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A more sophisticated QM/MM MD technique based on the ONIOM-XS 

method, called briefly ONIOM-XS MD, has been applied for studying the hydration 

structure and dynamics of three essential alkali metal ions, namely Li
+
, Na

+
 and K

+
, in 

aqueous solution. The ONIOM-XS MD technique has been proposed in order to 

improve the methodical drawbacks of the conventional QM/MM MD framework. 

Based on the ONIOM-XS MD technique, the system is composed of a “high-level” 

QM region, i.e., a sphere which contains the ion and its surrounding water molecules, 

and the remaining “low-level” MM bulk waters. In this work, all interactions within 

the QM region were treated at the Hartree-Fock (HF) level of accuracy using a 

Dunning double-ζ plus polarization (DZP) basis set for water and Li
+
, and Los 

Alamos ECP plus DZ (LANL2DZ) basis set for Na
+
 and K

+
, whereas the interactions 

within the MM and between the QM and MM regions were described by newly 

developed pair potentials. The results obtained by the ONIOM-XS MD simulations 

have provided more insights into the behaviors of these three ions with respect to 

their “structure-making” and “structure-breaking” abilities in aqueous solution. In the 

case of Li
+
, a well-defined tetrahedral geometry with the average coordination 

number of 4.1 is observed. The ONIOM-XS MD simulation clearly reveals that the 
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structure of the hydrated Li
+
 is not rigid and that water molecules in the first 

hydration shell are somewhat labile, leading to a probability of finding other hydrated 

complexes, in particular the Li
+
(H2O)5 species. In this respect, the ONIOM-XS MD 

results clearly suggest that the “structure-making” ability of Li
+
 in aqueous solution is 

not too strong, i.e., compared to stronger “structure-makers”, such as Ca
2+

. For Na
+
, 

the detailed analyzes of the ONIOM-XS MD trajectories show that this ion is able to 

order the structure of waters in its surroundings, forming two prevalent Na
+
(H2O)5 

and Na
+
(H2O)6 species. Interestingly, it is observed that these 5-fold and 6-fold 

coordinated complexes can convert back and forth with some degrees of flexibility, 

leading to frequent re-arrangements of the Na
+
 hydrates as well as numerous attempts 

of inner-shell water molecules to interchange with waters in the outer region. Such 

phenomenon clearly demonstrates the weak “structure-making” ability of Na
+
 in 

aqueous solution. For K
+
, as compared to Li

+
 and Na

+
, the first hydration shell is less 

structured and water molecules surrounding the K
+
 ion are more labile, showing 

several re-arrangements of the hydrated K
+
 complexes. This implies that this ion may 

not be able to form any specific geometrical order of its hydration shell, and thus, it 

can be classified as a “structure-breaker” in aqueous solution.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Literature review 

Detailed knowledge of ions solvated in aqueous electrolyte solution has long 

been desirable for chemists and biologists in order to understand the role of these ions 

in chemical and biological processes (Hermansson and Wojcik, 1998; Misra and 

Draper, 1999). When ions interact with water, the effect of ions causes modifications 

in the local structure and changes in the dynamics properties of the surrounding water 

molecules. The manners in which ions order the structure of their surrounding waters 

are strongly related to the strength of ion-water interactions. For example, if the ion-

water interactions are stronger than that of water-water interactions, such ions are 

classified as “structure-making” ions, i.e., they can break H-bond structure of the 

surrounding water molecules and can order those water molecules to form specific 

ion-water complexes. In contrast, if the ion-water interactions are comparable or 

weaker than that of water-water interactions, such ions can be classified as “structure-

breaker”. In this respect, water molecules surrounding the ions prefer to form H-bond 

network with their neighboring water molecules, rather than to form specific hydration 

structure with the ions. On the other hand, these “structure-breaking” ions are 

regarded as perturbation of the water’s H-bond structures (Tongraar, Liedl and Rode, 

1998a; Tongraar and Rode, 2004). 
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During the past decades, the details with respect to behaviors of ions solvated 

in aqueous solution have been studied extensively, both by experiments (Bondarenko, 

Gorbaty, Okhulkov and Kalinichev, 2006; Caminiti, Licheri, Paschina, Piccaluga and 

Pinna, 1980; Cartailler, Kunz, Turq and Bellisent-Funel, 1991; Dang, Schenter, 

Glezakou and Fulton, 2006; Howell and Neilson, 1996; Kameda, Sugawara, Usuki 

and Uemura, 1998; Kulik, Marzari, Correa, Prendergast, Schwegler and Galli, 2010; 

Licheri, Piccaluga and Pinna, 1975; Mancinelli, Botti, Bruni, Ricci and Soper, 2007; 

Neilson and Skipper, 1985; Newsome, Neilson and Enderby, 1980; Novikov, 

Rodnikova, Savostin and Sobolev, 1999; Ohtomo and Arakawa, 1979; Ohtomo and 

Arakawa, 1980; Skipper and Neilson, 1989) and theoretical investigations (Azam, 

Hofer, Randolf and Rode, 2009; Azam, Zaheer ul and Fatmi, 2010; Bondarenko, 

Gorbaty, Okhulkov and Kalinichev, 2006; Carrillo-Tripp, Saint-Martin and Ortega-

Blake, 2003; Chorny and Benjamin, 2005; Dang, Schenter, Glezakou and Fulton, 

2006; Galamba and Costa Cabral, 2009; Grossfield, Ren and Ponder, 2003; Ikeda, 

Boero and Terakura, 2007; Kim, 2001; Lamoureux and Roux, 2006; Loeffler, Inada 

and Funahashi, 2006; Loeffler, Mohammed, Inada and Funahashi, 2003; Lyubartsev, 

Laasonen and Laaksonen, 2001; Megyes, Balint, Grosz, Radnai, Bako and Sipos, 

2008; Obst and Bradaczek, 1996; Öhrn and Karlström, 2004; Ramaniah, Bernasconi 

and Parrinello, 1999; Rempe, Asthagiri and Pratt, 2004; Rempe, Pratt, Hummer, 

Kress, Martin and Redondo, 2000; Spangberg and Hermansson, 2004; Spangberg, 

Rey, Hynes and Hermansson, 2003; Sripa, Tongraar and Kerdcharoen, 2013; 

Tongraar, Liedl and Rode, 1998a; Tongraar, Liedl and Rode, 1998b; White, 

Schwegler, Galli and Gygi, 2000; Zhou, Lu, Wang and Shi, 2002). In particular for 

aqueous solutions of Li
+
, Na

+
 and K

+
, a number of experiments and theoretical 
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investigations have been carried out, and the results are summarized in Tables A1-A6 

(see Appendix A). With regard to the data in Tables A1-A6, however, it is apparent 

that significant discrepancies among those results still exist, even for such 

fundamental properties as the average coordination number and the mean ion-water 

distance.  

With regard to experimental observations, X-ray diffraction (XRD) and 

neutron diffraction (ND) methods have proved to be valuable tools for determining the 

static structure factors of waters solvating a given ion (Ansell, Barnes, Mason, Neilson 

and Ramos, 2006; Ohtaki and Radnai, 1993). However, experimental measurements 

often yield an incomplete description of ionic solvation, due to, e.g. the lack of 

suitable isotope substitutions in ND experiments, or difficulties in separating the 

atomic correlations or different species in diffraction data (Chowdhuri and Chandra, 

2003; Koneshan, Rasaiah, Lynden-Bell and Lee, 1998; Zhou, Lu, Wang and Shi, 

2002). Recently, X-ray absorption spectroscopy (XAS), a powerful tool for local 

structural determination, has been employed for the study of such systems (Cappa, 

Smith, Messer, Cohen and Saykally, 2006; Kulik, Marzari, Correa, Prendergast, 

Schwegler and Galli, 2010). Nevertheless, this technique is mostly suitable for the 

treatment of systems that are relevant to hard atoms. According to the data in Tables 

A1, A3 and A5, for the aqueous solutions of Li
+
, Na

+
 and K

+
, respectively, the 

observed discrepancy among the experimental data has been attributed mainly to the 

concentration dependence, as well as to the different experimental methods employed. 

In conjunction with experiments, computer simulations, i.e., by means of 

Monte Carlo (MC) and molecular dynamics (MD), have become an alternative way to 

provide microscopic details with respect to structural and dynamical properties of ions 
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in aqueous solutions. By the MC technique, each particle in the system will be moved 

randomly, through the energy criteria. In contrast to MC, the MD technique makes use 

of system’s force to move all particles in the system. In this respect, the advantage of 

MD simulation over the MC technique is that it can provide not only the structural 

properties but also the dynamical details. The results obtained from various MC and 

MD simulations are summarized in Tables A2, A4 and A6 for the systems of Li
+
, Na

+
 

and K
+
 in aqueous solutions, respectively. For earlier MC and MD simulations, most 

of which are based on molecular mechanical (MM) force fields (Lee, Tarakeshwar, 

Park, Kołaski, Yoon, Yi, Kim and Kim, 2004; Tanaka and Aida, 2004; Tongraar, 

Liedl and Rode, 1998a), the observed differences among the simulation results could 

be ascribed to the use of different MM force fields in describing the system’s 

interactions. In this respect, the quality of the simulation results depends crucially on 

the quality of the ion-water and water-water potentials employed in the simulations 

(Rasaiah, Noworyta and Koneshan, 2000). 

To obtain more reliable data, it has been demonstrated that the non-additive 

contributions as well as the polarization effects are significant and that the inclusion of 

these terms in the simulations through quantum mechanical calculations is mandatory 

(Impey, Madden and McDonald, 1983; Song Hi Lee and Rasaiah, 1996; Obst and 

Bradaczek, 1996; Rode, Schwenk and Tongraar, 2004). By means of ab initio (AI) 

MD techniques, Car-Parrinello (CP) and Born-Oppenheimer (BO) MDs are well-

known. With regard to AI-MD technique, the whole system is treated quantum 

mechanically, most of which are based on density functional theory (DFT). In recent 

years, several AI-MD simulations have been performed for studying many aqueous 

ionic systems (Lyubartsev, Laasonen and Laaksonen, 2001; Ramaniah, Bernasconi 
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and Parrinello, 1999). However, some limitations of the AI-MD technique come from 

the use of simple generalized gradient approximation (GGA) functionals, such as 

BLYP and PBE and of the relatively small system size. In particular, it has been 

demonstrated that the use of small system size may lead to problems of ion-ion 

interactions (Lyubartsev, Laasonen and Laaksonen, 2001). Besides the AI-MD 

technique, an alternative approach is to apply a so-called combined quantum 

mechanical/molecular mechanical (QM/MM) technique (Field, Bash and Karplus, 

1990; Singh and Kollman, 1986; Warshel and Levitt, 1976). By means of the 

QM/MM technique, the most interesting part of the system (i.e. a sphere which 

includes the ion and its surrounding solvent particles) is treated quantum 

mechanically, while the rest of the system is handled by simple MM force fields. This 

technique has been successfully applied for studying many condensed-phase systems 

(Gao, 2007; Kerdcharoen, Liedl and Rode, 1996; Rode, Schwenk and Tongraar, 2004; 

Sripa, Tongraar and Kerdcharoen, 2013; Thaomola, Tongraar and Kerdcharoen, 2012; 

Wanprakhon, Tongraar and Kerdcharoen, 2011). Interestingly, a combination of XAS 

measurements and QM/MM MD simulations has been successfully applied to 

investigate the hydration shell structures of Ca
2+

 and Cl
- 

(Tongraar, T-Thienprasert, 

Rujirawat and Limpijumnong, 2010). 

Despite the QM/MM technique’s successes, however, there are some unsolved 

problems that undermine the validity of this approach. For example, according to the 

conventional QM/MM scheme, a smoothing function is applied only for the 

exchanging particles that are crossing the QM/MM boundary. Such treatment is not 

realistic since an immediate exchange of particles between the QM and MM regions 

also affects the forces acting on the remaining QM particles. In addition, the 
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conventional QM/MM framework cannot clearly define the energy expression during 

the solvent exchange process (Kerdcharoen and Morokuma, 2002; Kerdcharoen and 

Morokuma, 2003). To solve these problems, a more sophisticated QM/MM MD 

technique based on ONIOM-XS method (which will be abbreviated throughout this 

work as “ONIOM-XS MD”) has been proposed (Kerdcharoen and Morokuma, 2003). 

The ONIOM method, originally developed by Morokuma et al. (Svensson, Humbel, 

Froese, Matsubara, Sieber and Morokuma, 1996), can handle not only the QM + MM 

combinations (which is implemented in the conventional QM/MM scheme), but also 

the QM + QM combinations. In addition, this technique allows forces on all QM 

particles to be smoothed during particle exchange, and thus, clearly defines the 

system’s energy expression. Recently, the ONIOM-XS MD technique has been 

successfully applied to various systems, such as Li
+
 and Ca

2+
 in liquid ammonia 

(Kerdcharoen and Morokuma, 2002; Kerdcharoen and Morokuma, 2003), Na
+
, K

+
 and 

Ca
2+ 

in aqueous solution (Sripa, Tongraar and Kerdcharoen, 2013; Wanprakhon, 

Tongraar and Kerdcharoen, 2011) as well as liquid water (Thaomola, Tongraar and 

Kerdcharoen, 2012). 

In the present study, the high-level ONIOM-XS MD technique will be applied 

for studying the behaviors of Li
+
, Na

+
 and K

+
 in aqueous solution. Of particular 

interest, the relationship of these three ions with respect to their “structure-making” 

and “structure-breaking” abilities will be evaluated and discussed. The results 

obtained by the ONIOM-XS MD simulations are expected to provide more reliable 

descriptions on the structure and dynamics of these hydrated ions. 
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1.2 Research objectives 

1.  To verify the reliability of the high-level ONIOM-XS MD technique for the 

treatment of aqueous ionic solutions. 

2.  To apply the ONIOM-XS MD technique for obtaining detailed knowledge 

with respect to the “structure-making” and “structure-breaking” abilities of Li
+
, Na

+
 

and K
+
 in aqueous solution.  

 

1.3 Scope and limitation of the study 

In the case of aqueous Li
+
 solution, to verify the reliability of the high-level 

ONIOM-XS MD technique for the study of such a condensed-phase systems, two 

QM/MM-based MD simulations, namely a conventional QM/MM and ONIOM-XS 

MDs, will be performed. The results obtained by the two QM/MM-based MD 

simulations will be compared and discussed with respect to the important treatment of 

the ONIOM-XS method for describing the “structure-making” ability of Li
+
 in 

aqueous solution. Concurrently, a series of ONIOM-XS MD simulations will be 

performed to investigate the structural and dynamical properties of Na
+
 and K

+ 
in 

aqueous solution. By the QM/MM-based MD techniques, the system is comprised of a 

“high-level” QM region, i.e., a sphere which contains the ion and its surrounding 

water molecules, and the remaining “low-level” MM bulk waters. Since the QM 

region is considered as the most interesting part, the selection of QM method as well 

as the QM size and basis set is very crucial in order to obtain good results. In practice, 

these parameters must be optimized, compromising between the quality of the 

simulation results and the requirement of CPU time. In this context, it should be noted 

that the use of correlated QM calculations, even at the simple MP2-level, are still 
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beyond our current computational feasibility. Hence, all interactions within the QM 

region were evaluated by performing ab initio calculations at the Hartree-Fock (HF) 

level of accuracy using the DZP basis set (Dunning and Hay, 1977) for water and Li
+ 

and LANL2DZ basis set (Boys and Bernardi, 1970; Check, Faust, Bailey, Wright, 

Gilbert and Sunderlin, 2001; Hay and Wadt, 1985) for Na
+
 and K

+
. The DZP and 

LANL2DZ basis sets employed in this work are considered as moderate basis sets, 

most of which have been successfully employed in previous conventional QM/MM 

and ONIOM-XS MD studies (Thaomola, Tongraar and Kerdcharoen, 2012; 

Wanprakhon, Tongraar and Kerdcharoen, 2011). For the QM size, a QM radius of 4.2 

Å was chosen. This QM size is considered to be large enough to include most of the 

non-additive contributions and the polarization effects, i.e., at least within the whole 

first hydration shell and major parts of the second hydration layer (e.g., for Li
+
) of the 

ions. The structural properties of the hydrated Li
+
, Na

+
 and K

+
 will be analyzed in 

terms of radial distribution functions (RDFs) and their corresponding integration 

numbers, together with the angular distribution functions (ADFs) and dipole-oriented 

arrangements of water molecules surrounding the ions. The dynamics properties will 

be interpreted through mean residence times (MRTs) of water molecules and water 

exchange processes at the ion, together with water’s intra-molecular vibrational 

frequencies. The results obtained by the ONIOM-XS MD simulations will be 

compared and discussed with available experimental data and other QM-based MD 

simulation results. 
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CHAPTER II 

QUANTUM CHEMISTRY 

 

2.1 Introduction to quantum chemistry 

Quantum mechanics are commonly used for studying fundamental behavior of 

matter at the molecular scale, i.e., through the understanding of electron behaviors. In 

this respect, the energy and some properties of a molecule can be derived from 

wavefunction, which can be obtained by solving the Schrödinger equation 

(Schrödinger, 1926). Consequently, many chemical problems can be solved by 

applying quantum chemistry, especially for the understanding of chemical bonding, 

spectral phenomena, molecular reactivity and various other fundamental chemical 

problems. 

 

2.2 Schrödinger equation 

 The principle of quantum mechanics starts with the Schrödinger equation, 

describing the atom system. Schrödinger has obtained an equation by taking the time-

independent wavefunction equation, which can be written as 

 

,ˆ  EH       (2.1) 

 

where Ĥ  is the Hamiltonian operator, which corresponds to the kinetic energy, T̂ , 

and potential energy, V̂ , of the system. The Hamiltonian operator is usually shown in 
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atomic units.  
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where 2 is the Laplacian operator, which can be defined as 
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In general, many-electron Schrödinger equation cannot be solved exactly, even 

for a simple two electron system such as helium atom or hydrogen molecule. With 

regard to this point, some approximations have been introduced to provide practical 

use of this method. 

 

2.3 The variation method 

 Since the Schrödinger equation for a many-body system cannot be solved 

exactly, one strategy in the QM calculations is to guess a suitable form of ψ, and then 

 

 

 

 

 

 

 

 



23 

 
optimize by using the variation principle. Regarding the variation principle, a trial 

wavefunction,  , is a function of the appropriate electronic and nuclear coordinates 

to be operated upon by the Hamiltonian. Once a set of the normal wavefunctions , i , 

is completely defined, the function Ф can be written in terms of a linear combination 

of the ψi, 

 


i

iic ,       (2.6) 

 

where the individual i  and coefficients ic
 
are unknown. Then, the normality of Ф 

imposes a constraint on the coefficients, deriving from 
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Then, the energy associated with wavefunction (Ф) can be considered as 
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After that, combining the results from equation (2.7) and (2.8) as 
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ii EEcdrEdrH                                  (2.9) 

 

 In general, the coefficients are assumed to be real numbers, thus, 2

ic
 
and the 

result of )( 0EEi  must be greater than or equal to zero. Therefore, 
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or 
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 According to equation (2.11), the quality of wavefunctions for describing the 

ground state of a system can be achieved by their associated energies according to the 

statement that the better wavefunction will give the lower energy. In general, the 

guess of the trial wavefunction can be constructed in any manner, which determined 

the quality by the integral in equation (2.11). 
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2.4 Born-Oppenheimer approximation 

 For N particle system, the Hamiltonian operator ( Ĥ ) takes into account five 

contributions to the total energy of a system, namely the kinetic energies of the 

electrons ( eT̂ ) and nuclei ( nT̂ ), the attraction of the electrons to the nuclei ( enV̂ ), and 

the inter-electronic ( eeV̂ ) and inter-nuclear ( nnV̂ ) repulsions, as shown in equations 

(2.12) and (2.13), 

 

nneeenne VVVTTH ˆˆˆˆˆˆ  ,   (2.12) 
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where i and j represent electrons, A and B represent nuclei, M is the mass of nucleus, Z 

is the atomic number, r and R are the distances between particles.  

 

The “Born-Oppenheimer approximation” (Born and Oppenheimer, 1927) can 

further be used to simplify the Schrödinger equation. Hence, the equation can be 

separated into electronic and nuclear terms. Since the nuclei are much heavier than 

electrons, i.e., they move much more slowly, one can consider the electrons in a 

molecule to move with respect to the field of fixed nuclei (Szabo and Ostlund, 1989). 

By this approximation, the kinetic energy of the nuclei can be neglected and the last 

term in equation (2.13), the repulsion of nuclei, can be considered as a constant. The 

remaining terms in equation (2.13) are called the electronic Hamiltonian or 

Hamiltonian describing the motion of N electrons in the field of M point charges,  
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2.5 Molecular orbital theory 

The molecular orbital theory is applied for determining molecular structure. A 

molecular orbital is a region in which an electron can be found in a molecule. In 

general, the molecular orbital can be described by wavefunction of the electron in a 

molecule, in particular a spatial distribution (
2

)(ri ) of an electron and energy of up 

to two electrons within it. A complete wavefunction for an electron consists of a 

molecular orbital and a spin function ( and  ), which can be defined as a spin 

orbital ( )(x ), where x  indicates both space and spin coordinates. Therefore, a 

spatial orbital can be formed into two different spin orbitals as 
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 For N-electron wavefunction, the Hamiltonian of a simple system, which 

contains non-interacting electrons, can be defined as 
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where h(i) is the operator that describes the kinetic and potential energies of electron i. 
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Then, a set of spin orbitals ( )(xj ) will be added to the operator;  

 

).()()( ijjij xxih       (2.17) 

 

Here, the wavefunction is a simple product of spin orbital wavefunction for each 

electron,  

 

).()()(),...,,( 2121 NkjiN

HP xxxxxx      (2.18) 

 

The above equation can be written as 

 

,HPHP EH       (2.19) 

 

where E is the sum of the spin orbital energies of each spin orbitals in 
HP ,  

 

.kjiE       (2.20) 

 

The wavefunction of the form in equation (2.18) is called a Hartree product, in 

which the electron-one can be described by the spin orbital i , electron-two can be 

described by the spin orbital j , etc. However, this wavefunction does not allow the 

antisymmetry principle.  

With regard to the antisytemmetry principle, the electron-one is put in i  and 

electron-two in j  as 
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).()(),( 212112 xxxx ji

HP       (2.21) 

 

In the opposite way, putting electron-one in j  and electron-two in i  gives  

 

).()(),( 122121 xxxx ji

HP       (2.22) 

 

Then, the appropriate linear combination of these two Hartree products can be written 

as 
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where the factor 2/12

 
is a normalization factor and the minus sign insures that 

),( 21 xx  is antisymmetric with respect to the interchange of the coordinates of 

electrons one and two. From equation (2.23), the wavefunction will be disappeared if 

both electrons occupy the same spin orbital, i.e., according to the Pauli exclusion 

principle. The antisymmetric wavefunction can be rewritten in terms of a determinant,  
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which is called a Slater determinant (Slater, 1929). For an N-electron system, the 

generalization is  
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where 2/1)!( N  is the normalization factor. 

 

2.6 The LCAO-MO approach and basis sets 

The molecular orbitals can be built form the atomic orbitals according to a so-

called linear combination of atomic orbitals to molecular orbitals (LCAO-MO) 

method. The formula can be expressed as 
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where iC  are the molecular orbital expansion coefficients,   
is known as basis set 

and N is the number of atomic basis function. 

The common types of basis function, or called atomic orbital, used in the 

electronic structure calculations are Slater type orbitals (STOs) (Slater, 1930) and 

Gaussian type orbitals (GTOs) (Boys, 1950). 

The formalism of the STOs can be presented as   
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where n , l , and lm

 
are the quantum numbers referring to principal, angular 

momentum and magnetic, respectively, N  is the normalization constant and 
llmY  is a 

spherical harmonic. The STOs screening constants are calculated for small model 

molecules using rigorous self-consistent field methods, and then being generated for 

use with actual molecules of interest. effZ  is the effective nuclear charge, while the 

effective principal quantum number ( effn ) is related to the true principal quantum (n) 

by the mapping of 

 

11:  effnn 22  33 7.34  0.45 2.46  , 

 

in which the value of ρ equal r/a0, where a0 is Bohr radius. 

 The STOs are usually applied for atomic and diatomic system. However, the 

STOs do not satisfy in the case of two-electron integral problem. With regard to this 

point, the feasible basis function is Gaussian type orbitals (GTOs), which are function 

of the form 
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where ( ccc zyx ,, ) are the Cartesian coordinates of the center of the Gaussian function 

at cr , (x1, y1, z1) are the Cartesian coordinates of an electron at 1r , i, j and k are non-

negative integers and α is a positive exponent. The advantage of GTOs is that the 

product of two Gaussians at different centers is equivalent to a single Gaussian 

function centered at a point between the two centers. Therefore, the two-electron 
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integral problem on three and four or more different atomic centers can be reduced to 

integrals over two different centers. However, it is known that the GTO gives an 

inferior representation of the orbitals at the atomic nuclei. Consideringfor 1s-orbital 

(cf. Figure 2.1), the STO type has a cusp at the atomic nucleus while a GTO does not. 

In this respect, the larger basis must be used to achieve the accuracy comparable to 

that obtained from STOs. 

 

 

 

Figure 2.1 The Slater-type and Gaussian-type for 1s orbital. 

 

To create a molecular orbital, a set of parameters applied to the basis function, 

called as basis set, is required. In general, the smallest number of function possible for 

constructing the molecular orbital is called a minimum basis set. The improvement of 

the basis set can be made by replacing two basis functions into each basis function in 

the minimal basis set, called as double zeta (DZ). The larger basis set is a triple zeta 

(TZ), where three basis functions are used to represent each of the minimal basis sets. 

The compromise between the DZ and TZ basis sets is a split valence (SV) basis set, in 

Slater-type 1s orbital Gaussian-type 1s orbital 
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which each valence atomic orbital is represented by two basis functions while each 

core orbital is represented by a single basis function. 

Since 1969, Pople and coworkers (Hehre, Stewart, and Pople, 1969) have 

designed the basis set by expanding the STO in terms of n primitive Gaussians, called 

as STO-nG basis set. The primitive Gaussian has been derived for n = 2-6. However, 

the STO-3G basis set is a widely used minimal basis set. In Figure 2.2, the STO-3G 

basis set partially represents the cusp of s-type orbital at the atomic nuclei. 

 

 

Figure 2.2 The STO-3G basis set representing the desired STO. 

 

Pople and coworkers have also applied the split valence for having flexibility 

in the basis set, designed as k-nlmG basis set. The first parameter (k) indicates the 

number of primitives used in the contracted core, while the two values (nl) refer to a 

split valence, and three values (nlm) refer to a triple split valence, such as 6-311G. For 

the triple split valence basis, the core orbitals are a contraction of six primitives and 

the valence split into three functions, represented by three, one and one primitive 

GTOs. The Pople’s style basis sets may include diffuse and/or polarization functions. 

The diffuse function can be denoted as + or ++ before the G. In this respect, the first + 

STO-3G 1s basis function 
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indicates one set of diffuse s- and p-function adding on heavy atoms and the second + 

refers to the inclusion of diffuse s-function for hydrogen atom. The polarization 

function can be put after the G, which separates designation for heavy and hydrogen 

atoms. For example, 6-31+G(d) basis set refers to a split valence with additional 

diffuse sp-functions and a single d-type polarization function only on heavy atoms. 

The largest standard Pople style basis set is 6-311++G(3df,3pd). Alternatively, the 

polarization function can be replaced with * notation, for example, the 6-311G* basis 

set is identical to 6-311G(d) and 6-311G** basis set is identical to 6-311G(d,p). 

 Since several GTOs are often grouped together, the contracted Gaussian 

function has been applied to Dunning-Huzinaga (DZ) basis set (Dunning, 1970; 

Dunning, 1971; Huzinaga, 1965). The DZ basis set can be made by a contraction such 

as the (9s5p) primitive GTO to [4s,2p]. The contraction scheme is 6,1,1,1 for s-

functions and 4,1 for the p-functions. The development of basis set by Dunning and 

coworker for recovering the correlation energy of the valence electrons is known as 

the correlation consistent (cc) basis sets. The general formulation can be written as cc-

pVnZ, where n = D for double zeta, T for triple zeta, Q for quadruple zeta, 5 for 

quintuple zeta or 6 for sextuple zeta. 

For the treatment of systems involving a large number of core electrons, these 

require a number of basis functions. However, since the deep core electrons are not 

much important in a chemical reaction, leading to an approximation by replacing the 

core electrons with analytical functions, called as an Effective core potential (ECP) 

(Collins, Schleyer, Binkley and Pople, 1976) or Pseudopotentials (Aaqvist and 

Warshel, 1993). In several cases, such basis set is reasonably accurate and efficient, 

representing the combined nuclear-electronic core to the remaining electrons. 
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2.7 Basis Set Superposition Error (BSSE)  

In the calculations of molecular energies using atomic basis sets, especially for 

weak interactions, an error occurs due to the use of basis functions on adjacent 

molecules (Davidson and Chakravorty, 1994). The results are regarded as “Basis Set 

Superposition Error (BSSE)” (Boys and Bernardi, 1970). The BSSE causes 

overestimation of the attractive contribution to the interaction energy and 

consequently provides an illegitimate increase of binding energy in a molecule. As a 

consequence, this may lead to less accurate results regarding to molecular geometry 

optimization and molecular charge distribution. The BSSE can be calculated with the 

help of ghost atoms. In this respect, the amount of BSSE can be estimated using 

Counterpoise Procedure (CP) (Boys and Bernardi, 1970). The counterpoise correction 

is the energy lowering of single monomer in the presence of ghost basis functions 

located at the position of the atomic centers of that monomer, but without additional 

nuclear charges or electrons. The correction for BSSE in the molecular calculations 

with medium and small basis sets can result in values of interaction energies which are 

fairly close to those obtained by using more expensive and large basis sets. However, 

it should be realized that the counterpoise method will not provide effective 

improvement of the results if the atomic basis sets are very poor. The counterpoise 

procedure has been used as a standard tool of theoretical chemistry although some 

researchers have raised serious doubts on the usefulness of this procedure (Schwenke 

and Truhlar, 1986; Schwenke and Truhlar, 1987). The counterpoise correction can be 

very reasonable for the estimation of weak electronic interaction energies with small 

basis sets at Hatree-Fock level of accuracy. However, this approach has failed for the 
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estimation of strong electronic interaction energies even if with up to date basis sets, 

as demonstrated by a study of cyclic hydrogen fluoride trimer (Liedl, 1998). 

 

2.8 Hartree-Fock method 

By solving the Schrödinger equation, some approximations are mandatory. 

According to the variation method, the form of wavefunction is guessed, called the 

trial wavefunction. For N-electron system, a trial wavefunction can be written as 

 

),()2()1(1 NN 
                                  

(2.29) 

 

where )(ii  
is the spin orbitals of the i-th electron, and then the trial wavefunction 

can be expressed in the form of Slater determinant to ensure the antisymmetry upon 

the interchange of electron coordinates,  
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The spin orbital i is the product of a spatial function or molecular orbital, i , and a 

spin function,   or 
 
called as spin up and spin down, respectively. The electronic 

spin is quantized by ±1/2; +1/2 spin defines  -electron and -1/2 spin defines  -spin. 

The spin orbital can be written as  
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),(),,( iiiiii zyx  

                                    
 (2.31) 

 

or 

 

).(),,( iiiiii zyx  
                                    

 (2.32) 

 

The set of spin orbital must have orthonormal properties which defined by 
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According to the variation method, the best sets of spin orbital correspond to 

the one that give the lowest expectation value of energy. Consequently, the 

appropriate sets of spin orbital can be solved from the HF equation,  

 

).1()1()1(ˆ
iiiiF  

                                       
 (2.34) 

 

In this respect, the solution of HF equation are set of eigenvalue, { i }, and 

eigenfunction, { )1(i }, which corresponds to the lowest energy. By means of the HF 

method, the Hamiltonian operator considers that each electron individually move in 

the average field of all other electrons in the molecule. This is the basis of the self-

consistent field (SCF) procedure. For closed-shell systems (all electrons spin-paired, 

two per occupied orbital), the formalism is well known as restricted Hartree-Fock 
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(RHF). The Hamiltonian operator for one-electron is called Fock operator, F̂ , which 

can be defined for each electron j as 
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where )1(ˆ coreH  is the core Hamiltonian operator, 
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where jĴ  is Coulomb operator representing the classical repulsion between two 

electron distributions (i.e., interaction potential of electron j  with all of the other 

electrons), which can be defined as 
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and jK̂  is exchange operator representing the exchange function according to the fact 

that the two electrons exchange their positions corresponds to Pauli’s principle. The 

exchange of electrons in two-spin orbitals can be defined as  
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The total energy of the system can be obtained from the summation of energy of each 

electron, 
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(2.39) 

 

 In general, the HF wavefunction is not complicate, i.e., when applies for atom. 

However, it becomes more complicate for molecule since there is more than one 

center. As a consequence, Roothaan-Hall equation has been proposed to write the one-

electron molecular wavefunction in terms of atomic wavefunction or basis functions 

based on the concept of the LCAOs, as shown in equation (2.26). Then, the HF 

equation can be written as 
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The above equation can be solved easily by converting it into a matrix problem, i.e., 

multiply on the left hand side by an integration term, 
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and then 
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or 
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The above equation is called the Roothaan-Hall equation, where S
 

is the overlap 

matrix,  
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(2.44) 

 

The expression for each element F̂  of Fock matrix elements for a closed-shell 

system of N electrons becomes 
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where 
coreH 

ˆ  is a one electron integral that can be written as 
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in which  
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Here, AZ

 

is the atomic number of atom A. P  is the density matrix, 
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According to Eq. (2.45), 
 
refers to coulomb integral (two electron 

repulsion integral) and 
 
represents exchange integral. Then, the total energy 

of a molecule can be expressed as  
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where elecE
 
and nucE

 
are electronic energies of the system and nuclear repulsion, 

respectively,  
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2.9 Electron correlation 

 It is known that motions of electrons are correlated and they tend to repel each 

electron to give a lower energy. According to the HF method, each electron moves in 

the static electric field created by all of the other electrons in the system. On the other 

hand, the electron cannot see other electrons during the HF calculations. Thus, the 

significant deficiency of the HF method is that it fails to adequately treat the 

correlation between motions of electrons. The effects of electron correlation are 

usually neglected in the Hamiltonian in the previous section. This leads to limitation 

of the HF energy calculations. The difference between HF and exact (non-relativistic) 

energies is the correlation energy, 

 

.ncorrelatioHFexact EEE                                        (2.52) 

 

In several cases, the neglect of electron correlation effects can lead to some 

anomaly of qualitative information. As a consequence, the Ψ and E cannot be used to 

correctly predict atomic properties without accounting for electron correlation. 

The electron correlation methods calculate the coefficient in front of the other 

determinants in different way, such as configuration interaction (CI) (Sherrill and 

Schaefer Iii, 1999), many-body perturbation (MP) (Møller and Plesset, 1934), coupled 

cluster (CC) (Bartlett, 1989) and density function theory (DFT). 
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CHAPTER III 

MOLECULAR DYNAMICS SIMULATIONS 

 

3.1 Introduction to molecular dynamics (MD) simulations  

In terms of computer simulations, Monte Carlo (MC) and molecular dynamics 

(MD) are two well-known techniques for studying molecular systems. For the 

treatment of condensed-phase systems, MD technique is more preferential than MC 

since it can provide not only the structural data, but also the dynamics details, e.g., 

providing the information related to time dependent behaviors of the system under 

investigations.  

By the MD technique, the simulation starts with reading in the starting 

configurations, velocities, accelerations and forces. The starting configuration can be 

obtained either from a random configuration or a lattice. Each particle in the system 

will be moved with respect to force from neighboring particles. According to 

Newton’s Equation of motion, maF  , the trajectories cannot be directly obtained 

from this equation. In this respect, the time integration algorithms will be used to 

obtain time-dependent trajectories, i.e., a new set of coordinates, velocities and forces 

will be predicted and corrected. The energy of the system can be obtained from 

molecular mechanics (MM) or quantum mechanics (QM) calculations. The force of 

each atom can be obtained from the derivative of the energy with respect to the 

change in the atom’s position. Each particle will be moved by their new force to the 

new configurations. This process will be repeated until the system reaches its 
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equilibrium. Once the system reaches its equilibrium, the coordinates, velocities, 

accelerations, forces and so on of all particles will be collected for further analysis 

with respect to the structure and dynamics details. The scheme of MD simulation is 

shown in Figure 3.1. 
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Figure 3.1 The scheme of molecular dynamics simulation. 

 

 

starting configuration, velocities, accelerations and forces 

predict configurations, velocities, accelerations, etc., at 

a time t+δt using the current values of these quantities 

 

 

 
calculate interaction energy E (using either MM or QM 

method) and force on an atom 
























 i

i

i F
dr

dE
F  and 

hence acceleration 











i

i

i
m

F
a  

correct the predicted configurations, 

velocities, accelerations, etc., using the 

new accelerations 

move particles by force Fi to the new configurations 

 

equilibrium? 

store coordinates, velocities, accelerations and forces, 

etc. of all particles  

 

calculate properties of the system 

time integration 

algorithm 

no 

yes 

 

 

 

 

 

 

 

 



48 

 
3.2 Intermolecular potentials 

According to the MM-based MD simulations, the interactions of particles in 

the system are usually described by means of intermolecular potentials. The potential 

energy function is the total intermolecular interaction energy comprising all of the 

pair, three-body, four-body up to N-body interactions, 

 

   ),,,,(),,(),( NkjiVkjiVjiVVtotal  .  (3.1) 

 

However, most of earlier simulation works had neglected the higher order 

interactions (three, four,…, N-body), i.e., they are assumed to converge rather slowly 

and the terms tend to have alternating signs (Kistenmacher, Popkie and Clementi, 

1974). Hence, only the pair interaction has been used to describe the intermolecular 

interaction of the system, known as pairwise additive approximation. The pair 

potential functions can be constructed from experimental data. However, a popular 

way is to construct them with respect to ab initio calculations.  

 

3.3 Many-body interactions 

In several cases, the pairwise additive approximations may not adequate, i.e., 

the contributions of many-body interactions are significant and these terms must be 

taken into account in order to achieve sufficient agreement with experimental binding 

enthalpies. The influence of many-body interactions is defined by the difference of the 

ab initio interactions and the interactions that calculated on the basis of pairwise 

additive approximations. To estimate the influence of many-body contributions, for 
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example, in the case of 


nOHM )( 2 complex, the ab initio interaction energy of the 

complex can be computed using supermolecular approach as, 

 

),()()(( 22 OHnEMEOHMEE nab  

  
(3.2) 

 

and the pair interaction energy can be obtained from 
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In this respect, the interaction energy difference diffE , and the percentage of 

them with respect to pair potential, E% , can be calculated by 

 

,pairabdiff EEE   (3.4) 

 

and 
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3.4 Time interaction algorithms 

 The MD technique solves the Newton’s equation of motion for atom by taking 

small step in time and using approximate numerical methods to predict all its future 

positions and velocity. A collection of position is known as a trajectory. The 

approximate numerical method employed by one time step is known as an integration 

algorithm. All the integration algorithms assume that the positions, velocities and 

accelerations can be expressed by a Taylor series expansion, 

 

         432 )(
24

1
)(

6

1

2

1
ttcttbttattvtrttr           (3.6) 

         32 )(
6

1

2

1
ttcttbttatvttv     (3.7) 

       2)(
2

1
ttcttbtatta    (3.8) 

       ttctbttb  ,  (3.9) 

 

where r is the position, v is the velocity (the first derivative of the position with 

respect to time), a  is the acceleration (the second derivative), b is the third derivative, 

and so on. 

Many integration algorithms have been developed for integrating the equations 

of motion. Two popular integration algorithms are the Verlet algorithm (Verlet, 1967) 

and the Predictor-corrector algorithm (Gear, 1971).   
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 3.4.1 Verlet algorithm 

  The Verlet algorithm uses the positions and accelerations at time t and 

positions from the previous step, )( ttr   ,to calculate the new position at tt  . 

The following relationships between these quantities and the velocities at time t would 

be of the form 

 

        2

2

1
ttattvtrttr               (3.10) 

        .
2

1 2ttattvtrttr               (3.11) 

 

The summation of equations (3.10) and (3.11) yields 

 

      2)(2 ttattrtrttr               (3.12) 

 

Note that the velocities of the Verlet algorithm do not explicitly appear 

in the equations. In practice, the velocities can be calculated by dividing the difference 

in positions at time t+δt and t-δt by 2δt as 

 

      .2/][ tttrttrtv               (3.13) 

 

In addition, the velocities can be obtained at the half-step ( tt 
2

1
 ) as 

  ./)()()
2

1
( ttrttrttv               (3.14) 
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However, the deficiency of the Verlet algorithm is that the calculation 

of the velocities cannot be obtained unless the positions at the next step are known. 

Thus, it is not a self-starting algorithm. With regard to this point, some variants of the 

Verlet algorithm have been developed. For example, the leap-frog algorithm 

(Hockney, 1970), which uses the following expansions, 

 

    ,)
2

1
( tttvtrttr               (3.15) 

  .)
2

1
()

2

1
( ttattvttv              (3.16) 

   

By this scheme, the velocities )
2

1
( ttv   are firstly calculated from the velocities at 

time ),
2

1
( tt  and the accelerations at time .t  Then, the positions at time tt   are 

deduced from the velocities just calculated together with the positions at time t using 

equation (3.15). The velocities at time t  can be calculated from 

 

  .)
2

1
()

2

1
(

2

1






 ttvttvtv              (3.17) 

 
The advantage of this algorithm is that the velocities are explicitly 

calculated. However, some disadvantages exist, such as they are not calculated at the 

same time as the positions. 
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An even better implementation of such algorithm is the velocity Verlet 

algorithm (Swope, Andersen, Berens and Wilson, 1982), which gives positions, 

velocities and accelerations at the same time, 

        ,
2

1 2ttattvtrttr               (3.18) 

         .
2

1
tttatatvttv               (3.19)  

 

Another integration method is the Beeman’s algorithm (Beeman, 

1976), which is related to the Verlet method, and can be expressed as 

 

        ,
6

1

3

2
)( 22 tttattattvtrttr             (3.20) 

          .
6

1

6

5

3

1
tttattattatvttv             (3.21) 

 

The Beeman’s algorithm uses a more accurate expression for the 

velocities and gives better energy conservation. However, the performance of this 

algorithm is more complicate, as well as more expensive. 

 

 3.4.2 Predictor-corrector algorithm 

The predictor-corrector algorithm consists of three basic steps. First, 

the new positions, velocities, accelerations and higher-order terms are predicted 

according to the Taylor expansion, as shown in equations (3.6)-(3.9). Second, the 

forces are then evaluated at the new positions to give the accelerations,  tta  . 

These accelerations are compared with the accelerations predicted from the Taylor 
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series expansion (  tta c  ). The difference between the predicted and the calculated 

accelerations is used to correct the positions, velocities, etc., according to equations 

(3.22)-(3.26). 

 

     .ttattatta pc    (3.22) 

 

Then, 

 
     ,0 ttacttrttr pc    (3.23) 

     ,1 ttacttvttv pc    (3.24) 

     ,2 ttacttatta pc    (3.25) 

     ,3 ttacttbttb pc    (3.26) 

 

where the superscript p represents the predicted values, r and v stand for the complete 

set of positions and velocities, respectively, a represents the accelerations and b 

denotes all the third time derivatives of r.  

 

3.5 Periodic boundary conditions 

 The boundary effects or surface effects are often found in the computer 

simulation using small system size. The interactions between particles and the wall 

reflect in wrong properties of bulk. This problem can be solved by using the periodic 

boundary (PB) conditions. By the PB conditions, the particles in the box are replicated 

in all directions to give a periodic array, which can be represented in Figure 3.2. 
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Figure 3.2 The periodic boundary conditions in two dimensions. 

 

The concept of the periodic boundary conditions is that the coordinates of the 

particles in the image boxes can be computed by adding or subtracting integral 

multiples of the box sides. If a particle leaves the box during the simulation, it is 

replaced by an image particle that enters from the opposite side at the same time, as 

illustrated in Figure 3.2. By this scheme, the number of particles within the central 

box remains constant. 

 

3.6 Cut-off and minimum image convention 

In earlier MC and MD studies, i.e., most of which relied on the MM-based 

models, one of the very time-consuming of the simulations is the calculation of the 

non-bond energies and forces. The simple way of reducing the expense is to use a cut-

off and to apply the minimum image convention. The minimum image convention is a 
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common form of the PB condition, in which each atom interacts with only its 

neighboring atoms in the system. The energies and forces are computed with respect 

to the closest atom or image, as shown in Figure 3.3. 

 

 

 

Figure 3.3 The spherical cut-off and the minimum image convention. 

 

By using the cut-off, the interactions between all pairs of atoms that are further 

apart from the cut-off value are set to zero. In this regard, the cut-off distance should 

not be greater than half of the length of their image. However, the use of cut-off leads 

to a serious problem in the simulation, as can be seen in Figure 3.4 
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Figure 3.4 A discontinuity of cut-off. 

 

According to the use of cut-off limit, this reflects in the discontinuity in both 

the potential energy and the force after the cut-off value, as depicted in Figure 3.4. 

This problem can be solved by shifted potential function by an amount cV , 
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where cr  
is the cut-off distance and cV

 
corresponds to the value of the potential at the 

cut-off distance. In this respect, although the energy conservation can be improved by 

the shifted potential, the discontinuity in the force with the shifted potential still exists. 

At the cut-off distance, since the force will have a finite value, a suitable shifted 

potential would be of the form 
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However, the application of shifted potential is not easy for inhomogeneous 

systems containing many different types of atom. An alternative way is to eliminate 

discontinuities in the energy and force by using a switching function. The switched 

potential (V
SF

(r)) is related to the true potential (V(r)) as 

 

).()()( rSrVrV       (3.29) 

 

Some switching functions are applied to the entire range of the potential up to 

the cut-off point. In general, the switching function has a value of 1 at 0 r   and a 

value of 0 at c rr  , while the switching function values between two cut-offs are 

varied. The example of a switching function applied to the Lennard-Jones potential is 

given in Figure 3.5. 
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Figure 3.5 The effect of a switching function applied on the Lennard-Jones potential. 

 

3.7 Non-bonded neighbor lists 

 In practice, the use of cut-off and minimum image convention is not actually 

reduces the time in the simulation since all the non-bonded distances must firstly be 

calculated and checked whether it is inside or outside the cut-off distance. A useful 

technique for solving this problem is to use the non-bonded neighbor list. The first 

non-bonded neighbor list has been proposed by Verlet (Verlet, 1967). As depicted in 

Figure 3.6, the Verlet neighbor list stores all atoms within the cut-off distance (the 

solid circle (rc)) and atoms are slightly further away than the cut-off distance (the 

dashed circle (rm)). The neighbor list will frequently be updated throughout the 

simulation. With regard to this point, the distance used to calculate each atom’s 

neighbors should be slightly larger than the actual cut-off distance in order to ensure 

 

 

 

 

 

 

 

 



60 

 
that the atoms outside the cut-off will not move closer than the cut-off distance before 

the neighbor list is updated again. 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.6 The non-bonded neighbor list. 

 

3.8 Long-range interactions 

 Since the charge-charge interactions in range greater than half of the box 

length still has significance, the neglect of long-range interactions of cut-off may 

introduce serious errors in the simulation. There are two common methods used for 

the treatment of long-range forces. The first one is Ewald summation (Ewald, 1921), 

computing the interaction energy of ionic crystals by including the interaction of the 

particle with all the other of periodic systems. The potential energy of the Ewald 

summation can be expressed as 
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where the prime on the first summation indicates that the series does not include the 

interaction ji   for 0n  , qi and qj are charges and n is a cubic lattice point. The 

Ewald summation method is the most correct way to accurately include all the effects 

of long-range forces in the computer simulation. However, this method is rather 

expensive to implement since the equation (3.30) converges extremely slowly. 

Another method for the treatment of long-range interactions is to apply the reaction 

field method (Foulkes and Haydock, 1989). This method constructs the sphere around 

the molecule with a radius equal to the cut-off distance. All interactions within the 

sphere are calculated explicitly, while those outside of the sphere are modeled as a 

homogeneous medium of dielectric constant ( s ). The electrostatic field due to the 

surrounding dielectric is given by 

 




















cij rrj

j

cs

s
i

r
E

;
3

1

1

)1(2





,    (3.31) 

 

where j  are the dipoles of the neighboring molecules that are located within the cut-

off distance ( cr ) of the molecules i. The interaction between molecule i and the 

reaction field equals to iiE  . 
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3.9 Research methodology 

3.9.1 Conventional QM/MM MD technique 

According to the conventional QM/MM MD scheme (B. M. Rode, 

Schwenk, Hofer and Randolf, 2005; Bernd M. Rode, Schwenk and Tongraar, 2004; 

Xenides, Randolf and Rode, 2005), the system is partitioned into two parts, namely 

QM and MM regions.  

 

 

 

 

 

 

 

 

Figure 3.7 System’s partition. 

 

For example, for a system of aqueous solution containing an alkali 

metal ion, the QM region refers to a sphere which contains a central ion and its 

nearest-neighbor waters, which is treated by quantum mechanics, and the MM part 

corresponds to the bulk waters, which is described by MM force fields. The total 

interaction energy of the system is defined as 

 

MMQMMMQMQMtotal EEHE  ˆ ,                      (3.32) 
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where QMQM H  ˆ  denotes the interactions within the QM region, and EMM and 

EQM-MM represent the interactions within the MM and between the QM and MM 

regions, respectively. Note that the EMM and EQM-MM terms are described by classical 

MM force fields. The total force of the system is described by  

 

)FF(FF QM

MM

QM

QM

sys

MMtot  ,                                       (3.33) 

 

where 
sys

MMF , 
QM

QMF  and 
QM

MMF  are the MM force of the total system, the QM force in 

the QM region and the MM force in the QM region, respectively. In this respect, the 

QM

MMF  term accounts for the coupling between the QM and MM regions. During the 

QM/MM simulations, forces acting on each particle in the system are switched 

according to which region the solvent molecule was entering or leaving the QM 

region and is defined as  

 

 ,))(1()( MMmQMmi FrSFrSF                           (3.34) 

 

where FQM and FMM are the quantum mechanical and molecular mechanical forces, 

respectively. )(rSm  is the smoothing function (Brooks, Bruccoleri, Olafson, States, 

Swaminathan and Karplus, 1983), described by 
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(3.35) 

 

where r0 and r1 are the distances characterizing the start and the end of the QM region, 

respectively, and applied within an interval of 0.2 Å to ensure a continuous change of 

forces at the transition between QM and MM regions. 

 

3.9.2 QM/MM MD based on ONIOM-XS technique 

A schematic diagram of the ONIOM-XS method (Kerdcharoen and 

Morokuma, 2002)is given in Figure 3.8. With regard to the ONIOM-XS MD 

technique, the system is divided into a high-level (QM) sphere, i.e. a sphere which 

contains the ion and its surrounding water molecules, and the “low-level” MM region, 

i.e. the bulk water. A thin switching shell located between the QM and MM 

subsystems is introduced in order to smooth the transition due to the solvent exchange.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 
 

 

 

 

 

 

Figure 3.8 Schematic diagram of the ONIOM-XS method (Kerdcharoen and 

Morokuma, 2002). 

 

Given n1, l and n2 as number of particles in the QM region, the 

switching shell and the MM region, respectively, and N=n1+l+n2 is the total number 

of particles, the potential energy term can be written by equations (3.36) and (3.37) 

based on the ONIOM extrapolation scheme (Svensson, Humbel, Froese, Matsubara, 

Sieber and Morokuma, 1996). If the switching layer is included into the high-level 

QM sphere, the energy expression is defined as 

 

       NElnElnENln MMMMQM  111

ONIOM ;E .             (3.36) 

 

If the switching layer is considered as part of the “low-level” MM 

region, the energy expression can be written as  

 

       NEnEnENn MMMMQM  111

ONIOM ;E .                         (3.37) 
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Then, the potential energy of the entire system is taken as a hybrid 

between both energy terms (3.36) and (3.37), 

  

             NnErsNlnErsr ONIOM

l

ONIOM

ll ;;1E 11

XS-ONIOM  ,    (3.38) 

 

where   1rs  is an average over a set of switching functions for individual 

exchanging particle in the switching shell  ii xs
 
(Tasaki, McDonald and Brady, 

1993), 
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The switching function  ii xs in equation (3.39) is written in a polynomial form as 
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where  xi = ((ri-r0)/(r1-r0)), and  r0 and r1 are the radius of inner and outer surfaces of 

the switching shell, respectively, and ri is the distance between the center of mass of 

the exchanging particle and the center of the QM sphere. Then, the gradient of the 

energy can be written as 
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3.10 Research procedures 

3.10.1 Construction of pair potential functions 

The pair potential functions for describing ion-water interactions were 

newly constructed. The 2354, 2424 and 2682 HF interaction energy points for various 

Li
+
-H2O, Na

+
-H2O and K

+
-H2O configurations, respectively, obtained from 

Gaussian03 calculations (Frisch et al., 2005), using the DZP basis set (Dunning and 

Hay, 1977) for water and Li
+
 and the LANL2DZ basis set (Check, Faust, Bailey, 

Wright, Gilbert and Sunderlin, 2001; Hay and Wadt, 1985) for Na
+
 and K

+
, were fitted 

to the analytical forms of  
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where A, B, C and D are the fitting parameters (see Table 3.1), icr  denotes the 

distances between the ion and the i-th atom of water, and iq  and cq are the atomic net 
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charges. The charge values for all ions were set to 1.0 and for O and H of water were 

set to -0.6598 and 0.3299, respectively.  

 

Table 3.1 Optimized parameters of the analytical pair potentials for the interaction of 

water with Li
+
, Na

+
 and K

+
. (interaction energies in kcal mol

-1
 and distances in Å) 

 

 

    A            B                   C          D 
 

Li-O -1050.70523   1157.41401   5931.628  2.9058482 

Li-H     -69.95421     131.67480        15.710  0.7012464 

 

Na-O   -663.20896     967.45544  28536.783  3.2925018 

Na-H    148.86809     605.89247   -7143.015  3.5661953 

 

K-O -1808.22101 11173.26863 -36489.438  3.7078857 

K-H    649.72461    -485.33410     -581.534  1.6453366 

  

 

3.10.2 Effects of many-body interactions 

 The results of many-body effects in Li
+
(H2O)n, Na

+
(H2O)n, K

+
(H2O)n 

complexes, where n = 1, 2, 3, 4 and 6, as obtained from QM calculations at HF, 

CCSD, MP2, B3LYP levels of accuracy using DZP basis set for H2O and Li
+
, and 

LANL2DZ basis set for Na
+
 and K

+ 
are given in Tables 3.2-3.4. 
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Table 3.2 Optimized geometries and corresponding many-body effects for Li

+
(H2O)n 

complexes, as obtained by various QM methods using DZP basis set. (distances, 

angles and energies are in Å, degree and kcal.mol
-1

, respectively) 

 

Method n r
Li-O

 r
O-H

 HOH ΔEab ΔEpair ΔEdiff %Enbd 

HF 1 1.87 0.9505 106.5 -37.2 -37.2 - - 

 2 1.89 0.9494 106.7 -70.1 -72.2 2.1 2.9 

 3 1.92 0.9480 106.9 -95.7 -102.9 7.3 7.1 

 4 1.97 0.9468 107.1 -113.9 -128.7 14.7 11.4 

 6 2.17 0.9462 107.7 -130.6 -160.1 29.5 18.4 

B3LYP 1 1.86 0.9714 105.8 -39.7 -39.7 - - 

 2 1.88 0.9702 106.0 -74.8 -77.4 2.6 3.4 

 3 1.90 0.9688 105.6 -102.1 -111.7 9.6 8.6 

 4 1.96 0.9679 106.3 -122.0 -141.6 19.7 13.9 

 6 2.17 0.9710 107.8 -147.1 -184.0 36.9 20.0 

MP2 1 1.88 0.9693 105.3 -37.8 -37.8 - - 

 2 1.90 0.9683 105.4 -71.8 -73.8 2.0 2.7 

 3 1.93 0.9670 105.6 -99.0 -106.6 7.5 7.1 

 4 1.97 0.9661 105.7 -119.5 -135.2 15.8 11.7 

 6 2.16 0.9679 106.6 -146.2 -177.7 31.5 17.8 

CCSD 1 1.88 0.9678 105.4 -37.5 -37.5 - - 

 2 1.90 0.9668 105.5 -71.1 -73.1 1.9 2.6 

 3 1.92 0.9657 105.7 -98.2 -105.5 7.3 6.9 

 4 1.97 0.9648 105.8 -118.5 -133.8 15.3 11.4 

 6 2.15 0.9663 106.6 -147.5 -174.7 27.2 15.6 
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Table 3.3 Optimized geometries and corresponding many-body effects for Na

+
(H2O)n 

complexes, as obtained by various QM methods using DZP basis set for H2O and 

LANL2DZ basis set for Na
+
. (distances, angles and energies are in Å, degree and 

kcal.mol
-1

, respectively) 

 

Method n r
Na-O

 r
O-H

 HOH ΔEab ΔEpair ΔEdiff %Enbd 

HF 1 2.28 0.9486 105.9 -26.2 -26.2 - - 

 2 2.29 0.9648 106.1 -50.4 -51.1 0.8 1.5 

 3 2.31 0.9473 106.3 -70.5 -73.8 3.2 4.4 

 4 2.34 0.9466 106.5 -86.9 -93.8 6.9 7.4 

 6 2.44 0.9450 106.7 -105.4 -122.5 17.1 14.0 

B3LYP 1 2.27 0.9698 104.9 -26.8 -26.8 - - 

 2 2.28 0.9692 105.0 -51.7 -52.4 0.8 1.5 

 3 2.30 0.9684 105.1 -72.3 -75.8 3.6 4.7 

 4 2.33 0.9679 105.4 -89.3 -96.8 7.6 7.8 

 6 2.42 0.9668 105.3 -110.1 -105.9 20.6 15.8 

MP2 1 2.29 0.9675 104.5 -26.3 -26.3 - - 

 2 2.30 0.9670 104.6 -50.8 -51.5 0.7 1.4 

 3 2.32 0.9664 104.8 -71.5 -74.7 3.2 4.3 

 4 2.35 0.9658 104.9 -88.7 -95.8 7.1 7.4 

 6 2.44 0.9648 104.9 -110.4 -128.7 18.4 14.3 

CCSD 1 2.29 0.9661 104.6 -26.0 -26.0 - - 

 2 2.30 0.9657 104.7 -50.2 -50.9 0.7 1.4 

 3 2.32 0.9651 104.9 -70.7 -73.8 3.1 4.3 

 4 2.35 0.9646 105.1 -87.8 -94.6 6.9 7.3 

 6 2.44 0.9637 105.0 -109.2 -127.0 17.8 14.0 
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Table 3.4 Optimized geometries and corresponding many-body effects for K

+
(H2O)n 

complexes, as obtained by various QM methods using DZP basis set for H2O and 

LANL2DZ basis set for K
+
. (distances, angles and energies are in Å, degree and 

kcal.mol
-1

, respectively) 

 

Method n r
K-O

 r
O-H

 HOH ΔEab ΔEpair ΔEdiff %Enbd 

HF 1 2.68 0.9477 105.5 -18.4 -18.4 - - 

 2 2.71 0.9475 105.6 -35.5 -35.9 0.5 1.3 

 3 2.73 0.9469 105.8 -50.5 -52.0 1.5 2.8 

 4 2.76 0.9464 106.0 -63.4 -66.4 2.9 4.4 

 6 2.82 0.9454 106.6 -79.3 -90.1 10.8 12.0 

B3LYP 1 2.65 0.9690 104.3 -19.4 -18.5 - - 

 2 2.67 0.9686 104.4 -37.5 -36.2 0.5 1.2 

 3 2.69 0.9682 104.6 -53.5 -52.5 1.5 2.8 

 4 2.71 0.9679 104.8 -67.7 -67.5 3.2 4.5 

 6 2.78 0.9671 105.2 -88.7 -93.2 8.9 9.1 

MP2 1 2.69 0.9667 103.8 -18.5 -18.5 - - 

 2 2.71 0.9664 103.9 -35.8 -36.2 0.4 1.1 

 3 2.73 0.9661 104.1 -51.2 -52.5 1.3 2.6 

 4 2.76 0.9657 104.2 -64.7 -67.5 2.8 4.1 

 6 2.81 0.9650 104.7 -85.7 -93.2 7.5 8.1 

CCSD 1 2.69 0.9655 104.0 -18.3 -18.3 - - 

 2 2.71 0.9653 104.1 -55.4 -35.8 0.5 1.3 

 3 2.73 0.9650 104.2 -50.6 -51.9 1.5 2.8 

 4 2.76 0.9646 104.4 -63.9 -66.7 2.9 4.4 

 6 2.81 0.9640 104.8 -84.7 -92.0 7.3 8.0 
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As can be seen in Tables 3.2-3.4, it is apparent that the many-body 

effects are relevant to the strength of ion-ligand interactions, i.e., the stronger ion-

ligand interactions will produce larger amount of errors regarding the many-body 

interactions. The increase of number of ligands in the ion-ligand clusters results in an 

increase of many-body effects. In this study, the assumption of pairwise additive 

approximations leads to the errors of 18.4%, 14.0% and 12.0% for the Li
+
(H2O)6, 

Na
+
(H2O)6, and K

+
(H2O)6 complexes, respectively. From these values, it could be 

expected that the non-additive interactions are significant and are not negligible for 

studying the behaviors of the Li
+
, Na

+
 and K

+
 hydrates. These observations clearly 

confirm the need for more accurate simulation techniques, in particular the QM-based 

simulation approaches, for the treatment of such systems. 

 

3.10.3 Selection of method and basis set 

In this work, since the correlated QM calculations, even at the simple 

MP2-level, are still beyond our current computational feasibility, the HF method using 

the DZP basis set (Dunning and Hay, 1977) for water and Li
+
 and LANL2DZ basis set 

(Boys and Bernardi, 1970; Check, Faust, Bailey, Wright, Gilbert and Sunderlin, 2001; 

Hay and Wadt, 1985) for Na
+
 and K

+ 
have been employed in the present ONIOM-XS 

MD studies. The reliability of the HF method and the quality of the basis sets have 

been verified by comparing the HF results with those obtained by other QM methods, 

as shown in Figures 3.9 and 3.10. Comparing to the CCSD results, the HF method 

reveals an underestimation of the interaction energies, while an overestimation is 

observed in the B3LYP calculations. As can be seen in Figure 3.10, while the HF 

calculations show slight elongation of the ion-water distances, i.e., compared to the 
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MP2 and CCSD data, the B3LYP method significantly predicts relatively short ion-

water distances. With regard to the B3LYP results, it could be demonstrated that the 

implement of this method may lead to too rigidity of the ion-water complexes, as well 

as to the too slow dynamics properties of the ion hydrates. 

 

 

 

Figure 3.9 The ab initio interaction energies of a) Li
+
(H2O)n complex, where n = 1-4, 

b) Na
+
(H2O)n and c) K

+
(H2O)n complexes, where n = 1-6, as obtained by various QM 

methods (HF, B3LYP, MP2 and CCSD) using DZP basis set for H2O and Li
+
, and 

LANL2DZ basis set for Na
+
 and K

+
, respectively. (energies are in kcal.mol

-1
) 
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Figure 3.10 M-O distance of the optimized geometries of a) Li
+
(H2O)n complex, 

where n = 1-4, b) Na
+
(H2O)n and c) K

+
(H2O)n complexes, where n = 1-6, as obtained 

by various QM methods (HF, B3LYP, MP2 and CCSD) using DZP basis set for H2O 

and Li
+
, and LANL2DZ basis set for Na

+
 and K

+
, respectively. (distances are in Å)  

 

Figure 3.11 displays some essential structural parameters of the 

optimized ion-water complexes, as obtained by the HF calculations using different 

basis sets. It is apparent that the use of medium-size basis set, like the DZP, could 

provide results in good accord with those obtained by the calculations using larger 6-

311++G(d,p) and AUG-cc-pVDZ basis sets. In general, the use of larger basis set can 

provide more reliable simulation results. In practice, however, the use of large basis 

sets is still beyond our current computational facilities (cf. Figures 3.12-3.14). In this 

study, the selection of the DZP basis set for water and Li
+
 and the LANL2DZ basis set 

for Na
+
 and K

+ 
is assumed to be good enough to achieve a sufficiently level of 

accuracy in the simulations. 
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Figure 3.11 Optimized geometries of Li
+
(H2O)4, Na

+
(H2O)6 and K

+
(H2O)6 

complexes, as obtained by the HF calculations using different basis sets (3-21G, DZP, 

6-311++G(d,p) and AUG-cc-pVDZ). (distances and angles are in Å and degree, 

respectively) 

Basis set r
Li-O

 (Å) r
O-H

 (Å) HOH 

3-21G 1.89 0.9660 110.1 

DZP 1.97 0.9468 107.1 

6-311++G(d,p) 1.97 0.9420 106.9 

AUG-cc-pVDZ 1.97 0.9443 106.5 

 

Basis set r
Na-O

 (Å) r
O-H

 (Å) HOH 

3-21G 2.26 0.9648 109.3 

DZP 2.44 0.9450 106.7 

6-311++G(d,p) 2.39 0.9424 106.3 

AUG-cc-pVDZ 2.39 0.9444 106.0 

 

Basis set r
K-O

 (Å) r
O-H

 (Å) HOH 

3-21G 2.69 0.9658 108.4 

DZP 2.82 0.9454 106.6 

6-311++G(d,p) 2.83 0.9428 106.2 

AUG-cc-pVDZ 2.84 0.9447 105.8 
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Figure 3.12 Requirements of CPU times for HF force calculations of Li
+
(H2O)n 

complexes, where n=1-16, using DZP, 6-311++G(d,p) and AUG-cc-pVDZ basis sets. 

All QM calculations were performed on CCRL cluster. 
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Figure 3.13 Requirements of CPU times for HF force calculations of Na
+
(H2O)n 

complex, where n=1-16, using DZP, 6-311++G(d,p) and AUG-cc-pVDZ basis sets for 

H2O and LANL2DZ basis set for Na
+
. All QM calculations were performed on CCRL 

cluster. 
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Figure 3.14 Requirements of CPU times for HF force calculations of K
+
(H2O)n 

complex, where n=1-16, using DZP, 6-311++G(d,p) and AUG-cc-pVDZ basis sets for 

H2O and LANL2DZ basis set for K
+
. All QM calculations were performed on CCRL 

cluster. 

 

3.10.4 Simulation details 

All ONIOM-XS MD simulations were carried out in a canonical 

ensemble (NVT) at 298 K with periodic boundary conditions. The periodic box, with 

a box length of 18.19 Å, contains one ion (Li
+
, Na

+
 or K

+
) and 199 water molecules, 

which corresponds to the experimentally observed density of pure water. The QM 

size, with radius of 4.2 Å, is employed. The reaction-field method (Adams, Adams 
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and Hills, 1979) was employed for the treatment of long-range interactions. The 

Newtonian equations of motions were treated by a general predictor-corrector 

algorithm. The time step size was set to 0.2 fs, allowing for the explicit movement of 

the hydrogen atoms of water molecules. For each ONIOM-XS MD simulation, the 

system was initially equilibrated by performing the simulations for 25,000 steps, 

follows by 200,000 time steps to collect configurations every 10
th

 step. 

 

3.11 Determination of system’s properties 

3.11.1 Structural properties 

 The structural properties of the hydrated ions will be analyzed in terms 

of radial distribution functions (RDFs) and their corresponding integration numbers, 

together with the analyses of angular distribution functions (ADFs) and orientations 

of water molecules surrounding the ion. A typical RDF can be expressed as 

 

     rrrNrg  24/)( ,     (3.45) 

 

where  rN is the average number of β sites located in the shell (r, r+Δr) centered 

on site α, and 
V

N

   is the average number density of β sites in the system. 

 

The corresponding integration number of RDF is defined as 

 

 

 

 

 

 

 

 

 



80 

 

 

r

rdrrgrn
0

2)(4)(   .     (3.46) 

 

3.11.2 Dynamical properties 

The dynamical properties will be analyzed through mean residence 

times (MRTs) and self-diffusion coefficient (D). The mobility of water molecules 

surrounding the ion can be interpreted through the D value, which can be calculated 

from their center-of-mass velocity autocorrelation functions (VACFs) using the 

Green-Kubo relation, 

 

          (3.47) 

 

The MRT data was calculated using the direct method (Hofer, Tran, 

Schwenk and Rode, 2004), being the product of the average number of water 

molecules in the first shell with the duration of the simulations, divided by the 

observed number of exchange events lasting a given time interval t
*
.  

 

         (3.48) 

 

 

where CN is the average coordination number, tsim is  the simulation time and Nex is 

the number of exchange events. With regard to the “direct” method, it has been 

suggested that a t
*
 value of 0.0 ps is suitable for the estimation of hydrogen bond 

lifetimes, while a t
*
 value of 0.5 ps is recommended as a good measure for water 

exchange processes (Hofer, Tran, Schwenk and Rode, 2004).  

 
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Exchange mechanism of ligands around metal ions can be assigned 

into five types: an associative exchange (A), presence of high coordination number 

intermediate leading to an increasing volume of the hydration shell. In contrast, if 

an intermediate of reduced coordination number, the mechanism process is called 

dissociative exchange (D). The interchange mechanism (I), prefers the complex that 

has incoming and outgoing molecule at the same time, which can be subdivided into 

two classes depending on the exchange as associative-like (Ia) or dissociative-like (Id) 

mechanisms (Helm and Merbach, 1999), as can be seen in Figure 3.15. 

 

 

 

Figure 3.15 Definition of mechanism of ligand exchange process;         is external  

solvent molecule;             is leaving  solvent molecule. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 “Structure-making” ability of Li
+
 in aqueous solution : A 

comparative study of conventional QM/MM and ONIOM-XS 

MD simulations 

The ONIOM-XS MD technique has been developed in order to improve the 

methodical drawbacks of the conventional QM/MM MD framework. To verify the 

reliability of the ONIOM-XS MD technique, the hydration structure and dynamics of 

Li
+
 in aqueous solution will be firstly investigated by means of the conventional 

QM/MM and ONIOM-XS MD simulations. The results obtained by the two QM/MM-

based MD simulation types will be compared and discussed with respect to the 

important treatment of the ONIOM-XS method for describing the “structure-making” 

ability of Li
+
 in aqueous solution. 

The structural properties of the hydrated Li
+
 are explained in terms of Li-O and 

Li-H RDFs and their corresponding integration numbers, as depicted in Figure 4.1, 

comparing the results as obtained by the conventional QM/MM and ONIOM-XS MD 

simulations. Based on the two QM/MM-based MD simulations, the features of the 

first Li-O peaks are almost identical, i.e., showing a well-defined first hydration shell 

with the maxima centered at 1.96 and 1.93 Å, respectively. The shape and height of 

the first Li-O and Li-H RDFs reveal a clear “structure-making” ability of Li
+
 in 
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aqueous solution, i.e., the ability by which the ion can order the HB structure of its 

surrounding waters to form its specific Li
+
-water complexes. In this study, it should be 

clarified at the beginning that all discussion with respect to the “structure-making” and 

“structure-breaking” abilities of ions in water assumes a sufficiently dilute aqueous 

solution, i.e., the solution in which the influences of either counter-ion or ion-pairing 

are negligible. With regard to the Li-O and Li-H RDFs in Figure 4.1, the first 

hydration shell of Li
+
 is not completely separated from the outer region, indicating 

that some water exchange processes can take place between these two regions. 

Integrations up to the first minimum of the conventional QM/MM and ONIOM-XS 

MD’s Li-O RDFs yield the average coordination numbers of 4.1 and 4.2, respectively. 

Note that the details with respect to the first hydration shell of Li
+
 are close to those 

reported in the recent QM/MM MD (Hannes H. Loeffler, Mohammed, Inada and 

Funahashi, 2003; H. H. Loeffler and Rode, 2002) and CP-MD (Lyubartsev, Laasonen 

and Laaksonen, 2001) studies. Regarding the two QM/MM-based MD results, the 

observed similarity of the first Li-O and Li-H RDFs is understandable since most of 

the particles embedded within the first hydration shell of Li
+
 are treated by the similar 

QM forces. In this respect, since the ONIOM-XS MD technique has been proposed in 

order to improve the forces of QM particles according to immediate exchanges of 

particles between the QM and MM regions, a significant difference between the 

conventional QM/MM and ONIOM-XS MD results is expected to be found at the 

region nearby the QM-MM boundary. Interestingly, it has been demonstrated that the 

differences between the conventional QM/MM and ONIOM-XS MD simulations are 

more visible for the situation where the number of ligands that are crossing the QM-

MM boundary is large, i.e., a system where ion-water interactions are weak and water 
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molecules surrounding the ion are labile (Sripa, Tongraar and Kerdcharoen, 2013; 

Wanprakhon, Tongraar and Kerdcharoen, 2011). In this work, the remarkable 

difference between the conventional QM/MM and ONIOM-XS MD results appears at 

the region beyond the first hydration shell of Li
+
. As can be seen in Figure 4.1a, the 

recognizable second peak of the ONIOM-XS MD’s Li-O RDF is located at a shorter 

distance of 3.71 Å, compared to the corresponding value of 3.95 Å obtained by the 

conventional QM/MM MD simulation. This observed difference clearly implies an 

important treatment of the ONIOM-XS MD technique in obtaining a more reliable 

description of the Li
+ 

hydrate.  
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Figure 4.1 a) Li-O and b) Li-H RDFs and their corresponding integration numbers, as 

obtained by the conventional QM/MM and ONIOM-XS MD simulations. 
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Figure 4.2 shows the probability distributions of the coordination number of 

Li
+
, calculated up to first minimum of the Li-O RDFs. In both the conventional 

QM/MM and ONIOM-XS MD simulations, the Li
+
 clearly favors a coordination 

number of 4, followed by 5 in smaller amounts. However, the probability distributions 

of the 4-fold and 5-fold coordinated complexes obtained by the two QM/MM-based 

MD techniques are significantly different, being of 90.7 and 9.2 %, and of 75.2 and 

23.9%, respectively. Interestingly, the ONIOM-XS MD results clearly reveal that the 

hydration structure of the Li
+
 is somewhat flexible and that, besides the prevalent 

Li
+
(H2O)4 species, the Li

+
(H2O)5 complex could more frequently be formed in 

aqueous solution.  

 

Figure 4.2 Distributions of the coordination number of Li
+
, calculated within the first 

minimum of the Li-O RDFs, as obtained by the conventional QM/MM and ONIOM-

XS MD simulations. 
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The flexibility of the Li
+
 hydration can be described by the distributions of the 

O---Li---O angle, as shown in Figure 4.3. By means of the ONIOM-XS MD 

simulation, as compared to the conventional QM/MM MD results, the observed 

broader distributions of the O---Li---O angle clearly indicate a higher flexibility of the 

hydrated Li
+
. In particular, as can be seen in Figure 4.3, a recognizable shoulder 

between 150° and 180° corresponds to a higher probability of finding the arrangement 

with respect to the 5-fold coordinated complexes. Consequently, these observed 

differences could further be expected to reflect in different dynamics details of the 

ligands surrounding the Li
+
. 

 

 

Figure 4.3 Distributions of the O---Li---O angle, calculated within the first minimum 

of the Li-O RDFs, as obtained by the conventional QM/MM and ONIOM-XS MD 

simulations. 
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The dynamical properties of the Li
+
 hydrate can be visualized through the plots 

of time dependence of the Li-O distance and number of first-shell waters, as depicted 

in Figures 4.4 and 4.5 for the conventional QM/MM and ONIOM-XS MD 

simulations, respectively. In the ONIOM-XS MD simulation, as compared to the 

conventional QM/MM MD results, water molecules surrounding the Li
+
 are more 

labile, showing more frequent exchanges of water molecules between those in the 

hydration shell of Li
+
 and the bulk. Consequently, this leads to a higher probability of 

finding Li
+
(H2O)5 or even Li

+
(H2O)3 species. In this respect, it is observed that the 

most favorable Li
+
(H2O)4 species can temporarily convert back and forth to the lower 

probability Li
+
(H2O)5 complexes, or even to a less favorable Li

+
(H2O)3 formation. For 

example, at the simulation time of 4.2 ps, an arrangement of the 5-fold coordinated 

complex is temporarily formed, i.e., one water molecule from the outer region (labeled 

in “green”) transiently approaches as close as 2.2 Å to the Li
+
, forming an 

Li
+
(H2O)4(H2O) intermediate. At the simulation times of 8.7 and 17.3 ps, the 

Li
+
(H2O)5 intermediates are formed according to associative (A) exchange processes, 

i.e., a new (fifth) water molecule from the outer region (labeled in “blue” and “green”, 

respectively) comes into the first hydration shell of Li
+
, and then, one of water 

molecules from the initial hydration shell is repelled. Interestingly, other 

intermediates, such as the Li
+
(H2O)3 species, also exist in aqueous solution (e.g., at the 

simulation time of 2.1 ps, in which one first-shell water molecule is found to 

temporarily move as far as 1 Å away from its optimal distance).  
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Figure 4.4 Time dependence of a) Li
+
---O distance and b) number of first-shell 

waters, as obtained from first 20 ps of the conventional QM/MM MD simulation. In 

Figure 4.4a), the dash line parallel to the x-axis indicates the first minimum of the Li-

O RDF. 
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Figure 4.5 Time dependence of a) Li
+
---O distance and b) number of first-shell 

waters, as obtained from first 20 ps of the ONIOM-XS MD simulation. In Figure 

4.5a), the dash line parallel to the x-axis indicates the first minimum of the Li-O RDF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 94 

The lability of water molecules in the first hydration shell of Li
+
 can be 

interpreted through the D values of first-shell waters. By the conventional QM/MM 

and ONIOM-XS MD simulations, the D values for water molecules in the vicinity of 

Li
+
 are estimated to be 1.01 x 10

-5
 and 1.38 x 10

-5
 cm

2
.s

-1
, respectively. Apparently, 

these D values are relatively lower than the corresponding values of 3.23 x 10
-5 

and 

2.73 x 10
-5

 cm
2
.s

-1
 of pure water derived by the conventional QM/MM and ONIOM-

XS MD techniques (Thaomola, Tongraar and Kerdcharoen, 2012), respectively. This 

indicates that water molecules in the first hydration shell of Li
+
 are well attached to 

the ion, showing a clear “structure-making” ability of Li
+
 in water. Comparing the 

conventional QM/MM and ONIOM-XS MD results, however, the D values are 

somewhat different, i.e., the D values of water molecules in the hydration shell of Li
+
 

are of about 3 and 2 times slower than those of bulk waters, respectively. In this 

respect, it is apparent that the ONIOM-XS MD simulation reveals the “structure-

making” ability of Li
+
 which is significantly less than that predicted by the 

conventional QM/MM MD scheme. With regard to this point, it is worth noting that 

the correct degree of the lability of the first-shell waters is a crucial factor in 

determining the reactivity of Li
+
 in aqueous solution. Interestingly, the ONOIM-XS 

MD results clearly suggest that the “structure-making” ability of this ion is not too 

strong. Regarding the Li-O RDF in Figure 4.1a, the less pronounced second peak 

clearly supplies information that the effects of Li
+
 on the water structure does not 

propagate beyond the first hydration shell. 

 The rates of water exchange processes at Li
+
 were evaluated through MRTs of 

the first-shell water molecules. The calculated MRT data for water molecules in the 

bulk and in the vicinity of Li
+
 with respect to t

*
 values of 0.0 and 0.5 ps are 
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summarized in Table 4.1, comparing the results as obtained by the conventional 

QM/MM and ONIOM-XS MD simulations. For both t
*
 = 0.0 and 0.5 ps, the MRT 

values of water molecules in the hydration shell of Li
+
 obtained from both the 

conventional QM/MM and ONIOM-XS MD simulations are higher than the 

corresponding values of bulk waters, confirming a clear “structure-making” ability of 

Li
+
 in aqueous solution. By means of the ONIOM-XS MD simulation, however, the 

ability of Li
+
 in ordering the structure of its surrounding waters is significantly weaker 

than that predicted by the conventional QM/MM MD scheme. According to the data 

in Table 4.1, the MRT values of water molecules in the vicinity of K
+
 derived by the 

conventional QM/MM and ONIOM-XS MD simulations were found to be quite 

similar. However, it has been reported that the average coordination number of K
+
 and 

the amount of exchange events are somewhat different (Wanprakhon, Tongraar and 

Kerdcharoen, 2011). In the case of Ca
2+

, a significant difference between the two 

QM/MM-based MD simulations is found for t
*
 = 0.5 ps, in which the ONIOM-XS 

MD simulation revealed a relatively large number of exchange events (with the 

smaller MRT value) when compared to those obtained by the conventional QM/MM 

MD simulation (Wanprakhon, Tongraar and Kerdcharoen, 2011). Recently, the 

ONIOM-XS MD technique has also been applied for studying the preferential 

solvation and dynamics of Li
+
 in aqueous ammonia solution (Kabbalee, Tongraar and 

Kerdcharoen, 2015). Of particular interest, as compared to the conventional QM/MM 

MD study, which predicts a clear water preference with the arrangement of the 

Li
+
[(H2O)4][(H2O)4] type, the ONIOM-XS MD simulation clearly reveals that this ion 

can order both water and ammonia molecules to form a preferred 

Li
+
[(H2O)3NH3][(H2O)11(NH3)3] complex. In addition, it was observed that the 
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“structure-making” ability of Li
+
 in this solvent mixture is not too strong and that the 

second solvation of this ion is less structured, implying a small influence of Li
+
 in 

ordering the solvent molecules in this shell. Undoubtedly, the overall observed 

differences between the two QM/MM-based MD simulations clearly confirm that the 

use of the more accurate ONIOM-XS MD technique is highly recommended for 

obtaining more reliable descriptions of the Li
+
 hydrates.  

 

Table 4.1 Number of water exchange events (Nex) and mean residence times (MRTs) 

of water molecules in the bulk and in the vicinity of ions, as obtained by the 

conventional QM/MM and ONIOM-XS MD simulations. 

  

Ion/solute      CN          tsim 

t
*
 = 0.0 ps t

*
 = 0.5 ps 

0.0

exN  
0.0

2OHτ  
5.0

exN  
5.0

2OHτ  

Conventional QM/MM MD 

      Li
+
                4.1        40.0 

      K
+ *

               7.0        30.0 

      Ca
2+ *

            7.8        40.0 

      H2O
 **

           4.9        40.0   

ONIOM-XS MD 

      Li
+
                4.2        40.0 

      K
+ *

               6.3        30.0 

      Ca
2+ *

            7.6        40.0 

      H2O
 **

           4.7        30.0   

 

  37 

514 

  26 

944 

 

  79 

445 

  30 

607 

 

 4.43 

  0.41 

12.00 

  0.21 

 

2.13 

0.42 

10.13 

  0.23 

 

    9 

112 

    8 

  84 

 

  13 

105 

  14 

  65 

 

18.22 

  1.87 

39.00 

  2.33 

 

12.92 

  1.80 

21.71 

  2.17 

 

* 
  (Wanprakhon, Tongraar and Kerdcharoen, 2011)

  

**
  (Thaomola, Tongraar and Kerdcharoen, 2012) 
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4.2 ONIOM-XS MD simulations of Na
+
 and K

+
 in aqueous 

solution : Transition from “structure-making” to “structure-

breaking” behaviors 

The details with respect to the hydration structures of Na
+
 and K

+
 can be 

visualized from the plots of M-O and M-H RDFs for M = Li, Na and K, respectively, 

and their corresponding integration numbers, as depicted in Figure 4.6. Note that the 

Li-O and Li-H RDFs derived by the ONIOM-XS MD simulation are also given for 

comparison. For Na
+
, a well-defined first Na-O peak with a maximum centered at 2.35 

Å is observed. However, as compared to the Li-O RDF, the first peak of the Na-O 

RDF is significantly less pronounced. In addition, the non-zero minimum following 

the first Na-O peak clearly suggests some exchange processes between first-shell 

waters and water molecules in the outer region. Integration up to the first minimum of 

the Na-O RDF yields an average coordination number of 5.4. This observed value is 

in good agreement with the recent ND experiments (Mancinelli, Botti, Bruni, Ricci 

and Soper, 2007) and AI-MD studies (Ikeda, Boero and Terakura, 2007; Kulik, 

Marzari, Correa, Prendergast, Schwegler and Galli, 2010; Mancinelli, Botti, Bruni, 

Ricci and Soper, 2007; White, Schwegler, Galli and Gygi, 2000), which reported the 

coordination numbers of 5.3 and 5.2, respectively. The second peak of the Na-O RDF 

is less pronounced, indicating that the influence of Na
+
 beyond the first hydration 

layer is relatively weak, i.e., only a single layer of Na
+
 hydration is formed. For the 

aqueous K
+
 solution, the first K-O peak is centered at around 2.78 Å, which 

corresponds to the average coordination number of 6.5. As compared to the Li-O and 

Na-O RDFs, the first peak of K-O RDF is rather broad and is not well separated from 
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the bulk, indicating that water molecules surrounding the ion can easily exchange with 

bulk waters.  

 

Figure 4.6 a) M–O and b) M–H RDFs and their corresponding integration numbers, 

as obtained by the ONIOM-XS MD simulations.  
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According to the present ONIOM-XS MD simulations, the results are in good 

accord with the interpretation of X-ray absorption spectroscopy (XAS) experiments, 

which indicated that there is no long-range effect on the HB network of water due to 

the presence of monovalent cations (Cappa, Smith, Messer, Cohen and Saykally, 

2006). With regard to the XAS results, it has been demonstrated that the changes in 

the XA spectra observed upon addition of monovalent cation halide salts are due 

mainly to the interactions of water molecules with the halide anions. In addition, 

according to the recent femtosecond pump-probe spectroscopy study (Bakker, 

Kropman and Omta, 2005), it has been suggested that the effect of alkali ions on the 

structure and dynamics of water is limited to the first hydration shell of ions, i.e., the 

HB network beyond the first-shell is not different from that of bulk water. 

Figure 4.7 shows the probability distributions of the coordination number of 

Li
+
, Na

+
 and K

+
, calculated up to first minimum of the M-O RDFs. For Li

+
, it has been 

shown that this ion clearly favors a coordination number of 4 followed by 5 in smaller 

amounts, with the probability distributions of 75% and 24%, respectively. For Na
+
, it 

is apparent that this ion prefers the coordination numbers of 5 and 6, with the 

probability distributions of 56% and 37%, respectively, whereas the distributions of 4-

fold and 7-fold coordinated complexes appear to be quite rare. This supplies 

information that only Na
+
(H2O)5 and Na

+
(H2O)6 complexes are the most prevalent 

species formed in aqueous solution. In the case of K
+
, the distribution of the 

coordination number is rather broad, varying from 4 to 9. This suggests that a number 

of different hydrated K
+ 

complexes can simultaneously be formed in the solution. 
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Figure 4.7 Probability distributions of the coordination number of Li
+
, Na

+
 and K

+
, 

calculated up to first minimum of the M-O RDFs.  
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The flexibility of the hydrated ions can be described by the distributions of O--

-M---O angles, calculated up to the first minimum of the M-O RDFs, as shown in 

Figure 4.8. For Li
+
, it has been pointed out that the hydration structure of this ion is 

arranged with respect to the tetrahedral geometry. For Na
+
, as compared to Li

+
, the 

hydration shell structure is more flexible, by the pronounced peak between 80-90 and 

the small shoulders at around 150-170. This corresponds to the arrangements of the 

observed Na
+
(H2O)5 and Na

+
(H2O)6 complexes. In the case of K

+
, as compared to Li

+
 

and Na
+
, the wider O-K-O angle is related to the observed higher flexibility of the K

+
 

hydrates. With regard to Figure 4.8, the shoulder of the peak at around 40-60 

corresponds to the contributions of the nearest neighbor waters that come close to the 

ion and the first-shell water molecules. 
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Figure 4.8 Distributions of the O---M---O angle, calculated within first minimum of 

the M-O RDFs.  

 

Figure 4.9 displays the dipole-oriented arrangements of first-shell water 

molecules. In this context, the ө angle is defined by the M---O axis and the dipole 

vector of first-shell water molecules. Regarding the ONIOM-XS MD simulations, it is 

apparent that water molecules surrounding the ions are arranged with respect to the 

influence of the ions. However, the observed peaks with maxima at around 130 

clearly suggest small influence of the ions in ordering their surrounding water 

molecules to form their specific hydration structures. In the cases of Li
+
 and Na

+
, the 

ONIOM-XS MD results imply that the “structure-making” effects of these ions in 

aqueous solution might not be strong, i.e., when compared to those of alkali earth 

metal ions, such as Ca
2+

 (Wanprakhon, Tongraar and Kerdcharoen, 2011). 
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Figure 4.9 Probability distributions of  angle in the first hydration shells of Li
+
, Na

+
 

and K
+
, calculated within first minimum of the M-O RDFs.  

 

Figures 4.10 and 4.11 show the plots of time dependences of M
+
---O distance 

and number of first-shell waters, as obtained from first 20 ps of the ONIOM-XS MD 

simulations of Na
+
 and K

+
 in water, respectively. For Na

+
, it is observed that the 

structure of the Na
+
 hydrates is rather flexible in which the most favorable Na

+
(H2O)5 

species can convert back and forth to the lower probability Na
+
(H2O)6 complexes. 

This leads to several re-arrangements of the hydrated Na
+
 complexes, as well as 

numerous attempts of first-shell waters to interchange with water molecules in the 

outer region. For example, at the simulation time of 5.2 ps, the arrangement of 

Na
+
(H2O)4(H2O) complexes (CN = 4) can temporarily be formed, i.e., one first-shell 
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water molecule (labeled in “green”) moved as far as 1 Å away from its optimal 

distance but it forms a hydrogen bond to an inner-shell water molecule. In addition, 

other transition complexes, such as of the types Na
+
(H2O)5(H2O)2 and 

Na
+
(H2O)6(H2O) (CN = 7), can transiently be formed (e.g., at the simulation time of 

9.1 ps, in which a “green” water molecule from the outer region approaches as close 

as 3 Å to the Na
+
 ion and form hydrogen bonds to some inner-shell water molecules, 

forming Na
+
(H2O)6(H2O) intermediate). The presence of such intermediates can be 

ascribed to the polarized first-shell waters, whose hydrogen atoms can form hydrogen 

bonds to the outer-shell water molecules, once they are arranged in a suitable 

geometrical position. 
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Figure 4.10 Time dependences of a) Na
+
---O distance and b) number of first-shell 

waters, as obtained from first 20 ps of the ONIOM-XS MD simulation. 

 

For K
+
 (cf. Figure 4.11), it is observed that water molecules in the first 

hydration shell are rather labile, showing several re-arrangements of the hydrated K
+
 

complexes, as well as numerous attempts of outer-shell water molecules to 

interchange with the inner-shell waters. These observed several exchange processes 

clearly indicate that the K
+
 complex is not only more flexible than the Li

+
 and Na

+
 

complexes, but also than the solvent structure itself. In this respect, the K
+
 can be 

considered as a perturbation to its surrounding water environment, reflecting the 

experimentally observed “structure-breaking” ability of this ion. 
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Figure 4.11 Time dependences of a) K
+
---O distance and b) number of first-shell 

waters, as obtained from first 20 ps of the ONIOM-XS MD simulation. 

 

Table 4.2 summarizes the D values of water molecules in the bulk and those in 

the first hydration shells of Li
+
, Na

+
 and K

+
, as obtained by the ONIOM-XS MD 

simulations. In comparison to the D value of pure water (Thaomola, Tongraar and 

Kerdcharoen, 2012), water molecules in the first hydration shell of Li
+
 are well 

attached to the ion, showing a clear “structure-making” ability of Li
+
 in aqueous 

solution. However, it is worth noting that its “structure-making” ability is less 

significant than those of alkali earth metal ions, such as Ca
2+

 (Wanprakhon, Tongraar 

and Kerdcharoen, 2011). For Na
+
, the D value is also larger than the value of pure 

water, indicating a “structure-making” ability of this ion. As compared to Li
+
, 
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however, its “structure-making” ability is relatively weak. In the cases of K
+
, the       

D value of first-shell waters is comparable to that of bulk water, which corresponds to 

the “structure-breaking” ability of this ion in water. 

 

Table 4.2 D values of water molecules in the bulk and in the hydration shells of Li
+
, 

Na
+
 and K

+
, as obtained by the ONIOM-XS MD simulations.  

 

Phase D (cm
2
.s

-1
) 

Hydration shell of Li
+
 1.38x 10

-5
 

Hydration shell of Na
+
 1.75x 10

-5
 

Hydration shell of K
+
 2.14x 10

-5
 

Bulk water 
*
 2.73 x 10

-5
 

 

*
  (Thaomola, Tongraar and Kerdcharoen, 2012) 

 

The MRT values of water molecules in the bulk and in the vicinity of Li
+
, Na

+
, 

K
+
 and Ca

2+
, as obtained by the ONIOM-XS MD simulations, are summarized in 

Table 4.3. For both t
*
 = 0.0 and 0.5 ps, the MRT values of water molecules in the 

hydration shell of Li
+
 are higher than the corresponding values of bulk waters, 

confirming a clear “structure-making” ability of Li
+
 in aqueous solution. However, as 

mentioned earlier, the ability of Li
+
 in ordering the structure of its surrounding waters 

is much less than that of a stronger “structure-maker”, like Ca
2+

 (Sripa, Tongraar and 

Kerdcharoen, 2013; Wanprakhon, Tongraar and Kerdcharoen, 2011). In the case of 

Na
+
, the MRT values of water molecules in the hydration shell of this ion are also 

higher than those of bulk waters, showing a “structure-making” ability of Na
+
 in 
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aqueous solution. However, the ability of Na
+
 in ordering the structure of its 

surrounding waters is less than that of Li
+
. In this respect, it could be demonstrated 

that Na
+
 acts as a weak “structure-maker” in aqueous solution. The ONIOM-XS MD 

results are consistent with the assignment of “structure-makers/breakers” according to 

Marcus (Marcus, 2009), indicating that Na
+
 should be a weak “structure-maker”, i.e., 

it is considered as a borderline ion dividing “structure-makers” from “structure-

breakers”. In terms of thermodynamics evidences, the details with respect to ion 

hydration entropies can provide a direct connection to ordering effects due to the 

insertion of ions into bulk water (Beck, 2011; Collins, 2012). For Na
+
, the hydration 

entropy of this ion analyzed via energetic partitioning of the potential distribution 

theorem free energy suggested that Na
+
 is indeed a weak “structure-maker” and that 

the effect is relatively local around the ion (Beck, 2011). Very recently, the hydration 

of Na
+
 in aqueous solution has been studied by large angle X-ray scattering (LAXS) 

and double difference infrared spectroscopy (DDIR), suggesting that this ion is 

weakly hydrated with only a single shell of water molecules and that it may be a 

“structure-breaker” even though its interactions with water are stronger than bulk 

water molecules interacting internally (Mähler and Persson, 2011). In the case of K
+
, 

the MRT values of first-shell waters are close to the corresponding data for bulk 

waters, suggesting that K
+
 may not be able to form any specific geometrical order of 

its hydration shell. Thus, this ion can be classified as a “structure-breaker” in aqueous 

solution. 
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Table 4.3 Number of water exchange events (Nex) and mean residence times (MRTs) 

of water molecules in the vicinity of ions and in the bulk, as obtained by ONIOM-XS 

MD simulations. 

 

Ion/solute      CN          tsim 

t
*
 = 0.0 ps t

*
 = 0.5 ps 

0.0

exN  
0.0

2OHτ  
5.0

exN  
5.0

2OHτ  

     Li
+
                 4.2        40.0 

     Na
+ 

               5.4        41.0 

     K
+ 

                 6.5        40.0 

  79 

164 

557 

2.31 

1.35 

0.46 

  13 

  36 

107 

12.92 

  6.18 

  2.42 

     H2O
 *
             4.7        30.0   

     Ca
2+ **                  

7.6        40.0 

607 

 30 

0.23 

   10.13 

  65 

  14 

  2.17 

21.71 

 

*
  (Thaomola, Tongraar and Kerdcharoen, 2012) 

**
 (Wanprakhon, Tongraar and Kerdcharoen, 2011) 

 
 

More details regarding the dynamics of water molecules in the vicinity of ions 

can be gained by computing the velocity autocorrelation functions (VACFs) of first-

shell waters and their Fourier transformations. In this work, the normal-coordinate 

analysis developed by Bopp (Bopp, 1986; Spohr, Pálinkás, Heinzinger, Bopp and 

Probst, 1988) was used for obtaining three quantities Q2, Q1 and Q3, which are defined 

for describing bending vibration, and symmetric and asymmetric stretching vibrations 

of water molecules, respectively, as depicted in Figure 4.12. By the ONIOM-XS MD 

technique, since all atomic motions of first-shell water molecules are generated 

according to QM force calculations, the calculated vibrational spectra are usually 

scaled by an empirical factor, i.e., an approximate correction for errors in the force 

constants and for anharmonic effects (Johnson, Irikura, Kacker and Kessel, 2010; 
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Merrick, Moran and Radom, 2007; Scott and Radom, 1996). With regard to the 

systematic error of HF frequency calculations, all frequencies obtained by the 

ONIOM-XS MD simulation were multiplied by an appropriate scaling factor of 0.905 

(Scott and Radom, 1996). To reliably illustrate the “structure-making” ability of ions 

in water, the corresponding Q1, Q2 and Q3 frequencies obtained from the ONIOM-XS 

MD simulation of liquid water (Thaomola, Tongraar and Kerdcharoen, 2012) were 

utilized for comparison. All intramolecular vibrational frequencies (Q1, Q2 and Q3) of 

water molecules in the hydration shell of Li
+
, Na

+
, K

+
 and in the liquid water are given 

in Table 4.4. For liquid water, all the bending and stretching vibrational frequencies 

showed peaks with recognizable shoulders, especially for the symmetric and 

asymmetric vibrational modes. These observed spectra have been ascribed to the 

presence of several kinds, with varying strengths, of HBs formed in liquid water 

(Thaomola, Tongraar and Kerdcharoen, 2012). In the hydration shell of ions, water 

molecules are less mobilized and are arranged with respect to the influence of the 

ions, leading to more intense and better defined vibrational frequencies. As compared 

to liquid water, the bending frequency of first-shell waters shows a clear “red-shift”, 

i.e., by about 25-30 cm
-1

, while the symmetric (Q1) and asymmetric (Q3) stretching 

frequencies are mostly found to be exhibited between the main peaks and the 

shoulders of the respective Q1 and Q3 frequencies of liquid water. These observed data 

are in good accord with the observed “structure-making” and “structure-breaking” 

abilities of the three ions. In this context, it could be demonstrated that the results 

obtained by the ONIOM-XS MD simulations can provide more insights into the 

behaviors of the
 
Li

+
, Na

+
 and K

+
 hydrates, which are very crucial in order to correctly 

understand the reactivity of these ions in aqueous solution. 
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Figure 4.12 Fourier transforms of the hydrogen velocity autocorrelation functions of 

a) bending vibrations (Q2) and b) symmetric and asymmetric stretching vibrations (Q1 

and Q3) of water molecules in the first hydration shells of Li
+
, Na

+
 and K

+
 and in the 

bulk. 
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Table 4.4 Vibrational frequencies of water molecules in the hydration shells of Li
+
, 

Na
+
, K

+
 and in the bulk water. (Q1, Q2 and Q3 corresponding to symmetric stretching, 

bending, and asymmetric stretching vibrations, respectively) 

 

Phase 
 Frequency (cm

-1
)  

Q2 Q1 Q3 

Hydration shell of Li
+
 

Hydration shell of Na
+ 

Hydration shell of K
+
 

Pure water
 *

 

1627 

1629 

1635 

1660 

3626 

3628 

3628 

3606 (3650) 

3699 

3738 

3736 

3720 (3755) 

 

*
  (Thaomola, Tongraar and Kerdcharoen, 2012) 
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CHAPTER V 

 CONCLUSION 

 

Structural and dynamical properties of alkali metal ions (Li
+
, Na

+
 and K

+
) in 

aqueous solution have been investigated by means of ONIOM-XS MD simulations. 

The region of most interest, i.e., a sphere that includes the ion and its surrounding 

water molecules, was treated at the HF level of accuracy using the DZP basis set for 

water and Li
+
, and LANL2DZ basis set for Na

+
 and K

+
, whereas the rest of the system 

was described by classical pair potentials. The HF method and the DZP and 

LANL2DZ basis sets employed in this work were considered to be good enough to 

provide reliable data, compromising between the quality of the simulation results and 

the requirement of the CPU time. In this respect, it should be realized that the 

instantaneous electron correlation and the charge transfer effects may not be typically 

well-described by the HF theory, and that the use of the DZP and LANL2DZ basis 

sets could result in a high basis set superposition error and an exaggeration of the 

ligand-to-metal charge transfer. In addition, the selected QM size was assumed to be 

large enough to include most of the many-body contributions and the polarization 

effects, i.e., at least within the first hydration shell of the ions.    

To verify the reliability of the ONIOM-XS MD technique for the study of such 

condensed phase systems, the hydration structure and dynamics of Li
+
 in liquid water 

were firstly investigated by means of the conventional QM/MM and ONIOM-XS MD 

simulations. Based on the two QM/MM-based MD techniques, the features of
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the first hydration shell of Li

+
 are almost identical, showing a well-defined tetrahedral 

geometry with the average coordination numbers of 4.1 and 4.2, respectively. 

However, significant differences between the conventional QM/MM and ONIOM-XS 

MD simulations appear in the detailed analyses of the geometrical arrangement and 

the dynamics of the Li
+
 hydrates. In the course of the ONIOM-XS MD simulation, it 

was observed that the structure of the hydrated Li
+
 is more flexible and that, besides 

the prevalent Li
+
(H2O)4 species, other ion-water complexes, in particular the 

Li
+
(H2O)5, could more frequently be formed in aqueous solution. Together with the 

analyses on the dynamical data, the ONIOM-XS MD results clearly supply 

information that the “structure-making” ability of Li
+
 in aqueous solution is not too 

strong. These observed differences clearly confirm the important treatment of the 

ONIOM-XS MD technique in obtaining more reliable description of this hydrated ion.  

Later, the characteristics of Na
+
 and K

+
 with respect to their “structure-

making” and “structure-breaking” abilities in aqueous solution were investigated 

through the ONIOM-XS MD simulations. For the Na
+
 hydration, a distorted 

octahedral arrangement with the average coordination number of 5.4 is observed. The 

detailed analyzes of the ONIOM-XS MD trajectories show that Na
+
 is able to order 

the structure of waters in its surroundings, forming two prevalent Na
+
(H2O)5 and 

Na
+
(H2O)6 species with the probability distributions of 56% and 37%, respectively. 

Interestingly, it is observed that these 5-fold and 6-fold coordinated complexes can 

convert back and forth with some degree of flexibility, leading to frequent re-

arrangements of the Na
+
 hydrates, as well as numerous attempts of inner-shell water 

molecules to interchange with waters in the outer region. Such phenomenon clearly 

demonstrates the weak “structure-making” ability of Na
+
 in aqueous solution.  
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In the case of K

+
, the ONIOM-XS MD simulation reveals a distorted 

octahedral geometry with the average coordination number of 6.5. As compared to Li
+
 

and Na
+
, the first hydration shell of K

+
 is less structured and water molecules 

surrounding the ion are more labile, showing several re-arrangements of the hydrated 

K
+
 complexes. This implies that K

+
 may not be able to form any specific geometrical 

order of its hydration shell, and thus, this ion can be classified as a “structure-breaker” 

in aqueous solution.  

 

 

 

 

 

 

 

 

 

 

 



119 

 

 

 

 

 

 A 
 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

 

APPENDIX A 

EXPERIMENTAL AND THEORETICAL 

OBSERVATIONS OF Li
+
, Na

+
 and K

+
 IN AQUEOUS 

SOLUTION 

 

 

Table A1 Experimental data for aqueous Li
+
 solutions. 

 

Solute 
Molarity 

(M) 
Method CN r

ion-O
 (Å) Year       Ref. 

    LiCl 2.0 XRD   4 2.17 1980 Palinkas et al. 

    LiBr 2.1 XRD 4 2.25 1975 Licheri et al. 

    LiBr 2.29 XRD 4 1.99 1991 Cartailler et al. 

    LiBr 4.5 XRD 4 2.14 1975 Licheri et al. 

    LiBr 5.6 XRD 4 2.16 1975 Licheri et al. 

    LiI 2.2 XRD   6 2.10 1986 Palincas et al. 

    LiI 2.78 XRD   4-6 2.20 1987 Tamura et al. 

    LiCl 1.0 ND     4 1.90 ± 0.05 1979 Ohtomo et al. 

    LiCl 1.0 ND     6.5 ± 1 1.96 1996 Howell et al. 

    LiCl 2.14 ND     3.7 - 1999 Novikov et al. 

    LiCl 3.57 ND     5.5 1.95 1980 Newsome et al. 

    LiCl 3.6 ND     6.0 ± 0.04 1.95 1996 Howell et al. 

    LiCl 9.3 ND     4 2.02 1995 Yamaguchi et al. 

    LiCl 9.95 ND 3.3 1.95 1980 Newsome et al. 

    LiCl 14.0 ND     3.2 ± 0.2 1.96 1996 Howell et al. 
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Table A2 Theoretical observations of Li
+
 in aqueous solutions. 

 

Solute 
ion/water 

ratio 
Method CN 

r
ion-O

  

(Å) 
Year      Ref. 

Li
+
 1/89 MM MC          4.0 3.88 2004 Öhrn et al. 

Li
+
 1/199 MM MD 6.0 2.06 1998 Tongraar et al. 

Li
+
 1/499 MM MD 4.0 2.05 2006 Loeffler et al. 

Li
+
 1/500 MM MD 4.08 2.03 2006 Lamoureux et al. 

Li
+
 1/255 MM MD 4.4 1.97 2002 Zhou et al. 

Li
+
 1/512 MM MD 4.02 1.96 2003 Spångberg et al. 

Li
+
 1/525 MM MD 4.5 2.0 1996 Obst and Bradaczek 

Li
+
 1/986 MM MD 4.07 ± 0.03 - 2005 Chorny et al. 

Li
+
 1/6 AIMD 4 - 2000 Rempe et al. 

Li
+
 1/32 CPMD 4 1.96 2000 Lyubartsev et al. 

Li
+
 1/63 FPMD 4.0 1.882 2007 Ikeda et al. 

Li
+
 1/199 QM/MM MD 4.1 1.94 1998 Tongraar et al. 

Li
+
 1/499 QM/MM MD 4.0 1.95 2006 Loeffler et al. 

Li
+
 1/499 QM/MM MD 4.3 1.97 2003 Loeffler et al. 
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Table A3 Experimental data for aqueous Na
+
 solutions. 

 

Solute 
Molarity 

(M) 
Method CN r

ion-O
 (Å) Year          Ref. 

NaCl  1.1  XRD   4.1  2.82 2006 Bondarenko et al. 

NaCl  6.167  XRD   4.6  2.39 1998 Kameda et al. 

NaNO
3
  3.13  XRD   4.9± 0.1  2.40 1989 Skipper et al. 

NaNO
3
  6.01  XRD   6  2.44 1980 Caminiti et al. 

NaCl  1.0  ND     8  2.50 1980 Ohtomo et al. 

NaCl  1/83  ND     5.3  3.2 2007 Mancinelli et al. 

NaCl  0.5  XAS   5.2  - 2010 Kulik et al. 
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Table A4 Theoretical observations of Na
+
 in aqueous solutions. 

 

Solute 
ion/water 

ratio 
Method CN 

r
ion-O

  

(Å) 
Year           Ref. 

  Na
+ 1/89 MM MC         5.85 4.63 2004 Öhrn and Karlström 

    Na
+ - MM MC         5.56 2.37 2003 Carrillo-Tripp et al. 

  Na
+ 1/255 MM MC         6.0 2.5 2001 Kim 

    Na
+
 1/499 MM MD 6.19 2.37 2010 Azam et al. 

  Na
+ 1/216 MM MD 6.0 2.233 2003 Grossfield et al. 

  Na
+ 1/255 MM MD 6.0 2.37 2002 Zhou et al. 

  Na
+ 1/512  MM MD 5.68  2.43 2004 Spangberg et al. 

  Na
+
 1/525 MM MD 6.0 2.597 1996 Obst and Bradaczek 

  Na
+ 1/986 MM MD 5.72 ± 0.07 - 2005 Chorny et al. 

  Na
+ -  CPMD    5.31  2.50 2008 Megyes et al. 

  Na
+ 1/53  CPMD    5.2  2.49 2000 White et al. 

  Na
+ 1/32 BOMD 4.8 2.35 2009 Galamba et al. 

  Na
+ 1/63  FPMD    5.2 ± 0.1  2.40 2007 Ikeda et al. 

  Na
+ 1/199  QM/MM MD  5.6±0.3  2.33 1998 Tongraar et al. 

  Na
+
 1/499 QM/MM MD 6.0 2.39 2010 Azam et al. 

NaCl 1/499 QM/MM MD 5.5 2.34 2009 Azam et al. 
NaCl 1/499 QMCF MD 5.5 2.5 2009 Azam et al. 
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Table A5 Experimental data for aqueous K
+
 solutions. 

 

Solute 
Molarity  

(M) 
Method CN r

ion-O
 (Å) Year Ref. 

KCl 2.0 XRD     6 2.8 1980 Palinkas et al. 

KCl 2.4 ND   5.5 2.65 2006 Soper and Weckstrom 

KCl 4.0 ND   - 3.1 1985 Neilson and Skipper 

K
+
 1.0 ND 8 2.70 ± 0.1 1980 Ohtomo and Arakawa 

K
+
 2.5 EXAFS 6.1 2.732 2006 Dang et al. 

 

 

Table A6 Theoretical observations of K
+
 in aqueous solutions. 

 

Solute 
ion/water 

ratio 
Method CN 

r
ion-O

  

(Å) 
Year Ref. 

  K
+
 1/255 MM MC 6.7 2.8 2001 Kim 

  K
+
 - MM MC 7.85 2.79 2003 Carrillo-Tripp et al. 

  K
+
 1/499 MM MD 7.9 2.80 2010 Azam et al. 

  K
+
 1/500 MM MD 6.90 2.74 2006 Lamoureux et al. 

  K
+
 - MM MD 5.7 2.77 2006 Dang et al. 

  K
+
 1/216 MM MD 7.0 2.59 2003 Grossfield et al. 

  K
+
 1/255 MM MD 6.1 2.86 2002 Zhou et al. 

  K
+
 1/525 MM MD 7.60 2.9 1996 Obst and Bradaczek 

  K
+
 1/59 CPMD 6.75 2.81 1999 Ramaniah et al. 

  K
+
 1/63 FPMD 5.2± 0.1 2.85 2007 Ikeda et al. 

  K
+
 1/32 AIMD 4+2 3.0 2004 Rempe et al. 

  K
+
 1/199 QM/MM MD 8.3 ± 0.3 2.81 1998 Tongraar et al. 

  K
+
 1/499 QM/MM MD 8.8 2.85 2010 Azam et al. 

  KCl 1/499 QM/MM MD 6.2 2.80 2009 Azam et al. 

  KCl 1/499 QMCF MD 6.8 2.80 2009 Azam et al. 
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