowchart of ATS is shown in Figure 4.3.

55

Start

Initialize the tabu list, count.

Within the search redius R,
Randomly or heuristically select the initial
solution S0 and set S0 as the local solution.

S0 = best_neighbor.

Randomly select N solutions in
the neighborhood of S0 within the radius R.

Keep these solutions in the set S1(r).

Evaluate the cost of each member

belonging to S1(r). The member with
minimum cost = best_neighbor1.

J1

< J0

Keep best_neighbor in the tabu list
best_neighbor = best_neighbor1.

yes

no

S0= best_neighbor

Invoke back tracking if necessary.

stop

?

Invoke adaptive radius

mechanism if required.

no

yes

Stop

Keep best_neighbor1

in the tabu list.

Compare

Cost function

Figure 4.3 Flowchart of the ATS algorithm.

56

4.4. Cooperative Bacterial Foraging-Tabu Search Algorithm

A lot of metaheuristic approaches have been explored in the last two decades in

order to tackle large size optimization problems. These areas include hybrid

metaheuristic and cooperative search algorithms. As previously mentioned, the ATS

has a dominant focusing or exploitative characteristic, while the ABFO is strong in

explorative operation. Such properties can complement each other. Since the ATS has

straightforward procedures, and moves rapidly towards a local solution, this method is

used to perform the ‘hunting’ steps and search for a satisfactory solution to the

problem. The two algorithms are combined to form new metaheuristics working in a

cooperative manner. In this new algorithmic form, ranking the available solutions to

single out one with the minimum cost is an important step, it is therefore unnecessary

to employ the reproduction and elimination-dispersal mechanisms of the ABFO. This

specific solution is transferred to the ATS part as an initial solution. It means that the

ABFO is applied first to collect promising initial solutions, and the ATS is applied

afterward to track down a global solution. Furthermore, the BT mechanism of the ATS

still remains a handy tool to escape a local solution lock. The two algorithms are

combined, which the ABFO algorithm operates once to provide a high-quality initial

solution for the ATS. Such algorithm is referred to shortly as BF-TS. The procedural

list of the BF-TS algorithm is as follows:

Step0: Initialize search parameters: p, search space, S, N
c
, N

s
,α ,dattract, wattract, hrepellant,

wrepellant, R, N, TL, countmax, BT, n_re_back, best_neighbour1, best_error, Ri and
i
ε .

57

Step1: Randomly or heuristically select an initial solution iθ from the search space. Set

iθ as the current solution.

Step2: Compute objective functions (,)J i j according to equation (4.11)-(4.12)

(i=1,2,…,S). Set Jlast = (,)J i j ; j=1,2,… N
c
.

()(), (,)(,) (,)
i

CC
j P i jJ i j J i j J θ= + (4.11)

() ()

()

()

1

2

11

2

11

, (,) , ()

 exp

exp +

S

CC CC

i

pS

attract attract m m

m

pS

repellent repellent m m

m

i i i

i

i

i

i

J P i j J j

d w

h w

θ θ θ

θ θ

θ θ

=

==

==

=

= − − −

− −

∑

∑ ∑

∑ ∑

 (4.12)

Step3: Generate randomly ([-1,1]) the elements of the random vector () ,
p

m
i∆ ∈ℜ

m=1,2,…,p, then compute the adaptive step size, ()C i using equation (4.13), and update

the solution (1)
i

jθ + according to equation (4.14). Compute the objective function

for j j= +1 according to equation (4.11)-(4.12). Set m=0.

max max

. ()
()

() 1
()

i

i

i

C J C
C i

J

J

θ
αθ α
θ

= =
+ +

 (4.13)

T

()
(1) () ()

() ()

i i i
j j C i

i i

θ θ
∆

+ = +
∆ ∆

 (4.14)

58

Step4: If (, 1)J i j + < Jlast then Jlast = (, 1)J i j + ; use the direction of the same random

vector ()i∆ to compute (1)
i

jθ + and (, 1)J i j+ . Update m and repeat Step 4 until m > N
s
.

Step5: If j≤ N
c
, go to Step 2.

Step6: Do minimum sorting of the objective functions J. Define best_ neighbour (elite

solution from sorting) as the solution with the minimum J. Set S0=best_neighbour.

Step7: Generate a neighbourhood around S0 within an initial search radius R. Set N

solutions as the members of the set S1(r).

Step8: Evaluate the objective function of each member belonging to S1(r). Define S1 =

best_neighbour1 as a solution with the minimum cost, J1.

Step9: If J1< J0, store S0 in the TL, assign S0 = S1, otherwise, store S1 in the TL.

Step10: Invoke the BT when a solution deadlock occurs (the current solution has been

repeated many times as defined by n= 1,2,…, BT).

 BT: if n≥BT

 n=n+1

 best_error = RANK(TL)

 look back in the TL, then retrieve the n_re_back
th

 solution from the TL.

 else

 n=0

 define S0 = best_neighbour

 best_error = best_error

 end if

Step11: If the termination criterion based on the J values is met or count > countmax

(count = 1,2,…, countmax) exit with the global solution.

Step12: Invoke the AR when the current solution is relatively close to a local minimum.

59

 AR: if best_error<
1
ε

 R=R1 where R<R1.

 end

 if best_error<
2
ε

 R=R2 where R2<R1 and
2
ε <

1
ε .

 end

 …

 if best_error<
n
ε

 R=Rn where Rn<Rn-1 and
n
ε <

1n
ε − .

 end

 Step13: Updated count. If count ≤ countmax then go to Step 7.

The flowchart of BF-TS is illustrated in Figure 4.4.

60

()i∆

()i∆
(1).

i
jθ +

Figure 4.4 Flowchart of the BF-TS algorithm.

61

4.5 Modifications to Adaptive Tabu Search based-on Adaptive

Random Movement of Bacterial foraging Optimization

Approach

Search techniques have been widely used to solve various optimization

problems which can be divided into complete (exact) and approximate (heuristic)

algorithms as mentioned in Chapter III. According to many issues, the complete search

algorithms such as branch and bound or dynamic programming guarantee to find an

optimal solution for a finite sized problem in bounded time. Nevertheless, as the size of

the problem gets larger, the time-consuming by the complete algorithms may increase

exponentially. On the other hand, approximate search algorithms find a good (non-

optimal) solution in less amount of time. According to the previous literature

researches in Chapter II, the ABFO with ability of exploration and the ATS with ability

of exploitation are applied to various engineering problems. In some cases, those single

algorithms may not cope with the complex problems like combinatorial optimization

problems or cannot obtain good enough results. In order to overcome these problems,

one approach is to combine different metaheuristic algorithms referred to as hybrid

optimization algorithms having received considerable interest in recent years. The wide

variety of hybrid approaches has been proposed in many literatures as mentioned in

Chapter II. Most of the population-based metaheuristics have been cooperated with the

single-solution based metaheuristics utilizing their capabilities namely exploration and

exploitation, respectively. Therefore, the ABFO and the ATS algorithms have been

loosely combined as described by the previous section. From the experience learned,

distribution of good quality solutions is dominantly achieved by the random movement

62

of bacteria in the ABFO process. This sub-process of random movement can enhance

or speed-up the ATS to hit a global solution. Thus, this thesis proposes a modified ATS

based-on both high-level relay hybrid (HRH) in the first process to randomly generate

initial solution, and low-level teamwork hybrid (LTH) in the second process to

randomly select neighbour solutions around the current best solutions with small step

size. The proposed algorithms even though use a similar title to that of (Kluabwang and

Thomthong, 2012), ones of ours are rather different and far more complicated. Those

appeared previously in the 2012 literature are referred to the original ATS with an

additional adaptive neighbourhood mechanism. Below is an elaborative description of

our modified ATS.

The HRH algorithms are self-contained metaheuristics and run in a sequential

manner. It contains hybrid in which one of the metaheuristic is used either to generate

initial solution for another metaheuristic or to improve its final solution. For example in

some problems, such a kind of evolutionary metaheuristics is used to generate a good

quality initial solution and this solution is used as a starting solution in the

metaheuristic algorithms. The other instance is to use one metaheuristic to globally

optimize the problem and use a different metaheuristic to optimize locally around the

final best found solution in global optimization process. Noticeable combining the

population-based metaheuristics with the single-solution based metaheuristics in the

HRH approach is largely applied. As well known that the population-based

metaheuristics are not well suited for fine-tuning structures, when are very close to

optimal solutions. Indeed, the strength of these metaheuristics is in quickly locating the

high-performance regions of wide search space. Once those regions are located, it may

be useful to apply to the single-solution based metaheuristics. This class of LTH

63

consists of two competing goals namely exploration and exploitation. To balance these

properties for instances, the LTH algorithms use the single-solution based

metaheuristics embedded into the population-based metaheuristics or use the

population-based metaheuristics integrated into the single-solution based

metaheuristics. The combination of these goals of metaheuristics achieves advantage

from the points of strength of each method. This class of hybrid algorithms is very

popular and has been applied successfully to many optimization problems (Talbi,

2002).

Therefore, in this contained hybrid, firstly, the adaptive random movement of

ABFO is used to generate initial solution for the second method of ATS based on the

HRH method. Secondly, the LTH method is applied. This proposed hybrid uses the

adaptive random movement inspired from bacteria which is embedded in the ATS to

randomly selected
2 2 c

N S× solutions in the neighborhood of S0 around the global

solution with small step size and also to improve its final solution without the limit of

radius. The combination of these two classes of metaheuristics is powerful in

exploration of feasible regions and in exploitation of good quality solutions. The

structure of this hybrid algorithm is shown in Figure 4.5.

64

Exploration to obtain

initial solution

(HRH)

Exploitation to fine tune

near optimal solutions

(LTH)

Adaptive random

movement

inspired from

bacterial

BT

mechanism

ATS

Adaptive random movement

inspired from bacterial

Figure 4.5 Structure of the modified ATS.

As the main procedural list of the modified ATS, the same list for the BF-TS

algorithm shown in section 4.4 is used except the Step7 is replaced by the adaptive

random movement inspired from bacteria. That Step12 is not used in this proposed

algorithm. The following list declares the new scheme of Step7.

Step7: Generate neighbour solutions around S0 via the adaptive random movement of

bacteria. Set
2 2 c

N S× solutions as the members of the set S1:

 (a) Set the solution S0 as the current solution 2

2

iθ .

 (b) Compute objective functions
2 2

(,)J i j according to equation (4.15)-(4.16)

(i2=1,2,…,S2). Set Jlast = 2 2(,)J i j ; j2=1,2,…
2C

N .

()2

2 2 2 2 2 2 2(), (,)(,) (,)
i

CC
j P i jJ i j J i j J θ= + (4.15)

65

() ()

()

()

2

2 2 2

2

2

2

2 2

2

2

2 2 2 2 2 2

1

2

2 2

1 1

2

2 2

1

, (,) , ()

 exp

exp +

S

i

CC CC

i

S p

i

attract attract m m

i m

p

i

repellent repellent m m

m

i i
J P i j J j

d w

h w

θ θ θ

θ θ

θ θ

=

= =

=

=

= − − −

− −

∑

∑ ∑

∑
2

2 1

S

i =

∑

 (4.16)

 (c) Generate randomly ([-1, 1]) the elements of the random vector
2 2
() ,

p

m
i∆ ∈ℜ

m2=1,2,…,p, then compute the adaptive step size, 2 2()C i using equation (4.17), and

update the solution 2 2
2 (1)
i

jθ + according to equation (4.18). Compute the objective

function for 2 2j j= +1 according to equation (4.15)-(4.16). Set m2=0.

2

2

2

max 2 max 2
2

22

. ()
()

() 1
()

i

i

i

C J C
C i

J

J

θ
αθ α
θ

= =
+ +

 (4.17)

2
2 2 2 2 2

2 2

2 2

T

()
(1) () ()

() ()

i i i
j j C i

i i

θ θ
∆

+ = +
∆ ∆

 (4.18)

(d) If 2 2(, 1)J i j + <Jlast then Jlast = 2 2(, 1)J i j + ; use the direction of the same

random vector 2()i∆ to compute 2
2 2(1)
i

jθ + and 2 2(, 1)J i j + . Update m2 and repeat

Step7(d) until m2 > 2S
N .

 (e) If j2≤ 2C
N , go to Step7(b).

66

The flowchart of the modified ATS is illustrated in Figure 4.6 which is embedded with

the adaptive random movement of bacteria. This random movement is shown in a

dotted-line inset in Figure 4.6(a). Figure 4.6(b) gives detailed list representation of this

sub-algorithm.

67

S0 = best_neighbour

Evaluate the cost of each member

minimum cost = best_neighbour1.

Compare

<J1

Keep best_neighbour in the tabu list

best_neighbour = best_neighbour1.

yes

no

S0 = best_neighbour

Invoke back-tracking if necessary.

no

yes

Keep best_neighbour1

in the tabu list.

A

Initialize the tabu list, count.

belonging to S1. The member with

stop

?

Stop

Update chemotactic

loop counter j=j+1.

j<Nc ?

Initialize all variables. Set

all loop-counters and

bacterium index i equal to 0.

Start

yes

Update bacterium index: i=i+1.

i<S ?

yes

no

Compute the objective function

value for the i-th bacterium as J(i,j),

and set Jlast=J(i,j).

Compute the objective function value

J(i,j+1) taking into account the cell-

to-cell attractant effect.

Set swim counter

m=0

m<Ns ?
no

yes

m=m+1.

J(i,j+1)<Jlast ?

yes

no

Set

m=Ns

Set Jlast = J(i,j+1) swim (let the i-th bacterium

take a step of length C(i) along the direction

of the same tumbling vector).()i∆

no

A

Do minimum sorting

of the objective

functions. Define

best_ neighbour as

the best solution

neighborhood of S0 inspired from the

adaptive random movement of bacterial.

Keep these solutions in the set S1.

× solutions in the Randomly select Nc2 S2

J0

cost function

()i∆

Tumble (let the i-th bacterium take

a step of length C(i) along a

randomly generated tumble vector

) update C(i) and the location

(1).i
jθ +

(a)

68

2 2()i∆

()i∆

2 2
2 (1).
i

jθ +

(b)

Figure 4.6 Flowchart of the modified ATS algorithm (a) the whole algorithm;

(b) the random selection of neighbour solutions.

69

4.6 Invasive Weed Optimization Algorithm

 Invasive weed optimization (IWO) algorithm was first introduced by Mehrabian

and Lucas (Mehrabian and Lucas, 2006). This algorithm is a new natural heuristic

optimization algorithm inspired by the colonizing behavior of weeds in nature. In weed

colonization, weeds invade a cropping field by means of dispersal and occupy

opportunity spaces between the crops. Each invading weed takes the unused resources

in the field, grows to a flowering weed, and produces new weeds, independently. The

number of new weeds produced by each flowering weed depends on the fitness of that

flowering weed in the colony. Those weeds that have better adoption to the

environment and take more unused resources grow faster, and produce more seeds. The

new produced weeds are randomly spread over the field, and grow to become flowering

weeds. This process continues until the maximum number of weeds is reached on the

field due to the limited resources. Now, only those weeds with better fitness can

survive and produce new weeds. This competitive contest between the weeds makes

them become well adapted and improved over the time. From those behaviors of weed

colonization, Mehrabian and Lucas have divided the IWO algorithm into 4 processes

namely, initial a population, reproduction, spatial dispersal and competitive exclusion

processes (Mehrabian and Lucas, 2006; Karimkashi and Kishk, 2010). The process is

addressed in details as follows:

• Initialize a population-A population of initial solutions 0N is randomly

explored over the search space.

• Reproduction-A member of the population of plants is allowed to produce

seeds depending on its own and the colony's lowest and highest fitness. The number of

seeds each plant produces increases linearly from the minimum possible seed

70

production to its maximum. In other words, a plant will produce seeds based on its

fitness, the colony's lowest fitness and highest fitness to make sure the increase is

linear. Figure 4.7 illustrates the procedure.

Figure 4.7 Seed production procedure in a colony of weeds.

Denote the best fitness (minimum cost) of the colony as FC, the worst fitness

(maximum cost) of the colony as FD and the fitness of the ith weed as FX respectively.

Accordingly, the numbers of seeds ith produces can be calculated by equation (4.19),

where the number of seed must be integer number under the command of floor.

 ()max min min

()
. () X D

C D

F i F
No of seeds i floor s s s

F F

 −
= − +

−
 (4.19)

• Spatial dispersal-The generated seeds are being randomly distributed over

the search space based on the use of normally distributed random numbers with zero

71

mean, but varying variance. This means that seeds will be randomly distributed such

that they lie close to the parent plant. However, standard deviation (SD),
iter

σ of the

random function will be reduced from a previously defined initial value,
initial

σ to a final

value,
final

σ in every step (generation). In simulations, a nonlinear alteration has shown

satisfactory performance, which is given in equation (4.20).

()
()

()max

max

n

iter initial final finaln

iter iter

iter

σ σ σ σ
−

= − + (4.20)

According to equation (4.20), the positions of new seeds are given by:

position of seeds parent's position+ (no.of parent th,
iter

randn iσ= × dim.) (4.21)

• Competitive exclusion-If a plant leaves no offspring then it would go

extinct, otherwise they would take over the world. Thus, there is a need of competition

between plants for limiting maximum number of plants in a colony. When the

maximum number of weeds in a colony is reached its maximum by fast reproduction,

the produced seeds are then allowed to spread over the search space according to spatial

dispersal mechanism. When all seeds have found their positions in the search space,

they are ranked together with their parents (as a colony of weeds). Next, weeds with

lower fitness are eliminated to reach the maximum allowable population in a colony. In

this way, plants and offspring are ranked together and the ones with better fitness

survive, and are allowed to replicate. As mentioned in the reproduction mechanism, this

approach provides the plants with lower fitness a chance to reproduce, and if their

72

offspring have good fitness in the colony then they can survive, otherwise they will be

disposed. The population control mechanism is applied to their offspring by the end of

a given run, realizing competitive exclusion. This process continues until the maximum

number of plants is reached; now only the plants with lower fitness can survive and

produce seeds, others are eliminated.

The IWO process continues until the iterations hit the maximum or a solution

satisfies the termination criterion with a hope for the plant with best fitness being the

closest one to the optimum solution. The procedural list of the IWO algorithm is as

follows (see Figure 4.8):

Step0: Initialize search parameters: N0, search space, itermax, dim, pmax, smax, smim, n,

σfinal and σinitial.

Step1: Randomly generate a population of weeds within the search space.

Step2: The seeds are produced depending on the lowest and highest fitness of their

parents that relative to equation (4.19).

Step3: After reproduction, seeds are randomly distributed over the search space with

zero mean and varying standard deviation (
iter

σ) according to equation (4.20).

Step4: Compute the positions of new seeds according to equation (4.21).

Step5: If the total number of plants is not over pmax, the new seeds and their parents are

combined as weeds within the search space. Otherwise, rank seeds and their parents,

eliminate weeds with lower fitness. Otherwise, the better fitness survives and it is

allowed to duplicate within a limited number of pmax.

Step6: If the iteration > itmax or the termination criterion is met. Stop and exit with

solution. Otherwise go to Step2.

73

()max min min

()
. () X D

C D

F i F
No of seeds i floor s s s

F F

 −
= − + −

()
()

()max

max

.

n

iter initial final finaln

iter iter

iter

σ σ σ σ
−

= − +

position of seeds parent's position+ (no.of parent th,dim).
iter

randn iσ= ×

Figure 4.8 Flowchart of the IWO algorithm.

74

This algorithm has been applied to many engineering problems such as dynamic

and control systems (Mehrabian and Lucas, 2006), optimization technique for antenna

(Dadalipour et al., 2008; Mallahzadeh et al. 2009) and optimizing the locations of

piezoelectric actuators for vibration suppression of flexible structures (Mehrabian and

Yousefi-Koma, 2007; Mehrabian and Yousefi-Koma, 2009) etc.

4.7 Genetic Algorithm

 Genetic algorithm (GA) was firstly introduced by Holland in 1975. This

algorithm is based on the principle of evolution via natural selection (Holland, 1975;

Holland 1992). The most common type of genetic algorithm consists of three strategies

namely parent selection, genetic operation and replacement of parents. GA starts with a

population of individuals generated randomly. The population comprises a group of

chromosomes, where a particular group of chromosomes (parents) is selected to

generate the offspring by the defined genetic operations. Individuals in the current

population are evaluated using a measure of their objective function values, called

fitness functions. A fitness function measures the fitness of an individual to survive in a

population of individuals. The chromosomes in the current population are then replaced

by their offspring, based on a certain replacement strategy (Tang et al., 1996). In

literature, a wide variety of GA applications have been found including control design

in power electronics and drives (Cupertino et al., 2004), system identification of an

induction motor and power networks (Abdelhadi et al., 2005; Bagis, 2006; Dong, et al.,

2008), and design of resonant compensators for active filters (Lenwari et al., 2009).

 In this thesis, the GA toolbox available from MATLAB
TM

 (MathWorks, 2005)

is used for search performance comparison. The problem of interest is organized in an

75

objective function which represents the fitness of a candidate solution. A typical

implementation of the GA may follow the steps below:

Step0: Initialize a population of candidate solutions subject to existing constraints and

search space. Encode the solutions in the forms of binary represented chromosomes.

Step1: Decode the solutions into real number representation, and evaluate their

objectives and fitness values.

Step2: Assign a probability of reproduction to each chromosome proportional to its

fitness relative to the others. Use the universal sampling technique, or others, to select

chromosomes of high fitness values.

Step3: Apply crossover and mutation to chromosomes of parents to create offspring

(reproduction process).

Step4: Decode the offspring chromosomes into real number representations. Evaluate

their objectives and fitness values. Replace the existing solutions with the offspring of

high fitness.

Step5: Terminate the process if a suitable solution is found or if the computing expires.

Otherwise, go to Step1 and iterate the process.

The flowchart of GA is shown in Figure 4.9.

76

Start

Generate initial population.

Decode the solution

and evaluate fitness

function.

Termination criteria

satisfied ?

Stop

Select chromosomes

of high fitness values.

Apply crossover and mutation

to chromosomes of parents to

create offspring

Decode the offspring

chromosomes and evaluate their

objectives and fitness values.

 Replace the existing

solutions with the offspring

of high fitness.

Accept the previous one.

no

yes

Figure 4.9 Flowchart of the GA algorithm.

4.8 Conclusion

 In this chapter has presented the descriptions of the metaheuristic algorithms

consisting of the adaptive bacterial foraging (ABFO), the adaptive tabu search (ATS),

the invasive weed optimization (IWO) and the genetic algorithm (GA). Moreover, the

77

modified versions of ATS are also presented. The first one mentioned is the

cooperative algorithm based on the ABFO and the ATS under the name of bacterial

foraging-tabu search (BF-TS) which uses the adaptive random movement of bacteria to

improve the quality of the initial solution for the ATS. In addition, this Chapter

presents the new cooperative algorithm viewed as the hybrid metaheuristic by

combination of the outstanding capability of the ABFO in terms of exploration and the

ability of the ATS in terms of exploitation. This proposed algorithm uses the adaptive

random movement of bacteria to generate the neighbour solutions around the global

solution without the limit of radius. The step movement of this proposed algorithm can

be adaptable finely when is very close to optimum solution depending on the current

cost function. This new version is called the modified ATS. The details in this Chapter

cover the basic concepts of each algorithm, which are presented by the given

procedural lists and the flowcharts. The convergence analysis and search performance

comparisons of those algorithms will be further presented in Chapter V and Chapter VI,

respectively.

CHAPTER V

CONVERGENCE OF MODIFICATIONS TO ADAPTIVE

TABU SEARCH BASED-ON BACTERIAL FORAGING

OPTIMIZATION APPROACH

5.1 Introduction

 The previous Chapter described the proposed cooperative algorithms formed

from the existing adaptive tabu search (ATS) and the random movement inspired by

bacterial behaviour. The adaptive random movement of bacteria sometimes called

foraging is an outstanding characteristic to explore an entire search space at the

beginning of search. It is also useful to generate exhaustively neighbour solutions with

small step sizes. The main propose of this mechanism is to improve the search

performance in order to obtain good solutions, and avoid local traps.

 Despite, the metaheuristic algorithms have been claimed as the most practical

approach to solve complex combinatorial optimization problems, the design of

metaheuristics always focuses on computational efficiencies rather than rigorous

analyses of their convergence property. We recognize the importance of convergence

analysis of algorithms. Therefore, this Chapter presents our convergence analysis of the

proposed algorithms. Due to the fact that, the proposed algorithms contain two parts

namely a random movement or random walk front-end, and the ATS without search

radius adjustment procedures, respectively. The Chapter starts with a brief explanation

79

on random walk in section 5.2. Sections 5.3 and 5.4 describe our convergence analysis

and conclusion, respectively.

5.2 Importance of Random Walks

 The important characteristics of metaheuristic algorithms are intensification and

diversification. Intensification is also called exploitation as it typically searches around

the current best solution, and selects the best candidate or solution. Along the search

sequence, there can be many current best solutions, and solution candidates. In the

contrary, diversification also called exploration explores the search space more

efficiently in a large-scale randomization. In fact, different algorithms use different

ways of searching the balance between exploration and exploitation to achieve efficient

searches.

 There are many ways of carrying out intensification and diversification. The

randomization combined with a deterministic technique is one of many methods to

achieve exploration or diversification. This process ensures that new solutions are

generated and distributed as diversely as possible in a feasible search space. One of the

simplest randomization techniques is represented by (5.1).

 ()*
new u

x L U L ε= + − (5.1)

where L and U are the lower and the upper bounds, respectively.
u
ε is uniformly

distributed random number lying between 0 and 1. This form is often used by many

algorithms such as harmony search (Yang, 2009), particle swarm optimization

(Kennedy and Eberhart, 1995) and firefly algorithms (Yang, 2009), etc. To generate

80

new solutions around a promising or better solution locally and more intensively, an

exploitation technique is needed. This can be easily achieved by a local random walk

described by (5.2).

 .
new old

x x s w= + (5.2)

where w is a Gaussian distribution with zero mean as typically being used, and s is the

step size of the random walk. Notice that, if s is too large, a region found can be too far

away from an interested region, which will increase diversification significantly but

reduce intensification considerably. On the other hand, if s is too small, the region

found can be trapped easily by a local minimum, which dominates intensification but

degrades diversification. Therefore, the step size should be appropriately selected for a

specific problem, or at least, much smaller than the scale of the search space for each

problem. There are alternative ways to increase the efficiency of the random walk,

which also increase the efficiency of exploration by using other forms of random walks

such as Lévy flights (Viswanathan et al., 2000), Cuckoo search (Yang and Deb, 2009),

Bat search (Yang, 2010), Krill herd algorithm (Gandomi and Alavi, 2012) etc. The step

size in (5.2), s, is drawn from a Lévy disribution with large step sizes. This helps

increase the step size and the distance of such random walks. Apart from the standard

random walk in (5.2), there is a more selective or controlled walk around the current

best,
best

x , as described by (5.3).

 .
new best

x x s w= + (5.3)

81

Randomization provides a good way to move away from a local search to another

search on a global area. Therefore, most metaheuristics are intended for global

optimization.

 Randomness reduction is also another important issue for metaheuristics.

Specifically, the randomization is usually used to diversely explore the search space on

the global scale, and also intensively on some local scales. To obtain better results and

accelerate convergence, the degree of randomness should be reduced or adapted,

otherwise, the convergence will be slow down. In practice, the random walk of

metaheuristics should be adequately small to carry out iterative search around a current

best solution, which is to exploit the current best more effectively. This approach can

be found in the AR mechanism of the ATS, and also in the adaptive step size of

bacterial movement techniques, which are usually smaller and smaller to specifically

limit the randomization when the search comes close to the global area. The adaptive

random used in the ATS can be represented by (5.4).

 ()1 0, * 1(1,1)*
best

S S radius rand U L= + − − (5.4)

where rand1 is from (5.1). Note that the radius can be smaller depending on each

conditional requirement of cost function. This random form is used to generate a group

of neighbour solutions within the reasonable search radius which intensively converges

to better solutions, locally as shown in Figure 5.1. However, in some worse cases

against hard problems containing many local minima, it is possible that the search is

trapped in a local area limited by search radius. For the case of the adaptive random

movement inspired by bacteria, it uses a uniform distribution to obtain randomization,

82

and an adaptive random walk to generate better solutions around a current best

solution.

Figure 5.1 Random movements of the ATS.

This randomization form is rewritten in equation (5.5).

T

()
(1) () ()

() ()

i i i
j j C i

i i

θ θ
∆

+ = +
∆ ∆

 (5.5)

where
max

() 1
()i

C i C
J

α
θ

= + refers to the adaptive size of the step taken in the random

direction. T
() () ()i i i∆ ∆ ∆ represents a unit direction, and ()i∆ is a random vector on

[-1, 1]. Depending on the cost function, ()i
J θ , adaptive approach can automatically

adjust itself to avoid oscillations of the state of solutions when they are close to the

optimal value as previously explained in Chapter 4. The step size, C(i), is also specified

83

by tumble and run behaviours, so that the current solution is better than the previous

one, while another step size in the same direction will be taken as a run behaviour. On

the other hand, the adaptive random generates a new element of the random vector with

[-1, 1] as a tumble behaviour. This randomization generates the population solution,

thus it can flow through the global best. The approach provides more opportunities to

find reasonably good solutions with the BT mechanism to avoid dead lock occurrence.

The adaptive random movement inspired by bacteria can be represented by the diagram

shown in figure 5.2.

0,0 0,0,0
/

C
Nθ

, # , ,/
mn C mn o

Nθ
, # , ,/

p q C p q r
Nθ

0,0 0,0,0/
C

Nθ

1,1 1,1,1
/

C
Nθ

1,1 1,1,3/
C

Nθ

1,1 1,1,4/
C

Nθ

1,2 1,2,1/
C

Nθ

1,2 1,2,2
/

C
Nθ

1,2 1,2,3/
C

Nθ

2,1 2,1,2/
C

Nθ

2,1 2,1,3/
C

Nθ
2,1 2,1,4/

C
Nθ

2,2 2,2,1
/

C
Nθ

2,2 2,2,2/
C

Nθ

2,2 2,2,3
/

C
Nθ

2,2 2,2,4/
C

Nθ

Note:

, index of iteration

, index of solution

, index of random walk

m p

n q

o r

=

=

=

1,2 1,2,4/
C

Nθ

2,1 2,1,1/
C

Nθ
1,1 1,1,2/

C
Nθ

Figure 5.2 Random movements of the modified ATS.

84

 So far, we have explained that our proposed algorithms consist of two parts, i.e.

a random walk front-end adapted from bacterial foraging, and the existing ATS with

the AR mechanism. The random walk front-end helps increase diversification of

solutions, and effectively removes the need for the AR. To track down an optimum

solution effectively, the ATS (with BT mechanism) plays an important role.

 To ensure a convergent property of the proposed algorithms, a rigorous analysis

is necessary. Due to the fact that the convergence of the ATS has been analysed in

modular manner (Puangdownreong et al., 2004; Puangdownreong et al., 2004; Sujitjorn

et al., 2006), our attempt is to show that the proposed front-end has a convergence

property so that it will not destroy the convergence property of the ATS. To clarify this,

the BT mechanism helps the TS to escape from an entrapment by a local solution, and

to identify the most potential search terrain expected to contain a global optimum. The

AR mechanism helps accelerate the search, however, it is not applied to the modified

ATS. The next section gives details of our convergence analysis.

5.3 Convergence Analysis of the Modification to Adaptive Tabu

Search Based-on Adaptive Random Movement of Bacteria

This thesis presents two modified algorithms namely the BF-TS and the

modified ATS algorithms. In a similar manner, they have applied the adaptive random

movement of bacteria to heuristically generate an initial (elite) solution for the ATS.

Moreover, a similar approach is applied to select the neighbour solutions without the

implementation of the AR mechanism. According to the adaptive version of BFO

algorithms, the foraging (chemotaxis) mechanism influences the convergence rate of

the algorithms (Dasgupta et al., 2009; Dasgupta et al., 2010; Majhi et al., 2009). The

85

run-length unit or step size parameter is of prime importance to achieve a fast and

efficient search. Recent research results have shown that the random movement with

large step size C(i) can explore the whole search space, and also escape from an

entrapment by some local optima. On the other hand, the random movement with small

step size C(i) is rather attached to some local optima close to its start point, and exploits

them for its whole life cycle. It means that the random movement with small step size

C(i) is not able to escape from the local minima. Obviously, the random movement

with a large step size is explorative, while that with small step size is exploitative

(Chen et. al., 2009; Passino, 2002; Liu and Passino, 2002). Adaptive ability of random

movement is significantly useful as illustrated by (Das et. al. 2009; Dasgupta et. al.,

2009).

As mentioned earlier, our proposed random movement front-end explores

almost entire search space before the ATS begins its search. This section provides a

mathematical analysis of the convergence property of the front-end. Then, reviews of

the ATS’ convergence follow.

5.3.1 Convergence Analysis of Bacterial Random Movement

Our approach to analyse the convergence of bacterial random movement

utilizes Lyapunov stability theorem pioneered by (Das et. al., 2009; Dasgupta et. al.,

2009). In order to proceed with this, an approximation function of the equation (5.5) is

needed. The section, therefore, starts with obtaining the approximation function.

Referring to (5.5), iθ is a time function representing a position of an

individual bacterium (or solution); C(i) represents an adaptive step size taken in a

86

random direction; ()i∆ is a random vector, [-1, 1] and
()

(). ()T

i

i i

∆
∆ ∆

 represents a

unit direction. Let J be an objective function expressed shortly by (())J tθ in which

()tθ = iθ . Our analysis considers a single bacterium that undergoes chemotactic steps

according to (5.5).

Assumptions:

i. The objective function ()J θ is continuous and differentiable at all points in

search space, and unimodal in the region of interest. It means that each region in entire

search space contains only one local minimum and the local minimum must not be

located at the region boundary. Therefore, the unimodal properties can be defined as

1

k

i=
U si = S and

1

k

i=
I si =∅ , where S is defined as the finite search space having k strictly

local minima and divided into k regions and si⊆S denoted by si (i = 1, 2,…,k)

ii. Only one optimum (minimum) exists at the location 0θ θ= such that

0() 0J θ ≈ and
0

() | 0.J θ θθ ≠ ≠

iii. The step size C is smaller than 1.

iv. The analysis is applied to the regions of fitness landscape, where gradients

of ()J θ are small, i.e. near optimum.

Lemma 1: The random position ()tθ of a single bacterium expressed by

T

()
(1) () ()

() ()

i i i
j j C i

i i

θ θ
∆

+ = +
∆ ∆

can be approximated by
2

()
2 4

C qC
t G dtθ

 ∆
= −

∫ , where 2 1∆ = or 1∆ = , and

()
.

dJ
G

d

θ
θ

=

87

Proof: Consider that the solution moves in the direction of decreasing cost value, i.e.

 () () 0J Jθ θ θ− + ∆ > (5.6)

For the sake of simplicity, we drop the indices i and j. So, the solution moves by an

amount ofC∆ .

 In a very small finite time, t∆ seconds, the bacterium’s position (or solution

location) is changed by()C t∆ ∆ .

 Therefore, () if () ()C t J Jθ θ θ θ∆ = ∆ ∆ > + ∆ , otherwise 0θ∆ = . If Δt divides

sign of the quantity () ()J Jθ θ θ− + ∆ , the result remains unchanged. The solution will

change its position if and only if the term of
() ()J J

t

θ θ θ− + ∆
∆

is positive.

 Let the crucial decision making activity of the random movement be modeled

by a unit-step function

1, 0

()

0, otherwise

if x

u x

>

=

 (5.7)

θ∆ can be expressed by

() ()
()()

J J
u C t

t

θ θ θ
θ

− + ∆ ∆ = ∆ ∆ ∆
 (5.8)

in which u = 1. Hence,

88

0 0

() ()
()

t t

J J
Lim Lim u C

t t

θ θ θ θ
υ

∆ → ∆ →

 ∆ + ∆ − = = − ∆ ∆ ∆
 (5.9)

0

0 0

() ()
()

() ()
 ()

t

t

J J
Lim u C

t

J J
u Lim Lim C

tθ

θ θ θ θ
υ

θ

θ θ θ θ
θ

∆ →

∆ → ∆ →

 + ∆ − ∆ = − ∆ ∆ ∆

 + ∆ − ∆ = − ∆ ∆ ∆

 (5.10)

as 0t∆ → and 0θ∆ → . The velocity, υ , in equation (5.10) can be rewritten as

()u G Cυ υ= − ∆ (5.11)

where
()dJ

G
d

θ
θ

= =
0

() ()J J
Lim
θ

θ θ θ
θ∆ →

+ ∆ −
∆

 is gradient of the objective function.

 In equation (5.11), ()Gυ− is the argument of the unit-step function, u. If G and

υ are different signs, u = 1, and the velocity, Cυ = ∆ , otherwise the solution (or

bacterium) is motionless. Since ()u x has a jump discontinuity at x = 0, to simplify our

analysis further, u(x) is replaced by a smooth approximation to the step response

(Davies, 2002).

1
() ()

1
qx

q q

u x Lim x Lim
e

ϕ
−→∞ →∞

= =
+

 (5.12)

From equation (5.11) and (5.12), the equation (5.11) can be rewritten as

1
qG

C

e
υυ

∆
=

+
 (5.13)

89

According to our assumptions, C and G are very small, and q≈10. Then, we can say

that 1qGυ << . The exponential function is now approximated by neglecting high

order terms, i.e. 1qG
e qG

υ υ≈ + . Hence, equation (5.13) becomes

1

2
1

2

C

qG
υ

υ

 ∆

=
 +

 (5.14)

Since 1
2

qGυ
<< ,

1

1 1
2 2

qG qGυ υ
−

 + ≈ −

 . The equation (5.14) can be rewritten as

2

1
2 2 2 4

C qG C qC G d

dt

υ θ
υ

∆ ∆ = − = − =

 (5.15)

Therefore,

2

()
2 4

C qC
t G dtθ

 ∆
= −

∫ (5.16)

This completes the proof. �

It is stated that the random walk front-end can be seen as a dynamical system modeled

by (5.15), and its solution is given by (5.16). From the expression (5.15), a

corresponding search can be performed in a similar way to the classical gradient

descent search algorithm in single dimension. Equation (5.15) can be written as

90

2
' '

4 2

d qC C
G G

dt

θ
υ α β

∆
= = − + = − + (5.17)

where
'α is 2 / 4 qC and

'β is C∆ /2. The general form of the classical gradient descent

search (Das et. al. 2009; Dasgupta et. al., 2009) is given by

d
G

dt

θ
α β= − + (5.18)

where α is the learning rate, and β is the momentum. Similarity between (5.17) and

(5.18) can be considered as a modified gradient descent search, where 'α is a function

of step size and can be identified as the learning rate parameter. Note that the random

search or momentum term (CΔ)/2 appearing in (5.15) and (5.16) provides an additional

feature to the classical gradient descent search. If the gradient, G, becomes very small,

the random term plays an important role over gradient descent term, and the solution

changes its position. However, the random search term may lead to a change in position

in the direction of increasing cost value, then the magnitude of the gradient increases

and dominates the random search term. If the magnitude of the gradient in equation

(5.17) decreases consistently near the optimum until 0G → , then gradually β

becomes dominant. Thus, the velocity can be approximated by
2 2

d C C

dt

θ
β

∆
≈ = =

(as 1∆ =). As previously mentioned, the adaptive random movement is an important

physical significance to avoid oscillation of the solution around the optimum, and to

accelerate convergence. In this case, the random search has been assumed to reach

91

close to the optimum. Since
2

d C

dt

θ
≈ , it does not stop taking steps, and also oscillates

close to the optimum. This crisis can be improved by an adaptation according to the

relation,
max max

. ()
()

() 1
()

i

i

i

C J C
C i

J

J

θ
αθ α
θ

= =
+ +

.

From the fundamental dynamics of the computational random search movement

inspired by bacteria, the model (5.15) is considered for a convergence analysis based-

on Lyapunov stability theorem. The main concept of Lyapunov stability is that the total

energy in a system continually decreases, then the system will asymptotically reach a

zero energy state associated with an equilibrium point of the system. A system is said

to be asymptotically stable if all the states approach the equilibrium state in finite time

(Das et. al., 2009).

In general analysis definition, a vector variable is denoted by x
r

instead of θ , and

its objective function of the vector variable as ()f x
r

 instead of J(θ). The following

materials review some basic concepts and interpretations of the theorems from a

standard textbook of nonlinear control theory:

Definition 1: A point
e

x x=
r r

is called an equilibrium state, if the dynamics of the system

is given by (())
dx

f x t
dt

=
r

r
becomes zero at

e
x x=
r r

for any time t, i.e. (()) 0f x t =
r

. The

equilibrium state is also called equilibrium (stable) point in D-dimensional hyperspace,

when the state
e

x
r

has D components.

92

Definition 2: A scalar function ()V x
r

is said to be positive definite with respect to the

point
e

x
r

in the region
e

x x K− ≤
r r

, if () 0V x >
r

at all points of the region except

at
e

x
r

where it is zero.

Definition 3: A scalar function ()V x
r

is said to be negative definite if ()V x−
r

 is positive

definite.

Definition 4: A dynamics (/) (())dx dt f x t=
r r

is asymptotically stable at the equilibrium

point
e

x
r

, if it is stable in the sense of Lyapunov, i.e., for any neighbourhood S(ε)

surrounding
e

x
r

 (S(ε) contains points x
r

for
e

x x ε− ≤
r r

) where there is a region S(δ) (S(δ)

contains points x
r

for which
e

x x δ− ≤
r r

), δ < ε, such that trajectories of the dynamics

starting within S(δ) do not leave S(ε) as time t →∞ ; the trajectory starting within S(δ)

converges to the origin as time t approaches infinity.

The condition for stability of a dynamics from the Lyapunov’s theorem can be

presented as follows.

Lyapunov’s Stability Theorem: Given a scalar function ()V x
r

and some real

number ε > 0, such that, for all x
r

 in the region
e

x x ε− ≤
r r

, the following conditions

hold.

• () 0.
e

V x =
r

• () 0V x >
r

for
e

x x≠
r r

, i.e. ()V x
r

is positive definite.

• ()V x
r

has continuous first partial derivatives with respect to all

components of x
r

.

93

Then, the equilibrium state
e

x
r

of the system (/) (())dx dt f x t=
r r

is as follows.

• Asymptotically stable if (dV/dt) < 0, i.e. dV/dt is negative definite.

• Asymptotically stable in the large if (dV/dt) < 0 for
e

x x≠
r r

, and in

addition, ()V x →∞
r

as
e

x x− →∞
r r

.

Theorem 1 (Main Result): Let the random movement dynamics be represented by

(5.17), and
0

=θ θ is the single optimum (minimum case) in the region of search space.

Then, this optimum is asymptotically stable if

0

0
0

2 , if
()

0, if

q J
C

θ θ
θ θ

θ

θ θ

−
> ≠

= =

 (5.19)

Proof: In order to determine the equilibrium point for the system (by Definition 1).

0
d

dt

θ
= is considered, then obtaining,

2

0
2 4

C qC
G

∆
− = (5.20)

If the search movement converges to the optimum point, then the equilibrium point is

0e
θ θ= , and also the gradient G is equal to zero at this point. Substituting G = 0 in

equation (5.20), C = 0 is obtained as well. Thus, the step-height C should become zero

at
0

θ θ= for the equilibrium point to be located at the desired optimum, i.e.

94

C = 0, if
0

θ θ= (5.21)

To test the stability, consider a scalar function,

2

0
() () ()

4 2

qC C
V Jθ θ θ θ

∆
= − − (5.22)

In order to qualify as a Lyapunov function, ()V θ must be positive definite with respect

to the equilibrium point
0
θ . From definition 2, ()V θ must satisfy the relation

0
() 0V θ = ,

and ()V θ > 0 if
0
.θ θ≠ At the point

0
θ ,

2

0 0 0
() () ()

4 2

qC C
V Jθ θ θ θ

∆
= − − (5.23)

According to (5.21), C = 0 at
0

θ θ= , then

2

0 0
() () 0

4

qC
V Jθ θ= = (5.24)

For definition 2 to be satisfied, the following inequality must hold

2

0 0
() () 0,

4 2

qC C
J θ θ θ θ θ

∆
− − > ∀ ≠ (5.25)

or

0 0() () ,
2

qC
J θ θ θ θ θ> − ∆ ∀ ≠ (5.26)

95

According to the first assumption, () 0J θ ≠ for all 0θ θ≠ , and consider that the

constant value q > 0, dividing both sides of equation (5.26) by () / 2qJ θ , we obtain

0
0

2()
,

()
C

qJ

θ θ
θ θ

θ
− ∆

> ∀ ≠ (5.27)

If the right-hand side of (5.27) is negative, it will lead to a trivial condition as step-

height C is always positive.

0 02() 2()

() ()qJ qJ

θ θ θ θ
θ θ

− ∆ − ∆
≥ (5.28)

where 1∆ = ,

0 02()2

() ()q J qJ

θ θ θ θ
θ θ
− − ∆

≥ (5.29)

Thus, if C satisfies the relational form 02

()
C

q J

θ θ
θ
−

> for all 0θ θ≠ , then

02

()
C

q J

θ θ
θ
−

> ≥
()02

()qJ

θ θ
θ

− ∆
for all 0θ ≠ , ()V θ is then positive definite. Thus, C

satisfies conditions (5.21) and (5.27). Now, consider the first derivative of V,

dV dV d

dt d dt

θ
θ

= ⋅ (5.30)

From (5.22), we could obtain

96

2 2()

4 2 4 2

dV qC dJ C qC C
G

d d

θ
θ θ

 ∆ ∆
= ⋅ − = − − +

 (5.31)

Substituting
d

dt

θ
and

dV

dθ
 in (5.30) by (5.15) and (5.31), respectively, we obtain that

2
2

00, if
4 2

dV qC C
G

dt
θ θ

 ∆
= − − + < ∀ ≠

 (5.32)

and also, 0
dV

dt
= , if 0θ θ= (as C = 0 and G = 0 at 0θ θ=). Referring to definition 3,

dV

dt
is negative definite. Therefore, the random search movement inspired by bacterial

dynamics or the random walk front-end as represented by (5.17) is asymptotically

stable with respect to the optimum 0θ θ= if the step size satisfies the conditions (5.21)

and (5.27) simultaneously. This proof is to ensure that the proposed random walk front-

end will not impair the convergence of the proposed algorithms.

This completes the proof. �

The benefit of the above proof is to guarantee that the search movement of the

random walk front-end has convergent property. In other words, this part of algorithms

always concentrates its searches in some sub-spaces having good-quality solutions.

Therefore, it provides some solutions of good quality to be used further by the ATS as

its initial solutions. Once the front-end finishes its task, it has no connection to the

ATS, and the ATS performs solely until an optimum solution is found.

97

5.3.2 Convergence of the Tabu Search with Backtracking Mechanism

 Researchers at the School of Electrical Engineering, Suranaree

University of Technology, have incorporated the backtracking (BT) mechanism to the

original Tabu Search (TS) for almost ten years. They also conducted rigorous analysis

of the algorithms namely adaptive tabu search (ATS). This section reviews their main

theorems without proofs.

Theorem 2: If a total number of member, m, in a sub search space is large enough to

provide good representatives of a neighborhood, a local minimum nearby can be found

by generating a sequence of a few successive sub search spaces.

 For proof see (Puangdownreong et al., 2004; Sujitjorn et al., 2006).

Theorem 3: The BT mechanism leads the search process to obtain multiple local

minima within search space. Among them, one is the global minimum.

For proof see (Puangdownreong et al., 2004; Sujitjorn et al., 2006).

By intuition, considering the theorems 1, 2 and 3, one can conclude that the

proposed algorithms consisting of the random walk front-end and the ATS without AR

mechanism possesses a convergence property because the ATS and the front-end are

convergent.

5.4 Conclusion

 This chapter has presented the convergence analysis of the modified ATS

algorithm (included an initial part of BF-TS algorithm) by means of mathematical

98

proofs. Firstly, the convergence of the random walk front-end of the proposed

algorithms is proved via Lyapunov’s stability concepts. Secondly, the TS with BT

mechanism has been known for its convergence property (Puangdownreong et al.,

2004; Sujitjorn et al., 2006). By intuition, the convergence of the proposed algorithms

resulted from combination of the two can be concluded.

CHAPTER VI

SEARCH PERFORMANCE COMPARISONS

6.1 Introduction

 As previously mentioned, one advantage of the ABFO algorithm is its dominant

explorative characteristic. Using the adaptive random movement strategy, the algorithm

can increase the opportunity to visit many high-quality solutions dispersed over the

search space in a short duration. In contrast, the ATS is capable of tracking down an

elite solution in a short duration due to its AR mechanism. Furthermore, the BT

mechanism of the ATS can also help the search to escape from a deadlock, but it lacks a

capability of focusing on a high-quality initial solution and also, in some cases, the

neighbour solutions of the ATS are randomly generated within the limit of search radius

until it cannot escape by the BT mechanism. Therefore, the adaptive random movement

has been also applied to heuristically generate neighbour solutions with small step sizes

depending on the current cost function. Thus, the two algorithms complement each

other. So far, the thesis has proposed hybrid or cooperative algorithms, namely, the BF-

TS and the modified ATS algorithm.

Regarding the previous Chapter, it has presented the convergence proof of the

proposed algorithm. The results show that the convergence of the random walk front-

end of the proposed algorithms via Lyapunov’s stability concepts will not impair the

convergence of the proposed algorithm. Consequently, this chapter presents search

100

comparison analysis among the proposed algorithms, the original ones and other

existing algorithms, namely, the ABFO, the ATS, the BF-TS, the modified ATS, the

IWO and the GA. These algorithms described previously are performed by MATLAB

codes on Pentium IV, 2.4 GHz, 640 MB SD-RAM with the same environment in which

search performances are assessed by using five surface optimization problems, details

are given in Section 6.2. Subsequently, Section 6.3 shows tuning search factors of the

proposed algorithms to obtain the global best results and suggestions of search

parameters for each algorithm. Section 6.4 and 6.5 presents the search performance

comparison analysis and conclusion, respectively.

6.2 Surface Optimization Functions

 In the field of algorithm comparison, it is common to compare the performance

of each search algorithm by using various surface optimizations known as benchmark

functions which are also useful to evaluate characteristic of optimization algorithms

(Chen et al., 2009; Dasgupta et al., 2010; Gandomi and Alavi, 2012; Kluabwang et al.,

2009; Mehrabian and Lucas, 2006). Therefore, this thesis uses five surface optimization

problems. The search problems include the minimizations of the Bohachevsky,

Rastrigin, Shekel’s fox-holes, Schwefel and Shubert functions. Table 6.1 summarizes

the functions with their abbreviations of BF, RF, SF, SchF and ShuF, respectively, with

minimum cost, Jmin, as a stop criterion.

101

Table 6.1 Summary of the functions used for performance test.

Test

functions

Equations Surfaces plots

BF

2 2
(,) 2 0.3cos(3) 0.4cos(4) 0.7f x y x y x yπ π−−= + +

global minimum of 0 at (0,0), search space: [2 2;-2 -2]

and Jmin
9

1 10
−≤ × .

RF

2 2
(,) 10cos(2) 10cos(2) 20f x y x y x yπ π= + − − +

global minimum of 0 at (0,0), search space: [2 2;-2 -2]

and Jmin
8

1 10
−≤ × .

SF

()

1

25

1 2
2

61

1

1 1
(,)

500
j

i ij

i

f x x

j x a

−

=

=

= +∑
+ −∑

when

()32 16 0 16 32 32 ... 0 16 32
.

32 32 32 32 32 16 ... 32 32 32ij
a

− − −
=

− − − − − −

global minimum of 0.9980 at (-32,-32), search space:

[40 40;-40 -40] and Jmin ≤ 0.9990.

SchF

1

() 418.9829 (sin) ; 2
n

i i

i

f x n x x n

=

= − =∑

global minimum of 0 at (420.9687, 420.9687), search

space: [500 500;-500 -500] and Jmin
4

1 10
−≤ × .

ShuF

5 5

1 2 1 2

1 1

(,) cos((1)) cos((1))
i i

f x x i i x i i i x i

= =

= + + ∗ + +∑ ∑

when
1 210 , 10x x− ≤ ≤ .

global minima of equal values -186.7309 at 18 different

locations, search space: [10 10;-10 -10] and Jmin ≤

-186.73.

102

6.3 Tuning Search Factors of the Proposed Algorithms

 In order to compare the search performance of each optimization algorithm,

search parameters are carefully considered to achieve the best results. Many published

researches (Karimkashi and Kishk, 2010; Mehrabian and Lucas, 2006; Passino, 2002;

Puangdownreong et al., 2004; Sujitjorn et al., 2006) presented the tuning for appropriate

search parameters, especially for new algorithm approaches, before testing the specified

problems. Therefore, this section presents the tuning search parameters of the proposed

algorithms and also presents the suggestions of the tuning search parameters which

were employed by the previous researchers, such as the search parameters of the ATS

follow the recommendation by Sujitjorn et al. (Sujitjorn et al., 2006). As the results of

the ATS showed that the radius is 7.5-15 % of search space, the member of neighbour

solutions, N, should be set between 30-40 for not too long search time. The numbers of

backtracking and maximum backtracking are set nearly 5-15. The reduction of the

radius should be set 20-25 % of the previous radius. The results are summarized in

Table 6.2, which was exhaustively studied considering the effects of tuning parameters

in order to find global optima on surface functions.

Table 6.2 ATS parameters.

Test

functions

N

Countmax

R

BT,

n_re_back

AR

Stage I Stage II Stage III

BF 30 10,000 0.2 5
J<

1
1 10

−× ,

R=
3

2 10
−×

J<
3

1 10
−× ,

R=
4

2 10
−×

-

RF 30 10,000 0.2 5 -

SF 30 10,000 0.8 5 J<5, R=0.5 J<2, R=0.1 -

SchF 30 10,000 100 5 J<100, R=50 J<10, R=0.01 J<1, R=0.001

ShuF 30 10,000 1.0 5
J<1, R=

2
1 10

−× J<-1, R=
3

1 10
−×

-

103

 Among the parameters that affect the convergence of the IWO algorithm, three

parameters, the a initial value of standard deviation, σinitial , the final value of standard

deviation, σfinal, and the nonlinear modulation index, n, should be tuned carefully. From

the experimental study of search parameters with benchmark multi-dimensional

functions of Mehrabian and Locus (Mehrabian and Locus, 2006; Karimkashi and

Kishk, 2010), these can be summarized as follows:

• The initial standard deviation, σinitial, should be chosen to allow the

algorithm to explore the whole search space, aggressively. It seems that the IWO works

well if the σinitial value is set around 1-5 % of the range of each variable.

• The final standard deviation, σfinal, should be selected carefully to allow the

optimizer to find the optimal solution as accurate as possible. A finer local optimum

solution can be achieved by decreasing this parameter. However, it should be noticed

that tuning the σfinal value much smaller than the precision criteria of the optimization

variables does not improve the cost values and could deteriorate the convergence rate of

the optimization. Therefore, the σfinal in each problem should be selected based on the

resolution requested for the final answer.

• It was shown that the value of nonlinear modulation index has a

considerable effect on the performance of IWO. It was suggested that the best choice

for this is 3.

• Maximum and minimum numbers of seeds are the two other important

parameters needed to be selected. Based on different examples, it can be concluded that

selecting the maximum number of seed, maxs , between 2 and 5 leads to a good

performance of the optimizer. Moreover, the minimum number of seed, mins is set to

zero for all examples.

104

• The maximum number of plants is another parameter that should be chosen

in the IWO. Parametric studies show that increasing this parameter not necessarily the

performance of the algorithm increases. It was found that the best performance can be

achieved for many problems when the maximum number of plant, pmax, is set between

10-30.

. The search parameters of the IWO according to the experimental study from the

above description are summarized in Table 6.3.

Table 6.3 IWO parameters.

Test

functions

N0 pmax smax smin n
initial

σ
final

σ itermax

BF 10 30 2 0 3 0.2 9
1 10

−× 1000

RF 10 30 2 0 3 0.5 8
1 10

−× 1000

SF 10 30 2 0 3 15 0.9990 1000

SchF 10 30 2 0 3 50 1
1 10

−× 10000

ShuF 10 30 2 0 3 1 10
1 10

−× 1000

 Search parameters for search performance comparison of the GA follow default

values set by MATLAB-GA Toolbox. The problem of interest is organized in an

objective function which represents the fitness of a candidate solution. The maximum

number of population is set to 30 for this experimental study.

 Passino (Passino, 2002; Liu and Passino, 2002) has given some suggestions for

search parameters of the BFO as follows:

• If the C(i) values are too large and the optimum value lies in a valley with

steep edges, it will tend to jump out of the valley, or it may simply miss possible local

105

minima by swimming through them without stopping. On the other hand, if the C(i)

values are too small, the convergent rate will be slow or the search will not be able to

move out of the valley.

• If setting of large values for Nc, it means that there are many chemotactic

steps, hopefully, more optimization progress, but more computational complexity. If the

size of Nc is chosen to be too small, the algorithm will generally rely more on

reproduction, and in some cases, it could more easily get trapped by a local minimum

(premature convergence). While Ns is creating a bias in the random walk (which would

not occur if Ns = 0), with large values tend to bias the walk more in the direction of

climbing down the hill but it should not be very large to prevent the solution being

trapped in local minima.

• If Nc is large enough, the value of Nre affects how the algorithm ignores bad

regions and focuses on good ones, since bacteria in relatively nutrient-poor regions die

(this models, with a fixed population size, the characteristic where bacteria will tend to

reproduce at higher rates in favorable environments). If Nre is too small, the algorithm

may converge prematurely; however, larger values of Nre clearly increase

computational complexity

• For a low value of Ned, the algorithm will not rely on random elimination-

dispersal events to try to find favorable regions. A high value increases computational

complexity but allows the bacteria to look in more regions to find good nutrient

concentrations. Clearly, if ped is also large, the algorithm can degrade to random

exhaustive search. If, however, it is chosen appropriately, it can help the algorithm

jump out of local optima and into a global optimum. So it is set equal to 0.25.

106

• The frequency of chemotaxis steps is greater than the frequency of

reproduction steps, which is in-turn greater in frequency than elimination-dispersal

events,
C

N >
re

N >
ed

N .

• The magnitude of dattract and hrepellant should be the same so that when the

bacteria population converges there is no penalty added to the cost function, i.e. Jcc will

be 0. On the other hand, their numerical values could be decided based on the required

variation in magnitude of the actual cost function J to obtain a satisfactory result.

• The value of wattract and wrepellant should be selected appropriately, when the

distance between bacteria is large the penalty Jcc should be more so that the bacteria

will try to move together.

Due to the ABFO algorithm is a new set of bio-inspired algorithms, the tuning

search factors for specific problems were not carefully studied yet, there were only

some useful suggestions from the inventors. For a fair comparison, in this thesis, the

ABFO has been studied to reveal the effects of search parameters in order to obtain

appropriate search factors. From previous recommendations, the C(i) values have to be

varied correspondingly to the cost functions and a positive constant, α . Thus, α will

be tested against five surface optimization problems by fixing
C

N = 200 and S = 10 for

all problems. The example ranges of α are 0.001, 0.01, 0.1, 1, 10, 100 and 1000. The

C
N will be selected appropriately after testing the positive constant, α as well. The

various values of the
C

N are 10, 30, 50, 100, 150, 200 and 250. While the number of

bacteria, S, is tuned after obtaining the appropriate search parameter,
C

N , for each

problem. The values of S are varied as 10, 20, 30, 40 and 50. These tuning of

107

parameters will be tested over 50 trial runs for all five problems. Setting the cell-to-cell

attractant parameters following Passino; dattract = hrepellant = 0.1, wattract = 0.2 and wrepellant

= 10 (equal to 1 for BF and RF). The values for these parameters are simply chosen to

illustrate general bacterial behaviors, not to represent a particular bacterial chemical

signaling scheme. Note that
S

N ,
re

N and
ed

N are used as Passino’s suggestions, these

are 4, 4 and 2, respectively. Although they do not seriously influent convergent rate, it

has been considered that their large values could result in a long search time. The

maximum numbers of iteration is 10,000. The stop criterions, Jmin are referred to Table

6.1. The results of tuning search factors of the ABFO algorithm for five surface

optimization problems are shown in Table 6.4 to 6.6.

109

Table 6.4 Results of a positive constant α related to step size (inner parameters of step size C).

α

Average search time (seconds) Average search rounds Number of times to obtain Jmin

BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF

0.001 - - 110.9239 7903.4551 901.2376 - - 14.84 290.16 312.08 - - 50 50 50

0.01 - - 123.4290 5758.2321 1531.3264 - - 13.82 214.36 626.04 - - 50 50 50

0.1 - - 100.1083 1734.4656 1313.1886 - - 11.29 64.58 509.08 - - 50 50 50

1 1953.4733 - 106.9219 935.0031 1077.3161 505.56 - 13.66 33.54 458.28 50 - 50 50 50

10 94.8669 1834.1274 121.9938 1171.1556 763.9401 25.06 1306.02 14.22 42.00 287.72 50 50 50 50 50

100 - 141.6667 103.1503 2727.5101 1306.8985 - 100.12 12.08 106.62 506.72 - 50 50 50 50

1000 - - 129.9436 - 127.8304 - - 15.70 - 49.12 - - 50 - 50

1
0
8

109

 Table 6.4 shows the tuning search parameters of a positive constant,α for each

surface optimization problem. This search parameter is inversely related to the step size

C but it is directly related to the cost function, J at that location. As the results, the BF

and RF are 2-dimensional values having a short search space within [2 2; -2 -2],

therefore, the random step walk should not be larger than its search space but should be

small enough to exploit an area around the global solution, nevertheless, depending on

the current cost function. The appropriate ones for BF and RF are obtained from

experiments to achieve better average search time and search round, and satisfy the stop

criterion over 50 trial runs that are around 10 and 100, respectively. Note that the

positive constants,α for BF are approximately 1 and 10, can only provide the global

solution and similarly, the positive constants,α for RF are around 10 and 100, can

provide the global solution over trial runs. The SF and ShcF are kinds of surface

optimization problems containing many local traps as shown the 2-dimentional graphics

in Table 6.1. Therefore, the step size that is embedded by a positive constant,α should

be large enough to escape the local deadlocks and turn to be small when the cost values

decrease nearly to the global optimum. As the results, the constantα for SF and SchF

are around 0.1 and 1, respectively. Note that the α for SchF of 1,000 cannot provide a

global solution on all trial runs. While the ShuF consists of 18 global optima and

contains many local traps as well, as the result in Table 6.4 shows that all among

interested values of α can achieve the trial runs to obtain Jmin but the appropriate

positive constant,α to incur the best average search time and search round is around

1,000. Therefore, the appropriate α are achieved in Table 6.4, they will be used to

obtain further numbers of chemotactic steps,
C

N as follows.

110

Table 6.5 Results of number of iterations to be carried out in chemotactic events.

C
N

Average search time (seconds) Average search rounds Number of times to obtain Jmin

BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF

10 - - 819.6080 155.4058 813.8530 - - 331.52 59.24 5517 - - 50 50 32

30 - - 36.3287 464.6628 614.5856 - - 10.04 44.64 975.30 - - 50 50 50

50 5541.1005 834.1899 35.4932 706.7253 480.6572 4935.90 860.72 8.60 38.52 597.30 37 50 50 50 50

100 2034.4599 6115.8947 63.1532 851.8879 851.8879 755.14 4873.48 9.26 39.46 346.90 50 50 50 50 50

150 943.2302 354.6018 77.1374 958.5308 186.9483 295.00 267.80 10.06 33.68 87.24 50 50 50 50 50

200 94.8669 141.6667 100.1083 935.0031 127.8304 25.06 100.12 11.29 33.54 49.12 50 50 50 50 50

250 78.1629 152.9535 115.4228 1100.9582 119.5011 12.52 32.86 9.74 38.62 39.66 50 50 50 50 50

Note that blanks shown in Tables 6.4 and 6.5 indicate that the Jmin criteria are not satisfied on all trial runs. 1
1
0

111

Table 6.6 Results of a number of bacterial population.

S

Average search time (seconds) Average search rounds Number of times to obtain Jmin

BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF

10 78.1629 152.9535 35.4932 155.4058 119.5011 12.52 32.86 8.60 59.24 39.66 50 50 50 50 50

20 87.2269 128.1587 114.8042 142.5779 293.0735 9.92 16.28 24.06 35.32 44.84 50 50 50 50 50

30 100.5877 118.6347 53.3919 162.5890 32.8721 7.48 9.82 10.78 28.44 2.28 50 50 50 50 50

40 124.3222 130.4746 43.9693 220.3722 45.3216 5.88 6.36 8.58 27.72 2.34 50 50 50 50 50

50 140.2700 188.7482 45.9329 220.4426 59.1667 5.76 5.32 8.46 23.28 2.84 50 50 50 50 50

1
1
1

112

 Regarding Table 6.5, it shows the conclusions of tuning search parameters
C

N

for each surface optimization problem. Nevertheless, the number of iterations to be

carried out in chemotactic step, according to Passino’s suggestions should be selected

not too small because it could get trapped by a local minimum and not too high in order

to avoid heavily loaded computation. These
C

N values are obtained from the experiment

taking into account the reasonable average search time and search round, and also the

trial runs to satisfy Jmin. Referring to the figures shown in Table 6.5, one can see that all

values of
C

N work-out well for the ABFO to find the global solutions for SF, SchF and

ShuF. This is not the case for BF and RF because the
C

N of 10 and 30 are too small for

enabling the searches to escape from some local entrapments. Therefore, the

appropriate values of
C

N are 250, 250, 50, 10 and 250 for BF, RF, SF, SchF and ShuF,

respectively. These
C

N values are further used for studying the effects of the parameter

S in Table 6.6.

Table 6.6 shows experimental results of tuning the number of bacterial

population, S. Notice that all sample values of S can achieve the global solutions over

50 trial runs for each surface optimization problem. If the S is increased, the search

algorithm gradually takes a short search round to meet the stop criterion, Jmin,

meanwhile it spends too much search time. Therefore, the appropriate results of S from

the tuning tests are 10, 30, 10, 30 and 30 for BF, RF, SF, SchF and ShuF, respectively.

Based-on our tuning experiments so far, the following recommendations for the

search parameters, α ,
C

N and S of the ABFO have been obtained as a guideline when

one applies the algorithm: α should be 0.1-1,000,
C

N should be 50-250, and S should

be 10-40. The proper search parameters of the ABFO are summarized in Table 6.7. The

113

best results obtained from experiments using such parameters will be taken to compare

the performances against other mentioned algorithms.

Table 6.7 ABFO parameters.

Test

functions

S Nc Ns Nre Ned Ped α dattract hrepellant wattract wrepellant

BF 10 250 4 4 2 0.25 10 0.1 0.1 0.2 1

RF 30 250 4 4 2 0.25 100 0.1 0.1 0.2 1

SF 10 50 4 4 2 0.25 0.1 0.1 0.1 0.2 10

SchF 30 10 4 4 2 0.25 1 0.1 0.1 0.2 10

ShuF 30 250 4 4 2 0.25 1,000 0.1 0.1 0.2 10

According to the previous studies to assess the tuning factors affecting the

performance of the ABFO, the search parameters including S,
C

N and α are applied to

the BF-TS and modified ATS algorithms as a part of initial search parameters. The cell-

to-cell attractant effect is neglected for these proposed algorithms. The other search

parameters related to the ATS follow the materials shown in Table 6.2. The new

modified version of ATS should be extensively studied to obtain appropriate search

parameters in order to compare its search performance against other optimization

techniques on a fair basis.

The search parameters of adaptive random movement inspired by bacteria

including, 2S , 2C
N and 2α should be considered taking into account reasonable average

search time, search round and trial runs to satisfy Jmin. The search parameter 2α will be

114

firstly tuned to obtain the stop criterion Jmin following Table 6.1. Other variables,

2C
N for BF, RF, SF, SchF and ShuF are set as 100, 300, 100, 100 and 250, respectively.

The maximum count and 2S are defined as 10,000 and 1, respectively, for all surface

optimization problems. After obtaining the appropriate parameters 2 ,α the search

parameters 2S and 2C
N will be further tested, respectively. Trial runs of 50 are used

among these tests. The results of tuning search parameters of the modified ATS based-

on adaptive random movement inspired by bacteria are shown in Tables 6.8-6.10.

Table 6.8 summarizes the results of positive constants, 2α , which are inner

parameters of the step size, 2C . Appearing in the modified ATS, the factor 2α

influences the step size for generating neighbour solutions. The step size 2C should be

small enough to avoid an oscillation near an optimum point. Moreover, it also depends

on a current cost value. Therefore, the main purpose of tuning this parameter is to

obtain an appropriate 2α value for each problem without using computing resources

exhaustively. From previous studies of tuning the factorαof the ABFO, it can be

assumed that if α is large, the step size should be small. This idea can be applied for

generating neighbour solutions, and selecting an initial set of parameter ranges. The

interesting parameter ranges should be at least over the appropriate parameters,αof the

ABFO, nevertheless, the smaller values also have been considered.

115

Table 6.8 Results of a positive constant 2α related to step size (inner parameters of

step size, 2C).

2α

Average search time

(seconds)

Average search

rounds

Average deadlocks Number of times

to obtain minJ

BF RF BF RF BF RF BF RF

1 33.59 - 60.08 - 0 - 50 -

5 154.17 6434.11 275.76 4049.60 0 0 50 30

10 322.61 102.32 589.42 72.28 0 0 50 50

15 491.90 87.12 898.62 61.76 0 0 50 50

20 611.10 111.26 1248.78 79.12 0 0 50 50

25 3502.25 144.99 6360.44 101.74 0 0 50 50

50 2245.17 379.54 10000 237.56 0 0 0 50

100 3874.44 860.23 9996.78 571.50 0 0 1 50

2α

Average search time

(seconds)

Average search

rounds

Average deadlocks Number of times

to obtain minJ

SF SchF SF SchF SF SchF SF SchF

0.001 12.60 127.41 26.02 320.08 0 0 50 50

0.01 11.66 11.08 23.80 30.22 0 0 50 50

0.10 9.86 86.99 20.56 185.48 0 0 50 50

1 6.27 86.71 13.46 185.38 0 0 50 50

10 69.35 83.75 141.72 179.04 0 0 50 50

100 - 80.83 - 172.46 - 0 - 50

2α

Average search time

(seconds)

Average search

rounds

Average deadlocks Number of times

to obtain minJ

ShuF ShuF ShuF ShuF

5000 697.39 661.84 0 50

10000 487.91 477.08 0 50

15000 291.51 236.98 0 50

20000 125.38 123.26 0 50

25000 77.41 78.28 0 50

30000 35.69 33.22 0 50

116

Referring to the figures shown in Table 6.8, if 2α for BF becomes larger, the

average search time and search round increase. When 2α is 50, the search failed for all

50 trails. 2α = 1 provides the shortest average search time of 33.59 seconds, and the

minimum search round of 60.08. For the case of RF, if 2α values are lower than 5, the

search cannot provide an optimum solution on all trial runs. As a result, the suitable

value of 2α is approximately 15, which provides the shortest average search time of

87.12 seconds, and the minimum search round of 61.76. For the case of SF, our

computing results indicate that an appropriate value of 2α for SF should be around 1. It

renders the shortest average search time of 6.27 seconds, and the minimum search

round of 13.46. With the SF problem, all 2α values lead to the global solutions over 50

trial runs. Based on the results shown in Table 6.8 for SchF, the following points can be

drawn: (i) the search can achieve the global solution over 50 trial runs, (ii) for 2α less

than 0.01, it takes longer average search time and more search rounds when compare to

the other values, and (iii) for 2α more than 0.01 up to100, the average values of search

time and search round are quite similar to the other cases. Thus, the best result of

2α value for SchF is about 0.01 that renders average search time and search round of

11.08 seconds and 30.22, respectively. Considering the ShuF, this particular function

has many local optima near to each other, and contains several global solutions (see

Table 6.1). One way to avoid local traps or oscillations around terrains containing a

global solution is to employ a fairly short step size. Among those parameters, 5,000-

30,000 are considered, which are stated over α , 5-30 times. According to the results,

such parameters provide the global solutions over 50 trials. When we consider 2α for

117

the ShuF, it is found that an increase in 2α leads to some gradual increases in the

average values of search times and search round. While the 2α is approximately 30,000,

it provides the shortest search time and search round of 35.69 seconds and 33.22,

respectively. Note that the deadlock situations are not found in this test. Such

parameters obtained for these compact experiments will be further used to aid an

adjustment of the adaptive random movement, 2C
N .

Now we consider the effects of the adaptive random movement number, 2C
N ,

on search performance in order to find out the most suitable value for further uses. The

number 2C
N generates randomly neighbour solutions in the range of 10-200 for each

surface optimization problem. Regarding the results shown in Table 6.9, the stop

criterion Jmin can be met for all problems over 50 trial runs. For the case of BF, the

average values of search time and search round gradually decrease when the

2C
N increases. 2C

N = 200 provides the shortest average search time and the minimum

search round of 27.22 seconds and 23.96, respectively. The results of RF show similar

trends. Furthermore, the shortest average search time (79.64 seconds) and the minimum

search round (66.42 rounds) are obtained when 2C
N = 200. For the case of SF, the

searches hit the global solutions with smaller numbers of search round when 2C
N

increases. Notice that the best result is obtained when 2C
N is 100. The average search

time and search round are 6.27 seconds and 13.46, respectively. Similarly, an

appropriate value of 2C
N = 100 for SchF is obtained, which provides reasonable

average search time and search round of 11.08 seconds and 30.22, respectively. The

118

best result of 2C
N equal to 50 for ShuF is obtained providing reasonable average search

time and search round of 8.75 seconds and 39.46, respectively.

119

Table 6.9 Numbers of adaptive random movement 2C
N for generating neighbour solution.

2C
N

Average search time (seconds) Average search rounds Average deadlocks Number of times to obtain Jmin

BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF

10 54.29 237.07 8.53 44.59 419.51 1001.4 2904.04 78.66 375.36 8374.92 0 0 0 0 0 50 50 50 50 9

30 39.22 127.68 9.73 12.74 75.81 252.72 822.94 48.48 95.82 535.64 0 0 0 0 0 50 50 50 50 50

50 36.12 242.23 9.70 7.39 8.75 138.30 437.70 37.30 48.12 39.46 0 0 0 0 0 50 50 50 50 50

100 33.59 82.96 6.27 11.08 18.58 60.08 88.86 13.46 30.22 48.30 0 0 0 0 0 50 50 50 50 50

150 31.33 92.82 9.58 21.67 14.66 29.04 81.02 11.58 22.38 24.08 0 0 0 0 0 50 50 50 50 50

200 27.22 79.64 11.56 47.56 26.49 23.96 66.42 8.88 21.26 32.86 0 0 0 0 0 50 50 50 50 50

1
1
9

120

From what described above, it can be concluded that if the number of the

adaptive random movement, 2C
N , increases, the average search round would decrease.

When we consider the ratios between search time and search rounds, it is found that the

resulted figures become greater. This means that the search consumes more time when

2C
N increases. Interestingly, the deadlock does not occur at all. The 2C

N results are

further used to vary the numbers of bacteria 2S for generating neighbour solutions.

121

Table 6.10 Numbers of bacteria 2S for generating neighbour solutions.

2S

Average search time (seconds) Average search rounds Average deadlocks Number of times to obtain Jmin

BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF BF RF SF SchF ShuF

1 27.22 79.64 6.27 11.08 8.75 23.96 66.42 13.46 30.22 39.46 0 0 0 0 0 50 50 50 50 50

2 60.68 198.06 7.75 132.87 37.36 51.78 151.06 9.54 256.42 31.14 0 0 0.24 24.88 0 50 50 50 50 50

5 774.37 1688.31 36.74 748.54 44.02 62.22 121.86 5.20 403.42 15.60 1 0 0.12 46.42 0 50 50 50 50 50

10 712.46 1664.64 28.12 963.65 47.06 56.84 117.96 4.14 443.10 8.12 0.74 0 0.08 53.20 0.02 50 50 50 50 50

1
2
1

122

Table 6.10 presents results obtained from tuning the numbers of bacteria, 2S , for

generating neighbour solutions. In order not to spend too much search time, we

consider 2S in the range of 1-10. Fifty trial runs based on this parameter help us obtain

the stop criterion, Jmin , for all test problems. For the BF problem, it is found that the

averages of search time and search round increase when 2S increases. The shortest

average search time and the minimum search round of 27.22 seconds and 23.96,

respectively, are obtained with 2S =1 without a deadlock. Similarly for the RF problem,

2S =1 provides reasonable averages of search time and search round at 79.64 seconds

and 66.42, respectively. For the SF problem, in contrary, the average search time

increases but the average search round decreases when 2S increases. 2S =2 provides

satisfactory averages search time and search round of 7.75 seconds and 9.54,

respectively, with a few numbers of deadlocks. Overview results of the average

deadlocks collected from tuning 2S for the SF problem indicate that if 2S is greater than

1, there will be more chances for the deadlock to occur. Similar situations are found

with the SchF and the ShuF problems, where 2S =1 seems to provide the best results.

Furthermore, for the ShuF problem, 2S > 5 introduces more deadlocks and longer search

time consumed as a consequence although the average search round shows smaller

numbers. This argument is evident by the detailed figures in Table 6.10.

At this stage, some useful recommendations can be drawn to aid users of the

modified ATS algorithms. These include (i) 2α = 0.1-20 % (related to the step sizeC2)

of the αvalues, (ii) 2C
N = 50-200, and (iii) 2S = 1-5. Using the search parameters being

recommended helps the searches avoid deadlocks, and subsequently consume short

123

search time. Nonetheless, users of the algorithms are recommended to carefully run

some trail searches in order to find out the most suitable set of the search parameters.

For our performance comparison purposes, the suitable search parameters of the

modified ATS are summarized in Table 6.11.

Table 6.11 Modified ATS parameters.

Test

functions

S
C

N 2S 2C
N S

N α
2α BT,

n_re_back

Countmax

BF

10

250 1 200 4 10 1 5 10,000

RF

30

250 1 200 4 100 15 5 10,000

SF

10

50 2 100 4 0.1 1 5 10,000

SchF

30

10 1 100 4 1 0.01 5 10,000

ShuF

30

250 1 50 4 1000 30,000 5 10,000

The best results which are obtained from the tuning significant search

parameters of modified ATS algorithm will be used to compare the performances with

other algorithms in the next section.

6.4 Search Performance Comparison Analysis

This section presents the details of search performance comparison among the

following algorithms: ABFO, ATS, BF-TS, modified ATS, IWO and GA. According to

our literature survey, many search algorithms lack a focusing capability on a high-

quality initial solution. This can be considered as a disadvantage because a high-quality

initial solution is likely to increase convergence rate of a particular search algorithm.

124

Regarding this, algorithms possessing strong explorative characteristics are very likely

to spot an initial solution of high-quality. Therefore, some algorithms like the ABFO,

for instance, are able to locate this kind of initial solutions. In contrast, algorithms

possessing strong exploitative characteristics, such as the TS, are not. It means that the

random movement mechanisms of the explorative type algorithms are very useful for

generating high-quality initial solutions on real terrains being searched.

x-axis

y
-a

x
is

Bacteria movements on Bohachevsky contour

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S=30
Nc=20

 (a) (b)

x-axis

y
-a

x
is

Bacteria movements on Shekel foxholes contour

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

S=30
Nc=20

 (c) (d)

x-axis

y
-a

x
is

Bacteria movements on Rastrigin contour

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S=30
Nc=20

x-axis

Bacteria movements on Schwefel contour

-500 0 500
-500

0

500

S=30
Nc=20

y
-a

x
is

125

x-axis

y
-a

x
is

Bacteria movements on Shubert contour

-10 -5 0 5 10
-10

-5

0

5

10

S=30

Nc=20

(e)

Figure 6.1 Random movement solutions inspired by bacteria on: (a) BF, (b) RF, (c) SF,

 (d) SchF and (e) ShuF surfaces.

The idea has been applied for a modification made to the ATS such that it

possesses a random movement front-end. Figure 6.1 illustrates an example of random

movement front-end inspired by bacteria foraging during an initial solution generating

phase of the proposed algorithms referred to as modified ATS. Noticeably, large areas

of search spaces are explored by the bacteria. The results obtained from the ATS, BF-

TS and modified ATS are shown in Table 6.12 for comparison purposes. The numeric

figures shown in the Table are averaged over 50 trial runs. The modified ATS and the

BF-TS algorithms provide superior elite solutions for each problem compared to what

obtained from the ATS. In terms of an average rank as a summary, the BF-TS, modified

ATS and ATS are sequentially ranked as 1, 2 and 3, respectively.

126

Table 6.12 Comparison of generated initial solutions among the ATS, BF-TS and

modified ATS on surface optimization problems (averaged over 50 trials).

Test functions Objective values ATS BF-TS Modified ATS

BF

Average 0.5419 5.3586e-04 5.9541e-04

Min 0.0162 1.8332e-05 9.7305e-07

Max 1.8786 1.0936e-03 6.7372e-03

Std. 0.3716 2.9912e-04 1.1546e-03

Rank 3 1 2

RF

Average 5.1074 3.3731e-03 1.1870e-03

Min 0.0334 2.3920e-04 1.6322e-05

Max 16.6020 7.2237e-03 3.4842e-03

Std. 3.7022 1.9420e-03 9.1732e-04

Rank 3 2 1

SF

Average 14.0659 5.1032 1.7539

Min 1.0018 1.0020 0.9982

Max 143.5442 14.6019 4.5593

Std. 19.6528 2.6921 0.8669

Rank 3 2 1

SchF

Average 99.7347 15.3099 32.6897

Min 0.0371 5.4606e-04 0.4058

Max 355.4702 92.7943 161.2067

Std. 95.5511 22.3200 38.6206

Rank 3 1 2

ShuF

Average -81.6787 -155.3778 -147.9609

Min -167.563 -186.6572 -186.1420

Max -25.7296 -109.8247 -48.6279

Std. 36.2067 23.5441 41.7047

Rank 3 1 2

Average rank 3 1.4 1.6

Final rank 3 1 2

 Furthermore, the modified ATS proposed by this thesis also possesses neighbor-

solutions generating sub-algorithm without search radius adjustment procedure. The

sub-algorithm is designed based-on the adaptive random movement inspired from

bacteria. As illustrated by Figures 6.2-6.4, physical movements of solutions can be

127

observed from the beginning of the search till obtaining global solutions for the original

ATS and both of the proposed algorithms on the SF surface.

x-axis

y
-a

x
is

Bacteria movements on Shekel Foxholes contour

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

(a) (b)

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

(c) (d)

#10 #18

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#1

128

 (e) (f)

Figure 6.2 Neighbour solution movements of ATS; (a) initial solutions randomly

generated 600 solutions, (b) 1
st
 iteration, (c) 10

th
 iteration, (d) 18

th

iteration, (e) 42
th

iteration and (f) the final iterations (number of neighbour

solution, N = 30).

 (a) (b)

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#42

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#48

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#1

129

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

 (c) (d)

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

 (e) (f)

Figure 6.3 Neighbour solution movements of BF-TS; (a) initial solutions generated by

the proposed random movement front-end,
C

N = 20 and S = 30, (b) 1
st

iteration, (c) 2
nd

 iteration, (d) 16
th

 iteration, (e) 19
th

 iteration and (f) the final

iterations (number of neighbour solution, N = 30).

#2

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#16

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#19 #21

130

 (a) (b)

x-axis

y
-a

x
is

Bacteria movements on Shekel foxholes contour

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

 (c) (d)

#3

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#5

#1

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#1

131

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

 (e) (f)

Figure 6.4 Neighbour solution movements of modified ATS; (a) initial solutions

generated by the proposed random movement front-end,
C

N = 20 and S =

30, (b) 1
st
 iteration, (c) 3

rd
 iteration, (d) 5

th
 iteration, (e) 7

th
 iteration and

(f) the final iteration (2C
N =100 and 2S =2).

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
convergence of Shekel Foxholes function

iteration

co
st

 v
al

u
e

 obtained by ATS

obtained by BFO-TS

obtained by modified ATS

Figure 6.5 Convergence curves of the proposed algorithms.

#7

x-axis

y
-a

x
is

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

#9

2 4 6 8 10 12 14 16 18
0.5

1

1.5

2

2.5

BF-TS

132

 Referring to Figure 6.2(a), the star symbols indicate the 600 locations of

solutions randomly generated by the ATS. One can see that the locations spread over

the entire search space without any concentration. On the contrary as being illustrated

by the star locations in Figures 6.3(a) and 6.4(a), there are some certain areas having the

star concentrations that are generated by the adaptive random walk front-ends of the

BF-TS and the modified ATS algorithms, respectively. The results depict the capability

of the front-ends to explore over the entire search space, and avoid oscillation around

local areas. This leads to an increase in an opportunity to obtain at least a better elite

solution. The mechanism occurs consequently until a satisfied high-quality solution is

transferred to the main part of the algorithms. Afterward, searching for a global solution

is performed. According to the mechanism to generate neighbour solutions of the ATS,

Figures 6.2(b-f) and 6.3(b-f) illustrate the characteristics of generating neighbour

solutions within a predefined search radius. Neighbourhoods are generated in a

subsequent manner until the ATS tracks down an optimal solution. As explained

previously, the BF-TS can obtain a better initial solution, thus it tends to converge to a

global solution faster than the ATS does. This is evident by the convergent curves

shown in Figure 6.5. The random walk front-end of the modified ATS generates

neighbourhoods in a similar manner to that of the BF-TS. The algorithms operate

without the AR mechanism, and reach to a searched terrain containing a global solution

with a small numbers of step sizes, i.e. a small numbers of search rounds. Oscillations

around the global terrain being searched rarely occur as the BT mechanism is still in

operation together with the random walk front-end. The curves in Figure 6.5 represent

numerically the convergence of each algorithm in terms of iterations. It is clearly seen

that the modified ATS consumes minimum iterations.

133

Table 6.13 Occurrence of deadlocks in average (averaged over 50 trials).

Test

functions

Average deadlocks

ATS BF-TS Modified ATS

BF
56.28 14.28 0

RF
343.18 32.20 0

SF
9.68 2.20 0.24

SchF
18.00 8.20 0

ShuF
7.60 4.44 0

Since the ATS, BF-TS and modified ATS have the same algorithmic

approaches, comparisons of their local deadlocks are meaningful. Referring to Table

6.13 for the number of local entrapments, the BF-TS and modified ATS encounter local

locks of 67.71% and 99.50% less than the ATS does, respectively. The modified ATS

can avoid local dead locks of 97.82% than the BF-TS does as well. The modified ATS

being proposed achieves this good performance because it can avoid local solution

entrapments and oscillations around the targeted terrain containing a global solution.

The mechanism supporting this is the newly developed random walk front-end as an

enhancement to the original ATS. Table 6.14 summarizes the results of search time,

search rounds and number of objective function evaluations averaged over 50 trial runs.

In average, the BF-TS spends 33.67% shorter search time than the ATS does. On the

other hand, the modified ATS spends 61.85% (except the SchF) longer search time than

the ATS does. This is due to computing time demanded for objective function

evaluation every moment the neighbourhood generating mechanisms being invoked.

The modified ATS consumes the search times of 42.13% more than the BF-TS does.

The modified ATS spends 68.55% shorter search time than the ABFO, 60.95% (except

the RF) shorter than the IWO, and 50.48% (for the BF, SF and SchF problems) shorter

than the GA do.

134

Table 6.14 Summary of the results of average search time, search rounds and number of objective function evaluations (averaged over 50

trials).

Test

functions

Average search time (seconds) Average search rounds Number of objective function evaluations

ABFO ATS BF-

TS

Modified

ATS

IWO GA ABFO ATS BF-TS Modified

ATS

IWO GA ABFO ATS BF-TS Modified

ATS

IWO GA

BF
78.16

11.66 6.83 27.22

37.20

49.12

12.52

616.48 151.20 23.96

950.42

1177.18

62600

19094.4

7036

21668

57035.2

36315.4

RF 118.63

14.60 5.81 79.64

35.98

11.78

9.82

868.28 323.30 66.42

949.84

225.54

147300

26648.4

17199

60636

57000.4

7766.2

SF 35.49

4.18 3.69 7.75

15.90

8.53

8.68

139.36 25.70 9.54

290.56

141.28

8600

4780.8

1271

8132

17443.6

5238.4

SchF 162.59 32.93 19.65 11.08

(17)

1219.92

488.27 28.44 186.64 87.08 30.22

(17)

6831.18

201.44

17064

6199.2

2912.4

12388

409880.8

7043.2

ShuF 32.87 3.28 2.80 8.75 26.20

3.39

2.28 68.06 55.28 39.46 740.22

34.24

34200

2641.8

9158.4

15392

44423.2

2027.2

1
3
4

135

Although, the modified ATS algorithm spends average search time more than

other single-solution based metaheuristics do, these results have been considered that

the proposed modified ATS consume shorter search time than the population-based

metaheuristics do. Generally, the search mechanisms of the population-based

metaheuristics invoke a group of generating cost functions as a population and they

also disperse like a swarming. Moreover, those algorithms use the specific evaluation

techniques to eliminate low quality of solutions. It can be observed that the search time

could be spent longer as shown in the performance testing results.

For the average search rounds, the BF-TS and the modified ATS consume

58.38% and 80.91%, respectively less than the ATS does. It can be noticed that the

proposed algorithms with a high quality solution provides a short search round than the

original one. The modified ATS consumes the search round of 64.08% less than the

BF-TS does. In addition, the modified ATS spends 96.29% fewer search rounds than

the IWO, 86.69% (except the ShuF) fewer than the GA do, respectively, but 48.42%

more than the ABFO does.

 According to the number of objective function evaluations in Table 6.14, the

results show that the ATS spends number of objective function evaluations of 56.26%

(except ShuF) more than the BF-TS does, while the modified ATS consumes 48.39%,

68.10% and 63.19% (except BF) more than the ATS, BF-TS and GA do, respectively.

In contrast, the modified ATS provides numbers of objective function evaluation of

42.41% and 54.27% fewer than ABFO and IWO do, respectively. This can be noticed

that the BF-TS consumes the minimum number of objective function evaluation

because its bacterial movement frontend selects high-quality initial solutions at the

beginning of search. Regarding this, the ATS and the modified ATS are inferior. The

136

processes of the algorithms that generate population solutions demand high numbers of

objective function evaluation, for examples, ABFO and IWO.

Table 6.15 Solutions obtained from different algorithms (averaged over 50 trials).

Test

functions

Objective

values

ATS

ABFO

BF-TS

Modified

ATS

IWO

GA

BF

Average 4.5090e-10 5.3476e-10 5.3011e-10 6.4297e-10 4.4796e-10 3.6587e-10

Min 7.3184e-11 2.2100e-11 3.5690e-12 6.3320e-12 1.0217e-11 1.1830e-11

Max 9.4151e-10 9.5500e-10 9.9723e-10 9.4536e-10 9.8633e-10 9.7641e-10

Std. 2.7476e-10 2.6887e-10 3.1352e-10 3.7297e-10 3.2129e-10 2.8916e-10

Rank 3 5 4 6 2 1

RF

Average 5.3478e-09 4.9407e-09 5.2460e-09 8.0079e-10 4.0062e-09 4.9642e-09

Min 2.9051e-10 2.7300e-10 5.9587e-10 5.1800e-12 9.2719e-11 1.1486e-10

Max 9.3771e-09 9.9300e-09 9.6620e-09 9.9900e-10 9.7248e-09 9.5235e-09

Std. 2.4328e-09 2.6000e-09 2.6721e-09 5.1800e-12 2.6838e-09 2.6740e-09

Rank 6 3 5 1 2 4

SF

Average 0.9982 0.9981 0.9983 0.9982 0.9983 0.9983

Min 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

Max 0.9989 0.9989 0.9990 0.9987 0.9990 0.9990

Std. 0.0002 0.0002 0.0003 0.0002 0.0003 0.0003

Rank 2 1 3 2 3 3

SchF

Average 6.0600e-05 2.5506e-05 6.2286e-05 3.1106e-05 1.9266e+02 6.3063e-05

Min 2.5700e-05 2.5500e-05 2.8430e-05 2.5700e-05 2.5900e-05 2.6886e-05

Max 9.7791e-05 2.5700e-05 9.7833e-05 8.9600e-05 5.1325e+02 9.9456e-05

Std. 2.3286e-05 3.1364e-08 2.0853e-05 1.0538e-05 1.7757e+02 2.3125e-05

Rank 3 1 4 2 6 5

ShuF

Average -186.7305 -186.7306 -186.7305 -186.7305 -186.7305 -186.7304

Min -186.7309 -186.7309 -186.7309 -186.7309 -186.7309 -186.7309

Max -186.7300 -186.7300 -186.7301 -186.7300 -186.7300 -186.7300

Std. 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

Rank 2 1 2 2 2 3

Average rank
3.2 2.2 3.6 2.6 3.0 3.2

Final rank
4 1 5 2 3 4

137

The results obtained so far are from running the algorithms at least 50 times

such that our statistical analysis is meaningful. Table 6.15 summarizes ranking of the 6

algorithms based-on the averages of costs and variances. Referring to the numeric

figures in the Tables 6.14 and 6.15, some conclusions can be drawn as follows: (i) the

ABFO provides solutions of best quality, despite it needs a considerably longer search

time, (ii) the modified ATS provides solutions with second to the best, (iii) the

modified ATS consumes the minimum numbers of search rounds and spends shorter

search time than the ABFO, IWO and GA. Referring again to the numeric figures in the

Table 6.13, it is clear that the modified ATS is excel in deadlock avoidance compared

with the other algorithms. Unfortunately, the IWO performs poorly, and often fails to

reach an optimum solution within a given iterations. Therefore, the IWO is unsuitable

for solving complex combinatorial optimization problems which usually contain many

local solutions. Nonetheless, the IWO provides solutions of third to the best quality as

average; the ATS comes in fourth. The GA is an alternative in terms of its capability of

deadlock escapement although it provides solutions with fourth as well the ATS to the

best quality. From these results, it can be seen that the proposed BF-TS and modified

ATS algorithms achieve significantly better performances in terms of the averages of

search time, search round, deadlock occurrence and solution quality than the other

algorithms do. Note that all solutions found by the BT-TS and modified ATS

algorithms meet the stop criterion of minimum cost. These outstanding performances

are achieved due to the explorative characteristic of the random movement front-end,

the exploitative characteristic of ATS, and the deadlock releasing property of the ATS.

Moreover, the random movement with small step size is employed to generate the

neighbour solutions for the modified ATS. It is also the significant mechanism to avoid

138

oscillations around the targeted search terrain, and to escape the local deadlocks in a

short iteration.

 For comparison purposes, the numbers of neighbour solutions are chosen from

2 2C
S N× to be employed by the original and the modified ATS, i.e. 200, 200, 200, 100

and 50 for the BF, RF, SF, SchF and ShuF problems, respectively. In addition, the

results obtained from running the ATS when N=30 according to the recommendations

by Puangdownreong (Puangdownreong et al., 2006) are also shown. Figures 6.6-6.9

summarize the results in terms of the averages 50 trials of deadlock, search time, search

round and search time per iteration, respectively.

1 2 3 4 5
0

50

100

150

200

250

300

350

400

surface optimization problems

a
v
er

ag
e
 d

ea
d
lo

ck

deadlock comparison

ATS @N = 30

ATS @N = n (based-on N
c2

 and S
2
)

Modified ATS

BF RF SF SchF ShuF

343.18

9.68
18.00

7.609.68

96.24

0.380 0 0.24 00
5.76 3.08

56.28

Figure 6.6 Comparisons of average deadlocks between the ATS and the modified ATS

algorithms with the same neighbour solution numbers.

139

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

surface optimization problems

av
er

ag
e

se
ar

c
h
 t
im

e(
se

c
o
n
d
)

search time comparison

ATS @N = 30

ATS @N = n (based-on N
c2

 and S
2
)

Modified ATS

3.28

7.77

4.74

11.66

54.14

14.60

79.64

4.18 2.14

7.75

32.93

16.17

11.08 8.75

27.22

BF RF SF ShuFSchF

Figure 6.7 Average search time comparisons between the ATS and the modified ATS

 algorithms with the same neighbour solution numbers.

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

surface optimization problems

a
v
er

ag
e
 s

ea
rc

h
 r

o
u
n
d

search round comparison

ATS @N = 30

ATS @N = n (based-on N
c2

 and S
2
)

Modified ATS

SchF ShuF

616.48

139.36
110.70

868.28

951.56

12.40

68.18
23.96

66.42

186.64

9.54 30.22 39.46
46.06

68.06

RFBF SF

Figure 6.8 Average search round comparisons between the ATS and the modified ATS

 algorithms with the same neighbour solution numbers.

140

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

surface optimization problems

ti
m

e(
se

c
o
n
d
)

coparison of search time/iteration

ATS @N = 30

ATS @N = n (based-on N
c2

 and S
2
)

Modified ATS

BF RF SF SchF ShuF

0.0299 0.0482

0.1764

0.01680.0189

0.2372

0.1687

1.1361

0.2217

0.0428 0.0569

0.1727

1.1990

0.8124

0.3666

Figure 6.9 Comparisons of the search time per iteration of the ATS and the modified

 ATS algorithms with the same neighbour solution numbers.

Despite, the numbers of neighbour solutions of the ATS and the modified ATS

are equal, Figure 6.6 indicates that the ATS (ATS@ N=n) encounters deadlocks of

87.37% more than the modified ATS does, while the ATS (ATS@ N=n) spends the

average search time of 30.45% less than the modified ATS does (see Figure 6.7).

Furthermore, the modified ATS consumes fewer search rounds of 52.89% compared

with the ATS (ATS@ N=n) under the same numbers of neighbour solutions (see Figure

6.8). If we compare the results of the ATS with different numbers of neighbour

solutions, it can be observed that the ATS with higher neighbour solution numbers

(ATS@ N=n) provide higher performance to avoid local deadlocks, 75.67% more than

the ATS@ N=30, and it can reach the optimum solution in shorter search time and

fewer search rounds of 53.02% (except the RF and ShuF problems) and 67.23% (except

RF), respectively. We may conclude from such results that if the neighbour solution

141

numbers of the ATS become increased, it leads to increase in an opportunity to find the

optimum solution. Figure 6.9 presents the comparison results of the search time

consumed per iteration. From this, it can be summarized that the modified ATS spends

the longest search time compared with the ATS@ N=n and ATS@ N=30. The ATS@

N=n and ATS@ N=30 are the second and the third in rank of average search time

consumed per iteration, respectively.

6.5 Conclusion

This Chapter has presented the performances of the adaptive bacterial foraging

optimization (ABFO), the adaptive tabu search (ATS), the cooperative manner of

bacterial foraging-tabu search approach (BF-TS), the modified ATS, the invasive weed

optimization (IWO) and the genetic algorithms (GA). The performance assessment was

carried out on some unconstrained optimization problems also referred to as benchmark

functions. The tasks were conducted on a Pentium IV, 2.4 GHz, 640 Mbytes SD-RAM.

For a fair comparison, each algorithm was subjected to 50 trial tests in order to find out

its search parameters rendering best performance. Those parameters were applied for

extensive computing tasks for collecting the results.

Comparison studies employed five well-known benchmark functions, i.e.

Bohachevsky, Rastrigin, Shekel’s fox-holes, Schwefel and Shubert functions,

respectively. The results were averaged over fifty trial runs to assess the following

issues: number of local locks, search time, number of search rounds, quality of initial

solutions, quality of global solutions obtained, time consumed per search round and

numbers of objective function evaluation. These issues reflect the performance of the

search algorithms. From the results, it has been found that the modified ATS proposed

142

by this thesis has the best performance among the tested algorithms in terms of the

quality of initial solutions, the quality of global solution obtained, the minimum

number of local locks, and the minimum number of search rounds. It has been observed

that good quality initial solutions provided by the random-walk frontend lead to high-

quality global solutions obtained in a considerably low number of search rounds. The

mechanisms imitating tumble and swim of bacteria effectively prevent oscillations in a

searched region. Nonetheless, the proposed algorithms consumed longer search time of

2.53 and 4.70 times than the ATS and the BF-TS did, respectively, since the algorithms

invoked the random-walk frontend many times during the search process. In other

words, the random-walk frontend introduces an overhead cost in terms of search time

due to objective function calculations. The drawback can be overcome by

parallelization, sometimes referred to as parallel computing, of the algorithms as

explained further in Chapter 8. Furthermore, the population-based metaheuristics under

tests showed moderate search performances compared with the single-solution bases

ones. Next chapter of the thesis demonstrates the usefulness of the modified ATS and

the BF-TS algorithms for various complex engineering problems.

CHAPTER VII

APPLICATIONS OF THE PROPOSED ALGORITHMS TO

ENGINEERING PROBLEMS

7.1 Introduction

The previous Chapter presented how preferable search parameters could be

obtained as well as primary performance assessments. The assessments utilized some

well-known unconstrained optimization problems. The performance indices include

number of local locks, search time, number of search rounds, quality of initial

solutions, quality of global solutions, and time consumed per search round,

respectively. The modified ATS algorithm being proposed has shown superior

performance among the others in terms of the quality of initial solutions, the quality of

global solution, the minimum number of local locks, and the minimum number of

search rounds.

As the next step, the proposed algorithms are utilized to solve various

constrained real-world problems and some abstract mathematical ones as described in

this Chapter. Such problems include optimal control designs of hard-disk heads and a

second-order system with delay, stability analysis of a nonlinear system, identification

problems of hard-disk head actuator and nonlinear Stribeck friction model, and a

complex engineering problem, i.e. power drive system. Sections 7.2 to 7.8 give detailed

144

presentations of the cases, where the proposed algorithms are compared with the BF-

TS. Section 7.9 presents the conclusion.

7.2 Abstract Mathematical Constraint Problems

The form of constrained optimization problem depends on the particular type of

problem and function to be solved. The constraints can be combined in equation forms,

such as equality (f(x) = 0), weak inequality (g(x) 0≥), or strict inequality (g(x) > 0), etc.

in which a set of given constraints must be satisfied. A constrained optimization

problem can be defined as a regular constraint satisfaction problem. The aim of

constrained optimization is to find a solution that can be evaluated as the sum of the

cost functions ().
i

f x A general constrained optimization problem may be written as

follows:

Min (or Max) () for 1, 2,...,
i

f x i I=

Subject to () 0 for 1, 2,...,
j

h x j J= =

() 0 for 1, 2,...,
k

g x k K≤ =

where x =
1 2

[, ,...,] n

n
x x x ∈R here the components of x are called design or decision

variables. ()
i

f x is the objective function or simply cost function, and in the case of

I = 1, only single objective is considered. ()
j

h x is an equality constraint, and ()
k

g x is

an inequality constraint. On another hand, the inequality can be written in form of

“ 0≥ ”, and it can be formulated as a maximization problem.

145

Three abstract mathematical constraint problems are given in this thesis as

follows (Oftadeh et al., 2009):

1. Constrained function 1: Fcon1

The optimum solution is at *
x = (0.82288, 0.91144) with an objective

function value equal to *()f x =1.3933.

Min 2 2

1 2
() (2) (1)f x x x= − + −

Subject to
1 1 2
() 2 1 0g x x x= − + =

 2 2

2 1 2
() / 4 1 0g x x x= − − + ≥

where
1

10 10x− ≤ ≤ and
2

10 10x− ≤ ≤ .

2. Constrained function 2: Fcon2

The optimum solution is at *
x = (2.330875, 1.951370, -0.474593, 4.365553,

-0.624525, 1.037936, 1.594065) with the objective function value equal to

*()f x =680.6300771.

Min 2 2 4 2 6 2 4

1 2 3 4 5 6 7 6 7 6 7
() (10) 5(12) 3(11) 10 7 4 10 8f x x x x x x x x x x x x= − + − + + − + + + − − −

Subject to 2 4 2

1 1 2 3 4 5
() 127 2 3 4 5 0g x x x x x x= − − − − − ≥

2

2 1 2 3 4 5
() 282 7 3 10 0g x x x x x x= − − − − + ≥

2 2

3 1 2 6 7
() 196 23 6 8 0g x x x x x= − − − + ≥

2 2 2

4 1 2 1 2 3 6 7
() 4 3 2 5 11 0g x x x x x x x x= − − + − − + ≥

where 10 10
i

x− ≤ ≤ (1, 2,...,7)i = .

146

3. Constrained function 3: Fcon3

The optimal solution is at *
x = (522.806838, 1380.644472, 5147.870997,

177.101116, 294.085207, 222.898280, 283.015889, 394.085207) with corresponding

objective function value equal to *()f x = 7051.322306.

Min
1 2 3

()f x x x x= + +

Subject to
1 4 6
() 1 0.0025() 0g x x x= − + ≥

2 5 7 4
() 1 0.0025() 0g x x x x= − + − ≥

3 8 5
() 1 0.01() 0g x x x= − − ≥

4 1 6 4 1
() 833.332522 100 83333.333 0g x x x x x= − − + ≥

5 2 7 5 2 4 4
() 1250 1250 0g x x x x x x x= − − + ≥

6 3 8 3 5 5
() 2500 1250000 0g x x x x x x= − + − ≥

where
1

100 10000,x≤ ≤
2

1000x ≥ ,
3

10000,x ≥ 10 1000 (4,5,...,8)
i

x i≤ ≤ = .

The search parameters of the BF-TS and the modified ATS have been used following

Table 7.1 and Table 7.2.

Table 7.1 Search parameters of the BF-TS for constrained optimization problems.

Constrained

problems

S
C

N

S
N

α R N Jmin

<

BT,

n_re_back

Countmax

Fcon1 30 100 4 3
1 10× 1.5 5

1 10× 1.3935 5 50000

Fcon2 30 100 4 4
1 10× 1.5 5

1 10× 680.6400 5 50000

Fcon3 30 100 4 4
1 10× 0.1 5

1 10×

7051.3223 5 50000

147

The adaptive search radius mechanism of the BF-TS has been used for each problem as

follows:

• Fcon1: if J < 20 then R=0.3, if J < 5 then R=0.06, if J < 1.5 then R=0.012,

and if J < 1.396 then R = 0.0024.

• Fcon2: if J < 900 then R=0.0075, if J < 750 then R=0.0015, and if J < 682

then R=0.000375.

• Fcon3: if J < 7500 then R=0.01, if J < 7100 then R=0.005, if J < 7060 then

R=0.0001, and if J < 7055 then R=0.000005.

Table 7.2 Search parameters of the modified ATS for constrained optimization

problems.

Constrained

problems

S
C

N
2

S
2C

N S
N α

2
α BT,

n_re_back

Countmax

Fcon1 30 100 100 1000 4 3
1 10×

4
1 10× 5 50000

Fcon2 30 100 100 1000 4 4
1 10×

6
1 10× 5 50000

Fcon3 30 100 100 1000 4 4
1 10×

6
1 10×

5 50000

The program lists of objective function, Jmin , for each constrained optimization problem

have been used following Table 7.1. The objective functions and the constraint

conditions have been used as Figure 7.1.

148

if
3

1
1 10g

−≤ × Cons = []1 2 3 4
, , ,g g g g

1

0g = rho =
10

1 10×

else for k = 1: length(Cons)

10

1
1 10g = × if Cons(k) 0≥

end Cons(k) = 0

if
3

2
1 10g

−≤ × else

2

0g = Cons(k) = rho

else end
10

2
1 10g = × SumError = SumError + rho × Cons(k)

2

end end

SumError =
10

1 10× × (
2

1
g +

2

2
g) J = f+ SumError

J = f+ SumError

 (a) (b)

 Cons = []1 2 3 4 5 6
, , , , ,g g g g g g

 rho =
10

1 10×

 for k = 1: length(Cons)

 if Cons(k) 0≥

 Cons(k) = 0

 else

 Cons(k) = rho

 end

 SumError = SumError + rho × Cons(k)
2

 end

 J = f+ SumError

 (c)

Figure 7.1 Objective functions: (a) Fcon1, (b) Fcon2 and (c) Fcon3.

149

Table 7.3 summarizes the solutions obtained as average over 50 trial runs of the

BF-TS and the modified ATS, respectively. Considering the results of Fcon1, the

average cost functions obtained from the BF-TS and the modified ATS are 1.3929 and

1.3933, respectively. While both algorithms effectively solved Fcon1, the modified

ATS is superior in terms of achieving low values of cost functions, i.e. 1g and 2g ,

whose average values are 5
9.48 10

−× and 63.92 10−× , respectively. Similarly, Fcon2 can

be successfully solved by the BF-TS and modified ATS. The average results of cost

values are reported as 680.6379 and 680.6300 for the BF-TS and the modified ATS,

respectively. Average results show that the modified ATS has given better qualities of

cost value and conditions, which are 680.6300, 41.76 10−× , 252.59 , 144.87 and

54.29 10−× , respectively. For Fcon3, although the maximum count of the BF-TS is set

to 50,000, the searches fail to obtain an optimal solution. Among those search trials,

only 12 of them managed to reach an optimum solution. Further results show that the

modified ATS provides a better cost function of 7051.3175 with reasonable average

constraints compared to the BF-TS.

151

Table 7.3 Summary of the results obtained from the BF-TS and the modified ATS for constrained optimization problems (averaged

over 50 trials).

Constrained

problems

Objective

values

BF-TS Modified ATS

1g
2g

3g
4g

5g
6g ()f x

1g
2g

3g
4g

5g
6g ()f x

Fcon1

Average 6.45e-4 2.66e-4 - - - - 1.3929 9.48e-5 3.92e-6 - - - - 1.3933

Min 7.10e-6 7.68e-7 - - - - 1.3922 8.41e-5 2.28e-7 - - - - 1.3933

Max 9.94e-4 8.35e-4 - - - - 1.3935 9.98e-5 2.09e-5 - - - - 1.3933

Std. 2.56e-4 2.02e-4 - - - - 3.36e-4 4.35e-6 3.34e-6 - - - - 1.01e-5

Rank 2 2 - - - - 2 1 1 - - - - 1

Fcon2

Average 1.27e-3 252.72 144.81 3.10e-3 - - 680.6379 1.76e-4 252.59 144.87 4.29e-5 - - 680.6300

Min 3.66e-6 252.16 144.64 2.53e-5 - - 680.6338 1.36e-4 252.47 144.83 2.94e-8 - - 680.6299

Max 4.47e-3 253.02 145.07 9.08e-3 - - 680.6390 1.88e-4 252.65 144.92 2.22e-4 - - 680.6301

Std. 1.17e-3 0.26 0.11 2.40e-3 - - 9.78e-4 1.30e-5 0.06 0.03 4.69e-5 - - 2.98e-5

Rank 2 2 1 2 - - 2 1 1 2 1 - - 1

Fcon3

Average 3.77e-5 5.47e-6 3.72e-6 2.60 2.18 2.48 7054.5866 3.44e-4 1.15e-5 1.28e-5 12.46 10.11 2.95 7051.3175

Min 1.01e-7 2.31e-8 5.20e-8 6.59e-3 6.59e-3 2.09e-2 7051.2954 1.30e-7 3.78e-10 1.94e-10 1.39e-4 4.01e-4 3.25e-4 7051.2350

Max 3.54e-4 3.19e-5 1.43e-5 20.39 22.10 24.76 7064.8423 9.23e-4 1.12e-4 9.85e-5 168.21 81.90 53.28 7051.3222

Std. 7.02e-5 7.27e-6 4.49e-6 4.07 3.44 4.27 3.4373 2.71e-4 2.13e-5 2.47e-5 34.44 22.01 8.32 0.0151

Rank 1 1 1 1 1 1 2 2 2 2 2 2 2 1

Average rank 1.67 1.67 1.00 1.50 1.00 1.00 2 1.33 1.33 2.00 1.50 2.00 2.00 1

Final rank 2 2 1 1 1 1 2 1 1 2 1 2 2 1

1
5
0

151

Table 7.4 Summary of the average search time, search round and local deadlocks of

the BF-TS and modified ATS approaches for constrained optimization

problems (averaged over 50 trials).

Constrained

problems

Average search time

(seconds)

Average search rounds Average deadlocks

BF-TS Modified

ATS

BF-TS Modified

ATS

BF-TS Modified

ATS

Fcon1

11.5655

214.8662

72.28

108.76

5.70

0

Fcon2

6.9359

283.2332

344.32

59.68

25.38

0

Fcon3

(12)

1394.2844

234.3396

(12)

40866.06

359.06

(12)

2948.30

0

Referring to Table 7.4, the average deadlocks of the modified ATS have not

been found. These results ensure that the modified ATS provides the superior

performance to escape deadlocks. For the average search times and search rounds, the

results show that the modified ATS consumes the average search time of 96.08%

(except Fcon3) more than the BF-TS does, while it spends the average search rounds

less than the BF-TS by 90.89% (except Fcon1). If we consider in terms of average

search time consumed per iteration for each constrained function, the results show that

the modified ATS spends longer search time than the BF-TS as shown in Figure 7.2.

152

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

constrained optimization problems

ti
m

e
(s

ec
o

n
d

)

coparison of search time/search round

BF-TS

Modified ATS

Problem 2 Problem 3Problem 1

0.1600

0.6526

0.03410.0201

1.9756

4.7459

Figure 7.2 Comparisons of the search time per iteration of the BF-TS and modified

 ATS algorithms for abstract mathematical constraint problems.

Figure 7.3 illustrates some convergent curves of these constraint problems as

examples. Notice that, for an uncomplicated problem like Fcon1, the BF-TS reached to

the global solution faster than the modified ATS. For Fcon2 that contains many

constraint conditions, the modified ATS successfully solved it in a fewer numbers of

iteration with significantly short time. Figure 7.3(b) clearly shows this. For more

complex problem like Fcon3, although the initial solutions obtained from the BF-TS in

some trial runs are better than those given by the modified ATS, it converges to the

solutions much slower than the modified ATS. Moreover, it fails in some trial runs.

This is evident by the convergent curves shown in Figure 7.3(c).

ti
m

e/
se

ar
ch

 r
o
u
n

d
 (

se
co

n
d
)

153

(a)

(b)

(c)

Figure 7.3 Comparison of convergences between the BF-TS and the modified ATS

 algorithms: (a) Fcon1, (b) Fcon2 and (c) Fcon3.

Fcon1 problem

0 50 100 150 200 250 300 350
650

700

750

800

850

900

Iteration

C
o
st

 v
al

u
es

Convergence rates of the BF-TS and the modified ATS algorithms for constrained problem 2

BF-TS

Modified ATS

initial value = 882.57
search time = 261.1845 seconds
search round = 51
cost value = 680.60

initial value = 888.40
search time = 6.3261 seconds
search round = 313
cost value = 680.60

Convergence curves Fcon2 problem

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

10
10

Iteration

C
o
st

 v
a
lu

es

Convergence rates of the BF-TS and the modified ATS algorithms for constrained problem 3

BF-TS

Modified ATS

initial value = 1.86x108

search time = 216.7452 seconds

search round = 31743

cost value = 7051.30

initial value = 9.70x108

search time = 834.2934 seconds

search round = 330

cost value = 7051.30

Fcon3 problem Convergence curves

0 10 20 30 40 50 60 70 80 90 100
10

0

10
5

10
10

10
15

10
20

Iteration

C
o
st

 v
a
lu

e
s

Convergence rates of the BF-TS and the modified ATS algorithms for constrained problem 1

BF-TS

Modified ATS

initial value = 1x10
16

search time = 13.1932 seconds

search round = 84

cost values = 1.3929

initial value = 1x10
16

search time = 201.5412 seconds

search round = 94

cost values = 1.3929

Convergence curves Fcon1 problem

154

7.3 Hard Disk Drive Control Design Applications

Read/write (R/W) technology of hard disk drives (HDDs) employs both single-

head and head-stack types, respectively. Both types of the heads exhibit highly

underdamped dynamic responses that severely need proper compensations. In recent

years, there have been many attempts to compensate for undesirable and unstable

responses of these heads. Robust control approach has been proposed (Goh et al., 2001)

to handle this problem. Nonlinearity, friction, and resonance have been compensated

for by the composite nonlinear feedback control (Chen et al., 2003; Peng et al., 2005),

linear compensation and fuzzy control (Ngernbaht et al., 2009). Nonlinear PID, and

adaptive robust control approaches for the problems can be found in (Isayed and

Hawwa, 2007), and (Taghirad and Jamei, 2008), respectively. The review is not

exhaustive, but serves to show some good examples in the field.

This section intends to show that using linear control technique is possible to

solve the dynamic compensation problems of the HDD-heads. Since the dynamic of the

head is quite complicated, manual design is usually not possible. Computational efforts

using optimization algorithms are particularly useful to achieve the design criteria. The

following materials are presented the comparison studies of various control system

structures, conventional control designs, single R/W head and R/W head-stacks

dynamic compensations, and resonance countermeasure via notch filtering.

The design phase is aimed for hard disk drive to produce high servo

performance due to unit-step input. In practice of the hard-disk industry, the design

criteria are given by GM ≥ 5 dB and PM ≥ 25 deg. The response overshoot can be

allowed up to 25%. However, engineers tend to design toward the time response having

as small overshoot and settling time as possible. The compensators used by this thesis

155

are the third order with real poles and zeros. Figure 7.4 shows three block diagrams

representing different control structures under consideration (Sarasiri et al., 2010).

(a)

(b)

(c)

Figure 7.4 Control structures: (a) 1-DOF, (b) 2-DOF type 1and (c) 2-DOF type 2.

 According to the conventional feedback control system, the control signal is

generated by processing the difference between the reference inputs and the actual

outputs. It is well known that in such a case can be dealt with a controller which has

156

one-degree-of-freedom (1-DOF) as the standard structure in Figure 7.4(a). This

structure is also called a series compensator. Its performance is not particularly

outstanding. On the other hand, two-degrees of freedom (2-DOF) type 1 and type 2

compensators (see Figure 7.4(b)-(c)) allows one to process the reference and

measurements independently. The control system structure as shown in Figure 7.4(c)

has some well-known advantages. The compensator *

1c
G dominantly shapes the output

to follow the input (tracking mode). The compensator *

2c
G plays an important role in

regulation and stabilization modes. In addition, the feedback property of this 2-DOF

type 2 provides reasonable pole placements and good system stabilisation (Sujitjorn,

2003; Vilanova and Serra, 1997).

 7.3.1 Single R/W Head

 The main components of the single-head of a hard drive are a voice-coil-

motor (VCM), a pivot, an actuator arm, and suspension. The small tip of the suspension

holds the actual R/W head. The structure is presented in Figure 7.5 (Peng et al., 2005).

α

Figure 7.5 Structure of single R/W head.

157

0 0.002 0.004 0.006 0.008 0.01
-10

-5

0

5

10

15
Step response

Time(sec)

D
is

p
la

ce
m

en
t
(m

ic
ro

m
et

er
s)

-150

-100

-50

0

50

M
ag

n
it

u
d

e
(d

B
)

10
3

10
4

10
5

-360

-270

-180

-90

0

90

180

P
h

as
e

(d
eg

)

Bode Diagram
Gm = 14.5 dB (at 7.26e+003 Hz) , Pm = -1.62 deg (at 2.52e+003 Hz)

Frequency (Hz)

 (a) (b)

Figure 7.6 Open-loop responses: (a) time-domain and (b) frequency-domain.

 Figure 7.6 illustrates the unstable open-loop responses of the single-head. It is

reported that the dynamic of the single-head contains 5 resonance modes (Chen et al.,

2003; Chen et al., 2006) which can be described by the following transfer function

8

. . .1 . .2 . .3 . .4 . .52

2.35 10
() () () () () ()

s h s h s h s h s h s h
G s G s G s G s G s G s

s

×
= (7.1)

where

2 9

. .1 2 9

0.8709 1726 1.369 10
()

1480 1.369 10
s h

s s
G s

s s

+ + ×
=

+ + ×
 (7.2)

2 9

. .2 2 9

0.9332 805.8 1.739 10
()

125.1 1.739 10
s h

s s
G s

s s

− + ×
=

+ + ×
 (7.3)

5.89 kHz 6.64 kHz 14.10 kHz

158

2 9

2 9. .3

1.072 925.1 1.997 10
()

536.2 1.997 10
s h

s s
s

s s

G
+ + ×

=
+ + ×

 (7.4)

2 9

. .4 2 9

0.9594 98.22 2.514 10
()

1805 2.514 10
s h

s s
G s

s s

+ + ×
=

+ + ×
 (7.5)

9

. .5 2 9

7.877 10
()

6212 7.877 10
s h

G s

s s

×

+ + ×
= (7.6)

 The anti-resonance filters or notch filters have been used for this single R/W

head to suppress the severe resonant frequencies occurred and increase the robusted

stability. The anti-resonance filters have been detailed in Appendix A.

 Conventional control designs are firstly considered for the single-head HDD,

which has a phase margin of -78.3 deg. Three notch filters are used to compensate for

resonance modes, and one phase-lead compensator is to provide a desirable phase

characteristic. Appendix A summarizes the design details. The conventional transfer

function is prescribed in equation (7.7).

3 4 3
3

1 4 5 6

 s + 6.67 10 s + 2.377 10 s + 8.557 10
1.80 10

s + 4.23 10 s + 3.311 10 s + 1.118 10
PL

G
 × × ×

= × × × ×
 (7.7)

After applying anti-resonance filters and a third-order phase-lead compensators to the

single R/W head system, the results of time and frequency domains can be satisfied

with gain and phase margins of 26.10 dB and 48.70 deg, (see Figure A.5(b)),

respectively. However, its time responses after compensation still has a high overshoot

of 32% (see Figure A.5(a)).

159

 Further designs are attempted for the control structures as shown in Figures 7.4

(a)-7.4(c) using the BF-TS and the modified ATS algorithms. Each compensator is the

third-order containing 3 real poles, 3 real zeros, and a gain. The search problem is to

find the optimal values of 7 compensator parameters for the 1-DOF structure, and 14

compensator parameters for the 2-DOF structures of types 1 and 2. The present

problem becomes an optimal synthesis of compensators of the form shown in equation

(7.8).

()()()
()()()

1 2 3

1

1 2 3

()
C

s z s z s z
s K

s p s p s p

G
+ + +

=
+ + +

 (7.8)

The objective is to minimize the sum of absolute errors between the input shape and the

actual response in time-domain. Simultaneously, the closed-loop control must meet the

requirements of stability margins. Due to the high order of the plant models and the

filters, design the compensators manually is not possible. Although with an aid of a

computer, some trials-and-errors are necessary, and the design process would be very

tedious and time consuming. Thus, the design process is formulated as a search and

optimization problem of multi parameter control synthesis. The optimization problem

can be expressed as a constrained optimization problem as follows

 minimize J: J= ()e tΣ

 subject to P.O < 5%

 GM > 5dB

 PM > 25deg

160

where e(t)=r(t)-c(t), r(t) is the unit-step input, c(t) is the response and e(t) is the

response error.

 The search parameters for the BF-TS and the modified ATS applied to the

single R/W head are shown in Tables 7.5 and 7.6, respectively.

Table 7.5 Boundaries and search parameters of the BF-TS for the single R/W head.

The adaptive radiuses are utilized, if J < 70 then R = 10, if J < 65 then R = 7, if J < 55

then R = 4.

Table 7.6 Boundaries and search parameters of the modified ATS for the single R/W

head.

Compensators Search parameters S
C

N

S
N

α R N Jmin

≤

BT,

n_re_back

1-DOF

1 2,z z 3,z 1,p 2 ,p

3
,p 1K = [100-10

11
]

30

100

4

100

20

50

50

5

2-DOF type 1

1 2,z z 3,z 54 ,,z z 6,z

1 2, ,p p 3 4, ,p p 5 6, ,p p

1 2,K K = [100-10
11

]
2-DOF type 2

Compensators Search parameters S
C

N
2

S
2C

N

S
N α

2
α Jmin

≤

1-DOF
1 2,z z 3,z 1,p 2 ,p

3
,p 1K = [100-10

11
]

30

100

1

50

4

100

31 10×

50
2-DOF type I

1 2,z z 3,z 54 ,,z z 6,z

1 2, ,p p 3 4, ,p p 5 6, ,p p

1 2,K K = [100-10
11

]
2-DOF type 2

161

The maximum count (countmax) is 5,000 for these approaches. The objective function, J

list of the single R/W head has been presented in Figure 7.7.

 SAE = sum(abs(1-Close_system))

if overshoot < 5

 overshoot = 0

else

 overshoot=
3

1 10×

end

 if Gm > 5

 Gm = 0

else

 Gm =
3

1 10×

end

 if Pm > 25

 Pm = 0

else

 Pm =
3

1 10×

end

 J = SAE + (overshoot
2

+ Gm
2

+ Pm
2

)× 3
1 10×

Figure 7.7 Objective function of the single R/W head.

Table 7.7 Summary of the compensators and the corresponding responses of the single-

head using the BF-TS algorithm.

3 8
5

9 5 7

(6.868 10)(1.451 10)(100.80)
() 4.117 10

(1.005 10)(4.0 10)(5.051 10)

s s s
Gc s

s s s

+ × + × +
= ×

+ × + × + ×
4 9 3

3

9 3 9

(6.001 10)(4.014 10)(9.103 10)
1() 7.812 10

(1.265 10)(2.201 10)(6.210 10)

s s s
Gc s

s s s

+ × + × + ×
= ×

+ × + × + ×
4 9 2

3

8 4 9

(8.132 10)(8.010 10)(1.503 10)
2() 8.110 10

(2.985 10)(9.895 10)(5.911 10)

s s s
Gc s

s s s

+ × + × + ×
= ×

+ × + × + ×

4 9 3
* 3

9 4 9
7.822

(6.961 10)(6.452 10)(6.758 10)
1() 10

(4.584 10)(2.683 10)(7.291 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×
4 10 3

* 3

9 4 9
8.904

(9.968 10)(1.082 10)(1.260 10)
2() 10

(2.726 10)(3.852 10)(4.337 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×

SAE

%5
ss

e =

162

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

A
m

p
li

tu
d
e

Step response

2-DOF type 2

1-DOF

2-DOF type 1
-150

-100

-50

0

50

M
a

g
n

it
u

d
e

 (
d

B
)

10
2

10
3

10
4

10
5

10
6

-360

-180

0

180

360

P
h

a
se

 (
d

e
g

)

Bode Diagram

Frequency (Hz)

1-DOF

2-DOF type 1

2-DOF type 2

2-DOF type 2

2-DOF type 1

1-DOF

(a) (b)

Figure 7.8 Compensated responses of single R/W head using the BF-TS:

 (a) time-domains and (b) frequency-domains.

Table 7.7 summarizes the optimal compensators by the BF-TS, and their

corresponding performance indices. Figures 7.8(a) and 7.8(b) show the step and the

frequency responses of the compensated head. It is noticed that all compensation

structures render very satisfactory stability margins and overshoots. In the case of

strictly demanded low overshoot, the 2-DOF type 2 is the optimum choice. If the

overshoot is lenient, the 1-DOF can be an alternative.

D
is

p
la

ce
m

en
t

(m
ic

ro
m

et
e
rs

)

163

Table 7.8 Summary of the compensators and the responses of the single-head using the

modified ATS algorithm.

9 4
5

10 5 8
8.397

(100)(1.934 10)(8.407 10)
() 10

(2.825 10)(9.899 10)(3.668 10)

s s s
Gc s

s s s

+ + × + ×
= ×

+ × + × + ×
4 9 4

3

9 3 9

(2.482 10)(7.145 10)(1.076 10)
1() 9.803 10

(1.434 10)(8.067 10)(1.646 10)

s s s
Gc s

s s s

+ × + × + ×
=

+ × + × + ×
×

4 9 2
3

8 5 9
9.932

(9.555 10)(9.350 10)(1.0 10)
2() 10

(6.446 10)(1.161 10)(7.595 10)

s s s
Gc s

s s s

+ × + × + ×
= ×

+ × + × + ×
4 9 3

* 3

9 4 9
7.289

(7.212 10)(8.246 10)(2.060 10)
1() 10

(6.658 10)(3.343 10)(2.086 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×
4 10 3

* 3

9 4 9
9.817

(8.128 10)(9.632 10)(1.211 10)
2() 10

(6.877 10)(7.821 10)(8.997 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×

SAE

%5
ss

e =

 (a) (b)

Figure 7.9 Compensated responses of single R/W head using the modified ATS:

 (a) time-domains and (b) frequency-domains.

Table 7.8 summarizes the optimal compensators for the single-head using the

modified ATS algorithm. The time and frequency responses are depicted in Figures

7.9(a) and 7.9(b), respectively. The results show that all compensation structures can

-150

-100

-50

0

50

M
a

g
n

it
u

d
e

(d
B

)

10
2

10
3

10
4

10
5

10
6

-360

-180

0

180

360

P
h

a
se

 (
d

eg
)

Bode Diagram

Frequency (Hz)

2-DOF type 2

2-DOF type 1

1-DOF

1-DOF

2-DOF type 1

2-DOF type 2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step response

Time (sec)

A
m

p
li

tu
d

e 2-DOF type 1

1-DOF

2-DOF type 2

D
is

p
la

ce
m

en
t

(m
ic

ro
m

et
e
rs

)

164

satisfy stability margins. All compensations obtained from the proposed modified ATS

render the performance responses with low overshoots, rise times and settling times.

Consequently, all compensation structures can make the single R/W head have better

compensated performances and higher stability margins. A simple structure as the 1-

DOF can be the first option to be used to minimize overshoot. To decrease rise time,

the 1-DOF or the 2-DOF type 1 structures can be a good option. The 2-DOF type 2 is

the best choice to obtain the shortest settling time and to increase the stability margins.

Note that, the control systems considered are theoretic. More practical approaches can

be considered by imposing technological limitations into the search problems, for

examples, saturation characteristics of electronic controllers, quantization effects of

digital controllers, etc.

0 100 200 300 400 500 600
10

0

10
2

10
4

10
6

10
8

10
10

Iteration

C
o

st
 v

al
u

e

Modify ATS

BF-TS

Initial cost value = 1.0x109

Search time = 1546.7839 seconds

Count max=516

Cost value = 31.37

Initial cost value = 3.0x10
9

Search time = 2205.9251 seconds

Search round = 404

Cost value = 37.83

(a)

Convergence curves of the BF-TS and the modified ATS for single R/W head control

165

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
2

10
4

10
6

10
8

10
10

Iteration

C
o
st

 v
a
lu

e

Modify ATS

BF-TS

Initial cost value = 1x109

Search time = 1693.8191 seconds

Search round = 234

Cost value = 38.79

Initial cost value = 1x109

Search time = 3121.5453 seconds

Search round = 829

Cost value = 47.26

(b)

0 100 200 300 400 500 600 700 800
10

0

10
2

10
4

10
6

10
8

10
10

Iteration

C
o

st
 v

a
lu

e

Modify ATS

BF-TS

Initial cost value = 1x10
9

Search time = 196.6377 seconds
Search round = 21

Cost value = 48.53

Initial cost value = 1x10
9

Search time = 3982.3694 seconds

Search round = 814

Cost value = 49.29

(c)

Figure 7.10 Comparisons of convergence curves between the results of the BF-TS and

 the modified ATS on the single R/W head: (a) 1-DOF structure, (b) 2-

DOF type 1 structure and (c) 2-DOF type 2 structure.

Figure 7.10 shows the convergent curves for comparison purposes between the

results of the BF-TS and the modified ATS algorithms. These results show that the

proposed approaches can satisfy termination criteria and all other conditions. Based-on

these results, it can be observed that the modified ATS spends fewer numbers of

Convergence curves of the BF-TS and the modified ATS for single R/W head control

Convergence curves of the BF-TS and the modified ATS for single R/W head control
1010

1010

166

iteration than the BF-TS does for all compensation structures. Furthermore, the

modified ATS as being proposed consumes fewer numbers of search rounds. If we

compare the search time consumed per iteration between the approaches, the modified

ATS spends time twice as much as that of the BF-TS for all control structures. Note

that, a strong point of the modified ATS is that the algorithm can effectively avoid local

deadlocks. This can be observed from the results obtained by using the BF-TS

encounter many local deadlocks, which are 34, 58 and 45 times more for the 1-DOF, 2-

DOF type 1 and 2-DOF type 2, respectively.

 7.3.2 R/W Head-Stacks

 Figure 7.11 provides a sketch of a hard-disk R/W head-stack that

consists of a voice coil, pivot, actuator arm, and suspension. The tips of the

suspensions are the read/write heads. A R/W head-stack has been modeled as a

transfer-function comprising of 6 resonance modes with 12 poles, and 10 zeros

(Mamun et al., 2002).

Figure 7.11 Mechanical structure of a hard-disk head-stack.

This model is expressed by

 1 2 3 4 5 6() () () () () () ()
hs hs hs hs hs hs hs

s s s s s s sG G G G G G G= (7.9)

167

where

2 81

1
()

+ s 4656s + 9.65 10
hs

sG =
×

 (7.10)

2 8

2 2 4
()

s 2410s + 2.676 10

s + 53.76s + 2.903 10
hs

sG
− ×

=
×

 (7.11)

2 8

3 2 8
()

s + 4645s + 3.368 10

s + 342.3s + 1.352 10
hs

sG =
×
×

 (7.12)

2 8

4 2 8
()

+ 375.6s + 5.82 10

+ 400.4s + 2.913 10
hs

s
s

G
s

=
×
×

 (7.13)

2 8

5 2 8
()

+ 413.7s + 9.176 10

+ 213.6s + 5.854 10
hs

s
s

G

s

=
×

×
 (7.14)

2 10 15

6 2 8
()

2.162 10 s +2.522 10

+ 342.4s + 9.1 10
hs

s
s

G

s

=
− × ×

×
 (7.15)

 Due to severity of the resonance modes, the head-stack has low stability

margins (GM=0.89 dB and PM=0.5deg.), and its step response contains an overshoot as

high as 60.94% as illustrated by the step and the frequency-response plots in Figures

7.12(a) and 7.12(b), respectively. Referring to Figure 7.12(b), there are two resonance

modes, at 1.85 and 4.82 kHz, having very low damping ratios that need proper pre-

compensations. The pre-compensators utilize the common notch filters described in

Appendix A.

168

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

350
Step Response

Time (sec)

A
m

p
li

tu
d
e

Overshoot(%)=60.94

Rise time(sec)=0.0116

Settling time(sec)=0.20

 (a) (b)

Figure 7.12 Open-loop responses: (a) time-domain and (b) frequency-domain.

 After the pre-compensation, the head-stack still encounters an instability

problem, i.e. its GM and PM are -28.60 dB and -31.30 deg., respectively. Bode plot in

Figure A.6 reveals this fact (see Appendix A). A further dynamic compensation is

therefore unavoidable. Based-on the 1-DOF structure of Figure 7.4(a), a 3-stage phase-

lead compensator is designed first using the conventional design method found in

textbooks. The design details can be found in Appendix A. As a result, a compensator

GPL2(s) is obtained and expressed by

2 3 3

5 3 32

 s + 2.82 10 s + 1.570 10 s + 1.780 10
50

s + 2.78 10 s + 7.225 10 s + 5.341 10
PL

G
× × ×

× × ×

=

 (7.16)

By using the anti-resonance filters and a third-order lead compensator, we can achieve

the compensated system having GM = 9.33 dB and PM = 40.90 deg. (see Figure

A.9(b)). Unfortunately, the system still contains a high overshoot of 41.28% (see

1.85 kHz 4.82 kHz

D
is

p
la

ce
m

en
t

(m
ic

ro
m

et
e
rs

)

P
h
as

e
(d

eg
)

M
ag

n
it

u
d
e

(d
B

)

-90

-180

-270

-360

-450

-540

-630

Frequency (Hz)

102 103 104 105

50

0

-50

-100

-150

Bode Diagram

Gm = 0.89 dB (at 334 Hz), Pm = 0.50 deg (at 397 Hz)

169

Figure A.9(a)). This requires a more stringent compensation for an overshoot

suppression.

 Therefore, the BF-TS and modified ATS algorithms have been applied in order

to satisfy better compensated performances, and stability margins simultaneously

according to the control structures shown in Figures 7.4(a)-7.4(c). The optimal multi-

parameter control synthesis of compensators is formulated as in equation (7.8) for each

control structure. The objective to be minimized and the constraint conditions for

control performances are similar to those of the single R/W head. The search

parameters for the BF-TS and the modified ATS have been utilized to the R/W head

stacks shown in Tables 7.9 and 7.10, respectively.

Table 7.9 Boundaries and search parameters of the BF-TS for the R/W head stacks.

The adaptive radius mechanisms are utilized as follows: if J < 70 then R = 10, if J < 65

then R = 7, if J < 55 then R = 4.

Compensators Search parameters S
C

N

S
N

α R N Jmin

≤

BT,

n_re_back

1-DOF

1 2,z z 3,z 1,p 2 ,p

3
,p 1K = [100-10

11
]

30

100

4

61 10−×

20

50

25

5

2-DOF type I

1 2,z z 3,z 54 ,,z z 6,z

1 2, ,p p 3 4, ,p p 5 6, ,p p

1 2,K K = [100-10
11

] 2-DOF type 2

170

Table 7.10 Boundaries and search parameters of the modified ATS for the R/W head

stacks.

The maximum count (countmax) is 5,000 for these approaches. The objective function

(J) as listed in Figure 7.7 is also used.

Table 7.11 Summary of the compensators for the head-stacks using the BF-TS

algorithm.

6 6 7
3

9 9

(4.293 10)(2.932 10)(3.083 10)
1() 1.752 10

(3.434 10)(209.242)(3.776 10)

s s s
Gc s

s s s

+ × + × + ×
= ×

+ × + + ×
6 8

3

9 3 9

(1.113 10)(8.250 10)(196.892)
2() 1.038 10

(2.132 10)(2.439 10)(1.606 10)

s s s
Gc s

s s s

+ × + × +
= ×

+ × + × + ×
6 7 7

* 3

10 3 9

(5.258 10)(3.093 10)(8.385 10)
1() 5.460 10

(5.466 10)(4.425 10)(6.946 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×
6 9

* 3

9 4 9

(5.681 10)(3.704 10)(744.0)
2() 8.875 10

(6.153 10)(1.120 10)(9.568 10)

s s s
G c s

s s s

+ × + × +
= ×

+ × + × + ×

error∑

4 3

5 4 3
8.946

(4.869 10)(179.455)(4.376 10)
()

(1.344 10)(8.148 10)(7.312 10)

s s s
Gc s

s s s

+ × + + ×
=

+ × + × + ×
91 10×

%5
ss

e =

Compensators Search parameters S
C

N
2

S
2C

N

S
N α

2
α Jmin

≤

1-DOF
1 2,z z 3,z 1,p 2 ,p

3
,p 1K = [100-10

11
]

30

100

1

50

4

61 10−×

61 10×

25 2-DOF type I

1 2,z z 3,z 54 ,,z z 6,z

1 2, ,p p 3 4, ,p p 5 6, ,p p

1 2,K K = [100-10
11

]

31 10−×

2-DOF type 2 31 10−×

171

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)
Time (sec)

A
m

p
li

tu
d

e

1-DOF

2-DOF type 1

2-DOF type 2

 (a) (b)

Figure 7.13 Compensated responses of R/W head-stacks using BF-TS:

 (a) time-domains and (b) frequency-domains.

As a result, Table 7.11 summarizes the optimal compensators for the R/W head-

stack found by the BF-TS with the performance indices. The corresponding step and

frequency responses of the compensated head-stack are shown in Figures 7.13(a) and

7.13(b), respectively. It is observed that the compensation structures of the 2-DOF type

1 and the 2-DOF type 2 have given satisfactory stability margins and overshoots, while

the 1-DOF structure results in high overshoots. Hence, while the R/W head-stacks need

low overshoot responses, the 2-DOF type 1 structure is the optimum choice. The 2-

DOF type 2 is another option when the system demands a rapid response with short rise

time and settling time.

-150

-100

-50

0

50

M
a

g
n

it
u

d
e

 (
d

B
)

10
2

10
3

10
4

10
5

-720

-540

-360

-180

0

P
h

a
se

 (
d

e
g

)

Bode Diagram

Frequency (Hz)

1-DOF

2-DOF type 1

2-DOF type 2

1-DOF

2-DOF type 1
2-DOF type 2

0.05

Step response

D
is

p
la

ce
m

en
t

(m
ic

ro
m

et
e
rs

)

172

Table 7.12 Summary of the compensators for the head-stacks using the modified ATS

algorithm.

4 3

5 4 3
10.816

(4.866 10)(156.601)(4.327 10)
()

(1.344 10)(8.062 10)(7.396 10)

s s s
Gc s

s s s

+ × + + ×
=

+ × + × + ×
6 6 7

3

9 2 9
3.859

(3.085 10)(7.084 10)(7.352 10)
1() 10

(9.340 10)(3.798 10)(7.709 10)

s s s
Gc s

s s s

+ × + × + ×
=

+ × + × + ×
×

6 8 2
3

9 3 9
4.007

(4.695 10)(1.279 10)(3.546 10)
2() 10

(1.807 10)(6.688 10)(1.433 10)

s s s
Gc s

s s s

+ × + × + ×
= ×

+ × + × + ×
6 7 5

* 3

9 3 9
5.023

(3.347 10)(6.999 10)(5.460 10)
1() 10

(5.712 10)(1.391 10)(3.204 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×
6 9 2

* 3

9 4 9
4.598

(5.017 10)(2.005 10)(5.820 10)
2() 10

(4.556 10)(1.082 10)(4.652 10)

s s s
G c s

s s s

+ × + × + ×
= ×

+ × + × + ×

error∑

%5
ss

e =

91 10×

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step response

Time (sec)

A
m

p
li

tu
d
e

2-DOF type 2

2-DOF type 1

1-DOF

-150

-100

-50

0

50

M
ag

n
it

u
d

e
 (

d
B

)

10
2

10
3

10
4

10
5

-360

-180

0

180

360

P
h

a
se

 (
d

eg
)

Bode Diagram
Gm = 12.7 dB (at 890 Hz) , Pm = 60.8 deg (at 273 Hz)

Frequency (Hz)

1-DOF
2-DOF type 2

2-DOF type 1

1-DOF

2-DOF type 1

2-DOF type 2

(a) (b)

Figure 7.14 Compensated responses of R/W head-stacks using the modified ATS:

 (a) time-domains and (b) frequency-domains.

Table 7.12 presents the summary of the optimal compensators for the head-

stacks using the modified ATS algorithm. The time and frequency responses are

depicted in Figures 7.14(a) and 7.14(b), respectively. These results show that the

proposed algorithms provide better compensated performances and stability margins

D
is

p
la

ce
m

en
t

(m
ic

ro
m

et
e
rs

)

173

than the conventional control designs do. All compensation structures that are obtained

from the proposed algorithm can satisfy stability margins. Notice that the response of

1-DOF compensator still provides a high overshoot over the criterion, while the 2-DOF

type 2 structure provides a superior time response in terms of low overshoot, short rise

time and settling time. As a recommendation, in case to minimize the overshoot errors

and to increase the stability margins, the 2-DOF type 1 would be a good choice. To

decrease the rise time and settling time, the 2-DOF type 2 structure is the best option.

Unfortunately, the 1-DOF structure is not suitable for dynamic compensation problem

of the R/W head-stacks. Similar to the previous control problems, practical constraints

concerning technological limitations can be implemented into the search problems.

10
0

10
1

10
2

10
3

10
4

10
9

10
9

10
9

10
9

Iteration

C
o
st

 v
a
lu

e

Modified ATS

BF-TS

Initial cost value = 1x109

Search time = 1.8780x104 seconds
Search round = 50000

Cost value = 1x109

Initial cost value = 1x109

Search time = 1.1149x104 seconds

Search round = 50000

Cost value = 1x109

 (a)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

Iteration

C
o
st

 v
al

u
e

Modified ATS

BF-TS

Initial cost value = 695.52

Search time = 198.1334 seconds

Search round = 31

Cost value = 23.63

Initial cost value = 1252.23

Search time = 3703.7523 seconds

Search round = 944

Cost value = 23.61

(b)

Convergence curves of the BF-TS and the modified ATS on head-stack compensation

Convergence curves of the BF-TS and the modified ATS on head-stack compensation

174

0 500 1000 1500

10
2

10
4

10
6

10
8

10
10

Iteration

C
o
st

 v
a
lu

e

Modified ATS

BF-TS

Initial cost value = 1x10
9

Search time = 482.1060 seconds

Search round = 55

Cost value = 24.68

Initial cost value = 1.77x10
9

Search time = 5777.6510 seconds

Search round = 1464

Cost value = 24.74

(c)

Figure 7.15 Comparisons of convergence curves between the results of the BF-TS

and the modified ATS for the R/W head-stacks: (a) 1-DOF structure,

(b) 2-DOF type 1 structure and (c) 2-DOF type 2 structure.

Figure 7.15 presents the convergent curves for comparison purposes between

the results of the BF-TS and the modified ATS for the R/W head-stacks based-on the

proposed compensation structures. The 2-DOF type 1 and type 2 structures satisfy

termination criteria of the sum of absolute errors and all other conditions. The 1-DOF

controller unsatisfactorily hit the maximum numbers of iterations without rendering

solutions that satisfy the performance and the stability criteria (see Figure 7.15(a)). All

the convergent curves shown in Figure 7.15 indicate that the modified ATS converges

to the global region faster than the BF-TS does. As a result, the modified ATS being

proposed spends a fewer numbers of search round than the BF-TS does by 30.45 and

26.62 times for the 2-DOF type 1 and type 2, respectively. If we compare the search

time consumed per iteration between these approaches, the modified ATS spends

approximately double times more than the BF-TS does for all control structures. Note

Convergence curves of the BF-TS and the modified ATS on head-stack compensation
1010

175

that the modified ATS can avoid the local deadlocks effectively, the BF-TS is usually

trapped. The following figures indicate the times the BF-TS being trapped by the local

locks during the search: 734, 39 and 61 times for 1-DOF, 2-DOF type 1 and 2-DOF

type 2, respectively.

7.4 Brake Control of Heavy-Duty Truck

 7.4.1 Conventional Brake Control of a Heavy-Duty Truck

Reliable and effective braking system is an essential part of a heavy-

duty dump trucks. Although conventional braking systems are generally adequate, in

the cases of uphill and downhill running the truck encounters severe braking problems.

These problems arise because the truck braking system is subject to variations in dead

time, changes in the input function and variations in its other parameters. If these

changes are considerable and the stability region is limited, then critical tolerances can

be exceeded, and even instability may be resulted if conventional control design

methods are used. This means that strict regulation must be maintained for all operating

conditions in order to avoid catastrophic situations caused by inadequacy or failure of

the brake system. Taking into account safety and financial considerations, the need

exists for a robust braking control system to ensure strict regulation of truck speed over

a wide range of operating conditions (Bada, 1987; Zakian, 2005; Sarasiri and Sujitjorn,

2011).

176

Figure 7.16 Truck braking control loop.

A closed-loop system of a truck braking control can be represented by the block

diagram in Figure 7.16, where the control loop consists of 5 major components. These

components are a microprocessor as a controller, an air-servo valve converting the

electrical signal from the controller to air pressure, a power changer converting the air

pressure to hydraulic pressure, a hydraulic brake generating the required braking force,

a speed sensor in the feedback loop, and a safety circuit issuing warnings against

excessive hydraulic brake temperature. For conventional control design, an open-loop

braking system is commonly approximated by a plant transfer function as in Equation

(7.17).

0.125

()
(1 0.4)(1 0.1)

p

s
e

G s
s s s

−

=
+ +

 (7.17)

177

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (sec)

Overshoot = 0%
Rise time = 0.926 sec
Settling time = 1.81 sec

-100

-80

-60

-40

-20

0

20

M
ag

n
it

u
d

e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

-7200

-5760

-4320

-2880

-1440

0

1440

P
h

as
e
 (

d
eg

)

Bode Diagram

Gm = 13.9 dB (at 8.92 rad/sec) , Pm = -180 deg (at 0 rad/sec)

Frequency (rad/sec)

(a) (b)

Figure 7.17 Open-loop responses of truck braking system: (a) time-domain and (b)

 frequency-domain.

Figure 7.17 shows the open-loop responses of the truck braking system. Even

though the time-domain response settles in 1.81 seconds, the PM of -180 deg. of the

uncontrolled plant is unacceptable. Stability margins of the system can be improved

using closed-loop control aiming for GM ≥ 5 dB and PM ≥ 50 deg.

 In order to design the controllers, conditioning circuits and disturbance forces

are omitted. For comparison purposes, PI-controllers are designed using some

conventional methods namely the simple internal model control (SIMC) method

(Normey-Rico and Camacho, 2007), Ziegler-Nichol method (Ziegler and Nichols,

1942), Cohen-Coon method (Cohen and Coon, 1953), respectively. The design details

are described in Appendix B. Table 7.13 summarizes closed-loop performance indices

and stability margins, while the corresponding response plots are shown in Figure 7.18.

S
p
ee

d
 (

m
et

er
s/

se
co

n
d
s)

178

Table 7.13 Summary of performance indices and stability margins based-on

conventional PI-controllers for a truck braking system.

Controller methods

P.O. (%)

ts (sec.)

ss
e < 0.5%

tr (sec.)

GM (dB)

PM (deg.)

without controller 0 1.81 0.93 13.90 -180

SIMC 29.0 2.10 0.26 7.31 42.60

Ziegler-Nichol 34.0 2.29 0.21 5.37 38.40

Cohen-Coon 29.40 2.04 0.31 8.73 41.30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step response

Time (sec)

A
m

p
li

tu
d

e

without controller

Cohen-Coon
SIMC

Ziegler-Nichols

-100

-50

0

50

M
ag

n
it

u
d

e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

-7200

-5760

-4320

-2880

-1440

0

1440

P
h

a
se

 (
d

e
g

)

Bode Diagram

Frequency (rad/sec)

(a) (b)

Figure 7.18 Responses of truck braking system with conventional PI-controllers:

(a) time-domains and (b) frequency-domain.

 7.4.2 Braking Control of Truck Based-on Search

Despite the system with conventional PI-controllers is more robustly

stable than the system without a controller as can be noticed from the high values of

GM and PM summarized in Table 7.13, the time-domain responses still possess high

overshoots as shown in Figure 7.18(a). To achieve overshoot minimization under

some stability constraints, the controllers could be obtained by using search methods.

S
p

ee
d

 (
m

et
er

s/
se

co
n

d
s)

179

In this, we employ the BF-TS and the modified ATS metaheuristics, and the problem

can be formulated as follows: the controller representation is

()1 2
()

1ˆ
c

s
k k s

G
s

=
+

 (7.18)

, in which 1k and 2k are positive real. The problem is to

 minimize J: J= ()e tΣ

 subject to P.O.< 0.01%

 GM > 5dB

 PM > 25deg

, in which e(t)=r(t)-c(t) or step-response errors in the form of sum absolute error (SAE).

The search parameters are declared in Table 7.14 and Table 7.15 for the BF-TS and

modified ATS algorithms, respectively.

Table 7.14 Boundaries and search parameters of the BF-TS for the truck braking

system.

Search

parameters

S
C

N

S
N

α R N Jmin

≤

BT,

n_re_back

AR

countmax

1
k =[0 5] and

1
k =[0 1]

30

20

4

100

1

50

480

5

if J < 650 then R = 0.1,

if J < 500 then R = 0.05,

if J < 485 then R = 0.001

1,000

180

Table 7.15 Boundaries and search parameters of the modified ATS for the truck

braking system.

Figure 7.19 gives the code list of the objective function (J).

 SAE = sum(abs(1-Close_system))

if overshoot < 0.01

 overshoot = 0

else

 overshoot=
3

1 10×

end

 if Gm > 5

 Gm = 0

else

 Gm =
3

1 10×

end

 if Pm > 25

 Pm = 0

else

 Pm =
3

1 10×

end

 J = SAE + (overshoot
2

+ Gm
2

+ Pm
2

)× 3
1 10×

Figure 7.19 Objective function of the truck braking system.

Search

parameters S
C

N
2

S
2C

N

S
N α

2
α Jmin ≤ countmax

1
k =[0 5] and

1
k =[0 1]

30

20

1

50

4

100

6

1 10×

480

1,000

181

Table 7.16 Summary of the PI-controllers, performance indices and stability margins

obtained from the BF-TS and the modified ATS algorithms.

Metaheuristic method and controller
P.O.

(%)

ts (sec.)

ss
e < 5%

tr

(sec.)

GM

(dB)

PM

(deg.)

SAE

BF-TS: ()
()

2.090 1 0.490
BF TS

s
s

K

s
− =

+

0 1.79 0.488 11.80 66.90 478.9279

Modified ATS:
()

()
2.086 1 0.468

moATS
s

s
K

s

=
+

0 0.90 0.506 12.10 66.50 479.9856

Step Response

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

-100

-50

0

50

M
a
g

n
it

u
d

e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

-7200

-5760

-4320

-2880

-1440

0

1440

P
h

a
se

 (
d

e
g

)
Bode Diagram

Frequency (rad/sec)

 (a) (b)

Figure 7.20 Response plots of the truck braking system with PI-controllers via search:

(a) time-domain and (b) frequency-domain.

 Table 7.16 gives a summary of the results obtained from search. The curves

shown in Figure 7.20 and the numeric values in Table 7.16 confirm that the closed-loop

system is robustly stable, and possesses very smooth step responses. Noticeably, both

search methods render similarly good controllers under no practical constraints being

considered. Interested readers could implement control limits into the search processes,

if more practical solutions are to be obtained. Moreover, the closed-loop performances

182

of the systems with the searched controllers are much better than those with

conventional control design.

0 5 10 15 20 25 30 35 40
450

500

550

600

650

700

750

800

850

Iteration

C
o
st

 v
a
lu

e

Modified ATS

BF-TS

Initial cost value = 755.06

Search time = 128.4920 seconds

Search round = 26

Cost value = 479.9856

Initial cost value = 842.93

Search time = 79.8011 seconds

Search round = 37

Cost value = 478.9279

Figure 7.21 Comparisons of convergence curves between the BF-TS and the modified

ATS for the truck braking system.

 The modified ATS converges to the optimal solution without being trapped by

local locks, and faster than the BF-TS does as indicated by the curves shown in Figure

7.21, while the BF-TS encounters 5 entrapments by local locks. The time consumed per

iteration by the BF-TS and the modified ATS are 2.16 and 4.94 seconds, respectively,

which means that the modified ATS spends search time more than the BF-TS by 2.30

times.

7.5 Stability Analysis Problem

Lyapunov’s stability methods have been successfully applied for many years by

engineers and scientists (Khalil, 1992; Slotine and Li, 1991) to analyse stability of

nonlinear dynamical systems. The direct method of Lyapunov’s is regarded as clean

Convergence curves of the BF-TS and the modified ATS on the braking truck system

183

and concise, and its principal idea is based-on the fact to that the total energy of a stable

system decreases along its trajectories. This implies that the states of the stable system

are bounded on the phase plane. The method requires the knowledge of a positive

scalar function V(x), which is referred to as the Lyapunov function. This energy-like

function is constructed in terms of the system states. The theorem is commonly stated

as follows:

A given system is globally asymptotically stable providing that V(x) satisfies the

following properties:

 - V(0) = 0;

 - () 0, 0;V x x> ∀ ≠

 - () 0, 0;V x x< ∀ ≠ɺ

 - () .V x as x→ ∞ → ∞

The theorem is very clear and concise, but the construction of V(x) is rather intuitive

and based-on skills.

For some systems, finding and constructing the Lyapunov function is not

straightforward. Doing this manually in some cases is very time consuming, perhaps

not possible. Once the Lyapunov function is obtained for the system of interest, the

next practical issue becomes seeking for the region of attraction. In order to find this,

some computational approaches, e.g. geometrical, numerical methods, etc., have to be

applied. For instance, various previous works have proposed the construction of

Lypaunov functions based-on conventional methods (Golub et al., 1979; Wang and

Dayawansa, 1999), numerical methods (Sorensen and Zhou 2003; Zhaolu and

184

Chuanqing, 2008) and artificial intelligent methods (Grosman and Lewin, 2008; Carl,

2002).

 The search method is particularly useful for finding the coefficients of V(x) and

the construction of the stability region or region of attraction. Let us consider a

nonlinear autonomous system described by

 2

2

111 2 xxx +−=x& (7.19)

 22 x−=x&

 (7.20)

having equilibrium at the origin. Genesio and Vicino (Genesio and Vicino, 1984)

proposed V(x) of the form

2 2 4 3 2 2 3 4

21 1 22 1 2 23 2 41 1 42 1 2 43 1 2 44 1 2 45 2
(,)V x p p x p x x p x p x p x x p x x p x x p x= + + + + + + + (7.21)

and assumed
41p , 44p and 45p to be zero. The proposed BF-TS and modified ATS

algorithms are used to search for five coefficients of V(x) as a constrained optimization

problem:

 minimize J: J= 1
ρ

 subject to V(x) > 0 and ()V x& < 0

in which ρ is the area of the region (Panikhom et. al, 2010) bounded by V(x) on the

phase plane.

185

Table 7.17 Boundaries and search parameters of the BF-TS for the stability analysis.

Table 7.18 Boundaries and search parameters of the modified ATS for the stability

analysis.

The objective function (J) is listed in Figure 7.22.

 if V(x) < 0 | | ()V x& > 0

 J =
3

1 10×

 else

 J = 1
ρ

 end

Figure 7.22 Objective function of the stability analysis.

Hence, the BF-TS returns the (,)V x p function in (7.22), whilst the modified ATS

returns (7.23).

Search

parameters

S

C
N

S
N

α

R

N

Jmin

≤

BT and

n_re_back

countmax

AR

21 22 23
, , ,p p p

42 43
, pp =

[0 1]

30

20

4

1000

0.1

50

0.0605

5,

1,000

if J<0.08 then R=0.001,

if J<0.065 then R=0.0005,

if J<0.061 then R=0.00001

Search

parameters

S

C
N

2
S

2C
N

S
N

α

2
α

Jmin ≤

countmax

21 22 23
, , ,p p p

42 43
, pp =

[0 1]

30

20

1

50

4

1000

6

1 10×

0.0605

1,000

186

 2 2 3 2 2

1 2 1 1 2 2 1 2 1 2
(,) 0.222 0.545 +0.5292 +0.0125 +0.0175V x x x x x x x x x x= + (7.22)

 2 2 3 2 2

1 2 1 1 2 2 1 2 1 2
(,) 0.2097 0.5484 +0.5459 +0.0109 +0.0186V x x x x x x x x x x= + (7.23)

Both (,)V x p functions are positive definite, and their corresponding
1 2

(,)V x x& are

negative definite as expressed in (7.24) and (7.25), respectively.

2 3

1 2 1 1 1 2 1 2 2 2 1 1 2 1 2

2 2

1 1 2 1 2 2

(,) 0.444 0.545()+1.058 +0.0125(3 +)

 +0.035(+)

V x x x x x x x x x x x x x x x

x x x x x x

= + +& & & & & & &

& &

 (7.24)

2 3

1 2 1 1 1 2 1 2 2 2 1 1 2 1 2

2 2

1 1 2 1 2 2

(,) 0.4194 0.5484()+1.0918 +0.0109(3 +)

 +0.0372(+)

V x x x x x x x x x x x x x x x

x x x x x x

= + +& & & & & & &

& &

 (7.25)

According to the coefficients of V(x) obtained by the BF-TS and modified ATS in

(7.22) and (7.23) present almost similar numbers and stability areas. This can be

noticed that the results obtained are the critical areas of the available regions bounded

by V(x). The phase portraits and regions of attractions are computed by the proposed

algorithms given in Figure 7.23.

187

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

x
1

x
2

(0,0)

(-4.64,2.07)

(-3.31,0.90)

(-1.87,-0.19)

(-0.32,-1.20)

(1.55,-1.96) (4.08,-2.14)

(3.63,-1.15)

(2.20,-0.05)

(0.70,0.98)

(-1.06,1.82)
(-3.47,2.16)

Phase portrait and regions of attraction for BF-TS algorithm

Area =16.5849

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

x
1

x
2

(0,0)

(-4.40,1.90)

(-3.15,0.69)

(-1.64,-0.37)

(-0.03,-1.33)

(1.91,-2.01) (4.36,-1.94)

(3.19,-0.72)

(1.69,0.34)

(0.09,1.30)

(-1.87,2.00)

Phase portrait and regions of attraction for modified ATS algorithm

Area =16.6697

(b)

Figure 7.23 Phase portraits and regions of attraction: (a) obtained from BF-TS

 algorithm and (b) obtained from modified ATS algorithm.

Figures 7.23(a) and (b) illustrate the plots of Lyapunov’s functions obtained by

the BF-TS and modified ATS algorithms and their associative regions of attractions,

188

respectively. The results obtained by the proposed algorithms are less conservative, and

provide larger stability regions than that of the previous work, 12.9799 (unit-less in

area) (Genesio and Vicino, 1984). The modified ATS provides the largest region of

16.6697 (unit-less in area), and the BF-TS provides the second large-area size of

16.5849 (unit-less in area). It can be noticed that all initial trajectories on boundaries

obtained from the BF-TS and the modified ATS converge to equilibrium points.

Therefore, this nonlinear autonomous system is globally asymptotically stable, and the

corresponding stability regions are contained inside the elliptical curves surrounding

the equilibrium points. Figure 7.24 depicts the convergence curves indicating that the

BF-TS and the modified ATS stop when the termination criterions are satisfied, which

are J = 0.0603 and J = 0.0600, respectively.

0 50 100 150 200 250 300
0.055

0.06

0.065

0.07

0.075

0.08

0.085

Iteration

C
o

st
 v

a
lu

e

Modified ATS

BF-TS

Initial cost value = 0.0811

Search time = 3,452.3487 seconds
Search round = 170

Cost value = 0.0600

Initial cost value = 0.0698

Search time = 1,754.4352 seconds
Search round = 256

Cost value = 0.0603

Figure 7.24 Comparisons of convergence curves between the BF-TS and the modified

 ATS for the stability analysis.

Comparisons of convergence curves between the BF-TS and the modified ATS for the stability analysis problem

189

Referring to Figure 7.24, the modified ATS spends fewer numbers of iteration

to reach for the V(x) function than the BF-TS does for 1.50 times with high-quality

initial solutions. However, the modified ATS spends 3 times as much of the search time

in comparison with the BF-TS considering in terms of search time consumed per

iteration. Searches performed by the modified ATS do not encounter any local

deadlocks, while the BF-TS hits some entrapments 8 times. As a result, both algorithms

effectively search for satisfactory coefficients of the Lyapunov function; the modified

ATS does provide the result with somewhat larger region of attraction.

7.6 Identification Problems

 An identification task can be formulated as an optimization problem solvable by

available optimization algorithms. Artificial intelligence (AI) based methods are

efficient candidates of the present technology. For some instances, the tabu search and

simulated annealing algorithms were applied to identify the optimal parameter structure

for groundwater models (Zheng and Wang, 1996); the adaptive tabu search was applied

to harmonic identification for an active power filter (Kulworawanichpong et al., 2004);

the particle swarm optimization was applied to solve the modelling identification of

thermal power plant (Liu and He, 2005), and recently the bacterial foraging algorithm

was applied for the radio frequency identification (RFID) communication system (Chen

et al., 2010).

 In this thesis, we consider two identification problems of the nonlinear Stribeck

friction model and the actuator model in a servo track writing system which are

identified by the proposed BF-TS algorithm. Furthermore, the modified ATS is applied

to identify the parameters of actuator model in a servo track writing system.

190

 7.6.1 Identification of Nonlinear Friction Model

The nonlinear Stribeck friction model and experimental setup are

detailed in Appendix C. For more details refer to (Suthamno, 2004; Sarasiri et al.,

2012). During the search process to identify the friction model parameters, an objective

function (J) has to be evaluated repeatedly. To calculate the objective function, it is

assumed that the translational dynamic can be represented by the mass-spring model as

follows

 () (,)
spring i d f in ex

mx k x x F v F F= − − +&& (7.26)

in which the parameters
S

F (static friction),
C

F (coulomb friction),
V

F (viscous friction),

vss (crossover velocity) and
spring

k (gravity constant) are to be identified. In this

identification problem, the mass (m) is known, m=10.90 kg. Objective function

implementation is shown below as the procedural list.

Step1: Calculate an average displacement
50

1

() 50
i test

j

x x j

=

=

∑ .

For ramping-up motion, calculate an approximated force ˆ() 3.5()
motor i d i d

F k x x x x= − ≈ − .

For ramping-down motion, calculate an approximated force ˆ() 2.8()
motor i d i d

F k x x x x= − ≈ − .

Calculate 3(2.40 10)(2) 13.33 /
fm m v b c

F T K a l Nπη η−= = × =

Step2: () ()_
if then .

motor fm f motor fm
F F F F≥ =

 () ()_

if then .
motor fm f motor fm

F F F F≤ − = −

 () ()_
if then .

fm motor fm f motor motor
F F F F F− < < =

191

Step3: Calculate
_ ()

m motor kt m m

dv
F K J D v

dt
v

 = +

.

 () ()_ _
if 30 N then 30 N .

m motor m motor
F F> =

 () ()_ _
if 30 N then 30 N .

m motor m motor
F F< − = −

Step4: Calculate the following forces:

 externally applied force:
 _ _() (),

ex motor f motor motor m motor
F F F F F v= − −

 spring force: (),
sp spring i d

F k x x−=

 internally applied force: ,
in ex sp

F F F= +

 stick friction force: () ()if then
in S stick S

FF F F> = ,

 () ()if then
in S stick S

FF F F< − = − ,

 () ()if then ,
S in S stick in

F F F F F− ≤ ≤ = and

 slip friction force: () ()
() . .sgn() .

C S C v

v
vss

slip
F v F F F e v F v

−
= + − +

.

Step5: Calculate velocity and displacement of the mass:

 (,) .
in f in

P F F v F dt = − ∫

 if () then (0) otherwise ().
P

dp P dp v v
m

− < < = =

 .
d

x v dt= ∫

Step6: Calculate the objective function:

2

1

()

.
test d

n

i
J

n

x x

==
−∑

Step7: Return to main search.

192

Table 7.19 Boundaries and search parameters of the BF-TS for identification of the

nonlinear Stribeck friction model.

 Due to the strong nonlinearity in friction force, it is necessary to identify two

sets of model parameters corresponding to rightward and leftward motions. Referring

to Figure 7.25, the illustrated graphs correspond to the rightward motion (positive

direction, ramp-up command), i.e. ramp-up command of 5 mm/s, that uses the data in

the range of 112-295 mm for identification. The convergence curve in Figure 7.25(a)

indicates that the search terminated by countmax=1000. The cost value returned J =

5.3822. The obtained parameters are as follows: {
S

F =144.5463 N,
C

F = 47.8514 N,

V
F = 0.9583 Ns/mm, vss =1.0964 mm/s,

spring
k = 0.96798 N/mm}. The experimental

data and the model plots for displacement, and force exerted by motor are illustrated in

Figure 7.25(b)-(c), respectively. The results show a good agreement between the

experiment and the model indicated as root mean square errors (RMSE) of 5.3822 and

17.7371 for the displacement, and force exerted by motor, respectively.

Search

parameters

S

C
N

S
N

α

R

N

Jmin

≤

BT and

n_re_back

countmax

AR

=[100-180],
S

F

C
F =[40-80],

=[0.4-1.0],
V

F

vss=[1-7]

[0.1-1.5]
spring

k =

30

20

4

1000

0.15

50

4.5

5

1000

if J<15 thenR=0.0375,

if J<8 then R=0.0095,

if J<5 then R=0.0025

193

0 200 400 600 800 1000

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

iterations

c
o
st

 v
a
lu

e
s

(J
)

J = 5.3822

0 5 10 15 20 25 30 35 40
100

150

200

250

300

350

d
is

p
la

c
e
m

e
n
t

(m
m

)

time (sec)

Position: 112-295 mm

Xtest (experiment)

Xd (identification)

Xi

(a) (b)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

m
o

to
r

fo
rc

e
 (

N
)

time(sec)

Position: 112-295 mm

Experiment

Identification

(c)

Figure 7.25 Identification results of ramp-up command at 5 mm/s: (a) convergence

curve, (b) displacement and (c) force exerted by motor. (Note: positions

in the range of 112-295 mm).

 For the leftward motion (negative direction, ramp-down command), i.e. ramp-

down command of -5 mm/s, the graphical displays of identification results are shown in

Figure 7.26. The data used for identification are in the range of 325-127 mm.

RMSE = 5.3822

RMSE = 17.7371

194

0 100 200 300 400 500 600
4

5

6

7

8

9

10

iterations

c
o
st

 v
a
lu

e
s

(J
)

J=4.2114

0 5 10 15 20 25 30 35 40

100

150

200

250

300

350

d
is

p
la

c
e
m

e
n
t

(m
m

)

time (sec)

Position: 325-127 mm

Xtest (experiment)

Xd (identification)

Xi

 (a) (b)

0 5 10 15 20 25 30 35 40
-160

-140

-120

-100

-80

-60

-40

-20

0

 m
o
to

r
fo

rc
e
 (

N
)

time(sec)

Position: 325-127 mm

Experiment

Identification

(c)

Figure 7.26 Identification results of ramp-down command at -5 mm/s: (a) convergence

 curve, (b) displacement and (c) force exerted by motor. (Note: positions in

 the range of 325-127 mm).

 As indicated by the convergence curve in Figure 7.26(a), the search terminated

at the 528
th

 iteration, and returned the solutions with the cost J = 4.2114. The obtained

parameters are as follows: {
S

F = -152.2804 N,
C

F = -40.4153 N,
V

F = -0.9757 Ns/mm,

RMSE = 4.2114

RMSE = 15.8666

195

vss = -3.21475 mm/s,
spring

k = 0.55384 N/mm}. The experimental data and the model

plots in Figures 7.26(b)-(c) show a good agreement indicated as RMSEs, 4.2144 and

15.8666 for the displacement, and force exerted by motor, respectively.

 Model validation was conducted for both directions of motion. Figure 7.27

illustrates the experimental data and the model plots for the rightward direction

covering two ranges, i.e. 44-112 mm and 295-352 mm. Figure 7.27(a)-(b) display the

plots of the displacement and the force exerted by motor for 44-112 mm range.

Similarly, the results for 295-352 mm range are shown in Figure 7.27(c)-(d). For the

leftward direction covering 352-325 mm and 127-68 mm ranges, similar graphical

displays are illustrated in Figure 7.28(a)-(d). Very good agreement among the practical

and the theoretical results can be observed.

(a) (b)

0 2 4 6 8 10 12 14 16
40

50

60

70

80

90

100

110

120

130

P
o
si

ti
o
n
 (

m
m

)

Time (sec)

Position: 44-112 mm

Xtest (experiment)

Xd (identification)

Xi

d
is

p
la

ce
m

en
t

(m
m

)

time (sec)

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

F
o

rc
e
 f

ro
m

 m
o

to
r

(N
)

Time(sec)

Position:44-112 mm

Experiment

Identification

m
o

to
r

fo
rc

e

(N
)

time (sec)

RMSE = 4.9909 RMSE = 16.4267

196

 (c) (d)

Figure 7.27 Validation results of ramp-up command: (a) displacement (44-112 mm),

(b) force exerted by motor (44-112 mm), (c) displacement (295-352 mm)

and (d) force exerted by motor (295-352 mm).

 (a) (b)

0 1 2 3 4 5 6 7 8 9 10
290

300

310

320

330

340

350

360

370

380

P
o

si
ti

o
n

 (
m

m
)

Time (sec)

Position: 352-325 mm

Xtest (experiment)

Xd (identification)

Xi

d
is

p
la

ce
m

en
t

(m
m

)

time (sec)
0 2 4 6 8 10 12

-140

-120

-100

-80

-60

-40

-20

0

20

F
o

rc
e
 f

ro
m

 m
o

to
r

(N
)

Time(sec)

Position: 352-325 mm

Experiment)

Identification

m
o

to
r

fo
rc

e
(N

)

time (sec)

RMSE = 3.9907 RMSE = 12.7496

0 2 4 6 8 10 12 14 16 18
290

300

310

320

330

340

350

360

370

380

390

400

P
o
si

ti
o
n
 (

m
m

)

Time (sec)

Position: 295-352 mm

Xtest (experiment)

Xd (identification)

Xi

d
is

p
la

ce
m

en
t

(m
m

)

time (sec)

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

F
o
rc

e
 f

ro
m

 m
o
to

r
(N

)

Time(sec)

Position: 295-352 mm

Experiment

Identification

m
o

to
r

fo
rc

e

(N
)

 time (sec)

RMSE = 2.7415 RMSE = 17.5968

197

 (c) (d)

Figure 7.28 Validation results of ramp-down command: (a) displacement (352-325-

 mm), (b) force exerted by motor (352-325 mm), (c) displacement (127-

68 mm) and (d) force exerted by motor (127-68 mm).

-50 -40 -30 -20 -10 0 10 20 30 40 50
-200

-150

-100

-50

0

50

100

150

200

velocity (mm/s)

fr
ic

ti
o

n
 f

o
rc

e
 (

N
)

experiment

model

Figure 7.29 Plots of friction force curves (ramp command of ± 5 mm/s).

0 2 4 6 8 10 12 14 16
40

50

60

70

80

90

100

110

120

130

140

150

P
o
si

ti
o
n
 (

m
m

)

Time (sec)

Position: 127-68 mm

Xtest (experiment)

Xd (identification)

Xi

d
is

p
la

ce
m

en
t

(m
m

)

time (sec)

0 2 4 6 8 10 12 14 16
-160

-140

-120

-100

-80

-60

-40

-20

0

F
o
rc

e
 f

ro
m

 m
o
to

r
(N

)

Time(sec)

Position: 127-68 mm

Experiment

Identification

time (sec)

m

o
to

r
fo

rc
e

(N
)

RMSE = 4.6853 RMSE = 20.2951

198

 Furthermore, the friction curves based on model plots are shown against the

experimental data in Figure 7.29. Very good agreement between the two can be

observed. From the validation results, it can be said that the identified models provide a

very good representation of the nonlinear friction forces.

 7.6.2 Identification of Actuator Model in a Servo Track Writing System

Hard disk drives (HDDs) have been widely used to store information for

today’s computer systems. A key process of HDD manufacturing to access data is the

servo track writing (STW) process, which provides servo patterns as references for the

addresses of stored data. There are two critical control problems in STW process

(Mamun et al., 2002). First, repeatable and non-repeatable run outs (RRO and NRRO)

disturb the formation of the servo patterns. Second, the misalignment of servo sectors

occurs to the servo sectors of adjacent tracks. To cure the problems, the self-servo

writing (SSW) (Brown et. al, 2000 and Dong et. al., 2006) has been introduced instead

of the conventional servo writing (Uematsu et al., 2001). The SSW process can be

represented by the diagram in Figure 7.30. The read and write heads, and the SSW

system are utilized to write servo patterns without using any external equipment. The

heads with an arm and a voice-coil motor are regarded as a hard-disk head actuator set,

or hard-disk actuator in brief. In normal servo writing process, the next track will be

written the servo pattern based-on the read back signal from the read head. The

subsequent track is built until the corresponding servo patterns are written on the whole

disk. With the current SSW technology, some problems related to vibrations and

disturbances still exist. In order to achieve better performances, engineers need to

utilize more advanced concepts of control technology. The tasks need an appropriate

199

control model. One may use an accurately nonlinear model for the design. However, a

simplified model can possibly be used in accordance with more advanced control

concept such as learning control, robust control, intelligent control, and so forth.

Figure 7.30 Block diagram of self-servo writing process.

The simplified block diagram in Figure 7.31 represents the closed-loop system

of the self-servo writing technology (Brown et al., 2000; Dong et al., 2006), in which

PES stands for position error signals. The repeatable and non-repeatable run outs are

represented by the disturbances DA and DM, respectively.

Figure 7.31 Block Diagram of hard-disk actuator.

200

10
3

10
4

10
5

10
6

-60

-40

-20

0

Bode Diagram

M
a
g
n

it
u
d

e
 (

d
B

)

10
3

10
4

10
5

10
6

-600

-500

-400

-300

-200

-100

P
h

a
se

 (
d
e
g

)

Frequency (rad/sec)

data1

data2

data3

data4

data5

data6

data7

data8

data9

Figure 7.32 Frequency responses of the hard-disk head actuator (courtesy of Hitachi

 Global Storage, Prachinburi, Thailand).

Experiments were conducted from measurement at the plant situated in

Prachinburi, Thailand, to collect data for identification purposes. The collected data

appear as open-loop frequency responses shown in Figure 7.32, when the (anti)

resonant filters were disconnected. It is notice that the actuator and arm dynamic in low

frequency is dominated by the inertia that can be approximated by a double integrator.

A torsional resonance mode clearly pronounces alongside with butterfly and sway

modes of resonance (Li et al., 2003; Liu et al., 2003). Correspondingly, the s-domain

model representing the dynamic can be expressed as

2 2 2
1 3 3 3

2 2 2 2 2
1 1 1 2 2 2

2
()

2 2
n n n n

p

m n n n n n n

a
s sK

G s
J s s s s s

ω ς ω ω
ς ω ω ς ω ω

+ +
=

+ + + +
 (7.27).

201

The order of the model is kept at minimum for simplification. The gain K is defined

as
mK Ka J= . The inertia of the actuator is known, Jm= 7 2

.6.11 10 ,kg m
−× the rest of the

parameters need identification. The data are separated into 2 groups, i.e. 60% for

identification, and 40% for validation purposes.

The identification task is formulated as an optimization problem, where the BF-

TS and the modified ATS metaheuristics are applied. The search spaces and search

parameters for the algorithms appear in Tables 7.20 and 7.21, respectively.

Table 7.20 Boundaries and search parameters of the BF-TS for identification of the

hard-disk head actuator.

Search

parameters

S

C
N

S
N

α

R

N

Jmin

≤

BT and

n_re_back

countmax

AR

K = [0 - 1],

1 2 3
, ,

n n n
ς ς ς =
[0 - 0.5],

4

4

1
[8 10

8.7 10]

n
ω = ×

×−
,

5

2 3
[1 10,

n n
ω ω = × −

5
1.2 10]×

30

20

4

0.001

50

50

1

5

500

if J<40 then R=25,

if J<25 then R=5,

if J<1.5 then R=0.5

202

Table 7.21 Search parameters of the modified ATS for identification of the hard-disk

head actuator.

The objective function, J representing a multi-objective requirement has a

surrogate form as in (7.28). Calculation of the objective function during the search

process follows the steps listed below. For more details refer to (Carawukh et al., 2011;

Sarasiri et. al., 2011).

 Function J = obj (K,
1n

ω ,
1n

ς ,
2n

ω ,
2n

ς ,
3n

ω ,
3n

ς)

Step1: Heuristically assign initial values for damped natural frequencies (rad/sec)

based on test data.

4

1 8.698 10
d

ω = ×

 5

2 1.087 10
d

ω = ×

5

3 1.181 10
d

ω = ×

Step2: Compute damped natural frequencies using natural frequencies and damping

ratios proposed by search algorithms.

 11_
2
11

nd iden n
ω ω ς= −

Search

parameters

S

C
N

2
S

2C
N

S
N

α

2
α

Jmin ≤

countmax

K = [0 - 1],

1 2 3
, ,

n n n
ς ς ς =
[0 - 0.5],

4

4

1
[8 10

8.7 10]

n
ω = ×

×−
,

5

2 3
[1 10,

n n
ω ω = × −

5
1.2 10]× ,

30

20

1

50

4

0.001

1000

1

500

203

22_
2
21

nd iden n
ω ω ς= −

33_
2
31

nd iden n
ω ω ς= −

Step3: Accept solutions if the errors are bounded within 5%± , otherwise assign

dummy values to the required solutions.

 if _d iden
ω = 1 5%

d
ω ±

 1_ 1_d iden d iden
ω ω=

 else

10

1_
1 10

d iden
ω ×=

end

 if 2_d iden
ω = 2 5%

d
ω ±

 2_ 2_d iden d iden
ω ω=

 else

10

2_
1 10

d iden
ω ×=

end

if 3_d iden
ω =

3
5%

d
ω ±

 3_ 3_d iden d iden
ω ω=

 else

10

3_
1 10

d iden
ω ×=

end

Step4: Normalize 1_d iden
ω , 2_d iden

ω and 3_d iden
ω .

204

1_ 1_ 1

2_ 2_ 2

3_ 3_ 3

must be within [0.95-1.05]

 /

 /

 /

d n d iden d

d n d iden d

d n d iden d

ω ω ω

ω ω ω

ω ω ω

=

=

=

Step5: Compute root mean square (RMS) error values of gain (dB) and phase (deg).

()

()

2

2

1

1

must be less than 1

test iden

gain

test iden

phase

n

i

n

i

gain gain

phase phase

J

J

n

n

=

=

−

−

=

=

∑

∑

 where n = number of data points.

Step6: Compute the objective functions.

1_ 2_ 3_ (0.2) (0.2) (0.2) (0.2) (0.2)
d n d n d n gain phase

J J Jω ω ω= × + × + × + × + × (7.28)

To accept the search results, the cost value must meet the minimum threshold.

The damped natural frequencies,
d

ω for each term of the s-domain model, are

normalized. The
gain

J and
phase

J are computed as RMS errors of gain (dB) and phase

(deg), which must be less than 1. The corresponding model parameters obtained from

the BF-TS and the modified ATS approaches are summarized in Table 7.22. Their

models plotted against the empirical data for validation are illustrated in Figure 7.33.

205

Table 7.22 Summary of parameters for the actuator model based on the BF-TS and the

modified ATS algorithms.

Metaheuristic

method

K
1n

ς
1n

ω
2n

ς
2n

ω
3n

ς
3n

ω RMS

BF-TS 0.7673 0.0191

8.5006
4

10× 0.0183

1.1087
5

10× 0.0042

1.1984
5

10×

30.8851

Modified

ATS 1.00 0.0200

8.4416
4

10×

0.0104

1.0863
5

10×

0.0060

1.1574
5

10×

30.7127

10
3

10
4

10
5

10
6

-60

-40

-20

0

Bode Diagram

M
a
g
n

it
u

d
e
 (

d
B

)

10
3

10
4

10
5

10
6

-600

-400

-200

0

P
h

a
se

 (
d
e
g
)

Frequency (rad/sec)

 b

 a

 BF-TS approach

 experimental data

(a)

10
3

10
4

10
5

10
6

-60

-40

-20

0

Bode Diagram

M
a
g
n

it
u

d
e
 (

d
B

)

10
3

10
4

10
5

10
6

-600

-400

-200

0

P
h

a
se

 (
d
e
g
)

Frequency (rad/sec)

 b

 a

Modified ATS approach

 experimental data

(b)

Figure 7.33 Plots of models against recorded data (validation).

206

Referring to Figure 7.33(a) and 7.33(b), the scattered data represent the 40% of

the measured data used for validation. The solid lines represent the model plots

obtained from the proposed metaheuristic approaches. There are 2 curves of each

approach designated as “a” and “b”. Curve “a” has a rather flat phase characteristic.

Curve “b”, when a practical delay of 40 micro-seconds is taken into account, better

agrees with the measured phase data. This delay accounts for the processes of data

sampling and conversion, control action, and data recording. Both curves (in Figure

7.33(a) and 7.33(b)) show considerable deviations from the measured phase data in

high frequency range, where complex (anti) resonances presence. This is probably due

to nonlinearity of the real actuator. Noticeably, both search approaches result in

parametric models of similar quality, while they hit the maximum number of iteration,

i.e. the stop criterion based-on the cost value is never satisfied. Nonetheless, by eye

observation, the models of curves “a” for magnitude and phase characteristics are

accepted with the cost values of 30.8851 and 30.7127, respectively. Figure 7.34 depicts

the comparison of the cost values monitored through out the search.

0 50 100 150 200 250 300 350 400 450 500 550
30.6

30.8

31

31.2

31.4

31.6

31.8

Iteration

C
o
st

 v
al

u
e

Modifies ATS

BF-TS

Initial cost value =31.0243
Search time = 4720.3689 seconds
Search round = 500
Cost value = 30.7127

Initial cost value =31.4939
Search time = 1547.0338 seconds
Search round = 500
Cost value = 30.8851

Figure 7.34 Comparisons of convergence curves between the BF-TS and the modified

 ATS for the hard-disk head actuator.

Comparisons of convergence curves between the BF-TS and the modified ATS for the hard-disk actuator

207

 In addition to this, the modified ATS consumes 3 times longer search time than

the BF-TS does, while it converges faster without encountering any local lock. The BF-

TS is trapped by local dead locks of 49 times.

7.7 Multi-objective Design Optimization of a Permanent Magnet

Synchronous Motor Drive

 In recent years, permanent magnet synchronous motors (PMSMs) have been

applied for high performance variable speed drive to increase efficiency. The popularity

of PMSMs compared with other kinds of motors is due to their desirable features of

high torque to inertia ratio, high air gap flux density, high power factor, high

acceleration and deceleration rates, lower maintenance cost, simplicity and ruggedness.

Replacement of the field winding by a permanent magnet eliminates field copper losses

(Koerner et al., 2005). The ideal back-EMF induced in this kind of machines is

sinusoidal. As a consequence of the sinusoidal back-EMF and the sinusoidal

distribution of the windings, a PMSM produces smooth torque. In addition, constant

torque with very low ripple is produced when synchronous sinusoidal currents flow

through the stator windings.

Figure 7.35 Equivalent system of back-to-back converter topology.

208

One type of well-known drives systems is a back-to-back power converter

topology, which has an important role in a wide variety of industrial processes and

technologies (Ackermann and Soder, 2002; Noroozian et al., 2003; Rodriguez et al.,

2005; Torres et al., 2004; Zhanoqing et al., 2004). The converter structure has some

useful characteristics such as the operating capability with sinusoidal input current, etc.

The DC-link voltage can be equal or higher than the peak input voltage which is

regulated by controlling the power flow to the AC source (Malesani et al., 1995). This

topology consists of two three-phase PWM converters with a common DC-link, which

decouples the converters as shown an equivalent system in Figure 7.35. One converter

acts as a rectifier, and another one as an inverter. Both need separate control systems.

Regarding to the design, input and output current qualities, total power losses,

DC-link voltage control, current control loops and motor speed control are taken into

account. Conventional designs maybe not cover all of those requirements. Thus, this

research has used metaheuristics to obtain several optimum solutions at the same time.

The task of finding solutions for such a kind of multiple objective problems is based-on

multi-objective optimization. This proposed engineering problem has been carried out

in the Department of Electrical and Electronic Engineering, the University of

Nottingham, United Kingdom during 1
st
 September 2011 to 29

th
 February 2012 under

the supervision of Prof. Dr. Pericle Zanchetta by a financial support from The Thailand

Research Fund. The research interest is the applications of metaheuristic algorithms to

complex engineering problems. Accordingly, Prof. Dr. Zanchetta assigned the topic

“Multi-objective Design Optimization of a Permanent Magnet Synchronous Motor

(PMSM) Drive”, where power converter (back-to-back converter) and electrical

machine are considered as a whole system. This research relates to the study of

209

structure of the back-to-back converter, control loops design based-on dq analysis,

power losses in power converters and electrical machine and implementation of

metaheuristic algorithms. The mathematical models of the three-phase PMSM within

the abc frame need their parameters to be known are described in Section D.1,

Appendix D. To obtain these, the MotorSolve software package (available at the

University of Nottingham, UK) was used (detailed in Section D.2, Appendix D).

*ω
+ −

ω

*

q
i

+ −

+ −
* 0
d

i =

q
i

d
i

*

q
v

*

d
v

a
v

b
v

c
v

d tω∫

DC
E

*

DC
E

−+

*

d
i

'

d
v

*

d
v

*

a
v

*

b
v

*

c
v

vα

vβ
αβ

dq αβ

abc

'

q
v

*

q
v

*

q
i

e
Lω

+

+
+ d

v

vα

αβ

dq αβ

abc

vβ

a
v

b
v

c
v

a
i

b
i

c
i

αβ

dq αβ

abc

iα

iβq
i

d
i

+

−

+

−

1tan
v

v

β

α

−

DC
E

θ

a
i

b
i

c
i

e
Lω

Figure 7.36 A whole control structure based-on the dq reference frame of back-to-back

 converter (Wu et al., 2008).

210

For the drive to work properly, effective control of both converters are

necessary. Figure 7.36 illustrates the block diagrams representing 2 separate closed-

loop control systems, one for each converter. The control concept is based-on the dq

frame. The first control system or control system 1 is for the PWM rectifier, and the

second one or control system 2 is for the PWM inverter. Control system 1 consists of

two internal control loops for the currents
d

i and
q

i , and one external control loop for

the DC-link voltage,
DC

E . The purpose of such control systems is to transform the

reference voltages into a pulse width modulation pattern for the operation of the

rectifier, and to regulate the
DC

E . Similarly, the control system 2 in Figure 7.36

consists of two internal control loops for the currents
d

i and
q

i , and one external speed

control loop, ω . Such control systems are to transform the reference voltages into a

pulse width modulation pattern for gating the inverter, and to govern the motor speed,

ω . For more details of the concepts related to the back-to-back converter, input filter

design, the dq analysis of the PWM rectifier and the PMSM in order to design

controllers are explained in Sections D.3-D.5 in Appendix D. The control systems

utilize the PI-controller structures which require a very extensive design. Driving the

design phase, several technical issues of the converter have to be considered

simultaneously. These include the input and output current qualities, the regulated DC

link voltage, losses of the converter and the motor, and so on. Therefore, the proposed

metaheuristics are applied to obtain the optimum parameters for the design. The

implemented objective functions, discussions of the results obtained by the proposed

BF-TS algorithm and the modified ATS, and the conventional design are detailed in the

next section.

211

7.7.1 Multi-objective Design Optimization

 The thesis aims to apply the proposed metaheuristics to optimize the

design of a complicated power drive system. Detailed explanation of the physical

system has been given so far in the Section 7.7 and Appendix D. the formulation of all

objective functions are revealed in details also in the Appendix D. Multi-objective

designs within this Section include the analysis of the input and the output current

qualities, the losses both in the converters and the motor, the DC-link voltage, the

current control loops, and the motor speed control. These factors need to be considered

carefully and synthetically during the design phase. The previous conventional designs

have not covered all of those requirements, thus, the optimal solutions of the back-to

back converter can be found by metaheuristic methods in order to obtain several

optimum solutions at the same time. The task of finding solutions for such a kind of

multiple objective problems is known as multi-objective optimization. Generally,

multi-objective optimization is not limited to find a unique single solution but a set of

solutions called nondominated solutions. Each solution in this set is referred to as a

Pareto optimum (Alba, 2005).

There are 12 parameters considered for the back-to-back converter. These are

the input filters,
f

R and
f

L ; the stator inductance of motor;
s

L , the switching

frequency,
s

f ; the input current controller,
,P line

K and
,

;
I line

K the DC-link voltage

controller,
,P DC

K and
,

;
I DC

K the load current controller,
,P load

K and
,

;
I load

K and the speed

controller,
,P speed

K and
,I speed

K . In this particular problem, the objective functions are

considered as normalized values. For more detailed descriptions of these functions

appear in Section D.6, Appendix D. Each objective function is expressed as follows:

212

1
(,)

f f
f R L =

,

3%

i
THD input

 (7.29)

2
()

s
f L =

,

3%

i
THD motor

 (7.30)

3
()

s
f f =

, , , ,

,max ,max

loss line loss SC loss motor total loss

accept accept

P P P P

P P

+ +
= (7.31)

4 , ,
(,)

P line I line
f K K =

,max

rectifier

rectifier

RMS

RMS
 (7.32)

 5 , ,(,)
P DC I DC

f K K =

,max

DC

DC

RMS

RMS
 (7.33)

 6 , ,(,)
P load I load

f K K =

,max

inverter

inverter

RMS

RMS
 (7.34)

7 , , (,)

P speed I speed
f K K =

,max

speed

speed

RMS

RMS
 (7.35).

The formulation of a multi-objective function can be written in terms of

combined objective functions with the same priority rational weights as equation

(7.36). This is also known as “surrogated form” (Zakian, 2005). Each objective

function is weighted equally, and expressed in p.u. The detailed explanation can be

found in Appendix D.

213

()1 2 3 4 5 6 7

1

7
all

f f f f f f f f= + + + + + + (7.36)

where 1f and 2f are functions of the input and output current qualities to obtain

,
f f

R L and
s

L ; 3f is a function of the total power losses in a 10-pole PMSM to obtain

s
f ; 4f is a function of the line input current controller to acquire , P line

K and ,I line
K ; 5f

is a function of the DC-link voltage controller to return , P DC
K and ,I DC

K ; 6f is a

function of the load current controller to acquire , P load
K and ,I load

K , and 7f is a function

of the speed controller to obtain , P speed
K and ,I speed

K .

The penalty functions are applied to the multi-objective optimizations (in

equation (7.29)) as shown by the program list in Figure 7.37.

 Objective function: ()1 2 3 4 5 6 7

1

7
all

f f f f f f f f= + + + + + + ;

 Inequality constraints: InEq=[1 2 3 4 5 6 7, , , , , ,f f f f f f f];

 Sum square (SS) = 0;
6

1 10σ = × ;

 for k=1:length(InEq)

 if InEq(k) ≤ 1

 InEq(k) = 0;

end

 SS=SS+σ ∗ InEq(k)
2
;

 end

all

J =
all

f + SS;

Figure 7.37 Program lists of the multi-objective optimizations.

214

The objective function
all

J will be optimized by using the BF-TS and the modified ATS

algorithms for comparison purposes. The boundaries and search parameters of the BF-

TS and the modified ATS algorithms are presented in Table 7.23 and Table 7.24,

respectively.

Table 7.23 Boundaries and search parameters of the BF-TS for multi-objective design

optimization of a PMSM drive.

The search radius set of the BF-TS approach has been used as R = [0.1425, 1.35 3
10

−× ,

1.35 3
10

−× , 2850, 14.85, 2.10 4
10× , 14.985, 73.50, 14.85, 2.10 4

10× , 14.985, 73.50]; the

adaptive search radius are utilized as follows:

if best_error < 2.5 then R = [0.0735, 3.375 4
10

−× , 3.375 4
10

−× , 712.50, 3.7125, 5250,

3.75, 18.375, 3.7125, 5250, 3.75, 18.375].

if best_error < 1.5 then R = [0.0184, 8.440 5
10

−× , 8.440 5
10

−× , 178.125, 0.928,

1312.50, 0.94, 4.59, 0.928, 1312.50, 0.94, 4.59].

if best_error < 0.5 then R= [0.0045, 2.110 5
10

−× , 2.110 5
10

−× , 44.53, 0.2320,

328.125, 0.23, 1.15, 0.232, 328.125, 0.23, 1.15].

Search parameters

S

C
N

S
N

α

N

minJ

≤

BT and

n_re_back

countmax

=[0.01-0.5]
f

R , -3 -3
, =[1 10 -10 10]

f S
L L × ×

3 3
= [1 10 -20 10]

S
f × × , , ,, = [1-100],

Pline Pload
K K

3 5

, ,, =[1 10 1 10],
I line I load

K K × − ×

, ,
, =[0.1 100],

P DC P speed
K K −

, ,, =[10 500],
I DC I speed

K K −

30

20

4

3
1 10×

20

0.35

5

500

215

Table 7.24 Boundaries and search parameters of the modified ATS for multi-

objective design optimization of a PMSM drive.

 7.7.2 Results and Discussions

This section presents the results obtained from the conventional design

method in comparison with those obtained from the metaheuristic search. Simulation

results shown in this section are obtained from using MATLAB/SIMULINK package.

The simulation parameters of the back-to-back converter are shown in Table 7.25, and

the PMSM parameters are utilized as Table D.1 in Appendix D. Components and

parameters of the filter and the controllers for the drive are summarized in Table 7.26.

Table 7.25 Parameters of the back-to-back converter for simulation.

Parameters
Values

Three-phase voltage source
240 Vphase

DC voltage
1000 VDC

Line impedance:
line

R and
line

L 0.05 Ω and 0.10 mH

Input filter:
f

R and
f

L 0.13 Ω and 3.30 mH

Switching frequency (
s

f) 20 kHz

Search parameters

S

C
N

2
S

2C
N

S
N

α

2
α

Jmin

≤

countmax

=[0.01-0.5]
f

R ,
-3 -3

, =[1 10 -10 10]
f S

L L × ×

3 3
= [1 10 -20 10]

S
f × × , , ,, = [1-100],

Pline Pload
K K

3 5

, ,, =[1 10 1 10],
I line I load

K K × − ×

, ,
, =[0.1 100],

P DC P speed
K K −

, ,, =[10 500],
I DC I speed

K K −

30

20

1

20

4

3
1 10×

5

1 10×

0.35

500

216

Table 7.26 Summary of the filter components and the controller parameters obtained

from searches and conventional designs.

Controllers

Conventional

designs

BF-TS Modified

ATS

Input filter:

Rf (Ω) 0.13 0.05 0.015

Lf (mH) 3.30 1.60 1.58

Stator inductance: Ls (mH) 1.20 1.21 1.19

 Switching frequency:
s

f (kHz) 20 9.71 10.60

Line input current controller:

 , P line
K 16.89 49.87 43.39

,I line
K 3.36

4
10× 5.41

4
10× 6.32

4
10×

DC-link voltage controller:

 , P DC
K 0.74 3.54 3.66

,I DC
K 73.11 353.02 486.44

Load current controller:

, P load

K 2.29 36.95 33.31

,I load
K 1.89

3
10× 1.26

3
10× 2.12

3
10×

Speed controller:

, P speed

K 0.21 7.28 7.33

,I speed
K 9.05 49.23 57.88

Figures 7.38-7.44 illustrate the simulation results of the input currents, the

motor currents, the closed-loop responses of line input current, DC-link voltage

responses, the closed-loop responses of motor current and the motor speeds,

respectively, which are performed by MATLAB/SIMULINK.

217

0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50
Input current with conventional design

Time (sec)

C
u

rr
en

t
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o

n
ic

s
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Order of harmonicsA
m

p
li

tu
d

e
o

f
h

ar
m

o
n

ic
s

(%
)

THDi = 8.0903 %

@ f1 = 50 Hz

Iline = 24.7055 Arms

(a)

0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50
Input current

Time (sec)

C
u

rr
en

t
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

Order of harmonic

A
m

p
li

tu
d

e
o
f

cu
rr

en
t

(A
)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Order of harmonicA
m

p
li

tu
d
e

o
f

h
ar

m
o

n
ic

 (
%

)

THDi = 1.8230%

@f1 = 50 Hz

Iline = 23.6115 Arms

(b)

218

0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50
Input current with Modified ATS approach

Time (sec)

C
u
rr

en
t
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n
ic

s
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n
ic

s
(%

)

Iline = 23.5584 Arms

THDi = 1.6810 %

@ f1 = 50 Hz

(c)

Figure 7.38 Comparisons of the input current qualities: (a) conventional design,

(b) BF-TS approach and (c) modified ATS approach.

0.103 0.104 0.105 0.106 0.107 0.108 0.109
-100

0

100
Motor current

Time (sec)

C
u
rr

en
t
(A

)

0 5 10 15 20 25
0

20

40

60

80

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n
ic

s
(A

)

0 5 10 15 20 25
0

50

100

Order of harmonicsA
m

p
li
tu

d
e

o
f

h
ar

m
o
n
ic

s
(%

)

THDi = 3.7376 %

@ f1 = 833.33 Hz

Imotor = 45.8850 Arms

(a)

219

0.103 0.104 0.105 0.106 0.107 0.108 0.109
-100

0

100
Motor current

Time (sec)

C
u
rr

en
t
(A

)

0 5 10 15 20 25
0

20

40

60

80

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n

ic
s

(A
)

0 5 10 15 20 25
0

50

100

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n

ic
s

(%
)

Imotor = 45.5510 Arms

THDi = 1.1333 %

@ f1 = 833.33 Hz

(b)

0.103 0.104 0.105 0.106 0.107 0.108 0.109
-100

0

100
Motor current

Time (sec)

C
u
rr

en
t
(A

)

0 5 10 15 20 25
0

20

40

60

80

Order of harmonics

A
m

p
li
tu

d
e

o
f

h
ar

m
o
n
ic

s
(A

)

0 5 10 15 20 25
0

50

100

Order of harmonics

A
m

p
li

tu
d
e

o
f

h
ar

m
o
n
ic

s
(%

)

Imotor = 45.2904 Arms

THDi = 1.0047 %

@f1 = 833.33 Hz

(c)

Figure 7.39 Comparisons of the motor current qualities: (a) conventional design,

(b) BF-TS approach and (c) modified ATS approach.

220

Figure 7.38 shows the input current qualities, where the conventional design as

in Figure 7.38(a) provides THDi,input = 8.0903%, whereas the BF-TS and the modified

ATS approaches render THDi,input only 1.8230% and 1.6810% as in Figures 7.38(b) and

7.38(c), respectively. Similarly, for the motor current qualities in Figure 7.39, the BF-

TS and the modified ATS algorithms (see Figures 7.39(a)-(b)) can provide better

results than the conventional design by 3.7376%, where the THDi,motor values are

1.1333%, and 1.0047% for the BF-TS and the modified ATS, respectively.

0 0.001 0.002 0.003 0.004
0

0.25

0.5

0.75

1

1.25

1.5
Closed-loop response of line input current

A
m

p
li

tu
d
e

(y
li

n
e)

Time (sec)

Modified ATS (RMS

rectifier
 = 0.0172)

conventional design (RMS
rectifier,max

 = 0.0299)

BF-TS (RMS
rectifier

 = 0.0167)

Figure 7.40 Comparison of the closed-loop responses of line input current.

221

0 0.05 0.1 0.15 0.2 0.25
975

980

985

990

995

1000

1005
Response of DC-link voltage

Time(sec)

D
C

-l
in

k
 v

o
lt

ag
e

(E
D

C
)

BF-TS approach (RMS
DC

= 2.0058 V
DC

)

conventional design (RMS
DC,max

 = 6.9802 V
DC

)

Modified ATS approach (RMS
DC

 =1.6735 V
DC

)

Figure 7.41 Comparison of the DC-link voltage responses.

 Regarding the PWM rectifier part of the back-to-back converter, Figures 7.40

and 7.41 show comparisons of the closed-loop responses of line input current and the

responses of DC-link voltage. The results of the BF-TS and the modified ATS

approaches for line input current provide better rise times and settling times, achieving

RMS errors only 0.0167 and 0.0172, respectively. Considering the conventional design,

the RMS error obtained is 0.0299. Similarly, the results obtained by the proposed

algorithms for DC-link voltage responses present better voltage regulations around

1,000 VDC with fewer ripple voltages than the conventional design, where RMS errors

are 2.0058 VDC and 1.6735 VDC for the BF-TS and modified ATS approaches,

respectively. Note that the DC-link voltage responses have been considered in steady-

state operation.

222

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

The close loop response of load current

Time (sec)

 Closed-loop response of motor current

BF-TS approach (RMS
inverter

 = 0.0165)

conventional design (RMS
inverter,max

 = 0.0482)

Modified ATS approach (RMS
inverter

 = 0.0169)

Figure 7.42 Comparison of the closed-loop responses of motor current.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
7500

8000

8500

9000

9500

10000

10500
Motor speed

Time(sec)

M
o

to
r

sp
ee

d
 (

rp
m

)

Modified ATS approach (RMS
speed

 = 59.1439 rpm)

BF-TS approach (RMS
speed

 = 62.7814 rpm)

conventional design (RMS
speed,max

 = 925.8013 rpm)

Figure 7.43 Comparison of the motor speeds.

223

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

4

8

12

Time(sec)

M
a
c
h
a
n

ic
a
l

to
rq

u
e
 (

N
.m

.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

9,700

10,000

10,300

Time(sec)

M
o
to

r
sp

e
ed

 (
rp

m
)

Conventional design

BF-TS approach

Modified ATS approach

6 N.m.

8 N.m.

10 N.m.

8 N.m.

Figure 7.44 Comparison of the motor speeds with variable load torques.

For the designs of the PMSM part, the controller designs of motor current and

the motor speed are considered. Figure 7.42 has presented the comparison results

between the conventional design and the proposed approaches for the closed-loop

responses of motor current. The results of the BF-TS and the modified ATS approaches

illustrate similar performances, which provide better rise time, settling time and without

overshoot achieving RMS errors equal 0.0165 and 0.0169, respectively. The

conventional design provides the RMS error of 0.0482. Similarly, the results obtained

by the proposed algorithms for the motor speed provide faster responses with small

RMS errors of 62.7814 and 59.1439 rpm for the BF-TS and the modified ATS,

respectively, while the conventional one contains RMS error of 925.8013 rpm (see

Figure 7.43). The controllers obtained from the proposed algorithms can provide good

responses of speed regulations, when the load torques are gradually changed as seen in

Figure 7.44. The BF-TS and the modified ATS provide the results of similar quality.

224

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iteration

C
o
st

 v
a
lu

e

Modified ATS

BF-TS

Initial cost value = 0.6844

Search time = 4.4183x10
5
seconds

Search round = 500

Cost value = 0.4382

Initial cost value = 0.6325

Search time = 2.2910x10
5
 seconds

Search round = 500

Cost value =0.4615

Figure 7.45 Comparisons of convergence curves of the proposed algorithms.

From the convergence curves in Figure 7.45, it can be noticed that the proposed

algorithms provide good qualities of initial solutions due to the operation of random

walk front-end found in the initial process. In order to obtain the best final solution, this

work has defined a very stringent termination criterion of cost value. According to the

results, the terminal criteria of multi-objective functions reach the maximum iterations

with their cost values, Jall , equal to 0.4615 and 0.4382 for the BF-TS and the modified

ATS, respectively. Noticeable, all constraint conditions meet the requirements at the

beginning of search. As a matter of fact, the search results by the modified ATS can be

accepted at the 150
th

 iteration. Although, the BF-TS provides a better initial solution,

the modified ATS can converge to the global region faster than the BF-TS does.

Meanwhile, the modified ATS spends twice as much search time than the BF-TS

approach. Considering the local traps, the BF-TS algorithm encountered local

Comparisons of convergence curves between the BF-TS and the modified ATS for the PMSM 10-pole machine drive

225

deadlocks for 55 times, while the modified ATS approach fell into the local deadlocks

only 17 times.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2
Multi-cost functions

C
o

st
 v

a
lu

e
s

Iterations

f
1
, input current quality

f
2
, motor current quality

f
3
, total power loss

f
4
, line input current control

f
5
, DC-link voltage control

f
6
, load current control

f
7
, speed control

Figure 7.46 Curves of multi-cost functions for the BF-TS algorithms.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Iterations

C
o
st

 v
a
lu

e
s

Multi-cost functions

f
1
, input current quality

f
2
, motor current quality

f
3
, total power loss

f
4
, line input current control

f
5
, DC-link voltage control

f
6
, load current control

f
7
, speed control

Figure 7.47 Curves of multi-cost functions for the modified ATS algorithms.

226

As mentioned earlier, each objective function is calculated as a normalized

value. This means that the maximum value of its cost should be less than 1. From the

results in Figures 7.46 and 7.47, all the objective functions can meet the requirements.

Noted that power losses in the drive system are unavoidable due to using switching

devices. In this case, the modified ATS being proposed can improve the total power

losses, as indicated by f3 being less than 1 in Figure 7.47. The final cost values obtained

from the BF-TS and the modified ATS algorithms are summarized in Table 7.27.

Table 7.27 Summary of the final cost values for each objective function obtained from

the BF-TS and the modified ATS algorithms.

Methods
1f

2f
3f

4f
5f

6f
7f

BF-TS algorithm 0.6077 0.3778 0.9934 0.5591 0.2874 0.3375 0.0678

Modified ATS algorithm 0.5604

0.3349

0.9652

0.5569 0.2398 0.3461 0.0639

As a result comparing with the conventional designs, the proposed

metaheuristic algorithms provide better solutions for all objective functions, and the

modified ATS is superior.

7.8 Conclusion

 Since the proposed BF-TS and the modified ATS algorithms provide

outstanding performances, they are applied to some constrained optimization problems.

These problems include three abstract mathematical constraint problems, optimal

control design of hard-disk heads (single-head and head-stacks), optimal control design

227

of a truck braking system, stability analysis of nonlinear systems, identification

problems of hard-disk head actuator and nonlinear Stribeck friction model, and a power

drive system. The results obtained from the proposed metaheuristics were compared

with those obtained from the conventional designs. It has been found that the proposed

metaheuristics provide superior results in all cases with less complexity.

 Concerning with the comparisons between the BF-TS and the modified ATS

algorithms, the modified ATS converges to the global solution faster than the BF-TS

does in most cases. The search trajectories formed by the modified ATS also

encountered a smaller number of local deadlocks, and consume a smaller number of

search rounds. Search time per iteration consumed by the modified ATS is longer than

that by the BF-TS due to the operation of its random walk front-end, albeit. This

drawback can be overcome by parallelization of the algorithms that will be explained in

next chapter.

228

CHAPTER VIII

PARALLELIZATION AND APPLICATIONS

8.1 Introduction

As the size of optimization problems to be solved becomes larger, computing

tasks demand a large amount of resources, and consume a long time to complete the

solutions. Parallel computation is one of effective techniques to address these

difficulties. This parallel or distributed computing can take the advantages of multicore

and multiprocessor computers in order to use their full computational power. Many

parallel implementations for different search algorithms have been successfully applied

in various publications to effectively decrease computing time.

 From the previous Chapter, the modified ATS algorithm can provide solutions

of high quality with guaranteed convergence. But, it consumes long search time for

most applications, especially for the power drive system. In this Chapter, we consider

to use parallelization to reduce computing time for a particular power drive problem.

Therefore, this Chapter begins Section 8.2 with a brief overview of parallelization

including parallel processing (computing), parallel programing along with parallel

metaheuristics. The term parallel used in this Chapter refers to “simultaneous or

concurrent execution of individual tasks being done at the same time” (Bentley, 2000).

Subsequently, parallel computing in MATLAB and its significant functions as well as

given examples are presented in Section 8.3. In Section 8.4, the implementation of

229

parallel computing in MATLAB to the modified ATS algorithm for the proposed

application is presented, and Section 8.5 conclusions the Chapter.

8.2 Definitions of Parallelization

 8.2.1 Parallel Processing or Parallel Computing

 Large-scale simulation and data processing task such as mathematical

modeling, algorithm development etc., can take an unreasonably long time to be

completed or require a lot of computer memory. Such applications involve processing a

huge amount of data or performing a large number of iterations (Roosta, 1999).

Parallel computing is one of approaches to make the computation feasible by using

multiple central processing units (CPUs) at the same time to solve each single problem.

While most modern computers currently possess more than one CPU, several

computers can be combined together in a cluster manner; these multicore processors

allow many computations to be completed in reasonable time or more quickly.

Generally, parallel computing or parallel processing is a form of computation in which

many calculations are carried out simultaneously (Almasi and Gottlieb, 1994). A large

task can be divided into smaller ones, which are solved in parallelization to complete

the job in less time than a single machine can do. Each processor works on its section

of problem. Furthermore, processors can exchange information among each other

within a set of memories based-on distributed computing.

230

 (a) (b)

Figure 8.1 Structure models of parallel computing level: (a) a shared-memory and

 (b) a distributed-memory.

 An important classification of parallel computing is based-on the degree of

sharing access to memory. A shared-memory of parallel computing can be classified in

two structures, namely, multiprocessor desktop and multiprocessor computer clusters.

Multiprocessor desktop is characterized by a structure model of shared-memory in

Figure 8.1(a), in which each processor can address locations in a common memory

block. Processors in a shared-memory level can communicate with one another via the

common memory with a suitable protocol. On the other hand, multiprocessor computer

clusters are characterized by a structure mode of distributed-memory in Figure 8.1(b),

in which processors can communicate with other processors by sending messages over

a network (Eddy and Allman, 2000; Gebali, 2011). Either structure can be chosen

according to applications.

231

 8.2.2 Parallel Programming

 Parallel programming is a computer programming technique that

provides execution of instructions in parallel manner on either a single computer or a

cluster of computers (Diaz et al., 2012). In this, several programs can be performed

simultaneously as multitasking on one machine employed by multiprocessor desktop or

on several machines based-on multiprocessor computer clusters, in which the

computing process uses computer resources such as memory blocks and registers. The

predominant approaches in the parallel programming are open multiprocessing

(OpenMP) for shared memory, and message passing interface (MPI) for distributed

memory. The OpenMP is a shared memory application programming interface (API)

that supports multiplatform shared memory and multiprocessing programming in C,

C++ and Fortran. The MPI is a parallel programming model as a library, where

communication between processes is done by interchanging messages over a

distributed memory system. This approach can be written in different computer

programming languages such as Fortran, C, C++ and Java. These techniques can

process both Single Program Multiple Data (SPMD) and Multiple Program Multiple

Data (MPMD) programing schemes. Nevertheless, application problems can be run on

a computer cluster using both OpenMP and MPI as a hybrid model of parallel

programming (Diaz et al., 2012).

 The primary goal of most parallel programming is to increase performance and

scalability of a CPU instead of using high-cost machines such as mainframe and super

computers. This also supports parallel software productivity, which has been becoming

increasingly important in recent decades. Due to parallel hardware becoming a low-cost

232

commodity, it is now to seize this opportunity to develop efficient parallel programing

(McKenney, 2014).

 8.2.3 Parallel Metaheuristics

 Real-world optimization problems are always complex.

Metaheuristics, that can provide global solutions within a reasonable time, are efficient

solvers for this type of problems. Since standard metaheuristics are sequential in

execution, solving large-scale real-world problems still demands very long time to

complete the computing process. Parallel metaheuristic is a new advanced technique

that has an ability to reduce both the numerical effort and the run time of a

metaheuristic. This parallelization approach offers parallel or simultaneous runs of

relevant programs to achieve required solutions at high quality. The classification of

this parallelization strategy applied to metaheuristics is defined according to the source

of parallelism (Alba, 2005) as follows:

• Operation parallelization: This source of parallelism is usually applied

within an iteration of the metaheuristic method. The limited functional or data

parallelism due to large-scale values can be evaluated in parallel manner. The

significant goal of this class of parallelism is to reduce the overall execution time by

accelerating a repeated phase of the sequential algorithm, and to achieve higher quality

solutions.

• Explicit space decomposition: This approach contains parallelization

strategies, which decompose an entire search space into several to many sub-spaces.

The sub-spaces are to be searched by different search process in parallel manner.

Usually, same metaheuristics are employed by different processes, but using different

233

metaheuristics is not prohibited. The later may require complicated analysis, software

implementation and data management. This class of parallelism is aimed to avoid

repetitive search in the parallel implementation, and to diversify the search to different

regions within the search space.

• Multi-search threads: This class of parallelization is obtained from multiple

concurrent explorations of the search space. Note that the word “thread” is used instead

of “task” to clarify that tasks can be interleaved, but thread. Each concurrent thread

may execute same or different metaheuristic methods. They may start from same or

different initial solutions, and communicate during or at the end of the search to

identify the best overall solution. This class of parallel strategies aims to improve the

final solution by exploring different parts of the search space, and to increase the search

speed.

8.3 Parallel Computing MATLAB Toolbox

So far, the Chapter has described the concepts of parallelization. Parallel

computing, parallel programming and parallel metaheuristics have been defined. With

today’s technology, implementation of parallelization can effectively employ Parallel

Computing Toolbox
TM

 and Distributed Computing Server
TM

 of MATLAB and

Simulink. MATLAB and Simulink support parallel computing to run from one

MATLAB session (client) to other MATLAB sessions (workers) on multiprocessor

desktop and computer clusters. Parallel computing software is very useful for solving

computationally intensive problems, and accelerating the processing of repetitive

computations with large amounts of data by taking the full computational power of

computing resources. MATLAB provides three kinds of parallelism, namely

234

multithreaded, distributed computing, and explicit parallelism (MathWork, 2008) as

follows:

• Multithreaded parallelism: The functions automatically execute on multiple

computational threads in a single MATLAB session on a multicore-enabled computer

by sharing memory.

• Distributed computing: Multiple instances of MATLAB run multiple

independent computations on separate computers with its own memory.

• Explicit parallelism: Several instances of MATLAB run on several

processors or computers with separate memory blocks, and simultaneously execute a

MATLAB command or m-function.

Parallel Computing Toolbox software helps improve the performance of loop

executions of iterative algorithms by letting several MATLAB workers to

simultaneously execute individual loop iterations. For instances, a loop of 100

iterations runs concurrently on a computer cluster of 20 MATLAB workers. This

means that each worker executes only five iterations of the loop. This may not be 20

times improvement in speed because of communication-time consuming, but the speed-

up can be significant. It can be noticed that whether or not the loops take a long time

for execution, the loop speed can be improved by distributing iterations to MATLAB

workers. Providing, the loop iterations run on the same computer using a multicore or

multiprocessor, the speed can be improved even more through local workers. Parallel

Computing Toolbox allows distributing a very large array to multiple MATLAB

workers. Each worker performs only on its designated part of the array, while workers

automatically transfer data among themselves, if this is necessary. Of course, if the size

235

of an array is not too large to fit in a local memory block, computing in a single

MATLAB session is adequate.

 In this thesis, we focus on some explicit parallel programing paradigms, i.e.

parallel for-loop (parfor), single program multiple data (SPMD) block and distributed

arrays. The description details of these paradigms are explained next.

8.3.1 Parallel for-loop

 A modification of a simple for-loop in parallel MATAB is called

parallel for-loop or parfor-loop conditional command. The basic concept of a parfor-

loop is similar to the standard for-loop. Instead of executing a series of statement over a

range of values, the parfor-loop is executed on MATLAB client and workers in

parallel. To run the parallel loop, the MALAB pool has to be created by using

matlabpool open command in order to reserve a collection of MATLAB worker

sessions on available cores of machine as the structure in Figure 8.2. The MATLAB

pool consists of MATLAB sessions running on some local machines or an available

cluster.

Figure 8.2 MATLAB pool structure.

236

Each worker evaluates iterations in no particular order and independent of each

other. Therefore, each iteration is completely independent with non-sequence

operation. During the operation of parfor, necessary data are sent from the client to the

workers, and results are returned to the client and gathered together. After the process

being completed, the array data of all elements are available in the MATLAB client;

the MATLAB pool is closed by using matlabpool close command, and followed by

releasing of all workers. In addition, the parfor-loop command allows running parallel

Simulink. This feature is useful for an application problem further explained in this

Chapter. The multiple models are simulated at the same time on different workers

within the parfor-loop by using sim command, which helps perform multiple

simulation runs of the same model. In this thesis, four local workers are used as a

default of local pool size available in accordance with a quad-core platform.

8.3.2 Single Program Multiple Data (SPMD) Block

The Parallel Computing Toolbox offers the SPMD construction to

achieve a domain decomposition. In SPMD block, each processor concurrently runs the

job. Figure 8.3 shows a short code list for an SPMD block in MATLAB environment.

Coding is noticeably straightforward.

237

 1. matlabpool open

 2. spmd

 For each worker do statements

 in this SPMD block.

 3. end

4. matlabpool close

Figure 8.3 Code list for an SPMD block.

 Matlabpool is used to request parallel resources called workers by Parallel

Computing Toolbox. It can be said that cores and processors behave as workers in

MATLAB. Each worker has a unique identity called labindex to customize the

execution of parallel jobs. When parallel resources are accessed, parallel jobs are

created in an SPMD block, and then Matlabpool is closed to release parallel resources

at the end of the parallel jobs.

8.3.3 Distributed Array

 When complexity of a problem increases, computing resource demanded

may be extensive. Under this situation, computing may take many hours or days to be

completed. Distributing these computational loads over processors can effectively

shorten run-time. MATLAB provides an effective mean to distribute such loads via

“distributed and codistributed arrays”. In this, a distributed array means an array with

its data being distributed from client workspace, and a codistributed one means an array

with its data being codistributed within spmd statement created in local workers. These

data can be stored on the workers of an open parallel pool. The distributed and

238

codistributed commands are used to access elements of such arrays distributed in

MATLAB client’s workspace, and those of the arrays distributed among workers in

parallel within an spmd environment, respectively. For example, consider a simple 4-

by-8 matrix with ascending element values from 1 to 32, which is created in a client

workspace, and then it becomes a distributed array as follow:

 matlabpool open // create MATLAB pool.

 x = reshape(1:32, 4,8); // create an array on MATLAB client.

 y = distributed(x); // distribute an array to MATLAB workers.

 spmd

 disp(getLocalPart(y)) // perform on workers in parallel.

 // y is codistributed array.

 end

 matlabpool close // close MATLAB pool

Figure 8.4 Instruction of distributed array.

According to the code list in Figure 8.4, the command x = reshape(1:32, 4,8) creates an

array having its elements of reshapes among ascending number 1 to 32 into a 4-by-8

matrix. The command y = distributed(x) partitions the original array into 4 since our

platform is a quad-core. Then, it distributes these partitioned arrays to MATLAB client

workspace. Figure 8.5 shows the original array with its associated sub-arrays. These

sub-arrays are stored in parts on the workers of the open parallel pool. Inside the body

of an spmd statement, each MATLAB worker has a unique value of labindex to execute

the block in parallel. To display the actual data in local segment of array from the body

239

of an spmd statement, getLocalPart(y) returns the local portion of a codistributed array.

Then, the parallel pool is closed by using matlabpool close command.

 worker 1 worker 2 worker 3 worker 4

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

4 8 12 16 20 24 28 32

Figure 8.5 A result obtained from distributed array.

According Figure 8.5, the full array in the client workspace is equally

distributed into each worker as an array segment. Worker 1 stores columns 1 and 2

among an array segment from 1 to 8; worker 2 stores columns 3 and 4 including an

array segment from 9 to 16, and so on.

Considering, the codistributed array, a large array structure replicated on all

workers can be partitioned into segments, and distributed across the workers. Each

segment stores in the workspace of a different worker, which has its own array segment

to perform. This aims to reduce the size of array from the client workspace, when the

memory to store an initial replicated array is sufficient, and to provide faster

processing, especially for large data sets. The codistributed array is normally used in

the parallel environment within spmd statement. For example, A is a 3-by-10 matrix

with ascending element values from 11 to 40, and the codistributed array is created

inside spmd statement running in parallel as shown in Figure 8.6.

240

matlabpool open // create MATLAB pool.

 spmd

 A = [11:20; 21:30; 31:40]; // replicate array on each worker.

 D = codistributed(A) // distribute array to MATLAB workers.

 getLocalPart(D) // each worker operates on its data.

 end

matlabpool close // close MATLAB pool.

Figure 8.6 Instruction of codistributed array.

As an example in Figure 8.6, a 3-by-10 matrix is replicated on each worker in its own

workspace under an spmd statement, and assigned to the variable A. D =

codstributed(A) distributes a replicated array A using the default codstributed

command inside an spmd statement. Noticeably, arrays A and D are of the same size

(3-by-10), and the array A exists in its full size on each worker, while only a segment

of array D exists on each worker. When an array distributes to a number of workers, the

MATLAB partitions the array A into segments and assigns one segment of the array to

each worker as evenly as possible. The getLocalPart function returns the local portion

of a codistributed array. At the end of code list, the parallel pool is released all of

workers by using matlabpool closed command. The result of distributed array D is also

3-by-10 in size, but only a segment of the full array resides on each worker as Figure

8.7.

241

worker 1 worker 2 worker 3 worker 4

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

Figure 8.7 A result obtained from codistributed array.

According Figure 8.7, the full size on each worker is uniformly assigned into segments

on each worker through the codistributed command. Worker 1 stores columns 1, 2 and

3, worker 2 contains column 4, 5 and 6, and so on.

Moreover, the explicit indexing of the distributed dimension for the

codistributed array also includes using a for-loop over a distributed range (for-drange).

The for-drange construct requires loop iterations to perform independently of each

other, which each worker can be executed on the portion of range of it owns. It means

that in a for-drange loop can access only the portion of a distributed array located to

each worker. To illustrate this characteristic, Figure 8.8 shows an example code of

using a for-drange loop.

242

 matlabpool open // create MATLAB pool.

 n = 1000;

 y = zeros(1, n, codistributor()); // create a codistributed array.

 for x = drange (1:n) // use a for-loop over a distributed range.

 y(x) = x^2; // calculation performed on workers.

end

 y = gather(y,1); // collect distributed arrays into worker 1.

matlabpool close // close MATLAB pool.

Figure 8.8 An example code of using a for-drange loop.

According to the code list in Figure 8.8, the loop increases from 1 to n. The loop

x is partitioned by codistributed command into segments. Each segment becomes an

iteration for a conventional for-loop on an individual worker. Thus, the calculation of y

is performed on workers. After getting the computational results, an array data from

each worker is collected into worker 1 using gather command.

 As the above mentioned, some commands of Parallel Computing Toolbox

software for MATLAB have been presented. These significant commands of MATLAB

parallel computing will be applied to improve the proposed modified ATS algorithm in

order to speed-up the process. This is to further optimize the power drive system

problem in the next section.

243

8.4 Applications of Parallel Computing Toolbox to the Modified

ATS Algorithm

From the previous section, we realize that the Parallel Computing Toolbox

executes their commands in no particularly order. Its execution process is unreached by

ordinary users. Some parallel command functions may not be applicable to the

proposed algorithms because their main processes need to perform sequentially to

update the current solution from the previous one, which is dependent on each other.

Particularly, the tabu list storage must sort the elite solutions in order. If the parallel

command functions are carelessly utilized, the results obtained will be erroneous. The

parfor-loop and for-drange commands may not be appropriated for this case. Regarding

to the proposed application, the power drive system involves time-consuming

computing with large data sets. The ability of parallelization on one computer platform

is particularly suitable in order to improve computing speed. Thus, the thesis works will

gain benefit from the Parallel Computing Toolbox in local parallel computing point-of-

view. The implemented algorithms are performed by an Intel(R) quad-core CPUs,

which contains four workers to execute in MATLAB sessions. This computing

platform runs at clock speed of 2.40GHz with 4GB RAM. Our implementation is

explained next.

244

8.4.1 Implementation of Parallel Process

From the previous results of the power drive system problem obtained

from the proposed algorithms, we recall that the solutions cover all constraint

requirements superior to the conventional designs. Unfortunately, the search process

spent very long time to obtain the optimum solutions because of the following reasons:

(i) the objective functional model is very complicated, (ii) there are many constraints,

and (iii) the random-walk front-end is invoked many times. During search, it was

necessary to frequently evaluate the objective model, and generate a population of

initial solutions via the random-walk front-end. To reduce the search time, these two

major activities are considered for parallelization. The SPMD construction and

codistributed arrays have been applied to these problems. The SPMD block instructs

each worker to concurrently compute each function through labindex command in

parallel. We further use the codistributed command to distribute the sets of initial

solutions indicated by S into each worker. This process independently generates a

population of solutions, and each worker can effectively update the random movement

indicated by Nc for each location on each worker. The computing process of the

proposed parallel version of the modified ATS is represented by the diagram in Figure

8. 9, in which the detail of random walk front-end appears in Figure 4.6 of Chapter 4.

245

Figure 8.9 Flow diagram of the parallel version of the modified ATS.

246

We consider parallelization of the computation of the objective functions, first.

Since MATLAB does not allow one simulink model to be divided into multi sections,

or to run the model in parallel, it is necessary to run the whole simulink model on each

worker and the MATLAB client. In this, our simulink model is run on the MALAB

client. Subsequently, we allocate the data obtained from the simulation to all workers’

codistributed arrays. Afterward, the labindex command is invoked to simultaneously

compute the objective functions as indicated by the code list in Figure 8.10. Note that,

the order of the objective functions computed is decisively placed to minimize the

computing time.

247

 matlabpool open // create MATLAB pool.

 spmd (4) // 4 workers are used.

 // all data assigned inside the spmd construction performed as codistributed

 // arrays to all workers.

 labBarrier; // to ensure all workers are synchronized,

 // and start their timed work together.

 if labindex==1 // worker 1 indicated.

J_THDf=THDf/3; // compute objective function 1: THDi of input

// current.

 end

 if labindex==2 // worker 2 indicated.

 PL_total=PL_line + PL_SD + PL_motor;

 J_PL_total=PL_total/Paccept_max;

 // compute objective function 3: Total power loss.

 J_RMS_recti=RMS_recti/RMSrecti _max;

 // compute objective function 4: RMS of current

 // control loops for back-to-back converter.

 J_RMS_DC= RMS_DC/ RMS_DC_max

 // compute objective function 5: RMS of DC-link

 // voltage control loop.

 end

 if labindex==3 // worker 3 indicated.

 J_THDi_motor=THDf_motor/3;

 // compute objective function 2: THDi of motor

// current.

 end

 if labindex==4 // worker 4 indicated.

 J_RMS_inverter=RMS_inverter/ RMS_inverter_max

// compute objective function 6: RMS of current

// control loops for PMSM.

 J_RMS_Speed=RMS_Speed/ RMS_Speed_max

 // compute objective function 7: RMS of speed

 // control loop for PMSM.

 end

 end // end SPMD.

 f1=J_THDf{1}; // Transfer array from worker 1 to client.

 f3=J_PL_total{2}; // Transfer array from worker 2 to client.

 f4=J_RMS_recti{2};

 f5=J_RMS_DC{2};

 f2=J_THDi_motor{3}; // Transfer array from worker 3 to client.

 f6=J_RMS_inverter{4}; // Transfer array from worker 4 to client.

 f7=J_RMS_Speed{4};

 matlabpool close // close MATLAB pool.

Figure 8.10 Code list for parallel computing of multi-objective functions.

248

 Referring to Figure 8.10, the matlabpool is used as an open command in order

to reserve a collection of MATLAB workers on the available four CPU cores.

Subsequently, all workers are activated under the spmd command. The identity of each

worker called labindex has been assigned to compute 7 objective functions

simultaneously. For instances, worker 1 computes the function of THDi,input for input

current, worker 2 computes the functions of the total power loss, the RMS value of the

current control loops for the back-to-back converter, and the RMS value of the DC-link

control loop, and so on. After the completion of such calculations, the results are

returned to the MATLAB client, and then computing follows in a similar manner to

what described in Figure 7.37, Chapter 7. As a result, our parallel program consumes

computing time of 31.9172 seconds, while the sequential one consumes 43.5739

seconds. It is clear that the objective function parallelization results in 26.75% run-time

savings. Note that this part of the program was tested independently from the others by

assigning some real values to relevant variables, instructing it to run, and monitoring

the computing time.

249

function [min_cost_function, X_Y_best]= Initial_generation(p,S,Nc,Ns,alpha,xlimit)

matlabpool open // create MATLAB pool.

parfor m1=1:S // use parfor-loop to generate random

 // solutions

 P(:,m1,1)= ((xlimit(1,:)-xlimit(2,:)).*rand(1,p))+xlimit(2,:);

 end

spmd

 DIST=codistributor1d(2,[S/4 S/4 S/4 S/4]); // assign array of solution on each worker.

 P_codis=codistributed(P,DIST); // replicate array on each worker.

 P=getLocalPart(P_codis); // each worker operates on its data.

for j=1:Nc // start for-loop of random movement.

 for i=1:S/4 // start for-loop of a number of solution.

 J(i,j)=obj(P(:,i,j)); // recall obj function to compute cost value.

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1); // compute constant value.

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha); // compute step size.

 P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 // update solutions.

 J(i,j+1)=obj(P(:,i,j+1)); // recall obj function to update cost value.

 .

 .

 .

 end // end loop of a number of solution, S.

end // end loop of random movement, Nc.

end // end spmd construction.

Jgather=[J{1}; J{2}; J{3}; J{4}]; // Return all array of cost values, J from

 // workers to client.

reproduction = Jgather (:,1:Nc); // select cost value.

[jlastreproduction,iter] = min(reproduction,[],2); // find minimum cost value and its position

 // among random movement, Nc.

[min_cost_function,back_ID] = min(jlastreproduction);

 // find minimum cost value and its position

 // among each number of solution, S.

Pgather =[P{1} P{2} P{3} P{4}]; // Return all array of solutions, P from

 // workers to client.

X_Y_best=Pgather (:,back_ID,iter(back_ID,:)); // select an elite solution.

matlabpool close // close MATLAB pool.

Figure 8.11 Code list for parallel computing of generating an elite initial solution.

250

 Second, we consider parallelization of the program part to generate an elite

initial solution. Figure 8.11 shows the program codes of this part. Recall that the

process at the beginning of the modified ATS evaluates a group of solutions based-on

repeated number of solutions, S and random movement, Nc, to obtain an elite solution.

The code starts from using a MATLAB pool, and then invoking the parfor-loop to

randomly generate a group of initial solutions equal to the maximum number of S for

the first movement. The initial solutions have been equally assigned to codistributed

arrays on 4 workers under the spmd construction. Noticeable, the number of initial

solutions, S should be integer that can be divided by 4 in order to be distributed equally

among 4 MATLAB workers. S = 32 is applied here. One is not recommended to use an

unequal work distribution, e.g. S =30 etc., because an unbalanced computing load on

each worker needs to wait the others to finish the tasks completely. This imposes a long

wait-time, in turn a long computing time. Next the process runs parallelly to update the

random movement indicated by NC for each location on each worker until the

maximum number of random movement, Nc is reached. The solutions (P) and their

corresponding cost values (J) are then returned to the MATLAB client for evaluating

the optimum solution. This is an end of the process, and the MATLAB pool is released

by using the matlabpool command.

 As a preliminary test, this section of our program was run independently by

setting S = 32 and Nc = 20 in order to compare the computing time between the parallel

and sequential versions. As a result, the sequential version took
4

4.3156 10× seconds to

compute the job, while the parallel one required
4

2.3356 10× seconds. Therefore,

45.88% of computing time savings are brought into attention.

251

 Applications of our parallel version of the modified ATS to the power drive

problem have been conducted. The results and discussions are presented next.

8.4.2 Results and Discussions

The same power drive system as presented in Chapter 7 is now

considered. The search problem is assigned to our new parallel version of the modified

ATS with the same values of all search parameters and the same multi-objective

functions. Comparisons of the results and computing time obtained from the parallel

and the sequential programs are of our interest. Readers are reminded that our parallel

version of the modified ATS contains two parts of parallelization denoted as the

parallel elite initial solution generation and the parallel multi-objective functions,

respectively.

Firstly, we consider the filter components and the controller parameters

as being obtained from various design approaches. Table 8.1 summarizes those values

for comparison purposes. For low-pass input filter, the obtained components are

somewhat different. As a practical requirement, the THDi must be less than 3%. This

 results in the cut-off frequency at -3dB or 3 250
dB

f− ≤ Hz in order to effectively sift the

5
th

-order harmonic since it appears most in the system. Considering the
f

R and
f

L values

tabulated, the conventional design, the BF-TS, the sequential and the parallel version of

the modified ATS result in the following cut-off frequencies: 70,145, 145 and 90 Hz,

respectively. The following THDi values of the input currents or THDi,input are obtained:

8.0903%, 1.8230%, 1.6810% and 1.314%, respectively. Figure 8.12 illustrates the

corresponding frequency responses of the obtained filers. It can be said that all the

methods being considered provide similar results of harmonics suppression for the

252

input current. However, the
f

R values as low as 10-50 mΩ seems to be good in terms of

low power losses, but they may be impractical in power system field because they lead

to large
f

L s required. In practice, the filter obtained from the conventional design is

recommended.

Table 8.1 Summary of the filter components and the controller parameters obtained

from conventional designs and the proposed algorithms.

Controllers

Conventional

designs

BF-TS

Modified

ATS

Parallel

modified

ATS

Input filter:

Rf (Ω) 0.13 0.050 0.015 0.027

Lf (mH) 3.30 1.60 1.58 2.46

Stator inductance: Ls (mH) 1.20 1.21 1.19 2.05

Switching frequency:
s

f (kHz) 20 9.71 10.60 10.56

Line input current

controller:

, P line
K 16.89 49.87 43.39 55.26

,I line
K 3.36

4
10× 5.41

4
10× 6.32

4
10× 7.28

4
10×

DC-link voltage

controller:

, P DC
K 0.74 3.54 3.66 3.84

,I DC
K 73.11 353.02 486.44 515.94

Load current controller:

, P load
K 2.29 36.95 33.31 30.44

,I load
K 1.89

3
10× 1.26

3
10× 2.12

3
10× 2.69

3
10×

Speed controller:

, P speed

K 0.21 7.28 7.33 14.57

,I speed
K 9.05 49.23 57.88 36.07

253

Figure 8.12 Comparison of frequency responses of input filters obtained from different

methods.

 Now, we consider the switching frequency and the stator inductance as

tabulated in Table 8.1. Recall from Chapter 7 that the stator resistance is known,

sR = 0.124Ω . An optimum inductance could be searched for. Practically, it helps

reduce the motor current harmonic. The values of sL shown in Table 8.1 are closed to

each other except that found by the parallel version of the modified ATS, which is

about twice as much. For the switching frequency (sf), the conventional design gives

20 kHz, which is about two times the others. The frequency, sf does not have a role on

harmonic, but sL . Notice that the modified ATS gives sL = 1.19 mH, which is

minimum. This results in the minimum THDi,motor = 1.0047% very much less than 3%

of the standard requirement. In addition, the BF-TS and the parallel version of the

modified ATS render THDi,motor = 1.1330% and 1.2452%, respectively. In terms of total

-40

-20

0

20

40

M
ag

n
it

u
d
e

(d
B

)

10
-2

10
-1

10
0

10
1

10
2

10
3

-90

-45

0

P
h
as

e
(d

eg
)

Frequency responses of input filters

Frequency (Hz)

254

power losses, sf has a significant contribution. While the conventional design gives

sf = 20 kHz, the BF-TS, the modified ATS and the parallel version provide sf = 9.71,

10.60 and 10.56 kHz, respectively. The corresponding power losses to these

frequencies are 1.91, 1.69, 1.64 and 1.65 kW, respectively. sf provided by search

methods can result in a significant reduction in the total losses by 14% approximately.

 We now consider the parameters of the PI-controllers summarized by Table 8.1.

In all cases, the search approaches provide the values of
P

K and
I

K much higher than

those obtained from the conventional design. This means that responses of the system

are faster due to high
P

K , and smoother due to high
I

K , as a result. However, the

response curves, i.e. current, voltage and speed responses, are very similar to those

illustrated in Chapter 7. Such curves are omitted herein. Table 8.2 summarizes THDis,

power losses and RMS responses corresponding to the search methods. It can be

observed that the parallel version of the modified ATS gives solutions resulting in the

smoothest responses and the minimum current distortions.

Table 8.2 Comparison of constraint results obtained from the proposed algorithms.

Methods THDi,input

(%)

THDi,motor

(%)
,total loss

P

(kW)

rectifier
RMS

DC
RMS

(Vdc)

inverter
RMS

speed
RMS

(rpm)

BF-TS 1.8230 1.1333 1.69 0.0167 2.0058 0.0165 62.7814

Modified

ATS

1.6810 1.0047 1.64 0.0172 1.6735 0.0169 59.1439

Parallel

modified

ATS

1.3138

1.2452

1.65

0.0180

1.5734

0.0198

37.8697

255

0 50 100 150 200 250 300 350 400 450 500

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Comparison of convergence curves of the proposed algorithms.

Iteration

C
o

st
 v

a
lu

e

BF-TS

Modified ATS

Parallel modified ATS

Figure 8.13 Comparison of convergence curves of the proposed algorithms.

 Secondly, we consider the convergent behaviour of each search method applied

to the power drive problem. This can be represented by the convergence curves with

the corresponding data shown in Figure 8.13. Notice that the parallel version cuts the

search time of the modified ATS by 41.40% approximately. The sequential and the

parallel versions of the modified ATS provide better quality solutions than those given

by the BF-TS. This can be observed from the cost values according to the ATS-based

methods reach the minimum by the 150
th

 iteration. As a matter of fact, the ATS-based

methods could effectively cease their searches very much faster than the BF-TS could.

The multi-cost values of the problem during search by the parallel version of the

modified ATS are shown in Figure 8.14 and Table 8.3 to confirm the quality of the

obtained solutions. Notice that, all the constraints are met due to
1,2,...,7

1
k k

f
=

< .

256

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Iterations

C
o

st
 v

a
lu

e
s

Multi-cost functions

f
1
, input current quality

f
2
, motor current quality

f
3
, total power loss

f
4
, line input current control

f
5
, DC-link voltage control

f
6
, load current control

f
7
, speed control

Figure 8.14 Curves of multi-cost functions for the parallel version of modified ATS.

Table 8.3 Comparison of the final cost values for each objective function obtained

from the proposed algorithms.

Methods
1f

2f
3f

4f
5f

6f
7f

BF-TS 0.6077 0.3778 0.9934 0.5591 0.2874 0.3375 0.0678

Modified ATS 0.5604

0.3349

0.9652

0.5569 0.2398 0.3461 0.0639

Parallel modified ATS 0.4379

0.4151

0.9718

0.5841 0.2254 0.4055 0.0409

8.5 Conclusion

 So far, the Chapter has presented a successful approach to significantly reduce

computing time or search time of metaheuristics particularly when the problem of

interest is a large-scale complex real-world problem. In general, this type of problems

is nonlinear, subject to several to many constraints, possesses both continuous and

discrete variables, and needs complex simulation models to evaluate the problem costs.

257

Parallelization is a useful technique to achieve the search time reduction as the Chapter

begins explaining its concepts and terminologies. Implementation of parallel algorithms

is quite straightforward using the Parallel Computing Toolbox
TM

 with MATLAB. We

have explained our parallel implementation of the modified ATS in details, and applied

it to a complex power drive system successfully. As a result, the parallel version of the

algorithms reduces the search time approximately by 41.40%, in other words 1.71 times

faster than the sequential version.

CHAPTER IX

CONCLUSIONS

9.1 Conclusions

The aims of this research were to examine and improve the search performance

of metaheuristics in order to achieve an efficient computational time. Adaptive tabu

search (ATS), adaptive bacterial foraging (ABFO), invasive weed optimization (IWO),

and genetic algorithm (GA) were considered, and their performances were investigated

via some unconstrained surface optimization problems. After thorough studies of their

outstanding capabilities, the ABFO and the ATS algorithms were combined in order to

obtain new hybrid or cooperative metaheuristics denoted as the cooperative bacterial

foraging-tabu search or BF-TS and the modified ATS algorithm, respectively. To

demonstrate potential, usefulness and capability of the proposed metaheuristic

algorithms, they were applied to various complex engineering problems, and

reorganized to run in parallel manner under a quad-core machine.

At the beginning of this thesis, a literature review of two groups of hybrid

metaheuristic algorithms (population-based and single-solution based metaheuristics) to

solve various optimization problems was presented in Chapter II. Here, the main

metaheuristic algorithms for this research, ABFO and ATS approaches, were

characterized in order to expound the advantages of combining both methods.

According to the literature review, a pure population-based metaheuristic like the

259

ABFO is sometimes not well suited for fine-tuned search, and in some cases, the

exploitation of the solution found is weak when used to solve complex combinatorial

problems. Moreover, single-solution based metaheuristic such as the ATS is poor in

exploration of entire search space. Therefore, the ability of the ABFO in terms of

exploration into the search space was combined with the ATS, which has the ability of

exploitation in order to increase the convergence rate, and improve the quality of the

final solutions.

Background to metaheuristics was presented in Chapter III. This chapter also

introduced different algorithms for solving combinatorial optimization problems,

including classical optimization algorithms and generic algorithms of some important

metaheuristics. In addition, a historical overview and a classification of the

metaheuristics were presented. The development of the metaheuristic methods indicates

that they will be more popular in the future as optimization problems are increasing in

size and complexity.

The algorithms considered in this work were thoroughly described in Chapter

IV. The descriptions of procedural lists and flowcharts for the algorithms previously

mentioned (ATS, ABFO, IWO and GA) were given. In addition, this chapter introduced

two cooperative approaches: the bacterial foraging-tabu search (BF-TS) and the

modified ATS algorithms. The algorithm denominated bacterial foraging-tabu search

(BF-TS) is a manner of combining the ABFO and ATS algorithms. In this method, the

adaptive random movement of bacteria leads to an improvement of the quality of initial

solution of the ATS algorithm. The modified ATS approach is a new cooperative

algorithm which integrates ABFO and ATS. Basically, in this algorithm, the adaptive

random movement of bacteria allows the algorithm to produce neighbour solutions

260

around the global solution in order to enhance the search performance without the limit

of radius.

In Chapter V, an analysis of the convergence of the modified ATS algorithm

(included an initial part of BF-TS algorithm) based-on mathematical model was

presented. This algorithm can be divided into two parts, the random walk front-end and

the ATS without search radius adjustment. Since the convergence of the TS with the BT

mechanism is known to have convergence property, the convergence analysis was

primarily focused on the convergence of the random walk front-end. This analysis was

carried out by employing Lyapunov’s stability concepts. By intuition, the convergence

of the proposed algorithms resulted from combination of the two methods was

concluded.

Comparisons of search performances for the cooperative approaches and the

other aforementioned algorithms were carried out in Chapter VI. The comparison was

in terms of number of local locks, quality of initial solutions, quality of global solutions

obtained, search time, number of search rounds and time consumed per search round.

These aspects reflect the performance of the proposed algorithms. Five unconstrained

optimization problems, also called benchmark functions, were utilized to test the

performances, namely Bohachevsky (BF), Shekel’s fox-holes (SF), Rastrigin (RF),

Shwefel (ShcF) and Schubert (ShuF) functions. Each set of algorithms was tested by

undergoing 50 trial runs. The obtained results were averaged in finding search

parameters so as to obtain better performances. Those parameters were applied to a vast

number of computing tasks for collecting the results. According to the results, the

proposed modified ATS algorithm exhibited the best performance, when considering

quality of initial solutions, quality of global solutions, number of local locks and

261

number of search rounds. This was mainly owing to the high-quality initial solutions

generated by the random walk front-end. These initial solutions lead to high-quality

global solutions in a significantly low number of search rounds. Furthermore, the

chemotaxis allowed the algorithm to avoid oscillations in the searched region.

However, since the modified ATS approach required invoking the random walk front-

end frequently, the search process of this approach consumed longer time in

comparison with the standard ATS and ABFO algorithms. In addition, based on

experimental results, population-based metaheuristic methods like IWO and GA

showed moderate search performances compared with the single-solution based ones.

 In Chapter VII, applications of the proposed algorithms to various constrained

real-world problems and some abstract mathematical ones were carried out. Such

problems include three abstract mathematical constraint problems, optimal control

design of hard-disk heads (single-head and head-stacks), optimal control design of a

truck braking system, stability analysis of nonlinear systems, identification problems of

hard-disk head actuator and nonlinear Stribeck friction model, and a power drive

system. The results were compared between the proposed metaheuristic algorithms and

conventional designs. It was found that the proposed metaheuristic algorithms provided

superior results in all cases with less design complexity. In addition, the comparison

results between the BF-TS and the modified ATS were discussed. In most cases, faster

convergences, a smaller number of local deadlocks and a smaller number of search

rounds were found in the case of the modified ATS algorithm. In contrast, search time

per iteration consumed by the BF-TS was shorter than that by the modified ATS

because the modified ATS evaluated the objective functions more frequent than the BF-

262

TS did. This was due to the modified ATS spending time to execute its random walk

front-end.

 Since real-world optimization problems have become increasingly complicated,

solving such problems require considerably long CPU time. Meanwhile, personal

computers today have multiple cores that enable multiple threads to be executed

simultaneously. To take advantage of the hardware, parallel computing is considered as

a technique working with metaheuristics on multicore processors. Chapter VIII explains

to various meaning of parallelization. Definitions of parallel processing or parallel

computing, parallel programing and parallel metaheuristics have been described.

Furthermore, parallel computing in MATLAB and its significant functions employed by

Parallel Computing Toolbox
TM

 were exhibited with some simple examples given. The

parallel computing with MATLAB was applied to the modified ATS for solving a

complex design problem of an electric drive in order to reduce computing time. As a

result of running our parallel MATLAB program on a 4-core desktop computer, the

computing time was significantly decreased by 41.40%.

9.2 Future Works

From extensive studies of the thesis, several possible future works are identified.

They can be classified into five groups namely (i) algorithm development, (ii) search

performance assessment, (iii) convergence of algorithm, (iv) parallel computer clusters

and (v) applications. These are elaborated as follows.

263

 9.2.1 Algorithm Development

In recent years, some new groups of metaheuristics have emerged. They

are denoted as swarm intelligence, bio-inspired metaheuristics (without swarming) and

physics/chemistry-based metaheuristics. Each group has salient characteristics which

are able to enhance each other. It will be beneficial to the field of computational

intelligence providing such algorithms are explored. New metaheuristics could be

developed as cooperative algorithms and new metaheuristics. The newly developed

algorithms will be very useful for solving hard combinatorial optimization problems.

 Furthermore, developing the modified ATS algorithms proposed by the

thesis into “parallel metaheuristics” is very much encouraged. It is very challenging to

combine operation parallelization, space decomposition and multi-threads together to

achieve high performance algorithms. The algorithms to be obtained will be

interestingly tested on “parallel computer cluster” proposed in 9.2.4.

9.2.2 Search Performance Assessment

 A new set of algorithms necessarily needs a proper assessment in terms

of search performance. As a common practice, geometrical functions have been

recommended for the purpose. However, multi-dimensional functions sometimes used

are difficult to be visualized. Some researchers organize them into many groups of three

dimensional databases indexed by some variables of the same functions referred to as

pointers. We consider the approaches as theoretic because the functions and variables

bear no physical meanings. Therefore, we suggest for performance assessment that

researchers should conduct two main tasks. One is based-on geometrical functions, and

264

another on real-world problems. The real-world problems must be complicated enough

for this purpose. Here are our suggestions but not limited to:

 - Engineering problems: stability analysis of a large-scale complex nonlinear

system, optimization problems in a whole system of rail transports, a large-scale power

system (i.e. optimization of power flow and power quality, etc.), and a large-scale water

management.

 - Science problems: identification of some molecular structures, and

computational synthesis of new materials.

 - Management problems: optimization of logistic routes over a very large

area, and risk assessment and management of a stock market or a large organization.

9.2.3 Convergence of Algorithms

 It is rather unfortunate that most researchers in the field of computational

intelligence usually end-up with their proposed algorithms without a provision of

convergence property. We believe that algorithms with their convergence guaranteed

are very solid for being used by potential users. Based-on our survey, we have found

three possible approaches for convergence analysis such that we recommend

researchers to conduct one of the following ways:

 - probability-based method,

 - Markov-process-based method, or

 - energy-based (stability) method.

265

 9.2.4 Parallel Computer Clusters

 This thesis has demonstrated a parallelization of the proposed algorithms

on a single hardware platform. Hence, computing resources are clearly limited. For very

large-scale complex systems, more powerful hardware with more resources may be

necessary. One possible future work is to develop parallel computer clusters to work

with Distributed Computing Server
TM

 Toolbox. This will require an up-to-date hardware

development based-on existing PCs, notebooks, CPU-boards or the like.

 9.2.5 Applications

 As demonstrated by the thesis, metaheuristics are powerful tools for

solving very complicated problems. We have observed to date some challenging

problems that can be suitably tackled by metaheuristics are as follows:

 - Optimal design of a matrix converter with nonlinear loads,

 - Development of smart grid technology,

 - Optimal placement of distributed energy resources,

 - Optimal power flow problem,

 - Electrical machine design with unusual requirements on characteristics, and

so on.

266

REFERENCES

Abdelhadi B., Benoudjit A., and Nait-Said N. (2005). Application of Genetic

Algorithm with a Novel Adaptive Scheme for the Identification of Induction

Machine Parameters. IEEE Transactions on Energy Conversion. 20(2). pp.

284-391.

Ackermann T. and Soder L. (2002). An Overview of Wind Energy Status. Renewable

and Sustainable Energy Reviews. 6(1-2), pp. 67-127.

Alba E. (2005). Parallel Metaheuristics: A New Class of Algorithms. Published by

John Wiley & Sons, Inc., Hoboken, New Jersey.

Almasi G. S. and Gottlieb A. (1994). Highly parallel computing. 2nd ed., Redwood

City, Calif., Benjamin/Cummings Pub. Co.

Apap M., Clare J.C., Wheeler P.W., Bland M., Bradley K. (2003). Comparison of

Losses in Matrix Converters and Voltage Source Inverters. IEE Seminar on

Matrix Converters. pp. 4/1-4/6.

Armstrong-Helouvry B. (1993). Stick Slip and Control in Low-Speed Motion. IEEE

Transactions on Automatic Control. 38(10). pp. 1483-1495.

Armstrong-Helouvry B., Dupont P. and Cadudas de Wit, C. (1994). A Survey of

Model, Analysis Tools and Compensation Methods for the Control of Machines

with Friction. Automatica. 30(7). pp.1083-1138.

Bada A.T. (1987). Robust Brake Control for a Heavy-Duty Truck. IEE Proceedings.

134(1). pp. 1-8.

 267

Bagis A. (2006). Performance Comparison of Genetic and Tabu Search Algorithms for

System Identification. LNAI4251-Part I, Springer-Verlag, Berlin Heidelberg.

pp. 94-101.

Battiti R. and Tecchiolli G. (1994). The Reactive Tabu Search. ORSA Journal on

Computing. 6(2). pp. 126-140.

Bentley J. E. (2000). SAS Multi-Process Connect: What, When, Where, How, and

Why”. Conference Proceedings in SUGI26, Cary, NC: SAS Institute Inc.

Biswas A, Dasgupta S., Das S, Abraham A. (2007). Synergy of PSO and Bacterial

Foraging Optimization: A Comparative Study on Numerical Benchmarks, in: E.

Corchado et al. (Eds.), Second International Symposium on Hybrid Artificial

Intelligent Systems (HAIS 2007), Advances in Soft computing Series,

Springer Verlag, Germany, Innovations in Hybrid Intelligent Systems, ASC 44,

pp. 255-263.

Blum C. and Roli A. (2003). Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison. ACM Computing Surveys. 35(3). pp. 268-308.

Brown D. H., Christensen T.C, Cunningham E. A. and Rogelstad W. A. (2000). SELF

SERVO WRITING FILE. U.S. Patent. 6040955.

Cadudas de Wit C., Olsson H., Armstrong K.J. and Lischinsky P. (1995). A New

Model for Control of Systems with Friction. IEEE Transactions on Automatic

Control. 40(3). pp. 419-425.

Carawukh S., Sarasiri N., Boonpranchoo V., Kumbla K. and Sujitjorn S. (2011).

Application of Hybrid BF-TS Algorithms to Identification of HDD Actuator

Model, The 2011 World Congress on Engineering and Technology,

Shanghai, China, October 28-30, pp. 1-4.

 268

Carl B. (2002). Searching for Lyapunov Functions Using Genetic Programming.

http://www.aerojockey.com/files/lyapunovgp.pdf. pp. 1-13.

Casanellas F. (1994). Losses in PWM Inverters using IGBTs. IEE Proceedings on

Electric Power Applications. 141(5), pp. 235-239.

Chiang W.C. and Chiang C. (1998). Intelligent Local Search Strategies for Solving

Facility Layout Problems with the Quadratic Assignment Problem Formulation.

European Journal of Operational Research. 106. pp.457-488.

Chen B.M., Lee T.H., Peng K. and Venkataramanan V. (2003). Composite Nonlinear

Feedback Control for Linear Systems with Input Saturation: Theory and An

Application. IEEE Transactions on Automatic Control. 48(3). pp. 427-439.

Chen B.M., Lee T.H., Peng K. and Venkataramanan V. (2006). Hard Disk Drive

Servo Systems. 2
nd

 edition, Springer-Verlag, London.

Chen H., Zhu Y. and Hu K. (2009). Cooperative Bacterial Foraging Optimization.

Dynamics in Nature and Society. Hindawi Publishing Corporation Discrete

2009(815247). pp. 1-17.

Chen H., Zhu Y. and Hu K. (2010). Multi-Colony Bacteria Foraging Optimization with

Cell-to-Cell Communication for RFID Network Planning. Applied Soft

Computing. 10. pp. 539-547.

Cohen G. H. and Coon G. A. (1953). Theoretical Consideration of Retarded Control.

Transactions on ASME. 76. pp. 827-834.

Cook S.A. (1971). The Complexity of Theorem Proving Procedures. Conference

Proceedings, Third Annual ACM Symposium on the Theory of Computing,

New York. pp. 151-158.

 269

Courant, R. (1943). Variational Methods for the Solution of Problems of Equilibrium

and Vibrations. Bulletin of the American Mathematical Society. 49. pp. 1-

23.

Cupertino F., Mininno E., Naso D., Turchiano B., Salvatore L. (2004). Online Genetic

Design of Anti-Windup Unstructured Controllers for Electric Drives with

Variable Load. IEEE Transactions on Evolutionary Computation. 8(4). pp.

347-364.

Dadalipour B., Mallahzadeh A.R. and Davoodi-Rad Z. (2008). Application of the

Invasive Weed Optimization Technique for Antenna Configurations. IEEE

Conference on Antennas and Propagation. pp. 425-428.

Das S., Dasgupta S., Biswas A. and Abraham A. (2009). On Stability of the

Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm. IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans. 39(3). pp. 670-679.

Dasgupta S. Das S. Abraham A. and Biswas A. (2009). Adaptive Computational

Chemotaxis in Bacterial Foraging Optimization: An Analysis. IEEE

Transactions on Evolutionary Computation. 13(4). pp. 919-941.

Dasgupta S., Das S., Biswas A. and Abraham A. (2010). Automatic Circle Detection on

Digital Images with An Adaptive Bacterial Foraging Algorithm. Soft

Computing, Springer-Verlag. 14. pp. 1151-1164.

Davies B. (2002). Heaviside Step Function. Integral Transforms and their

Applications. 3rd edition. Springer.

 270

Di L. and Ze T. (2011). A Genetic Algorithm with Tabu Search for Multi-Objective

Scheduling Constrained Flexible Job Shop. IEEE Conference on Cross Strait

Quad-Regional Radio Science and Wireless Technology. pp. 1662-1665.

Diaz J., Munoz-Caro C. and Nino A. (2012). A Survey of Parallel Programming

Models

and Tools in the Multi and Many-Core Era. IEEE Transactions on Parallel

and Distributed Systems. 23(8). pp. 1369-1386.

Dong, F.D., Ang, K. and Wang, Y.Y. (2006). TMR Analysis and Controller Design for

Self-Servo Writing in High-Density Hard Disk Drives. IEEE Proceedings of

the International Conference on Control, Automation, Robotics and Vision.

pp. 1-7.

Dong W., Zanchetta P. and Thomas David W.P. (2008). Identification of Electrical

Parameters in a Power Network Using Genetic Algorithms and Transient

Measurements. IEEE Conference on Power Electronics and Motion

Control. pp. 1716-1721.

Dorf R.C. and Bishop R.H. (1995). Modern Control Systems (7
th

 ed.). Massachusetts:

Addison-Wesley.

Dorigo M., Maniezzo V. and Colorni A. (1996). Ant System: Optimization by a Colony

of Cooperating Agents. IEEE Transactions on Systems, Man and

Cybernetics-Part B. 26(1) pp. 29-41.

Du H. and Nair S. S. (1999). Modeling and Compensation of Low-Velocity Friction

with Bounds. IEEE Transactions on Control Systems Technology. 7(1). pp.

110-121.

 271

Eddy W. M. and Allman M. (2000). Advantages of Parallel Processing and the

Effects of Communications Time. Research Report-NASA Glenn

Research Center Report, Number CR-209455, Ohio Univ.; Athens, OH

United States. pp. 1-10.

Forgel L.J. (1962). Toward Inductive Inference Automata. Proceedings of the

International Federation for Information Processing Congress, Munich. pp.

395-399.

Gandomi A. H. and Alavi A. H. (2012). Krill Herd: A New Bio-Inspired Optimization

Algorithm. Communication on Nonlinear Science and Numerical

Simulation. 17(12). pp. 4831-4845.

Gebali F. (2011). Algorithms and Parallel Computing. Published by John Wiley &

Sons, Inc. Hoboken, New Jersey and Canada.

Genesio R. and Vicino A. (1984). New Techniques for Constructing Asymptotic

Stability Regions for Nonlinear Systems. IEEE Transactions on Circuit and

Systems. 31(6). pp. 574-581.

Glover F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research. 13. pp. 533-549.

Glover F. (1989). Tabu Search – Part I. (1989). ORSA Journal on Computing. 1(3).

pp. 190-206.

Glover F. (1990). Tabu search – Part II. (1990). ORSA Journal on Computing. 2(1).

pp. 4-32.

Glover F., Laguna M. and Marti R. (2000). Fundamentals of Scatter Search and Path

Relinking. Control and Cybernetics. 39(3) pp. 653-684.

 272

Goh T. B, Li Z., Chen B. M., Lee T. H. and Huan T. (2001). Design and

Implementation of a Hard Disk Drive Servo System Using Robust and Perfect

Tracking Approach. IEEE Transactions on Control Systems Technology. 9(2).

pp. 221-233.

Golnaraghi F. and Kuo B.C. (2009). Automatic Control Systems (9
th

 ed.). Wiley &

Sons, Incorporated, John

Golub G.H., Nash S. and Van Loan C. (1979). A Hessenberg-Schur Method for

Problem AX+XB=C. IEEE Transactions on Automatic Control. Ac-24(6).

pp. 909-913.

Graovac D. and Purschel M. (2009). IGBT Power Losses Calculation Using the Data-

Sheet Parameters. Application Note in Infineon. 1.1, pp. 1-17.

Grosman B. and Lewin D. R. (2008). Lyapunov-based Stability Analysis Automated by

Genetic Programming. Automatica. 45. pp.252-256.

Hamalainen W. (2006). Class NP, NP-complete and NP-hard problems. Lecture

online. pp. 1-7.

Holland J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,

USA: The University of Michigan Press.

Holland J.H. (1992). Genetic Algorithms. Scientific American, July. pp. 62-72.

Huang X., Horowitz R. and Li Y. (2005). Track Following Control with Active

Vibration Damping and Compensation of a Dual-Stage Servo System.

Microsystem Technology. pp.1276-1286.

IGW60T120 IGBT. (2009). Infineon Power Semiconductors.

Infolytica Corporation©. (2010). http://www.infolytica.com.

 273

Isayed B. M. and Hawwa M. A. (2007). A Nonlinear PID Control Scheme for Hard

Disk Drive Servosystems. IEEE Conference on Control and Automation,

ISBN: 978-1-4244-1282-2. pp. 1-6.

Jat S. A. and Yang S. (2011). A Hybrid Genetic Algorithm and Tabu Search Approach

for Post Enrolment Course Timetabling. Journal of Scheduling. 14(6). pp.

617-637.

Kann V. (1992). On the Approximability of NP-complete Optimization Problems.

Doctoral thesis, Department of Numerical Analysis and Computing Science,

Royal Institute of Technology, Stockholm, Sweden.

Karimkashi S. and Kishk A.A. (2010). Invasive Weed Optimization and its Features in

Electromagnetics. IEEE Transactions on Antenna and Prograntion. 58(4).

pp. 1269-1278.

Katsigiannis Y. A., Georgilakis P.S. and Karapidakis E. S. (2012). Hybrid Simulated

Annealing-Tabu Search Method for Optimal Sizing of Autonomous Power

Systems with Renewables. IEEE Transactions on Sustainable Energy. 3(3).

pp. 330-338.

Kennedy J. and Eberhart R. (1995). Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neural Networks IV. pp. 1942-1948.

Khalil H. K. (1992). Nonlinear Systems, New York: MacMillan.

Khwan-on S. (2011). Fault Tolerant Matrix Converter Motor Drives. Doctoral

thesis, University of Nottingham, Nottingham, UK.

Kim D. H., Abraham A. and Cho J. H. (2007). A Hybrid Genetic Algorithm and

Bacterial Foraging Approach for Global Optimization. Information Sciences.

177(18). pp. 3918-3937.

 274

Kirkpatrick S., Gellat C. and Vecchi M. (1983). Optimization by Simulated Annealing.

Science. 220. pp. 671-680.

Kluabwang J., Puangdownreong D. and Sujitjorn S. (2009). Performance Assessment

of Search Management Agent Under Asymmetrical Problems and Control

Design Applications. WSEAS Transactions on Computers. 8(4). pp. 691-704.

Kluabwang J. Thomthong T. (2012). Solving Parameter Identification of Frequency

Modulation Sounds Problem by Modified Adaptive Tabu Search under

Management Agent. International Conference on Advances in

Computational Modeling and Simulation. 31. pp. 1006-1011.

Koerner O., Brand J., and Rechenberg K. (2005). Energy Efficient Drive System for a

Diesel Electric Shunting Locomotive. Conference proceedings on Power

Electronics and Applications. pp. 1-10.

Krause P.C., Wasynczuk O. and Sudhoff S.D. (2002). Analysis of Electric Machinery

and Drive Systems. Wiley-IEEE Press.

Krishnan R. 2010. Permanent Magnet Synchronous and Brushless DC Motor

Drives. CRC Press-Taylor & Francis Group, LLC.

Kulworawanichpong T. and Sujitjorn S. (2002). Optimal Power Flow Using Tabu

Search. IEEE Power Engineering Review. 22(6). pp. 37-40.

Kulworawanichpong T., Areerak K.-N, Areerak K.-L. and Sujitjorn S. (2004).

Harmonic Identification for Active Power Filters via Adaptive Tabu Search

Method. LNAI3215-PartIII. Springer-Verlag. pp. 687-694.

Lenwari W., Sumner M., and Zanchetta P. (2009). The Use of Genetic Algorithms for

the Design of Resonant Compensators for Active Filters. IEEE Transactions

on Industrial Electronics. 56(8). pp. 2852-2861.

 275

Lidozzi A., Solero L., Crescimbini F., Burgos R. (2008). Vector Control of Trapezoidal

Back-EMF PM Machine using Pseudo-Park Transformation. IEEE Conference

on Power Electronics Specialists. pp. 2167-2171.

Li M. S., Tang W. J., Tang W. H., Wu Q. H. and Saunders J. R. (2007). Bacteria

Foraging Algorithm with Varying Population for Optimal Power Flow.

LNCS4448-Applications of Evolutionary Computing. Springer-Verlag. pp.

32-41.

Lin W., Cheng F. and Tsay M. (2001). Nonconvex Economic Dispatch by Integrated

Artificial Intelligence. IEEE Transactions on Power Systems. 16(2). pp. 307-

311.

Liu X., Liu J. and Lim C.K. (2003). Fem and Experimental Analysis of the Actuator

‘Butterfly’ Mode in a Hard-Disk Drive. Mechanical Systems and Signal

Processing. 17(5). pp. 955-964.

Liu Y. and He X. (2005). Modeling identification of power plant thermal process based

on PSO algorithm. Proceedings of the 2005 American Control Conference,

Portland, OR, USA. 7. pp. 4484-4489.

Liu Y. and Passino K.M. (2002). Biomimicry of Social Foraging Bacteria for

Distributed Optimization: Model, Principle and Emergent Behaviors. Journal

of Optimization Theory and Applications. 115(3). pp. 603-628.

Li Y., Horowitz R. and Evans R. (2003). Vibration Control of a PZT Actuated

Suspension Dual-Stage Servo System Using a PZT Sensor. IEEE Transactions

on Magnetics. 39(2). pp. 932-937.

 276

Majhi R., Panda G., Majhi B. and Sahoo G. (2009). Efficient Prediction of Stock

Market Indices Using Adaptive Bacterial Foraging Optimization (ABFO)

and BFO Based Techniques. Elsevier. 36(6). pp. 1-8.

Malesani L., Rossetto L., Tenti P. and Tomasin P. (1995). AC/DC/AC PWM Converter

with Reduced Energy Storage in the DC Link, IEEE Transactions on

Industry Applications. 31(2). pp. 287-292.

Mallahzadeh A. R., Es'haghi S., and Alipour A. (2009). Design of an E-Shaped MIMO

Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz. Progress

in Electromagnetics Research. pp. 187-203.

Mamun A. A., Lee T.H. and Low T.S. (2002). Frequency Domain Identification of

Transfer Function Model of A Disk Drive Actuator. Elsevier. 12(4). pp. 563-

574.

Martin O.C. and Otta S.W. and Felten E.W. (1992). Large-Step Markov Chains for the

TSP: Incorporating Local Search Heuristics. Operation Research Letter, 11.

pp. 219-224.

MathWorks. (2005). Genetic Algorithm and Direct Search Toolbox: for Use with

MATLAB, User’s Guide, version 1. MathWorks Inc., Natick, MA.

MathWorks. (2008). Parallel Computing Toolbox
TM

 User’s Guide, version 4,

MathWorks Inc., Natick, MA.

McKenney P.E. (2014). Is Parallel Programming Hard, And, If So, What Can You

Do About It?. Linux Technology Center IBM Beaverton.

Mehrabian A.R and Lucas C. (2006). A Novel Numerical Optimization Algorithm

Inspired from Weed Colonization. Ecological Informatics. 1. pp. 355-366.

 277

Mehrabian A.R. and Yousefi-Koma. (2007). Optimal Positioning of Piezoelectric

Actuators on a Smart in Using Bio-Inspired Algorithms. Aerospace Science

and Technology. 11. pp. 174–182.

Mehrabian A.R. and Yousefi-Koma. (2009). A Novel Technique for Optimal

Placement of Piezoelectric Actuators on Smart Structures. Journal of the

Franklin Institute 348(1). pp. 12-23.

Mishra S. (2005). A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for

Harmonic Estimation. IEEE Transactions on Evolutionary Computation.

9(1). pp. 61-73.

Mishra S. and Bhende C. N. (2007). Bacterial Foraging Technique-Based Optimized

Active Power Filter for Load Compensation. IEEE Transactions on Power

Delivery. 22(1). pp. 457-465.

Munoz M. A., Lopez J. A. and Caicedo E. (2007). Bacteria Foraging Optimization for

Dynamical Resource Allocation in a Multi Zone Temperature Experimentation

Platform, Analysis and Design of Intelligent Systems Using Soft Computing

Techniques. 41, pp.427-435.

MUR8100E diode. 2002. Fairchild Semiconductor datasheet.

Ngernbaht W., Areerak K.-L. and Sujitjorn S. (2009). Resonance and Friction

Compensation in a Micro Hard Drive. WSEAS Transactions on Systems. 8(2).

pp. 179-188.

Normey-Rico J.E. and Camacho E.F. (2007). Control of Dead-Time Processes.

Springer-Verlag, London.

 278

Noroozian M., Edris A.-A., Kidd D. and Keri A.J.F. (2003). The Potencial use of

Voltage-Sourced Converter-Based Back-to-Back Tie in Load Restorations,

IEEE Transaction on Power Delivery. 18. pp. 1416-1421.

Nowicki E. and Smutnicki C. (1996). A Fast Tabu Search Algorithm for the Flow Shop

Problem. European Journal of Operational Research. 91. pp. 160-175.

Oftadeh R., Mahjoob M.J. and Shariatpanahi M. (2010). A Novel Meta-Heuristic

Optimization Algorithm Inspired by Group Hunting of Animals: Hunting

Search. Computers and Mathematics with Applications. 60 (2010). pp. 2087-

2098.

Panikhom S., Sarasiri N. and Sujitjorn. S. (2010). Hybrid Bacterial Foraging and Tabu

Search Optimization (BTSO) Algorithms for Lyapunov’s Stability Analysis of

Nonlinear Systems. International Journal of Mathematics and Computes in

Simulation. 4(3). pp. 81-89.

Passino K.M. (2002). Biomimicry of Bacterial Foraging for Distributed Optimization

and Control. IEEE Control Systems Magazine. 22. pp. 52-67.

Pena R., Clare J.C., Asher G. M. (1996). Doubly Fed Induction Generator using Back-

to-Back PWM Converters and Its Application to Variable-Speed Wind-Energy

Generation. IEE Proceedings on Electric Power Applications. 143(3). pp.

231-241.

Peng K., Chen B. M., Cheng G. and Lee T.H. (2005). Modeling and Compensation of

Nonlinearities and Friction in A Micro Hard Disk Drive Servo System with

Nonlinear Feedback Control. IEEE Transactions on Control Systems

Technology. 13(5). pp. 708-721.

 279

Puangdownreong D., Areerak K.-N., Areerak K.-L., Kulworawanichpong T. and

Sujitjorn S. (2005). Application of Adaptive Tabu Search to System

Identification. Proceedings on IASTED International Conference. pp. 178-

183.

Puangdownreong D., Kulworawanichpong T. and Sujitjorn S. (2004). Finite

Convergence and Performance Evaluation of Adaptive Tabu Search.

LNCS3215-Knowledge-Based Intelligent Information and Engineering

Systems. pp 710-717.

Puangdownreong D. and Sujitjorn S. (2006). Image Approach to System Identification.

WSEAS Transactions on Systems. 5(5). pp. 930-938.

Puangdownreong D., Sujitjorn S. and Kulworawanichpong T. (2004). Convergence

Analysis of Adaptive Tabu Search. Science Asia: Research Article. 30(2004).

pp. 183-190.

Puangdownreong D., U-Thaiwasin C. and Sujitjorn S. (2006). Optimized Performance

of a 2-mass Rotary System Using Adaptive Tabu Search. WSEAS

Transactions on Systems. 5(3). pp. 339-345.

Rodriguez J., Dixon J., Espinoza J. and Lezana P. (2005). PWM Regenerative

Rectifiers: State of the Art, IEEE Transactions on Industrial Electronics. 52.

pp. 5-22.

Roosta S.H. (1999). Parallel Processing and Parallel Algorithms: Theory and

Computation. Springer-Verlag, New York, Berlin Heidelberg.

Russell S. and Norvig P. (1995). Artificial Intelligence: A Modern Approach. Upper

Saddle River: Prentice Hall.

 280

Saber A. Y. and Venayagamoorthy G. K. (2008). Economic Load Dispatch using

Bacterial Foraging Technique with Particle Swarm Optimization Biased

Evolution. Proceedings IEEE Swarm Intelligence Symposium, St. Louis

MO, USA. pp. 1-8.

Sarasiri N. and Sujitjorn S. (2011). Control Design Optimization of Truck Braking

System using Bacterial-Foraging-Tabu-Search Metaheuristics. World

Academy of Science, Engineering and Technology. 80. pp. 1189-1193.

Sarasiri N., Carawukh S., Boonpranchoo V., Kumbla K. and Sujitjorn S. (2011).

Identification of Hard-Disk Head Actuator Model Using Bacterial Foraging-

Tabu Search Metaheuristics. American Journal of Scientific and Industrial

Research. 2(4). pp. 686-689.

Sarasiri N., Srikaew A. and Sujitjorn S. (2010). Dynamic Compensation of Hard-Disk

R/W Head and Head-Stack, WSEAS Transactions on Systems, 9(7), pp. 764-

773.

Sarasiri N., Suthamno K. and Sujitjorn S. (2012). Bacterial Foraging-Tabu Search

Metaheuristics for Identification of Nonlinear Friction Model. Journal of

Applied Mathematics. 2012(238563). pp. 1-23.

Shao L. and Chen L. (2009). Motif Discovery Using Evolutionary Algorithms.

Proceedings International Conference on Soft Computing and Pattern

Recognition. Malacca. pp. 420-425.

Slotine J.J.E. and Li W. (1991). Applied Nonlinear Control. Prentice Hall Inc.,

Englewood Cliffs.

Sorensen D. C. and Zhou Y. (2003). Direct Method for Matrix Sylvester and Lyapunov

Equations. Journal of Applied Mathematics. 6. pp.277-303.

 281

Sriyingyong N. and Attakitmongcol K. (2006). Wavelet-Based Audio Watermarking

Using Adaptive Tabu Search. Proceedings IEEE. 1
st
 International

Symposium on Wireless Pervasive Computing. pp. 1-5.

Sujitjorn S. (2003). Automatic Control. Pearson Education Indochina. (in Thai)

Sujitjorn S. and Khawn-on S. (2006). Learning Control via Neuro-Tabu-Fuzzy

Controller. LNAI4251. pp. 833-840.

Sujitjorn S., Kluabwang J., Puangdownreong D. and Sarasiri N. (2010). Adaptive Tabu

Search and Management Agent, ECTI Transactions on Electrical

Engineering, Electronics and Communications, 8(1), pp. 1-10.

Sujitjorn S., Kulworawanichpong T., Puangdownreong D. and Areerak K-N. (2006).

Adaptive Tabu Search and Applications in Engineering Design. Book Chapters

in Integrated Intelligent Systems for Engineering Design (ed. X. F. Zha and

R.J. Howlett), IOS Press, The Netherlands. pp. 233-257.

Suthamno K. (2004). Parameter Estimation of Nonlinear Friction Model for A

Linear Slide Bed. Master’s Thesis, School of Electrical Engineering, Suranaree

University of Technology, Nakhon Ratchasima, Thailand.

Taghirad H. D. and Jamei E. (2008). Robust Performance Verification of Adaptive

Robust Controller for Hard Disk Drives. IEEE Transactions on Industrial

Electronics. 55(1). pp. 448-456.

Talbi E.G. (2002). A Taxonomy of Hybrid Metaheuristics, Journal of Heuristic, 8. pp.

542-564.

Talbi E.G. (2009). Metaheuristics. John Wiley & Sons, Hoboken, New Jersey, USA.

Tang K. S., Man K. F., Kwong S., and He Q. (1996). Genetic Algorithms and their

Applications. IEEE Signal Processing Magazine. 13(6). pp. 22-37.

 282

Tang W. J., Li M. S., Wu Q. H. and Saunders J. R. (2008). Bacterial Foraging

Algorithm for Optimal Power Flow in Dynamic Environments. IEEE

Transactions on Circuits and Systems 55(8). pp. 2433-2442.

Thangiah S.R. (1999). A Hybrid Genetic Algorithm, Simulated Annealing and Tabu

Search Heuristic for Vehicle Routing Problems with Time Windows. Practical

Hand book of Genetic algorithms, Complex Coding Systems.

Torres M., Espinoza R. and Ortega R. (2004). Modeling and Control of a High Voltage

Direct Current Power Transmission System Based on Active Voltage Source

Converters, Proceedings IEEE Power Electronics Specialists Conference.

pp. 1726-1731.

Tripathy M. and Mishra S. (2007). Bacteria Foraging-Based to Optimize Both Real

Power Loss and Voltage Stability Limit. IEEE Transactions on Power

Systems. 22(1). 240-248.

Tripathy M., Mishra S., Lai L.L. and Zhang Q.P. (2006). Transmission Loss Reduction

Based on FACTS and Bacteria Foraging Algorithm. LNCS4193- Parallel

Problem Solving from Nature IX., Springer-Verlag. pp. 222-231.

Uematsu, Y., Fukushi, M. and Taniguchi, K. (2001). Development of the Pushpin Free

STW. IEEE Transactions on Magnetics. 37(2). pp. 964-968.

Ulagammai, L., Vankatesh, P., Kannan, P.S. and Padhy N.P. (2007). Application of

Bacteria Foraging Technique Trained and Artificial and Wavelet Neural

Networks in Load Forecasting. Neurocomputing. 2659-2667.

Vilanova R. and Serra I. (1997). Realisation of Two-Degrees-of Freedom

Compensators. IEE Proceedings on Control Theory and Application. 144(6).

pp. 589-595.

 283

Viswanathan G. M ., Afanasyev V., Buldyrev S. V., Havlin S., Luz

M. G. E., Raposo

E. P. and H.Eugene Stanley. (2000). Lévy Flights in Random Searches. Physica

A: Statistical Mechanics and its Applications 282(1-2). pp. 1-12

Wang X. A. and Dayawansa. W. (1999). On Global Lyapunov Functions of Nonlinear

Autonomous Systems. Proceedings Conference on Decision and Control.

pp.1635-1639.

Wu T., Bozhko S., Asher G., Wheeler P. and Thomas D. (2008). Fast Reduced

Functional Models of Electromechanical Actuators for More-Electric Aircraft

Power System Study. SAE Technical Paper. pp. 1-10.

Xiang L., Ji-feng C., Jian-xum Q. and Shang-dong Y. (2007). Energy Transmission

Modes based on Tabu Search and Particle Swarm Hybrid Optimization

Algorithm. Journal of Central South University of Technology, Springer.

14(1). pp 144-148.

Xiuli Z., Yanchi G. (2012). An improved GRASP for Irregular Flight Recovery.

Proceedings International Conference on System Science and Engineering,

June 30-July 2, 2012, Dalian, China. pp 465-469.

Yang X. S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Journal on Nature

Inspired Cooperative Strategies for Optimization. 284. pp. 65-74.

Yang X. S. (2009). Firefly algorithms for multimodal optimization. Stochastic

LNCS5792-Algorithms: Foundations and Applications. Springer-Verlag

pp. 169-178.

Yang X. S. (2009). Harmony Search as a Metaheuristic Algorithm. Music-Inspired

Harmony Search Algorithm Studies in Computational Intelligence. 191, pp

1-14.

 284

Yang X. S. and Deb S. (2009). Cuckoo Search via Lévy Flights. Proceedings IEEE

World Congress on Nature & Biologically Inspired Computing. pp. 210-

214.

Yao X., Karady G.G., Farmer R.G. and Agrawal B.L. (2001). Estimation of Generator

Excitation-System Parameters by Tabu Search. Proceedings IEEE Power

Engineering Society-Winter Meeting. 3. pp. 1185-1190.

Zakian V. (2005). Control systems design-A new framework. Springer-Verlag

London.

Zanchetta P., Wheeler P., Empringham L. and Clare J. (2009). Design Control and

Implementation of a Three-Phase Utility Power Supply Based on the Matrix

Converter. IET Power Electronics. 2(2). pp. 156-162.

Zhang G., Habenicht W and SpieB W.E.L. (2003). Improving the Structure of Deep

Frozen and Chilled Food Chain with Tabu Search Procedure. Food

Engineering. 60(1). pp. 67-79.

Zhanoqing H., Chengxiong M. and Jiming L. (2004). A Novel Control Strategy for

VSC Based HVDC in Multi-Machine Power Systems. Journal of Electrical

and Electronics Engineering. 4. pp. 1183-1190.

Zhaolu T. and Chuanqing G. (2008). A Numerical Algorithm for Lyapunov Equations.

Applied Mathematics and Computation 202. pp.44-53.

Zheng C. and Wang P. (1996). Parameter Structure Identification using Tabu Search

and Simulated Annealing. Advances in Water Resources. 19(4). pp. 215-224.

Ziegler J. G. and Nichols N. B. (1942). Optimum Setting for Automatic Controllers.

Transactions on ASME. 64. pp. 759-768.

 285

Zou G., Zhao Z., Yuan L., Wang X. and Lu T. (2011). Optimal Design of the Back-to-

Back IGBT-Based Converter with the Concept of Systematic Safe Operating

Area. Proceedings International Conference on Electrical Machines and

Systems (ICEMS). pp. 1-5.

APPENDIX A

HARD DISK DRIVE CONVENTIONAL CONTROL

DESIGNS AND ANTI-RESONANCE FILTERS

287

A.1 Notch Filter for Single R/W Head

The frequency responses of the R/W heads contain several resonance modes as

illustrated by Figure 7.6(b). If they are not properly treated beforehand, some of them

will remain after compensations, and seriously destabilize the R/W heads due to high

frequency noise and disturbance. In particular, the suspension’s structural vibration

occurs during the track-following mode since the resonance is excited during the track-

seeking operation (Chen et al., 2006; Huang et al., 2005). One approach to solve this

resonance problem is to use a notch or an anti-resonance filter (Golnaraghi and Kuo,

2009) of the form as in equation (A.1).

2 2

0 0

2 2

0 0 0

2
()

2

n

n

s s
G s

s s

ζ ω ω

ζ ω ω

+ +
=

+ +
 (A.1)

where 0ω is an estimated resonant frequency, and 0ζ ,
n

ζ are dominator and numerator

damping factors, respectively. The design herein follows the procedures described by

Golnaraghi and Kuo, 2009. Referring to the responses in Figure 7.6(b), the dominant

resonant frequencies are at 5.89, 6.64 and 14.10 kHz, respectively. Substitute 0ζ = 1,

n
ζ = 0.1 and the resonant frequencies into equation (A.1), the obtained notch filter can

be expressed by

2 9 2 9 2 4 9

2 9 2 9 2 5 9

7402 1.37 10 8344 1.741 10 1.772 10 7.849 10
()

74020 1.37 10 83440 1.741 10 1.772 10 7.849 10nsh

s s s s s s
G s

s s s s s s

+ + × + + × + × + ×=
+ + × + + × + × + ×

 (A.2)

288

Bode Diagram

Frequency (Hz)

-150

-100

-50

0

50

100

150

M
a
g
n
it

u
d
e
 (

d
B

)

10
3

10
4

10
5

-360

-180

0

180

360

P
h
a
se

 (
d
e
g
)

Figure A.1 Frequency responses of the single R/W head without and with notch filter.

Figure A.1 illustrates the frequency responses of the single head. It can be

clearly seen that the designed notch filter properly suppress the severe resonant

frequencies. In the resonant frequency ranges after compensation, the magnitudes of the

frequency responses are well below 0 dB. However, phase instability is still another

problem, which is addressed in the next section.

A.2 Compensation Design for Single R/W Head

 According to the use of notch or anti-resonance filter for the single R/W head,

the gain and phase margins are inf. dB and -78.30 deg., respectively. This unstable

phase margin must be compensated for by a phase-lead compensator. The design

procedures are referred to Dorf, Bishop and Sujitjorn (Dorf and Bishop, 1995; Sujitjorn,

2003).

289

-150

-100

-50

0

50

M
ag

n
it
u
d
e
 (
d
B

)

10
4

10
5

-360

-180

0

180

P
h
a
se

 (
d
e
g
)

Bode Diagram

Gm = 36.3 dB (at 8.84e+004 rad/sec) , Pm = -78.3 deg (at 1.25e+004 rad/sec)

Frequency (rad/sec)

Gain margin = - 8.03 dB

Phase margin = 1.68 rad/sec

Figure A.2 Frequency responses of the single R/W head with notch filters.

Firstly, the maximum phase,
max1
φ , is determined. A safety factor of 5 deg. is

used. The phase margins of this uncompensated system (
uncomp

PM) and the specified

phase margins (
comp

PM) are 78.30− deg. and 50 deg., respectively. Thus, the required

max1
φ is approximately 140 deg. (practically,

maxφ should be 75≤ deg.) which is considered

as an excessive phase demanded. Only one compensator structure cannot handle this

instability. Therefore, a multi-stage compensator is need. In this work, we consider to

use 3 first-order compensators in cascade connection. Next α is calculated from

() ()max1 max11 sin 1 sin 4.60α φ φ= + − = in accordance with
max1
φ =140 deg. The corresponding

magnitude can be determined as 10 log = 6.63 dBα− − , which occurs approximately at

4

1
1.68 10 rad/sec

m
ω = × (see Figure A.2). The compensator’s pole and zero can be

obtained from 4

1
4.23 10

m
p ω α= = × rad/sec, and

36.67 10z p α= = × rad/sec, respectively.

290

Hence, the ratio 6.34p z = . This compensator somewhat theoretic renders

21.80 dB
comp

GM = and 55.20 deg.
comp

PM = − To stabilize the phase instability, it is

expected to require at least another two compensators of the same class.

The design of phase-lead compensators follows similar procedures as mentioned

earlier. The specified phase margin (
comp

PM) is used 25 deg. in this case, thus the

maximum phase shifts
max 2
φ and

max 3
φ for the expressions (7.3) and (7.4) (see Chapter 7)

are approximately60 deg. and 80 deg.; their corresponding α values are 13.93 and

130.65, respectively. The magnitudes in the form of 10 logα− are subsequently

calculated equal to -11.45 dB and -21.16 dB, which are stated at 4

2
8.87 10 rad/sec

m
ω = ×

and 4

3
9.78 10 rad/sec

m
ω = × for the expressions (7.3) and (7.4), respectively. Expression

(A.3) declares these 3 compensators in series connection. The total constant gain is

calculated equals to 4
1.16 10× but for the appropriate one, in this system has been used

3
1.80 10× in order to decrease a high overshoot value. The third order phase-lead

compensator can be expressed by equation (A.3). Step and frequency responses of the

R/W single head with anti-resonance filters and the third-order phase-lead

compensators are shown in Figures A.3(a) and A.3(b), respectively.

3 4 3
3

1 4 5 6

 s + 6.67 10 s + 2.377 10 s + 8.557 10
1.80 10

s + 4.23 10 s + 3.311 10 s + 1.118 10
PL

G
 × × ×

= × × × ×
 (A.3)

291

Step Response

Time (sec)

A
m

p
li
tu

d
e

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Overshot(%) = 32

Rise time(sec) = 0.000147

Settling time (sec) = 0.00115

(a)

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

10
3

10
4

10
5

-630

-540

-450

-360

-270

-180

-90

0

P
h

as
e

(d
eg

)

Bode Diagram

Gm = 26.1 dB (at 4.83e+004 Hz) , Pm = 48.7 deg (at 1.35e+003 Hz)

Frequency (Hz)

(b)

Figure A.3 Responses of the single R/W head with anti-resonance filters and the third-

order phase-lead compensator; (a) step response and (b) bode plot.

 Referring to Figure A.3(a), the step response of the compensated head is quite

fast with zero steady-state errors although it overshoot of 32% is quite high. The

Overshoot (%) = 32

Rise time (sec) = 0.000147

Settling time (sec) = 0.00115

292

corresponding bode plot in Figure A.3(b) indicates the gain margin of 26.10 dB and the

phase margin of 48.70 deg.

A.3 Anti-Resonance Filters for R/W Head-Stacks

The anti-resonance filters for the R/W head-stacks are designed as in the form of

equation (A.1). Referring to Figure 7.12(b) for the head-stack, only 2 resonant

frequencies are considered, which are 1.85 and 4.82 kHz, respectively. The damping

factors 0ζ = 1 and
n

ζ = 0.01, are also used. The filter transfer function is shown in

equation (A.4), and bode plots for the head-stacks with and without filters are illustrated

in Figure A.4. It can be easily observed that notch filters suppress the resonant

magnitudes to well below 0 dB.

2 8 2 8

2 8 2 8

232.5 1.351 10 605.7 9.172 10

23250 1.351 10 60570 9.172 10nhs

s s s s

s s s s
G

+ + × + + ××
+ + × + + ×

= (A.4)

-150

-100

-50

0

50

M
a
g
n
it

u
d
e

(d
B

)

10
2

10
3

10
4

10
5

-360

-180

0

180

360

P
h
a
se

 (
d
eg

)

Bode Diagram

Frequency (Hz)

without notch filter

without notch filter

with notch filter

with notch filter

Figure A.4 Bode plots of the R/W head-stacks with and without notch filters.

293

A.4 Compensation design for R/W Head-Stacks

Referring to the previous design of the filters for the R/W head-stacks, this

compensated system renders the gain and phase margins of -28.60 dB and -31.30 deg.,

respectively. These margins need good stabilization. Again, three-stage phase-lead

compensators are considered. Their designs follow similar procedures described

previously. So, detailed explanation is omitted herein. We start with the phase demand

from the 1
st
 compensator is set to be 85 deg. =

max1
φ . This results in α = 524.58,

3

1 8.98 10 rad/sec
m

ω = × , p = 5
2.78 10× rad/sec, z = 2

2.82 10× rad/sec and 958.52p z = .

Bode plot in Figure A.5 accompanies the design. It is found that 4.86 dB
comp

GM = and

32.90 deg.
comp

PM = We shall incorporate two more phase-lead compensators in order to

increase the PM up to 40 deg. or higher.

-150

-100

-50

0

50

M
a
g

n
it

u
d

e
 (

d
B

)

10
3

10
4

10
5

10
6

-720

-540

-360

-180

0

P
h

a
se

 (
d

e
g

)

Bode Diagram

Gm = -28.6 dB (at 500 rad/sec) , Pm = -31.3 deg (at 2.38e+003 rad/sec)

Frequency (rad/sec)

Gain margin = -27.20 dB

Phase margin = 8.98x10
3
 rad/sec

A.5 Bode plot of the R/W head-stacks with notch filters.

294

 Regarding this need, two phase-lead compensators are designed to provide

max 2
φ and

max 3
φ = 40 deg. and 30 deg. (from expressions (7.11) and (7.14) in Chapter 7),

respectively. The α values are 4.60 and 3.0 with the associative frequencies at

3

2 3.37 10 rad/sec
m

ω = × and 3

3 3.08 10 rad/sec
m

ω = × , respectively. Therefore, the overall

transfer function of the required compensator is described by (A.5).

2 3 3

5 3 32

 s + 2.82 10 s + 1.570 10 s + 1.780 10
50

s + 2.78 10 s + 7.225 10 s + 5.341 10
PL

G
× × ×

× × ×

=

 (A.5)

0 0.005 0.01 0.015 0.02 0.025
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

A
m

p
li
tu

d
e

Step Response

(a)

295

-150

-100

-50

0

50

M
a
g

n
it

u
d

e
 (

d
B

)

10
2

10
3

10
4

10
5

-360

-180

0

180

360

P
h

a
se

 (
d

e
g

)

Bode Diagram
Gm = 9.33 dB (at 886 Hz) , Pm = 40.9 deg (at 367 Hz)

Frequency (Hz)

(b)

Figure A.6 Responses of the R/W head-stacks with anti-resonance filters and the 3-

stage phase-lead compensator: (a) time-domain and (b) bode plot.

 Referring to Figure A.6, the step response of the compensated head-stacks is fast

with zero steady-state errors, and a large overshoot of 41% approximately. From the

bode plot, we achieve 9.33 dB
comp

GM = and 40.90 deg.
comp

PM =

APPENDIX B

CONVENTIONAL CONTROL DESIGN FOR A HEAVY-

DUTY TRUCK

297

 The manufacturer's design specifications call for the simplest controller form,

but a proportional controller is unsuitable because the contribution to the input from a

sloping road, in the form of a ramp, generates a steady state error. This is avoided by

choosing the controller to be of proportional-plus-integral (PI) form which can decrease

the rise time and eliminate the steady-state error. In order to design the controllers, the

conditioning circuits and disturbance force are omitted. For comparisons, the designs of

the PI-controller apply the simple internal model control (SIMC) method, Ziegler-

Nichol method, Cohen-Coon method, respectively.

B.1 SIMC method (Normey-Rico and Camacho, 2007)

 The simplified model of the truck braking system is shown in Figure B.1.

()R s ()C s

Figure B.1 Standard feedback control system.

 The transfer function K(s) represents the controller. The transfer function G(s)

includes the air servo valve, the power changer and the braking force generator. Due to

the plant is in second-order-plus-delay-time (SOPDT) form, so a PI controller based on

298

the SIMC method is adapted in this case. According to the SIMC method, the plant

representation is

1 2

()
(1)(1)

Ls

p
k e

G s

sT sT

−

=
+ +

 (B.1)

where
p

k is a nominal values of the gain defined as 1; L is dead-time equal to 0.125

seconds;
1

T is a time constant of the servo valve equal to 0.4 seconds and
2

T is a time

constant of the power changer equal to 0.1 seconds.

The method considers the PI-controller of the following form

1

() I

SIMC c

I

sK
K s k

sK

 +
=

 (B.2)

in which
1

(2)
c p

k T Lk= =1.6, and 1min(,8)
I

K T L= = 0.4. Therefore,

1 0.4

1.6
0.4

()
SIMC

s

s
K s

+
=

 (B.3)

299

B.2 Ziegler-Nichol method (Ziegler and Nichols, 1942)

The Ziegler-Nichol method is the most famous tuning method, which can be

found in many introductory textbooks. Tuning PI parameters using the Ziegler-Nichol

method is as follows

 ()
ZN

I

P

K
s KK

s
= + (B.4).

Gains
P

K and
I

K are computed from

0.45
CP

K K= (B.5)

P

i

I

K
K

T
= (B.6)

where
C

K is the proportional gain giving a sustained oscillation. Using the proportional

control action as in Figure B.2, slowly increase
p

k from 0 to a critical value at which the

output, c(t), first exhibits sustained oscillations as Figure B.3. Thus, the critical

gain,
C

K and the corresponding period (time), 0T , are experimentally determined, 4.97

and 0.7 seconds, respectively. The relation 00.83
i

T T= is to obtain the time-constant,

i
T .

300

()r t p
k

()u t
()c t

Figure B.2 Close loop system for tuning sustained oscillation.

Figure B.3 Sustained oscillation with period, 0T .

Therefore,

3.85

() 2.24
ZN

K s
s

= + (B.7).

B.3 Cohen-Coon method (Cohen and Coon, 1953)

Another well-known method used by industry for controller tuning is the

Cohen–Coon method. This method is similar to the Ziegler-Nichols method, but

c
(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Step Response

Time (sec)

A
m

p
li

tu
d
e T0 = 0.7 seconds

KC = 4.97

301

provides better results when the controller has a large dead-time relative to the time

constant. The Cohen-Coon tuning is as follows:

0.9 0.92
1

1
p

K
a

τ

τ
 = +

−
 (B.8)

3.3 3

1 1.2
i

T L
τ

τ

− =
+

 (B.9)

where
0C

a K L T= = 0.8875 and the dead-time, /()L L Tτ += = 0.1515 seconds. Note

that
C

K , L and
0

T are the same parameters as those in the Ziegler-Nichol method.

Therefore,

3.92

1.81()
CC

K s
s

+= (B.10)

APPENDIX C

NONLINEAR FRICTION MODEL AND EXPERIMENTAL

SETUP

303

C.1 Nonlinear Friction Model

 A stick-slip phenomenon occurs, when two solid materials translating over one

another at very low velocity. This phenomenon is caused by nonlinear friction

characteristics also known as Stribeck’s effect (Armstrong-Helouvry, 1993). An

effective model describing the friction can be represented by the curve in Figure C.1,

and is referred to as complex friction model or Stribeck model (Armstrong-Helouvry,

1994; Cadudas, et al., 1995; Du, and Nair, 1999). When an applied force to a mass

cannot overcome the static friction, which is represented by either
S

F + or
S

F − depending

on the direction of motion, the mass cannot move. This situation is referred to as stick

model, and described by the stick-friction force

Figure C.1 Stribeck friction curve.

304

,

() ,

,

s in s

in s in s

s in s

instick

F F F

F F F F F F

F F F

+ +

− +

− −

>

= ≤ ≤
 <

 (C.1)

 Once the applied force is greater than the static friction, the mass begins

moving. After a certain period of time, the mass keeps up a higher velocity during

which it encounters both coulomb and viscous frictions. This situation is known as slip

mode, and described by the slip-friction force

 () ()
() . .sgn() .

C S C v

v
vss

slip
F v F F F e v F v

−
= + − +

 (C.2)

To cover the whole velocity range, the friction force can be expressed in a compact

form as

() , 0

 (,)
() , 0

stick in

f in

slip

F F v
F v F

F v v

 =
= ≠

 (C.3)

C.2 Experimental Setup

A closed loop position control system is a necessary test bed for monitoring

stick-slip phenomenon. The diagram in Figure C.2 represents the experimental setup

(Suthamno, 2004). The linear slide bed is the controlled plant consisting of a dc motor,

a threaded rod, a reflector, and an ultrasonic transducer (UC3000-UIE2). The effective

moving range of the reflector is 0-400 mm with the home position at the middle. In test

mode, the motion control circuit performs an initial test move of the reflector for the

305

whole range and, eventually, places the reflector at the home position. For the reflector

to follow a ramp command, a closed loop position control has been built. The hardware

components consist of a PC as a P-controller, a 12-bit ADC, a 2Q-drive circuit, a

current sensor, an ultrasonic transducer, a 2nd-order differentiator producing a speed

signal from a position signal, and a few signal conditioning circuits including zero-span

circuits and a bipolar voltage generator, respectively, and a dc power supply. In control

mode, the motion follows an up-down ramp command directing the reflector to move

rightward (positive direction, ramp-up command) and leftward (negative direction,

ramp-down command). The reflector moves in the range of 50-350mm in the control

mode. A desired speed can be set via the keyboard of the PC functioning as a P-

controller. Position of the reflector during several test runs is measured and recorded.

306

3
0
6

Figure C.2 Circuit diagram representing the experimental setup courtesy of K. Suthamno, 2004.

APPENDIX D

SYSTEM OF PERMANENT MAGNET SYNCHRONOUS

MOTOR DRIVE

308

This appendix presents mathematical models of main components of the drive

system. Fundamental concepts are also explained. The models are for design,

simulation and optimization tasks carried out by the author.

D.1 Permanent Magnet Synchronous Motor

The three-phase windings of a PMSM are Y-connected. In the following

analysis, the assumption of sinusoidally distributed windings and sinusoidal flux

linkage are considered. The equivalent model of the three-phase PMSM is illustrated in

Figure D.1, and the voltage equations for the stator windings are given by equations

(D.1)-(D.3).

as
v

+

as
i

s
R

s
L

Neutral

s
R

s
L

s
R

s
L

bs
i

bs
v

+

cs
i

cs
v
+

Figure D.1 The Y-connected model of the three-phase PMSM

as

as s as

d
v R i

dt

ψ
= + (D.1)

309

bs

bs s bs

d
v R i

dt

ψ
= + (D.2)

cs

cs s cs

d
v R i

dt

ψ
= + (D.3)

where
as

v ,
bs

v and
cs

v are the phase stator voltages;
as

i ,
bs
i and

cs
i are the phase stator

currents;
as

ψ ,
bs

ψ and
cs

ψ are the flux linkages, and
s

R is the resistance of each stator

winding.
s

L also appears in the Figure D.1, and represents the inductance of each

winding. The three-phase flux linkages can be written in terms of self- and mutual-flux

linkages, and the corresponding inductances and currents as

sin()
as aa as ab bs ac cs m r

L i L i L iψ ψ θ= + + + (D.4)

2

sin()
3

bs ba as bb bs bc cs m r
L i L i L i

π
ψ ψ θ= + + + − (D.5)

2
sin()

3
cs ca as cb bs cc cs m r

L i L i L i
π

ψ ψ θ= + + + + (D.6)

where
aa

L ,
bb

L and
cc

L are self-inductances of the a-, b- and c-phase stator windings,

respectively;
ab

L ,
ac

L ,
ba

L ,
bc

L ,
ca

L and
cb

L are the mutual inductances between the stator

phases.
m

ψ is the magnitude of the flux linkage, and
r

θ is the angular rotor position. The

self- and mutual-inductances are found below

 cos(2)
aa ls m m r

L L L L θ∆= + − (D.7)

310

4

cos(2)
3

bb ls m m r
L L L L

π
θ∆= + − − (D.8)

4
cos(2)

3
cc ls m m r

L L L L
π

θ∆= + − + (D.9)

1 2
cos(2)

2 3
ab ba m m r

L L L L
π

θ∆= = − − − (D.10)

1 2
cos(2)

2 3
ac ca m m r

L L L L
π

θ∆= = − − + (D.11)

1
cos(2)

2
bc cb m m r

L L L L θ∆= = − − (D.12)

where
ls

L is the stator leakage inductance;
m

L is the average value of the magnetizing

inductance, and
m

L∆ is half the amplitude of the sinusoidal variation of the magnetizing

inductance.

 The most importance output variable is the electromagnetic torque which

determines the mechanical dynamics of the machine, such as the rotor position and

speed (Krishnan, 2010; Khwan-on, 2011). The electromagnetic torque is expressed as

2 2
cos() cos() cos()

2 3 3
e m as r bs r cs r

P
T i i i

π π
ψ θ θ θ = + − + +

 (D.13)

where P is the number of poles. Based-on the Newton’s second law, the mechanical

equation of the motor is given by

311

m

e m m L

d
J T B T

dt

ω
ω= − − (D.14)

m

m

d

dt

θ
ω= (D.15)

where
m

ω is the mechanical angular velocity of the rotor;
m

θ is the mechanical angular

position of the rotor; J is the motor moment of inertia;
m

B is the viscous coefficient;
e

T is

the electromagnetic torque produced by the motor, and
L

T is the external load torque.

D.2 Parameters of Permanent Magnet Synchronous Motors

Engineers from many industries use InfolyticaTM software for magnetic, electric,

and thermal analyses. The software is used for the design and analysis of

electromechanical devices, non-destructive tests (NDT), induction heating, power

electronics, sensors, and industrial transformers (http://www.infolytica.com).

Therefore, the parameters of a PMSM are generated by using MotorSolve, a software

created by (Infolytica Corporation©, 2010). Table D.1 shows the parameters of a 10-

pole PMSM.

Table D.1 Parameters of the permanent magnet synchronous motor by MotorSolve.

Parameters 10-pole machine

Magnetic flux (
m

ψ) 0.0313 Wb

Mechanical torque (Tm) 10 Nm

Moment of inertia (J) 0.000538 kgm
2

Motor speed (Nm) 1,0000 rpm

Stator leakage inductance (Ls) 1.2 mH

Stator resistance (Rs) 0.124Ω

Viscous friction coefficient (Bm) 0.0051 Nm.s

312

D.3 Back-to-Back Converter

The structure of a back-to-back converter is shown in Figure D.2. This research

considers the 3-phase loads 10-pole permanent synchronous motors (PMSM). The

basic concepts related to the back-to-back converter are analyzed. The first part of this

chapter is related to the input filter design. The following sections present the dq

analysis of the PWM rectifier and the PMSM which are used for designing the current

control loops, the DC-link voltage control and the motor speed control. The

conventional design explained in this thesis is used to compare with the optimum

designs by using the proposed metaheuristic algorithms in Chapter 7.

ω

Figure D.2 Back-to-back converter topology.

 The input-side filters are necessary in order to reduce the harmonic contents of

the input current. The effect of power factor can be maintained at almost unity. As

shown in the Figure D.2, usually series inductors-resistors are implemented to filter out

the harmonics generated by the converters. Since the converters operate at high

switching frequencies, the distorted input currents contain high-frequency components.

313

The input filters help smooth the input currents, and reduce the input voltage distortion

at the same time. The line input filter is connected between the converter and the input

source. The input filter inductance can be designed using equation (D.16) (Zou et al.,

2011).

()
max

2 3

2

DC s s

f

DC s

E V V
L

E i f

−
≥

∆
 (D.16)

where
DC

E and
s

V are the DC-link voltage (1,000 Vdc) and input voltage (240 Vrms(ph)),

respectively. According to simulation by MATLAB/SIMULINK, the input current

waveforms of 10-pole machine without the input filters are shown in Figure D.3. The

maximum input-side harmonic currents maxi∆ appear in the fifth-order harmonic (h),

2.11 Arms. To design the input filter inductance for this machine, the maximum

maxi∆ value equal to 2.11 Arms is applied. The switching frequency,
s

f is 20 kHz.

According to equation (D.16), the input filter inductance is
f

L ≥ 3.26 mH, and hence

3.30 mH is used. The internal resistance of this inductor is equal to 0.13Ω (a small

resistance is used in order to obtain minimum power loss) which is related to the

quality factor expression / 2 /
L f f

Q X h R fhL Rπ= = . Most of inductors have Q values

that are less than 100 when used in their intended frequency ranges, so the quality

factor is selected to be 40.

314

0.04 0.05 0.06 0.07 0.08 0.09 0.1
-200

0

200
Input current

Time (sec)

C
u

rr
en

t
(A

)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60
Harmonic spectrums

Order of harmonics

A
m

p
li

tu
d

e
o

f
h

ar
m

o
n

ic
s

(A
rm

s)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Order of harmonics

A
m

p
li

tu
d

e
o

f
h

ar
m

o
n

ic
s

(%
)

Figure D.3 Simulated input current waveform of a 10-pole machine.

D.4 DQ Analysis Model of PWM Rectifier and PMSM

The transformation matrix to convert three-phase (abc) to the dq frame with

zero-sequence component can be obtained in the following forms (Rodriguez et al.,

2005; Lidozzi et al., 2008)

0

1 1
1

2 2

2 3 3
0

3 2 2

1 1 1

2 2 2

a

b

c

f f

f f

ff

α

β

 − −

 = −

 (D.17)

2 4 6 8 10
0

1

2

3

2.11 Arms
Iinput = 24.71 Arms

THDinput = 61.59%

315

00

 cos sin 0

sin cos 0

 0 0 1

d

q

f f

f f

ff

α

β

θ θ
θ θ

 = −

 (D.18)

and the inverse transformations are given by

0 0

cos sin 0

sin cos 0

0 0 1

d

q

f f

f f

f f

α

β

θ θ
θ θ

 −
 =

 (D.19)

0

 1 0 1

1 3
 1

2 2

1 3
 1

2 2

a

b

c

f f

f f

f f

α

β

 = −
 − −

 (D.20)

where fα , fβ and 0f represent the ,α− β − and 0 axis− components;
a

f ,
b

f and
c

f

denote either current or voltage in the three-phase abc frame;
d

f ,
q

f and 0f are the

,d− q − and 0 axis− components to be obtained. The angle θ corresponding to the

supply voltage vector is calculated by

 1tan
f

f

β

α

θ −= (D.21)

316

To calculate the angle θ for sinusoidal waveforms, fα and fβ can be either voltage or

current. These dq-transformations are utilized for the control of the back-to-back

converter and the PMSM.

D.4.1 The dq Analysis Model of PWM Rectifier

 The designs these control system of the PWM rectifier is first explained

in this section. The control configuration is shown in Figure D.4. The control structure

consists of two internal current loops, ,
d

i
q

i with one external DC-link voltage,
DC

E .

The three-phase supply and the input currents are transformed into the two-axisαβ

reference frame, and then into the rotating dq reference frame which is synchronized

with the input impedances.
DC

E is compared with the reference voltage *

DC
E , and the

difference is processed by a PI-voltage controller. The reference dq currents, *

d
i and *

q
i

are compared with the transformed currents,
d

i and
q

i , and the differences are

processed by PI-current controllers such that *

d
v and *

q
v be generated. The reference

voltages from the controllers are transformed by dq-/αβ -frame into the three-phase

system. The last stage of the control system is to transform the reference voltages into a

pulse width modulation pattern designed by the block PWM.

317

*

DC
E

+

−
DC

E
*

d
i

+ −

'

d
v a

v

b
v

c
v

'

q
v

*

d
v

*

q
v

d
i

q
i

d
v

e
Lω

L

Re
Lω

*

q
i

+ −
− −

− +

+

+

a
i

b
i

c
i

a
v

b
v

c
v

vα

vβ
αβ

dq αβ

abc

αβ

dq αβ

abc

vα

vβ

αβ

dq αβ

abc

iα

iβ

θ 1tan
v

v

β

α

−

DC
E

Figure D.4 Control structure for a 3-phase PWM rectifier based-on the dq reference

frame (Wu et al., 2008).

The error between the reference and the measured DC link voltage produces the

reference current, *

d
i , for the d-axis current. The error between this reference and the

measured d-axis currents (
d

i) generates '

d
v . The voltage balance equations across the

input line impedance (R-L) are expressed in terms of the input source-connected

reference frame as follows

*

*

*

a a a a

b b b b

c c c c

v i i v

d
v R i L i v

dt
v i i v

 = + +

 (D.22)

Using the transformation matrix to convert three-phase (abc) to dq rotating reference

frame at
e

ω ,

318

*

d d d e q d

d
v Ri L i Li v

dt
ω= + − + (D.23)

*

q q q e d q

d
v Ri L i Li v

dt
ω= + + + (D.24)

where
e

ω is the angular frequency of the rotating dq reference frame, *

d
v and *

q
v are the

input terminal voltages in the dq-frame. Let '
/

d d d
v Ri Ldi dt= + and ' /

q q q
v Ri Ldi dt= + ,

the equations (D.23) and (D.24) can be rewritten as

* '

d d e q d
v v Li vω= − + + (D.25)

* '

q q e d q
v v Li vω= − − + (D.26)

When aligning the direct axis of the rotating reference frame along the input voltage

vector,
q

v naturally becomes zero, and the amplitude of the supply voltage
d

v is constant

(Pena et al., 1996; Wu et al, 2008). Thus,

* '

d d e q d
v v Li vω= − + + (D.27)

* '

q q e d
v v Liω= − − (D.28)

The above two equations support parts of the control structure are shown in Figure D.4

where *

d
v and *

q
v are generated.

319

D.4.2 The dq Analysis Model of PMSM

The control system of PWM inverter is based-on the dq analysis model

of the PMSM. The transformation matrix to convert the three-phase variable stationary

components to the dq frame ones is given as follows

0

2 2
cos() cos cos

3 3

2 2 2
sin() sin sin

3 3 3

0.5 0.5 0.5

d a

q b

c

f f

f f

ff

π π
θ θ θ

π π
θ θ θ

 − +
 = − − − − +

 (D.29)

The inverse transformation is shown in equations (D.30).

0

cos() sin() 1

2 2
cos sin 1

3 3

2 2
cos sin 1

3 3

a d

b q

c

f f

f f

f f

θ θ

π π
θ θ

π π
θ θ

 −
 = − − − + − +

 (D.30)

where θ is the angle between the rotor d-axis and the q-axis of the three-phase

reference frame or a flux position angle as shown in Figure D.5.

320

θ

2

3

π
2

3

π

a
i

b
i

c
i

N

S

Figure D.5 Transformation between the abc stationary reference frame and

the dq rotating reference frame.

Using the transformation in equation (D.29), the machine voltage equations in

the dq rotating frame can be written as (Krause et al., 2002)

d s d d q

d
v R i

dt
ψ ωψ= + − (D.31)

q s q q d

d
v R i

dt
ψ ωψ= + − (D.32)

where
d

v ,
q

v are the d- and the q-axis stator voltages;
d

i ,
q

i are the d- and the q-axis

stator currents;
d

ψ ,
q

ψ are the d- and the q-axis stator flux quantities;
s

R is the stator

resistance, andω is the angular velocity of the rotor. The flux linkages of the stator and

the rotor circuits are given by

d d d m
L iψ ψ= + (D.33)

321

q q q
L iψ = (D.34)

where
d

L ,
q

L are the d- and the q-axis inductances, and
m

ψ is the flux linkage of the

permanent magnet mounted on the rotor shaft.

The electromagnetic torque is determined as (Wu et al., 2008)

 ()3

4
e d q d q m q t q

P
T L L i i i k iψ = − + = (D.35)

where
e

T is the electromagnetic torque of the motor; P is the number of poles of motor,

and
t

k is the torque constant of the motor.

 The above dq-frame models of the PMSM are useful for control of an inverter

driving a PMSM. Following (Wu et al., 2008), the closed-loop control system is

represented by the block diagram in Figure D.6. This block diagram is the second

control system according to (Wu et al., 2008) in Figure D.2. There are two internal

current control loops (,
d

i
q

i), and one external speed control loop,ω .

322

PI PI

PI

dq

abc

PWM 2

PMSM

dq

abc

d/dt

*ω
+ −

ω

Speed

 controller *

q
i

+ −

+ −
* 0
d

i =

Current

 controllers

q
i

d
i

*

q
v

*

d
v

a
v

b
v

c
v

a
i

b
i

c
i

angular

rotor position

dtω∫
rotor speed

Figure D.6 Block diagram of three-phase PWM inverter controllers for the PMSM

 drive based-on the dq reference frame (Wu et al., 2008).

The speed reference signal, *ω is compared to the actual speed of the motor,

which is derived from the rotor position. The motor speed is controlled by a PI

controller generating the reference q-axis current, *

q
i . The reference dq currents, *

d
i and

*

q
i are compared with the transformed currents,

d
i and

q
i , and the errors are processed

by the PI-current controllers such that *

d
v and *

q
v be generated. To obtain the maximum

electromagnetic torque of the motor, *

d
i is equal to zero (Pena et al., 1996; Wu et al.,

2008). After the reference voltages *

d
v and *

q
v are transformed into three-phase frame,

the last stage of the control system is to transform the reference voltages into a pulse

width modulation pattern in order to generate the gate signals for the converter.

323

D.5 Control Designs of Back-to-Back Converter and PMSM

D.5.1 Control of Back-to-Back Converter

 As in Figure D.4, the reference voltages, *

d
v and *

q
v are produced by the

corresponding current controllers. Since the d-axis of the dq rotating reference frame is

aligned with the input voltage, which forces
q

v to become zero, the active and reactive

power will be proportional to
d

i and
q

i , respectively. The DC-link voltage control

should be stabilized regardless of the output power, therefore, the DC-link voltage error

is processed by a proportional-integral (PI) voltage controller to obtain the d-current

reference. The q-axis current reference is set to zero if unity power factor is required.

DC
E

dc
I

l
I

c
I

ia
I

ib
I

ic
I

sa
V

sb
V

sc
V

C

Figure D.7 Three-phase PWM rectifier.

The relationship of the DC side of the PWM rectifier and the DC link capacitor

is considered as represented by the diagram in Figure D.7. The power balance of the

PWM rectifier without losses can be defined as

3
DC dc d d

E I v i= (D.36)

324

The modulation index (MI) formula can be calculated using (D.37)

2 2
d

I

DC

v
M

E
= (D.37)

Obtaining,

3

2 2

I d

dc

M i
I = (D.38)

According to

dc c l
I I I= + (D.39)

DC

dc l

dE
C I I

dt
= − (D.40)

The design of the DC-link voltage controller can be carried out in the continuous

domain, and it is assumed that the inner
d

i loop is ideal and in which
l

I is represented

as a disturbance (Pena et al., 1996). From equation (D.40), the effective transfer

function of the plant is derived as the following

DC

dc

dE
C I

dt
= (D.41)

Taking the Laplace transformation to (D.41) with zero initial conditions, one can obtain

325

() ()
dc dc

CsE s I s= (D.42)

() 1

()

dc

dc

E s

I s Cs
= (D.43)

Substituting
dc

I from (D.38) into (D.43) results in

() 3

() 2 2

dc I

d

E s M

i s Cs

= (D.44)

The closed-loop block diagram can be sketched as in Figure D.8.

3

2 2

I
M

Cs

Figure D.8 DC-link voltage control loop for back-to-back converter.

The controller speed depends on the bandwidth or the nominal closed-loop

natural frequency. If the bandwidth is low, the speed of the controller will be slow.

Mostly, the current control loop is designed to operate at higher speed than the voltage

control loop. Hence, the bandwidth used in the current controller must be greater than

that in the voltage controller. The current controller design can be simplified by taking

into account the fact that normally the current loops are designed with a high

bandwidth of up to 300-500Hz. This requires the bandwidth of the current control loop

326

to be at least ten times faster than the voltage control loop (Wu et al., 2008; Zanchetta

et al., 2009). Using a bandwidth for the voltage control loop,
n

f = 25 Hz, damping

factor, ζ = 0.8, *

DC
E = 1000 Vdc, s

V = 240 Vrms(ph), modulation index,
I

M = 0.7,

capacitor for DC-link, C = 2.20 mF. The PI controller can be designed by using the

closed-loop characteristic equation. Since the controller () /
c P I

G s K K s= + , the

characteristic equation of the DC-link voltage control can be expressed as

2
3 3

0
2 2 2 2

p I I I
K M K M

s s

C C

+ + =

 (D.45)

Compare (D.45) to the characteristic equation of the second-order system in (D.46)

2 22 0
n n

s sζω ω+ + = (D.46)

where
n

ω is natural frequency, 2
n

fπ , one can conclude that the controller gains are

4 2

3

n

P

I

C
K

M

ζω
= (D.47)

22 2

3

n

I

I

C
K

M

ω
= (D.48)

The values of
p

K and
I

K of the voltage controller can be obtained as 0.74 and 73.11,

respectively.

327

 The parameters of the current control loop are determined by using the

bandwidth,
n

f = 500 Hz, the damping factor, ζ = 0.8, total line inductance,

3.40
line f

L L L mH= + = , and total line resistance 0.18
line f

R R R= + = Ω . In practical

system,
line

L = 0.10 mH and
line

R = 0.05Ω . The system can be represented by the block

diagram in Figure D.9, which is applied for both
d

i and .
q

i

Figure D.9 Current control loops for back-to-back converter.

Similar to the voltage control loop design, the characteristic equation of the current

control is considered as in (D.49)

2 0P I
K R K

s s
L L

+ + + =

 (D.49)

Compared (D.49) to the characteristic equation of the second-order system in (D.46),

the parameter gains,
P

K and
I

K for the current controllers can be obtained as

2
P n

K L Rζω= − (D.50)

2

I n
K Lω= (D.51)

328

Therefore, the gain values,
P

K and
I

K , of the current controller are 16.89 and

33,556.65, respectively.

D.5.2 Control of PMSM

Control of motor speed in various applications is usually implemented

using a cascade-control principle with internal current control loops, which are

commonly proportional-integral (PI) types. According to the block diagram in Figure

D.6, the reference signal for the d-axis current component *

d
i is defined as zero to

obtain the maximum electromagnetic torque of the motor. It could be assumed that the

rotor flux density distribution of the PMSM is sinusoidal. Consequently, the

inductances,
d

L and
q

L can be equal. The block diagram of speed control is shown in

Figure D.10 consists of a PI controller, torque constant (
t

k) and the PMSM s-domain

mechanical model. The load torque (
L

T) is considered as disturbance.

1

m
Js B+

*ω ω

*

q
i

Figure D.10 PI speed control loop for PMSM.

For tracking control purposes, the speed response due to *ω (s) is expressed by

*

2
() ()P t I t

m P t I t

K k s K k
s s

Js B s K k s K k
ω ω

+
= ⋅

+ + +
 (D.52)

329

The closed-loop characteristic equation is

2 0
m p t I t

B K k K k
s s

J J

+
+ + =

 (D.53)

where
m

B is the motor’s viscous coefficient, J is the motor’s moment of inertia, and

t
k is the motor’s torque constant (

3

2 2
t m

P
k ψ=). Comparing (D.46) to (D.53), the

controller gains,
P

K and
I

K , for the speed controller can be obtained as

2 m

P n

t

B J
K

J k
ζω

 = −

 (D.54)

2

n

I

t

J
K

k

ω
= (D.55)

For the speed command tracking control, the damping factor ()ζ and the bandwidth of

the speed controller are chosen as 0.8 and 10 Hz, respectively. Therefore, [,]
P I

K K =

[0.21, 9.05] for a 10-pole machine are obtained.

In general, for the design of current control loop the bandwidth should be at

least ten times greater than the speed control loop to ensure that the currents are

accurately regulated at the references with fast dynamic responses. The block diagram

of the current control for d- and q-axis is shown in Figure D.11.

330

1

S S
L s R+

Figure D.11 PI current control loops for PMSM.

Similarly to the voltage/current control previously described, the characteristic equation

of the closed-loop control is expressed by

2 0
p s I

s s

K R K
s s

L L

+
+ + =

 (D.56)

Compare equation (D.56) to (D.46), therefore, the expressions for the controller gains

can be obtained as

2
P n s s

K L Rζω= − (D.57)

2

I n s
K Lω= (D.58)

For the design of the current controller, the bandwidth and the damping factor are

chosen as 200 Hz and 0.8, respectively. Therefore, the controller parameters

[,]
P I

K K = [2.29, 1894.96] for a 10-pole machine are obtained.

331

D.6 Multi-objective Function

The multi-objective optimization is converted into one single objective using

weights and summation of each objective function as briefly given by equation (D.59)

1

() ()
L

all i i

i

f x w f x

=

=∑ (D.59)

where ()
all

f x is the objective function in a surrogate form,
i

w are the real non-negative

weights such that
1

1
n

i

i

w

=

=∑ , and ()
i

f x is each objective function.

According to the weights, they can be chosen either arbitrarily or to satisfy

some criteria. The principle of inequality (Zakian, 2005) lays a foundation of the multi-

objective optimization, in which each objective, ()
i

f x , is constrained in the form of

(D.60).

()
i i

f x ε≤ (D.60)

where each constant
i
ε is the largest acceptable or permissible value of the objective

()
i

f x .

To solve a multi-objective optimization problem, an effective approach is to

convert the constrained problem to an unconstrained one. The unconstrained function is

formed by adding the objective function, ()
all

f x with a penalty parameter,
k

σ , and a

measure of constrained condition, (())
i

g f x . In minimization case, the measure of the

constrained condition can be zero, when the constraints are not violated or nonzero,

332

when the constraints are violated. These multi-objective functions can be formulated as

a series of unconstrained minimization in (D.61).

1

min () () (())
k

all all k i

i

J x f x g f xσ
=

= + ∑ (D.61)

where (())
i

g f x is the penalty function calculated by (())
i

g f x = 2min(0, ())
i

f x

and
k

σ is the coefficients (Courant, 1943).

Referring to power drive system, the analysis of the input and the output current

qualities, the losses in the converters and the motor, the DC-link voltage, the current

control loops, and the motor speed control are concerned. Thus, the task of finding

solutions for multiple objective problems is necessary. As mentioned earlier, the multi-

objective optimization will be applied in order to obtain several optimum solutions at

the same time. The details of each objective function are described in the next sections.

D.6.1 Input and Output Current Qualities

The input and output current qualities are represented by the total

harmonic distortion (THD) of the input and the motor currents.

2

,

2

2

1,

100

N

n rms

n

i

rms

I

THD
I

== ×
∑

 (D.62)

333

where ,n rms
I denotes the rms current of the n-th current harmonic, n = 1 is the

fundamental, and N is the total number of harmonics. A high current quality is

indicated by a low
i

THD which should be less than 3% following industrial requirement

(a very stringent one). The
f

R ,
f

L and
s

L are obtained from the objective functions

given by (D.63)-(D.64).

 1(,)
f f

f R L =
,

3%

i input
THD

 (D.63)

 2 ()
s

f L =
,

3%

i motor
THD

 (D.64)

Note that the fundamental frequencies have been used for line input and motor currents

are 50 Hz and 833.33 Hz (referred to 120
m

N f P= ×), respectively.

D.6.2 Total Power Losses

The total power losses are considered in the terms of line input loss,

switching loss, conduction loss and motor losses. The details are described as follows:

- Line input loss:

 The power loss of a 3-phase line input is calculated using (D.65)

()2

,
3

loss line rms line f
P I R R= + (D.65)

334

where
rms

I is the input line current,
line

R and
f

R are the phase resistances of the input

line and the input filter, respectively. According by
line

R and
f

R are 0.05Ω and 0.13Ω ,

respectively, and the input line current is 24.7055Armsph. Thus, the calculated power

line input losses for three-phase are 329.60W.

- Switching and conduction losses:

The power losses in an IGBT and diode can be divided in three groups;

conduction losses (
cond

P), switching losses (
sw

P) and blocking (leakage) losses (
b

P)

(normally being neglected). Therefore the total losses can be described by

,loss SC cond sw b cond sw
P P P P P P= + + ≈ + (D.66)

where conduction losses depend on both the collector-emitter saturation voltage drop of

the IGBT and the forward voltage drop of a diode used to block reverse conduction of

the IGBT. The IGW60T120 IGBT (Infineon Power Semiconductors, 2009) and the

MUR8100E diode (Fairchild Semiconductor, 2002) are used in this research. The

linearized characteristic for the conduction voltage drop as a function of current for the

series combination of an IGBT and a diode is

 () 2

, , 0 0 ,()
cond cond sw cond diode CE F crms CE D c rms

P P P V V I r r I= + = + + + (D.67)

where 0CE
V is the collector-emitter voltage drop,

0F
V is the diode forward voltage drop,

CE
r is the linearized on-state resistance of the IGBT obtained from the datasheet

diagram in terms of 0.0161 (15)
CE C GE

V I V V∆ ∆ = Ω = ,
D

r is the literalized on-state

335

resistance of the diode according to 0.02 (25)
F F

V I temperature C∆ ∆ = Ω = o and

,c rms
I is the collector current (Apap et al., 2003; Casanellas, 1994; Graovac and

Purschel, 2009; Zanchetta et al., 2009).

 The turn-on and turn-off energy losses for an IGBT and diode can be assumed

to vary linearly with the change in voltage across the IGBT during the switching

transients, which are considered from the device datasheets for the IGBT and diode. It

is reasonable to assume that the turn-on and turn-off energies vary linearly with the

collector current. The switching losses in the IGBT and diode can be calculated in a

similar manner. The turn-off energy losses in the diode are normally neglected

(0
offD

E ≈). Therefore:

, ,
()

sw sw sw sw diode onT offT s onD s
P P P E E f E f= + = + ⋅ + ⋅ (D.68)

The turn-on and turn-off energy losses of IGBT are computed by equations (D.69)-

(D.70), respectively.

onT onT ce c
E e V I= ∆ ∆ (D.69)

offT offT ce c
E e V I= ∆ ∆ (D.70)

onT
e and

offT
e are the turn-on and turn-off switching energy losses respectively per unit

voltage and unit current for the specified devices.
ce

V∆ is the change in the collector-

emitter voltage during the switching transient, 20V, and
c

I∆ is the change in the

336

collector current during the switching transient, 60A. Similarly the diode recovery loss

is calculated by

onD onD d d

E e V I= ∆ ∆ (D.71)

where
onD

e is the switch-on energy loss in the diode per unit voltage and unit current.

d
V∆ is the change in the voltage across the diode, 20V, and

d
I∆ is the change in the

diode current, 1 A (Apap et al., 2003; Casanellas, 1994; Graovac and Purschel, 2009).

Table D.2 Parameters of conduction and switching losses from the datasheets.

VCE0 (V)
0F

V (V)
CE

r (Ω)
D

r (Ω)
onT

e (J/VAµ)
offT

e (J/VAµ)
onD

e (J/VAµ)

2.4 1.8 0.0161 0.02 0.1194 0.1444 2.50

According the details in Table D.2, the conduction losses of a 10-pole PMSM is

calculated by using equation (D.67), thus, the conduction loss value is 754.89W. For

the switching losses in the IGBT and diode can be calculated from equation (D.68)

equal to 43.9872W.

- Motor loss:

 The loss of PMSM in this thesis is considered to be only copper loss as

this is the most significant loss. The copper loss is a function of the phase current and

the phase resistance as given by the following expression

2

, ,loss motor motor rms s
P I R= (D.72)

337

From the stator resistances of a 10-pole PMSM is 0.1240Ω and the motor current

values is 45.8850A. Therefore, the calculated motor power losses according to (D.72)

are 783.22W.

As mentioned above, the total power loss can be calculated by

, , , ,total loss loss line loss SC loss motor
P P P P= + + (D.73)

where gives the total power losses of a 10-pole PMSM equal to 1.91kW. To obtain the

minimum total power losses, the accepted maximum values,
,maxaccept

P of the total power

losses must be considered to be lower 10-20% which is 1.70 kW. The switching

frequency
s

f is the obtained variable from this objective function. This objective

function is shown in equation (D.74).

3
()

s
f f =

,

,max

total loss

accept

P

P
 (D.74)

 D.6.3 Line Input Current Controller

To obtain the line input current controllers, KP,line and KI,line, the

objective function is considered in term of root mean square error (RMS) of closed-

loop response which includes the plant and the PI controller. The RMS calculation is

shown in equation (D.75).

338

()2

,

1

1
N

i line

i

rectifier

y

RMS
N

=

−
=
∑

 (D.75)

where
,i line

y is the response of the line input current control and N is a number of the

line input current response.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4
The close loop response of line input current

Time(sec) (sec)

A
m

p
li
tu

d
e
 (

y
li
n
e
)

rectifier
RMS = 0.0299

Figure D.12 Closed-loop response of line input current.

According to the closed-loop response of the conventional control design as

shown in Figure D.12, the RMS value is equal to 0.0299 which is set as the maximum

reference,
,maxrectifier

RMS . In order to obtain a better performance of the line input

current, an objective function is formulated as

4 , ,
(,)

P line I line
f K K =

,max

rectifier

rectifier

RMS

RMS
 (D.76)

339

 D.6.4 DC-Link Voltage Controller

The DC-link voltage controller consists of KP,DC and KI,DC parameters in

order to be regulated to 1,000 VDC – level. From a conventional design, we obtain a

voltage response curve as shown in Figure D.13. Equation (D.77) is used for a

calculation of an RMS value of the DC-link voltage.

()2

,

1

1,000
N

i DC

i

DC

y

RMS
N

=

−
=
∑

 (D.77)

, where
,i DC

y is the DC-link voltage, and N is a number of the DC-link voltage data.

According to the response shown in Figure D.13, the RMS value is equal to 6.9802 VDC

for a 10-pole PMSM, which is set as the maximum reference,
,maxDC

RMS .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
800

850

900

950

1000

1050
The response of DC-link voltage

Time(sec)

D
C

-l
in

k
 v

o
lt

ag
e

(E
D

C
)

DC,max
RMS = 6.9802 V

DC

Figure D.13 DC-link voltage of a 10-pole PMSM.

340

 For an optimized design of a DC-link voltage controller, an objective function is

formulated as

5 , ,
(,)

P DC I DC
f K K =

,max

DC

DC

RMS

RMS
 (D.78)

D.6.5 Load Current Controller

In a similar manner, the PI-controller parameters of a load current

controller consist of KP,load and KI,load. The RMS value of a closed-loop response can be

calculated by

()2

,

1

1
N

i load

i

inverter

y

RMS
N

=

−
=

∑
 (D.79)

where ,i load
y is the response of the load current control and N is a number of the load

current response data. From the responses of conventional control design as in Figure

D.14, the RMS value is equal to 0.0482, which is set as the maximum

reference ,maxinverter
RMS .

341

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5
The close loop response of load current

Time (sec)

A
m

p
li

tu
d
e

(y
lo

a
d
) inverter,max

RMS = 0.0482

Figure D.14 Closed-loop current responses of a 10-pole PMSM.

To obtain a better performance of load current control, the objective function is

formulated by

 6 , ,(,)
P load I load

f K K =

,max

inverter

inverter

RMS

RMS
 (D.80)

 D.6.6 Speed Controller

The speed controller consists of KP,speed and KI,speed parameters. The

objective function is considered in terms of the RMS of the motor speed, which is

regulated to 10,000 rpm as shown in Figure D.15. The RMS value of speed can be

calculated by

()2

,

1

10,000
N

i speed

i

speed

y

RMS
N

=

−
=
∑

 (D.81)

342

where ,i speed
y is the speed response of motor and N is number of the speed response

data. According to the responses of conventional control design, the RMS value is

equal to 925.8013 rpm for a 10-pole PMSM, which is set as the maximum reference,

,maxspeed
RMS .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2000

4000

6000

8000

10000

12000
The motor speed

Time(sec)

M
o
to

r
sp

ee
d
 (

rp
m

)

RMS = 925.8013 rpm
speed,max

 Figure D.15 Speed of a 10-pole PMSM.

The objective function is formulated as

7 , , (,)

P speed I speed
f K K =

,max

speed

speed

RMS

RMS
 (D.82)

APPENDIX E

PROGRAM-CODE LISTS

344

Computer programs have been used in this thesis based-on MATLAB

coding.

The program lists of the proposed BF-TS, the modified ATS, and the parallel modified

ATS algorithms are detailed as follows:

E.1 Code List of the BF-TS Algorithm

 The program list of the proposed BF-TS algorithm is shown in this appendix

(an optimization problem of Bohachevsky 's function). This experimental program

consists of BF-TS.m, initial_generation.m, obj.m, objective.m, rand1.m,

bact_cellcell_attract_func.m and random_neigh.m.

% This BF-TS program has been developed by using MATLAB
TM

 by Nuapett Sarasiri.

% School of Electrical Engineering, Suranaree University of Technology.

Program of BF-TS.m

function [min_cost_function,X_Y_best,overall_best_error,overall_best_neighbor,…

n_back_tracking,time,count]=BF_TS(p)

 % This main program uses p as a input, where p is a

 % number of parameter to be optimized. There are 7

 % output parameters: min_cost_function is an initial

 % objective function obtained from random-walk

 % frontend. X_Y_best is an initial solution obtained

 % from random-walk frontend. overall_best_error is

 % optimal cost function. overall_best_neighbor is

 % global optimum solution. n_back_tracking is a

345

 % number of solution occurred in local deadlock.

 % time is total time. count is total iteration.

rand('state',sum(100*clock)); % Initialize rand to a different state each time.

% Search parameter

S=10; % Number of solution in the population.

Nc=250; % Number of chemotactic steps.

Ns=4; % Limits the length of a swim when it is on a

 % gradient.

flag=0; % If flag=0 indicates that will have nutrients and

 % cell-cell attraction. If flag=1 indicates that will

 % have no (zero) nutrients and only cell-cell

 % attraction. If flag=2 indicates that will have

 % nutrients and no cell-cell attraction.

alpha=10; % A positive constant for step size expression.

max_count=10000; % A maximum iteration.

radius=0.2; % Search radius.

Number_neighb=30; % A maximum number of neighbour solution.

n=0; % Initial number of repeated solution.

t=0; % Initial sliding of local.

tt=0; % Initial sliding of tabu_list.

ttt=0; % Initial sliding of best_error_list.

count=0; % Initial number of iteration.

n_back_tracking=0; % Initial number of back tracking.

best_error=0; % Initial number of best_error.

best_neighbor=0; % Initial number of best_neighbor.

xlimit=[2 2;-2 -2]; % Search space, row 1 of xlimit is a maximum of

 % parameter.

 % Row 2 of xlimit is a minimum of parameter.

tic; % Start search time.

346

% Randomly initial solutions from random-walk frontend by using Initial_generation function.

[min_cost_function, X_Y_best]= Initial_generation(p,S,Nc,Ns,flag,alpha,xlimit);

 % Input of this function are p, S, Nc, Ns, flag, alpha,

 % xlimit and output are min_cost_function and

 % X_Y_best.

S0=X_Y_best'; % Store initial solution in S0.

best_neighbor=S0; % Store initial solution in best_neighbor

best_error= min_cost_function; % Define best_error = min_cost_function.

overall_best_error=best_error; % Define overall_best_error=best_error.

overall_best_neighbor=best_neighbor; % Define overall_best_neighbor=best_neighbor.

t=t+1; % Increase sliding of local value.

tt=tt+1; % Increase sliding of tabu_list.

ttt=ttt+1; % Increase sliding of best_error_list.

local(t,1)=count; % Store count in the first column of local.

local(t,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of local.

local(t,4)=best_error; % Store best_error in the fourth column of local.

tabu_list(tt,1)=count; % Store count in the first column of tabu_list.

tabu_list(tt,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of tabu_list.

tabu_list(tt,4)=best_error; % Store best_error in the fourth column of tabu_list.

best_error_list(ttt,1)=count; % Store count in the first column of best_error_list.

best_error_list(ttt,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of best_error_list.

best_error_list(ttt,4)=best_error; % Store best_error in the fourth column of

 % best_error_list.

while (count<max_count) % Process loop.

 count=count+1;

 S1=random_neigh(Number_neighb,radius,xlimit,S0);

347

 % Recall random_neigh function to random among

 % neighbour solutions around S0 within current sub

 % search space. There are 4 input parameters such

 % as Number_neighb, radius, xlimit and S0 and one

 % output, S1.

 [best_error1,best_neighbor1,best_error,best_neighbor]=objective(S1,best_error,S0);

 % Recall objective function to evaluate random

 % neighbour solutions. Inputs are S1, best_error and

 % S0 and outputs are best_error1, best_neighbor1,

 % best_error and best_neighbor.

 if (best_error1-best_error)>1e-18

 % Check repeated solution by compare between

 % best_error1 and best_error.

 n=n+1;

 else

 n=0;

 end

 tt=tt+1; % Increase sliding of tabu_list.

 tabu_list(tt,1)=count; % Store count in the first column of tabu_list.

 tabu_list(tt,2:3)=best_neighbor1;

 % Store best_neighbor1 in the second column and

 % the third column of tabu_list.

 tabu_list(tt,4)=best_error1; % Store best_error1 in the fourth column of tabu_list

 ttt= ttt+1; % Increase sliding of best_error_list.

 best_error_list(ttt,1)=count; % Store count in the first column of best_error_list.

 best_error_list(ttt,2:3)=best_neighbor;

 % Store best_neighbor in the second column and the

 % third column of best_error_list.

 best_error_list(ttt,4)=best_error;

348

 % Store best_error in the fourth column of

 % best_error_list.

% Start AR mechanism

 if best_error<1e-1 % Condition 1 if best_error<1e-1 then radius=2e-3.

 radius=2e-3;

 end

 if best_error<=1e-3 % Condition 2 if best_error<=1e-3 then radius=2e-4.

 radius=2e-4;

 end

 if (overall_best_error<1e-9) % Check terminal criterion.

 t=t+1; % Increase sliding of local.

 tt=tt+1; % Increase sliding of tabu_list.

 local(t,1)=count; % Store count in the first column of local.

 local(t,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of local.

 local(t,4)=best_error; % Store best_error in the fourth column of local.

 overall_best_error=best_error; % Define overall_best_error=best_error.

 overall_best_neighbor=best_neighbor;

 % Define overall_best_neighbor=best_neighbor.

 break; % Stop search

end

% Start BT mechanism

 if n>=5 % When number of repeated solution is equal to 5.

 n_back_tracking=n_back_tracking+1;

 % Increase n_back_tracking value.

 TEMP=tabu_list(count-3:count+1,:);

 % Rank among cost values and among 5 solutions

 % and then store cost values and 5 solutions in

 % TEMP.

349

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(5,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the fifth of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(4,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the fourth of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(3,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the third of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(2,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the second of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(1,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the first of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 neighbor=RANK(5,2:3); % Replace neighbor by the fifth solutions in RANK.

 S0=neighbor; % Define S0=neighbor.

 best_error=RANK(5,4); % Replace best_error by the fifth cost value of

 % RANK

 n=0; % Assign n=0

 else % Otherwise.

 S0=best_neighbor; % Define S0=best_neighbor.

 best_error=best_error; % Define best_error=best_error.

end

350

 if overall_best_error>best_error

 overall_best_error=best_error; % Define overall_best_error=best_error and define

 % overall_best_neighbor=best_neighbor, if

 % overall_best_error>best_error.

 overall_best_neighbor=best_neighbor;

 end

end

 time=toc; % Stop search time.

return

Program of initial_generation.m

function [min_cost_function, X_Y_best]=Initial_generation(p,S,Nc,Ns,flag,alpha,xlimit)

 % This program is to generate an elite solution as an

 % initial solution for BF-TS program. There are 7

 % input parameters: p, S, Nc, Ns, flag, alpha and

 % xlimit providing 2 output sets:

 % min_cost_function and X_Y_best.

% Initial population

P(:,:,:)=0*ones(p,S,Nc); % Allocate needed memory.

C=0*ones(S,Nc); % Initialize the parameters of step size

 % govern part of the random movement.

J=0*ones(S,Nc); % Allocate memory for cost function.

for m1=1:S % Generate initial solution.

 P(:,m1,1)= ((xlimit(1,:)-xlimit(2,:)).*rand(1,p))+xlimit(2,:);

 end

351

% Swim/tumble (chemotaxis) loop:

for j=1:Nc % Start for-loop of random movement.

 for i=1:S % Start for-loop of a number of solution.

 J(i,j)=obj(P(:,i,j)); % Compute the cost value at the current location of

 % each solution set

% Next, add on cell-cell attraction effect:

 J(i,j)=J(i,j)+bact_cellcell_attract_func(P(:,i,j),P(:,:,j),S,flag);

% Tumble:

 Jlast=J(i,j); % Initialize the cost value to be the first

 % at the tumble.

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

 % Generate a random direction.

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha);

 % Updating variable run length unit.

 % Next, move all the solution by a small amount in the direction that the tumble resulted in

 P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 % This adds a unit vector in the random direction,

 % scaled by the step size C(i,j).

% Swim (for solutions that seem to be headed in the right direction):

% Check parameters in range of search space.

while (P(1,i,j+1))> xlimit(1,1) | P(1,i,j+1)<xlimit(2,1) | P(2,i,j+1)>xlimit(1,2)|…

P(2,i,j+1)<xlimit(2,2)

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha);

P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

end

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value for each solution after

 % a small step (used by the solution to decide if it

 % should keep swimming).

352

% Next, add on cell-cell attraction effect:

 J(i,j+1)=J(i,j+1)+bact_cellcell_attract_func(P(:,i,j+1),P(:,:,j+1),S,flag);

 m=0; % Initialize counter for swim length.

 while m<Ns % While climbing a gradient.

 m=m+1;

 if J(i,j+1)<Jlast % Check a new cost value and move it further in

 % same direction.

 Jlast=J(i,j+1); % First, save the cost value at current location.

% Next, extend the run in the same direction since it climbed at the last step:

 P(:,i,j+1)=P(:,i,j+1)+C(i)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value at where it swam to and give

 % it new cost value.

% Next, add on cell-cell attraction effect:

 J(i,j+1)=J(i,j+1)+bact_cellcell_attract_func(P(:,i,j+1),P(:,:,j+1),S,flag);

 else % It did not move up the gradient so stop the run for

 % this solution.

 m=Ns;

 end

end % Test if should end run step.

end % End run for number of solution, S.

end % End run for random movement Nc.

reproduction = J(:,1:Nc); % Select cost values and assign in reproduction.

[jlastreproduction,iter] = min(reproduction,[],2);

 % Find minimum cost value and its position

 % among random movement, Nc.

[min_cost_function,back_ID] = min(jlastreproduction) ;

 % Evaluate minimum cost value and its position

 % among each number of solution, S, and

 % assign to min_cost_function and back_ID.

X_Y_best=P(:,back_ID,iter(back_ID,:)); % Assign optimum an elite solution in X_Y_best.

return

353

Program of obj.m

function J=obj(para) % This program is to compute cost values as an

 % example of Bohachevsky 's function .

x=para(1); % This consists of 2 parameters, x and y.

y=para(2);

J=(x.^2)+(2*y.^2)-(0.3*cos(3*pi*x))-(0.4*cos(4*pi*y))+0.7;

 % Bohachevsky 's function.

return

Program of objective.m

function [best_error1,best_neighbor1,best_error,best_neighbor]=objective(S1,best_error,S0)

 % Objective function program is to evaluate

 % neighbour solutions around S0. Input parameters

 % are S1,best_error and S0 and output parameters

 % are best_error1, best_neighbor1, best_error and

 % best_neighbor.

 error=[];

 for k=1:size(S1,1)

 ysim=obj(S1(k,:)); % Evaluate cost values of S1 by calculating obj

 % function.

 error(k,1)=ysim; % Store all cost values of neighbourhood.

 end

 [best_error1,index]=min(error); % Find minimum cost values and it index of

 % neighbourhood, and define in best_error1 and its

 % location.

 best_neighbor1=S1(index,:); % Define neighbour solution with minimum cost

 % value in best_neighbor1.

354

 if best_error1<best_error

 best_error=best_error1;

 best_neighbor=S1(index,:); % Define best_error=best_error1 and

 % best_neighbor=S1(index,:) if best_error1<

 % best_error.

 else % Otherwise

 best_neighbor=S0; % Define best_neighbor=S0.

 end

return

Program of rand1.m

function x=rand1(a,b) % rand1 function program is to random parameter

 % within a and b based on expression, a+(b-a)rand

x=a+rand*(b-a);

return

Program of bact_cellcell_attract_func.m

% Bacteria cell to cell attraction function

function [Jar]=bact_cellcell_attract_func(x,theta,S,flag)

 % Given locations of all bacteria, find Jar for all S

 % Note that theta rows are dimensions of the

 % optimization problem, while the columns are

 % the S different bacteria.

if flag==2 % Test to see if main program indicated cell-cell

 % attraction.

 Jar=0;

return

end

355

depthattractant=0.1; % Sets magnitude of secretion of attractant by a cell.

widthattractant=0.2; % Sets how the chemical cohesion signal diffuses.

heightrepellant=1*depthattractant; % Sets repellant (tendency to avoid nearby cell).

widthrepellant=1; % Makes small area where cell is relative to

 % diffusion of chemical signal.

Jar=0;

for j=1:S

Ja=-depthattractant*exp(-widthattractant*((x(1,1)-theta(1,j))^2+(x(2,1)-theta(2,j))^2))

 % Set how the cell attracts other cells via secretions

 % of diffusible attractants.

 Jr=+heightrepellant*exp(-widthrepellant*((x(1,1)-theta(1,j))^2+(x(2,1)-theta(2,j))^2));

 % Set how the cell repels other cells since it eats in

 % its own region (and since an intact cell is

 % apparently not food for another cell).

 Jar=Jar+Ja+Jr; % Next, set the combined effect.

end

return

Program of random_neigh.m

function S1=random_neigh(Number_neighb,radius,xlimit,S0)

 % This program is to random neighbour solutions

 % around S0. Input parameters are Number_neighb,

 % radius, xlimit and S0 and output parameter is S1.

 for u=1:Number_neighb

 for k=1:size(xlimit,2)

 S1(u,k)=S0(1,k)+(radius*(xlimit(1,k)-xlimit(2,k))*rand1(-1,1));

 % Random neighbour solutions.

356

 while (S1(u,k)>xlimit(1,k) | S1(u,k)<xlimit(2,k))

 % Check limit of neighbour solution values.

 S1(u,k)=S0(1,k)+(radius*(xlimit(1,k)-xlimit(2,k))*rand1(-1,1));

 end

 end

 end

return

E.2 Code List of the Modified ATS Algorithm

The program list of the modified ATS algorithm is shown in this appendix (an

abstract mathematical constraint problem of Constrained function 1). This experimental

program consists of Modified_ATS.m, initial_generation.m, obj.m, objective.m and

random_neigh.m. The initial_generation.m and objective.m files can be referred to

above BF-TS algorithm’s program.

% This Modified_ATS program has been developed by using MATLAB
TM

 by Nuapett Sarasiri.

% School of Electrical Engineering, Suranaree University of Technology.

Program of Modified_ATS.m

function [min_cost_function,X_Y_best,overall_best_error,overall_best_neighbor,…

n_back_tracking,time,count]=modified_ATS(p)

 % This main program uses p as a input, where p is a

 % number of parameter to be optimized. There are 7

 % output parameters: min_cost_function is an initial

 % objective function obtained from random-walk

 % frontend. X_Y_best is an initial solution obtained

357

 % from random-walk frontend. overall_best_error is

 % optimal cost function. overall_best_neighbor is

 % global optimum solution. n_back_tracking is a

 % number of solution occurred in local deadlock.

 % time is total time. count is total iteration.

rand('state',sum(100*clock)); % Initialize rand to a different state each time.

S=30; % Number of solution in the population.

Nc=100; % Number of chemotactic steps.

Ns=4; % Limits the length of a swim when it is on a

 % gradient.

alpha=1e3; % A positive constant for step size expression C1.

alpha2=1e4; % A positive constant for step size expression C2.

S2=100; % Number of neighbour solution.

Nc2=1000; % Number of chemotactic steps for random

 % neighbour solution.

max_count=50000; % A maximum iteration.

n=0; % Initial number of repeated solution.

t=0; % Initial sliding of local.

tt=0; % Initial sliding of tabu_list.

ttt=0; % Initial sliding of best_error_list.

count=0; % Initial number of iteration.

n_back_tracking=0; % Initial number of back tracking.

best_error=0; % Initial number of best_error.

best_neighbor=0; % Initial number of best_neighbor.

xlimit=[10 10;-10 -10]; % Search space, row 1 of xlimit is a maximum of

 % parameter.

 % Row 2 of xlimit is a minimum of parameter.

tic; % Start search time

% Randomly initial solutions from random-walk frontend by using Initial_generation function.

358

[min_cost_function, X_Y_best]= Initial_generation(p,S,Nc,Ns,alpha,xlimit);

 % Input of this function are p, S, Nc, Ns, alpha,

 % xlimit and output are min_cost_function and

 % X_Y_best.

S0=X_Y_best'; % Store initial solution in S0.

best_neighbor=S0; % Store initial solution in best_neighbor

best_error= min_cost_function; % Define best_error = min_cost_function.

overall_best_error=best_error; % Define overall_best_error=best_error.

overall_best_neighbor=best_neighbor; % Define overall_best_neighbor=best_neighbor.

t=t+1; % Increase sliding of local value.

tt=tt+1; % Increase sliding of tabu_list.

ttt=ttt+1; % Increase sliding of best_error_list.

local(t,1)=count; % Store count in the first column of local.

local(t,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of local.

local(t,4)=best_error; % Store best_error in the fourth column of local.

tabu_list(tt,1)=count; % Store count in the first column of tabu_list.

tabu_list(tt,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of tabu_list.

tabu_list(tt,4)=best_error; % Store best_error in the fourth column of tabu_list.

best_error_list(ttt,1)=count; % Store count in the first column of best_error_list.

best_error_list(ttt,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of best_error_list.

best_error_list(ttt,4)=best_error; % Store best_error in the fourth column of

 % best_error_list.

while (count<max_count) % Process loop.

 count=count+1;

 S1=random_neigh(p,S2,Nc2,Ns,xlimit,S0,alpha2);

 % Recall random_neigh function to random among

359

 % neighbour solutions around S0 within current sub

 % search space. There are 7 input parameters such

 % as p, S2, Nc2, Ns, xlimit, S0 and alpha2, and one

 % output, S1.

[best_error1,best_neighbor1,best_error,best_neighbor]=objective(S1,best_error,S0);

 % Recall objective function to evaluate random

 % neighbour solutions. Inputs are S1, best_error and

 % S0 and outputs are best_error1, best_neighbor1,

 % best_error and best_neighbor.

 if (best_error1-best_error)>1e-18

 % Check repeated solution by compare between

 % best_error1 and best_error.

 n=n+1;

 else

 n=0;

 end

 tt=tt+1; % Increase sliding of tabu_list.

 tabu_list(tt,1)=count; % Store count in the first column of tabu_list.

 tabu_list(tt,2:3)=best_neighbor1;

 % Store best_neighbor1 in the second column and

 % the third column of tabu_list.

 tabu_list(tt,4)=best_error1; % Store best_error1 in the fourth column of tabu_list

 ttt= ttt+1; % Increase sliding of best_error_list.

 best_error_list(ttt,1)=count; % Store count in the first column of best_error_list.

 best_error_list(ttt,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of best_error_list.

 best_error_list(ttt,4)=best_error;

 % Store best_error in the fourth column of

 % best_error_list.

360

 if (overall_best_error<=1.3935) % Check terminal criterion.

 t=t+1; % Increase sliding of local.

 tt=tt+1; % Increase sliding of tabu_list.

 local(t,1)=count; % Increase sliding of tabu_list.

 local(t,2:3)=best_neighbor; % Store best_neighbor in the second column and the

 % third column of local.

 local(t,4)=best_error; % Store best_error in the fourth column of local.

 overall_best_error=best_error; % Define overall_best_error=best_error.

 overall_best_neighbor=best_neighbor; % Define overall_best_neighbor=best_neighbor.

 break; % Stop search

 end

% Start BT mechanism % When number of repeated solution is equal to 5.

 if n>=5

 n_back_tracking=n_back_tracking+1; % Increase n_back_tracking value.

 TEMP=tabu_list(count-3:count+1,:);

 % Rank among cost values and among 5 solutions

 % and then store cost values and 5 solutions in

 % TEMP.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(5,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the fifth of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(4,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the fourth of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(3,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the third of RANK.

361

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(2,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the second of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 [MAX,INDEX] = max(TEMP(:,4)); % Find maximum cost value and its position.

 RANK(1,:) = TEMP(INDEX,:); % Define maximum cost value and its position in

 % the first of RANK.

 TEMP(INDEX,4)=0; % Replace maximum cost value in TEMP by zero.

 neighbor=RANK(5,2:3); % Replace neighbor by the fifth solutions in RANK.

 S0=neighbor; % Define S0=neighbor.

 best_error=RANK(5,4); % Replace best_error by the fifth cost value of

 % RANK

 n=0; % Assign n=0

 else % Otherwise.

 S0=best_neighbor; % Define S0=best_neighbor.

 best_error=best_error; % Define best_error=best_error.

 end

 if overall_best_error>best_error

 overall_best_error=best_error; % Define overall_best_error=best_error and define

 % overall_best_neighbor=best_neighbor, if

 % overall_best_error>best_error.

 overall_best_neighbor=best_neighbor;

 end

end

 time=toc; % Stop search time.

return

362

Program of Obj.m

function J=obj(x)

 % This program is to compute cost values as an

 % example of Constrained function 1.

 x1=x(1); % This consists of 2 parameters, x1 and x2.

 x2=x(2);

 f=(x1-2).^2+ (x2-1).^2; % Objective function.

 g1=x1-(2.*x2)+1; % Equality constraint g1=0.

 g2=-((x1.^2)./4)-(x2.^2)+1; % Inequality constraint g2>=0.

if g1<=1e-3 % Check condition of constraint g1.

 g1=0;

else

 g1=1e10;

end

 if g2<=1e-3 % Check condition of constraint g2.

 g2=0;

else

 g2=1e10;

end

SSP=(1e10*(g2.^2));

J=f+SSP+1e10*(g1.^2); % Minimization function with penalty value.

return

Program of random_neigh.m

function S1=random_neigh(p,S2,Nc2,Ns,xlimit,S0,alpha2)

 % This program is to generate neighbour solutions

 % for Modified_ATSprogram. There are 7 input

363

 % parameters: p, S2, Nc2, Ns, xlimit, S0, alpha2

 % with one output parameter: S1.

P(:,:,:)=0*ones(p,S2,Nc2); % Allocate needed memory.

C=0*ones(S2,Nc2); % Initialize the parameters of step size

 % govern part of the random movement.

J=0*ones(S2,Nc2); % Allocate memory for cost function.

for m1=1:S2

 P(:,m1,1)= S0; % Assign solution from S0 to P.

end

% Swim/tumble (chemotaxis) loop:

for j=1:Nc2 % Start for-loop of random movement.

 for i=1:S2 % Start for-loop of a number of solution.

% Compute the nutrient concentration at the current location of each solution

 J(i,j)=obj(P(:,i,j));

% Tumble:

 Jlast=J(i,j); % Initialize the cost value to be the first

 % at the tumble.

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

 % Generate a random direction.

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha2);

 % Updating variable run length unit.

% Next, move all the solution by a small amount in the direction that the tumble resulted in

 P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 % This adds a unit vector in the random direction,

 % scaled by the step size C(i,j).

% Swim (for solutions that seem to be headed in the right direction):

% Check parameters in range of search space.

while (P(1,i,j+1))>xlimit(1,1) | P(1,i,j+1)<xlimit(2,1) | P(2,i,j+1)>xlimit(1,2)|…

P(2,i,j+1)<xlimit(2,2)

364

Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha2);

P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

end

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value for each solution after

 % a small step (used by the solution to decide if it

 % should keep swimming).

m=0; % Initialize counter for swim length

 while m<Ns % While climbing a gradient.

 m=m+1;

 if J(i,j+1)<Jlast % Check a new cost value and move it further in

 % same direction.

 Jlast=J(i,j+1); % First, save the cost value at current location.

% Next, extend the run in the same direction since it climbed at the last step:

 P(:,i,j+1)=P(:,i,j+1)+C(i)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value at where it swam to and give

 % it new cost value.

else % It did not move up the gradient so stop the run for

 % this solution.

 m=Ns;

 end

end % Test if should end run step.

end % End run for number of solution, S2.

end % End run for random movement Nc2.

reproduction = J(:,1:Nc2); % Select cost values and assign in reproduction.

[jlastreproduction,iter] = min(reproduction,[],2);

 % Find minimum cost value and its position

 % among random movement, Nc2.

[min_cost_function,back_ID] = min(jlastreproduction);

365

 % Evaluate minimum cost value and its position

 % among each number of solution, S2, and

 % assign to min_cost_function and back_ID.

X_Y_best=P(:,back_ID,iter(back_ID,:)); % Assign optimum initial solution in X_Y_best.

S1=X_Y_best'; % Assign optimum an elite solution in S1.

return

E.3 Code List of the Parallel Version of the Modified ATS

Algorithm

The program list of the parallel modified ATS algorithm has been utilized to

optimize the optimal design of power drive system. This experimental program consists

of Modified_ATS.m, parallel_initial_generation.m, parallel_obj.m, objective.m,

random_neigh.m and drive_system.mdl (Simulink file) as shown in Figure E.1-E.2.

The main program of Modified_ATS.m (with 12 parameters), objective.m and

random_neigh.m files can be referred to above modified ATS algorithm’s program.

% This Modified_ATS program with parallel computing has been developed by using

% MATLAB
TM

 and Parallel Computing Toolbox
TM

 by Nuapett Sarasiri.

% School of Electrical Engineering, Suranaree University of Technology.

Program of parallel_obj.m
function J=obj(para)

% Define parameters

Rr=para(1); % input filter components.

Lr=para(2);

fs=para(3); % switching frequency.

366

Ls=para(4); % inductance of mortor.

KPline=para(5); % control parameter PI for rectifier.

KIline=para(6);

KPrectifi=para(7); % control parameter PI for DC-link.

KIrectifi=para(8);

KPcurrent= para(9); % control parameter PI for inverter.

KIcurrent=para(10);

KPspeed=para(11) ; % control parameter PI for speed control.

KIspeed=para(12);

 % parameters

Lline=0.1e-3; % line inductance.

Rline= 0.05; % line resistance.

Rs=0.124; % stator resistance.

time=0.11; % time (sec.).

assignin('base','Rr',para(1)); % assign parameter values to simulink model. There

assignin('base','Lr',para(2)); % are 12 parameters; Rr, Lr, fs, Ls, KPlline, KIline,

assignin('base','fs',para(3)); % KPrectifi, KIrectifi, KPcurrent, KIcurrent, KPspeed

assignin('base','Ls', para(4)); % and KIspeed.

assignin('base','KPline', para(5));

assignin('base','KIline',para(6));

assignin('base','KPrectifi',para(7));

assignin('base','KIrectifi', para(8));

assignin('base','KPcurrent',para(9));

assignin('base','KIcurrent',para(10));

assignin('base','KPspeed',para(11));

assignin('base','KIspeed',para(12));

model = drive_system ';

367

load_system(model); % load model as the structure in Figure E.1-E.2.

set_param('drive_system ','SimulationCommand','update'); % simulation

[tout,xout,I_out] = sim('drive_system ',linspace(0,0.11,5000));

 % I_out(:,1) is a line current.

% I_out(:,2)is a motor current.

% I_out(:,3) is a DC voltage.

% I_out(:,4) is speed of motor.

close_system('drive_system.mdl ',0) % Close simulink model.

%% Parallel computing

if matlabpool('size') == 0 % checking to see if matlabpool is already open.

 matlabpool open % open matlabpool.

end

spmd (4) % Open single program multi data worked on 4

% workers. Inside spmd structure, the parameters:

% Lline, Rline, Rs, time and I_out performed as

% codistributed arrays on each worker.

labBarrier; % labBarrier is to ensure all workers are synchronized

% and start their timed work together.

if labindex==1 % Indicate worker 1.

%% Compute harmonics both of current to find Rr and Lr

fa=50; % fundamental frequency.

T=3; % periods.

s=0.02*T; % sampling periods.

Tn=fa*s; % periods.

Iline_out=I_out(:,1);

xnn= Iline_out(1813:4540); % sampling data.

xn=xnn';

368

N=length(xn); % samples of data.

t=linspace(0.04,0.1,N); % time start from 0 to number of sampling periods.

[x,y]=dft(xn,N,Tn); % export data to DFT function.

ii=find(x==1); % find fundamental data at the first order

fund=y(ii); % storage fundamental value in fund.

x1=[0:Tn:Tn*x(end)];

x1=x1+1;

for i=1:length(x1)

 aa=x1(i); % integer order of harmonics.

 cc(i)=x(aa);

 bb(i)=y(aa); % each harmonic value at integer order of harmonics.

end

ynew=bb;

y1=ynew.^2;

y2=y1(3:end); % harmonic values without fundamental value.

THDf=100*sqrt(sum(y2))./sqrt(fund^2); % THD of input current.

J_THDf=THDf/3; % Objective function of THDi,input.

 xnn=labBroadcast(1,xnn); % Distribute sampling data to all workers.

else

 xnn=labBroadcast(1);

end % end worker 1.

if labindex==2 % Indicate worker 2.

% Compute Total losses to find fs

Iline_rms=sqrt ((sum(xnn.^2)) /length(xnn)); % Input current (rms).

I_load=I_out(:,2);

I_motor=I_load(4667:4993);

369

t_motor=linspace(0.1027,0.1098,length(I_motor)); % start time 0.1027 to 0.1098sec 6 periods.

Irms_motor= sqrt ((sum(I_motor.^2)) /length(I_motor)); % Mortor current (rms).

VCE0=2.4;

VF0=1.8;

rCE=(3-2)/(137-75); % slope of Vce-Ic.

rD=(1.9-1.7)/(20-10); % slope of Vf-If.

EonT=(0.1194e-6)*(20*60); % EonT(uJ/VA)=eonT*delta(Vce)*delta(Ic).

Eoff=(0.1444e-6)*(20*60); % EoffT(uJ/VA)=eoffT*delta(Vce)*delta(Ic).

EonD=(2.5e-6)*(20*1); % EonD(uJ/VA)=eonD*delta(Vd)*delta(Id).

DeltaV=10/100; % ripple voltage.

PL_line= 3*((Iline_rms^2)*(Rline+Rr)); % line input loss.

Pcond=6*(((VCE0+VF0)*Iline_rms)+((rCE+rD)*Iline_rms^2)); % multiply by 6 because

% switch don't not operate in the same time (just a half

% from 12).

Psw= 6*(((EonT+Eoff)*fs)+(EonD*fs));

PL_SD=Pcond+Psw; % Conduction and switching losses.

PL_motor= 3*(Irms_motor^2)*Rs; % loss of motor.

PL_total=PL_line + PL_SD + PL_motor; % total losses.

J_PL_total=PL_total/1.7e3; % objective funcion of total losses.

%% Line current control

t_step=linspace(0,time,5000); % smpling time 0-0.11 sec.

plant_line_gain= tf([1],[(Lline+Lr) (Rline+Rr)]); % Plant of input current.

PI_line=tf([KPline KIline],[1 0]); % PI controller

plant_line_control=feedback(plant_line_gain*PI_line,1,-1); %Plant of input current close loop.

[Amp_line t_step]=step(plant_line_control,t_step);

RMS_recti_a=(1-Amp_line).^2; % RMS of input current close loop.

RMS_recti_b=sum(RMS_recti_a)/length(Amp_line);

370

RMS_recti=sqrt(RMS_recti_b);

J_RMS_recti=RMS_recti/0.0309; % objective funcion of input current close loop.

% DC-link voltage control

VDC_error=I_out(:,3);

RMS_DC_a=(1000-VDC_error).^2; % RMS of DC voltage.

RMS_DC_b=sum(RMS_DC_a)/length(VDC_error);

RMS_DC=sqrt(RMS_DC_b);

J_RMS_DC= RMS_DC/6.9802; % objective funcion of DC voltage.

B=I_motor;

I_motor=labBroadcast(2,B); % Distribute mortor current to all workers.

B1=t_step;

t_step = labBroadcast(2,B1); % Distribute sampling time to all workers.

else

 I_motor = labBroadcast(2);

 t_step = labBroadcast(2);

end % end worker 2.

if labindex==3 % Indicate worker 3.

% THD mortor

fa_motor=833.33; % fundamental frequency of motor (Hz).

T_motor=6; % periods.

s_motor=(1/833.33)*T_motor; % sampling periods.

Tn_motor=fa_motor*s_motor; % periods.

xnn_motor=I_motor; % sampling data.

xn_motor=xnn_motor';

N_motor=length(xn_motor); % samples of data.

[x_motor,y_motor]=dft_motor(xn_motor,N_motor,Tn_motor);

% export data to DFT function

371

ii_motor=find(x_motor==1); % find fundamental data at the first order.

fund_motor=y_motor(ii_motor); % storage fundamental value in fund.

x1_motor=[0:Tn_motor:Tn_motor*x_motor(end)];

x1_motor=x1_motor+1;

for i=1:length(x1_motor)

 aa_motor=x1_motor(i); % integer order of harmonics.

 cc_motor(i)=x_motor(aa_motor);

 bb_motor(i)=y_motor(aa_motor); % each harmonic value at integer order of harmonics.

end

ynew_motor=bb_motor;

y1_motor=ynew_motor.^2;

y2_motor=y1_motor(3:end); % harmonic values without fundamental value.

THDf_motor=100*sqrt(sum(y2_motor))./sqrt(fund_motor^2); % %THD of motor current.

J_THDi_motor=THDf_motor/3; % Objective function of THDi,motor.

end % end work 3.

if labindex==4 % Indicate worker 4.

% PWM current Conroller

plant_motor_gain=tf([1],[Ls Rs]); % plant of motor current control.

PI_inverter=tf([KPcurrent KIcurrent],[1 0]); % PI controller

plant_inverter_control=feedback(plant_motor_gain*PI_inverter,1,-1);

% close loop control of motor current.

[Amp_inverter t_step]=step(plant_inverter_control,t_step);

RMS_inverter_a=(1-Amp_inverter).^2; % RMS of inverter current

RMS_inverter_b=sum(RMS_inverter_a)/length(Amp_inverter);

RMS_inverter=sqrt(RMS_inverter_b);

J_RMS_inverter=RMS_inverter/0.0488; % objective function of inverter current.

372

% Speed control

Speed_error=I_out(:,4);

RMS_Speed_a=(10000-Speed_error).^2; % RMS of speed.

RMS_Speed_b=sum(RMS_Speed_a)/length(Speed_error);

RMS_Speed=sqrt(RMS_Speed_b);

J_RMS_Speed=RMS_Speed/925.8013; % objective function of RMS of speed.

end % end work 4.

end % close spmd.

% receive functions

J_THDf=J_THDf{1}; % Return data from each worker to client.

J_PL_total=J_PL_total{2}; % These parameters are the class of composite

J_THDi_motor=J_THDi_motor{3}; % arrays on each worker. These contain

J_RMS_recti=J_RMS_recti{2}; % 7 objective functions: J_THDf, J_PL_total,

J_RMS_DC=J_RMS_DC{2}; % J_THDi_motor, J_RMS_recti, J_RMS_DC,

J_RMS_inverter=J_RMS_inverter{4}; % J_RMS_inverter and J_RMS_Speed.

J_RMS_Speed=J_RMS_Speed{4};

fall=(1/7)*(J_THDf+J_PL_total+J_THDi_motor+J_RMS_recti+J_RMS_DC+…

J_RMS_inverter+J_RMS_Speed); % Compute multi objective function.

InEq= [J_THDf; J_PL_total; J_THDi_motor; J_RMS_recti; J_RMS_DC; J_RMS_inverter; …

 J_RMS_Speed]; % inequality constraints.

SSR=0; % allocate memory.

rho=1e6; % penalty factor.

for kk=1:length(InEq)

 if InEq(kk)<1 % if all constraint conditions below than 1.

 InEq(kk)=0; % all constraint conditions equal to 0.

 end % end condition.

 SSR=SSR+rho*InEq(kk)^2; % sum square value multiply by penalty factor.

373

end

J = fall+SSR; % Objective value.

return

Program of parallel_initial_generation.m

function [min_cost_function, X_Y_best]= Initial_generation(p,S,Nc,Ns,alpha,xlimit)

 % This program is to generate an elite solution as an

 % initial solution for the parallel computing of the

 % modified ATS program. There are 6

 % input parameters: p, S, Nc, Ns, alpha and

 % xlimit providing 2 output sets:

 % min_cost_function and X_Y_best.

%%Initial population

P(:,:,:)=0*ones(p,S,Nc); % Allocate needed memory.

C=0*ones(S/4,Nc); % Initialize the parameters of step size

 % govern part of the random movement.

J=0*ones(S/4,Nc); % Allocate memory for cost function.

% parallel computing

if matlabpool('size') == 0 % Checking to see if matlabpool is already open.

 matlabpool open % open matlabpool.

end

% Generate initial solution

 parfor m1=1:S % Use parfor-loop to generate random solutions

 P(:,m1,1)= ((xlimit(1,:)-xlimit(2,:)).*rand(1,p))+xlimit(2,:);

 end

374

spmd % Open single program multi data.

 DIST=codistributor1d(2,[S/4 S/4 S/4 S/4]);

% Assign array of solution on each worker.

 P_codis=codistributed(P,DIST); % Replicate array on each worker.

 P=getLocalPart(P_codis); % Each worker operates on its data.

% Swim/tumble (chemotaxis) loop:

for j=1:Nc % Start for-loop of random movement on each worker.

 for i=1:S/4 % Start for-loop of number of solution on each

worker.

% Compute the nutrient concentration at the current location of each solution

 J(i,j)=obj(P(:,i,j));

% Tumble:

 Jlast=J(i,j); % Initialize the cost value to be the first at the tumble.

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

% Generate a random direction.

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha);

% Updating variable run length unit.

 % Next, move all the solution by a small amount in the direction that the tumble resulted in

 P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

% This adds a unit vector in the random direction,

 % scaled by the step size C(i,j).

% Swim (for solutions that seem to be headed in the right direction):

% Check parameters in range of search space.

while P(1,i,j+1)> xlimit(1,1) | P(1,i,j+1)< xlimit(2,1) | ...

 P(2,i,j+1)> xlimit(1,2) | P(2,i,j+1)< xlimit(2,2) | ...

 P(3,i,j+1)> xlimit(1,3) | P(3,i,j+1)< xlimit(2,3) | ...

 P(4,i,j+1)> xlimit(1,4) | P(4,i,j+1)< xlimit(2,4) | ...

 P(5,i,j+1)> xlimit(1,5) | P(5,i,j+1)< xlimit(2,5) | ...

 P(6,i,j+1)> xlimit(1,6) | P(6,i,j+1)< xlimit(2,6) | ...

 P(7,i,j+1)> xlimit(1,7) | P(7,i,j+1)< xlimit(2,7) | ...

375

 P(8,i,j+1)> xlimit(1,8) | P(8,i,j+1)< xlimit(2,8) | ...

 P(9,i,j+1)> xlimit(1,9) | P(9,i,j+1)< xlimit(2,9) | ...

 P(10,i,j+1)> xlimit(1,10) | P(10,i,j+1)< xlimit(2,10) | ...

 P(11,i,j+1)> xlimit(1,11) | P(11,i,j+1)< xlimit(2,11) | ...

 P(12,i,j+1)> xlimit(1,12) | P(12,i,j+1)< xlimit(2,12)

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

 C(i,j)=abs(J(i,j))/((abs(J(i,j)))+alpha);

 P(:,i,j+1)=P(:,i,j)+C(i,j)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

end

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value for each solution after

 % a small step (used by the solution to decide if it

 % should keep swimming).

 m=0; % Initialize counter for swim length

while m<Ns % While climbing a gradient.

 m=m+1;

 if J(i,j+1)<Jlast % Check a new cost value and move it further in

 % same direction.

 Jlast=J(i,j+1); % First, save the cost value at current location.

% Next, extend the run in the same direction since it climbed at the last step:

 P(:,i,j+1)=P(:,i,j+1)+C(i)*Delta(:,i)/sqrt(Delta(:,i)'*Delta(:,i));

 J(i,j+1)=obj(P(:,i,j+1)); % Compute cost value at where it swam to and give

 % it new cost value.

else % It did not move up the gradient so stop the run for

% this solution.

 m=Ns;

 end

end % Test if should end run step.

 end % End run for number of solution, S.

end % End run for random movement Nc.

376

Jgather=[J{1}; J{2}; J{3}; J{4}]; % Return all cost values, J from workers to client.

reproduction = Jgather (:,1:Nc); % Select cost value.

[jlastreproduction,iter] = min(reproduction,[],2);

% Find minimum cost value and its position

 % among random movement, Nc.

[min_cost_function,back_ID] = min(jlastreproduction);

 % Find minimum cost value and its position

 % among each number of solution, S.

Pgather =[P{1} P{2} P{3} P{4}]; % Return all solutions, P from workers to client.

X_Y_best=Pgather (:,back_ID,iter(back_ID,:));

% Select an elite solution and store in X_Y_best.

matlabpool close % close MATLAB pool.

return

377

Figure E.1 Simulink model of whole drive system.

3
7
7

378

(a)

(b)

(b)

and speed control

part A

part B
part b

3
7
8

379

 part b

(c)

(d)

Figure E.2 Sub-models of whole drive system: (a) control system 1 for PWM rectifier,

(b) control system 2 for PWM inverter, (c) current and speed control loops

and (d) switching system.

part C

380

APPENDIX F

RECOMMENDATION OF SUPERVISOR FROM THE

UNIVERSITY OF NOTTINGHAM

381

APPENDIX G

LIST OF PUBLICATIONS

383

List of Publications

Sujitjorn S., Kluabwang J., Puangdownreong D. and Sarasiri N. (2010). Adaptive Tabu

Search and Management Agent. ECTI Transaction on Electrical Eng.

Electronics and Communications, 8(1). pp. 1-10. (Thai JIF = 0.021)

Sarasiri N., Srikaew A. and Sujitjorn S. (2010). Dynamic Compensation of Hard-Disk

R/W Head and Head-Stack. WSEAS Transactions on Systems. 9(7). pp. 764-

773. (SJR = 0.420)

Panikhom S., Sarasiri N. and Sujitjorn S. (2010). Hybrid Bacterial Foraging and Tabu

Search Optimization (BTSO) Algorithms for Lyapunov’s Stability Analysis of

Nonlinear Systems. International Journal of Mathematics and Computes in

Simulation. 4(3). pp. 81-89. (SJR = 0.240)

Sarasiri N., Carawukh S., Boonpranchoo V., Kumbla K. and Sujitjorn S. (2011).

Identification of Hard-Disk Head Actuator Model Using Bacterial Foraging-

Tabu Search Metaheuristics. American Journal of Scientific and Industrial

Research. 2(4). pp. 686-689.

Sarasiri N. and Sujitjorn S. (2011). Control Design Optimization of Truck Braking

System using Bacterial-Foraging-Tabu-Search Metaheuristics. World

Academy of Science, Engineering and Technology. 80. pp. 1189-1193. (SJR

= 0.120)

Sarasiri N., Suthamno K. and Sujitjorn S. (2012). Bacterial Foraging-Tabu Search

Metaheuristics for Identification of Nonlinear Friction Model. Journal of

Applied Mathematics. 2012(238563). pp. 1-23. (JIF = 0.720)

*Note that JIF stands for Journal Impact Factor, and SJR stands for Scientific Journal Rankings.

384

Panikhom S., Sarasiri N. and Sujitjorn S. (2010). Numerical Approach to Lyapunov’s

Stability Analysis of Nonlinear Systems Using Threshold Accepting Algorithms,

ICT-CSCC International Conferences. Pattaya. Thailand. July 4-7. 2010. pp.

811-814.

Sarasiri N., Srikaew A. and Sujitjorn S. (2010). Dynamic Compensations for Hard Disk

Heads, Proceedings of the 4th International Conference on Circuits,

Systems and Signals. Corfu Island, Greece. pp. 54-57.

Sarasiri N. and Sujitjorn S. (2010). Bacterial Foraging Optimization and Tabu Search:

Performance Issues and Cooperative Algorithms. WSEAS International

Conferences. ISBN: 978-960-474-218-9. Taipei, Taiwan. pp. 186-191.

Carawukh S., Sarasiri N., Boonpranchoo V., Kumbla K. and Sujitjorn S. (2011).

Application of Hybrid BF-TS Algorithms to Identification of HDD Actuator

Model. The 2011 World Congress on Engineering and Technology.

Shanghai, China. pp. 1-4.

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

BIOGRAPHY

Miss Nuapett Sarasiri was born on September 17, 1984 in Muang District,

Chachoengsao Province. She attended high school at Datdaruni School in

Chachoengsao, and finished her high school education in 2003. She received her

Bachelor and Master of Engineering degrees in Electrical Engineering from Suranaree

University of Technology, Nakhon Ratchasima Province, in 2007 and 2009,

respectively. After graduating, she continued to study for a Doctoral degree at the

School of Electrical Engineering, Institute of Engineering, Suranaree University of

Technology. During her graduate work, she was awarded a Royal Golden Jubilee

(RGJ) PhD Program Scholarship from the Thailand Research Fund (TRF) in 2009. In

September 2011, she was a Visiting Research Scholar in the Power Electronics,

Machines and Control (PEMC) Research Group in the Department of Electrical and

Electronic Engineering at the University of Nottingham, UK, with Professor Dr. Pericle

Zanchetta. Her research interests include power systems, power electronics, control,

and search algorithms.

