### MODELING OF LACTIC ACID ADSORPTION

### **ISOTHERM ON AMBERLITE IRA-96**

### **ION EXCHANGE RESIN**



A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering

Suranaree University of Technology

Academic Year 2014

แบบจำลองของเส้นไอโซเทิร์มการดูดซับกรดแลกติกบนเรซิน แลกเปลี่ยนประจุ AMBERLITE IRA-96



วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557

# MODELING OF LACTIC ACID ADSORPTION ISOTHERM ON AMBERLITE IRA-96 ION EXCHANGE RESIN

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

|        | Thesis Examining Committee           |
|--------|--------------------------------------|
|        | /H                                   |
|        | (Asst. Prof. Dr. Atichat Wongkoblap) |
|        | Chairperson                          |
|        |                                      |
|        | (Dr. Terasut Sookkumnerd)            |
| ้วักยา | Member (Thesis Advisor)              |
|        | COMPNICT                             |
|        |                                      |

(Dr. Supunnee Junpirom)

Member

(Prof. Dr. Sukit Limpijumnong)

(Assoc. Prof. Flt. Lt. Dr. Kontorn Chamniprasart)

Vice Rector for Academic Affairs

Dean of Institute of Engineering

and Innovation

วรรณวิสา สดใส : แบบจำลองของเส้นไอโซเทิร์มการดูดซับกรดแลกติกบนเรซินแลก เปลี่ยนประจุ AMBERLITE IRA-96 (MODELING OF LACTIC ACID ADSORPTION ISOTHERM ON AMBERLITE IRA-96 ION EXCHANGE RESIN) อาจารย์ที่ปรึกษา : อาจารย์ คร.ธีระสุต สุขกำเนิด, 129 หน้า.

วิทยานิพนธ์นี้ทำการศึกษาถึงเส้นไอโซเทิร์มการดูดซับของกรดแลกติกบนเรซินแลก เปลี่ยนประจุที่อยู่ในสารละลายกรดแลกติก และสร้างแบบจำลองทางคณิตศาสตร์ของเส้นไอ โซเทิร์มการดูดซับของกรดแลกติก เรซินแอมเบอร์ไลท์ไออาร์เอ 96 ถูกเปลี่ยนให้อยู่ในรูปของคลอ ไรด์ไอออนและถูกใช้ในการทดลอง อุณหภูมิของการดูดซับ ถูกศึกษาที่อุณหภูมิ 25 องศาเซลเซียส และ 40 องศาเซลเซียส ในการทดลองการดูดซับแบบระบบกะโดย ทำการศึกษาเส้นไอโซเทิร์มการ ดูดซับที่พีเอช 2 ซึ่งมีค่าต่ำกว่าค่าการแตกตัวของประจุของกรดแลกติก และ เส้นไอโซเทิร์มการดูด ซับที่พีเอช 4 และ 5 ซึ่งมีค่าสู่งกว่าค่าการแตกตัวของประจุของกรดแลกติก และ เส้นไอโซเทิร์มการดูด สับที่พีเอช 4 และ 5 ซึ่งมีค่าสูงกว่าค่าการแตกตัวของประจุของกรดแลกติก ที่แต่ละอุณหภูมิของ การดูดซับ ผลการทดลองแสดงให้เห็นว่า ปริมาณของกรดแลกติกที่ถูกดูดซับที่พีเอช 4 และ 5 มีค่า สูงกว่า ปริมาณของกรดแลกติกที่ถูกดูดซับที่พีเอช 2 เพราะที่พีเอช 4 และพีเอช 5 มีความเข้มข้นของ ประจุสูง อันเนื่องมาจากการแตกตัวของกรด จากผลกระทบของอุณหภูมิที่พีเอช 5 สูงกว่าที่ค่าพีเอช อื่นๆพบว่าปริมาณของกรดแลกติกที่ถูกดูดซับลงกรดเมื่ออุณหภูมิเพิ่มขึ้น ดังนั้นการดูดซับกูดอิบารดแลก ดิกโดยการแลกเปลี่ยนประจุเป็นกระบวนการกายความร้อน

ดังนั้นแบบจำลองของเส้นไอโซเทิร์มการดูดซับของกรดแลกติกบนเรซิน แอมเบอร์ไลท์ไอ อาร์เอ 96 ได้รวมผลกระทบของการ ดูดซับของกรดที่แตกตัวเป็นประจุและการดูดซับของกรดที่ไม่ แตกตัวเป็นประจุที่เกิดขึ้นและนำมาเปรียบเทียบกับผลของการทดลอง ในงานวิจัยนี้มีแบบจำลอง 2 ลักษณะที่ใช้เพื่อแสดงความสัมพันธ์ โดยแบบแรกเป็น physical-physical model และแบบที่สอง คือ physical-chemical model แบบจำลอง physical-physical model ใช้แบบจำลองการดูดซับ ทางกายภาพเพื่อ แสดงความสัมพันธ์ทั้ง การดูดซับของกรด ที่แตกตัวเป็นประจุ และการ ดูดซับของ กรดที่ไม่แตกตัวเป็นประจุที่เกิดขึ้นบนเส้นไอโซ เทิร์มการดูดซับ แบบจำลอง physical-chemical model ใช้แบบจำลอง การดูดซับ ทางกายภาพเพื่อ แสดงความสัมพันธ์ทั้ง การดูดซับของกรด ที่ไม่ แตกตัวเป็นประจุ และใช้แบบจำลอง การดูดซับ ทางเกมิเพื่อแสดงความสัมพันธ์ทั้ง การดูดซับของกรด ที่ไม่ แตกตัวเป็นประจุ ถืงการดูดซับ ทางกายภาพเพื่อ แสดงความสัมพันธ์ทั้ง การดูดซับของกรด ที่ไม่ แตกตัวเป็นประจุ ที่เกิดขึ้นบนเส้นไอโซ เทิร์มการดูดซับ สมการแลงเมียร์ , สมการฟรุนดริช และสมการ BET ถูกนำมาใช้ในแบบจำลองทางกายภาพ สัมประสิทธิ์การเลือก และ สเตอริก แมส เอ็กชั่น ถูกใช้ในแบบจำลองทางเกมี สำหรับการเปรียบเทียบกับผลการทดลองแบบจำลองแลงเมียร์-แลงเมียร์และแบบจำลองฟรุนดลิช -สเตอริก แฟลเตอร์ เป็นแบบจำลองที่ดีสำหรับการแสดง กวามสัมพันธ์บนเส้นไอโซ เทิร์มการดูดซับที่พีเอช 2 เพราะการดูดซับของกรดที่ไม่แตกตัวเป็น ประจุจึงมีอยู่มาก ค่า AAD อยู่ที่ 0.0154 ถึง 0.1063 แบบจำลองฟรุนคลิช - สเตอริก แฟคเตอร์ เป็น แบบจำลองที่ดีสำหรับการแสดงความสัมพันธ์บนเส้นไอโซ เทิร์มการดูดซับที่พีเอช 4 และพีเอช 5 ก่าAAD อยู่ที่ 0.0147 ถึง 0.3199 ผลการทดลองแสดงให้เห็นว่า ผลกระทบของอุณหภูมิที่ขึ้นอยู่ กับค่าคงที่สมดุลของการแตกตัวของกรดสามารถไม่นำมาพิจารณาได้ สำหรับการ แสดง ความสัมพันธ์ของการดูดซับกรดแลกติกบนเรซินแลกเปลี่ยนประจุ



สาขาวิชา<u>วิศวกรรมเคมี</u> ปีการศึกษา 2557

| ลายมือชื่อนักศึกษา         |
|----------------------------|
| ลายมือชื่ออาจารย์ที่ปรึกษา |

# WANWISA SODSAI : MODELING OF LACTIC ACID ADSORPTION ISOTHERM ON AMBERLITE IRA-96 ION EXCHANGE RESIN. THESIS ADVISOR : TERASUT SOOKKUMNERD, Ph.D., 129 PP.

#### ION EXCHANGE RESIN/LACTIC ACID/ADSORPTION ISOTHERM

The study on the adsorption isotherm of lactic acid by ion exchange resin in lactic acid solution and the model of lactic acid adsorption isotherm were investigated in this thesis. Amberlite IRA-96 was converted into their Cl<sup>-</sup> form and used in all further experiment. The adsorption temperature was studied at 25 °C and 40 °C. From the batch adsorption experiment, the adsorption isotherm was obtained at pH 2 which was lower than pKa of lactic acid and at pH 4 and 5 which was higher than pKa of lactic acid adsorbed at pH 4 and 5 which was higher than pKa of lactic acid adsorbed at pH 4 and 5 was more than the amount of lactic acid adsorbed at pH 4 and 5 was more than the amount of lactic acid adsorbed at pH 4 and 5 was more than those at other pH; the amount of lactic acid adsorbed decreased with increasing temperature so the adsorption of lactic acid on this ion exchange is an exothermic process. The capacity of adsorption isotherm observed was higher than the reported maximum capacity of the resin.

Then, the modeling of lactic acid adsorption isotherm on Amberlite IRA-96 by combining effect of dissociated acid adsorption and undissociated acid adsorption was performed and correlated with the experimental results. There are two types of models investigated in the thesis. The first model is physical-physical adsorption model and

the second type is physical-chemical adsorption model. In the physical-physical adsorption model, the physical adsorption model was used to correlate both dissociated acid adsorption and undissociated acid adsorption on the adsorption isotherm. In the physical chemical adsorption model, the physical adsorption model was used to correlate for undissociated acid adsorption and the chemical adsorption model was used to correlate for dissociated acid adsorption on the adsorption isotherm. The Langmuir equation, Freundlich equation and BET equation is used for the physical adsorption model. The selectivity coefficient and steric mass action (SMA) is used for the chemical adsorption model. From the fitting of experimental resuls, the Langmuir-Langmuir model and the Freundlich-steric factor model are good for correlation the adsorption isotherm at pH 2 because the undissociated acid adsorption is the predominant one with the average absolute deviation (AAD) is from 0.0154 to 0.1063. The Freundlich-steric factor model is good for correlation the adsorption isotherm at pH 4 and pH 5 with the average absolute deviation ranging from 0.0147 to 0.3199. The results also show that the effect of temperature dependent on dissociation constant of lactic acid can be neglected for the correlation of lactic acid adsorption on ion exchange resin.

School of <u>Chemical Engineering</u>

Student's Signature

Academic Year 2014

Advisor's Signature

### ACKNOWLEDGEMENT

I am grateful to all those, who by their direct or indirect involvement have helped in the completion of this thesis.

First and foremost, I wish to express my sincere thanks to my thesis advisor, Dr. Terasut Sookkumnerd for the invaluable help and constant encouragement throughout the course of this research. He provided many insightful ideas and comments throughout my master's degree.

I would like to thank the lecturers in the School of Chemical Engineering, and many others for suggestions and all their help.

I am grateful to the engineers, technicians and personnel at the Chemical Laboratory for their suggestions and help. My special thanks goes to Mr. Chalawut Suwannatrai and Mr. Wittaya Julklang for their full support.

Finally, I am most grateful to my parents and my friends for all their support throughout the period of this research.

Wanwisa Sodsai

# **TABLE OF CONTENTS**

| ABSTRACT (THAI) | )I                           |
|-----------------|------------------------------|
| ABSTRACT (ENGL  | ISH)III                      |
| ACKNOWLEDGEM    | 1ENT V                       |
| TABLE OF CONTE  | NTSVI                        |
| LIST OF TABLES  |                              |
| LIST OF FIGURES |                              |
| SYMBOLS AND AI  | BBREVIATIONSXVI              |
| CHAPTER         | 53122                        |
| I INTROI        | DUCTION TABINA MARKAN        |
| 1.1             | Significance of the Problem1 |
| 1.2             | Research Objectives2         |
| 1.3             | Scope and Limitations2       |
| 1.4             | Outcomes of the Research     |
| II LITERA       | TURE REVIEW AND THEORY4      |
| 2.1             | Type of Acids5               |
|                 | 2.1.1 Strong Acids           |

|     | 2.1.2   | Weak Acids5                                         | , |  |  |  |
|-----|---------|-----------------------------------------------------|---|--|--|--|
| 2.2 | Disso   | Dissociation of acid and Chemical Thermodynamics of |   |  |  |  |
|     | Acid I  | Dissociation                                        | 6 |  |  |  |
|     | 2.2.1   | Type of Electrolyte Solution                        | 6 |  |  |  |
|     | 2.2.2   | Weak Acids                                          | 6 |  |  |  |
| 2.3 | Electro | olyte Solution9                                     | ) |  |  |  |
|     | 2.3.1   | Type of Electrolyte Solution9                       | ) |  |  |  |
|     |         | 2.3.1.1 Strong Electrolyte                          | ) |  |  |  |
|     | 54      | 2.3.1.2 Weak Electrolyte10                          | ) |  |  |  |
|     | 2.3.2   | Chemical Thermodynamic of Electrolyte Solution 11   |   |  |  |  |
| 2.4 | Lactic  | Acid12                                              | 2 |  |  |  |
|     | 2.4.1   | Dissociation of Lactic Acid15                       | ; |  |  |  |
|     | 2.4.2   | Analysis of Lactic Acid by HPLC16                   | 5 |  |  |  |
| 2.5 | Purific | cation of Lactic Acid18                             | ; |  |  |  |
|     | 2.5.1   | Electrodialysis19                                   | ) |  |  |  |
|     | 2.5.2   | Liquid-Liquid Extraction19                          | ) |  |  |  |
|     | 2.5.3   | Adsorption on Ion Exchange Resin                    | ) |  |  |  |

|     |       | 2.5.3.1    | Type of resin20                             |
|-----|-------|------------|---------------------------------------------|
|     |       | 2.5.3.2    | Ion Exchange at Equilibrium21               |
|     |       | 2.5.3.3    | The Effect of pH of the Solution22          |
|     |       | 2.5.3.4    | The Effect of Temperature of the Solution22 |
|     |       | 2.5.3.5    | Equilibrium Studies23                       |
|     |       | 2.5.3.6    | Typical Properties of Amberlite IRA 9626    |
| 2.6 | Adsor | ption      |                                             |
|     | 2.6.1 | Type of    | Adsorption Isotherm28                       |
|     | 2.6.2 | Thermo     | dynamics of adsorption28                    |
|     | 2.6.3 | Modelin    | ng of Adsorption Isotherm                   |
|     |       | 2.6.3.1    | Langmuir Equation                           |
|     |       | 2.6.3.2    | Freundlich Equation31                       |
|     |       | 2.6.3.3    | BET Equation32                              |
| 2.7 | Model | ling of Ac | lsorption Isotherm of Charged Ion on Ion    |
|     | Excha | nge Resir  | 1                                           |
|     | 2.7.1 | Detailed   | Adsorption Isotherm                         |
|     | 2.7.2 | Modelin    | g Adsorption Isotherm of Charged Ion34      |

|     |       | 2.7.2.1 Physical Physical Adsorption model |
|-----|-------|--------------------------------------------|
|     |       | 2.7.2.2 Physical Chemical Adsorption model |
|     | 2.8   | Nonlinear Regression                       |
| III | EXPER | MENTS AND METHODS43                        |
|     | 3.1   | Experiments                                |
|     |       | 3.1.1 Resin and Chemical4                  |
|     |       | 3.1.2 Equilibrium Experiments              |
|     |       | 3.1.3 HPLC Analysis of Lactic Acid         |
|     |       | 3.1.4 Analysis of Equilibrium Studies      |
|     |       | 3.1.5 Detailed Adsorption Isotherm         |
|     | 3.2   | Modeling4                                  |
|     |       | 3.2.1 Physical Physical Adsorption model   |
|     |       | Langmuir-Langmuir Model                    |
|     |       | • Langmuir-Langmuir Model+(Ka(T))          |

|    |        | 3.2.2  | Physical Chemical Adsorption model51     |
|----|--------|--------|------------------------------------------|
|    |        |        | Freundlich-Selectivity Model             |
|    |        |        | • Freundlich-Selectivity Model+(Ka(T))   |
|    |        |        | BET-Selectivity Model                    |
|    |        |        | • BET-Selectivity Model+(Ka(T))          |
|    |        |        | • Freundlich-Steric factor Model         |
|    |        |        | • Freundlich-Steric factor Model+(Ka(T)) |
|    |        |        | BET-Steric factor Model                  |
|    |        |        | • BET-Steric factor Model+(Ka(T))        |
|    | 3.3    | Numer  | ical Methods61                           |
| IV | RESULT | FS ANI | D DISCUSSION                             |
|    | 4.1    | Experi | imental Results and Discussion62         |
|    |        | 4.1.1  | Adsorption isotherm 62                   |
|    |        | 4.1.2  | Effect of pH 64                          |
|    |        | 4.1.3  | Effect of Temperature                    |
|    | 4.2    | Model  | ing of lactic Acid Adsorption            |
|    |        | 4.2.1  | Physical Physical Adsorption model       |

|            | 4.2.2 Physical Chemical Adsorption model76 |
|------------|--------------------------------------------|
| V CONCLU   | USION AND RECOMMENDATIONS                  |
| 5.1        | Adsorption Isotherm                        |
| 5.2        | Modeling                                   |
| 5.3        | Recommendations                            |
| REFERENCES |                                            |
| APPENDICES |                                            |
| APPE       | NDIX A RESULT OF MODELING106               |
| APPE       | NDIX B LIST OF PUBLICATION127              |
| BIOGRAPHY  | ้ <sup>อ</sup> กยาลัยเทคโนโลยีสุรีรั       |

# LIST OF TABLES

#### Table

| 2.1 Some Important Acids                                                            |
|-------------------------------------------------------------------------------------|
| 2.2 Identification and physical-chemical properties                                 |
| 2.3 Thermodynamic characteristics of lactic acid14                                  |
| 2.4 Characteristic of the resin23                                                   |
| 2.5 Typical Properties of Amberlite IRA 96 resin27                                  |
| 2.6 The litilature review of modeling adsorption isotherm                           |
| 3.1 The Modeling of Adsorption Isotherm                                             |
| <ul><li>4.1 The value parameter of Langmuir- Langmuir model (Ka constant)</li></ul> |
| model+(Ka(T))                                                                       |
| 4.3 The percent average absolute deviation (%AAD) of Physical Physical Adsorption   |
| Model75                                                                             |
| 4.4 The value parameter of Freundlich-selectivity model (Ka constant)               |
| 4.5 The correlated and experimental results at pH 485                               |
| 4.6 The value parameter of Freundlich-steric factor model (Ka constant)             |
| 4.7 The value parameter of BET-steric factor model (Ka constant)                    |

# LIST OF TABLES (Continued)

### Table

| 4.8 7 | The value parameter of Freundlich-selectivity model+(Ka(T))        | 94 |
|-------|--------------------------------------------------------------------|----|
| 4.9 7 | The value parameter of BET-selectivity model+(Ka(T))               | 95 |
| 4.10  | The value parameter of Freundlich-steric factor model+(Ka(T))      | 96 |
| 4.11  | The value parameter of BET-steric factor model+(Ka(T))             | 97 |
| 4.12  | The percent average absolute deviation (%AAD) of Physical Chemical |    |
|       | Adsorption Model                                                   | 99 |



## LIST OF FIGURES

| Figure Page                                                                  |   |
|------------------------------------------------------------------------------|---|
| 2.1 A schematic of HPLC equipment 17                                         | , |
| 2.2 The purification process of lactic acid in industial process             |   |
| 2.3 Ion exchange isotherms at temperature 25 °C (initial pH adjusted to 4.85 |   |
| by alkali addition)24                                                        |   |
| 2.4 Isotherms of IRA-400 ion exchange resin adsorbing lactic                 |   |
| acid                                                                         |   |
| 2.5 Breakthrough curves for the Lewatit S3428 column at different operating  |   |
| temperatures, flow rate 14 BV/h, and feed solution pH 1.2                    | ) |
| 2.6 System of isotherm classification                                        |   |
| 3.1 Process scheme for ion exchange of lactic acid solution                  |   |
| 3.2 Process scheme for modeling                                              |   |
| 4.1 The adsorption isotherm of lactic acid on Amberlite IRA 96 at 25 °C63    |   |
| 4.2 The adsorption isotherm of lactic acid on Amberlite IRA 96 at 40 °C      | • |
| 4.3 The adsorption isotherm of lactic acid on Amberlite IRA 9667             | , |
| 4.4 The correlated and experimental results at pH 2                          | ) |
| 4.5 The correlated and experimental results at pH 473                        |   |

# LIST OF FIGURES (Continued)

## Figure

| 4.6 ] | The correlated and experimental results at pH 57                            | 4 |
|-------|-----------------------------------------------------------------------------|---|
| 4.7 ] | The correlated and experimental results at pH 4 and $25 ^{\circ}C$          | 7 |
| 4.8 ] | The correlated and experimental results at pH 4 and $40^{\circ}C$           | 8 |
| 4.9 ] | The correlated and experimental results at pH 5 and $25^{\circ}\text{C}$ 7  | 9 |
| 4.10  | The correlated and experimental results at pH 5 and 40 °C                   | 0 |
| 4.11  | The correlated and experimental results at pH 2 and 25 °C                   | 2 |
| 4.12  | The correlated and experimental results at pH 2 and 40 $^{\circ}\mathrm{C}$ | 3 |
| 4.13  | The correlated and experimental results at pH 2 and 25 °C                   | 8 |
| 4.14  | The correlated and experimental results at pH 2 and 40 °C                   | 9 |
| 4.15  | The correlated and experimental results at pH 4 and 25 °C                   | 0 |
| 4.16  | The correlated and experimental results at pH 4 and $40 ^{\circ}\text{C}$   | 1 |
| 4.17  | The correlated and experimental results at pH 5 and 25 °C9                  | 2 |
| 4.18  | The correlated and experimental results at pH 5 and 40 °C9                  | 3 |

# SYMBOLS AND ABBREVIATIONS

| L_                | = | Lactate ion, CH <sub>3</sub> CHOHCOO <sup>-</sup>                      |  |  |
|-------------------|---|------------------------------------------------------------------------|--|--|
| LH                | = | Lactic acid, CH <sub>3</sub> CHOHCOOH                                  |  |  |
| к <sub>аАН</sub>  | = | Equilibrium constant for dissociated acid in the liquid                |  |  |
|                   |   | phase, $mol \cdot m^{-3}$                                              |  |  |
| C <sub>0</sub>    | = | Initial concentration of lactic acid in the liquid                     |  |  |
|                   |   | phase, $mol \cdot m^{-3}$                                              |  |  |
| C <sub>A</sub>    | = | Concentration of acid ion in the liquid phase, $mol \cdot m^{-3}$      |  |  |
| CB                | = | Concentration of counterion of resin in the liquid                     |  |  |
|                   |   | phase, $mol \cdot m^{-3}$                                              |  |  |
| C <sub>L</sub>    | = | Concentration of lactate ion in the liquid                             |  |  |
|                   |   | phase, $mol \cdot m^{-3}$                                              |  |  |
| C <sub>H</sub> +  | = | Concentration of hydrogen ion in the liquid                            |  |  |
|                   |   | Phase, $mol \cdot m^{-3}$                                              |  |  |
| С                 | = | Concentration of chloride ion in the liquid phase, mol $\cdot m^{-3}$  |  |  |
| °Cl <sup>–</sup>  |   |                                                                        |  |  |
| C <sub>LH</sub>   | = | Concentration of lactic acid in the liquid phase, $mol \cdot m^{-3}$   |  |  |
| C <sub>OH</sub> - | = | Concentration of hydroxide ion in the liquid phase, $mol \cdot m^{-3}$ |  |  |

| C <sub>A</sub> - | = | Concentration of dissociated acid in the liquid                                              |  |  |
|------------------|---|----------------------------------------------------------------------------------------------|--|--|
|                  |   | phase, $mol \cdot m^{-3}$                                                                    |  |  |
| C <sub>AH</sub>  | = | Concentration of undissociated acid in the liquid                                            |  |  |
|                  |   | phase, $mol \cdot m^{-3}$                                                                    |  |  |
| C <sub>T</sub>   | = | Concentration of lactic acid in the liquid phase from                                        |  |  |
|                  |   | measurement at equilibrium, $mol \cdot m^{-3}$                                               |  |  |
| C <sub>eq</sub>  | = | Concentration of adsorbate in the liquid                                                     |  |  |
|                  |   | phase at equilibrium, $mol \cdot m^{-3}$                                                     |  |  |
| Ci               | = | Concentration of adsorbate ion in the liquid phase                                           |  |  |
|                  |   | at equilibrium, $mol \cdot m^{-3}$                                                           |  |  |
| Cj               | = | Concentration of counter ion of resin in the liquid phase at equilibrium, $mol \cdot m^{-3}$ |  |  |
| H <sub>2</sub> O | = | Water                                                                                        |  |  |
| OH <sup>-</sup>  | = | Hydroxide ion                                                                                |  |  |
| $H^+$            | = | Hydrogen ion                                                                                 |  |  |
| K <sub>w</sub>   | = | Equilibrium constant for dissociated water in the liquid                                     |  |  |
|                  |   | phase, $mol \cdot m^{-3}$                                                                    |  |  |
| K <sub>AB</sub>  | = | Equilibrium constant for ion exchange resin, $mol \cdot m^{-3}$                              |  |  |
| K <sub>LCl</sub> | = | Equilibrium constant for ion exchange resin, $mol \cdot m^{-3}$                              |  |  |

| $v_A$ and $v_B$   | = | Characteristic charge of acid ion and counterion of resin                                |  |  |
|-------------------|---|------------------------------------------------------------------------------------------|--|--|
| v + and v -       | = | Characteristic charge of dissociated electrolyte                                         |  |  |
| v <sub>Cl</sub> - | = | Characteristic charge of chloride ion $(v_{cl} = 1)$                                     |  |  |
| $v_{L}^{-}$       | = | Characteristic charge of lactate ion $(v_{L}^{-}=1)$                                     |  |  |
| $v_i$             | = | Characteristic charge of adsorbate ion                                                   |  |  |
| ٧j                | = | Characteristic charge of counterion of resin                                             |  |  |
| Ι                 | = | ionic strength of the solution                                                           |  |  |
| Q                 | = | Active sites of the resin                                                                |  |  |
| Q <sub>T</sub>    | = | Total concentration of lactic acid in the solid                                          |  |  |
|                   |   | phase, mol·kgdryre sin <sup>-1</sup>                                                     |  |  |
| QA                | = | Concentration of ion(dissociated acid) in the solid phase, mol·kgdryre sin <sup>-1</sup> |  |  |
| QB                | = | Concentration of counterion in the solid                                                 |  |  |
|                   |   | phase, mol·kgdryre sin <sup><math>-1</math></sup>                                        |  |  |
| Q <sub>AH</sub>   | = | Concentration of molecule (undissociated acid) in the solid                              |  |  |
|                   |   | phase, mol·kgdryre sin <sup>-1</sup>                                                     |  |  |
| Q <sub>L</sub> -  | = | Concentration of lactate ion in the solid                                                |  |  |
|                   |   | phase, mol·kgdryresin <sup>-1</sup>                                                      |  |  |

| Q <sub>Cl</sub> -              | = | Concentration of chloride ion in the solid                                                   |  |
|--------------------------------|---|----------------------------------------------------------------------------------------------|--|
|                                |   | phase, mol·kgdryresin <sup><math>-1</math></sup>                                             |  |
| Q <sub>LH</sub>                | = | Concentration of lactic acid in the solid                                                    |  |
|                                |   | phase, mol·kgdryresin <sup>-1</sup>                                                          |  |
| Q <sub>eq</sub>                | = | Concentration of adsorbate in the solid phase                                                |  |
|                                |   | at equilibrium, mol·kgdryresin <sup>-1</sup>                                                 |  |
| Qi                             | = | Concentration of adsorbate ion in the solid phase                                            |  |
|                                |   | at equilibrium, mol·kgdryre sin <sup><math>-1</math></sup>                                   |  |
| Qj                             | = | Concentration of counterion of resin in the solid phase                                      |  |
|                                |   | at equilibrium, mol·kgdryre sin <sup>-1</sup>                                                |  |
| Q <sup>IE</sup> max            | = | Maximum concentration of ion (dissociated acid) in the solid<br>phase mole $kgdraresin^{-1}$ |  |
| аLН                            |   |                                                                                              |  |
| Q <sub>max</sub>               | = | Maximum concentration of molecule (undissociated acid) in                                    |  |
|                                |   | the solid phase, mol·kgdryre sin <sup><math>-1</math></sup>                                  |  |
| Q <sup>AH</sup> <sub>max</sub> | = | Maximum concentration of molecule (undissociated acid) in                                    |  |
|                                |   | the solid phase, mol·kgdryre $\sin^{-1}$                                                     |  |
| Q <sub>max</sub>               | = | Maximum concentration of adsorption in the solid                                             |  |
|                                |   | phase, mol·kgdryre sin <sup>-1</sup>                                                         |  |

| W                                      | = | Weight of dry resin, kg dry resin                               |  |  |  |
|----------------------------------------|---|-----------------------------------------------------------------|--|--|--|
| V                                      | = | Volumn of solution, m <sup>3</sup>                              |  |  |  |
| K                                      | = | Parameter constant in Langmuir equation                         |  |  |  |
| K <sub>IE</sub>                        | = | Parameter constant in Langmuir equation for ion                 |  |  |  |
|                                        |   | exchange adsorption, $m^3 \cdot mol^{-1}$                       |  |  |  |
| K <sub>LH</sub>                        | = | Parameter constant in Langmuir equation for                     |  |  |  |
|                                        |   | molecular adsorption, $m^3 \cdot mol^{-1}$                      |  |  |  |
| K <sub>AH</sub>                        | = | Parameter constant in Langmuir equation for                     |  |  |  |
|                                        |   | molecular adsorption, $m^3 \cdot mol^{-1}$                      |  |  |  |
| k, n                                   | = | Parameter constant in Freundlich equation                       |  |  |  |
| i                                      | = | Ion of solution for ion exchange resin                          |  |  |  |
| j                                      | = | Counterion of resin for ion exchange resin                      |  |  |  |
| $S_{j}^{i}$                            | = | Selectivity coefficient for ion exchange of counterion of resin |  |  |  |
|                                        |   | and acid ion.                                                   |  |  |  |
| $\mathbf{S}_{\mathbf{B}}^{\mathbf{A}}$ | = | Selectivity coefficient for ion exchange of acid ion and        |  |  |  |
|                                        |   | counterion of resin                                             |  |  |  |
| s <sup>L</sup> <sub>Cl</sub>           | = | Selectivity coefficient for ion exchange of lactate and         |  |  |  |
|                                        |   | chloride ion                                                    |  |  |  |
| $\sigma_{i}$                           | = | Steric factor                                                   |  |  |  |
| $\sigma_A$                             | = | Steric factor of acid ion                                       |  |  |  |

| $^{\sigma}L^{-}$  | = | Steric factor of lactate ion             |
|-------------------|---|------------------------------------------|
| quniquac          | = | External surface area of uniquac model   |
| K <sub>s</sub>    | = | Equilibrium constant for first layer     |
| KL                | = | Equilibrium constant for upper layer     |
| С                 | = | Parameter constant in BET equation       |
| Cs                | = | Solubility of the solute                 |
| HCl               | = | Hydrochloric acid                        |
| $H_3O^+$          | = | Hydronium ion                            |
| Cl                | = | Chloride ion                             |
| AH                | = | Undissociated acid                       |
| $A^-$             | = | Dissociated acid                         |
| $\Delta H^o_{AH}$ | = | Enthalpy change of dissociation acid     |
| $\mu_{i}$         | = | Chemical potential of the species i      |
| a <sub>i</sub>    | = | Activity of the species i                |
| $f_i$             | = | Fugacity of the species i                |
| $\gamma_i$        | = | Activity coefficient of the species i    |
| X <sub>i</sub>    | = | Molar concentration of the species i     |
| Z <sub>i</sub>    | = | Charge on the species i                  |
| $\alpha_{i}$      | = | Effective diameter of the hydrated ion i |

| K <sub>a</sub>           | = | Dissociated acid equilibrium constant of lactic acid          |  |  |
|--------------------------|---|---------------------------------------------------------------|--|--|
| Т                        | = | Temperature                                                   |  |  |
| $\Delta C_p$             | = | Heat of capacity change of lactic acid                        |  |  |
| A'andB'                  | = | The value of the thermodynamic functions for the dissociation |  |  |
|                          |   | of lactic acid                                                |  |  |
| K <sub>ad</sub>          | = | Equilibrium constant for adsorption                           |  |  |
| $\Delta H_{ads}^{\circ}$ | = | Heat of adsorption                                            |  |  |
| $\Delta G^0$             | = | Gibbs free energy change                                      |  |  |
| $\Delta H^0$             | = | Enthalpy change                                               |  |  |
| $\Delta S^0$             | = | Entropy change                                                |  |  |
|                          |   | ะ <sub>ภาวัทยาลัยเทคโนโลยีสุรุบ</sub> าร                      |  |  |

### **CHAPTER I**

### INTRODUCTION

#### **1.1** Significance of the Problem

Presently, the world is facing problem with global warming. One cause of this problem is the non-biodegradable plastic. Therefore, the thesis focuses on the purification of lactic acid which would assist in development of biodegradable plastics. Lactic acid, which is the raw material for one of the biodegradable plastics, polylactic acid (PLA). Lactic acid has many advantages; for example, lactic acid is used in the food industry, the production of pharmaceutics and cosmetics. The development of new purification process which is not expensive and more efficient than conventional methods is necessary. There are several methods for separation of lactic acid, such as the solvent extraction method and the electrodialysis method. For the solvent extraction method, the solvent used is quite toxic. For the electrodialysis method, cells adhering to membranes was leading to low flux and decreasing efficiency (Nomura Y, Iwahara M, Hongo M, 1987). One of the prominent purification methods of lactic acid is the adsorption on ion exchange resin. In this thesis, the adsorption isotherm of lactic acid on ion exchange resin and its modeling by chemical engineering theory is investigated. The study on adsorption isotherm of lactic acid by ion exchange resin and the development of a model for the description of ion exchange equilibrium and adsorption in lactic acid solution is studied.

#### **1.2 Research Objectives**

The overall objective of this research is to study the adsorption isotherm of lactic acid on ion exchange resin and to develop a model for the description of ion exchange equilibrium in lactic acid solution. The specific objective of this research are:

- 1.2.1. To study the effect of pH on the adsorption isotherm of lactic acid on ion exchange resin.
- 1.2.2. To study the effect of temperature on the adsorption isotherm of lactic acid on ion exchange resin.
- 1.2.3. To study the parameter of a model for the description of ion exchange equilibrium in lactic acid solution.

#### **1.3 Scope and Limitations**

In this thesis, adsorption isotherm of lactic acid on ion exchange resin and its modeling by the chemical engineering theory is investigated. The study on the adsorption isotherm of lactic acid on ion exchange resin and the development of a model for the description of ion exchange equilibrium in lactic acid solution is investigated. Amberlite IRA-96 anion exchange resin is applied to the recovery of lactic acid from lactic acid solution. The adsorption isotherm of lactic acid at pH 2, 4 and 5 and 25 °C and 40 °C is obtained. The model is used to correlate the adsorption isotherm of lactic acid. The objective function for a model was fitted by non-linear regression with lsqnonlin which is a built in function in Matlab.

#### **1.4** Outcomes of the Research

- 1.4.1 Equilibrium data for ion exchange resin between Amberlite IRA-96 anion exchange resin and lactic acid obtained from lactic acid solution. This equilibrium data is represented as adsorption isotherms.
- 1.4.2 Models for description of complex composition in equilibrium of ion exchange in solution. In the models, the effect of pH and temperature of the solution are considered. The correlation of the models is expressed in adsorption isotherms.



#### **CHAPTER II**

#### LITERATURE REVIEW AND THEORY

Lactic acid (LA) based polymers, is a good alternative for substituting conventional plastic produced from petroleum oil because of low emission of carbon dioxide that contributes to global warming, have been widely used. Lactic acid can be manufactured by chemical synthesis or carbohydrate fermentation. The recovery of lactic acid is rather difficult due to its chemical behavior due to its strong affinity to water and low volatility. Therefore, the lactic acid purification is the most costintensive and energy-intensive processing step. The improvement of separation process is of interest in order to reduce the costs of lactic acid purification. There are various separation techniques for lactic acid separation from fermentation broth. Lactic acid can be purified either by precipitation of metal lactates followed by a neutralizing reaction with sulfuric acid or by esterification with alcohol, distillation and hydrolysis of the formed ester, or by electro-dialysis. Besides, the ion exchange technique is widely used in bio-separation and several different ion exchangers. Thus, the ion exchange technique for lactic acid separation is interested. The use of ion exchange technique depends on various factors such as pH, temperature and sorbent characteristics such as microporosity and chemical properties. The literature review and theory are presented in this chapter.

### 2.1 Type of Acid

The type of acid can be divided into two types:

#### 2.1.1 Strong Acids

Strong acid have ionize completely or nearly completely in aqueous solution. In dilute solutions, strong acids donate their acidic proton(s) to water to make hydronium ions. Reaction involving the strong acids can be written with a regular forward arrow which represents the irreversible reaction. For example, the reaction of gaseous hydrogen chloride with water shows that hydronium ion is produced in aqueous solution

$$HCl_{(g)} + H_2O_{(l)} \to H_3O_{(aq)}^+ + Cl_{(aq)}^-$$
 (2.1)

#### 2.1.2 Weak Acids

Weak acids have ionize slightly in dilute solution. Reaction involving the weak acids is written with a forward/backward arrow to indicate that the ionization reaction is reversible. For example, the reaction of acetic acid with water shows that the acetic acid molecules remain unionized.

$$CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \rightleftharpoons CH_{3}COO_{(aq)} + H_{3}O_{(aq)}$$
(2.2)

| Strong            | g Acids                        | Weak Acids      |                                                   |
|-------------------|--------------------------------|-----------------|---------------------------------------------------|
| Name              | Formula                        | Name            | Formula                                           |
| Hydrochloric acid | HCl                            | Phosphoric acid | H <sub>3</sub> PO <sub>4</sub>                    |
| Hydrobromic acid  | HBr                            | Carbonic acid   | H <sub>2</sub> CO <sub>3</sub>                    |
| Hydroiodic acid   | HI                             | Acetic acid     | СН <sub>3</sub> СООН                              |
| Sulfuric acid     | H <sub>2</sub> SO <sub>4</sub> | Citric acid     | C <sub>3</sub> H <sub>5</sub> (COOH) <sub>3</sub> |
| Nitric acid       | HNO <sub>3</sub>               | Lactic acid     | СН <sub>3</sub> СНОНСООН                          |
| Perchloric acid   | HClO <sub>4</sub>              | Boric acid      | H <sub>3</sub> BO <sub>3</sub>                    |

 Table 2.1 Some Important Acids (Burns, 1999)

# 2.2 Dissociation of Acid and Chemical Thermodynamics of Acid Dissociation

The dissociation of acid can be divided into two types:

2.2.1 Strong Acid

A strong acid is an acid that completely dissociates into ions. The dissociation of strong acid can be written

$$\mathrm{HCl} \to \mathrm{H}^{+} + \mathrm{Cl}^{-} \tag{2.3}$$

#### 2.2.2 Weak Acid

A weak acid is only partially dissociates into its constituent ions. The type of weak acid can be divided into two classes:

#### 2.2.2.1 Polyprotic Acid Dissociation

For polyprotic acid, there is more than one ionizable  $H^+$  atom per molecule. The dissociation of polyprotic acid can be written as

$$H_2S \leftrightarrow H^+ + HS^-$$
 (2.4)

$$HS^{-} \leftrightarrow H^{+} + S^{2-} \tag{2.5}$$

#### 2.2.2.2 Monoprotic Acid Dissociation

In monoprotic acid, there is only one ionizable  $H^+$  atom per molecule. The dissociation of monoprotic acid can be written as

For the acid dissociation:

$$AH \leftrightarrow A^{-} + H^{+}$$
 (2.6)

10

$$K_{aAH}(T) = \frac{C_{H} + C_{A}}{C_{AH}}$$
 (2.7)

Although  $H^+$  is usually referred as hydrogen ions in aqueous solution, hydronium ions  $(H_3O^+)$  is actually the ion appearing in the true solution.

Where AH is the undissociated acid,  $A^-$  is the dissociated acid,

 $H^+$  is the hydrogen ion,  $C_{H^+}$  is the concentration of hydrogen ion in the liquid

phase  $(mol/m^3)$ ,  $C_{AH}$  is the concentration of undissociated acid in the liquid phase  $(mol/m^3)$ ,  $C_{A^-}$  is the concentration of dissociated acid in the liquid phase  $(mol/m^3)$  and  $K_{aAH}$  is the equilibrium constant for dissociated acid in the liquid phase  $(mol/m^3)$ .

The thermodynamic equilibrium constant  $(K_{aAH})$  can be defined by

$$K_{aAH}(T) = \frac{C_{H} + C_{A}}{C_{AH}} \bullet \frac{\gamma_{H} + \gamma_{A}}{\gamma_{AH}}$$
(2.8)

Where  $\gamma_i$  is activity coefficient of the species i. For an ideal solution, the activity coefficient can be assumed equal to 1. The reference state used here is 1 m concentration in this thesis (John et al., 1999).

$$K_{aAH}(T) = \frac{C_{H} + C_{A}^{-}}{C_{AH}}$$
 (2.9)

The acid-dissociation equilibrium constant  $(\ensuremath{K_{aAH}})$  can be

defined by

$$pKa_{AH}(T) = -\log_{10} K_{aAH}(T)$$
(2.10)

The effect of temperature on the equilibrium constant can be explained by chemical thermodynamic of the Van't Hoff equation (Smith et al., 2005). The Van't Hoff equation can be followed

$$\left(\frac{d\ln K_{aAH}}{dT}\right) = \frac{\Delta H_{AH}}{RT^2}$$
(2.11)

If enthalpy change of dissociated acid ( $\Delta H_{AH}^{\circ}$ ) is negative, the equilibrium constant decreases as the temperature increases. Conversely, this enthalpy change is positive, the equilibrium constant increases as the temperature increases.

#### **2.3 Electrolyte Solution**

An electrolyte is a solution that is able to conduct electricity. To meet this criteria, a solution must contain ions. Commonly, electrolyte solutions contain acids, bases, or salts as their ionic solute. Electrolyte solutions are normally formed when a salt is placed into a solvent such as water. The individual components dissociate due to the thermodynamic interactions between the solvent and solute molecules in a process called solvation. In the electrolyte solution, the solute dissociates into cations and anions(Prausnitz et al., 1999). A useful measure is the equivalent conductance and the conductance per mole of charge (Sandler, 2006).

#### 2.3.1 Type of Electrolyte Solution

The electrolyte solution can be divided into two types:

#### 2.3.1.1 Strong Electrolyte

A strong electrolyte is a strong acid, a strong base and salt (some species). A strong electrolyte is an acid, base or salt that completely dissociates into ions and its equivalent conductance is high but decreases only slowly with increasing concentration (Sandler, 2006).

#### 2.3.1.2 Weak Electrolyte

A weak electrolyte is a weak acid and a weak base. A weak electrolyte is an acid or base that only partially dissociates into its constituent ions and its equivalent conductance is less than that of strong electrolyte at any concentration but increases rapidly as a concentration decreases (Sandler, 2006).

Consider electrolyte  $M_{\nu+}X_{\nu-}$  that dissociated electrolyte

according to

$$M_{\nu+}X_{\nu-} \leftrightarrow \nu^{+}M^{Z+} + \nu^{-}M^{Z-}$$
(2.12)

The dissociation (or ionization) equilibrium constant is

$$K(T) = \frac{a_{+}^{\nu+} a_{-}^{\nu-}}{a_{MX}} = \frac{X_{+}^{\nu+} X_{-}^{\nu-}}{X_{MX}} \bullet \frac{\gamma_{+}^{\nu+} \gamma_{-}^{\nu-}}{\gamma_{MX}}$$
(2.13)

Where  $X_i$  is molar concentration of the species I, v + andv - v

is the characteristic charge of dissociated electrolyte  $\gamma_i$  is activity coefficient of the species i. For an ideal solution, the activity coefficient can be assumed equal to 1. The

reference state used here is 1 m concentration in this thesis (John et al., 1999). The activity coefficient makes more accurate equilibrium calculation.

#### 2.3.2 Chemical Thermodynamic of Electrolyte Solution

Excess function are thermodynamic properties of solution that are in excess of those of an ideal (or ideal dilute) solution at the same conditions of temperature, pressure, and composition.

For the dissolved solute, the chemical potential is written

$$\mu_i = \mu_i^* + RT \ln a_i \tag{2.14}$$

Where  $\mu_i$  is chemical potential of the species i,  $\mu_i^*$  is chemical potential of the species i, it is independent of composition but depends on temperature, pressure, and the nature of solute and sovent and  $a_i$  is activity of the species i.

The activity of component i at some temperature, pressure, and composition is defined as the ratio of the fugacity of i at these conditions to the fugacity of i in the standard state, that is a state at the same temperature as that of the mixture and at some specified condition of pressure and composition

$$a_{i}(T, P, x) = \frac{f_{i}(T, P, x)}{f_{i}(T, P^{0}, x^{0})}$$
(2.15)

The activity used to describe the effective concentration in an equilibrium at any given ionic strength. The activity for the species i defined as

$$a_i = \gamma_i x_i \tag{2.16}$$
Where  $a_i$  is the activity of the species i,  $x_i$  is its molar concentration, and  $\gamma_i$  is a dimensionless quantity called the activity coefficient. The activity coefficient and thus the activity of i depend on ionic strength.

The Debye-Huckel equation used the calculation of activity coefficients of ions from their charge and their average size. The Debye-Huckel equation defined as

$$-\log \gamma_{i} = \frac{0.51Z_{i}^{2}\sqrt{I}}{1+3.3\alpha_{i}\sqrt{I}}$$
(2.17)

Where  $\gamma_i$  is activity coefficient of the species i,  $Z_i$  is charge on the species i, I is ionic strength of the solution and  $\alpha_i$  is effective diameter of the hydrated ion i in nanometer (10<sup>-9</sup> m) (Douglas et al., 1996).

# 2.4 Lactic Acid

The IUPAC name of lactic acid is 2-hydroxypropionic acid (LA). Some people call milk acid and it is the most widely occurring carboxylic acid in nature. In 1780, lactic acid was first isolated by a Swedish chemist, Carl Wilhelm Scheele. In 1881, lactic acid was first produced commercially by Charles E. Avery at Littleton, Massachusetts. L-lactic acid or (s)-lactic acid and D-lactic acid or (R)-lactic acid are forms of lactic acid (Ren Jie, 2010). Now, lactic acid used in food, chemical, pharmaceutical and biodegradable polymers. Therefore, a lot of studies on the fermentation production of lactic acid have been done. Some substrates such as whey, soybean, milk, corn, potato, and wood have been investigated for the fermentation of lactic acid (Tong, 2004).

| Identification   | Physical & Chemical properties |
|------------------|--------------------------------|
| CAS number       | D/L:[50-21-5]                  |
|                  | L:[79-33-4]                    |
|                  | D:[10326-41-7]                 |
| Einecs No.       | 200-018-0                      |
| H.S. Code        | 2918.11                        |
| Formula          | CH <sub>3</sub> CH(OH)COOH     |
| Melting point    | L:53°C                         |
|                  | D:53°C                         |
|                  | D/L:16.8°C                     |
| Boiling point    | 122°C(12mmHg)                  |
| Specific gravity | 1.2 g/mL                       |
| Molar mass       | 90.08 g/mol                    |

Table 2.2 Identification and physical-chemical properties (Ren Jie, 2010)



| Items                                        | Characterictics                                                               |
|----------------------------------------------|-------------------------------------------------------------------------------|
| Dissociation constant $(K_a)$                | 0.000137 (at25°C)                                                             |
| Heat of dissociation ( $\Delta H$ )          | -63 cal/mol (at25°C)                                                          |
| Free energy of dissociation ( $\Delta F$ )   | 5000 cal/mol                                                                  |
| Heat of solution ( $\Delta$ H)               | 1868 cal/mol (for crystalline L(+)lactic acid at 25°C)                        |
| Heat of dilution ( $\Delta$ H)               | -1000 cal/mol (for dilution with a large volume of water)                     |
| Heat of fusion ( $\Delta$ H)                 | 2710 cal/mol (for recemic lactic acid)<br>4030 cal/mol (for L(+) lactic acid) |
| Entropy of solution ( $\Delta S$ )           | 6.2 cal/mol/°C                                                                |
| Entropy of dilution ( $\Delta$ S)            | -3.6 cal/mol/°C                                                               |
| Entropy of fusion ( $\Delta$ S)              | 9.4 cal/mol/°C (for recemic lactic acid)                                      |
|                                              | 12.2 cal/mol/°C (for L(+) lactic acid)                                        |
| Heat of combustion $(\Delta H_{c0})$         | -321220 cal/mol(for crystalline L(+)lactic                                    |
|                                              | acid at 25°C)                                                                 |
|                                              | -325600 cal/mol (for liquid racemic lactic                                    |
|                                              | acid at 25 °C ) $165800$ col/mol/for environmentalling L (1) location         |
| Heat of formation $(\Delta H_{f0})$          | acid at 25°C)                                                                 |
|                                              | -163000 cal/mol (for liquid lactic acid)                                      |
|                                              | -164020 cal/mol (for lactic acid in                                           |
|                                              | dilution solution)                                                            |
| 5, 44, 14, 14, 14, 14, 14, 14, 14, 14, 14    | -164080 cal/mol (for dissociate and diluted lactic acid)                      |
| Heat of capacity $(C_p)$                     | 0.338 cal/g/°C (for crystalline L(+)lactic acid at 25°C)                      |
|                                              | 0.559 cal/g/°C (for liquid lactic acid at 25°C)                               |
| Absolute entropy $(S_0)$                     | 34.0 cal/mol/°C (for crystalline L(+)lactic                                   |
|                                              | acid at 25°C)                                                                 |
|                                              | 45.9 cal/mol/°C (for liquid racemic lactic                                    |
|                                              | acid at 25°C)                                                                 |
| Entropy of formation ( $\Delta S_{f0}$ )     | -137.2 cal/mol/°C (for crystalline L(+) lactic acid at 25°C)                  |
|                                              | -125.3 cal/mol/°C (for liquid lactic acid                                     |
|                                              | at 25°C)                                                                      |
| Free energy of formation ( $\Delta F_{co}$ ) | -124980 (for crystalline L(+) lactic acid                                     |
| G,                                           | at 25°C)                                                                      |
|                                              | -126500 cal/mol (for liquid racemic lactic                                    |
|                                              | acid at 25°C)                                                                 |

 Table 2.3 Thermodynamic characteristics of lactic acid (Ren Jie, 2010)

#### 2.4.1 Dissociation of lactic acid

Lactic acid is a monoprotic acid in weak acid and weak electrolyte. As a result, a lactic acid dissociation (or ionization) as follows:

$$LH \leftrightarrow L^{-} + H^{+} \tag{2.18}$$

$$K_{a}(T) = \frac{C_{H} + C_{L}}{C_{LH}}$$
(2.19)

For the measurement of lactic acid, both forms of lactic acid were detected. Mathematically, it can be expressed as:

$$C_{\rm T} = C_{\rm LH} + C_{\rm L^-} \tag{2.20}$$

Where LH is the lactic acid (CH<sub>3</sub>CHOHCOOH), L<sup>-</sup> is the lactate ion  $(CH_3CHOHCOO^-)$ , H<sup>+</sup> is the hydrogen ion, C<sub>H</sub><sup>+</sup> is the concentration of hydrogen ion in the liquid phase (mol/m<sup>3</sup>), C<sub>LH</sub> is the concentration of lactic acid in the liquid phase (mol/m<sup>3</sup>), C<sub>L</sub><sup>-</sup> is the concentration of lactate ion in the liquid phase (mol/m<sup>3</sup>), C<sub>L</sub><sup>-</sup> is the concentration of lactate ion in the liquid phase (mol/m<sup>3</sup>), C<sub>T</sub> is the concentration of lactate ion in the liquid phase from measurement at equilibrium (mol/m<sup>3</sup>) and K<sub>a</sub>(T) is the Disociated acid equilibrium constant of lactic acid, The pKa of lactic acid is 3.86 at 25°C (Cao et al., 2002).

The equilibrium Constant Parameter can be expanded by eq 2.20 propose by Everett and Wynne-Jones (1939). The value of the thermodynamic

functions for the dissociation of lactic acids are A' = -2578.0 and B' = 54.7716 on the thermodynamics of acid-base equilibrium paper.

The thermodynamic equation follows by eq. (2.21).

$$T\log K_a = A' + \frac{\Delta C_p}{R} T\log T + B'T$$
(2.21)

#### 2.4.2 Analysis of Lactic Acid by HPLC

Lactic acid is a high boiling point then the HPLC is used for analysis lactic acid. HPLC is developed from the theory of column chromatography. The difference of adsorption is the reason of column chromatography. The technology for producing and using packing with particle diameters was developed for effect on plate heights from diffusion very slowly (Elena Katz, 1998).

A flow rate of liquid sample and mobile phase stream, which are desired by pumps, carries into the column. The temperature in column influence into the interactions taking place between sample components and sorbent. The detector translates the changes in the chemical composition of the column effluent during the chromatographic run into an electrical signal. This signal can give the required information about the sample composition (Elena Katz, 1998).



Figure 2.1 A schematic of HPLC equipment (Satinder Ahuja, 2003).

Lactic acid is analyzed by HPLC. Cao et al. (2002) analyzed by high performance liquid chromatography equipped with Aminex HPX-87H column. The column temperature was maintained at 45°C and the pressure of the column was 69 atm. UV detector is set at 210 nm. The mobile phase was 0.008 M sulfuric acid and the flow rate was 0.5 ml/min. Tong et al. (2004) analyzed by high performance liquid chromatography equipped with Aminex HPX-87H column. The column temperature was maintained at 45°C. UV detector is set at 210 nm. The mobile phase was 0.008 M sulfuric acid and the flow rate was 0.6 ml/min.

# 2.5 Purification of Lactic Acid

Ther are several methods for separation of lactic acid. The purification process of lactic acid in industial process as show in Figure 2.2.



Figure 2.2 The purification process of lactic acid in industial process (Dow

Water & Process Solution).

#### 2.5.1 Electrodialysis

In electrodialysis, electrically charged membranes are used to separate components of an ionic solution under the driving force of an electric current.

Lactic acid is separated by electrodialysis with bipolar membrane (EDBM) propose by Huang et al. (2006). The EDBM can substitute for conventional separation to produce organic acids. Hirata et al. (2005), Li et al. (2004) and Min-tian et al. (2005) analyzed the direct applications of EDBM to recovery lactic acid without pretreating fermentation broth. Wang et al. (2013) analyzed there certainly will intensify membrane fouling rapidly compared with processing the fermentation broth after pretreating. Then the pretreatment fermentation broth before feeding to EDBM equipment is a necessary. For the electrodialysis method, cells adhered membranes during the process was leading to decreased efficiency in the separation process (Nomura et al., 1987).

#### 2.5.2 Liquid-Liquid Extraction

Extraction is a separation process in which a solute is distributed between two immiscible solvents. The distribution coefficient is related to relative solubilities of the solute in the two solvents. A sample is subjected to the extraction process by shaking it with the two solvents and then allowing them to separate (Satinder Ahuja, 2003). For the solvent extraction method, the lactic acid product has toxicity which comes from used solvent.

#### 2.5.3 Adsorption on Ion Exchange Resin

Ion-exchange equilibria can lead to separation of cation or anions. The chromatography methods have been found very useful for this purpose. In ionexchange chromatography, exchange equilibrium of the ions plays a major role.

### 2.5.3.1 Type of Resin

Resins can be classified as strong or weak acid cation exchangers or strong or weak base anion exchangers.

- a) Cation exchangers
  - Strong Acid Cation Resins

The resins are highly ionized in both the acid (R-SO<sub>3</sub>H) and salt (R-SO<sub>3</sub>Na) form of the sulfonic acid group. The hydrogen and sodium forms of strong acid resins are highly dissociated and the exchangeable Na<sup>+</sup> and H<sup>+</sup> are readily available for exchange over the entire pH range. Consequently, the exchange capacity of strong acid resins is independent of solution pH. After exhaustion, the resin is converted back to the hydrogen form (regenerated) by contact with a strong acid solution.

• Weak Acid Cation Rasins

Weak acid resins are weakly dissociated. The ionizable group is a carboxylic acid (COOH) as opposed to the sulfonic acid group (SO<sub>3</sub>H) used in strong acid resins. The degree of dissociation of a weak acid resin is strongly influenced by the solution pH. Consequently, resin capacity depends in part on solution pH. A typical weak acid resin has limited capacity below a pH of 6.0.

- b) Anion exchangers
  - Strong Base Anion Resins

These resins are used in the hydroxide (OH) form for water deionization. The strong base resins are highly ionized and can be used over the entire pH range. After exhaustion, the resin is converted back to the hydroxide form (regenerated) by contact with a sodium hydroxide (NaOH).

• Weak Base Anion Resins

Weak base resins are weakly dissociated. The degree of dissociation of a weak base resin is strongly influenced by the solution pH. Consequently, weak base resins exhibit minimum exchange capacity above a pH of 7.0. After exhaustion, the resin is converted back to neutralize the absorbed acid with weakly basic reagents such as ammonia (NH<sub>3</sub>) or sodium carbonate.

#### 2.5.3.2 Ion Exchange at Equilibrium

The ion exchange equilibrium is attained when an ion exchanger is placed in an electrolyte solution containing a counter ion which is different from that in the ion exchanger.

Counter ion exchange occurs, and the ion B in the ion exchange partially replaced by A

$$v_{A}Q_{B} + v_{B}C_{A} \leftrightarrow v_{A}C_{B} + v_{B}Q_{A}$$
(2.22)

Where  $v_B$  and  $v_A$  are the characteristic charge of counterion of resin and acid ion, respectively.  $C_B$  is the concentration of counterion of resin in the

liquid phase  $(mol/m^3)$ .  $C_A$  is the concentration of acid ion in the liquid phase  $(mol/m^3)$ .  $Q_B$  is the concentration of counterion of resin in the solid phase (mol/kg dry resin).  $Q_A$  is the concentration of acid ion in the solid phase (mol/kg dry resin).

In this reversible equilibrium, both the ion exchanger and the solution contain both competing counter ion species, counterion of resin and acid ion.

$$K_{AB} = \left(\frac{Q_A}{C_A}\right)^{\nu B} \left(\frac{C_B}{Q_B}\right)^{\nu A}$$
(2.23)

Where  $K_{AB}$  is the equilibrium constant for ion exchange resin

 $(mol/m^3).$ 

## 2.5.3.3 The Effect of pH of Solution

The resin have limited the range of pH for use. The selectivity depends on the total concentration in the aqueous phase, ion valence, size and shape. The high selectivity number has a more tightly bound of ion. The solution pH can also have a profound effect on selectivity.

#### 2.5.3.4 The Effect of Temperature of Solution

The temperature is changed the degree of ionization will be change too. This has a much greater effect on systems that are only slightly ionized. However, a higher temperature can increase the solubility for ion in solution (Frank DeSilva and Bill Koebel, 2000).

#### 2.5.3.5 Equilibrium Studies

Moldes et al. (2003) Analyzed the capacity of weak base and strong base anion exchange resin. The weak base resins presented higher capacities than the strong base ones in all the range of concentrations explored. The matrix of Amberlite IRA 96 is a macroreticular and the matrix of Amberlite IRA 97 is a gel. Both resin converted into their Cl<sup>-</sup> form. In Cl<sup>-</sup> form, the weak base resins presented the highest capacities (Moldes et al., 2003). Amberlite IRA 97 is gel in the water with the pore size is uncertain. This thesis an anionic exchange resin Amberlite IRA 96 (Cl<sup>-</sup> form) will be used for the lactate separation process. The characteristic of the resin show in Table 2.4 and the capacity of the resin is shown in Figure 2.2.

| Resin     | Manu-    | Matrix   | Active     | Form | Basicity | Capacity | pН    |
|-----------|----------|----------|------------|------|----------|----------|-------|
|           | facturer | 20       | group      |      | 5        |          | range |
|           |          |          |            |      |          | (meq/g)  | -     |
| Amberlite | Rohm     | Macrore- | Quaternary | Cl   | Strong   | 4.2      | 0-14  |
| IRA 900   | and      | ticular  | ammonium   | 10   |          |          |       |
|           | Haas     | 5-       |            | 1    |          |          |       |
| Amberlite | Rohm     | Gel      | Quaternary | Cl   | Strong   | 3.8      | 0-14  |
| IRA 400   | and      | .016     | ammonium   | 3    |          |          |       |
|           | Haas     |          |            |      |          |          |       |
| Amberlite | Rohm     | Macrore- | Polyamine  | Free | Weak     | 4.7      | 0-7   |
| IRA 96    | and      | ticular  |            | base |          |          |       |
|           | Haas     |          |            |      |          |          |       |
| Amberlite | Rohm     | Gel      | Polyamine  | Free | Weak     | 5.6      | 0-7   |
| IRA 67    | and      |          |            | base |          |          |       |
|           | Haas     |          |            |      |          |          |       |

 Table 2.4 Characteristic of the resin (Moldes et al., 2003)



Figure 2.3 Ion exchange isotherms at temperature 25 (initial pH adjusted to 4.85 by alkali addition) (Moldes et al., 2003).

Cao et al. (2002) analyzed the adsorption isotherm of lactic acid at pH 2 and pH 5 by IRA-400.The equilibrium point of the dissociation of lactic acid shifted by the change of concentrations ion. Isotherms of IRA-400 ion exchange resin adsorbing lactic acid in Figure 2.3 the maximum adsorption capacity at pH 5 was much higher than that at pH 2.



Figure 2.4 Isotherms of IRA-400 ion exchange resin adsorbing lactic acid (Cao et al., 2002).

The experiments were performed at two different temperatures at room temperature (25°C) and at the temperature at which the fermentation broth is recovered and ultrafiltration steps, i.e, 40°C. In Figure 2.4, the selectivity at 40°C was slightly higher than the selectivity of the anion exchanger at 25°C (Isabel et al., 2006).



Figure 2.5 Breakthrough curves for the Lewatit S3428 column at different operating temperatures, flow rate 14 BV/h, and feed solution pH 1.2 (◊, lactate; □, phosphate; Δ, chloride).

# 2.5.3.6 Typical Properties of Amberlite IRA 96 resin

A.B. Moldes et al. (2003) analyzed the Amberlite IRA 96 resin presented high capacities. Amberlite IRA 96 resin was used in this thesis. Amberlite IRA 96 resin is a macroreticular weak base anion exchange resin. Typical properties of amberlite IRA 96 resin show in Table 2.5.

|                                      | · · · · · · · · · · · · · · · · · · · |
|--------------------------------------|---------------------------------------|
| Physical form                        | Tan opaque spherical beads            |
| Matrix                               | Styrene divinylbenzene copolymer      |
| Functional group                     | Tertiary amine: at least 85%          |
| Ionic form as shipped                | Free base (FB)                        |
| Total exchange capacity              | = 1.25  eq/L (FB form)                |
| Moisture holding capacity            | 57 to 63% (FB form)                   |
| Shipping weight                      | 670 g/L                               |
| Specific gravity                     | 1.040 to 1.060 (FB form)              |
| Particle size uniformity coefficient | = 1.80                                |
| Harmonic mean size                   | 0.550 to 0.750 mm                     |
| < 0.300 mm                           | 1.0% max                              |
| Reversible swelling                  | $FB \rightarrow Cl^{-} = 15\%$        |
|                                      |                                       |

Table 2.5 Typical Properties of Amberlite IRA 96 resin

# 2.6 Adsorption

Adsorption is the adhesion of atoms, ions or molecules of a gas, liquid or dissolved solid to a surface. The surface is called an adsorbent. The atoms, ions or molecules are called the adsorbate. The ion exchange separation occurs in solid-liquid interface. The adsorption process are divided by the interactions between the solid and the molecular in the fluid phase as physical adsorption and chemical adsorption. The adsorption analysis is generally classified as equilibrium and kinetics. The kinetics adsorption is described per time. The adsorption at equilibrium is usually described through the adsorption isotherm (Duong D.Do., 1998). The models describing adsorption isotherms are Freundlich equation, Langmuir equation, BET equation, etc. The separation of lactic acid by ion exchange can be described by adsorption process.

#### 2.6.1 Type of Adsorption Isotherm

Isotherms for adsorption analysis is generally classified into four main classes, according to the nature of slop of the initial portion of the curve, and thereafter into sub-groups. The main classes are S Curves, L Curves, H Curves and C Curves(Giles et al., 1960).



Figure 2.6 System of isotherm classification (Giles et al., 1960).

#### 2.6.2 Thermodynamics of adsorption

The thermodynamic principles are most conveniently used in analyzing the equilibeium state. The thermodynamic relationships relevant to the study of adsorption as background to the discussion (Chi Tien, 1994). According to the thermodynamic law, the Gibbs free energy change  $(\Delta G^0)$  of adsorption is calculated as follows:

$$\Delta G^0 = -RT \ln K_{ad} \tag{2.24}$$

Where  $K_{ad}$  is the equilibrium constant for adsorption and T is absolute temperature. In study of adsorption, Eq. 2.23 has been employed for determination of  $\Delta G^0$ . The relationship of  $\Delta G^0$  to enthalpy change ( $\Delta H^0$ ) and entropy change ( $\Delta S^0$ ) of adsorption can be expressed as

$$\Delta G^0 = \Delta H^0 + T \Delta S^0 \tag{2.25}$$

Substituting Eq. 2.24 into Eq. 2.23 gives

$$\ln K_{ad} = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$$
(2.26)

The term heat of adsorption is the heat released upon the adsorption of an adsorbate and adsorbent. The amount of heat released may be significant to the performance of the adsorption process. There are two type of heat of adsorption, the first ones is isosteric heat of adsorption and the second ones is adiabatic heat of adsorption. The heat of adsorption is calculated from the following Van't Hoff equation (Duong D.Do., 1998):

$$\left(\frac{d\ln K_{ad}}{dT}\right) = \frac{\Delta H_{ads}^{\circ}}{RT^2}$$
(2.27)

Where  $\Delta H_{ads}^{\circ}$  is the heat of adsorption. Basically the heat of physical adsorption is of the same order of magnitude as the heat of condensation, i.e., 2.1 kJ/mol<sup>-1</sup> (Sag and Kutsal, 2000), while the heats of chemical adsorption generally fall into a range of 80 to 200 kJ/mol<sup>-1</sup> (Hayward and Trapnell, 1964; Smith, 1981). The positive value of  $\Delta H_{ads}^{\circ}$  implies that adsorption would be and endothermic process, while a negative  $\Delta H_{ads}^{\circ}$  indicates an exothermic adsorption process (Liu and Wang, 2009).

#### 2.6.3 Modeling of Adsorption Isotherm

The theories, as shown later, can be extended to describe the simultaneous adsorption of two or more components (John et al., 1998).

2.6.2.1 Langmuir Equation

$$\frac{Q_{eq}}{Q_{max}} = \frac{KC_{eq}}{1 + KC_{eq}}$$
(2.28)

Where  $Q_{eq}$  is the concentration of adsorbate in the solid phase

at equilibrium (mol/kg dry resin),  $Q_{max}$  is the maximum concentration of adsorption in the solid phase (mol/kg dry resin),  $C_{eq}$  is the concentration of adsorbate in the liquid phase at equilibrium (mol/m<sup>3</sup>) and K is the parameter constant in Langmuir equation.

Langmuir equation is based on four assumptions:

• The adsorption takes plase on a homogeneous surface. The surface in homogeneous.

- Adsorbed molecules do not interact.
- All adsorption occurs through the same mechanism.
- At the maximum adsorption, only a monolayer is formed.

#### **2.6.2.2 Freundlich Equation**

Freundlich adsorption isotherm is popularly used in the description of multilayer adsorption in gas and liquid phase systems provided the range of fluid phase concentration is not too wide.

$$Q_{eq} = kC_{eq}^{1/n} \tag{2.29}$$

Where  $Q_{eq}$  is the concentration of adsorbate in the solid phase at

equilibrium (mol/kg dry resin),  $C_{eq}$  is the concentration of adsorbate in the liquid phase at equilibrium (mol/m<sup>3</sup>) and k, n are the parameter constant in Freundlich equation.

Freundlich equation is based on assumptions (Duong D.Do.,

1998):

- Freundlich equation is very popularly used in the description of adsorption of organics from aqueous streams on to activated carbon.
- Freundlich equation is also applicable in gas phase systems having heterogeneous surfaces.

• The isotherm equation does not have a proper Henry law behavior at low concentration, and it does not have a finite limit when the concentration is sufficiently high.

#### 2.6.2.3 BET Equation

$$Q_{eq} = Q_{max} \left[ \frac{CC_{eq}}{(C_s - C_{eq}) \left( 1 + (C - 1) \left( \frac{C_{eq}}{C_s} \right) \right)} \right]$$
(2.30)

Where  $Q_{eq}$  is the concentration of adsorbate in the solid phase

at equilibrium (mol/kg dry resin),  $Q_{max}$  is the maximum concentration of adsorption in the solid phase (mol/kg dry resin),  $C_{eq}$  is the concentration of adsorbate in the liquid phase at equilibrium (mol/m<sup>3</sup>),  $C_s$  the solubility of the solute and C is the parameter constant in BET equation.

BET equation is based on three assumptions:

- Multilayer adsorption is possible. As a result, the forces of adsorption are much higher for the first layer and constant for the subsequent layers.
- There is again no lateral interaction as in the case of Langmuir.
- The surface in homogeneous.

In this thesis, a study of the equilibrium model on adsorption isotherm of lactic acid on ion exchange resin will be presented.

# 2.7 Modeling of Adsorption Isotherm of Charged Ion on Ion Exchange Resin

#### 2.7.1 Detailed Adsorption Isotherm

The dissociated acid and undissociated acid are adsorbed on the resin independently.

$$Q_{\rm T} = Q_{\rm AH} + Q_{\rm A} \tag{2.31}$$

Where  $Q_{AH}$  is the concentration of undissociated acid in the solid phase (mol/ kg dry resin).  $Q_A$  is the concentration of dissociated acid in the solid phase (mol/ kg dry resin).  $Q_T$  is the total concentration of acid in the solid phase (mol/ kg dry resin)



# 2.7.2 Modeling Adsorption Isotherm of Charged Ion

 Table 2.6 The litilature review of modeling adsorption isotherm

| 2.7.2.1 Physical Adsorption Model |               |                    |                  |                               |                                |
|-----------------------------------|---------------|--------------------|------------------|-------------------------------|--------------------------------|
| Model                             | Name of       | adsorption of      | adsorption of    | Assumption                    | Reference                      |
| No.                               | model         | undissociated acid | dissociated acid |                               |                                |
| 1                                 | Langmuir-     | Langmuir           | Langmuir         | -Langmuir assumption          | Phenol, (Carmona et al., 2006) |
|                                   | Langmuir      | equation           | equation         |                               | Phenol, (Caetano et al., 2009) |
|                                   | model         |                    |                  |                               |                                |
|                                   |               |                    |                  |                               |                                |
|                                   |               |                    | F 11' 1          |                               | D = 1 (I + 1.2010)             |
| 2                                 | BEI-Freudlich | BET equation       | Freudlich        | -BET assumption and           | Phenol, (Juang et al., 2010)   |
|                                   | model         |                    | equation         | Freudlich assumption          |                                |
|                                   |               |                    |                  |                               |                                |
|                                   |               |                    |                  | - The equilibrium constant of |                                |
|                                   |               |                    |                  | dissociated acid constant     |                                |
|                                   | DDT           |                    | <b>.</b> .       |                               |                                |
| 3                                 | BET-          | BET equation       | Langmuir         | -BET assumption and           | Phenol, (Juang et al., 2011)   |
|                                   | Langmuir      |                    | equation 7       | Langmuir assumption           |                                |
|                                   | model         |                    | ับกย             | ເລັຍແກດໂນໂລຍີ[ຊີວີ            |                                |
|                                   |               |                    |                  | - The equilibrium constant of |                                |
|                                   |               |                    |                  | dissociated acid constant     |                                |
|                                   |               |                    |                  |                               |                                |

| 2.7.2.2 Physical Chemical Adsorption Model |               |                    |                  |                               |                                   |
|--------------------------------------------|---------------|--------------------|------------------|-------------------------------|-----------------------------------|
| Mode                                       | Name of model | adsorption of      | adsorption of    | Assumption                    | Reference                         |
| 1 No.                                      |               | undissociated acid | dissociated acid |                               |                                   |
| 4                                          | Freudlich-    | Freudlich          | Selectivity      | -Freudlich assumption         | Carboxylic acids, (Kanazawa,      |
|                                            | Selectivity   | equation           | coefficient      |                               | 1999)                             |
|                                            | model         |                    |                  | - The equilibrium constant of | Carboxylic acids and monosulfonic |
|                                            |               |                    |                  | dissociated acid constant     | acids, (Kanazawa, 2004)           |
|                                            |               |                    |                  |                               |                                   |
|                                            |               |                    |                  |                               |                                   |
| 5                                          | steric factor | -                  | steric mass      | -The surface is heterogeneous | Proteins, (Stuart, 2004)          |
|                                            | model         |                    | action           | surface                       |                                   |
|                                            |               |                    | 1                |                               |                                   |
|                                            |               |                    |                  | - The equilibrium constant of |                                   |
|                                            |               |                    |                  | dissociated acid constant     |                                   |
|                                            |               |                    |                  |                               |                                   |

**Table 2.6** The litilature review of modeling adsorption isotherm (Continued)

ร<sub>ราววั</sub>กยาลัยเทคโนโลยีสุรุบ

#### 2.7.2.1 Physical Physical Adsorption Model

Langmuir-Langmuir Model, the adsorption of acid on the adsorbent take place due to the dissociated acid adsorption can be expressed by Langmuir equation. The uptake of phenol into the adsorbent takes place due to undissociated acid adsorption can be correlated by Langmuir equation. Langmuir Langmuir Model is proposed by Carmona et al. (2006) and Caetano et al. (2009). The assumption of equilibrium constant of water is constant for Carmona et al. (2006) but the assumption of equilibrium constant of water is depending on temperature for Caetano et al. (2009).

The adsorption of acid on the resin beads take place due to the dissociated acid adsorption can be expressed by Langmuir equation.

$$Q_{A} = \frac{Q_{\text{max}}^{\text{IE}} K_{\text{IE}} C_{A}}{1 + K_{\text{IE}} C_{A}}$$
(2.32)

Where  $Q_{max}^{IE}$  is the maximum concentration of ion(dissociated acid) in the solid phase (mol/ kg dry resin),  $K_{IE}$  is the parameter constant in the Langmuir equation for ion exchange adsorption  $(m^3 / mol)$ .

The uptake of acid into the resin beads takes place due to undissociated acid adsorption can be correlated by Langmuir equation.

$$Q_{AH} = \frac{Q_{Max}^{AH} K_{AH} C_{AH}}{1 + K_{AH} C_{AH}}$$
(2.33)

Q<sub>max</sub><sup>AH</sup> Where is the maximum concentration of molecule(undissociated acid) in the solid phase (mol/ kg dry resin),  ${\rm K}_{AH}$  is the parameter constant in the Langmuir equation for molecular adsorption (  $m^3$  / mol ).  $C_{AH}\,$  is the concentration of undissociated acid in the liquid phase (mol/ kg dry resin).

The model equation are proposed by Carmona et al. (2006) is obtained

$$Q_{T} = \frac{Q_{max}^{AH} \kappa_{AH} C_{T}}{1 + (K_{aAH}(T)/K_{w}(T)) \cdot 10^{-(14-pH)} + K_{AH} C_{T}} + \frac{Q_{max}^{IE} \kappa_{IE} (K_{aAH}(T)/K_{w}(T)) \cdot C_{T} \cdot 10^{-(14-pH)}}{1 + (K_{aAH}(T)/K_{w}(T)) \cdot 10^{-(14-pH)} \cdot (1 + K_{IE} C_{T})}$$
(2.34)

The model equation are proposed by Caetano et al. (2009) is

obtained

$$Q_{T} = \frac{Q_{max}^{AH} K_{AH} C_{T}}{1 + (K_{aAH}(T))^{-1} \cdot 10^{-(pH)} + K_{AH} C_{T}} + \frac{Q_{max}^{IE} K_{IE} \cdot C_{T} \cdot (K_{aAH}(T))^{-1} \cdot 10^{-(pH)}}{1 + (K_{aAH}(T))^{-1} \cdot 10^{-(pH)} \cdot (1 + K_{IE} C_{T})}$$
(2.35)

The model describes the removal of acid by the resin in the term

of three unknown parameters ( $K_{I\!E},\,K_{AH}$ , $Q_{max}^{AH}$ ) related to dissociated acid and undissociated acid adsorption. The maximum of percent average deviation of

Carmona et al., (2006) was 11.8. The maximum of percent average deviation of Caetano et al., (2009) was 18.

**BET-Freudlich Model**, the adsorption of acid on the adsorbent take place due to dissociated acid adsorption can be expressed by Freudlich equation. The uptake of acid into the adsorbent takes place due to undissociated acid adsorption can be correlated by BET equation. The BET Freudlich model is proposed by Kanazawa et al. (2001).

The uptake of acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the BET equation.

$$Q_{AH} = Q_{max}^{AH} \left[ \frac{C_{s}CC_{AH}}{(C_{s} - C_{AH})(C_{s} + (C - 1)C_{AH})} \right]$$
(2.36)

Where C is the parameter constant in BET equation.

The adsorption of acid on the resin beads take place due to the dissociated acid adsorption can be expressed by Freundlich equation.

$$Q_A = k C_A^{1/n}$$
(2.37)

Where k and n are the parameter constant in Freundlich equation.

The model equation is obtained

$$Q_{T} = kC_{A}^{1/n} + \left[\frac{Q_{max}^{AH}C_{s}CC_{AH}}{(C_{s} - C_{AH})(C_{s} + (C - 1)(C_{AH}))}\right]$$
(2.38)

The model describes the removal of lactic acid by the resin in the term of four unknown parameters (k, n, C,  $Q_{max}^{AH}$ ) related to dissociated acid and undissociated acid adsorption.

**BET-Langmuir Model**, the adsorption of acid on the adsorbent take place due to dissociation acid adsorption can be expressed by BET equation. The uptake of acid into the adsorbent takes place due to undissociated acid adsorption can be correlated by Langmuir equation. The BET Langmuir model is proposed by Kanazawa et al. (2001).

The model equation is obtained

$$Q_{T} = \frac{Q_{max}^{IE} K_{IE} C_{A}}{1 + K_{IE} C_{A}} + \left[\frac{Q_{max}^{AH} C_{s} C C_{AH}}{(C_{s} - C_{AH}) (C_{s} + (C - 1) (C_{AH}))}\right]$$
(2.39)

The model describes the removal of lactic acid by the resin in the term of three unknown parameters ( $K_{IE}$ , C,  $Q_{max}^{AH}$ ) related to dissociated acid adsorption and undissociated acid adsorption.

#### 2.7.2.2 Physical Chemical Adsorption Model

**Freudlich-Selectivity Model,** The adsorption of carboxylic acids on the adsorbent take place due to the dissociated acid adsorption can be expressed by selectivity coefficient. The uptake of carboxylic acids into the adsorbent takes place due to undissociated acid adsorption can be correlated by Freundlich equation. Freudlich Selectivity model are proposed Kanazawa et al. (1999) and Kanazawa et al. (2004). Kanazawa et al. (1999), the ion exchange equation, including a selectivity coefficient to chloride ion for each combination between carboxylate ions and anionexchange resins, could be used in wide ranges of concentration and pH. The ionexchange equilibria using 16 anion-exchange resins and 9 organic acids exchange on monocarboxylic acids. Kanazawa et al. (2004), The ion-exchange equilibria using ion-exchange resins exchange on monocarboxylic acids and monosulfonic acids.

The uptake of acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the Freundlich equation.

$$Q_{AH} = kC_{AH}^{1/n}$$
(2.40)

Where k and n are the parameter constant in Freundlich equation.

The adsorption of acid on the resin beads take place due to dissociated acid adsorption can be expressed by selectivity coefficient.

$$S_{B}^{A} = \left(\frac{Q_{A}}{C_{A}}\right)^{\nu_{B}} \left(\frac{C_{B}}{Q_{B}}\right)^{\nu_{A}}$$
(2.41)

Where  $S_B^A$  is the selectivity coefficient for ion exchange of acid ion and counterion of resin,  $v_B$  is the characteristic charge of counterion of resin, and  $v_A$  is the characteristic charge of acid ion.

The model equation is obtained

$$Q_{T} = k \left[ \frac{C_{T}C_{H^{+}}}{K_{aAH} + C_{H^{+}}} \right]^{1/n} + \left[ \frac{S_{B}^{A}}{2(W/V)} \right] \left[ \frac{K_{aAH}C_{T}}{K_{aAH} + C_{H^{+}}} \right] \left[ -1 + \sqrt{1 + \frac{4(W/V)Q_{max}^{ion}}{\left(S_{B}^{A} \cdot \left[ \frac{K_{aAH}C_{T}}{K_{aAH} + C_{H^{+}}} \right] \right)} \right]$$
(2.42)

The model describes the removal of lactic acid by the resin in the term of three unknown parameters (k, n,  $S_B^A$ ) related to dissociated acid and undissociated acid adsorption. The correlation coefficient ( $R^2$ ) values of Kanazawa et al., (2001) were from 0.80 to 1.0 except for butyrate ion. The minimum of square of error of Kanazawa et al., (2004) was 0.78.

**Steric Factor Model**, the steric mass action (SMA) is used for the equilibrium adsorption, a three parameter model of ion exchange is used predicts the multicomponent adsorption of protein under dilute and concentrated conditions. Steric Factor model is proposed by Stuart, (2004).

The adsorption of lactic acid on the resin beads take place due to dissociated acid adsorption can be expressed by the steric mass action (SMA).

Electroneutrality requires that:

$$Q_{\text{max}}^{\text{IE}} = Q_{\text{B}} + (v_{\text{A}} + \sigma_{\text{A}})Q_{\text{A}}$$
(2.43)

Where  $Q_{max}^{IE}$  is the maximum concentration of ion in the solid

phase (mol/ kg dry resin),  $\ \sigma_A$  is the steric factor of acid ion.

The model equation is obtained

$$K_{AB} = \left(\frac{Q_A}{C_A}\right)^{\nu_B} \left(\frac{C_B}{Q_{max}^{IE} - (\nu_A + \sigma_A)Q_A}\right)^{\nu_A}$$
(2.44)

The model describes the removal of lactic acid by the resin in the term of four unknown parameters (K<sub>AB</sub>,  $\sigma_A$ , Q<sup>IE</sup><sub>max</sub>) related to dissociated acid adsorption.

## 2.8 Nonlinear Regression

The regression models is used for experiment data from a completely randomized design. Whether, the data are observational or experimental, it is essential that the conditions of the regression model be appropriate for the data at hand for the model to be applicable.

To obtain the normal equations for a nonlinear regression model:

$$Y_{i} = f(X_{i}, \gamma) + \varepsilon_{i}$$
(2.45)

The method of least squares considers the sum of the n squared deviations.

$$E = \sum_{i=1}^{n} (Y_i - f(X_i, \gamma))^2$$
(2.46)

The nonlinear regression models are usually difficult to solve (Michael et al., 2005).

The numerical methods can use to the least squares estimates. The Gauss-Newton method is used for regression parameters. Normally, the Gauss-Newton method works effectively in many nonlinear regression applications.

In this thesis, the nonlinear regression was used to fit the curve by method of lsqnonlin in MATLAB.

# **CHAPTER III**

# **EXPERIMENTS AND METHODS**

In this thesis, adsorption isotherm of lactic acid on ion exchange resin and its dissociation of acid and chemical thermodynamic of acid dissociation theory was investigated. The study on the adsorption isotherm of lactic acid by ion exchange resin in lactic acid solution was performed. Amberlite IRA-96 anion exchange resin was applied for the recovery of lactic acid from lactic acid solution. The adsorption isotherm for the separation of lactic acid at pH 2, 4 and 5 at temperature 25 °C and 40 °C was obtained. The adsorption models were used to correlate the adsorption isotherm of lactic acid.

## 3.1 Experiments

## 3.1.1 Resin and Chemical

An anionic exchange resin Amberlite IRA 96 (free base form) was used for the lactate separation process. The resin was commercially provided with free base on its surface. The free base form with a matrix of styrene divinylbenzene copolymer has a specific gravity of 1.040 to 1.060 (FB form) and a bulk density of 670 g/l having a harmonic mean size 0.550 to 0.750 mm. Before utilization, the resins were washed and converted into their Cl<sup>-</sup> form. Resins in Cl<sup>-</sup> form were obtained by washing the resins sequentially with 1 M HCl solution, distilled water, 1M NaOH solution, distilled water, 1 M HCl solution and distilled water (until pH of DI). The resin in Cl<sup>-</sup> forms were air dried and assayed for moisture by oven drying at 105 °C for 24 h (Moldes et al., 2003).

The lactic acid solution was prepared from a lactic acid commercial solution. Initial concentration of lactic acid is 78 g/l. Then, pH value was adjusted to 2 (or pH 4 and pH 5) by adding 1 M NaOH and the solution was stored at 4 °C. Before utilization, lactic acid concentration was determined by using high performance liquid chromatography (HPLC).

#### **3.1.2 Equilibrium Experiments**

A series of samples with different amounts of Amberlite IRA-96 in Cl<sup>-</sup> form were prepared in flasks. Then, initial concentration of solution 78 g/l was added into each flask with a solution of 10 ml at pH 2 (or pH 4 and pH 5). Thereafter, all the flasks were shaken for 48 h in a shaking water bath at 200 rpm at 25 °C (or 40 °C). Residual lactic acid concentrations in the solution were measured by HPLC.

รั<sub>ราวั</sub>กยาลัยเทคโนโลยีสุรั



Figure 3.1 Process scheme for ion exchange of lactic acid solution.

#### 3.1.3 HPLC Analysis of Lactic Acid

Lactic acid concentration was determined by high performance liquid chromatography equipped with a Hypersil BDS-C18 column. The column temperature was maintained at 60 °C. A UV detector was set at 210 nm. The mobile phase was 0.008 M sulfuric acid and the flow rate of mobile phase was 0.6 ml/min.

#### 3.1.4 Analysis of Equilibrium Studies

A series of samples with different amounts of Amberlite IRA-96, in Cl<sup>-</sup> form, were weighed in flasks. Then, the solution 78 g lactic acid/l was added into each flask with a solution of 10 ml at pH 2, 4 and 5. Thereafter, all flasks were shaken for 48 h in a shaking water bath at 200 rpm at 25 °C (or 40 °C). The residual lactic acid concentrations in the solution were measured by HPLC. The adsorption isotherm was presented in this thesis.

The resin-phase concentration was determined from the mass balance according to Eq. (3.1)

$$Q_{\rm T} = \frac{\rm V}{\rm W} \left( \rm C_0 - \rm C_T \right) \tag{3.1}$$

Where  $Q_T$  is the total concentration of lactic acid in the solid phase (mol/kg dry resin),  $C_0$  is the initial concentration of lactic acid in the liquid phase (mol/m<sup>3</sup>),  $C_T$  is the concentration of lactic acid in the liquid phase from measurement at equilibrium (mol/m<sup>3</sup>), V and W are the volume of the solution (m<sup>3</sup>) and weight of dry resin (kg).

## **3.1.5. Detailed Adsorption Isotherm**

The dissociated acid and undissociated acid are adsorbed on the resin and the total of both adsorptions is expressed in the adsorption isotherm.

## 3.2 Modeling

The model that used in the study two types, the first ones is dissociated acid and the second ones is undissociated acid, as show in Table 3.1. Furthermore, the equilibrium constant of dissociated acid was considered in this thesis. The lactic acid adsorption isotherm is estimated from the experimental data. The model is solved by lsqnonlin which is a built in function in the MATLAB program.


| 3.2.1 Physical Adsorption Model |                            |                    |                    |                                                       |  |
|---------------------------------|----------------------------|--------------------|--------------------|-------------------------------------------------------|--|
| Model                           | Name of model              | adsorption of      | adsorption of      | assumption                                            |  |
| No.                             |                            | undissociated acid | dissociated acid   |                                                       |  |
| 1                               | Langmuir-Langmuir          | Langmuir equation  | Langmuir equation  | -Langmuir assumption                                  |  |
|                                 | model                      |                    |                    | -The equilibrium constant of lactic acid dissociation |  |
|                                 |                            |                    |                    | is assumed constant                                   |  |
| 2                               | Langmuir-Langmuir          | Langmuir equation  | Langmuir equation  | -Langmuir assumption                                  |  |
|                                 | model+Ka(T)                |                    |                    | -The equilibrium constant of lactic acid dissociation |  |
|                                 |                            |                    |                    | depend on temperature                                 |  |
| 3.2.2 Ph                        | ysical Chemical Adsorption | Model              |                    |                                                       |  |
| Model                           | Name of model              | adsorption of      | adsorption of      | Assumption                                            |  |
| No.                             |                            | undissociated acid | dissociated acid   |                                                       |  |
| 3                               | Freudlich-Selectivity      | Freudlich equation | Selectivity        | -Freudlich assumption                                 |  |
|                                 | model                      |                    | coefficient        | -The equilibrium constant of lactic acid dissociation |  |
|                                 |                            |                    |                    | is assumed constant                                   |  |
| 4                               | Freudlich-Selectivity      | Freudlich equation | Selectivity        | -Freudlich assumption                                 |  |
|                                 | model+Ka(T)                | Ε.                 | coefficient        | -The equilibrium constant of lactic acid              |  |
|                                 |                            | 57                 |                    | dissociation depend on temperature                    |  |
| 5                               | BET-Selectivity model      | BET equation       | Selectivity        | -BET assumption                                       |  |
|                                 |                            |                    | coefficient        | -The equilibrium constant of lactic acid dissociation |  |
|                                 |                            |                    |                    | is assumed constant                                   |  |
| 6                               | BET-Selectivity            | BET equation       | Selectivity        | -BET assumption                                       |  |
|                                 | model+Ka(T)                |                    | coefficient        | -The equilibrium constant of lactic acid              |  |
|                                 |                            |                    |                    | dissociation depend on temperature                    |  |
| 7                               | Freudlich-Steric factor    | BET equation       | Steric mass action | -Freudlich assumption                                 |  |
|                                 | model                      |                    |                    | -The equilibrium constant of lactic acid dissociation |  |
|                                 |                            |                    |                    | is assumed constant                                   |  |

# Table 3.1 The Modeling of Adsorption Isotherm

| Model | Name of model           | adsorption of      | adsorption of      | Assumption                                            |
|-------|-------------------------|--------------------|--------------------|-------------------------------------------------------|
| No.   |                         | undissociated acid | dissociated acid   |                                                       |
| 8     | Freudlich-Steric factor | BET equation       | Steric mass action | -Freudlich assumption                                 |
|       | model+Ka(T)             |                    | d la               | -The equilibrium constant of lactic acid dissociation |
|       |                         |                    |                    | depend on temperature                                 |
| 9     | BET-Steric factor model | BET equation       | Steric mass action | -BET assumption                                       |
|       |                         |                    |                    | -The equilibrium constant of lactic acid dissociation |
|       |                         |                    |                    | is assumed constant                                   |
| 10    | BET-Steric factor       | BET equation       | Steric mass action | -BET assumption                                       |
|       | model+Ka(T)             |                    |                    | -The equilibrium constant of lactic acid              |
|       |                         |                    |                    | dissociation depend on temperature                    |

# Table 3.1 The Modeling of Adsorption Isotherm (Continued)



#### **3.2.1 Physical Physical Adsorption Model**

#### Langmuir-Langmuir Model

From chapter II, the model assumptions followed by Caetano et al. (2009). However, when the temperature was increased, the equilibrium constant of dissociated acid in liquid phase changes very little. Then, the equilibrium constant of dissociated acid in liquid phase assumes a constant.

Then Eq. (2.34) become,

$$Q_{T} = \frac{Q_{max}^{LH} K_{LH} C_{T}}{1 + (K_{a}/K_{w}(T)) \cdot 10^{-(14-pH)} + K_{LH} C_{T}} + \frac{Q_{max}^{IE} K_{IE} (K_{a}/K_{w}(T)) \cdot C_{T} \cdot 10^{-(14-pH)}}{1 + (K_{a}/K_{w}(T)) \cdot 10^{-(14-pH)} \cdot (1 + K_{IE} C_{T})}$$
(3.2)

The model describes the removal of lactic acid by the resin in the term of three unknown parameters ( $K_{IE}$ ,  $K_{LH}$ ,  $Q_{max}^{LH}$ ) related to dissociated acid and undissociated acid adsorption.

# Langmuir-langmuir model+Ka(T)

From chapter II, the model assumptions followed by Carmona et al. (2006). The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by Langmuir equation. The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by Langmuir equation. The equilibrium constant of dissociated acid in liquid phase depends on temperature.

Then Eq. (2.34) becomes,

$$Q_{T} = \frac{Q_{max}^{LH} K_{LH} C_{T}}{1 + (K_{a}(T)/K_{w}(T)) \cdot 10^{-(14-pH)} + K_{LH} C_{T}} + \frac{Q_{max}^{IE} K_{IE} (K_{a}(T)/K_{w}(T)) \cdot C_{T} \cdot 10^{-(14-pH)}}{1 + (K_{a}(T)/K_{w}(T)) \cdot 10^{-(14-pH)} \cdot (1 + K_{IE} C_{T})}$$
(3.3)

The model describes the removal of lactic acid by the resin in the term of three unknown parameters ( $K_{IE}$ ,  $K_{LH}$ ,  $Q_{max}^{LH}$ ) related to dissociated acid and undissociated acid adsorption.

## **3.2.2 Physical Chemical Adsorption Model**

#### Freundlich-selectivity model

From chapter II, the model assumptions followed by Kanazawa et al. (2004). The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the Freundlich equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by selectivity coefficient. The equilibrium constant of dissociated acid in liquid phase assumes a constant.

The model equation is obtained:

$$Q_{T} = k \left[ \frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}} \right]^{1/n} + \left[ \frac{S^{L^{-}}}{C_{I}^{-}} \left[ \frac{K_{a}C_{T}}{K_{a} + C_{H^{+}}} \right] \left[ -1 + \sqrt{1 + \frac{4(W/V)Q_{max}^{IE}}{\left(S_{CI}^{L^{-}} \cdot \left[ \frac{K_{a}C_{T}}{K_{a} + C_{H^{+}}} \right] \right)} \right]$$
(3.4)

The model describes the removal of lactic acid by the resin in the term of three unknown parameters (k, n,  $S_{Cl}^{L^-}$ ) related to dissociated acid and undissociated

acid adsorption.

# Freundlich-selectivity model+Ka(T)

From chapter II, the model assumptions followed by Kanazawa et al. (2004). The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the Freundlich equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by selectivity coefficient. The equilibrium constant of dissociated acid depends on temperature.

The model equation is obtained:

$$Q_{T} = k \left[ \frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}} \right]^{1/n} + \left[ \frac{S_{a}^{L^{-}}}{C_{I}^{-}} \left[ \frac{K_{a}(T)C_{T}}{K_{a}(T) + C_{H^{+}}} \right] - 1 + \sqrt{1 + \frac{4(W/V)Q_{max}^{IE}}{\left[ S_{L}^{L^{-}} \cdot \left[ \frac{K_{a}(T)C_{T}}{K_{a}(T) + C_{H^{+}}} \right] \right]} \right]$$
(3.5)

The model describes the removal of lactic acid by the resin in the term of

three unknown parameters (k, n,  $S_{Cl}^{L-}$ ) related to dissociated acid and undissociated

acid adsorption.

# **BET-selectivity model**

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the BET equation.

$$Q_{LH} = Q_{max}^{LH} \left[ \frac{CC_{LH}}{(C_s - C_{LH}) \left( 1 + (C - 1) \left( \frac{C_{LH}}{C_s} \right) \right)} \right]$$
(3.6)

where C is the parameter constant in BET equation.

The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by selectivity coefficient. The equilibrium constant of dissociated acid in liquid phase assumes a constant.

Then Eq. (2.41) becomes,

$$Q_{L^{-}} = \left[\frac{s_{Cl^{-}}^{L^{-}}}{2(W/V)}\right] \left[\frac{K_{a}C_{T}}{K_{a}+C_{H^{+}}}\right] \left[-1+\sqrt{1+\frac{4(W/V)Q_{max}^{IE}}{\left(s_{Cl^{-}}^{L^{-}}\left[\frac{K_{a}C_{T}}{K_{a}+C_{H^{+}}}\right]\right)}\right]$$
(3.7)

The model equation is obtained:

$$Q_{T} = Q_{max}^{LH} \left[ \frac{C \left( \frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}} \right)}{\left( C_{s} - \left( \frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}} \right) \right) \left( 1 + \left( \frac{C_{-1}}{C_{s}} \right) \left( \frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}} \right) \right)} \right]$$

$$+ \left[ \frac{S_{-1}^{L^{-}}}{2(W/V)} \right] \left[ \frac{K_{a}C_{T}}{K_{a} + C_{H^{+}}} \right] \left[ -1 + \sqrt{1 + \frac{4(W/V)Q_{max}^{IE}}{\left( S_{-1}^{L^{-}} \cdot \left[ \frac{K_{a}C_{T}}{K_{a} + C_{H^{+}}} \right] \right)} \right]$$
(3.8)

The model describes the removal of lactic acid by resin in the term of

three unknown parameters  $(Q_{max}^{LH}, C, S_{Cl}^{L^{-}})$  related to dissociated acid and undissociated acid adsorption

undissociated acid adsorption.

#### BET-selectivity model+Ka(T)

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by the BET equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by selectivity coefficient. The equilibrium constant of dissociated acid depends on temperature.

The model equation is obtained:

$$Q_{T} = Q_{max}^{LH} \left[ \frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}} \right] \left[ \frac{C_{S} - \left( \frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}} \right) \left( 1 + \left( \frac{C-1}{C_{S}} \right) \left( \frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}} \right) \right) \right] + \left[ \frac{S_{a}^{L^{-}}}{2(W/V)} \right] \left[ \frac{K_{a}(T)C_{T}}{K_{a}(T) + C_{H^{+}}} \right] - 1 + \sqrt{1 + \frac{4(W/V)Q_{max}^{IE}}{C_{I}^{-}} \left( \frac{K_{a}(T)C_{T}}{K_{a}(T) + C_{H^{+}}} \right) \right]}$$
(3.9)

The model describes the removal of lactic acid by resin in the term of three unknown parameters  $(Q_{max}^{LH}, C, S_{CI}^{L-})$  related to dissociated acid and undissociated acid adsorption.

#### Freundlich-steric factor model

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by Freundlich equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by the steric mass action (SMA). The equilibrium constant of dissociated acid in liquid phase assumes a constant. The steric mass action (SMA) can be obtained by

$$K_{ij} = \left(\frac{Q_i}{C_i}\right)^{\nu_j} \left(\frac{Q_j}{C_j}\right)^{\nu_i}; i = 2, 3, ..., n$$
(3.10)

Each molecule may sterically shield some counterions on the adsorptive surface. Electroneutrality requires that:

$$Q_{\text{max}}^{\text{IE}} = Q_j + \sum_{i=2}^{n} (v_i + \sigma_i)Q_i$$
(3.11)

Where  $\sigma_i$  is the steric factor

Assumptions: 1)  $v_{Cl}^{-} = 1$ 

2) i=2 (i is lactate ion:  $L^{-}$ )

The equilibrium constant of the reaction from Eq. (3.9) may be written:

$$K_{LCl} = \left(\frac{Q_{L^{-}}}{C_{L^{-}}}\right) \left(\frac{C_{Cl^{-}}}{Q_{Cl^{-}}}\right)^{\nu} L^{-}$$
(3.12)

Where  $v_{L^{-}}$  is the characteristic charge of lactate ion.

$$v_{Cl}$$
 is the characteristic charge of chloride ion ( $v_{Cl}$  =1).

Electroneutrality requires that:

$$Q_{\text{max}}^{\text{IE}} = Q_{\text{Cl}^{-}} + (v_{\text{L}^{-}} + \sigma_{\text{L}^{-}})Q_{\text{L}^{-}}$$
(3.13)

Where  $Q_{max}^{IE}$  is the maximum concentration of ion in the solid phase (mol/kg dry resin),  $\sigma_L^{-}$  is the steric factor of lactate ion.

Then Eq. (3.11) become

$$K_{LCl} = \left(\frac{Q_{L^{-}}}{C_{L^{-}}}\right) \left(\frac{C_{Cl^{-}}}{Q_{max}^{IE} - (v_{L^{-}} + \sigma_{L^{-}})Q_{L^{-}}}\right)^{v_{L^{-}}}$$
(3.14)

The steric factor can be calculated by  $\frac{\sigma_1(\text{unknow})}{\sigma_2(\text{known})} = \frac{\text{quniquac1}}{\text{quniquac2}}$ 

Where the external surface area of Uniquac of lactate ion is 3.151. The external surface area of Uniquac of chymotrypsin is 700.2723 (Joao et al., 2004), The steric factor of chymotrypsin is 7.43 (Stuart, 2004). Then, the steric factor of lactate ion is 0.033432609.

$$Q_{L}^{-} = \frac{-C_{L}^{-}K_{L}Cl(v_{L}^{-} + \sigma_{L}^{-})}{2(v_{L}^{-} + \sigma_{L}^{-})(W/V)} + \frac{\sqrt{\left[C_{L}^{-}K_{L}Cl(v_{L}^{-} + \sigma_{L}^{-})\right]^{2} + 4(W/V)\left(C_{L}^{-}Q_{max}^{IE}K_{L}Cl(v_{L}^{-} + \sigma_{L}^{-})\right)}{2(v_{L}^{-} + \sigma_{L}^{-})(W/V)}}$$
(3.15)

Defined

$$P = C_{L^{-}} K_{LCl} (v_{L^{-}} + \sigma_{L^{-}})$$
(3.16)

$$Q_{L^{-}} = \frac{-P + \sqrt{P^{2} + 4(W/V)PQ_{max}^{IE}}}{2(v_{L^{-}} + \sigma_{L^{-}})(W/V)}$$
(3.17)

The model equation is obtained:

$$Q_{T} = k \left[ \frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}} \right]^{1/n} + \frac{-P + \sqrt{P^{2} + 4(W/V)PQ_{max}^{IE}}}{2(v_{L^{-}} + \sigma_{L^{-}})(W/V)}$$
(3.18)

The model describes the removal of lactic acid by resin in term of four unknown parameters (k, n,  $K_{LCl}$ ,  $Q_{max}^{IE}$ ) related to dissociated acid and undissociated acid adsorption.

#### Freundlich-steric factor model+Ka(T)

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by Freundlich equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by the steric mass action (SMA). The equilibrium constant of dissociated acid depends on temperature.

The model equation is obtained:

$$Q_{T} = k \left[ \frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}} \right]^{1/n} + \frac{-P + \sqrt{P^{2} + 4(W/V)PQ_{max}^{IE}}}{2(v_{L^{-}} + \sigma_{L^{-}})(W/V)}$$
(3.19)

The model describes the removal of lactic acid by resin in term of four unknown parameters (k, n,  $K_{LCl}$ ,  $Q_{max}^{IE}$ ) related to dissociated acid and undissociated acid adsorption.

#### **BET-steric factor model**

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by BET equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by the steric mass action (SMA). The equilibrium constant of dissociated acid in liquid phase assumes a constant.

The model equation is obtained:

$$Q_{T} = Q_{max}^{LH} \left[ \frac{C_{T}C_{H^{+}}}{C_{s} - \left(\frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}}\right)} \left(1 + \left(\frac{C_{-1}}{C_{s}}\right) \left(\frac{C_{T}C_{H^{+}}}{K_{a} + C_{H^{+}}}\right)\right) \right] (3.20) + \frac{-P + \sqrt{P^{2} + 4(W/V)PQ_{max}^{IE}}}{2(v_{L^{-}} + \sigma_{L^{-}})(W/V)}$$

The model describes the removal of lactic acid by resin in term of four unknown parameters ( $Q_{max}^{LH}$ , C,  $K_{LCl}$ ,  $Q_{max}^{IE}$ ) related to dissociated acid and undissociated acid adsorption.

#### **BET-steric factor model+Ka**(T)

The uptake of lactic acid into the resin beads takes place due to undissociated acid adsorption can be correlated by BET equation. The adsorption of lactic acid on the resin beads take place due to the dissociated acid adsorption can be expressed by the steric mass action (SMA). The equilibrium constant of dissociated acid depends on temperature.

The model equation is obtained:

$$Q_{T} = Q_{max}^{LH} \left[ \frac{C\left(\frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}}\right)}{\left(C_{s} - \left(\frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}}\right)\right) \left(1 + \left(\frac{C_{-1}}{C_{s}}\right) \left(\frac{C_{T}C_{H^{+}}}{K_{a}(T) + C_{H^{+}}}\right)\right)}\right] (3.21) + \frac{-P + \sqrt{P^{2} + 4(W/V)PQ_{max}^{H}}}{2(v_{L^{-}} + \sigma_{L^{-}})(W/V)}$$

The model describes the removal of lactic acid by resin in term of four

unknown parameters ( $Q_{max}^{LH}$ , C,  $K_{LCl}$ ,  $Q_{max}^{IE}$ ) related to dissociated acid and undissociated acid adsorption.

# **3.3** Numerical Methods

The total of lactic acid concentration in solid phase is solved by method of lsqnonlin in MATLAB.



Figure 3.2 Process scheme for modeling.

# **CHAPTER IV**

# **RESULTS AND DISCUSSION**

# 4.1 Experimental results

#### 4.1.1 Adsorption isotherm

The adsorption isotherm at pH 2 which is lower than pKa of lactic acid and those at pH 4 and 5 which is higher than pKa of lactic acid are obtained. Figure 4.1 shows the adsorption isotherms of lactic acid at 25 °C and pH 2, 4 and 5 as a function of lactic acid concentration. Figure 4.2 shows the adsorption isotherms of lactic acid at 40 °C and pH 2, 4 and 5 as a function of lactic acid concentration. As can be observed in Figure 4.1 and Figure 4.2, the adsorption of lactic acid is higher than the maximum capacity of 4.7 mol/kg dry resin at pH 4.85 for Amberlite IRA 96 reported by Moldes et al. (2003). Furthermore, the solid liquid adsorption isotherm is clearly an S curve.



Figure 4.1 The adsorption isotherm of lactic acid on Amberlite IRA 96 at 25 °C.





Figure 4.2 The adsorption isotherm of lactic acid on Amberlite IRA 96 at 40 °C.

#### 4.1.2 Effect of pH

As shown in Figure 4.1 and Figure 4.2, the amount of lactic acid adsorbed at pH 4 and pH 5 is higher than that adsorbed at pH 2 because of the higher ion concentrations from the dissociated acid at pH 4 and 5. It quite agrees with the observation reported by Cao et al. (2002). Since the pH 5 is further from the pKa of lactic acid than the pH 4, the concentration of dissociated one at pH 5 is higher than that at pH 4. Therefore, the amount of lactic acid adsorbed at pH 5 and 25 °C is higher than the amount of lactic acid adsorbed at pH 4 and 25 °C as shown in Figure 4.1. However, the amount of lactic acid adsorbed at pH 5 and 40 °C is quite the same as the amount of lactic acid adsorbed at pH 4 at 40 °C because the pKa of lactic acid increases with increasing temperature so the difference in pKa of lactic acid at pH 4 and pH 5 is less at this temperature. In addition, since the adsorption of lactic acid on Amberlite is exothermic, the effect of pH would be minimized at the higher temperature.

#### 4.1.3 Effect of temperature

Figure 4.3 show the effect of temperature on the adsorption isotherm of lactic acid. From these figures, it is clearly observed that the amount of adsorbed lactic acid depends on temperature. Because of the dependence of dissociation constant of lactic acid on temperature, there is the undissociated acid adsorption (molecular adsorption) and dissociated acid adsorption (ion adsorption) occurred on the adsorption isotherm. The molecular adsorption is a result of physical adsorption and the ion adsorption is a result of chemical adsorption.

The equilibrium constant dependency on temperature was derived from Van't Hoff equation. The heat of adsorption of lactic acid was  $29 \pm 17$  kJ/mol which is reported by Isam et al. (2005). In this thesis, the heat of adsorption of lactic acid at pH 2 was calculated as 10.8 kJ/mol. The heat of adsorption of lactic acid at pH 4 was calculated as 14.2 kJ/mol. The heat of adsorption of lactic acid at pH 5 was calculated as 36.7 kJ/mol.

The adsorption of lactic acid on ion exchange is an exothermic process because the heat of adsorption of lactic acid is negative as reported by Isam et al. (2005). Therefore the amount of lactic acid adsorbed decreases with increasing temperature, as indicated by Van't Hoff equation (Duong D.Do., 1998). The effect of temperature due to the chemical adsorption is higher than that due to the physical adsorption because of the larger heat of adsorption for the chemical adsorption (Yu LTU et al., 2009).

The amount of dissociated lactic acid is low at pH 2 which is lower than pKa of lactic acid, and, thus, the molecular adsorption process is the predominant one. At higher concentration of lactic acid at pH 2, the amount of adsorption of lactic acid does not change significantly when the temperature change as shown in Figure 4.3(a) because the heat of adsorption for physical adsorption is smaller.





Figure 4.3 The adsorption isotherm of lactic acid on Amberlite IRA 96.

However, at lower concentration of lactic acid at pH 2, the amount of lactic acid adsorbed at 40 °C is higher than the amount of lactic acid adsorbed at 25 °C because there are the effects of heat of adsorption and the heat of dissociation of lactic acid occurred. Nevertheless the amount of adsorbed lactic acid is low. Since the molecular adsorption is the predominant one at pH 2, the heat of adsorption for physical adsorption is smaller and the heat of dissociation of lactic acid is negative (Ren Jie, 2010), the amount of dissociated lactic acid decreases with increasing temperature. As a result the molecular adsorption of pH 2 at 40 °C is higher than the molecular adsorption at 25 °C as shown in Figure 4.3(a).

The amount of dissociated lactic acid is high at pH 4 and 5 which is higher than pKa of lactic acid, and, thus, the mechanism for lactic acid adsorption at pH 4 and pH 5 were mainly the chemical adsorption rather than the physical adsorption. Moreover, the effect of temperature on adsorption isotherm is greater because the heat of adsorption by chemical adsorption is high (Yu LTU et al., 2009). As can be observed in Figure 4.3(c), the amount of adsorption of lactic acid of pH 5 at 25 °C is higher than the amount of adsorption of lactic acid of pH 5 at 40 °C. Therefore the amount of lactic acid adsorbed is different when the temperature changes. However, the amount of adsorption of lactic acid at pH 4 does not change significantly when the temperature change as shown in Figure 4.3(b) because pH 4 is slightly higher than pKa of lactic acid then the mechanism for lactic acid adsorption at pH 4 were the chemical adsorption slightly rather than the physical adsorption.

## 4.2 Modeling of Lactic Acid Adsorption

#### 4.2.1 Physical-Physical Adsorption Model

As can be observed in Figure 4.4, Langmuir- Langmuir model correlates the adsorption isotherm at pH 2 adequately because, at pH lower than pKa of lactic acid, lactic acid in solution appears mainly as the undissociated form; thus, the amount of lactic acid adsorbed by physical adsorption process is higher than the amount of lactic acid adsorbed by chemical adsorption. Consequently, Langmuir-Langmuir model, which is all based on physical interaction, is good for correlating the adsorption isotherm of lactic acid in this region. The average absolute deviation (AAD) is ranging from 0.0154 to 0.1063 and the correlated isotherms were almost agreed with experimental data. The values of the parameters obtained by fitting the experimental data are shown in Table 4.1 to Table 4.2.





Figure 4.4 The correlated and experimental results at pH 2.

| Adsorption              | Undissociated acid (Q <sub>LH</sub> ) | Dissociated acid (Q   | L <sup>_</sup> )               |                      |       |
|-------------------------|---------------------------------------|-----------------------|--------------------------------|----------------------|-------|
| Langmuir Langmuir model | Langmuir                              | Langmuir              |                                |                      |       |
| Langmuir Langmuir model | Temp                                  | HH                    | X                              |                      |       |
| рН                      | Temp                                  | K <sub>IE</sub>       | Q <sup>LH</sup> <sub>max</sub> | K <sub>LH</sub>      | %AAD  |
| 2                       | 25                                    | $2.10 \times 10^{-3}$ | $1.52 \times 10^{-1}$          | $7.16 \times 10^{0}$ | 10.63 |
| 4                       | 25                                    | $1.29 \times 10^{-4}$ | $1.20 \times 10^{-3}$          | $1.82 \times 10^{2}$ | 33.38 |
| 5                       | 25                                    | $1.20 \times 10^{-3}$ | $3.09 \times 10^{-4}$          | $1.63 \times 10^{2}$ | 43.53 |
| 2                       | 40                                    | $5.83 \times 10^{-2}$ | $3.65 \times 10^{-1}$          | $4.40 \times 10^{0}$ | 1.54  |
| 4                       | 40                                    | $1.83 \times 10^{-4}$ | $2.60 \times 10^{-3}$          | $1.22 \times 10^{2}$ | 75.86 |
| 5                       | 40                                    | $5.85 \times 10^{-4}$ | $1.87 \times 10^{-5}$          | $1.01 \times 10^{2}$ | 27.33 |

**Table 4.1** The value parameter of Langmuir- Langmuir model (Ka constant)



| Adsorption                   | Undissociated acid (Q <sub>LH</sub> ) | $(Q_{LH})$ Dissociated acid $(Q_{L^{-}})$ |        |                                |                      |       |
|------------------------------|---------------------------------------|-------------------------------------------|--------|--------------------------------|----------------------|-------|
| Langmuir Langmuir model (Ka) | Langmuir                              | Langmuir                                  |        |                                |                      |       |
| Langmuir Langmuir model (Ka) | Temp                                  | HH                                        |        | Х                              |                      |       |
| рН                           | Temp                                  | K <sub>IE</sub>                           |        | Q <sup>LH</sup> <sub>max</sub> | K <sub>LH</sub>      | %AAD  |
| 2                            | 25                                    | $2.10 \times 10^{-3}$                     | 1.91×  | $10^{-1}$                      | $7.17 \times 10^{0}$ | 10.74 |
| 4                            | 25                                    | $4.10 \times 10^{-3}$                     | 1.70×1 | $10^{-3}$                      | $8.30 \times 10^{0}$ | 36.54 |
| 5                            | 25                                    | $5.70 \times 10^{-3}$                     | 1.30×1 | $10^{-3}$                      | $2.87 \times 10^{1}$ | 42.21 |
| 2                            | 40                                    | $5.95 \times 10^{-2}$                     | 5.74×2 | $10^{-1}$                      | $4.34 \times 10^{0}$ | 1.54  |
| 4                            | 40                                    | $3.46 \times 10^{3}$                      | 9.40×  | $10^{-3}$                      | $4.59 \times 10^{0}$ | 79.21 |
| 5                            | 40                                    | $2.84 \times 10^{-2}$                     | 2.70×  | 10 <sup>-3</sup>               | $4.51 \times 10^{0}$ | 34.77 |

**Table 4.2** The value parameter of Langmuir- Langmuir model (Langmuir- Langmuir model+(Ka(T)))

ะ ราวักยาลัยเทคโนโลยีสุรบาร

As can be observed in Figure 4.5 to Figure 4.6, the Langmuir-Langmuir model cannot adequately correlate the adsorption isotherm at pH 4 and pH 5 where pH is higher than pKa of lactic acid since lactic acid normally appears in solution in dissociated form and the lactic acid is therefore mainly adsorbed by chemical adsorption.



Figure 4.5 The correlated and experimental results at pH 4.



Figure 4.6 The correlated and experimental results at pH 5.

As a result, Langmuir-Langmuir model, which is all based on physical interaction, is not good for correlation adsorption isotherm when pH is higher than pKa. The average absolute deviation (AAD) is ranging from 0.2733 to 0.7586 which is too high and it is concluded that Langmuir-Langmuir cannot be used to correlate

the adsorption isotherm when pH is higher than pKa. The values of the parameters obtained by fitting the experimental data are shown in Table 4.1 to Table 4.2.

The effect of temperature dependent on Ka to Langmuir- Langmuir model was studied by Langmuir- Langmuir model+(Ka(T)). Evidently, the result of correlation of adsorption isotherm by Langmuir- Langmuir model+(Ka(T)) is similar to the Langmuir- Langmuir model as depicted in Figure 4.4 to Figure 4.6. As can be observed in Table 4.3, the effect of temperature dependent on Ka to %AAD is very low such as the average absolute deviation (AAD) of pH 2 at 25 °C for Langmuir-Langmuir model+ (Ka(T)) and Langmuir-Langmuir model is 0.1074 and 0.1063, respectively. Therefore, it is concluded that there is no need to consider the dependence of temperature on dissociation constant when the adsorption of lactic acid on ion exchange is correlated.

**Table 4.3** The percent average absolute deviation (%AAD) of Physical Physical

| · Uh |      |                                 |                   |  |  |  |
|------|------|---------------------------------|-------------------|--|--|--|
|      |      | %AAD of physical physical model |                   |  |  |  |
|      |      |                                 | Langmuir-Langmuir |  |  |  |
| pН   | Temp | Langmuir-Langmuir model         | model+(Ka(T))     |  |  |  |
| 2    | 25   | 10.63                           | 10.74             |  |  |  |
| 2    | 40   | 1.54                            | 1.54              |  |  |  |
| 4    | 25   | 33.38                           | 36.54             |  |  |  |
| 4    | 40   | 75.86                           | 79.21             |  |  |  |
| 5    | 25   | 43.53                           | 42.21             |  |  |  |
| 5    | 40   | 27.33                           | 34.77             |  |  |  |

Adsorption Model

#### 4.2.2 Physical-Chemical Adsorption Model

The physical and chemical adsorptions model is used in this work due to the fact that Langmuir-Langmuir model cannot explain the adsorption when pH is higher than pKa as discussed previously probably because both chemical and physical adsorptions occurred in this pH range.

It is found that Freundlich-steric factor model and BET-steric factor model can be used to correlate adsorption isotherm at pH 2, pH 4 and pH 5. This is because of their assumption and the advantage of more parameter contained in the model, which increases the capacity of correlation. However, BET-steric factor model cannot usually be used to correlate the adsorption isotherm because of its assumption that does not include the effect of interaction among adsorbed molecule but it has been included in the Freundlich-steric factor model (Courtney et al., 2012) then Freundlich-steric factor model can correlate adsorption isotherm at pH 4 and pH 5 as can be observed in Figure 4.7 to Figure 4.10.



Figure 4.7 The correlated and experimental results at pH 4 and 25  $^{\circ}C$ .





Figure 4.8 The correlated and experimental results at pH 4 and  $40 \,^{\circ}$ C.





Figure 4.9 The correlated and experimental results at pH 5 and 25 °C.





Figure 4.10 The correlated and experimental results at pH 5 and 40 °C.

In other models, the Freundlich-selectivity model and BET-selectivity model was used to correlate adsorption isotherm at pH 2, pH 4 and pH 5. However, there is limit of the maximum capacity parameter in the model. As a result Freundlich-selectivity model and BET-selectivity model cannot correlate adsorption isotherm because the maximum capacity parameter of model is limited as correlated in Figure 4.7 to Figure 4.12.

Besides, the physical and chemical adsorptions model can correlate the adsorption isotherm at pH 2 which is lower than pKa of lactic acid. As can be observed in Figure 4.11 to Figure 4.12, the adsorption isotherm can correlate by Freundlich-steric factor model.

Freundlich-steric factor model can correlate the adsorption isotherm of lactic acid at pH 2, 4 and 5. For the Freundich equation, the constant k is an approximate indicator of adsorption capacity. While n is a function of the strength of adsorption in the adsorption process. The value of n is above one it indicates a molecular adsorption. However, the value of n is below one it indicates ion adsorption and molecular adsorption (Dada et al., 2012). The parameter n of Freundlich-steric factor model show in Table 4.6. At pH 2, the value of n is above one it indicates molecular adsorption at pH 2. At pH 4 and 5, the value of n is below one it indicates ions adsorption and molecular adsorption at pH 4 and 5.





Figure 4.11 The correlated and experimental results at pH 2 and 25 °C.





Figure 4.12 The correlated and experimental results at pH 2 and 40 °C.

The comparison of Freundlich-steric factor model which is physicalchemical adsorption model and Langmuir-Langmuir model which is physical-physical adsorption model at pH 2, there are the AAD values in Freundlich-steric factor model that is similar to the AAD values in Langmuir-Langmuir model such as the AAD values of pH 2 at 25 °C for Freundlich-steric factor model and Langmuir-Langmuir model is 0.1088 and 0.1063, respectively, and the AAD values of pH 2 at 40 °C for Freundlich-steric factor model and Langmuir-Langmuir model is 0.0147 and 0.0154, respectively. The values of the parameters obtained by fitting the experimental data are shown in Table 4.4 to Table 4.7.
| Adsorption                   | Undissociated acid $(Q_{LH})$ | ) Dissociated acid $(Q_{L^{-}})$ |                       |                      |       |
|------------------------------|-------------------------------|----------------------------------|-----------------------|----------------------|-------|
| Freundlich selectivity model | Freundlich                    | Selectivity coefficient          | -                     |                      |       |
| Freundlich selectivity model | Temp                          |                                  | Х                     |                      |       |
| pH                           | Temp                          | k                                | n                     | $S_{Cl}^{L}$         | %AAD  |
| 2                            | 25                            | $1.07 \times 10^{-5}$            | $5.00 \times 10^{-1}$ | $1.98 \times 10^5$   | 26.33 |
| 4                            | 25                            | $1.00 \times 10^{-6}$            | $3.42 \times 10^{-1}$ | $9.70 \times 10^{3}$ | 21.93 |
| 5                            | 25                            | $1.00 \times 10^{-6}$            | $2.11 \times 10^{-1}$ | $1.01 \times 10^{3}$ | 15.13 |
| 2                            | 40                            | $1.05 \times 10^{-5}$            | $5.00 \times 10^{-1}$ | $3.29 \times 10^5$   | 37.29 |
| 4                            | 40                            | $1.13 \times 10^{-6}$            | $3.33 \times 10^{-1}$ | $1.69 \times 10^4$   | 50.59 |
| 5                            | 40                            | $1.01 \times 10^{-6}$            | $2.22 \times 10^{-1}$ | $3.23 \times 10^4$   | 13.37 |

**Table 4.4** The value parameter of Freundlich-selectivity model (Ka constant)

ร<sub>ราวอักยาลัยเทคโนโลยีสุร</sub>บเจ

84

| Adsorption            | Undissociated acid $(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                                |                                                      |       |
|-----------------------|-------------------------------|--------------------------------|--------------------------------|------------------------------------------------------|-------|
| BET selectivity model | BET                           | Selectivity coefficient        |                                |                                                      |       |
| BET selectivity model | Temp                          |                                | Х                              |                                                      |       |
| рН                    | Temp                          | С                              | Q <sup>LH</sup> <sub>max</sub> | S <sup>L<sup>-</sup></sup> <sub>Cl<sup>-</sup></sub> | %AAD  |
| 2                     | 25                            | $1.75 \times 10^5$             | $5.97 \times 10^{-1}$          | $2.10 \times 10^5$                                   | 31.52 |
| 2                     | 40                            | $4.30 \times 10^5$             | $2.48 \times 10^{-1}$          | $3.68 \times 10^5$                                   | 54.54 |
| 4                     | 25                            | $2.59 \times 10^{-2}$          | $7.18 \times 10^{1}$           | $5.91 \times 10^{-6}$                                | 10.66 |
| 4                     | 40                            | $1.40 \times 10^{-3}$          | $1.51 \times 10^{3}$           | $1.44 \times 10^5$                                   | 44.67 |
| 5                     | 25                            | $3.00 \times 10^{-3}$          | $7.10 \times 10^2$             | $7.00 \times 10^{4}$                                 | 31.78 |
| 5                     | 40                            | $2.40 \times 10^{-3}$          | $5.19 \times 10^{2}$           | $3.51 \times 10^3$                                   | 17.38 |

**Table 4.5** The value parameter of BET-selectivity model (Ka constant)

ร<sub>ราวอักยาลัยเทคโนโลยีสุร</sub>บเจ

| Adsorption                     | Undissociated acid $(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                       |                    |                                |       |
|--------------------------------|-------------------------------|--------------------------------|-----------------------|--------------------|--------------------------------|-------|
| Freundlich steric factor model | Freundlich                    | The steric mass action         |                       |                    |                                |       |
| Freundlich steric factor model | Temp                          | X                              |                       |                    |                                |       |
| рН                             | Temp                          | k                              | n                     | K <sub>LCl</sub>   | Q <sup>IE</sup> <sub>max</sub> | %AAD  |
| 2                              | 25                            | $1.46 \times 10^{-1}$          | $1.85 \times 10^{0}$  | $2.11 \times 10^5$ | $1.00 \times 10^{-6}$          | 10.88 |
| 4                              | 25                            | $1.00 \times 10^{-6}$          | $3.35 \times 10^{-1}$ | $4.88 \times 10^5$ | $6.85 \times 10^{-4}$          | 14.68 |
| 5                              | 25                            | $1.02 \times 10^{-6}$          | $2.09 \times 10^{-1}$ | $4.88 \times 10^5$ | $2.82 \times 10^{-1}$          | 9.06  |
| 2                              | 40                            | $2.55 \times 10^{0}$           | $9.80 \times 10^{0}$  | $2.11 \times 10^5$ | $1.00 \times 10^{-5}$          | 1.47  |
| 4                              | 40                            | $1.00 \times 10^{-6}$          | $3.27 \times 10^{-1}$ | $4.88 \times 10^5$ | $1.00 \times 10^{-2}$          | 31.99 |
| 5                              | 40                            | $1.00 \times 10^{-6}$          | $2.20 \times 10^{-1}$ | $4.88 \times 10^5$ | $9.11 \times 10^{-1}$          | 12.48 |

**Table 4.6** The value parameter of Freundlich-steric factor model (Ka constant)



| Adsorption              | Undissociated $acid(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                                |                       |                                |       |
|-------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------|--------------------------------|-------|
| BET steric factor model | BET                          | The steric mass action         |                                |                       |                                |       |
| BET steric factor model | Temp                         |                                |                                | Х                     |                                |       |
| рН                      | Temp                         | С                              | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>      | Q <sup>IE</sup> <sub>max</sub> | %AAD  |
| 2                       | 25                           | $1.00 \times 10^{6}$           | $6.47 \times 10^{-1}$          | $5.00 \times 10^2$    | $1.00 \times 10^{0}$           | 35.63 |
| 4                       | 25                           | $4.98 \times 10^{-2}$          | $3.84 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 10.58 |
| 5                       | 25                           | $6.40 \times 10^{-2}$          | $4.69 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 23.30 |
| 2                       | 40                           | $1.00 \times 10^{6}$           | $2.64 \times 10^{-1}$          | $5.00 \times 10^{2}$  | $1.00 \times 10^{0}$           | 58.58 |
| 4                       | 40                           | $3.57 \times 10^{-2}$          | $7.24 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 26.35 |
| 5                       | 40                           | $2.02 \times 10^{-1}$          | $9.87 \times 10^{0}$           | $9.76 \times 10^{-6}$ | $1.00 \times 10^{2}$           | 13.36 |

 Table 4.7 The value parameter of BET-steric factor model (Ka constant)

ะ<sub>หาวักยา</sub>ลัยเทคโนโลยีสุร่า

The effect of temperature dependent on Ka to the each model as can be observed in Figure 4.13 to Figure 4.18, the correlation of adsorption isotherm by Freundlich-steric factor model+(Ka(T)) and BET-steric factor model+(Ka(T)) are similar to the result correlated from the Freundlich-steric factor model and BET-steric factor model. Furthermore, the correlation of adsorption isotherm by Freundlichselectivity model+(Ka(T)) and BET-selectivity model+(Ka(T)) are similar to the result correlated from the Freundlich- selectivity model+(Ka(T)) are similar to the result correlated from the Freundlich- selectivity model and BET- selectivity model. The values of the parameters obtained by fitting the experimental data are shown in Table 4.8 to Table 4.11.



Figure 4.13 The correlated and experimental results at pH 2 and 25 °C.



Figure 4.14 The correlated and experimental results at pH 2 and  $40 \,^{\circ}\text{C}$ .





Figure 4.15 The correlated and experimental results at pH 4 and 25 °C.





Figure 4.16 The correlated and experimental results at pH 4 and 40 °C.





Figure 4.17 The correlated and experimental results at pH 5 and 25  $^{\circ}\mathrm{C}$  .





Figure 4.18 The correlated and experimental results at pH 5 and  $40 \,^{\circ}\text{C}$ .



| Adsorption                        | Undissociated acid $(Q_{LH})$ | I) Dissociated acid $(Q_{L^{-}})$ |                       |                                                      |       |
|-----------------------------------|-------------------------------|-----------------------------------|-----------------------|------------------------------------------------------|-------|
| Freundlich selectivity model (Ka) | Freundlich                    | Selectivity coefficient           |                       |                                                      |       |
| Freundlich selectivity model (Ka) | Temp                          | HA                                | Х                     |                                                      |       |
| рН                                | Temp                          | k                                 | n                     | S <sup>L<sup>-</sup></sup> <sub>Cl<sup>-</sup></sub> | %AAD  |
| 2                                 | 25                            | $4.06 \times 10^{-4}$             | $7.00 \times 10^{-1}$ | $5.04 \times 10^5$                                   | 18.22 |
| 4                                 | 25                            | $1.00 \times 10^{-6}$             | $3.51 \times 10^{-1}$ | $4.22 \times 10^{5}$                                 | 22.31 |
| 5                                 | 25                            | $3.21 \times 10^{-6}$             | $2.44 \times 10^{-1}$ | $8.25 \times 10^4$                                   | 20.43 |
| 2                                 | 40                            | $4.37 \times 10^{-4}$             | $7.00 \times 10^{-1}$ | $4.93 \times 10^{5}$                                 | 27.85 |
| 4                                 | 40                            | $1.00 \times 10^{-6}$             | $3.40 \times 10^{-1}$ | $4.78 \times 10^{5}$                                 | 52.74 |
| 5                                 | 40                            | $1.00 \times 10^{-6}$             | $2.38 \times 10^{-1}$ | $4.12 \times 10^5$                                   | 14.59 |

**Table 4.8** The value parameter of Freundlich-selectivity model+(Ka(T))

ะ ราวักยาลัยเทคโนโลยีสุรบาร

94

| Adsorption                 | Undissociated acid $(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                                |                       |       |
|----------------------------|-------------------------------|--------------------------------|--------------------------------|-----------------------|-------|
| BET selectivity model (Ka) | BET                           | Selectivity coefficient        |                                |                       |       |
| BET selectivity model (Ka) | Temp                          | HA                             | Х                              |                       |       |
| рН                         | Temp                          | С                              | Q <sup>LH</sup> <sub>max</sub> | $S_{Cl}^{L}$          | %AAD  |
| 2                          | 25                            | $2.26 \times 10^5$             | $5.97 \times 10^{-1}$          | $2.63 \times 10^5$    | 31.52 |
| 4                          | 25                            | $7.81 \times 10^{-1}$          | $3.99 \times 10^{0}$           | $5.58 \times 10^{-4}$ | 12.23 |
| 5                          | 25                            | $2.60 \times 10^{-3}$          | $8.19 \times 10^2$             | $1.26 \times 10^5$    | 31.75 |
| 2                          | 40                            | $4.37 \times 10^5$             | $2.48 \times 10^{-1}$          | $3.70 \times 10^5$    | 54.54 |
| 4                          | 40                            | $1.06 \times 10^{-1}$          | $2.66 \times 10^{1}$           | $1.00 \times 10^{-6}$ | 30.08 |
| 5                          | 40                            | $2.48 \times 10^{-2}$          | $7.26 \times 10^{1}$           | $1.00 \times 10^{-6}$ | 14.37 |

**Table 4.9** The value parameter of BET-selectivity model+(Ka(T))

ร<sub>ัฐาวอักยาลัยเทคโนโลยีสุร</sub>บาร

| Adsorption                          | Undissociated $acid(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                       |                      |                       |       |
|-------------------------------------|------------------------------|--------------------------------|-----------------------|----------------------|-----------------------|-------|
| Freundlich steric factor model (Ka) | Freundlich                   | The streic mass action         |                       |                      |                       |       |
| Freundlich steric factor model (Ka) | Temp                         | H H                            | X                     | _                    |                       |       |
| рН                                  | Temp                         | k                              | n                     | K <sub>LCl</sub>     | $Q_{max}^{IE}$        | %AAD  |
| 2                                   | 25                           | $1.46 \times 10^{-1}$          | $1.85 \times 10^{0}$  | $2.11 \times 10^5$   | $1.00 \times 10^{-6}$ | 10.88 |
| 4                                   | 25                           | $1.00 \times 10^{-6}$          | $3.45 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $2.78 \times 10^{-1}$ | 13.11 |
| 5                                   | 25                           | $1.00 \times 10^{-6}$          | $2.26 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $1.32 \times 10^{0}$  | 18.82 |
| 2                                   | 40                           | $1.97 \times 10^{0}$           | $6.93 \times 10^{0}$  | $2.11 \times 10^5$   | $1.00 \times 10^{-5}$ | 2.33  |
| 4                                   | 40                           | $1.00 \times 10^{-6}$          | $3.37 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $2.37 \times 10^{-6}$ | 37.74 |
| 5                                   | 40                           | $1.00 \times 10^{-6}$          | $2.38 \times 10^{-1}$ | $4.88 \times 10^5$   | $1.15 \times 10^{0}$  | 14.44 |

**Table 4.10** The value parameter of Freundlich-steric factor model+(Ka(T))

ะ ราวักยาลัยเทคโนโลยีสุรมโ

96

| Adsorption                   | Undissociated $acid(Q_{LH})$ | Dissociated acid $(Q_{L^{-}})$ |                                |                      |                                |       |
|------------------------------|------------------------------|--------------------------------|--------------------------------|----------------------|--------------------------------|-------|
| BET steric factor model (Ka) | BET                          | The steric mass action         |                                |                      |                                |       |
| BET steric factor model (Ka) | Temp                         | HA                             |                                | X                    |                                |       |
| рН                           | Temp                         | С                              | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | %AAD  |
| 2                            | 25                           | $1.00 \times 10^{6}$           | $6.47 \times 10^{-1}$          | $5.00 \times 10^2$   | $1.00 \times 10^{0}$           | 35.69 |
| 4                            | 25                           | $2.74 \times 10^{-2}$          | $5.34 \times 10^{1}$           | $1.23 \times 10^{5}$ | $1.00 \times 10^{0}$           | 17.07 |
| 5                            | 25                           | $3.04 \times 10^{-2}$          | $7.72 \times 10^{1}$           | $1.20 \times 10^{5}$ | $1.00 \times 10^{0}$           | 30.85 |
| 2                            | 40                           | $1.00 \times 10^{6}$           | $2.64 \times 10^{-1}$          | $5.00 \times 10^{2}$ | $1.00 \times 10^{0}$           | 58.66 |
| 4                            | 40                           | $6.30 \times 10^{-2}$          | $3.71 \times 10^{1}$           | $1.23 \times 10^{5}$ | $1.00 \times 10^{0}$           | 42.85 |
| 5                            | 40                           | $4.18 \times 10^{-2}$          | $3.40 \times 10^{1}$           | $1.32 \times 10^{5}$ | $1.00 \times 10^{0}$           | 16.10 |

**Table 4.11** The value parameter of BET-steric factor model+(Ka(T))

ะ ราว<sub>ั</sub>กยาลัยเทคโนโลยีสุรบา

As can be observed in Table 4.12, the effect of temperature dependent on Ka to %AAD is very low. Therefore, it is concluded that the dependence of temperature on dissociation constant of lactic acid can be neglected for a correlation of lactic acid adsorption isotherm on ion exchange resin.

Summarizing, the Freundlich-steric factor model is relatively adequate for correlation of adsorption isotherm of lactic acid on Amberlite IRA-96 at all range of pH investigated while Langmuir-Langmuir model is only applicable at pH 2 where the pH is lower than pKa of lactic acid. Furthermore, the resin Amberite IRA-96 could be used to separate lactic acid from liquid phase, due to the high removal capacity observed at high pH, which is higher than the maximum capacity.



|    |      |             |               | %           | AAD of physical ( | Chemical model | l             |        |                   |
|----|------|-------------|---------------|-------------|-------------------|----------------|---------------|--------|-------------------|
|    |      |             |               |             |                   |                |               | BET-   |                   |
|    |      | Freundlich- | Freundlich-   | BET-        | BET-              | Freundlich-    | Freundlich-   | steric | <b>BET-steric</b> |
|    |      | selectivity | selectivity   | selectivity | selectivity       | steric factor  | steric factor | factor | factor            |
| pН | Temp | model       | model+(Ka(T)) | model       | model+(Ka(T))     | model          | model+(Ka(T)) | model  | model+(Ka(T))     |
| 2  | 25   | 26.33       | 18.22         | 31.52       | 31.52             | 10.88          | 10.88         | 35.63  | 35.69             |
| 2  | 40   | 37.29       | 27.85         | 54.54       | 54.54             | 1.47           | 2.33          | 58.58  | 58.66             |
| 4  | 25   | 21.93       | 22.31         | 10.66       | 12.23             | 14.68          | 13.11         | 10.58  | 17.07             |
| 4  | 40   | 50.59       | 52.74         | 44.67       | 30.08             | 31.99          | 37.74         | 26.35  | 42.85             |
| 5  | 25   | 15.13       | 20.43         | 31.78       | 31.75             | 9.06           | 18.82         | 23.30  | 30.85             |
| 5  | 40   | 13.37       | 14.59         | 17.38       | 14.37             | 12.48          | 14.44         | 13.36  | 16.10             |

Table 4.12 the percent average absolute deviation (%AAD) of Physical Chemical Adsorption Model



### **CHAPTER V**

### **CONCLUSION AND RECOMMENDATIONS**

In this thesis, the equilibrium adsorption data of lactic acid on ion exchange Amberlite IRA-96 anion exchange resin was investigated and represented in the form of adsorption isotherm. Based on these isotherms, the model for description of complex composition in equilibrium of ion exchange in solution was studied. The effect of pH and temperature of the solution was also considered.

### 5.1 Adsorption Isotherm

The solid liquid adsorption isotherm is clearly a S curve. The amount of lactic acid adsorbed decreases with increasing temperature. Therefore, the adsorption of lactic acid is an exothermic process. The amount of lactic acid adsorbed at pH 4 and pH 5 is higher than that adsorbed at pH 2. The amount of lactic acid adsorbed clearly depends on temperature. The effect of temperature on the adsorption isotherm is high at pH 5. As a result, the amount of adsorption of lactic acid of pH5 at 25 °C is higher than the amount of adsorption of lactic acid of pH5 at 40 °C.

### 5.2 Modeling

The adsorption of lactic acid is higher than the maximum capacity of resin in free form reported in the literature. Both physical and chemical adsorption model is used in modeling due to that the both mechanisms occurred in the process. The model formulation comprises the non-linear equations. The model is solved and fitted numerically with lsqnonlin in Matlab. The Langmuir- Langmuir model, which is based on physical interaction, is good for correlation adsorption isotherm at pH 2 which is lower than pKa of lactic acid. The Freundlich-steric factor model, which is combining between physical and chemical interaction, is good for correlation adsorption isotherm in pH 2, 4 and 5 which is both lower and higher than pKa of lactic acid.

#### 5.3 **Recommendations**

In this thesis, the adsorption isotherm of lactic acid was modeled and the lactic acid concentration and the amount of lactic acid adsorption were investigated. The purification by ion exchange is interest to reduce the costs of lactic acid purification. The future research should focus in ion-exchange simulated moving bed.

Although the effect of temperature dependent on Ka is well known, however it has little or no net effect in the model. Therefore, the effect of temperature dependent on Ka would be able to be neglected for further development of the model.

### REFERENCES

- Burns, A. (1999). Fundamentals of chemistry. Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 3ed.
- Bruce B. (1990). Effect of pH, Temperature, and Concentration on the Adsorption of Cadmium on Goethite. **Environ. Sci. Technol.** Volume 24. pp : 112-118.
- Caetano, M., et al. (2009). Phenol removal from aqueous solution by adsorption and ion exchange.mechanisms onto polymeric resins. Journal of Colloid and Interface Science. Volume 338. pp : 402–409.
- Cao, X., Yun, H. and Koo, Y. (2002). Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochemical Engineering Journal. Volume 11. pp : 189-196.
- Carmona, M., Lucas, A.D., Jose L., Velasco, B. and Juan, F. (2006). Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420.
   Chemical Engineering Journal. Volume 117. pp : 155-160.
- Chi Tien. (1994). Adsorption Calculations and Modeling. Boston: Butterworth-Heinemann.
- Courtney D. and et al. (2012). Water Adsorption on Clay Minerals As a Function of Relative Humidity: Application of BET and Freundlich Adsorption Models.
   Publishes products and services for the practice and advancement of the chemical sciences. Volume 28. pp : 1790-1803.

- Dai, Y. and Judson C. (1996). Selectivity between lactic acid and glucose during Recovery of lactic acid with Basic Extractants and polymeric Sorbents. Ind.
   Eng. Chem. Res. Volume 35. pp : 1215-1224.
- Duong D.Do. (1998). Adsorption Analysis: Equilibria and Kinetics. Queensland, Australia, Imperial College Press.
- Dada, A.O., Olalekan, A.P., Olatunya, A.M. and DADA, O. (2012). Langmuir,
   Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of
   Equilibrium Sorption of Zn<sup>2+</sup> Unto Phosphoric Acid Modified Rice Husk.
   IOSR Journal of Applied Chemistry. Volume 3. Issue 1. pp : 38-45.

Elena Katz. (1998). Handbook of HPLC. New York : M. Dekker.

- Everett, D.H., and Wynne-Jones, W.F.K. (1939). The thermodynamics of acid-base equilibria. Trans. **Faraday Soc.** Volume 35. pp : 1380-1401.
- Giles, C.H., MacEwan, T.H, Nakhwa, S.N., Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms. Journal of the Chemical Society. Volume 4. pp : 3973 – 3993.
- Isabel, M., Alvarez, S., Riera, F. A., and Alvarez, R. (2006). Purification of lactic acid from Fermentation Broths by Ion-Exchange Resins. Ind. Eng. Chem. Res. Volume 45. pp : 3243-3247.
- Isam, H., Joanne, M. and Talu, O. (2005). Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chemical Engineering Science. Volume 60. pp : 5004-5009.

- Jaakko, I., Pekka, M., and Pentti O. (2003). Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and at 298.15 K. Fluid Phase Equilibria. Volume 204. pp ; 245–266.
- John W. and et al. (1998). Adsorption technology and design. Oxford ;Boston : Butterworth-Heinemann.
- Juang, R.S. and Shiau, J.Y. (1999). Adsorption isotherms of phenols from water onto macroreticular resins. Journal of Hazardous Materials. Volume 70. pp : 171–183.
- Kanazawa, N. and et al. (2004). Exchange characteristics of monocarboxylic acids and monosulfonic acids onto anion-exchange resins. Journal of Colloid and Interface Science. Volume 271. pp : 20–27.
- Kanazawa, N. and et al. (2001). Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water. Journal of Colloid and Interface Science. Volume 238. pp : 196–202.
- Liu, Y. and Wang, J. (2009). Fundamentals and Applications of Biosorption Isotherms, Kinetics and Thermodynamics. New York: Nova Science Publishers.
- Moldes, A.B., Alonso, J.L., and Parajo. J.C. (2003). Rocovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst Eng. Volume 25. pp : 357-363.
- Nomura, Y., Iwahara, M., and Hongo. (1987). Lactic Acid Production by Electrodialysis Fermentation Using Immobilized Growing Cells. M.
  Biotechnol. Bioeng. Volume 30. pp : 788-793.

- Ren Jie. (2010). Biodegradable Poly (Lactic Acid) Synthesis, Modification, Processing and Aplications. Springer Heidelberg Dordrecht London New York.
- Smith J.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw Hill, 7ed.
- Sandley, I. (2006). Chemical, Biochemical, and Engineering Thermodynamics. Jonh Wiley & Sons. 4ed.
- Skoog, Douglas A. (1996). Analytical Chemistry. Saunders College Pub. 7ed.
- Satinder Ahuja. (2003). Chromatography and separation science. Amsterdam ;Boston : Academic Press.
- Stuart, R. (2004). Modeling ion-exchange adsorption of proteins in spherical particle.Journal of Chromatography A. Volume 1028. pp : 189-195.
- Tong, W., Fua, X., Lee, S., Yu, J., Liu, J., Wei, D., and Koo, Y. (2004). Purification of l(+)-lactic acid from fermentation broth with paper sludge as a cellulosic exchanger Amberlite IRA-92. Biochemical Engineering Journal. Volume 18. pp : 89–96.
- Wang X. and et al. (2013). In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: Continuous operation. **Bioresource Technology.** Volume 147. pp : 442–448.

## **APPENDIX** A

# **RESULT OF MODELING**

ร<sub>หาวักยา</sub>ลัยเทคโนโลยีสุรมไร

## APPENDIX A1 The value parameter of physical-physical model

APPENDIX A1.1 The value parameter of Langmuir-Langmuir model (Ka constant)

| C <sub>T</sub> | Q <sub>T</sub> | K <sub>LH</sub>       | K <sub>IE</sub>                | Q <sup>LH</sup> <sub>max</sub> | $Q_{L^{-}}$ | $Q_{LH}$ | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|--------------------------------|-------------|----------|-------------------|
| pH2Temp25      |                |                       |                                |                                |             |          |                   |
| 219.4046       | 2.5452         | $2.10 \times 10^{-3}$ | $1.52 \times 10^{-1}$          | $7.16 \times 10^{0}$           | 0.3722      | 2.2389   | 2.6111            |
| 288.8003       | 2.8514         |                       |                                |                                | 0.4462      | 2.6820   | 3.1282            |
| 352.1506       | 3.4260         |                       |                                |                                | 0.5030      | 3.0222   | 3.5252            |
| 376.8722       | 4.0356         |                       |                                | H                              | 0.5229      | 3.1413   | 3.6642            |
| 500.3136       | 3.6008         |                       |                                |                                | 0.6075      | 3.6465   | 4.2540            |
| 557.2509       | 5.5584         |                       |                                |                                | 0.6398      | 3.8392   | 4.4789            |
| 673.8105       | 4.3320         |                       |                                |                                | 0.6960      | 4.1743   | 4.8703            |
| pH2Temp40      |                |                       |                                |                                |             |          |                   |
| 219.7472       | 4.3905         | $5.83 \times 10^{-2}$ | $3.65 \times 10^{-1}$          | $4.40 \times 10^{0}$           | 0.3289      | 4.0807   | 4.4096            |
| 308.5428       | 4.6894         |                       |                                |                                | 0.4158      | 4.1679   | 4.5837            |
| 440.9319       | 4.6085         |                       |                                |                                | 0.5173      | 4.2352   | 4.7524            |
| 556.5116       | 4.8383         |                       |                                | 2                              | 0.5866      | 4.2685   | 4.8551            |
| 725.7144       | 5.0411         |                       | 150                            | - agu                          | 0.6660      | 4.2986   | 4.9646            |
| pH4Temp25      |                |                       | <i>ั<sup>11</sup>ย</i> าลัยเทค | ันโลยีจุร                      |             |          |                   |
| 291.5324       | 2.0638         | $1.29 \times 10^{-4}$ | $1.20 \times 10^{-3}$          | $1.82 \times 10^{2}$           | 0.2018      | 2.8447   | 3.0465            |
| 323.7074       | 2.4600         |                       |                                |                                | 0.2200      | 3.1532   | 3.3732            |
| 372.2495       | 2.9767         |                       |                                |                                | 0.2462      | 3.6166   | 3.8628            |
| 397.7235       | 3.5055         |                       |                                |                                | 0.2594      | 3.8588   | 4.1183            |
| 459.1514       | 7.2709         |                       |                                |                                | 0.2898      | 4.4402   | 4.7301            |

| C <sub>T</sub> | Q <sub>T</sub> | K <sub>LH</sub>       | K <sub>IE</sub>       | Q <sup>LH</sup> <sub>max</sub> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|--------------------------------|-------------|-----------------|-------------------|
| pH4Temp40      |                |                       |                       |                                |             |                 |                   |
| 294.3466       | 2.0731         | $1.83 \times 10^{-4}$ | $2.6 \times 10^{-3}$  | $1.22 \times 10^{2}$           | 0.2368      | 4.2972          | 4.5340            |
| 352.7350       | 2.2901         |                       | H                     |                                | 0.2731      | 5.1138          | 5.3869            |
| 329.5165       | 3.3897         |                       |                       |                                | 0.2590      | 4.7904          | 5.0494            |
| 397.6313       | 4.6129         |                       |                       |                                | 0.2992      | 5.7340          | 6.0332            |
| 491.4559       | 13.5243        |                       |                       |                                | 0.3493      | 7.0090          | 7.3583            |
| pH5Temp25      |                |                       | H D                   | R                              |             |                 |                   |
| 281.1475       | 2.0232         | $1.20 \times 10^{-3}$ | $3.09 \times 10^{-4}$ | $1.63 \times 10^{2}$           | 0.0898      | 3.6640          | 3.7539            |
| 310.6630       | 2.4204         |                       |                       | Π                              | 0.0985      | 4.0392          | 4.1377            |
| 351.6829       | 3.7799         |                       |                       |                                | 0.1103      | 4.5576          | 4.6679            |
| 369.5635       | 4.7798         |                       |                       |                                | 0.1153      | 4.7826          | 4.8979            |
| 403.6729       | 8.2309         |                       |                       | $\mathbf{D}$                   | 0.1249      | 5.2099          | 5.3348            |
| pH5Temp40      |                |                       |                       |                                |             |                 |                   |
| 269.3176       | 2.0850         | $5.85 \times 10^{-4}$ | $1.87 \times 10^{-5}$ | $1.01 \times 10^{2}$           | 0.0050      | 2.6942          | 2.6992            |
| 341.5866       | 2.2065         |                       | 5                     | St                             | 0.0063      | 3.3928          | 3.3991            |
| 371.5928       | 2.8530         |                       | 15h.                  | 5 JASU                         | 0.0068      | 3.6800          | 3.6868            |
| 387.8541       | 3.3814         |                       | <i>่าง</i> าลยเทค     | นเลย                           | 0.0071      | 3.8349          | 3.8420            |
| 411.5258       | 4.1254         |                       |                       |                                | 0.0076      | 4.0595          | 4.0671            |
| 455.4748       | 7.0256         |                       |                       |                                | 0.0084      | 4.4738          | 4.4822            |

APPENDIX A1.1 The value parameter of Langmuir-Langmuir model (Ka constant) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | K <sub>LH</sub>       | K <sub>IE</sub>       | Q <sup>LH</sup> <sub>max</sub> | $Q_{L^{-}}$ | $Q_{LH}$ | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|--------------------------------|-------------|----------|-------------------|
| pH2Temp25      |                |                       |                       |                                |             |          |                   |
| 219.4046       | 2.5452         | $2.10 \times 10^{-3}$ | $1.91 \times 10^{-1}$ | $7.17 \times 10^{0}$           | 0.3712      | 2.2460   | 2.6173            |
| 288.8003       | 2.8514         |                       | 1                     |                                | 0.4451      | 2.6900   | 3.1352            |
| 352.1506       | 3.4260         |                       |                       |                                | 0.5019      | 3.0308   | 3.5327            |
| 376.8722       | 4.0356         |                       |                       |                                | 0.5218      | 3.1502   | 3.6720            |
| 500.3136       | 3.6008         |                       |                       | H                              | 0.6064      | 3.6561   | 4.2625            |
| 557.2509       | 5.5584         |                       |                       | / N.                           | 0.6386      | 3.8489   | 4.4876            |
| 673.8105       | 4.3320         |                       |                       |                                | 0.6949      | 4.1844   | 4.8793            |
| pH2Temp40      |                |                       |                       |                                |             |          |                   |
| 219.7472       | 4.3905         | $5.95 \times 10^{-2}$ | $5.74 \times 10^{-1}$ | $4.34 \times 10^{0}$           | 0.3734      | 4.0345   | 4.4080            |
| 308.5428       | 4.6894         |                       | ₹ IN V                |                                | 0.4658      | 4.1190   | 4.5848            |
| 440.9319       | 4.6085         |                       |                       |                                | 0.5706      | 4.1841   | 4.7547            |
| 556.5116       | 4.8383         |                       |                       |                                | 0.6404      | 4.2164   | 4.8568            |
| 725.7144       | 5.0411         |                       |                       | 10                             | 0.7185      | 4.2455   | 4.9640            |
| pH4Temp25      |                |                       | 3.                    |                                |             |          |                   |
| 291.5324       | 2.0638         | $4.10 \times 10^{-3}$ | $1.70 \times 10^{-3}$ | $8.30 \times 10^{0}$           | 0.2459      | 3.0274   | 3.2733            |
| 323.7074       | 2.4600         |                       | เป็นการ               |                                | 0.2670      | 3.2315   | 3.4985            |
| 372.2495       | 2.9767         |                       |                       |                                | 0.2971      | 3.5112   | 3.8083            |
| 397.7235       | 3.5055         |                       |                       |                                | 0.3122      | 3.6459   | 3.9581            |
| 459.1514       | 7.2709         |                       |                       |                                | 0.3464      | 3.9418   | 4.2882            |

**APPENDIX A1.2** The value parameter of Langmuir- Langmuir model+(Ka(T))

| C <sub>T</sub> | Q <sub>T</sub> | K <sub>LH</sub>       | K <sub>IE</sub>       | Q <sup>LH</sup> <sub>max</sub> | $Q_{L^{-}}$ | $Q_{LH}$ | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|--------------------------------|-------------|----------|-------------------|
| pH4Temp40      |                |                       |                       |                                |             |          |                   |
| 294.3466       | 2.0731         | $3.46 \times 10^{3}$  | $9.40 \times 10^{-3}$ | $4.59 \times 10^{0}$           | 0.5072      | 4.5921   | 5.0993            |
| 352.7350       | 2.2901         |                       |                       |                                | 0.5608      | 4.5921   | 5.1529            |
| 329.5165       | 3.3897         |                       |                       |                                | 0.5405      | 4.5921   | 5.1326            |
| 397.6313       | 4.6129         |                       |                       |                                | 0.5966      | 4.5921   | 5.1887            |
| 491.4559       | 13.5243        |                       |                       |                                | 0.6600      | 4.5921   | 5.2521            |
| pH5Temp25      |                |                       | E E                   | R                              |             |          |                   |
| 281.1475       | 2.0232         | $5.70 \times 10^{-3}$ | $1.30 \times 10^{-3}$ | $2.87 \times 10^{1}$           | 0.3009      | 3.4209   | 3.7217            |
| 310.6630       | 2.4204         |                       |                       |                                | 0.3239      | 3.7332   | 4.0572            |
| 351.6829       | 3.7799         |                       |                       |                                | 0.3541      | 4.1548   | 4.5088            |
| 369.5635       | 4.7798         |                       |                       |                                | 0.3666      | 4.3341   | 4.7007            |
| 403.6729       | 8.2309         |                       |                       | Als                            | 0.3894      | 4.6690   | 5.0584            |
| pH5Temp40      |                |                       |                       |                                |             |          |                   |
| 269.3176       | 2.0850         | $2.84 \times 10^{-2}$ | $2.70 \times 10^{-3}$ | $4.51 \times 10^{0}$           | 0.4352      | 2.8184   | 3.2535            |
| 341.5866       | 2.2065         |                       | 35                    | 75                             | 0.5030      | 3.0615   | 3.5645            |
| 371.5928       | 2.8530         |                       | 75h.                  | 5.50                           | 0.5278      | 3.1431   | 3.6709            |
| 387.8541       | 3.3814         |                       | ายาลยท                | าโนโลยจะ                       | 0.5405      | 3.1836   | 3.7241            |
| 411.5258       | 4.1254         |                       |                       |                                | 0.5581      | 3.2385   | 3.7966            |
| 455.4748       | 7.0256         |                       |                       |                                | 0.5885      | 3.3292   | 3.9176            |

**APPENDIX A1.2** The value parameter of Langmuir- Langmuir model+(Ka(T)) (Continued)

## **APPENDIX A2** The value parameter of physical-chemical model

APPENDIX A2.1 The value parameter of Freundlich-selectivity model (Ka constant)

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | $S_{Cl}^{L}$         | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|----------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       | HH                    | Ci                   |             |                 |                   |
| 219.4046       | 2.5452         | $1.07 \times 10^{-5}$ | $5.00 \times 10^{-1}$ | $1.98 \times 10^{5}$ | 1.1999      | 0.4998          | 1.6998            |
| 288.8003       | 2.8514         |                       |                       |                      | 1.2000      | 0.8660          | 2.0660            |
| 352.1506       | 3.4260         |                       |                       | H.                   | 1.2000      | 1.2876          | 2.4876            |
| 376.8722       | 4.0356         |                       |                       | <i>'</i> ,           | 1.1999      | 1.4748          | 2.6747            |
| 500.3136       | 3.6008         |                       |                       |                      | 1.2000      | 2.5991          | 3.7991            |
| 557.2509       | 5.5584         |                       |                       |                      | 1.2000      | 3.2243          | 4.4243            |
| 673.8105       | 4.3320         |                       |                       |                      | 1.2000      | 4.7143          | 5.9142            |
| pH2Temp40      |                |                       | × PAV                 |                      |             |                 |                   |
| 219.7472       | 4.3905         | $1.05 \times 10^{-5}$ | $5.00 \times 10^{-1}$ | $3.29 \times 10^{5}$ | 1.1999      | 0.4913          | 1.6913            |
| 308.5428       | 4.6894         |                       |                       |                      | 1.2000      | 0.9687          | 2.1686            |
| 440.9319       | 4.6085         |                       | 6                     | 160                  | 1.2000      | 1.9783          | 3.1782            |
| 556.5116       | 4.8383         |                       | 7.                    |                      | 1.2000      | 3.1513          | 4.3513            |
| 725.7144       | 5.0411         |                       | 10hspan               | un sias              | 1.2000      | 5.3589          | 6.5588            |
| pH4Temp25      |                |                       | างเสยเทค              | laon                 |             |                 |                   |
| 291.5324       | 2.0638         | $1.00 \times 10^{-6}$ | $3.42 \times 10^{-1}$ | $9.70 \times 10^{3}$ | 1.2000      | 1.2799          | 2.4799            |
| 323.7074       | 2.4600         |                       |                       |                      | 1.2000      | 1.7384          | 2.9384            |
| 372.2495       | 2.9767         |                       |                       |                      | 1.2000      | 2.6159          | 3.8159            |

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | S <sup>L<sup>-</sup></sup> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|----------------------------|-------------|-----------------|-------------------|
| pH4Temp25      |                |                       |                       | Cl                         |             |                 |                   |
| 397.7235       | 3.5055         |                       |                       |                            | 1.2000      | 3.1747          | 4.3747            |
| 459.1514       | 7.2709         |                       | HH                    |                            | 1.2000      | 4.8322          | 6.0322            |
| pH4Temp40      |                |                       |                       |                            |             |                 |                   |
| 294.3466       | 2.0731         | $1.13 \times 10^{-6}$ | $3.34 \times 10^{-1}$ | $1.69 \times 10^4$         | 1.2000      | 2.1227          | 3.3227            |
| 352.7350       | 2.2901         |                       |                       | H .                        | 1.2000      | 3.6526          | 4.8526            |
| 329.5165       | 3.3897         |                       |                       | η,                         | 1.2000      | 2.9779          | 4.1779            |
| 397.6313       | 4.6129         |                       |                       | <b>H</b>                   | 1.2000      | 5.2320          | 6.4320            |
| 491.4559       | 13.5243        |                       |                       |                            | 1.2000      | 9.8770          | 11.0769           |
| pH5Temp25      |                |                       |                       |                            |             |                 |                   |
| 281.1475       | 2.0232         | $1.00 \times 10^{-6}$ | $2.11 \times 10^{-1}$ | $1.01 \times 10^{3}$       | 1.1999      | 1.1170          | 2.3169            |
| 310.6630       | 2.4204         |                       |                       |                            | 1.1999      | 1.7912          | 2.9911            |
| 351.6829       | 3.7799         |                       |                       |                            | 1.1999      | 3.2206          | 4.4204            |
| 369.5635       | 4.7798         |                       | 6                     | 10                         | 1.1998      | 4.0721          | 5.2719            |
| 403.6729       | 8.2309         |                       | 3.                    |                            | 1.1997      | 6.1827          | 7.3824            |
| pH5Temp40      |                |                       | Ohan -                | urosia50                   |             |                 |                   |
| 269.3176       | 2.0850         | $1.01 \times 10^{-6}$ | $2.22 \times 10^{-1}$ | $3.23 \times 10^4$         | 1.2000      | 0.4858          | 1.6858            |
| 341.5866       | 2.2065         |                       |                       |                            | 1.2000      | 1.4186          | 2.6186            |
| 371.5928       | 2.8530         |                       |                       |                            | 1.2000      | 2.0736          | 3.2736            |
| 387.8541       | 3.3814         |                       |                       |                            | 1.2000      | 2.5153          | 3.7153            |
| 411.5258       | 4.1254         |                       |                       |                            | 1.2000      | 3.2855          | 4.4854            |
| 455.4748       | 7.0256         |                       |                       |                            | 1.2000      | 5.1913          | 6.3913            |

APPENDIX A2.1 The value parameter of Freundlich-selectivity model (Ka constant) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | $S_{}^{L^-}$         | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|----------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       |                       | CI                   |             |                 |                   |
| 219.4046       | 2.5452         | $4.06 \times 10^{-4}$ | $7.00 \times 10^{-1}$ | $5.04 \times 10^{5}$ | 1.2000      | 0.8836          | 2.0835            |
| 288.8003       | 2.8514         |                       |                       |                      | 1.2000      | 1.3084          | 2.5084            |
| 352.1506       | 3.4260         |                       |                       |                      | 1.2000      | 1.7369          | 2.9369            |
| 376.8722       | 4.0356         |                       |                       |                      | 1.2000      | 1.9137          | 3.1137            |
| 500.3136       | 3.6008         |                       |                       |                      | 1.2000      | 2.8685          | 4.0685            |
| 557.2509       | 5.5584         |                       |                       | ·                    | 1.2000      | 3.3460          | 4.5460            |
| 673.8105       | 4.3320         |                       |                       |                      | 1.2000      | 4.3890          | 5.5890            |
| pH2Temp40      |                |                       |                       |                      |             |                 |                   |
| 219.7472       | 4.3905         | $4.37 \times 10^{-4}$ | $7.00 \times 10^{-1}$ | $4.93 \times 10^5$   | 1.1999      | 0.9536          | 2.1535            |
| 308.5428       | 4.6894         |                       |                       |                      | 1.2000      | 1.5485          | 2.7485            |
| 440.9319       | 4.6085         |                       |                       |                      | 1.2000      | 2.5789          | 3.7788            |
| 556.5116       | 4.8383         |                       |                       |                      | 1.2000      | 3.5963          | 4.7963            |
| 725.7144       | 5.0411         |                       |                       | 10                   | 1.2000      | 5.2549          | 6.4549            |
| pH4Temp25      |                |                       | 5                     |                      |             |                 |                   |
| 291.5324       | 2.0638         | $1.00 \times 10^{-6}$ | $3.51 \times 10^{-1}$ | $4.22 \times 10^5$   | 1.2000      | 1.3005          | 2.5005            |
| 323.7074       | 2.4600         |                       | Sonn                  | I MILE.              | 1.2000      | 1.7527          | 2.9527            |
| 372.2495       | 2.9767         |                       |                       |                      | 1.2000      | 2.6102          | 3.8102            |
| 397.7235       | 3.5055         |                       |                       |                      | 1.2000      | 3.1523          | 4.3523            |
| 459.1514       | 7.2709         |                       |                       |                      | 1.2000      | 4.7472          | 5.9472            |

## **APPENDIX A2.2** The value parameter of Freundlich-selectivity model+(Ka(T))

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | $S^{L^{-}}_{-}$      | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|----------------------|-------------|-----------------|-------------------|
| nII4Tomn40     |                |                       |                       | Cl                   |             |                 |                   |
| pH4Temp40      |                |                       |                       |                      |             |                 |                   |
| 294.3466       | 2.0731         | $1.00 \times 10^{-6}$ | $3.40 \times 10^{-1}$ | $4.78 \times 10^{5}$ | 1.2000      | 2.1930          | 3.3930            |
| 352.7350       | 2.2901         |                       |                       |                      | 1.2000      | 3.7329          | 4.9329            |
| 329.5165       | 3.3897         |                       |                       |                      | 1.2000      | 3.0558          | 4.2558            |
| 397.6313       | 4.6129         |                       |                       |                      | 1.2000      | 5.3088          | 6.5088            |
| 491.4559       | 13.5243        |                       |                       | H                    | 1.2000      | 9.8955          | 11.0955           |
| pH5Temp25      |                |                       |                       | η,                   |             |                 |                   |
| 281.1475       | 2.0232         | $3.21 \times 10^{-6}$ | $2.44 \times 10^{-1}$ | $8.25 \times 10^4$   | 1.2000      | 1.3322          | 2.5322            |
| 310.6630       | 2.4204         |                       |                       |                      | 1.2000      | 2.0046          | 3.2046            |
| 351.6829       | 3.7799         |                       |                       |                      | 1.2000      | 3.3305          | 4.5305            |
| 369.5635       | 4.7798         |                       | <b>S R</b> W          | HE                   | 1.2000      | 4.0801          | 5.2801            |
| 403.6729       | 8.2309         |                       |                       |                      | 1.2000      | 5.8561          | 7.0561            |
| pH5Temp40      |                |                       |                       |                      |             |                 |                   |
| 269.3176       | 2.0850         | $1.00 \times 10^{-4}$ | $2.38 \times 10^{-1}$ | $4.12 \times 10^{5}$ | 1.2000      | 0.5569          | 1.7569            |
| 341.5866       | 2.2065         |                       | 772                   | 1                    | 1.2000      | 1.5095          | 2.7095            |
| 371.5928       | 2.8530         |                       | ับกยาวังแกล           | เปลร์เสร             | 1.2000      | 2.1489          | 3.3489            |
| 387.8541       | 3.3814         |                       |                       | luicie               | 1.2000      | 2.5718          | 3.7718            |
| 411.5258       | 4.1254         |                       |                       |                      | 1.2000      | 3.2973          | 4.4973            |
| 455.4748       | 7.0256         |                       |                       |                      | 1.2000      | 5.0466          | 6.2466            |

**APPENDIX A2.2** The value parameter of Freundlich-selectivity model+(Ka(T)) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | С                     | $Q_{max}^{LH}$        | $S_{\alpha \gamma}^{L}$ | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------|-------------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       |                       | CI                      |             |                 |                   |
| 219.4046       | 2.5452         | $1.75 \times 10^{5}$  | $5.97 \times 10^{-1}$ | $2.10 \times 10^5$      | 1.1999      | 0.8383          | 2.0383            |
| 288.8003       | 2.8514         |                       |                       |                         | 1.2000      | 0.9611          | 2.1610            |
| 352.1506       | 3.4260         |                       |                       |                         | 1.2000      | 1.1094          | 2.3093            |
| 376.8722       | 4.0356         |                       |                       |                         | 1.2000      | 1.1804          | 2.3804            |
| 500.3136       | 3.6008         |                       |                       |                         | 1.2000      | 1.7356          | 2.9356            |
| 557.2509       | 5.5584         |                       |                       |                         | 1.2000      | 2.2165          | 3.4164            |
| 673.8105       | 4.3320         |                       | A                     |                         | 1.2000      | 5.1206          | 6.3206            |
| pH2Temp40      |                |                       |                       |                         |             |                 |                   |
| 219.7472       | 4.3905         | $4.30 \times 10^5$    | $2.48 \times 10^{-1}$ | $3.68 \times 10^5$      | 1.1999      | 0.3479          | 1.5479            |
| 308.5428       | 4.6894         |                       | S P                   |                         | 1.2000      | 0.4160          | 1.6159            |
| 440.9319       | 4.6085         |                       | S.<br>C               |                         | 1.2000      | 0.5871          | 1.7870            |
| 556.5116       | 4.8383         |                       |                       |                         | 1.2000      | 0.9160          | 2.1160            |
| 725.7144       | 5.0411         |                       | 5                     | 10                      | 1.2000      | 5.0988          | 6.2988            |
| pH4Temp25      |                |                       | 5                     |                         |             |                 |                   |
| 291.5324       | 2.0638         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$  | $2.50 \times 10^{-3}$   | 0.1551      | 0.2474          | 0.4024            |
| 323.7074       | 2.4600         |                       |                       | ITINIC.                 | 0.1500      | 0.3115          | 0.4615            |
| 372.2495       | 2.9767         |                       |                       |                         | 0.1465      | 0.4402          | 0.5867            |
| 397.7235       | 3.5055         |                       |                       |                         | 0.1400      | 0.5291          | 0.6690            |
| 459.1514       | 7.2709         |                       |                       |                         | 0.1061      | 0.8383          | 0.9444            |

## APPENDIX A2.3 The value parameter of BET-selectivity model (Ka constant)

| C <sub>T</sub> | Q <sub>T</sub> | С                     | Q <sup>LH</sup> <sub>max</sub> | $S^{L^-}$             | $Q_{L^{-}}$ | $Q_{LH}$ | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|-----------------------|-------------|----------|-------------------|
| pH4Temp40      |                |                       |                                | Cl                    |             |          |                   |
| 294.3466       | 2.0731         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$           | $3.30 \times 10^{-3}$ | 0.1767      | 0.2526   | 0.4293            |
| 352.7350       | 2.2901         |                       |                                | 111                   | 0.1835      | 0.3832   | 0.5667            |
| 329.5165       | 3.3897         |                       |                                |                       | 0.1483      | 0.3248   | 0.4731            |
| 397.6313       | 4.6129         |                       |                                |                       | 0.1402      | 0.5290   | 0.6692            |
| 491.4559       | 13.5243        |                       | H                              |                       | 0.0930      | 1.0855   | 1.1785            |
| pH5Temp25      |                |                       |                                |                       |             |          |                   |
| 281.1475       | 2.0232         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$           | $2.50 \times 10^{-3}$ | 0.1916      | 0.2293   | 0.4209            |
| 310.6630       | 2.4204         |                       |                                |                       | 0.1847      | 0.2836   | 0.4684            |
| 351.6829       | 3.7799         |                       |                                |                       | 0.1593      | 0.3798   | 0.5391            |
| 369.5635       | 4.7798         |                       | 3 FX                           |                       | 0.1461      | 0.4316   | 0.5777            |
| 403.6729       | 8.2309         |                       |                                |                       | 0.1179      | 0.5522   | 0.6701            |
| pH5Temp40      |                |                       |                                |                       |             |          |                   |
| 269.3176       | 2.0850         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$           | $2.20 \times 10^{-3}$ | 0.1747      | 0.2103   | 0.3850            |
| 341.5866       | 2.2065         |                       | 575                            |                       | 0.1899      | 0.3535   | 0.5434            |
| 371.5928       | 2.8530         |                       | ับก็ยาวัฒ                      | าระเอรีเสร            | 0.1754      | 0.4379   | 0.6133            |
| 387.8541       | 3.3814         |                       | - ICOI                         | FILICIC               | 0.1654      | 0.4922   | 0.6576            |
| 411.5258       | 4.1254         |                       |                                |                       | 0.1550      | 0.5849   | 0.7399            |
| 455.4748       | 7.0256         |                       |                                |                       | 0.1266      | 0.8143   | 0.9409            |

APPENDIX A2.3 The value parameter of BET-selectivity model (Ka constant) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | C                     | $\mathbf{Q}_{\max}^{\mathrm{LH}}$ | $S_{cl^{-}}^{L^{-}}$  | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|-----------------------------------|-----------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       |                                   | CI                    |             |                 |                   |
| 219.4046       | 2.5452         | $2.26 \times 10^5$    | $5.97 \times 10^{-1}$             | $2.63 \times 10^5$    | 1.1999      | 0.8383          | 2.0383            |
| 288.8003       | 2.8514         |                       |                                   |                       | 1.2000      | 0.9611          | 2.1610            |
| 352.1506       | 3.4260         |                       |                                   |                       | 1.2000      | 1.1094          | 2.3093            |
| 376.8722       | 4.0356         |                       |                                   | 1                     | 1.2000      | 1.1804          | 2.3804            |
| 500.3136       | 3.6008         |                       |                                   |                       | 1.2000      | 1.7356          | 2.9356            |
| 557.2509       | 5.5584         |                       |                                   | · \ .                 | 1.2000      | 2.2165          | 3.4164            |
| 673.8105       | 4.3320         |                       |                                   |                       | 1.2000      | 5.1206          | 6.3206            |
| pH2Temp40      |                |                       |                                   |                       |             |                 |                   |
| 219.7472       | 4.3905         | $4.37 \times 10^5$    | $-2.48 \times 10^{-1}$            | $3.70 \times 10^5$    | 1.1999      | 0.3479          | 1.5479            |
| 308.5428       | 4.6894         |                       |                                   |                       | 1.1999      | 0.4160          | 1.6159            |
| 440.9319       | 4.6085         |                       |                                   |                       | 1.2000      | 0.5871          | 1.7870            |
| 556.5116       | 4.8383         |                       |                                   |                       | 1.2000      | 0.9160          | 2.1160            |
| 725.7144       | 5.0411         |                       | 5                                 | 16                    | 1.2000      | 5.0988          | 6.2987            |
| pH4Temp25      |                |                       | 5                                 |                       |             |                 |                   |
| 291.5324       | 2.0638         | $7.81 \times 10^{-1}$ | $3.99 \times 10^{0}$              | $5.58 \times 10^{-4}$ | 0.0722      | 2.1040          | 2.1762            |
| 323.7074       | 2.4600         |                       |                                   | Mre.                  | 0.0698      | 2.5330          | 2.6027            |
| 372.2495       | 2.9767         |                       |                                   |                       | 0.0681      | 3.3260          | 3.3941            |
| 397.7235       | 3.5055         |                       |                                   |                       | 0.0649      | 3.8331          | 3.8980            |
| 459.1514       | 7.2709         |                       |                                   |                       | 0.0488      | 5.4286          | 5.4774            |

## **APPENDIX A2.4** The value parameter of BET-selectivity model+(Ka(T))

| C <sub>T</sub> | Q <sub>T</sub> | C                     | Q <sup>LH</sup> <sub>max</sub> | S                     | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|-----------------------|-------------|-----------------|-------------------|
| pH4Temp40      |                |                       |                                | CI                    |             |                 |                   |
|                |                |                       |                                | <del>.</del> .        |             |                 |                   |
| 294.3466       | 2.0731         | $1.06 \times 10^{-1}$ | 26.64×10°                      | $1.00 \times 10^{-6}$ | 0.0031      | 2.7066          | 2.7098            |
| 352.7350       | 2.2901         |                       |                                |                       | 0.0033      | 4.1378          | 4.1410            |
| 329.5165       | 3.3897         |                       |                                |                       | 0.0026      | 3.4960          | 3.4986            |
| 397.6313       | 4.6129         |                       |                                |                       | 0.0024      | 5.7543          | 5.7567            |
| 491.4559       | 13.5243        |                       |                                |                       | 0.0016      | 12.0546         | 12.0562           |
| pH5Temp25      |                |                       |                                |                       |             |                 |                   |
| 281.1475       | 2.0232         | $2.60 \times 10^{-3}$ | $818.89 \times 10^{0}$         | $1.26 \times 10^{5}$  | 1.2000      | 1.9654          | 3.1654            |
| 310.6630       | 2.4204         |                       |                                | <b>Zh %</b>           | 1.2000      | 2.4639          | 3.6639            |
| 351.6829       | 3.7799         |                       | S HV                           | リミ                    | 1.2000      | 3.3722          | 4.5722            |
| 369.5635       | 4.7798         |                       |                                |                       | 1.2000      | 3.8724          | 5.0724            |
| 403.6729       | 8.2309         |                       |                                |                       | 1.2000      | 5.0691          | 6.2691            |
| pH5Temp40      |                |                       | 5                              | 5                     |             |                 |                   |
| 269.3176       | 2.0850         | $2.48 \times 10^{-2}$ | $72.57 \times 10^{0}$          | $1.00 \times 10^{-6}$ | 0.0040      | 1.4982          | 1.5021            |
| 341.5866       | 2.2065         |                       | <i>่ เจา</i> ลยเทคโ            | ปเลอกเ                | 0.0044      | 2.5914          | 2.5958            |
| 371.5928       | 2.8530         |                       |                                |                       | 0.0040      | 3.2571          | 3.2611            |
| 387.8541       | 3.3814         |                       |                                |                       | 0.0038      | 3.6934          | 3.6971            |
| 411.5258       | 4.1254         |                       |                                |                       | 0.0035      | 4.4500          | 4.4535            |
| 455.4748       | 7.0256         |                       |                                |                       | 0.0028      | 6.3870          | 6.3899            |

**APPENDIX A2.4** The value parameter of BET-selectivity model+(Ka(T)) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub>        | $Q_{L^{-}}$           | $Q_{LH}$ | QTcal  |
|----------------|----------------|-----------------------|-----------------------|----------------------|---------------------------------------|-----------------------|----------|--------|
| pH2Temp25      |                |                       |                       |                      |                                       |                       |          |        |
| 219.4046       | 2.5452         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$  | $2.11 \times 10^5$   | $1.00 \times 10^{-6}$                 | $9.68 \times 10^{-7}$ | 2.6787   | 2.6787 |
| 288.8003       | 2.8514         |                       |                       |                      |                                       | $9.68 \times 10^{-7}$ | 3.1081   | 3.1081 |
| 352.1506       | 3.4260         |                       |                       |                      |                                       | $9.68 \times 10^{-7}$ | 3.4600   | 3.4600 |
| 376.8722       | 4.0356         |                       |                       | 414                  |                                       | $9.68 \times 10^{-7}$ | 3.5894   | 3.5894 |
| 500.3136       | 3.6008         |                       |                       | , 1, 1, 1, 1         |                                       | $9.68 \times 10^{-7}$ | 4.1839   | 4.1839 |
| 557.2509       | 5.5584         |                       |                       |                      | A                                     | $9.68 \times 10^{-7}$ | 4.4351   | 4.4351 |
| 673.8105       | 4.3320         |                       |                       |                      | • • • • • • • • • • • • • • • • • • • | $9.68 \times 10^{-7}$ | 4.9150   | 4.9150 |
| pH2Temp40      |                |                       |                       |                      |                                       |                       |          |        |
| 219.7472       | 4.3905         | $2.55 \times 10^{0}$  | $9.80 \times 10^{0}$  | 2.11×10 <sup>5</sup> | $1.00 \times 10^{-5}$                 | $9.68 \times 10^{-6}$ | 4.4151   | 4.4151 |
| 308.5428       | 4.6894         |                       |                       |                      |                                       | $9.68 \times 10^{-6}$ | 4.5707   | 4.5707 |
| 440.9319       | 4.6085         |                       | 6                     |                      | 10                                    | $9.68 \times 10^{-6}$ | 4.7402   | 4.7402 |
| 556.5116       | 4.8383         |                       | 575                   |                      | - un                                  | $9.68 \times 10^{-6}$ | 4.8541   | 4.8541 |
| 725.7144       | 5.0411         |                       |                       | ໃຍາລັຍເກດໂນໂ         | ลย์สุร                                | $9.68 \times 10^{-6}$ | 4.9873   | 4.9873 |
| pH4Temp25      |                |                       |                       |                      |                                       |                       |          |        |
| 291.5324       | 2.0638         | $1.00 \times 10^{-6}$ | $3.35 \times 10^{-1}$ | $4.88 \times 10^5$   | $6.85 \times 10^{-4}$                 | $6.63 \times 10^{-4}$ | 1.7011   | 1.7017 |
| 323.7074       | 2.4600         |                       |                       |                      |                                       | $6.63 \times 10^{-4}$ | 2.3248   | 2.3255 |
| 372.2495       | 2.9767         |                       |                       |                      |                                       | $6.63 \times 10^{-4}$ | 3.5275   | 3.5282 |
| 397.7235       | 3.5055         |                       |                       |                      |                                       | $6.63 \times 10^{-4}$ | 4.2978   | 4.2985 |

APPENDIX A2.5 The value parameter of Freundlich-steric factor model (Ka constant)
| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | Q <sub>L</sub> -      | Q <sub>LH</sub> | QTcal   |
|----------------|----------------|-----------------------|-----------------------|----------------------|--------------------------------|-----------------------|-----------------|---------|
| 459.1514       | 7.2709         |                       |                       |                      |                                | $6.63 \times 10^{-4}$ | 6.5974          | 6.5981  |
| pH4Temp40      |                |                       |                       |                      |                                |                       |                 |         |
| 294.3466       | 2.0731         | $1.00 \times 10^{-6}$ | $3.27 \times 10^{-1}$ | $4.80 \times 10^5$   | $1.00 \times 10^{-2}$          | $9.68 \times 10^{-3}$ | 2.4824          | 2.4921  |
| 352.7350       | 2.2901         |                       |                       |                      |                                | $9.68 \times 10^{-3}$ | 4.3161          | 4.3257  |
| 329.5165       | 3.3897         |                       |                       |                      |                                | $9.68 \times 10^{-3}$ | 3.5051          | 3.5148  |
| 397.6313       | 4.6129         |                       |                       |                      |                                | $9.68 \times 10^{-3}$ | 6.2248          | 6.2345  |
| 491.4559       | 13.5243        |                       |                       | H'                   | A                              | $9.68 \times 10^{-3}$ | 11.8942         | 11.9039 |
| pH5Temp25      |                |                       |                       | /7                   |                                |                       |                 |         |
| 281.1475       | 2.0232         | $1.01 \times 10^{-6}$ | $2.09 \times 10^{-1}$ | $4.80 \times 10^5$   | $2.86 \times 10^{-1}$          | $2.77 \times 10^{-1}$ | 1.3335          | 1.6104  |
| 310.6630       | 2.4204         |                       |                       |                      | 12                             | $2.77 \times 10^{-1}$ | 2.1506          | 2.4275  |
| 351.6829       | 3.7799         |                       |                       |                      |                                | $2.77 \times 10^{-1}$ | 3.8942          | 4.1711  |
| 369.5635       | 4.7798         |                       |                       |                      |                                | $2.77 \times 10^{-1}$ | 4.9378          | 5.2147  |
| 403.6729       | 8.2309         |                       | E.                    |                      | 15                             | $2.77 \times 10^{-1}$ | 7.5351          | 7.8120  |
| pH5Temp40      |                |                       | 75,                   |                      | 105V                           |                       |                 |         |
| 269.3176       | 2.0850         | $1.00 \times 10^{-6}$ | $2.20 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $9.11 \times 10^{-1}$          | $8.81 \times 10^{-1}$ | 0.5248          | 1.4059  |
| 341.5866       | 2.2065         |                       |                       |                      |                                | $8.81 \times 10^{-1}$ | 1.5442          | 2.4253  |
| 371.5928       | 2.8530         |                       |                       |                      |                                | $8.81 \times 10^{-1}$ | 2.2632          | 3.1443  |
| 387.8541       | 3.3814         |                       |                       |                      |                                | $8.81 \times 10^{-1}$ | 2.7490          | 3.6301  |
| 411.5258       | 4.1254         |                       |                       |                      |                                | $8.81 \times 10^{-1}$ | 3.5974          | 4.4785  |
| 455.4748       | 7.0256         |                       |                       |                      |                                | $8.81 \times 10^{-1}$ | 5.7024          | 6.5835  |

APPENDIX A2.5 The value parameter of Freundlich-steric factor model (Ka constant) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | $Q_{L^{-}}$           | Q <sub>LH</sub> | QTcal  |
|----------------|----------------|-----------------------|-----------------------|----------------------|--------------------------------|-----------------------|-----------------|--------|
| pH2Temp25      |                |                       |                       |                      |                                |                       |                 |        |
| 219.4046       | 2.5452         | $1.46 \times 10^{-1}$ | $1.85 \times 10^{0}$  | $2.11 \times 10^{5}$ | $1.00 \times 10^{-6}$          | $9.68 \times 10^{-7}$ | 2.6784          | 2.6784 |
| 288.8003       | 2.8514         |                       |                       | HH                   |                                | $9.68 \times 10^{-7}$ | 3.1078          | 3.1078 |
| 352.1506       | 3.4260         |                       |                       |                      |                                | $9.68 \times 10^{-7}$ | 3.4598          | 3.4598 |
| 376.8722       | 4.0356         |                       |                       |                      |                                | $9.68 \times 10^{-7}$ | 3.5892          | 3.5892 |
| 500.3136       | 3.6008         |                       |                       | AAR                  |                                | $9.68 \times 10^{-7}$ | 4.1838          | 4.1838 |
| 557.2509       | 5.5584         |                       |                       |                      |                                | $9.68 \times 10^{-7}$ | 4.4350          | 4.4350 |
| 673.8105       | 4.3320         |                       |                       |                      |                                | $9.68 \times 10^{-7}$ | 4.9150          | 4.9150 |
| pH2Temp40      |                |                       |                       |                      |                                |                       |                 |        |
| 219.7472       | 4.3905         | $1.97 \times 10^{0}$  | $6.93 \times 10^{0}$  | $2.11 \times 10^5$   | $1.00 \times 10^{-5}$          | $9.68 \times 10^{-6}$ | 4.2899          | 4.2899 |
| 308.5428       | 4.6894         |                       |                       |                      |                                | $9.68 \times 10^{-6}$ | 4.5054          | 4.5054 |
| 440.9319       | 4.6085         |                       |                       |                      |                                | $9.68 \times 10^{-6}$ | 4.7438          | 4.7438 |
| 556.5116       | 4.8383         |                       | 65                    |                      | S                              | $9.68 \times 10^{-6}$ | 4.9059          | 4.9059 |
| 725.7144       | 5.0411         |                       | 5n                    | S12 5.50             | eia5V                          | $9.68 \times 10^{-6}$ | 5.0976          | 5.0976 |
| pH4Temp25      |                |                       |                       | งาสยเทคเนเจ          |                                |                       |                 |        |
| 291.5324       | 2.0638         | $1.00 \times 10^{-6}$ | $3.45 \times 10^{-1}$ | $4.88 \times 10^5$   | $2.78 \times 10^{-1}$          | $2.69 \times 10^{-1}$ | 1.6496          | 1.9188 |
| 323.7074       | 2.4600         |                       |                       |                      |                                | $2.69 \times 10^{-1}$ | 2.2347          | 2.5039 |
| 372.2495       | 2.9767         |                       |                       |                      |                                | $2.69 \times 10^{-1}$ | 3.3510          | 3.6202 |
| 397.7235       | 3.5055         |                       |                       |                      |                                | $2.69 \times 10^{-1}$ | 4.0601          | 4.3293 |

**APPENDIX A2.6** The value parameter of Freundlich-steric factor model+(Ka(T)) (Ka(T))

| C <sub>T</sub> | Q <sub>T</sub> | k                     | n                     | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | Q <sub>L</sub> -      | Q <sub>LH</sub> | QTcal   |
|----------------|----------------|-----------------------|-----------------------|----------------------|--------------------------------|-----------------------|-----------------|---------|
| 459.1514       | 7.2709         |                       |                       |                      |                                | $2.69 \times 10^{-1}$ | 6.1575          | 6.4267  |
| pH4Temp40      |                |                       |                       | 1                    |                                |                       |                 |         |
| 294.3466       | 2.0731         | $1.00 \times 10^{-6}$ | $3.37 \times 10^{-1}$ | 4.88E+05             | $2.37 \times 10^{-1}$          | $2.29 \times 10^{-1}$ | 2.4972          | 2.7267  |
| 352.7350       | 2.2901         |                       |                       |                      |                                | $2.29 \times 10^{-1}$ | 4.2709          | 4.5004  |
| 329.5165       | 3.3897         |                       |                       |                      |                                | $2.29 \times 10^{-1}$ | 3.4900          | 3.7194  |
| 397.6313       | 4.6129         |                       |                       |                      |                                | $2.29 \times 10^{-1}$ | 6.0929          | 6.3224  |
| 491.4559       | 13.5243        |                       |                       | <i>H</i> • • •       |                                | $2.29 \times 10^{-1}$ | 11.4202         | 11.6496 |
| pH5Temp25      |                |                       |                       |                      |                                |                       |                 |         |
| 281.1475       | 2.0232         | $1.00 \times 10^{-6}$ | $2.26 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $1.32 \times 10^{0}$           | $1.27 \times 10^{0}$  | 1.1990          | 2.4722  |
| 310.6630       | 2.4204         |                       |                       |                      |                                | $1.27 \times 10^{0}$  | 1.8656          | 3.1388  |
| 351.6829       | 3.7799         |                       |                       | , GD                 |                                | $1.27 \times 10^{0}$  | 3.2311          | 4.5043  |
| 369.5635       | 4.7798         |                       |                       |                      |                                | $1.27 \times 10^{0}$  | 4.0246          | 5.2978  |
| 403.6729       | 8.2309         |                       | EL                    |                      | 15                             | $1.27 \times 10^{0}$  | 5.9500          | 7.2232  |
| pH5Temp40      |                |                       | 750                   |                      | - asu                          |                       |                 |         |
| 269.3176       | 2.0850         | $1.00 \times 10^{-6}$ | $2.38 \times 10^{-1}$ | $4.88 \times 10^{5}$ | $1.15 \times 10^{0}$           | $1.11 \times 10^{0}$  | 0.5705          | 1.6833  |
| 341.5866       | 2.2065         |                       |                       |                      |                                | $1.11 \times 10^{0}$  | 1.5488          | 2.6616  |
| 371.5928       | 2.8530         |                       |                       |                      |                                | $1.11 \times 10^{0}$  | 2.2061          | 3.3189  |
| 387.8541       | 3.3814         |                       |                       |                      |                                | $1.11 \times 10^{0}$  | 2.6411          | 3.7539  |
| 411.5258       | 4.1254         |                       |                       |                      |                                | $1.11 \times 10^{0}$  | 3.3876          | 4.5004  |
| 455.4748       | 7.0256         |                       |                       |                      |                                | $1.11 \times 10^{0}$  | 5.1886          | 6.3014  |

**APPENDIX A2.6** The value parameter of Freundlich-steric factor model+(Ka(T)) (Ka(T)) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | С                     | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>      | Q <sup>IE</sup> <sub>max</sub> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|-----------------------|--------------------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       |                                |                       |                                |             |                 |                   |
| 219.4046       | 2.5452         | $1.00 \times 10^{6}$  | $6.47 \times 10^{-1}$          | $5.00 \times 10^2$    | $1.00 \times 10^{0}$           | 0.9539      | 0.9082          | 1.8621            |
| 288.8003       | 2.8514         |                       |                                |                       |                                | 0.9559      | 1.0412          | 1.9971            |
| 352.1506       | 3.4260         |                       |                                |                       |                                | 0.9560      | 1.2019          | 2.1579            |
| 376.8722       | 4.0356         |                       |                                |                       |                                | 0.9549      | 1.2789          | 2.2338            |
| 500.3136       | 3.6008         |                       |                                |                       |                                | 0.9590      | 1.8804          | 2.8394            |
| 557.2509       | 5.5584         |                       |                                |                       |                                | 0.9557      | 2.4013          | 3.3570            |
| 673.8105       | 4.3320         |                       |                                |                       |                                | 0.9599      | 5.5476          | 6.5075            |
| pH2Temp40      |                |                       |                                |                       |                                |             |                 |                   |
| 219.7472       | 4.3905         | $1.00 \times 10^{6}$  | $2.64 \times 10^{-1}$          | $5.00 \times 10^{2}$  | $1.00 \times 10^{0}$           | 0.9444      | 0.3708          | 1.3152            |
| 308.5428       | 4.6894         |                       |                                |                       |                                | 0.9497      | 0.4433          | 1.3931            |
| 440.9319       | 4.6085         |                       |                                |                       |                                | 0.9552      | 0.6257          | 1.5809            |
| 556.5116       | 4.8383         |                       |                                |                       |                                | 0.9572      | 0.9763          | 1.9335            |
| 725.7144       | 5.0411         |                       |                                |                       |                                | 0.9593      | 5.4343          | 6.3936            |
| pH4Temp25      |                |                       | 5                              |                       | 19                             |             |                 |                   |
| 291.5324       | 2.0638         | $4.98 \times 10^{-2}$ | $3.84 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 0.0030      | 1.8570          | 1.8599            |
| 323.7074       | 2.4600         |                       | -//81                          | ລັຍເກຄໂນໂລຍຈ          |                                | 0.0029      | 2.3616          | 2.3645            |
| 372.2495       | 2.9767         |                       |                                |                       |                                | 0.0028      | 3.3976          | 3.4004            |
| 397.7235       | 3.5055         |                       |                                |                       |                                | 0.0027      | 4.1277          | 4.1304            |
| 459.1514       | 7.2709         |                       |                                |                       |                                | 0.0020      | 6.7536          | 6.7556            |

APPENDIX A2.7 The value parameter of BET-steric factor model (Ka constant)

| C <sub>T</sub> | Q <sub>T</sub> | С                     | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>      | Q <sup>IE</sup> <sub>max</sub> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|-----------------------|--------------------------------|-------------|-----------------|-------------------|
| pH4Temp40      |                |                       |                                |                       |                                |             |                 |                   |
| 294.3466       | 2.0731         | $3.57 \times 10^{-2}$ | $7.24 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 0.0030      | 2.5823          | 2.5853            |
| 352.7350       | 2.2901         |                       |                                | L L                   |                                | 0.0031      | 4.0063          | 4.0094            |
| 329.5165       | 3.3897         |                       |                                |                       |                                | 0.0025      | 3.3638          | 3.3663            |
| 397.6313       | 4.6129         |                       |                                |                       |                                | 0.0023      | 5.6504          | 5.6527            |
| 491.4559       | 13.5243        |                       |                                | 10                    |                                | 0.0015      | 12.3428         | 12.3443           |
| pH5Temp25      |                |                       |                                |                       |                                |             |                 |                   |
| 281.1475       | 2.0232         | $6.40 \times 10^{-2}$ | $4.69 \times 10^{1}$           | $1.00 \times 10^{-6}$ | $1.00 \times 10^{0}$           | 0.0037      | 2.6740          | 2.6778            |
| 310.6630       | 2.4204         |                       |                                |                       |                                | 0.0036      | 3.3319          | 3.3355            |
| 351.6829       | 3.7799         |                       |                                |                       |                                | 0.0031      | 4.5155          | 4.5186            |
| 369.5635       | 4.7798         |                       |                                |                       |                                | 0.0028      | 5.1600          | 5.1628            |
| 403.6729       | 8.2309         |                       |                                |                       |                                | 0.0022      | 6.6835          | 6.6857            |
| pH5Temp40      |                |                       |                                |                       |                                |             |                 |                   |
| 269.3176       | 2.0850         | $2.02 \times 10^{-1}$ | $9.87 \times 10^{0}$           | $9.76 \times 10^{-6}$ | $1.00 \times 10^{2}$           | 0.1130      | 1.5143          | 1.6273            |
| 341.5866       | 2.2065         |                       | 6                              |                       | 5                              | 0.1237      | 2.5151          | 2.6388            |
| 371.5928       | 2.8530         |                       | 75                             | 246                   | .0                             | 0.1135      | 3.0972          | 3.2107            |
| 387.8541       | 3.3814         |                       | (18)                           | ລັຍເກດໂນໂລຍິດ         | ·                              | 0.1065      | 3.4696          | 3.5761            |
| 411.5258       | 4.1254         |                       |                                |                       |                                | 0.0993      | 4.1004          | 4.1997            |
| 455.4748       | 7.0256         |                       |                                |                       |                                | 0.0801      | 5.6431          | 5.7232            |

APPENDIX A2.7 The value parameter of BET-steric factor model (Ka constant) (Continued)

| C <sub>T</sub> | Q <sub>T</sub> | С                     | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|----------------------|--------------------------------|-------------|-----------------|-------------------|
| pH2Temp25      |                |                       |                                |                      |                                |             |                 |                   |
| 219.4046       | 2.5452         | $1.00 \times 10^{6}$  | $6.47 \times 10^{-1}$          | $5.00 \times 10^{2}$ | $1.00 \times 10^{0}$           | 0.9504      | 0.9087          | 1.8591            |
| 288.8003       | 2.8514         |                       |                                |                      |                                | 0.9529      | 1.0418          | 1.9947            |
| 352.1506       | 3.4260         |                       |                                |                      |                                | 0.9531      | 1.2025          | 2.1556            |
| 376.8722       | 4.0356         |                       |                                |                      |                                | 0.9517      | 1.2795          | 2.2312            |
| 500.3136       | 3.6008         |                       |                                |                      |                                | 0.9568      | 1.8813          | 2.8381            |
| 557.2509       | 5.5584         |                       |                                |                      |                                | 0.9527      | 2.4026          | 3.3553            |
| 673.8105       | 4.3320         |                       |                                |                      |                                | 0.9579      | 5.5505          | 6.5084            |
| pH2Temp40      |                |                       |                                |                      |                                |             |                 |                   |
| 219.7472       | 4.3905         | $1.00 \times 10^{6}$  | $2.64 \times 10^{-1}$          | $5.00 \times 10^2$   | $1.00 \times 10^{0}$           | 0.9375      | 0.3709          | 1.3085            |
| 308.5428       | 4.6894         |                       | 50                             |                      | 1                              | 0.9444      | 0.4434          | 1.3878            |
| 440.9319       | 4.6085         |                       |                                |                      |                                | 0.9514      | 0.6258          | 1.5772            |
| 556.5116       | 4.8383         |                       |                                |                      |                                | 0.9541      | 0.9765          | 1.9306            |
| 725.7144       | 5.0411         |                       | 6                              |                      | 100                            | 0.9568      | 5.4353          | 6.3921            |
| pH4Temp25      |                |                       | 52                             |                      | N.                             |             |                 |                   |
| 291.5324       | 2.0638         | $2.74 \times 10^{-2}$ | $5.34 \times 10^{1}$           | $1.23 \times 10^{5}$ | $1.00 \times 10^{0}$           | 0.9676      | 1.4398          | 2.4074            |
| 323.7074       | 2.4600         |                       | - 1                            |                      |                                | 0.9676      | 1.8357          | 2.8033            |
| 372.2495       | 2.9767         |                       |                                |                      |                                | 0.9676      | 2.6530          | 3.6206            |
| 397.7235       | 3.5055         |                       |                                |                      |                                | 0.9676      | 3.2321          | 4.1998            |
| 459.1514       | 7.2709         |                       |                                |                      |                                | 0.9676      | 5.3340          | 6.3016            |
| pH4Temp40      |                |                       |                                |                      |                                |             |                 |                   |
| 294.3466       | 2.0731         | $6.30 \times 10^{-2}$ | $3.71 \times 10^{1}$           | $1.23 \times 10^{5}$ | $1.00 \times 10^{0}$           | 0.9676      | 2.3009          | 3.2685            |

### **APPENDIX A2.8** The value parameter of BET-steric factor model+(Ka(T))

| C <sub>T</sub> | Q <sub>T</sub> | С                     | Q <sup>LH</sup> <sub>max</sub> | K <sub>LCl</sub>     | Q <sup>IE</sup> <sub>max</sub> | $Q_{L^{-}}$ | Q <sub>LH</sub> | Q <sub>Tcal</sub> |
|----------------|----------------|-----------------------|--------------------------------|----------------------|--------------------------------|-------------|-----------------|-------------------|
| 352.7350       | 2.2901         |                       |                                |                      |                                | 0.9676      | 3.5487          | 4.5163            |
| pH4Temp40      |                |                       |                                |                      |                                |             |                 |                   |
| 329.5165       | 3.3897         |                       |                                | L A                  |                                | 0.9676      | 2.9871          | 3.9547            |
| 397.6313       | 4.6129         |                       |                                |                      |                                | 0.9676      | 4.9766          | 5.9442            |
| 491.4559       | 13.5243        |                       |                                |                      |                                | 0.9676      | 10.6857         | 11.6533           |
| pH5Temp25      |                |                       |                                |                      |                                |             |                 |                   |
| 281.1475       | 2.0232         | $3.04 \times 10^{-2}$ | $7.72 \times 10^{1}$           | $1.20 \times 10^{5}$ | $1.00 \times 10^{0}$           | 0.9676      | 2.1294          | 3.0971            |
| 310.6630       | 2.4204         |                       |                                |                      |                                | 0.9676      | 2.6620          | 3.6297            |
| 351.6829       | 3.7799         |                       |                                |                      |                                | 0.9676      | 3.6268          | 4.5944            |
| 369.5635       | 4.7798         |                       |                                |                      |                                | 0.9676      | 4.1553          | 5.1229            |
| 403.6729       | 8.2309         |                       | 4                              |                      |                                | 0.9676      | 5.4125          | 6.3802            |
| pH5Temp40      |                |                       |                                |                      |                                |             |                 |                   |
| 269.3176       | 2.0850         | $4.18 \times 10^{-2}$ | $3.40 \times 10^{1}$           | $1.32 \times 10^{5}$ | $1.00 \times 10^{0}$           | 0.9676      | 1.1701          | 2.1378            |
| 341.5866       | 2.2065         |                       |                                |                      |                                | 0.9676      | 2.0153          | 2.9830            |
| 371.5928       | 2.8530         |                       | 5                              |                      | S                              | 0.9676      | 2.5274          | 3.4950            |
| 387.8541       | 3.3814         |                       | 150                            |                      | SV                             | 0.9676      | 2.8621          | 3.8297            |
| 411.5258       | 4.1254         |                       | רטיי                           | ลัยเทคโนโลยจ         |                                | 0.9676      | 3.4410          | 4.4086            |
| 455.4748       | 7.0256         |                       |                                |                      |                                | 0.9676      | 4.9150          | 5.8826            |

**APPENDIX A2.8** The value parameter of BET-steric factor model+(Ka(T)) (Continued)

# **APPENDIX B**

# LIST OF PUBLICATION

ะ ราวักยาลัยเทคโนโลยีสุรุบไร

-

#### List of Publication

Sodsai, W. and Sookkumnerd, T. (2013). Modeling of Lactic Acid Adsorption Isotherm by Anion Exchange Resin Amberlite IRA-96. **KMITL Science and Technology Journal.** 13(2): 82-86.



#### BIOGRAPHY

Miss Wanwisa Sodsai was born on Tuesday the 19<sup>th</sup> of April 1987, in Nimueng Sub-District, Mueng District, Nakhonratchasima Province of Thailand. She started her primary education at Marie Vithaya School, Nakhonratchasima Province of Thailand in 1994 where she completed her primary education 1999. Between 2000-2005, she studied at Suranaree Wittaya 2 High school, Nakhonratchasima Province of Thailand for her secondary education. Between 2006-2009, she studied at Suranaree University of Technology (SUT), Nakhonratchasima Province of Thailand for bachelor degree study. During her bachelor degree study, she participated in the Cooperative Education Program for four months in the field of chemical engineering at the thai paraxylene company limited with topic of Manual of Parex Unit for operator. She participated in the National Science and Technology Development Agency (MTEC) for two months in the field of the Young Scientist and Technology Programme: YSTP with topic of Development of High Porosity Ceramics and Anti-Bacteria Coating for Filter Application. She participated in the 24<sup>th</sup> SEA GAMES (2007) in the field of a transportation athlete in Sports Village. She participated in the 4<sup>th</sup> ASEAN GAMES (2008) in the field of a transportation athlete in Sports Village.

In 2010, She graduated with a bachelor degree in chemical engineering from SUT. After her graduation, she has received scholarship for a research assistant at SUT to study for the master degree in chemical engineering at sut since 2010.