Generalized Tension B-splines
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Abstract. Explicit formulae and recurrence relations for calculation of
generalized tension B-splines of arbitrary degree are given. We derive main
properties of GB-splines and their series, i.e. partition of unity, shape
preserving properties, invariance with respect to linear transformations,
etc. It is shown that such splines, providing the variation diminishing
property, are Chebyshev splines.

§1. Introduction

Fitting curves and surfaces to functions and data requires the availability of
methods which preserve the shape of the data. In practical calculations we
usually deal with data given with prescribed accuracy. Therefore we should
develop methods for constructing fair-shape-preserving approximations that
satisfy given tolerances and inherit geometric properties of the data such as
positivity, monotonicity, convexity, presence of linear sections, etc.

Such approximation can be based on generalized B-splines. Until recently,
local support bases for computations with generalized splines have been avail-
able for only some special types of splines [1,8,11]. This limits the choice of
methods when using generalized splines in tension. In [4,5,9] local support
basis functions for exponential splines were introduced and their application
to interpolation problems was considered. A recurrence relation for rational
B-splines with prescribed poles was recently obtained in [2]. In this paper we
expand the main results of [6,7] on generalized tension B-splines of arbitrary
degree allowing the tension parameters to vary from interval to interval.

§2. Generalized B-splines of Arbitrary Degree

Let a partition A : a = 29 < 1 < --- < £n§ = b be given on the segment [a, b]
to which we associate a space of splines S whose restriction to a subinterval
[€i,xi1], 1 = 0,..., N — 1 is spanned by the system of linearly independent
functions {1,z,...,2" 2, ®; ,(x), ¥; ,(z)}, n > 1, and where any function in
S& has n — 1 continuous derivatives.
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Definition 2.1. The generalized spline of degree n is a function S(x) € S¢
such that

(1) for any = € [x;,241],i=10,...,N — 1
S(x) = Pipa(@) + ST (2:)®; (x) + SV (wi11) Wi (),
where P; ,_2(z) is a polynomial of degree n — 2, and

q’gﬁ(wm) = ‘I’%(ﬂh) =0, r=0,....,n—1

(2.1)
e (i) = OV (@) = 1;

(2) S(x) € C"1a,b].

Consider the problem of constructing a basis in the space S¢ consisting
of functions with local support of minimal length. For this, it is convenient
to extend the mesh A by adding points z_,, < --- < z_1 < a, b < zyy1 <
oo < TNgn. As dim(SE) = (n+ 1)N —n(N — 1) = N + n, it is sufficient to
construct a system of linearly independent splines B; (), j = —n,...,N—1
in S¢ such that Bj,(z) > 0 if € (zj,%j4nt1) and Bj,(z) = 0 outside

(%5, Tjpntr)-
For n > 1 we require the fulfillment of the normalization condition

i: Bjn(x)=1 for z € la,b. (2.2)

j=—n
By definition 2.1, we will seek basis splines in the form

n—1
( BJ(',n )(5'3]'-%1)\1]]',71(37)7 i <x < xjp
n—1
Pjun-2(#) + B (2400)®j410()

1
Bjn(r) = + B (@4141) Vs () (2.3)
Ty S x < Tjpge, l=1,....,n—1
-1
BJ(ZL )($j+")q)j+n,n(x)? Tjtn ST < Tjyntl

L0, =& (25, Tj1n+1)-

The form of B, ,,(x) in (2.3) for € (x4, Zjt1+4%), K = 0,n has been sim-
plified in virtue of the conditions B](-T) () = B (Zj4n+1) =0,r=0,...,n—1

n 7,n

and the properties (2.1) of functions D n(x), U)n(x).
Taking into account the continuity conditions for polynomials Pj; ,,—2(x),

l=1,...,n—11in (2.3) we have the relations
n—2
n—1 r r
Pj,l’n_Q(CU) = Pj,l—l,n—Z('T) + B](-’n )(.Tj_H) Zj('—l—)l,n(m - ZU]'_H) /7“'
r=0

I=1,...,n (2.4)



with zj(.:_)l,n = ‘115721 10 (@j41) — @g:}l’n(l'j_{_l), r=0,...,n—2.
As in (2.3), polynomials Pj;n—2(x) =0 when [ = 0 and [ = n. Then by

repeated application of the formula (2.4) we have

l n—2

n—1 r
Pipn—a(w) =Y B (@) D 20 (o — wpp)" /!
I'=1 r=0
n—1 r
= — Z By(',n ) .’EJ_HI ZZ]-H' .”Ej_HI) /T!, lzl,...,n—l.

I'=l+1

In particular, the following identity is valid

n—2
ZB(” Vaj) Y. 2D, (@ —wjp)"/r = 0. (2.5)

=0

Using the expansion of polynomials (2.5) by powers of z we arrive at a
system of n—1 linear algebraic equations which defines the unknown quantities
B](-Zl_l)(%H), Il =1,...,n. To obtain the unique solution of this system we
can use the normalization condition (2.2). We can eliminate the unknowns
analogously as has been done in [6,7].

§3. Recurrence Algorithm for Calculation of GB-splines

Let us define the function

U (2), 25 < v < g

Bj,l(x) = (I)gz_llg(l') .Tj_|_1 S T S .Tj_|_2 (31)

0, r ¢ (25, Tj12)

where the functions \115.’71”_1)( ), @gil 73(;1:) are assumed to be positive and

monotone on (z;,z;+1) and (arj+1,;v]+2) respectively.
We will consider the sequence of B-splines defined by the recurrence for-
mula

"By " Biy g
Bj,k(x)Z/ L1(7-)d7'—/ MdT, k=2,...,n (3.2)
z Zj+1

;o Cik—1 Cj+1,k—1

Tj+k
Cj,k—l = / Bj’k_l(T)dT.
T

J

Differentiating formula (3.2) we obtain

i k(@) = Bjk-1(w)/cjr—1 — Bjrip-1()/cjr1he-1, k=2,...,n. (3.3)



Theorem 3.1. The recurrence formulae (3.1) and (3.2) define the sequence
of B-splines of the form

k-1 n—k
( B](',k )($j+1)‘1’§-,n (2), @ <z <mip

Pj1r—2(x) + B(-k_l)(ijrl)‘I);JJZ)( )

n—=k
Bjx(z) = + B @) W) @) (3.0
Tj+l <5'3<5'3]+l+1, [=1,....,k—1
k-1 n—k
Bj(yk )('Tj"‘k)q)g—{—k 13( )7 Tjrk ST < Tjqgtt

L0, 2 & (7),Tj1k41)

k=1,...,n, where
l
Pian—a(@) = Y By (@) Z A (@ = w) TR (= 4 k).
I'=1 r=n—~k
n—2
-1 r r—n
- Z B( N(wj400) Z (+)z' (z — i)/ (r — n + k)]
I'=i+1 r=n—~k
(3.5)
and
k _
k—1 r r—n _
ZBJ(',k )$J+l Z J(+)ln —xi )" (r =+ B =0
=1 —

k=2,...,n.

This can be shown by induction using the differentiation formula (3.3).
To use the formulae (3.4) and (3.5) for calculations we first need to find

the quantities B](.fck_l)(%H), l=1,...,k; k=2,...,n. According to (3.3),

k—1 —2 —2
Bj(’k )($j+l) - BJ( k— 1)(m1+l)/cjvk—1 Bj(—i-lk) V(@j)/Civ1k—1

(3.6)
l=1,....k; k=2,....n

In particular, it follows from here with B, 1(x;41) =1 that

1 1
Bl oy(i41) = —, Bls(wisr) =
i o(Ti1) - 7 3(Tj41) P
1 1 1 1
B/, €Ts = — B/~/ T — ( + >
2 (t7+2) Cit1,1 5:0(Ti+2) Ci+1,1 \Cj2  Cj41,2

1

" .
Bj,3(5‘7j+3) =
Cj+2,1C5+1,2

etc. Therefore to find the necessary values of the derivatives of the basis
splines in interior nodes of their interval supports, it is necessary to know the
quantities ¢, 1. e. the integrals of the B-splines Bj(z), k=1,...,n— 1.



Theorem 3.2. The integrals of the generalized basis splines B;(z), k =
1,...,n—1 are given by the formula

n—2 )r—n+k+1

ﬂcJ+k+1 . .
_ Z (=1) 3 ") (Tjta — Tjqi
Ciok _/m mdr =2 Bjy (@) Gk + 1)

J r=n—k—1

a=1,...,k; k=1,...,n—1(3.7)

This can be proven by induction using formulae for B-splines (3.4) and (3.5).
To construct the basis spline Bji(x), k = 2,...,n, we apply formulae

(3 6) and (3. 7) and consecutively calculate the quantities B( )($j+a), o=
yk,k=1,...,n,and ¢cj;3, 3 =0,. -k, k=1,. n—l.

64. Properties of Generalized B-splines and Their Series

Let us formulate some properties of GB-splines which are mainly analogous
to the properties of polynomial B-splines [10].

Theorem 4.1. The functions Bj(x), k =1,...,n have the following prop-
erties:

1. Bj,k(a:) >0ifx € («Tjaxj—HH—l) and Bj,k(;l?) =0ifx Q_f (xjij—l—k—l—l);

2. The splines Bj j(x) have k — 1 continuous derivatives;

3. for k> 2 Z;V:__lk Bjr(x) =1ifz € [a,b];

n—r—1
\IIETZ(I') = ( H Cj,k;)Bj,n—r(x)a (I)(T) H —Cj—k, k; ] TL+T‘,n—T‘(‘T;)
k=1 k=1
ifzelzj,zj],j=0,....N=1,7=0,...,n—1,¢cj = f;ﬁ"’“ Bj i(T)dr.
J

We denote by S& the set of splines S(z) € C¥~1[a, b] which are spanned
by linear combinations of the functions {1,..., 252 ®" ™™ (z), ¥{"® (z)1,
k=1,...,n,in any subinterval [z;, z;11],7 = 0,..., N—1. Using the methods
[12], it is easy to show that the splines B; y(z),j = —k,...,.N-1,k=1,...,n
have minimum-length supports, are linearly independent and form a basis in
SZ i.e. any generalized spline S(z) € S&, k = 1,...,n can be uniquely
represented in the form

= Z bjrBjr(xz) for z€la,b] (4.1)
j=—k

for some constant coefficients b; .
Applying the differentiation formula (3.3), we obtain for r < k — 1

N-1

S(r)(x): Z b(T)BJk ()

j=—k+r



where
bj ks =0
b(li; = b(l_l) _ b(l_l)
4 ik _ i=Lk 1 =1,92,...,7
7,k—1

If now b\ >0, k= 0,1,2, j = =3+ k,..., N — 1, then the spline S(z) will
be a positive monotonically increasing and convex function.
Let Zj, 51(f(x)) be the number of isolated zeros of a function f(z) on the
[a,b]
segment [a, b].

Lemma 4.1. If the spline S(z) = z;vz__lk bjrBjr(z), k=1,...,n does not
vanish on any subsegment of [a,b], then Zj, 4(S(z)) < N +k — 1.

Denote by supp Bj ;(x) = {z|Bj(x) # 0}, k =1,...,n, the support of
the spline Bj (), i.e. the interval (z;, Tj4g41)-

Theorem 4.2. Assume that 7_j; < T_g41 < -+ <7Tn—_1, k=1,...,n. Then
D:det(Bjyk(Ti))#O, i,j:—k,...,N—l

if and only if
T; € supp Bjp(z), j=—k,...,N+1. (4.2)

If condition (4.2) is satisfied, then D > 0.
The following three statements follow immediately from the theorem 4.2.

Corollary 4.1. The system of generalized B-splines {B; x(x)}, j = —k,...,
N —1,k=1,...,n, is a weak Chebyshev system in the sense of [3], i.e. for
any T < T—g+1 < -+ < TN—1 we have D > 0 and D > 0 if and only
if condition (4.2) is satisfied. If the latter is satisfied, then the generalized
spline S(z) = Zjvz__lk bjxBjr(z), kK =1,...,n has no more than N + k — 1
isolated zeros.

Corollary 4.2. If the conditions of Theorem 4.2 are satisfied, the solution of
the interpolation problem S(1;) = fi, i = —k,...,N — 1, f; € R exists and is
unique.

Let A ={a;},i=1,...,m, j=1,...,n, bearectangular (m xn) matrix
with m < n. The matrix A is said to be totally nonnegative (totally positive)
[3] if the minors of all orders of the matrix are all nonnegative (positive), i.e.
for all 1 <1 < m we have det(a;,;,) >0 (>0) forall 1 <i; < ... <i <m,
1< <...<5<n.

Corollary 4.3. For arbitrary integers —k < v_j < ... < vj_p_1 < N —1
and T < T_p41 < - < Tj—g—1, k=1,...,n, we have

D,:det{B,,j,k(Ti)}EO, i,j:—k,...,l—k—l,

and Dy > 0 if and only if 7; € supp By, x(z), j = —k,...,l =k —1, i.e. the
matrix {Bj (7))}, 4, j = —k,..., N — 1 is totally nonnegative.

Denote by S~(v) the number of sign changes (variations) in the sequence
of components of the vector v = (vy,...,v,), with zero being neglected. For



a bounded real function f(x), let S7(f) = S™(f(x)) be the number of sign
changes of the function f(x) on the real axis IR, without taking into account
the zeros

ST(f(x)) = sgpS_[f(Tl),...,f(Tp)], 71 <Tp < ...< Tp.

Theorem 4.3. The spline S(z) = Z;V_ lk bjrBjr(x), k=1,...,n is a vari-
ation diminishing function, i.e. the number of sign changes S(x) does not
exceed the one in the sequence of its coefficients

N-1
5@( > bj,kBj,k(x)> <87 (b), b= (_tr - bN_11)

j=—k

Let S’S be a set of generalized splines on the mesh A = {Z;|Z; = px; +
q,i=0,..., N} which is obtained from the linear space S¢ by linear transfor-
mation of the variable & = px + ¢ where p # 0 and ¢ are constant.

Theorem 4.4. An approximating generalized spline S(z) € S¢ is invariant
with respect to a linear transformation of the real axis R = (—o0, 00).

The proofs of the statements above are based on the methods of [10] for
polynomial B-splines.
65. Local Approximation by Generalized Splines

Using the locality of B-splines one can reduce the representation of a spline
S(z) as a linear combination of B-splines (4.1) for k¥ = n to the form

7
Z bj,nBj,n(l')a WS [.Ti,CUH_l], 1=20,1,...,N — 1. (51)
Jj=t—n
Theorem 5.1. The restriction (5.1) of the spline S(x) to the interval [x;, x;11]
can be written in the form

S(x) = Pipea(w) + b7 0@ () + 00705, (),

i—1,n
where
k n—2—k
zn 2 Zbi )n+1+k;n En 2 )( )
Qi,n—2( )/ci—1.1, E=0
Q) () = D (@) — Q% N(a
) 2() Qz 1,n 2() Qz,n 2( ), k:1,2,. ,n_2
Ci—k—1,k+1
n—2 ($_$ )
Qjm_2(z) = J@TJ, j=i—n+2,.. .0 QM (r)=1
1=0 ’
plk=1) _ pk=1)
pk) — Zon I k=1, -1 b =bi., j=i-n,...i
hm Cin—k &

This assertion is new even for polynomial splines, and can be proven by in-
duction.
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