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CHAPTER I 

INTRODUCTION 

 

1.1 Requirements for a Better Model 

 The requirements for usability of an option pricing model are almost similar to 

applications and practices of a model in other fields of applied sciences. That is, a 

model should describe the characteristics of a real phenomenon well, and the 

derivations of the model and its properties should not be too complicated with 

available resources. This can be achieved by a proper design of the components of the 

model and we call this process the specification of the model. Therefore, a good 

model should have many parameters, but not too many, to reflect the phenomena 

sufficiently. With these considerations, the practitioners in all applied sciences always 

need to balance between the accuracy of the model and the efficiency of the model. 

 The distinct characteristic that differentiates the study of an option pricing 

model from other models in the applied sciences is that the study of an option pricing 

model is to deal with the attitudes of collections of investors which value an option 

price based on their risk preferences. The importance of this risk preference has been 

shown in various empirical studies which agree that investors always need to be 

compensated more than the risk free rate asset for taking risks in investing in a risky 

financial market. We use the word “risk premium” to represent the additional return 

that investors need to be compensated for taking more risks. But the derivation of the 
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risk premium is very complicated and rests on ideal assumptions. The practical 

alternative is to implicitly embed this risk premium in the parameters of the model. 

With these requirements for a better model, the study of option price modeling has 

long been mainly divided into two parts, 

 Specifications of the model and 

 Estimation of the model parameters. 

1.1.1 Specifications of the Model 

The study of modern option pricing models started with the work of Black and 

Scholes (1973) who implemented the geometric Brownian motion for the asset price 

dynamics. This model of an asset price dynamic is known as the Black Scholes model 

(BS model). However, given the strict assumptions of the model, this model could not 

explain the real asset price dynamics sufficiently well. The work of  Merton (1976) 

added a compound Poisson process whose jump size is log-normally distributed to the 

original BS model and this model is called the jump-diffusion model. By adding this 

process, the improved model can describe the asymmetry and fat-tailed distribution of 

the asset return.   

The shared properties of both Brownian motion and Poisson processes are the 

independent and stationary increments of their paths. To combine these two generic 

processes and even more into a single process, the Levy process is proposed. By 

including both continuous and discontinuous processes, a Levy process is a versatile 

model to be used for a model of an asset price dynamic. But the implementation of the 

pure Levy process model is not a convenient way to describe some observed 

properties of the variance process of an asset. By many empirical observations, the 

variance of the asset return is not constant and shows some other properties including 
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volatility clustering and correlation of the asset return and its volatility. To explain 

these mentioned properties, Heston (1993) introduced the stochastic volatility model 

by adopting a mean reverting square root process which has a correlation with the 

asset return to represent the variance process. This work also employed the 

characteristic function method to derive an option pricing formula. When the 

characteristic function of the asset price dynamic is analytical, we refer to this model 

as the analytical tractable model. With this tractable model, an option pricing formula 

can be recovered with the inverse transform method. Another way to explain the 

mentioned empirical properties of the variance, the time changed Levy process was 

brought in to complement a pure Levy process by Carr, Geman, Madan and Yor 

(2003). 

The stochastic volatility model also has its drawback in that it is not able to fit 

prices of short date options well. Later Bates (1996) included a jump component into 

the stochastic volatility model to be able to explain the prices of short date options. 

The work of Bakshi, Cao and Chen (1997) included a stochastic interest rate 

component in order to correct prices of long date options. Adding more features to the 

model is not without problems. The long computation time, the difficulties in 

implementation and the complicated pricing formula have prevented a highly accurate 

model to be used in the financial industry. 

1.1.2 Estimation of the Model Parameters 

To identify the risk premium associated with an option model, most models 

implicitly include this risk premium in the parameters of the models. By observing the 

time series data of asset and option prices, we may be able to estimate these 

parameters by a statistical method, but there is no guarantee that the model’s 
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parameters from this method will generate a price that fits with the market price. A 

process to identify the coefficients of the variables in the model that are consistent 

with the market prices is called the calibration process. However this process 

normally leads to a nonlinear inverse problem which is usually an ill-posed problem. 

Also in a real market, prices of options are not available for all maturities and strikes, 

an optimization algorithm is therefore needed to find the best possible solution to 

identify the coefficients of parameters. Though there are many efficient optimization 

algorithms for the solution to this problem, many algorithms succeed only in finding a 

local solution. Global optimization algorithms can overcome this difficulty but most 

of the global optimization algorithms are not efficient, and it is difficult to prove for 

their global convergence.  

 

1.2 Jump-Diffusion Model with Stochastic Volatility and Stochastic 

Interest Rate  

Inspired by the works of Bakshi, Cao and Chen (1997), Pinkham and 

Sattayatham (2011) and Carr and Wu (2004), our model will combine a time changed 

Levy process, a compensated compound Poisson process (jump component) and a 

stochastic interest rate component. The set up of this model specification is close to 

the model in Pinkham and Sattayatham (2011) but we will not time-change the jump 

component, the reason for which we will give in the later part of the thesis. This 

specification of stochastic components will help to explain the empirical 

characteristics of asset prices and their volatilities which are described in Bakshi, Cao 

and Chen (1997) and Schoutens (2003). In this specification, the jump component will 

represent the jump of prices due to the rare events, and the time changed Levy process 
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will explain the characteristic of asset price volatility including the volatility 

clustering property and the leverage effect (The correlation of the volatility process 

and the asset price process). The derivation will utilize mostly the risk neutral 

expectation pricing method (3.4), instead of the partial differential equation method, 

which should give a more simple and efficient way to derive and to compute an 

option price.  

All of 3 papers mentioned in the first paragraph of this section on which our 

work is based use the statistical methods to estimate the parameters of the models. We 

shall extend our work by having our model to be calibrated to the market prices 

instead of using a statistical methodology. There are some previous works using a 

calibration method such as Moodley (2005), Nassar (2010) and Mikhailov and Nogel 

(2006), but most of them give a crude description of the optimization algorithms and 

do not show the results on the numerical methods.  

 

1.3 Outline of this Thesis 

Here, we provide the outline of this thesis. 

Chapter II gives a brief background of the mathematics for continuous time 

processes, jump processes and Levy processes. The intention in this chapter is to 

provide readers with the general concepts and the introductions to the notations that 

we will use in the later chapters.  

For Chapter III, we begin with the background of the risk neutral pricing 

method in both complete and incomplete markets. Then we provide the practicability 

side of the option market in terms of their uses and trading. The empirical evidences 

and the definitions of these stylized facts are briefly introduced here. In the last part, 
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we also include the importance and derivation of the jump-diffusion and stochastic 

volatility model. 

For Chapter IV which is the first main part of this thesis, we combine the 

Lewis Fourier transform method with the Modular Pricing method to derive a 

European call option pricing formula of the jump-diffusion model with stochastic 

volatility and stochastic interest rate. We then present the numerical algorithm applied 

for the calculation of option prices generated from our pricing formula. 

In Chapter V, which is the second main part of this thesis, we start with the 

background of the nonlinear inverse problem and the regularization method that are 

applicable to our calibration problem. Then, the concept of global optimization is 

introduced. In the last section, we implement the calibration method to the option 

model derived in Chapter IV. Both simulated annealing algorithm and local search 

algorithm are employed to obtain the solution of this calibration problem. 

We then conclude our work in Chapter VI and discuss the possibilities for 

further research. 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 

MATHEMATICAL AND PROBABILITY CONCEPTS 

 

 In this chapter, we review the concepts of probability and stochastic calculus 

for continuous processes, jump processes and Levy processes that will be tools for the 

following chapters. Rather than giving a thorough mathematical treatment, we present 

the ideas and general facts that are applicable to our problems. 

 

2.1 Probability and Stochastic Process 

 In financial modeling, we deal with the characteristics of the prices of 

underlying assets and its derivatives. The dynamics of these prices are random and 

governed by the desired probability laws set by the model specification.  The 

theorems of probability and stochastic process will provide the general foundation for 

the modeling work. 

 To save a repetition of a general description, we assume there is always a 

probability triple (Ω, , P) or (Ω, , Q) associated with the stochastic process we 

refer to. This probability triple is always defined and can be extended to accommodate 

our uses. Each component of the probability triple is defined as follows, 

 Ω denotes set of all states of the world which relates to the model, where an 

element  is referred to be either a sample point or a sample path. 

 denotes the σ-algebra which is the set of possible events. 
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 P denotes the physical or real probability measure and Q denotes the risk 

neutral probability measure. 

 A filtration F is a non decreasing family {t}0≤t≤T which represents the 

increasing known information. 

 The stochastic process 
0( )t t TX X   is adapted to the filtration F, if 

tX is t 

measurable for each t. That means given the filtration F, at each t , we know 

the possible values of .tX  

Definition 2.1. (Stochastic Process). Let (Ω, , P) be a probability space, T  an index 

set, (E,) a measurable space. An (E,)-valued stochastic process on (Ω, , P) is a 

collection ( )t t TX  of random variables tX : (Ω, , P) → (E, ) for .t T   

 For each t T , we have a random variable (  , )X t : ( ,  )X t   for all ω 

Ω and  

 For each ω Ω, we have a path   ( , )X  : ( ,  )t X t  for all .t T  

Definition 2.2. (Martingale). A stochastic process X is a martingale with respect to a 

probability space (Ω, , P) with a filtration F if 

 X is F adapted, 

 E[|Xt|] < ∞ for all t ≥ 0, 

 E[Xt|s] =  Xs for 0 ≤ s ≤ t 

Definition 2.3. (Brownian Motion). A real-valued process 
0( )t tW 

 is a Brownian 

Motion (BM.) if it satisfies the following properties, 
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0W  = 0 almost surely. 

 For every s t u  , 
u tW W  is independent with 

t sW W . 

 For every 0 s t  , 
t sW W is normally distributed with mean 0 and variance 

.t s  We will denote the normal distribution with mean 0 and variance t s  

by the symbol (0, ).N t s  

 

2.2 Stochastic Calculus for a Continuous Stochastic Process 

Definition 2.4. (Ito Process). An Ito process 
tX  is a process that can be represented 

by  

 0

0 0

( , ) ( , ) ,

t t

t s s tX X a s X ds b s X dW     (2.1) 

where ( , )ta t X and ( , )tb t X are adapted processes which satisfy some conditions to 

guarantee the existence and uniqueness of the solution (Refer to these conditions in 

Øksendal (1998)). The first integral on the right-hand side is defined as the Riemann 

integral while the second integral is the Ito integral (Definition 2.5) with respect to a 

Brownian motion tW . 

We often write (2.1) in differential from as 

 ( , ) ( , ) ,t t t tdX a t X dt b t X dW   (2.2) 

with the initial condition 
0.X  

Definition 2.5. (Ito Integral). The Ito integral 
0

( , )
t

s sf s X dW can be defined for a 

function ( , )tf t X  adapted to {t}0≤t≤T  such that 
2

0

( ( , ) )
t

sE f s X ds    by 
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( 1) ( 1)

10

( , ) lim (( 1) , )( ).

t n

s s t it t
n i i

i n n n

t
f s X dW f i W W W

n  


    

As consequences of the Ito integral, we can have 3 important results of the Ito 

integral, 

 Martingality, 
0

( , )
t

s sf s X dW is a continuous martingale, 

 Zero-Mean Property, 
0

( ( , ) )

t

s sE f s X dW =0, 

 Ito Isometry, 
2 2

0 0

( ( , ) ) ( ( , ) ).

t t

s s sE f s X dW E f s X ds   

Theorem 2.6. (Ito’s Formula).  Let ( , ) ( , )t t t tdX a t X dt b t X dW 
 
be an Ito process 

where ( , )ta t X  and ( , )tb t X are adapted processes. Define the process Y  by 

( , )t tY f t X  , where  f  is a 1,2C  function. Then 

 
2

2

( , ) ( , ) 1 ( , )
( , ) ,

2

t t t
t t t t

f t X f t X f t X
dY t X dt dX dX dX

t x x

  
  

  
 (2.3) 

or in integral form, 

 

2

0 2

0 0

( , ) ( , ) ( , )1
( , ) (0, ) [ , ] .

2

T T T

t t t
T t t

o

f t X f t X f t X
Y T X Y X dt dX d X X

t x x

  
   

      

The term 
t tdX dX  in (2.3) is defined to be the differential form of quadratic variation 

of process X  where the integral form of this term is denoted by [ , ] .tX X  We report 

the values of the common quadratic variation terms here without detailed calculation. 

For a time variable t and Brownian motions iW , 
jW  with correlation or with no 

correlation, the values of these terms are 

 

 

 

 

 

 

 

 



11 

 

 

0,

,

0 if there is no correlation,

 if there is correlation

i i

i j

i j

dWdt

dW dW dt

dW dW

dW dW dt









  

where  denotes the correlation coefficiency of  and .i jW W  

The Ito formula in (2.3) applies to a function of a one dimensional process. In 

case, the function tY  depends on more than one stochastic variable, we can extend the 

formula to the Ito formula for multidimensional processes. 

Theorem 2.7. (Ito’s Formula for n-dimensional process).  

Let 
1

( , ) ( , ) ,  1,...,
m

i

t i t ij t i

j

dX a t X b t X W i n


   be a multidimensional process where
 

( , )i ta t X and ( , )ij tb t X are adapted processes. Define the process Y by ( , )t tY f t X
  

where  f  is a 1,2C
 
function. Then we have  

 

2

1 1 1

( , ) ( , ) 1 ( , )
.

2

n n n
i i jt t t

t t t ti i j
i i jt t t

f t X f t X f t X
dY dt X X X

t X X X  

  
     

   
   (2.4) 

 

2.3 Feynman Kac and Girsanov Theorems 

The Feynman Kac theorem allows to write the solution of a partial differential 

equation (PDE) in terms of the expectation of the stochastic differential equation 

(SDE) whose drift and diffusion coefficients are defined by the coefficients of the 

given PDE. In the option pricing application, this theorem will give the flexibility to 

write the solution of the PDE generated from a riskless portfolio as the expectation of 

the discount payoff function whose asset dynamic is on the risk neutral measure and 

vice versa.    
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Theorem 2.8. (Feynman Kac Theorem).  Given a stochastic differential equation of 

the form, 

 ( , ) ( , )t t t tdX a t X dt b t X dW   (2.5) 

which is an Ito process starting at time 0t  . Suppose, ( , )y T x  satisfies the following 

PDE, 

 
2

2

2

( , ) ( , ) 1 ( , )
( , ) ( , ) ( ) ( , ),

2

y T x y T x y T x
a x T b T x q x y T x

t x x

  
  

  
 (2.6) 

with an initial condition 

 
0 0( 0, ) (0, ),y T x f x 

 

where ( )q x is a continuous function. 

Then the solution of the PDE (2.6) can be expressed as the expected value of the 

discount payoff, 

 0

0

( , ) [exp( ( ( )) ) ( ( ))].

T

y T x E q X t dt f X T   (2.7) 

The Girsanov theorem describes the way to change the measure of an Ito 

process from one measure to another measure. In the application for the derivatives 

pricing, we need this theorem to change the dynamic of the underlying asset from a 

physical measure to a risk neutral measure. 

Theorem 2.9. (Girsanov Theorem). Given an Ito process 
tX  with well defined 

coefficients ( , )ta X t and ( , ),tb t X  

 ( , ) ( , ) ,t t t tdX a X t dt b X t dW   (2.8) 

and ( )M t is an exponential martingale under a measure P and defined by 

 
2

0 0

1
( ) exp( ( ) ( ) ( ))

2

t t

M

tM t s ds s dW s      (2.9)  
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with [ ( )] 1PE M t   and ( )t is a function of .t  

tW and 
M

tW are Brownian motions on the same probability space (Ω, , P) and 

correlated with .M

t tdWdW dt  

Then we can have the following results, 

 ( )M t  defines the a Radon Nikodym derivative 
*dP

dP
and  

 the new Brownian motion 
*W  under the probability space (Ω, , P

*
) can be 

written as 

 * .t tdW dW dt   (2.10) 

 

2.4 Jump Process 

2.4.1 Poisson and Compound Poisson Process 

 A Poisson process is one of the simplest discontinuous processes and will be 

the main building box to create other jump processes. The standard Poisson process is 

a stochastic process 
0( )t tN 
with jump size of one unit and is constant between two 

jumps.  

Definition 2.10. (Poisson Process). A stochastic process 
0 ( )t tN N  is said to be a 

Poisson process with parameter λ if it satisfies the following conditions; 

 
0 0 ,N  

 For every 
u ts t u, N N    is independent with 

t sN N ,  

 The path 
tN is an increasing function with jump size of one unit. 

 

 

 

 

 

 

 

 



14 

 

 For any real number 0t   and 0h ,  the process 
t h tN N   has a stationary 

Poisson distribution with a parameter h . That is, 

 
( )

(( ) ) ,  for 0,1,2,...
!

n
h

t h t

h
P N N n e n

n

 

      (2.11) 

The process N  is usually referred as a Poisson process with intensity λ which is the 

expectation of the number of jumps per unit time.  Since the jump size of a Poisson 

process is fixed at 1 unit, the application in financial modeling is rather limited. The 

compound Poisson process is introduced to give more flexibility on the jump size 

specification. 

Definition 2.11. (Compound Poisson Process). Let process 
tN  be a Poisson process 

with intensity λ and 
nY  a sequence of independent and identically distributed (i.i.d.) 

random variables with distribution  and independent of 
tN . The compound Poisson 

tX  is defined as 

 
1

,     with t 0.
tN

t n

n

X Y


   (2.12) 

The jumps of the compound Poisson process 
tX  in (2.12) occur at the same times as 

the jumps on 
tN . While the jumps of 

tN  have one unit in size, the jumps of the 

compound Poisson process have the jump of 
nY which have the distribution .  

 The Poisson and compound Poisson processes are examples in the class of 

jump processes. In financial application, these processes are used as the components 

in the model to represent a dynamic of asset price. By the concept of no-arbitrage 

pricing (Chapter III), the cadlag version (right continuous with left limit) of these 

jump processes is considered. 
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Definition 2.12. (Cadlag). A real valued non-anticipating stochastic process 
0( )t tX 

on a filtered probability space is said to be a cadlag version stochastic process if for 

[0, ] :t T   

 Right continuous: ,t tX X   

 Left limit: left limit of the process exists, i.e. lim .s t
s t

X X 


  

An asset price, in financial modeling, is normally assumed to be a cadlag process. 

Because at time t  , we know the value of the process before time t  but do not know 

the value at time .t  But at time t  , we know the value of time t  which is the past 

information. Since in the no-arbitrage market, the investors are not able to see the 

future of the price movement, therefore, the definition of a cadlag process is 

equivalent to the definition of a non-anticipating process which is defined to be a 

stochastic process 
0( )t tX 
 with respect to the filtration 

0{ }t tF 
 where the value of 

tX  is 

revealed at time t  for each [0, ].t T   

With this rationale of the cadlag process, a jump of a process 
tX  at time t ≥ 0 

is defined to be 

 

,

 lim .

t t t

t s
s t

X X X

where X X






  



 

Lemma 2.13. (Characteristic Function of a Compound Poisson Process). Let 
tX  be a 

compound Poisson process with intensity   and the distribution of jumps  . Then the 

characteristic function of the process 
tX , denotes by 

tX (u ) , is given by 

 ( ) [ ] exp( (exp( ) 1) ( )).t

t

iuX

X u E e t iux d x  




    (2.13)  
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Proof:  

 

1 1

1

1

1

1

[ ] [exp( )] [ exp( )]

[ [ exp / ]] [ [exp( )] ]

[exp ] ( )

tt

t

t

NN
iuX

n n

n n

N
n

n t

n

n

t

n

E e E iu Y E iuY

E E iuY N E E iuY

E iuY P N n

 







 

 

 

 





 

 
1

0

( )
from ( ) exp( )

!

( ) [(exp )]
[ ] exp( ) .

!
t

n

t

n n
iuX

n

t
P N n t

n

t E iuY
E e t

n











  

 
 

 

0

1

From exp(x)
!

           exp( ( [exp ] 1))

           exp( (exp( ) 1) ( )).

n

n

x

n

t E iuY

t iux d x



 











 

 





 

Defining a new measure ( ) ( ),v x x  the above equation can be written as 

 [ ] exp( (exp( ) 1) ( ).tiuX
E e t iux dv x





   

The measure v  is called the Levy measure of the process 
tX .(2.21) 

In financial modeling, the asset price under a risk neutral measure (Chapter 3) 

is a martingale but both Poisson and compound Poisson processes are not martingales 

i.e. the mean of the process condition with the information up to time t  is not equal to 

zero. Then a mean correction is needed to make them martingales. 

Definition 2.14. (Compensated Compound Poisson Process). A compensated 

compound Poisson process X is defined to be a compound Poisson process from 

which the mean has been subtracted. That is  
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1

 where  = ( ).
tN

t t Y Y

n

X Y k t k y dy 


 

    (2.14) 

Lemma 2.15. (Characteristic Function of a Compensated Compound Poisson 

Process). For the compensated compound Poisson process
1

tN

t t Y

n

X Y k t


  , the 

characteristic function of tX is given by 

 

( ) [exp( ( ))],

exp( )exp( (exp( ) 1) ( ),

exp( (exp( ) 1 ) ( )).

t
t YX

Y

u E iu X k t

iu k t t iux d x

t iux iux d x

 

  

 









 

  

  





 (2.15)  

2.4.2 Stochastic Integral for a Jump Process and its Integral 

Definition 2.16. (Stochastic Integral for a Jump Process). Given a stochastic process 

( , )tf t X
 
that is adapted and left continuous, the stochastic integral with respect to the 

jump process 
tN  is defined by 

 

10

( , ) ( , ) .
T

k

T N

t t k T k

k

f t X dN f T X N


   

In this definition, the jump process is restricted to the jump process that has a finite 

number of jumps in the interval [0,T] with 
0 0.N   The jump time 

kT is defined at the 

time when the jumps occur and 
1.k k kN N N   

 

Theorem 2.17. (Ito Formula for a Jump Process).  

Let ( , ) ( , ) ( , )t t t t t tdX a t X dt b t X dW J t X dN    be an Ito process with jumps where

ta( t,X ) , ( , )tb t X are adapted processes and 
tJ( t ,X )  is a left continuous adapted 

process.  Define the process Y  by ( , )t tY f t X , 1 2,C function. Then  
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2

2

( , ) ( , ) 1 ( , )

2

     [ ( , ) ( , )] ,

c c ct t t
t t t t

t t t

f t X f t X f t X
dY dt dX dX dX

t x x

f t X f t X dN

  



     
  

  

  

 

where ( , )tf t X   represents the value of the function just before the jump occurs and

c

tX is the continuous part of 
tX , i.e. 

c

tX
 
is obtained by removing the jump parts from 

.tX
 

 

2.5 Levy Process 

 Both Brownian motions and jump processes share the same properties that the 

increments of their paths are stationary and independent from the past. The class of 

Levy process includes both BM and jump process and extends to all the processes that 

have both stationary and independent increment properties and includes all the 

independent and linear combination of them.  

2.5.1 Levy Process and its Properties  

Definition 2.18. (Levy process). A right continuous with left limits (cadlag) stochastic 

process X  on a space (Ω, , P) is said to be a Levy process if it satisfies the 

following conditions: 

 
0X = 0, 

 Its increments are independent, 

 Its increments are stationary, 

 The process is stochastically continuous; that is 

0
0, lim ( ) 0.t h t

h
P X X 
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The last condition implies that the probability of the jump at any time t  is zero. That 

is jumps occur at random times i.e. one cannot predict when jumps will occur.  

 By having a Levy process to be a cadlag process, then the number of jumps in 

a compact interval [0,T] will be countable by the following lemma. 

Lemma 2.19. (Lemma 13.12 Pascucci (2011)). Let X  be a cadlag process on a 

compact interval [0.T]. Then for any n N , the number of jumps of X  of size greater 

than 
1

n
is finite: 

 

1
# (0, ], .tt T X

n

 
     

   

In particular, X  has at most a countable number of jumps. By this lemma, we can say 

that a Levy process can have only finite number of large jumps (This is due to the last 

condition of definition 2.18). On the other hand, a Levy process can have a countably 

infinite number of small jumps. 

2.5.2 Levy Ito Decomposition and Levy Kitchen Theorem 

 Once a model gets more complicated, the probability density function of the 

log-return of the asset price may not have an analytical form or is difficult to derive. 

However there is a one to one relationship of probability density function and 

characteristic function to uniquely determine the probability law of that variable.  

Definition 2.20. (Fourier Transform and Inversion). Let f ( x )  be a piecewise 

continuous function in the absolute integrable space L
1
 over R, that is 

 ( ) .f x dx




    

The Fourier transform of ( )f x  is defined by 
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 ( ) ( ) ,iuxFf u e f x dx




   

where u  is the transform variable defined in the real domain and 1i    is the 

imaginary unit. The inverse Fourier transform is defined as; 

 
1

( ) ( ) .
2

iuxf x e Ff u du








   

In some cases, we will allow u  to be a complex number and call the inverse transform 

the Generalized Fourier transform: 

  where z is a complex number.
1

( ) ( )   
2

i

i

z

izx

z

f x e Ff z dz








   (2.16)   

Definition 2.21. (Characteristic Function). The characteristic function for a random 

variable 
tX  with probability density function 

Xf ( x ) , denoted by ( )X u , is defined as 

the Fourier transform of the probability density function of the random variable, so we 

can write the characteristic function as 

 ( ) [ ] ( ) [ ( )],iuX iux

X X Xu E e e f x dx F f x




    (2.17) 

where [ ( )]XF f x  denotes the Fourier transform of the probability density function. 

Using the Euler formula, the characteristic function can also be expressed as 

 ( ) [ ] [cos( )] [sin( )].iuX

X u E e E uX iE uX     (2.18) 

By the inverse formula of Fourier’s transform, the density function is derived by 

 
1 1

( ) [ ( )] ( )
2

iux

X X Xf x F u e u du 




 



   . 

Below are some of the important properties of characteristic functions (Schmelzle 

2010).  
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 ( )X u always exists since iuXe is a continuous and bounded function for all 

finite real u  and .X  

 (0) 1X  for any continuous distribution, 

 ( )      ,X u is a continuous function of u  

 ( ) 1,X u   

 If 
1X and 

2X are independent, then the characteristic function ( )Y u of the new 

random variable 
1 2Y X X  is the product of the characteristic functions of 

each random variable, 
1 2
( ) ( ).X Xu u   

One of the most important characterization of a Levy process is its infinitely 

divisible distribution property. This property depicts the fine structure of a Levy 

process when we want to study the minute detail of the distribution of an asset. 

Definition 2.22. (Infinitely Divisible). A random variable X  is said to be a infinitely 

divisible if for 2n  , there exists independent identically distributed variables 

1 nX ,...,X  such that 

 
1 ... .

d
n n

nX X X     (2.19) 

This means the process X can be decomposed into a sum of an infinite number of 

i.i.d. random variables. From this it follows that the characteristic function of 
tX  has 

a Levy-Khintchine representation. 

Theorem 2.23. (Levy Khintchine Theorem). If X  is a Levy process, there exists a 

unique function ψ(u):R→C such that ψ(0) =0 and 

 [exp( )] exp( ( )).E iuX t u   
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The function ψ(u) is called the characteristic exponent of the process X .  And ψ(u) 

has  the following Levy-Khinchine representation, 

 
2

1

1
( ) (exp( ) 1 1 ) ( ),

2
x

u iau u iux iux v dx 






      (2.20) 

 

where a  is the drift coefficient, σ is the diffusion coefficient and v  is the Levy 

measure. The Levy measure is defined by  

 
1

( ) 1 ( ( )) ,A s

s

v A E X 


 
  

 
  (2.21) 

where 1A
is the indicator function and A is an arbitrary interval on \{0}R  such that 

2
( 1) ( )

R

x v dx    i.e. the Levy measure is the expected number of jumps before 

time  1t   with a size which belong to A.  

  As a consequence of this theorem, the law of the Levy process X  is uniquely 

determined by the continuous function ψ(u) which is generated by the triplet (a, σ, v). 

This triplet is called the Levy triplet of the Levy process .X  

 The Levy-Ito decomposition indicates that, given a Levy triplet (a, σ, v), one 

can find the unique corresponding Levy process which has four decomposed 

independent Levy processes. 

Theorem 2.24. (Levy Ito Decomposition Theorem). Consider the triplet (a, σ, v) 

where a R , {0}R    and v  is the Levy measure satisfying ({0}) 0v   and 

2
( 1) ( )

R

x v dx   . There exists a unique Levy process X  which can be decomposed 

into four independent processes: 

 
1 2 3 4 ,X X X X X     
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where the characteristic exponent of each process can be expressed by, 

 

1

2

3

4

2

1

1

( ) ,

( ) ,
2

( ) ( 1) ( ),

( ) ( 1 ) ( ).

X

X

iux

X

x

iux

X

x

u iau

u
u

u e v dx

u e iux v dx


















 

  





 

The process 
1X represents the drift process with parameter a  and the process

2X

represents the diffusion process with parameter .  The process 
3X represents the 

compound Poisson process with intensity [ 1]v x    and jump distribution given by 

[ ] [ { 1}] / .Ju A v A x     By Lemma 2.19, the number of jumps of this component is 

finite. The last process 
4X is the limit of compensated compound Poisson process: 

4X

=
1

0
lim( 1 [[ ,1)]. ).

s
sX

s t

X v t



 




   The number of jumps in this component can be 

infinite but is compensated by the term [[ ,1)].v t  , the Levy measure of the jump sizes  

between a small number 0  and 1, and this makes the term 
4X finite. Then we can 

write this Levy process as  

 
{ 1} 1

0
1 lim( 1 ) [[ ,1)]. .

s s
t t s sX X

s t s t

X at W X X v t


 
   


 

         (2.22) 

Definition 2.25. (Finite and Infinite Activity). Let X  be a Levy process with Levy 

triplet (a, σ, v) then 

 if v(R) < ∞, the number of  jumps of all paths of the Levy process is almost 

surely finite in any fixed interval and we say that the Levy process has  finite 

activity. 
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 If v(R) = ∞, the number of jumps of all paths of the Levy process is almost 

surely infinite on any fixed interval and we say that the Levy process has 

infinite activity. 

2.5.3 Subordination 

By the fact that the volatility of an asset price process exhibits the correlation 

between time intervals (Volatility Clustering (Section 3.5)), it cannot be modeled by a 

pure Levy process. A popular solution to this problem in financial modeling is by 

subordinating a pure process by a suitable subordinator. A subordinator is a Levy 

process that has almost surely non-decreasing paths. And by subordination, we mean 

to change a pure Levy process 
0t t(Y )  to a new process 

t X ( t )Z Y  where X ( t ) is an 

independent subordinator. The new process Z is called a subordinated Levy process. 

Instead of characterizing this process by its characteristic exponent, it is much 

easier to characterize this process by its Laplace exponent. 

Definition 2.26. (Laplace Transform). Let 
tX
 
be a subordinator and for each 0t   let 

( )XL  denote the Laplace transform of 
tX i.e. ( ) [ ]tX

XL E e
 

 . Then there is a 

continuous and non-decreasing function ( ) such that for all 0t  and all 0  , 

 ( ) exp[ ( )],XL t    

where ( ) is the Laplace exponent of 
tX . Similar to the characteristic function, the 

Laplace exponent holds a unique relationship with the Levy process .X  The Levy 

Khinchine representation also holds for the Laplace exponent under the form 

 ( ) (1 ) ( ),xa e v dx      

where a again denotes the drift coefficient and v is the Levy measure. 
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Theorem 2.27. (Bochner). Winkel (n.d.). Let 
0( )t tY 
be a Levy process and 

0( )t tX 
be 

an independent subordinator. Then the process 
tZ defined as 

tt XZ Y  is a Levy 

process and we have 

 

( ( ))

( ) ( )

( ) ,

 ( )   ( ) ,

t X Y

t tY X

iuZ t u

iuY Xt u t

E e e

where E e e and E e e



 







 
 (2.23) 

where ( )Y u denotes the characteristic exponent of the Levy process Y  and ( )X 

denotes the Laplace exponent of the subordinator .X  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER III 

DERIVATIVE PRICING 

 

3.1 No-Arbitrage Principle 

 The main question here is how to value an option. The very first idea is to set 

up the portfolio to replicate the payoff of that option. As long as the value of the 

portfolio equals the payoff of the option, the cost of the portfolio should be the price 

of that option. This is called “The Law of One Price”. In the real world we may not be 

able to replicate some options due to an insufficient number of traded underlying 

assets, or from market imperfections. This first and second section of this chapter will 

describe a way to handle this situation. 

 Consider a market model based on 1d  assets denoted by 0 1( , ,..., ),dS S S S  

with iS {0}  , under a given probability space (Ω, , P) endowed with a 

filtration F. Assume our assets can be modeled as regular diffusion processes. The 

asset 0S  is normally taken to be a numeraire asset which is often but not limited to 

the money market asset tB , defined by 
0

exp( )

t

t u
B r du   with 

ur  the instantaneous risk 

free interest rate.  

 We will also define a discounted process 1/ .t tD B
 
The asset 1S will be the 

asset whose dynamic we want to design and we call it here the underlying asset. The 

rest of S  will be option price processes that we try to relate to 0S  and 1.S  
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A trading strategy is a stochastic process 
0 1

0 0( ) ( , ,..., )d

t t t t t th h h h   with   Ri

th   

which represents the number of units of each asset in the portfolio.  So that the value 

of a portfolio at time t  denoted by 
tV , is given by 

 .m m

t t t

m

V h S  (3.1) 

A portfolio with a strategy 
0 1

0 0( ) ( , ,..., )d

t t t t t th h h h  is called a self-financing strategy 

if  

 0

0

,

t

m m

t s s

m

V V h ds   (3.2) 

where 
0V denotes the amount invested at time 0.t  The term 

0

t

m m

s s

m

h ds  represents 

the profit or loss up from time 0 to time t .  The element of the process 
th can be a 

positive or negative number with a positive number representing the number of that 

asset in the portfolio and a negative number representing the number of the asset 

being short sell. The above equation indicates that the change of value of a self-

financing portfolio comes only from the changes of the prices of all securities in the 

portfolio without any injection or withdrawal of funds. 

 A general assumption for any model is that the market has no arbitrage 

opportunity. In the real market, there might be some arbitrage opportunities but by the 

mechanism of the efficient market, these opportunities will quickly disappear.  The 

arbitrage opportunity is defined by, 

 The initial value of the portfolio is zero and  

at anytime t > 0, 

 The value of the portfolio has no negative value with probability one 
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 The expected value of the portfolio is positive. 

 Simply speaking, the arbitrage opportunity is an event when a zero cost 

portfolio can generate some positive expected return. 

 A model is called complete if every asset in the market can be replicated by a 

self-financing portfolio. That is, with the strategy as in (3.2), one can design a 

portfolio whose value equals to any asset in the market. 

 We will define an Equivalent Martingale Measure (EMM) by: a probability 

measure Q is an equivalent martingale measure with respect to P (typically, we take P 

as the historical measure that we obtain from empirical studies) if  

 Both P and Q have the same null sets. 

 The discounted price process 
t tD S  is a martingale under Q. That is   

 [ ]      0 s t.m Q m

s s t t sD S E D S F    (3.3) 

The notation QE denotes the expectation under the equivalence martingale measure Q. 

And sF is the information from time 0 to time s. When the discounted process is 

defined to be 1/t tD B , we call this measure as “the risk neutral measure” as all 

assets have the same return (risk free return). That is, under the equivalence 

martingale measure, investors are indifferent in any asset because it has the same 

return. 

 The connection between no arbitrage strategy and existence of equivalent 

martingale measure was presented in Harrison and Pliska (1981), summarized in the 

following theorem: 

First Fundament Theorem of Asset Pricing (FTAP): A model admits no arbitrage if 

and only if there exists an equivalent martingale measure (EMM). 
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A consequence of this theorem is that the price of any option can be represented by 

 [ ]      0 .m Q m

s s t t sD C E D C F s t    (3.4) 

When the market is complete and admits no arbitrage, the price of an option can be 

calculated from the above formula. We call this method to derive the price of an 

option “the risk neutral expectation pricing method” which we will use extensively in 

later chapters.  

However the theorem does not guarantee the uniqueness of this equivalent 

martingale measure if the model is not complete. 

 

3.2 Incomplete Market 

 When the market is not complete, not every option can be replicated by a self-

financing portfolio. By the assumption of no-arbitrage, the market will admit non-

uniqueness of an equivalent martingale measure. The prices of an option at time s  , 

which has payoff at time t  denoted by 
tS , are bounded by  

 (inf [ / ],sup [ / ]),Q Q

s t t s t t s
Q M Q M

V E D S F E D S F
 

  

where M is the set of equivalent martingale measures. This is often the case, when the 

model has more than one source of risk and we have only the underlying asset and 

money market asset in the self-financing portfolio. Most of the models used in the 

industry contain more than one source of risk to better explain the dynamic of the 

asset. So these models are generally incomplete and need to be assumed how 

investors value the asset prices for additional risks. The more complicated models 

serve both financial institutions and their clients.  Whereas the financial institutions 

need a better model to describe the dynamic of an underlying asset, the clients need 

 

 

 

 

 

 

 

 



30 

 

some fancier structures to hedge their increasing risks. The requirements of the 

models are mainly for; 

 Valuation: The model should produce the price of an option that is consistent 

with the market price and correctly produce the prices of illiquid options in 

terms of the payoff and maturities. 

 Hedging: The model should better guide the seller of an option to mitigate the 

risks (the process to mitigate the risk is referred to as the hedging process) 

arrived from the uncertainties due to changes of underlying asset prices and 

other state variables. 

 

For a complete model, the valuation problem is the same as the hedging 

problem. That is, the value of the option will match with the designed riskless self-

financing portfolio. But in an incomplete market, this replication is not possible. The 

determination of price somehow depends on the risk preference, endowment, and 

views of the investors which can be incorporated into a utility function. The model, 

that includes the utility function, is referred as the equilibrium model. Even though 

this model is well accepted in the field of econometrics as it can fit the values of 

options to the past historical prices, in financial modeling, it is difficult to pin down 

the exact specification of this utility function. In the practitioner community, traders 

prefer to have a complete model whose dynamic of the underlying asset will be 

represented by the parametric model that implicitly includes the risk premium. We 

show in section 3.6 and 3.7 how this risk premium is included in the most common 

models. 
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3.3 Derivatives and Their Uses 

 The liberization of financial markets all over the world has eased the barriers 

for movements of fund flows to seek for better returns in different markets and 

different geographical locations. The free market system has made markets more 

efficient and, at the same time, causes more volatility in the financial markets. The 

market participants are exposed more to the financial risks while they can enjoy more 

rewards for their investments. The derivatives market grows hand in hand with the 

increase of the financial risks. The use of derivatives has increased to provide the 

market participants with a way to manage their exposures. 

 The simplest derivative instrument is a forward which is an over-the-counter 

contract to exchange for an underlying asset at fixed price at a future date between 

two parties. The fair price of the forward for the underlying asset that is not perishable 

and requires small cost of carrying, is derived by the no-arbitrage principle which can 

be formulated as 

 0 ,tr t

tF S e
  

where 
tF denotes the fair price of the underlying asset to be delivered at time t , 

0S

denotes the price of the underlying asset at time 0 and 
tr is the risk free rate. An 

almost similar instrument that is traded in the established exchanges is called a future. 

The difference between these two instruments is that a future is traded in a more 

orderly fashion i.e. fixed amount, fixed delivery date, while a forward is traded 

between two parties where normally one party is a financial institution, and the 

specification of the contract can be negotiated. 
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 A little more advanced instrument is an option. An option gives a right to the 

option buyer, but not an obligation, to buy or sell the underlying asset at a specific 

price and time from the option seller (or the writer). The option buyer compensates 

this right by paying the seller the premium which is the price of the option. A call 

option gives the right to buy an asset while a put option gives the right to sell. So the 

profit to the option buyer at maturity of the option is max( ,0)TS K for the call option 

and max( ,0)TK S for the put option where 
TS denotes the price of the asset at the 

maturity and K  is the value of the strike.  A European option allows the buyer to 

exercise the contract at only the maturity date while an American option allows the 

buyer to exercise any time from start to the maturity date. These types of options are 

also called plain vanilla options. There are more different payoff structures and 

different features of options which are called exotic options. The determination of a 

fair value of an option is more complicated than a forward and requires an assumption 

on the dynamic of an asset price which is called the pricing model. The very first and 

successful model was developed by Black and Scholes (1973) which is referred as the 

BS model here.  The dynamic of an underlying asset in the BS model is a geometric 

Brownian motion with a drift, 

 
,t t t t tdS S dt S dW  
 

where 
tS denotes the price of an underlying asset, 

t is the expected return of that 

asset,  is referred to as the volatility of the underlying asset and 
tW denotes a 

standard Brownian motion. By constructing the riskless portfolio 
t
 
which consists 

of 
t units of the underlying asset and a short selling one unit of option whose price is 

denoted by ( , ),tV t S the value of the portfolio can be written as 
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( , )t t t tS V t S   

 (3.5)  

By applying the Ito formula, setting ( , )t

t

V t S

t S




   and equating the return of this 

riskless portfolio to the risk free rate, the price of an option 
tV  is the solution of the 

following partial differential equation, 

 

2 2
2 2

2 2

1
0.

2

t t t
t t t t t

t t

V V V
S r S rV

t S S


  
   

  
  

For a European call option with the payoff function at the maturity given by 

max( ,0)TS K , where 
TS is the price of the underlying asset at time T  and K  is the 

strike price, the value of the call option at time 0t  , 
0V , can be solved by the above 

partial differential equation with the boundary condition max( ,0).T TV S K  We 

write here 
0C , instead of 

0V  in the following formula to signify that this is the value 

of a call option, 

 

0 0 0 1 2

2

0

1 2 1

( , ) ( ) ( ),

ln ( )
2 ,  ,

r

t

C S T S N d Ke N d

S
r T

Kwith d d d T
T








 

 
  

 (3.6) 

where 
0 0( , )C S T is the value of a European call option at time 0t   for the option 

maturing at time .T  Here ( )N d is the standard normal cumulative density function. 

The BS model is complete because we can replicate the value of an option with the 

underlying asset and the money market account by always keeping the number of 

units of the underlying asset, t
t

V

t


 


 and the rest of the portfolio in the money 

market account.  Observe that the pricing formula of a European call option in the BS 

model does not depend on the value of the expected return of the underlying asset,
t , 
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which is subject to a risk preference of each investor where a risk averse investor 

requires higher 
t to compensate for risk assuming while a risk seeker requires 

smaller .t  This observation asserts, what we have discussed, that a complete model 

has a unique equivalent martingale measure and this measure transforms expected 

physical returns of all assets to a risk free return, .tr  This is why we call this measure 

the risk-neutral measure because, under this measure, all the assets have the same 

expected return that make all investors to be neutral to a holding of any asset as these 

assets generate the same return. 

 

3.4 Dynamic Hedging and Option Trading  

 Based on (3.5), the change of a riskless portfolio due to the change of 

underlying asset price is expressed as 

 
( , )

.t
t t t t

V t S
d dS dS

S


   


 

By setting ( , )t

t

V t S

t S




  , the riskless portfolio will be immune to the change of the 

underlying asset price if we assume that the other variables that determine the option 

price are fixed. We call this process the delta hedging. As in (3.6), the value of a 

European call option, according to the BS model, depends on 5 BS variables, 
tS , K  

  ,  t  and r  , so the delta hedging keeps the value of the option unchanged due to the 

change of the underlying asset price. There are some other changes of the option 

value respect to other variables and are call sensitivities of the option value. Here are 

some important sensitivities on the BS model; 
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Delta Gamma

S S

C C
Vega Theta
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C
Rho

r

Vanna Volga
S






 



 
 
 

 Note: The first five sensitivities are the primary sensitivities that are derived by the 

first derivative of the option value with respect to the BS variables. The last two 

sensitivities are the second derivative of the option value with respect to the BS 

variables. Most of plain vanilla options tend to have very small second derivative as a 

first derivative is smooth and continuous. But for a complicated structure, these two 

sensitivities are not small and very crucial in determining the hedging process. 

The job of the options trader is to keep some sensitivities due to BS variables 

fixed or “neutral” in the trader’s jargon, and trade on his views on some specific 

sensitivities. All the sensitivities are local variables which means they vary to the 

large changes and even some sensitivities are not smooth depending on the payoff 

structures of the option. Also some of these variables are correlated to the other 

variables which requires the trading to be adjusted dynamically. The process of the 

adjustment is called the dynamic hedging. In practice, a trader will not manage 

options one by one but rather a portfolio of options with different types, different time 

to maturities and many payoff structures which is called the option book.  

 Even though the BS model rests on unrealistic assumptions, the model has a 

simple closed form solution which explains the changes of an option price by its small 

number of variables and allows for the simple mechanism for the dynamic hedging 
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for small changes in BS variables. It is a necessary tool for the option trading in 

practice. However the model is not perfect and faces a lot of criticisms which we will 

explore in the next sections. 

 

3.5 Empirical Surveys 

As discussed in the previous section on the features of the BS model, and by 

the fact that it is simple and has nice features: closed form formula, allowing for 

dynamic hedging, it has become popular in the industry at least for a way of quoting 

the option prices. By these advantages, the market normally quotes the prices by the 

implied volatility of the BS model. In the BS formula for a plain vanilla European call 

option, the formula is given by 

 

1 2

2

1 2 1

( , ) ( ) ( ),

ln ( )
2 ,  .

r

t t

t
t

C S T S N d Ke N d

S
r T

Kwith d d d T
T








 

 
  

 

There are five parameters determining the options prices, namely: the price of the 

underlying asset 
tS , the risk free rate 

tr , the strike price K , the time to maturity T  

and the asset volatility σ. All the parameters, except the volatility, are directly 

observable in the market. If the traded option prices are available, the volatility can be 

uniquely recovered by finding the root of the BS formula since the formula is an 

increasing function with the volatility. The volatility obtained by this way is called the 

implied volatility. In any specific time to maturity, there are usually a limited number 

of standard strikes quoted while the unquoted strikes can be interpolated from the 

available implied volatilities.  
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 Since the job of the option trader, unlike the underlying asset traders, is to 

trade on the level of volatilities, it is more convenient to look at the term structure of 

the implied volatility which is the three dimensional graph of volatilities level against 

the time to maturity or call it “term” in Figure 3.1 and the strike.  Figure 3.1 is the 

example of the volatility term structure of S&P index options on September 27, 1995. 

 

Figure 3.1 The S&P index option implied volatility term structure. 

 

 

Figure 3.2 Three months implied volatilities of SPX Options vs. the S&P index price. 
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 If we observe the charts in Figure 3.1 and Figure 3.2 (taken from Derman 

(2007)), we can see the volatility is not constant as assumed by the BS model. Here 

we give the common characteristics of the equity index option implied volatility. (All 

the characteristics except the last one are also observable in the Figure 3.1 and Figure 

3.2) 

 Volatilities are steepest for the short date options and shallower for the longer 

date options. 

 The minimum of the volatility for each tenor occurs around the strike that 

corresponds to the at the money forward level (the forward price of the 

underlying asset that corresponds to the time to maturity). 

 Lower strike options are priced at higher implied volatilities than the higher 

strikes at the same time to maturity. 

 There is a negative correlation between the movement of the underlying asset 

and the change in implied volatilities i.e. the volatility tends to go up when the 

price of index moves lower and vice versa. 

 The implied volatility tends to rise faster and decline slowly. 

 

For other asset classes such as single stocks, currencies or commodities, the 

implied volatilities share the common characteristics with the implied volatilities of 

the equity index. Such common characteristics of the time series analysis across the 

asset classes is called the stylized fact.  

 Schoutens (2003) has also pointed out 2 main characteristics of the dynamics 

of the asset prices which are 

 The log returns of the asset price do not behave like a normal distribution. 
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 The volatility of an asset price changes stochastically over time and is 

clustered. 

 Here we summarize the measures to the behaviors of the dynamic of asset 

price and its volatility. 

Skewness: Skewness measures the degree of asymmetry in the distribution. This 

measure is defined by the third moment about the mean divided by the third power of 

the standard deviation: 

 

3

3
2

[( ) ]

var[ ]

XE X

X


 (3.7)   

For a symmetric distribution, the skewness is zero. We say that a distribution has a 

negative skewness if the distribution has longer tail to the left than to the right and 

vice versa. 

Fat Tails and Excess Kurtosis: Fat Tails and Excess Kurtosis measure the shape of 

the distribution compared to the normal distribution. The Kurtosis is defined by 

 
4

2

[( ) ]

var[ ]

XE X

X


           (3.8) 

For the normal distribution, the Kurtosis is at 3. For a distribution that has a higher 

peak and more fat tails than the normal distribution, the Kurtosis is bigger than 3. 

Volatility clustering: Volatility clustering refers to the positive autocorrelation of 

asset returns, when higher returns tend to follow higher returns, and so are the lower 

returns. A common indicator to this property is the autocorrelation function of the 

squared returns 

 

2 2
( ( , ) , ( , ) )

 ( , ) ( ) ( ).

corr r t t r t t

where r t t X t t X t

  

   
 (3.9) 
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Here ( )X t denotes the logarithm of the asset price at time t, i.e. ( ) log ( )X t S t  so 

that ( , )r t t  represents the logarithm return of the asset price for the time lapsing t

and  represent the time lag, so that 
2 2

( ( , ) , ( , ) )corr r t t r t t    denotes the 

correlation of return at time t  and at time .t   

 

3.6 Jump-Diffusion Model 

 The need to have a jump component is apparent if we look into high frequency 

data of asset price paths that show that the asset prices can jump in small and large 

scales. Also as indicated by Birge and Linetsky (2007) that a diffusion model, 

including a stochastic volatility model, tends to lose the kurtosis property in a high 

sampling data, e.g. a time series of daily data has less kurtosis than a time series of 

weekly or monthly data. But this is not true for a jump-diffusion process as a jump is 

dependent on other stochastic factors. Related to this observation, several pieces of 

evidence have indicated that a jump-diffusion process is needed to explain the 

steepness of short term implied volatilities. Branger (2004) shows with the analytical 

models to confirm that a jump-diffusion model tends to reveal the characteristic of 

short date options smile (the skewness of the distribution of asset price returns) better 

than a stochastic volatility model.  

The typical jump-diffusion model consists of two components, a continuous 

component as in the BS model and the jump component. The jump component is 

assumed to be distributed independently and identically. The continuous component 

will account for the normal movement of the underlying asset while the jump 

component will account for rare events such as a jump on the new information or a 
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crash of the underlying asset.  Thus one often sees a jump process or a like process 

included in every modern model of the asset price dynamic. 

The dynamic of an asset in the jump-diffusion model under risk neutral 

measure is represented by 

 
( ) ( 1)

 ln    . . . ( , ),

t
t Y t t

t

t J J

dS
r k dt dW Y dN

S

and Y distributed as i i d N u v

     
 (3.10) 

where 
tr is the risk free rate,  is the volatility of the underlying asset. The process 

tY  

denotes the jump ratio upon the arrival of a jump event. That is 
tS  jumps to 

t tY S when 

a jump occurs. In this case, the jump ratio will have the log-normal distribution with 

mean 
Ju and variance 

Jv . The parameter denotes the jump intensity of the Poisson 

process 
tN  and 

Yk is defined to be the expectation of the term ( 1).tY   The term 
Yk is 

added in the asset dynamic equation to compensate for the drift in the jump term to 

make this asset price dynamic to be a martingale. The jump-diffusion model will have 

3 more parameters over the BS model which are ,   and vJ Ju . For example when the 

estimation of ,   and vJ Ju reads 0.2, -0.3 and 0.12 respectively, this means the rare 

jump will happens 0.2 time per year on average with the average of jump ratio of -0.3 

and the variance of the jump ratio is 0.12 percent. 

 As the term ln tY  has the normal probability density function with mean 
Ju and 

variance 
Jv ,  then the probability density function of ln tY is given by 

   
2(ln )1

(ln ; , ) exp( ).
22

t J
t J J
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We can calculate [ 1]Y tk E Y  from the moment generating function ( )m t  for random 

variable ln tZ Y  which is given by 

 

2

( ) [exp( )]

exp( ) ( ; , )

1
exp( ).

2

J J

J J

m t E tZ

tz f Z u v dz

u t v t









 

  (3.11) 

By setting 1t  , we have 

 
1

( 1) exp( ) 1.
2

Y t J Jk E Y u v      

 The price of an option under the jump-diffusion process can be derived by 

setting up the riskless portfolio which consists of a holding of  units of the 

underlying asset and a short selling in a unit of option ( , )tV S t . The portfolio value
t  

is then given by 

 ( , ).t t tS V S t     (3.12) 

 By the Ito formula for a jump process, the differential of the price of the 

option can be expressed as 

 

2
2

2
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               [ ( , ) ( , )] ,

t t t
t t t

t t

t t t
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 (3.13) 

with ( ) ,t Y t t tdS r k S dt S dW     ( ) ( 1) ,t Y t t t t tdS r k S dt S dW Y dN      
 

2 2 2

t tdS S dt   and ( , ) ( , ) ( , ) ( , ).t t t t tV S t V S t V Y S t V S t      

Then the differential of the portfolio is given by 
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To hedge the diffusion risk, we set 
( , )tV S t

S


 


. For the jump risk, Merton (1976) 

argued that the jump risk is a non-systematic risk and that it is diversifiable. By this 

argument, we can assume this portfolio is riskless and should have the same expected 

return as a riskless return. That is 

 [ ] .E d r dt    (3.14) 

 From Error! Reference source not found. and (3.14), we will obtain the 

stochastic differential equation governing ( , )tV S t under the jump-diffusion, 
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 (3.15) 

 A more realistic assumption is that the jump risk is systematic and not 

diversifiable which makes the model incomplete. That is, the model needs to involve 

the investor risk preference. Some empirical evidences in the investor risk preference 

are studied in Pan (2002), Santa-Clara and Yan (2004) and many authors. The most 

common method to relate the investor risk preference is called the equilibrium model 

method which assumes that investors are rational and risk averse. In words, the model 

assumes that the investors try to maximize their utility function and require a risk 

premium to take more risk. The simplest version to include the risk premium into the 

jump-diffusion model is shown in Bates (1988) where the equation (3.15) is modified 

to be 
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with 
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 (3.16)  

 The parameter  is a constant risk-aversion parameter which is less than 1 for 

the risk averse case. The adjustment by the equilibrium method reveals what happens 

in the real market where investors price the option more expensive than the estimation 

from the historical price data which can be explained below. 

 Here we will derive 
Q

Ju and 
Q which are the mean of jump ratio and 

frequency of the equilibrium model. 

 From 
1 1E [ ] [ ] / [ ]Q

t tX E Y X E Y  
 
in (3.16), we then have 
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where (1 )Q

Ju u v   . 

 From (3.16) and by (3.11) with t = 1   

 
( 1) 21

[ ] exp[( 1) ( 1) ].
2

Q

t J jE Y u v        
 

 Suppose the estimation from the historical price of the underlying asset gives 

0.10,  u 0.25J    and 0.05.Jv   With  = - 1.0, the mean of jump ratio and the 

frequency of jumps can be computed from the two above equations as -0.35 and 0.18 
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respectively. The lower number of   will result in the higher mean of jump ratio and 

frequency of jumps. This means, the higher the risk aversion, the higher the risk 

premium for option prices.  

 

3.7 Stochastic Volatility Model 

While the jump-diffusion model can correct the behavior of short term skew 

feature of option implied volatility, the skew of volatility tends to flatten out as time 

goes by. The stochastic volatility model tends to do better to explain the skew from 

the medium term according to Branger (2004). In addition, the stochastic volatility 

model can also explain the volatility clustering and leverage effect properties. One of 

the most popular stochastic volatility models is the Heston model in Heston (1993). 

This model can be expressed in terms of the historical measure as 
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 (3.17) 

where 
tS denotes the underlying asset price at time ,t

t denotes the expected asset 

return rate, 
tv denotes the volatility of the asset price and 

tW is the Brownian motion 

associated with the underlying asset price process. 
tv  is the variance process, k is the 

speed of mean reversion,   is the mean of long term variance,  is the volatility of 

variance process and 
v

tW is the Brownian motion associated with the variance process. 

From empirical studies, there exists some correlation between these two processes and 

here we write this relation in the third equation. 
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As there are two stochastic factors that are 
tW and v

tW , the Heston model is not 

complete. The completion of the model is done by adding another security that has the 

v

tW component. This is normally done by adding another option, that has longer 

maturity than the target option which we want to price, in the riskless portfolio. 

So here we have 3 assets that are the underlying asset price
tS , the money 

market asset 
tB and the option 

tC  that has time to maturity longer than the target 

option 
*

tC  whose value we want to find. We will set up the riskless portfolio ,t  to 

replicate the value of this option 
*

tC . Here we set up 
t  by 

 *

1 2( , , ) ( , , )  .t t t t t t t tC S v t S C S v t B      (3.18) 

That is, the riskless portfolio consists of 1 unit of option 
*

tC , short of   units of 

underlying asset, short of 
1 units of option 

tC and short of 
2 units of money market 

asset. The change of this portfolio over t  to t dt  is given by (By the 

multidimensional Ito formula) 
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To make this portfolio riskless, we set  

*

1
t t

t t

C C

S S

 
   

 
 and 

*

1
t t

t t

C C

v v

 
 

 
 to 0 so 

that there is no dependence on these stochastic variables. 

Then the portfolio will be riskless and leave us with only deterministic part 
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 (3.19) 

As the portfolio is riskless, the return should be the riskless interest rate. That is  

                                   *

1 2t t t td r dt r C S C B dt         . 

Substituting 
td   from (3.19) and after some rearranging, we obtain 

* * *
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                                                        /
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S v

S v v


 


  

 (3.20)    

Since the left hand side is a function of 
*

tC and the right hand side is a function of 
tC , 

the possible way is each side has to be a function of the independent variables ,t tS C  

and t . So we write this as 

 ( , , ) .t t t
t t t t

t

C C C
AC rS rC f S v t

t S v

  
    

  
    

Here we set it as the negative of function .f  Heston (1993) shows that the function 

( , , )t tf S v t  is ( )v tv   where ( )tk v    and 
v  is called the market price of 

volatility risk. This is the partial differential equation that governs the price of an 

option under the Heston stochastic volatility model. Together with the payoff 

function, we can find an option price formula for that payoff.    

 

 

 

 

 

 

 

 



CHAPTER IV 

MODEL SPECIFICATIONS 

 

4.1 Introduction 

 In this chapter we present a pricing derivation method for a jump-diffusion 

model with stochastic volatility and stochastic interest rate (JDSVSI), where the main 

component is the jump-diffusion process with Brownian motion part which is 

subordinated with a time integral of a CIR process (Cox, Ingersoll Jr. and Ross, 1985) 

and the interest rate in the model is stochastic. We mainly derive the pricing formula 

of a European call option by the combination of the Lewis Fourier transform method 

(Lewis, 2001) and modular Pricing method (Zhu, 2010). Our stochastic volatility is 

generated by the mentioned subordinated Brownian motion which is a special case of 

a time changed Levy process. We construct this time changed Brownian motion 

following the work of Carr and Wu (2004) which allows the  leverage effect to be 

incorporated in the model. By having this leverage feature, Carr and Wu (2004) have 

handled the impact of the correlation of the asset price process and  variance process 

by employing the leverage-neutral measure in the complex domain.   

 

4.2 The Typical Model 

The typical risk neutral model for jump-diffusion with stochastic volatility and 

stochastic interest rate can be described by
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1
2

( ) ( 1) ,

with  ln  distributed as ( , ),

[ 1] exp( ) 1 ,

 ( ) ,

with ,

( ) .

t
t Y t t t t

t

t J J

t J J Y

v

t t t t

v

t t

r

t t t t

dS
r k dt v dW Y dN

S

Y Normal v

E Y v k

and dv k v dt v dW

dW dW dt

dr r dt r dW







 



  

    

    

  



  

 (4.1) 

 Here 
tW , v

tW and r

tW are the Brownian motions associated to the underlying 

asset process, the variance process and the interest rate process, respectively. The 

process
tS is the underlying asset price process and 

tr is the instantaneous risk free rate 

process. The process
tN  is a Poisson process with jump frequency   and independent 

from the other processes. The jump size is 1tY   and 
tY is log-normally distributed 

with mean 
Ju  and variance .Jv  The jump component is included in the model to make 

the short term implied volatility curve steep as indicated by empirical studies. The 

process 
tv
 
is the variance process, k is the speed of mean reversion,   is the mean of 

long term variance and is the volatility of the variance process. The variance process 

is the mean reverting square root process known as the CIR process. To explain the 

leverage effect, a negative correlation is usually introduced between the underlying 

asset and the variance as shown above.  The interest rate process is also the CIR 

process but with different parameters and independent from the other processes. 

 

4.3 The Lewis Fourier Transform Method  

 We derive the pricing formula of this model using the Lewis Fourier transform 

method. There is a variety of Fourier Transform Pricing methods but we choose this 

method as its integration domain is on the complex plane. This complex domain will 
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correspond to the domain for the time changed Levy process. Another nice feature of 

this method is that it produces a formula in a single integration form compared with 

the typical approaches which produce two integrations. This single integral reduces 

computation time of option prices in the calibration process. During our calculation, 

we also apply the Modular Pricing method, introduced in Zhu (2010), which employs 

the rule of independence of characteristic functions to write the characteristic function 

as product of each characteristic function of an independent stochastic factor. This 

approach will help us to handle each stochastic factor independently which results in 

the reduction in the dimensions of problem. 

Our dynamic of asset price will be an exponential Levy process which is driven 

as 

 

0

0

0

0

exp( )

exp( ).

t

t s t

t

s t

S S r ds L

X r ds L

 

  





 (4.2) 

 Here 
tS  is the stock price at time t , 

0 0expS X  is the price of stock at time 

0t  , 
tr  is the risk free rate process and 

tL  is a Levy process with tL
e  being a 

martingale. Let us assume that the characteristic function of the process ,tL
 

( ) [exp( )]
t

Q

L tz E izL    is well defined for Im( )z    where α and β are real 

numbers and z is a complex number. For a European call option strike at K  with a 

payoff function at the maturity, max( ,0)TS K  or denoted by ( ) ,TS K  the Fourier 

transform of the payoff with transform ( )H z


  can be computed as 
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) > 1  .  

 (4.3) 

The first term on the fourth line above is zero by substituting 
r iz z iz   and 

employing the Euler identity as follows, 

 

exp( 1) exp( )
[lim( )]

1

exp( ( 1) exp( )
lim( )

1

lim(cos cos )exp((1 ) ) lim(cos cos )exp( )

0 if z 1 and not defined if z 1.

x

r i r i

x

r r i r r i
x x

i i

iz x izx
K

iz iz

iz x z x iz x xz
K

iz iz

z x z x z x K z x z x z x





 






  
 



     

  

 

In (4.3), ˆ ( )H z  is defined in the region where the imaginary part of Fourier transform 

variable z, is greater than 1. The corresponding generalized inverse Fourier transform 

( )H x  for the payoff function is defined below, 

 1
2

ˆ( ) ( ) .
i

i

iz

izx

iz

H x e H z dz








   (4.4) 

In (4.3) and (4.4), we extend the transform variable z  to take a value in the complex 

domain that is defined in the generalized Fourier transform sense. Given, ˆ ( )H z is well 

defined on the plane where the imaginary part of z  is greater than 1, the integration in 

(4.4) is just integration in the complex plane on a line paralleled to the real axis with 
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any 1.iz 
 
From the Fundamental Theorem of Asset Pricing, the no arbitrage 

condition is equivalent to the existence of  a risk neutral measure where a discount 

asset price is a martingale. Based on this Fundamental Theorem, we can write the 

value of a European call option at time 0t   as the risk neutral expectation of the 

discount payoff, 

 

0

0

0

0

0 0

0

0

[exp( )( ) ]

[exp( )( ) ]

1 ˆ    [ exp( )exp( ( )) ( ) ]
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t t T
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Q

t L

iz

V E r dt S K

E r dt e K

E r dt iz x r dt L H z dz

E iz r dt izx z H z dz


















  

  

    

    





  

 

 (4.5) 

Here exp( )T TX S or 0

0

.
T

T t TX X r dt L   The expectation 
QE  is the expectation 

under a risk neutral measure. The third line is derived from the second line by 

replacing the payoff function with the corresponding generalized Fourier transform in 

(4.4). In (4.5), here we suppose the interest rate process is independent from the other 

processes, therefore we can write the expectation out from the other terms. 

 

4.4 Derivation of the Pricing Formula 

The time changed Levy process was introduced in financial modeling by Clark 

(1973) where he used a subordinated Brownian motion to interpret the relationship 

between the return of an asset price and the volume traded in the market instead of the 

usual time variable. Monroe (1978) has later proved that any semi-martingale (a drift 

process plus a martingale process) can be written as a time changed Brownian motion. 
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This proof has validated the uses of a time changed Brownian motion as an asset price 

dynamic. Since then the use of a time changed Levy process as an asset price dynamic 

has grown substantially.  

The idea to create a stochastic volatility by the Time Changed Levy method is 

related to a subordinated Levy process (cf. Chapter2) where we change the calendar 

time of a pure Levy process to the operational time and expressed as a process 
tT , a 

function of calendar time t , which is a subordinator process. So the stochastic 

volatility of the model is generated by the speed of the change of this process. The 

most common of a subordinator process is the integral of the variance process i.e. 

0

t

t sT v ds  where 
tT is the subordinator to represent the random nature of operational 

time and
sv is the variance process as in (4.1). The process 

sv is called the 

instantaneous activity rate in Carr and Wu (2004).  

Here we will apply the time changed Levy method to generate the stochastic 

volatility in the model. That is our model is driven by the time changed Levy process 

and the compensated jump-diffusion process with the stochastic interest rate. 

Therefore the asset price dynamic can be written as 

0

10

0

                                exp( ln ),

where

                                 with

                                ( ) ,  and

                    

t

t

t N

t s T k Y

k

t

t s

v

t t t t

S S r ds X Y k t

T v ds

dv k v dt v dW



 



   



  





            ( ) .r

t t t tdr r dt r dW    

 (4.6) 
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The variables 
tr , 

kY ,  , ,yk  ,tv  ,k ,  , ,    and   are defined as in (4.1) and 

tTX is a subordinated Brownian process which is defined later. Compared with (4.2), 

the Levy part in (4.6) is  

 1

ln ,

.

t

t

t

N

t T k Y

k

T t

L X Y k t

X J




  

 


 (4.7) 

The term 
1

ln :
tN

k Y t

k

Y k t J


   is a compensated compound Poisson process. Our time 

changed Levy process
tTX   is constructed by two stochastic processes; a subordinator 

and an underlying Levy process, The subordinator 
tT  is defined to be a process 

 
0

,
t

t sT v ds   (4.8) 

where 
sv is the variance at time t  defined as in (4.1). The underlying Levy process is 

the risk neutral Brownian motion with drift rate equaled to a risk free rate 
tr , 

 
( ),t t t tdS S rdt dW 

 (4.9) 

whose log return can be written by (by applying the Ito formula to the function 

( ) lnt tf S S ) 

 
0

1
ln / .

2
t t tS S rt W t rt X      (4.10) 

As mentioned previously, the time changed Levy process 
tTX can be generated by 

substituting 
tT
 
for t  in (4.10).  And 

tTX has the form 

 

1
.

2t tT T tX W T 
 (4.11) 
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Remark: Even though our original Levy part has two components; the Brownian 

motion part and the Jump process part, we reserve to subordinate only the Brownian 

part by the following rationale. The jump process part will only account for the rare 

events and is independent from the other process. Then if we subordinate the jump 

part, we need to address the problem of correlation between a jump process and the 

variance process. This will break down the assumption of independent rare events. 

We can now start to derive the pricing formula of this model by employing the 

formula (4.5) 

 
0 0

0

1 ˆ[exp( ( 1) ))]exp( ) ( ) ( ) .
2

i

T

i

iz T

Q

t L

iz

V E iz rdt izx z H z dz






       (4.12) 

By assumption of the independence between the time changed Levy process and the 

jump process, we may write the characteristic function of the Levy process ( )
TL z 

from (4.12) as the product of the characteristic function of the time changed Levy 

process and the characteristic function of the compensated compound jump process, 

 ( ) ( ) ( ).
T T Tt

L X Jz z z       (4.13) 

We denote ( )
Tt

X u and ( )
TJ u as the characteristic functions of the time changed Levy 

process and of the compensated Poison process respectively. So we now need to 

calculate each component of (4.5) that are 
0

[exp( ( 1) )]

T

Q

tE iz rdt   , ( )
Tt

X u and ( )
TJ u . 

The characteristic function of the time changed Levy process is derived by 
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1
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2

1
( ) ( ) ( )

2

exp( ( ) )

          = [exp( ( ) ].

( ) [ ]
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T t
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X t
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X s

iu W T

X

iu W T z T z T

E z T

E z v ds

z E e
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 (4.13) 

From the second line to the third line above, we apply the measure change defined as 

the complex valued Radon-Nikodym derivative and this measure is called the 

leverage neutral measure M  (the detail of this measure can be found in Carr and Wu 

(2004)) and has the form,  

 exp( ( )),
tT t X

dM
t izX T z

dQ
   (4.14) 

where ( )X z denotes the characteristic exponent of the underlying process 
tTX . This 

measure allows us to write the characteristic function of the correlated processes (in 

our case, the underlying process is designed to correlate with the variance process) as 

the Laplace transform under a new measure. That is 

 
( )

[ ] [ ].Tt X t
izX z TQ ME e E e


  (4.15) 

Here the characteristic exponent of the Levy process ( )X z  of the process 
1

2
tW t is

 

21
( ).

2
iz z  This result is close to Theorem 2.27 (Bochner) but the Bochner law 

applies to the case where the subordinator is not correlated to the base process. To 

calculate 
0

t

t sT v ds   in (4.15), we need to find the dynamic of the variance process 

under this new measure .M  Based on the Girsanov theorem (cf. Theorem 2.9), given 

a measurable space (Ω,, P), the Ito process for the dynamic of 
tv  is 
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 ( ) .v

t t t tdv k v dt v dW     (4.16) 

Denote 
tM  as an exponential martingale under measure Q defined by 

 0

exp( ( ) ),

with [ ] 1.

t

t

t T s X

Q

t

dM
M t izX v z ds

dQ

E M

  




  

Substitute 
0 0

1

2t t

T T

T T t s t sX W T v dW v ds      and 21
( ) ( ).

2
X z iz z    Then 

TM  can 

be expressed as,  
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0 0

1 1
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2 2

1
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2

1
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s s s s

T T

s s s

T T

s t

dM
T iz v dW v ds v iz z ds

dQ

iz v dW v z ds

dW ds  

   

 

 

  

 

 

 

By the assumption that the underlying asset is correlated with the variance process or 

,v

t tdW dW dt  then we have the following results, 

 
tM defines the Radon Nikodym derivative. That is .t

dM
M

dQ
  

 The new Brownian motion 
vM

tW under the measure M is defined by

 .vM v v v

t t t t t tdW dW dW dW dW iz v dt      

Substituting 
v

tdW in the third equation of (4.6), we have 

 

 ( ) ,

 ( ) ,  with

 .

vM

t t t t t

M vM

t t t

M

dv k v dt iz v dt v dW

k k v dt v dW

k k iz

  

 



   

  

 

 (4.17) 
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The variable 
vM

tW is the Brownian motion associated to the variance process under this 

new measure. Then we can solve for the characteristic function of the time changed 

Levy process as  

0

2

2

                                 exp( ( ) ( ) ),

1
with                         ( ) ( ) 2 ln[ ] ,

1

1
                                ( ) ,

1

              

Tt
X

dt
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C t D t v

k ge
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g

k d e
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2 2                        = ( ) 2 ,
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d k

k d
g

k d

 






 (4.18) 

Proof: 

From (4.16) and according to the Feynman Kac theorem (cf. Theorem 2.8), the 

characteristic function of 
tTX  

 0

 = [exp( ( ) ]( )
Tt

t

M

X sX E z v dsz  
 

will satisfy the following partial differential equation (PDE), 

2

2

0

( , ) ( , ) ( , )1
                ( ) ( ) ( , ),     

2

with             ( , 0) 1

given that          ( ) .

Mt t t
t t t

t t

M v

t t t t

v t v t v t
k k v v v x t

t v v

v t

dv k k v dt v dW

  
   



 

  
   

  

 

  

 (4.19) 

 With the assumption that the characteristic function of the time changed Levy 

process has the form, ( ) exp( ( ) ( ) )
Tt

X tz C t D t v    , we can substitute ( )
Tt

X z in the 

above PDE where (Here we write ( , ) for ( )
Tt

t Xv t z   to signify the dependence of the 

characteristic function on the variables 
tv and .)t  
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which produces 
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The above PDE can be reduced to two differential equations 

2 2

0

( )
                                          ( ) ,

( ) 1
                                          ( ) ( ) ( ),

2

and by the initial condition ( , 0) 1  then (0) 0  (0) 0.

M

M

dC t
D t k
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dD t
z k D t D t
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v T C and D



 





  

   

 (4.20) 

The differential equation for ( )D t  as in (4.20) is called the Riccati equation which is a 

nonlinear ordinary differential equation. To simplify it, we will write the equation for 

( )D t as 

 

2

2
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( ) ( ),

1
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2

M

X

D t
P QD t RD t

t
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The solution for ( )D t will be 
1 '

( )
u

D t
R u

  where u  satisfies the following auxiliary 

differential equation 

 

'
'' [ ] ' 0.

P
u Q u PR

P
   

 

The general solution for the above equation is  
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Substitute the values of  P,Q,R and we have 
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With (0) 0D  , we can solve for 
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The solution for ( )C t  can be solved by integrating (4.20). Therefore, 
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By having exp( . )x d t  which makes dx xddt  and 
1

dt dx
xd

 , substitute this dt in 

the above equation, thus 
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By rearranging the above equation, we have 
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   (4.21) 

The computation of the stochastic interest rate part is similar to the calculation 

of the characteristic function of the time changed Levy part. We can write 
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 (4.22) 

The last part is the characteristic of the compensated compound Poisson 

process which is computed below, 
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By (2.13) 
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2
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1
with exp( ) 1 and in (3.11) for m(t) with ,
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1) ( (exp( ) 1)).

2
J jt izu z v  

 (4.23) 

 

4.5 Numerical Integration 

4.5.1 The Trapezoidal Rule 

 As in (4.5), the value of a European call option, which is in the semi-closed 

form formula, requires an integration over the complex-valued Fourier transform 

variable. We use a numerical integration method to find the value of an option as the 

closed-form formula is hard to derive. Since this semi-closed form formula is in a 

single Fourier integral form, the computation for the price of the option is more 

efficient than the typical formula which has two integrals. The only difficulty is that 

this integral is on the complex plane, but it does not require special treatment as this 

integral is only a contour integration on the complex plane. We present here the 

algorithm for the numerical integration. 

The normal way of a numerical integration is to represent an integral as the 

rule of approximated calculation of an integral denoted by [ ]I f , 

 ( ) [ ],
b

a

f x dx I f  (4.24) 

where ( )f x is the integrand and [a,b] is finite integral interval. Here we will employ 

the Trapezoidal rule for the numerical integration. The trapezoidal rule divides the 
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integral interval in to small subintervals along the x-axis. In each subinterval, the 

integrand ( )f x  is approximated by a straight line joining the coordinate ( , ( ))i ix f x

and 
1 1( , ( ))i ix f x 

as shown in the Figure 4.1, the area in the small interval is computed 

as 

 
1 1 1

1
( )[ ( ) ( )] [ ( ) ( )]

2 2
i i i i i i

x
x x f x f x f x f x  


   

 

Therefore the area under the graph from a to b is calculated as the sum of the small 

trapezoids from a  to b  as 

1

1 1

0

0 1

1
                                        [ ] ( )[ ( ) ( )]

2

with ...

n

i i i i

i

n

I f x x f x f x

a x x x b



 



  

    


 (4.25) 

 

 

4.5.2 Numerical Calculation of the Pricing Formula 

The integration, in the formula (4.5), is an indefinite contour integral in the 

complex plane where the transform variable z is well defined in the area where the 

imaginary part of z is greater than 1 as described in (4.3). In actual calculation, the 

integration interval of the infinite integral is truncated to an appropriate finite interval 

f(x) 

(xi+1, f(xi+1)) 

(xi, f(xi)) 

Figure 4.1 Illustration of Trapezoid rule. 
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lying between the upper and lower bounds of integration interval.  There are 2 

problems to be addressed for the numerical integration of the inverse Fourier 

transform, 

 The set up of upper and lower bounds of truncated integration interval 

and 

 The stability of the integrand. 

 For the first problem, generally these upper and lower bounds of integration 

are set to be high enough for that the integral part beyond this limit is below a small 

tolerance number   i.e. 

max

( )

iz

iz b

I z dz 




  and
max

( )

iz b

iz

I z dz 





 . The considerations for 

setting up the interval for the Fourier integral are mentioned in Schmelzle (2010) and 

Chourdakis (2008) whose main concept is related to the fat tail of the distribution of 

the asset price dynamic e.g. for a BS model whose fat tail distribution is low, the 

interval can be narrower than  for a model that has higher fat tail distribution. 

For a reason of convenience and by observing the charts of the integrands of 

the pricing formula when T = 0.5 and 1.0 which are shown in Figure 4.2 and 4.3 

respectively, the integrands of the pricing formula reach a level of close to zero 

rapidly and have quite symmetric distributions. Therefore, we set the same for lower 

and upper bounds as 
maxb and 

max .b  Then we set this 
maxb at 500 and this is validated 

by Table 4.1 which shows the option prices calculation when we set 
maxb at 200, 500 

and 700.  The calculation shows that there is no difference in the prices when 
maxb is 

greater than 500. 

To handle the second problem, we need to observe the characteristic of the 

integrand. The integrand of the pricing formula is the product of the characteristic 
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function ( )
tL z   and the term ˆ ( )H z as in (4.5). The characteristic function of the 

random variable is always continuous (Chapter II) and the term 
1

2
ˆ ( )

izK
H z

z iz





 is a 

smooth function as long as Im( ) 1.z   By this fact, we can apply the Trapezoid rule to 

the semi closed form formula (4.5) without any special treatment, and the result is 

shown in Table 4.1. The MATLAB code for this pricing formula is listed in the 

Appendix. 

 

 

Figure 4.2 The integrand function f (z) with T=0.5. 
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Figure 4.3 The integrand function f (z) with T=1.0. 

 

 

Figure 4.4 The integrand function f (z) near the origin. 
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CHAPTER V 

CALIBRATION 

 

5.1 Calibration Problem 

Calibration is the process to obtain a model’s parameters that match to the 

present market prices of options. These model’s parameters generally will be different 

from parameters estimated by the statistical methods which usually derive parameters 

by estimating from statistical characteristics of time series data of underlying assets 

prices. The parameters extracted from statistical methods more or less reflect the past 

characteristics of the dynamic of the underlying asset, as discussed in the earlier 

chapter. These parameters do not reflect the present risk premium implied in the 

option prices. Thus the statistical estimation does not guarantee that the models built 

out of these parameters are arbitrage free.  Contrary to the statistical method, the 

parameters from the calibration are arrived at with the principles of no arbitrage, and 

the model’s parameters will match at least to the prices of traded options that are 

included in the calibration process. The differences of these two methods are not only 

the inclusion of investors risk preferences, but also hedging costs and views of the 

participants in the market which cannot be captured by a statistical method. 

As we can observe the prices of the options from the market, the equation for 

the value of the option based on the risk-neutral valuation is 

 0

0

( , , ) [exp( )( ) ].

T

Q

p t TV T K E rdt S K     (5.1) 
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Here θp is the set of the model parameters. The constants T  and K  are the time to 

maturity and strike of the observed option respectively. The dynamic of 
TS  is 

described as a parametric model under a risk neutral measure. If we can obtain the 

prices of options at any time T  for all strikes K , we can uniquely determine the 

parameters of the dynamic of 
TS  by solving the above equations that correspond to 

the available option prices. But this is impossible in the real market where we have 

limited prices of option in any single maturity. One possible way to derive the 

model’s parameter is to minimize the discrepancies between the available market 

prices and model prices generated from a parametric model. Therefore, in this case, 

the calibration problem has been transformed into an optimization problem for the 

least square of the discrepancies. 

 The scenario is that the market prices consist of the prices of European call 

options spanning a set of expiration dates 
1,..., NT T  and for each 

iT , the market quotes 

for strikes 
1,..., .i iMK K  The least squares method is to find the minimum of the 

difference of the market prices and the model prices and can be described by  

 * 2

1 1

arg min [ ( , , ) ( , )] .
N M

M

P ij p i ij i ij

i j

w C T K C T K


 
 

   (5.2) 

 The value *

P is the set of calibrated parameters. The function ( )PF  =

2

1 1

[ ( , , ) ( , )]
N M

M

ij p i ij i ij

i j

w C T K C T K
 

  represents the objective function with the set of 

parameters 
P . The functions ( , , )M

p i ijC T K  and ( , )i ijC T K  are the value of the call 

option generated by parameters 
P  and the observed price at maturity 

iT  and strike 

ijK  respectively. As the function ( , , )M

p i ijC T K  is normally a nonlinear function, the 
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problem to find the calibrated parameter 
*

P  is therefore a nonlinear least square 

problem. The variable 
ijw is the weight associated to the confidence of the observed 

price which varies with the value of option vega (The rationale of this weight is 

described in the following). 

 The rationale to set the value of 
ijw  to reflect the confidence in the individual 

data point was proposed by Cont and Tankov (2004) and Cont and Tankov (2002) 

where  ijw is defined as 

 
2

1
,ij

bid ask

ij ij

w
C C




 

where 
bid

ijC and 
ask

ijC represent the bid and offer prices of option at maturity 
iT  and 

strike 
ijK .  This weighing scheme will outweigh the options that are liquid over the 

illiquid ones as the illiquid ones have a wider bid offer spread and  it is hard to locate 

the real price compared to the liquid options that have a narrow bid offer spread. 

However the collection of the bid ask prices is sometimes not available practically in 

the high frequency data. Furthermore the options with the strike that are not too far 

from the money have the bid-ask spread close to one percent difference of option 

implied volatility (i.e. the spread of implied volatility are more systematic than the 

premium price). By this reason, instead of minimizing the function of option prices as 

in (5.2), it is more reasonable to minimize the implied volatilities of the option prices 

instead. Then the alternative problem can be expressed as 
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2

2

2

2

( )
( ( ( , )) ) ( ( , ) )

( ( , ) )

                                           = ,
( )

n m n m
ij

i ij ij i ij ij

i j i j

n m

i ij ij

i j

ij

I I
I C T K I C T K C

C

C T K C

Vega I

 



 
   

 



 


 (5.3)  

where ( )ijI I  denotes the BS implied volatility corresponding with maturity 
iT  and 

strike 
ijK  and ( )ijVega I  is the Vega value of the option with maturity 

iT  and strike 

.ijK  The Vega of BS option can be computed by this formula 

 
2

2

2

( ) exp( ( )

e
 (x) = .

2

ij ij i i

x

Vega I K rT d T

with








 

 (5.4) 

 

5.2 Calibration as an Inverse Problem  

The difficulties to find the parameters to minimize the objective function in 

(5.2) or (5.3) can be described by 

 Prices in the financial markets are quoted as bid/offer prices and sometimes, 

due to the liquidity of the market, the spreads are relatively wide. So we 

cannot determine the exact price but only the range of exact price. Also 

actual prices may implicitly include hedging costs, tax and other costs.  

 From the number of observed prices, there might be many sets of parameters 

that produce the local minimum objective functions that depend on the 

algorithm to search for the minimum point. Figure 5.1 shows the graph of 

the objective function with our calibrated parameters with varying kappa k  

and sigma  (kappa and sigma are the JDSVSI model parameters as in 
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Chapter 4). From this figure, we see a few of regions that produce local 

minima of objective functions. In a real calibration problem which has a 

higher numbers of dimensions it can be even more difficult to locate the 

global minimum.  

 The landscape of the domain may be flat and non-convex where the flat 

domain causes a stability problem for the solution and the non convexity will 

give the difficulty to locate the global minimum of the objective function. 

Figure 5.2 shows the landscape of the flat landscape near the minimum of the 

objective function when only kappa   and sigma   change values.  

 There are some other factors and statistical properties that may influence the 

market prices of options but are not included in the models. These factors 

and properties make the model less than perfect in describing the true 

dynamic of the option prices.  

 

Figure 5.1 The objective function graph with varied kappa and sigma. 
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Figure 5.2 The objective function graph near the minimum point. 

 

The field of Mathematics to solve this kind of problem is called the Inverse 

Problem and Regularization methods. We will briefly touch this subject on the area 

we need to solve our problem. 

Definition 5.1. (Direct and Inverse Problem). Let X and Y be separable Hilbert 

spaces of finite or infinite dimensions and :T X Y  a compact operator (T is said to 

be compact if for any bounded set B X  the image ( )T B Y is pre-compact). 

Consider the problem of finding a solution x X  given y Y satisfying the equation 

 ( ) .T x y  (5.5) 

The problem of finding y given x  in ( )y T x  is called the direct problem. The 

inverse problem is to find a collection of solutions, x  , given we have a collection of 

data, y . In many applications, y represents measured data which contains some 
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noises. Then instead of solving for x  given y , our problem becomes to solve for an 

approximate solution x
given the perturbed data y or 

 
       ( )

given 

T x y

y y

 

 



 
 (5.6) 

where  is called the noise level. Mathematically, if the operator T  is not well-

behaved there is no guarantee that x
is close to .x  Here we like to point out the 

characteristics of an inverse problem. 

Definition 5.2. (Well-Posed Problem). Let X and Y be normed spaces, :T X Y  a 

compact operator. The problem of finding a solution x X given y Y in the 

equation ( )T x y  is called well-posed if  

1. Existence: For every y Y , there is at least one x X such that ( ) .T x y  

2. Uniqueness: For every y Y , there is at most one x X with ( ) .T x y  

3. Stability: The solution x depends continuously on y Y i.e. if ( ) ( )nT x T x  

then 
nx x . 

If one of these properties is violated, the problem is called an ill-posed problem.  

 For our least square calibration problem as in (5.2),  a solution always exists, 

as the least square problem always has at least one solution in a compact domain. But 

considering data, observed option prices that are discrete and overdetermined i.e. 

there are a few numbers of option prices for each maturity but the numbers of option 

prices are not significantly greater than the number of parameters of the models. This 

problem may be solved for different sets of parameters that fit for a given data set. 

Therefore, this problem is an ill-posed problem. In addition to the mentioned 

characteristics of an ill-posed problem, if an objective function is not a convex 
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function, a solution to the inverse problem may not be the global solution. A method 

to handle a nonconvex function by a global optimization will be treated in the next 

section. 

 In order to overcome the problems of uniqueness and stability, a regularization 

technique is introduced here.  The most popular regularization method is the 

Tikhonov regularization which replaces the original inverse problem by a family of 

neighborhood well-posed problem. Though we discuss only the principle of linear 

regularization, the generalization to the nonlinear case carries the same idea. 

Definition 5.3. (Regularization Strategy) Kirsch (2011) : A regularization for the 

equation Tx y  as in (5.6) is a family of linear and bounded operators : ,R Y X 

with  > 0 as the regularization parameter, such that 

 
0

lim ,  for all .R Tx x x X


   (5.7) 

That is, the operators R T converge pointwise to the identity. By this definition, R

performs as a sequence of operators that approximates the inverse operator 
1.T 

 When 

the operator T is compact and the dimension of X is infinite, we have the following 

theorem. 

Theorem 5.4. Kirsch (2011) Let R be a regularization function for a compact 

operator :T X Y with dim .X   Then we have 

 The operators R are not uniformly bounded;  that is, there exist a sequence 

( )j
 
with 0j   and 

j
R  for .j   

 The sequence ( )R Tx does not converge uniformly on bounded subsets of X ; 

that is, there is no convergence of R T to the identity I in the operator norm. 
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 However the equation (5.7) is based on the assumption that we know the exact 

data y, that is R y converges exactly to x . In practice, we know y  within the 

precision of .y y    With the regularization, our approximate solution is

, .x R y  

  

 Then we can approximate the error by 

 

,

.

x x R y R y R y x

R y y R Tx x

R R Tx x

  

  



 

 

    

   

  

 (5.8) 

 The first term is the error due to the noise level   multiplied by the norm of 

the operator R  which is often referred to as “the data noise error” which goes to 

infinity as 0.   The second term is the error due to the regularization which goes 

to zero as 0.   The characteristics of these 2 errors are illustrated in Figure 5.3. In 

practice, we need to select the proper value of  to keep the balance between these 

two errors. 

 

 

 

 

 

 

 

 

 

error 

 

 

Total error 

Figure 5.3 Characteristic of the error function. 
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Theorem 5.5. (Tikhonov Regularization).  Let a constant 0  be given. The 

Tikhonov solution x is the minimizer of the Tikhonov functional ( )F x , given by 

 
2 2

( ) ( ) ( ) ,F x T x y G x

     (5.9) 

provided that a minimizer x exists. The term 
2

( )T x y determines the accuracy of 

the solution. And the term
2

( )G x  is known as the penalty term defined by 

0( )G x x x  , where 
0x is the initial guess of the solution. The penalty term is 

generally convex.  The convexity of this term makes the Tikhonov functional more 

convex, thus enhancing the uniqueness and stability of the solution. That is, the bigger 

  makes the solution more unique and stabilized while the smaller   makes the 

solution more precise. The choice of   plays a crucial role in determining the success 

of the regularization. One of the most well-known method of determining the value of 

the regularization parameter  is known as Morozov’s discrepancy principle which 

suggests the largest regularization parameter ( , )y    such that the residual 

,( )T x y    is lower or equal c for a fixed parameter 1c  i.e. 

 ,( , ) sup{ 0 : ( ) }.y T x y c           (5.10) 

This means that the choice of   should not try to solve for the accuracy of the 

solution than up to the noise level. In practice, the value of c  is chosen as a number 

just slightly above 1 to prevent the optimization of the Thikonov functional to be 

more accurate than the noise level.  The value of ( , )y  can be solved numerically 

by a simple gradient based algorithm as most of the functional ,( )T x y     is 

monotonely increasing. The proof is due to (Engl, Hanke and Neubauer 1996). 

 

 

 

 

 

 

 

 

 



78 

5.3 Optimization for Continuous Variables 

 For a nonlinear least square problem in (5.2), there exist two major 

optimization methods that can be applied to this problem. They are local search 

methods and global search methods. 

 Local search methods typically locate the optimization point by an iteration 

scheme. In each iteration, a new point is derived from the old point to make a new 

point get closer to the optimal point. Though these methods are efficient, they depend 

on the starting point when the objective function is not convex. As illustrated in 

Figure 5.4, where the objective function is not convex, if the starting points are in the 

neighborhood of point A or point B, the local search method will locate the optimal 

points at point A and point B respectively. 

 

 

On the other hand, a global search method is normally less efficient and one 

needs to carefully choose the control parameters that suit the nature of the problem. 

Contrary to a local search method, a global search method sometimes allows, with 

Figure 5.4 Local and global minimums of the objective function. 
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some probability, a new candidate point to have a worse objective function compared 

with an existing solution in order to explore other prospective areas. By this idea, the 

method can avoid trapping to local optimum points even when a starting point is 

located in the neighborhood of a local optimal point.  

 For our calibration problem, we apply the simulated annealing algorithm 

which allows accepting a new candidate point even when the new candidate point has 

a worse objective function. In Figure 5.4, suppose that the starting point to find the 

minimum solution is at point d. By local search methods, the algorithm will generate a 

new solution given the point has a better objective function and will finally reach 

point B as shown by the dark arrow line. By the simulated annealing method, the 

algorithm, at a high temperature (The temperature is a control parameter for this 

method), allows to accept a worse new candidate point, as in Figure 5.4, so a new 

point can be point e or point f or any other point, depending on the random search 

generating function, in the neighborhoods of a different minimum point (Basin of 

Attractions) as shown by the arrow lines. This mechanism allows a search to explore 

in other areas of the domain.  By slowly lowering the temperature, the probability to 

accept the new worse point is reduced so that the candidate point does not wander 

over all the places, and starts to converge to the global optimum. However, by 

pursuing the random search method and permitting a worse objective function, a 

simulated annealing method will take a lot longer time to reach the global optimum 

point.  

 

 

 

 

 

 

 

 

 

 



80 

5.4 Simulated Annealing (SA) 

5.4.1 General Simulated Annealing (GSA)  

The simulated annealing method is one of the most popular methods to find 

the global optimum. The method was first implemented by Kirkpatrick, Jr. and 

Vecchi (1983) for a discrete optimization problem applied to a salesman travelling 

problem. Since then, this method has gained some popularity and there are a number 

of modifications to the original algorithm to make the algorithm more efficient and be 

able to solve a variety of problems. The attractiveness of this method over other 

methods is that, in order to implement an SA algorithm, it is not necessary to obtain 

the derivatives of the objective function. And it also does not require a lot of 

knowledge on the objective function. Although, with the increase in its popularity, the 

method is often claimed for the difficulty in getting a robust solution, especially when 

the problem is a high dimensional problem or has a very flat domain landscape, and 

this method requires unreasonable time for an optimum to be reached.  

 The simulated annealing method is the global optimization method that 

replicates the way metal is heated to a suitable temperature and cooled down slowly to 

get the optimum structure. The suitable temperature is called the initial temperature 

T0 and the way the temperature is reduced is called the annealing schedule. The steps 

of the generic simulated annealing algorithm (GSA) are summarized below, 

 

Simulated Annealing Algorithm 

 To minimize ( )f x subject to [ , ]i i ix A B  

where ( )f x denotes the objective function, sometimes called the cost function. The 

solution x  is a vector of D-dimensional continuous variables in space .DR  
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Step 1: initialization 

 Set the initial solution 
0.x   

 Set the initial temperature T0 that is high enough so that the optimal solution 

can be reached. 

 Set the round k=0 and k will count the number of changes in temperature, 

 

Step 2: Perturbation 

 Generate the new candidate point 
ix  according to the generating function 

denoted by ( ).g x  In GSA the generating function is  the Gaussian probability 

distribution  which is defined as  

 2

/2

1
( ) exp( ( ) / 2 ),

(2 )
kD

k

g x x T
T

     

where 
1i ix x x   denotes the deviation of a new candidate point from a 

existing solution and 
kT  denotes the temperature at round k. 

 Determine the difference of objective function 
1( ) ( ).i if f x f x    

 

Step 3: Acceptance Determination 

 The new candidate point is accepted as a new solution if the acceptance 

probability (accepting function) denoted by P  is greater than the random 

number denoted by R which is distributed uniformly between 0 and 1.  

 min{1,exp( / )}.kP f T   

 Replace 
ix
 
with 

1ix   
if .P R  
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 Repeat step 2 and 3 until the equilibrium is reached (where there is not much 

improvement in the objective function at this temperature). In practice, for 

each level of temperature, we may fix to run step 2 and step 3 for a fixed 

number of times and denote this number as the number of rounds at 

temperature 
kT by .

kTN  

 

Step 4: Annealing 

 Set 1.k k   

 The temperature is reduced by the following function, 

    
0 0(ln / ln )kT T k k . 

 Repeat step 2 to step 4 until the objective function is lower than a specified 

goal or the change in objective function is less than a specified small number. 

 

 The simulated annealing method replaces a deterministic acceptance rule in 

local search based methods by a probability acceptance rule to allow a new candidate 

point to be accepted even when the objective function of the new candidate point is 

worse than the existing objective function as shown in step 3. This accepting 

probability depends on both the temperature and the improvement of the objective 

function according the description in step 3.  For a high temperature or a large 

improvement in the objective function, the acceptance probability is high. The 

acceptance probability reduces when the temperature goes down or the improvement 

in the objective function is low. Theoretically, it can be shown that, under some 

carefully chosen control parameters, this algorithm converges to the global optimum 

point.  
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 While the convergence is guaranteed, it is not much of practical value because 

it may take unreasonable time for a large dimensional problem. Some variances of the 

method have been studied in order to reduce the convergent time. Two of the most 

popular variations are the Fast Simulated Annealing (FSA) and the Adaptive 

Simulated Annealing (ASA) invented by Ingber (1996).  

 We like to address the Fast Simulated Annealing algorithm first. As the 

generic simulated annealing algorithm is claimed to be a notoriously slow algorithm, 

a lot of modifications have been explored. One of the simple algorithms is the Fast 

Simulated Annealing. The generating function of FSA is the Cauchy function which 

is described by 

 22 ( 1)/2
( ) .

( )

k

D

k

T
g x

T x 
 

 
 

We provide here the heuristic proofs for the convergence time for the GSA and the 

FSA algorithm.  

 

Proof: 

The proof (taking the guidance from Szu and Hartley (1987)) is based on the fact that 

all the points in the D-dimensions can be equally sampled as the sample time goes to 

infinity. By letting ( )g x to be a probability density function to generate a candidate 

point, we can show that the probability of not visiting any point on the domain equals 

zero as the sampling times goes to infinity i.e. 

 
0

(1 ( )) 0,n
n

g x




    

or in the other words 

 
0

( ) .n

n

g x




   

 

 

 

 

 

 

 

 



84 

In case of GSA, the annealing function is defined by 
0 / ln( )kT T k  and the probability 

density function is defined by 2

/2

1
( ) exp( ( ) / 2 )

(2 )
kD

k

g x x T
T 

    . We have that 

 

2

/2

2

/2

0

2

0

1
( ) exp( ( ) / 2 )

(2 )

1 1
exp( ( ) ( ln )),

(2 ) 2

1
0 ( ) 1,

2

( ) exp(ln( )),

1
.

k kD

k

D

k

k

k

g x x T
T

x k
T T

as T and x
T

g x k

k



 

   

 

  

  



            =

   

           

 

So that 

 
0 0

1
( ) .k

k k

g x
k

 

 

     

For the case of FSA, the annealing function is defined by 
0 / .T T k And the 

probability density function of the generating function is defined by 

22 ( 1)/2
( ) .

( )

k

D

k

T
g x

T x 
 

 
 We have that 

 

22 ( 1)/2

( 1)

( )
( )

.

k
k D

k

k

D

T
g x

T x

T

x





 
 




 

So that 

 0

1
0 0

1
( ) .k D

k k

T
g x

x k
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The proofs imply that by having 
0 / ln( )kT T k  for the case of GSA and having 

0 /kT T k
 
for the case of FSA, the algorithm will converge to the optimum. And it 

shows that FSA will converge faster than GSA by / lnk k  times. 

 Even though the algorithm can converge to the optimum point theoretically, it 

requires too much time to reach the optimum point. There are some ongoing studies 

of modification of the GSA algorithm. One of the most efficient modified algorithms 

is the Adaptive Simulated Annealing (ASA) method. The ASA has two distinct 

features; First, it allows to have a specific annealing schedule depending on the 

sensitiveness of each variable. Second, after some number of acceptance events, there 

is a rescaling of control temperature for each variable to help adjust the generating 

function of each variable. 

 

5.4.2 Adaptive Simulated Annealing 

 In the Adaptive Simulated Annealing algorithm, there are two controlled 

temperatures which are the parameters temperature 
iT  associated with the 

thi  

parameter and the cost parameter 
cT . The element 

ix , the 
thi  of the new candidate D-

dimensions point 1( ,..., )T Dx x x  is generated by 

 1 ( ),i i i

k k i ix x B A     

where 
iB and 

iA are the upper bound and the lower bound of the 
ix variable. The 

variable 
i  is determined by  

 (2 1)sgn( 0.5) [(1 1/ ) 1],
ii i u

i iu T T      

where 
iu is a uniformly distributed random variable in [0,1]. The function sgn( ) 

represents the function with three values defined by 
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1 if x<0

sgn( ) 0 if x=0

1 if x>0

x




 



 

 In case the new 1

i

kx  falls outside the range [ , ]i iA B , the new point is 

regenerated until it falls within the range.  

 The cooling schedule of 
iT  is defined by 

 
1/

0( ) exp( )D

i i i iT k T c k   

where 
0iT denotes the initial temperature of the thi  parameter, 

ik is the number of 

rounds of the thi  parameter, and 
ic denotes the cooling scaling factor for 

iT .  

Ingber (1996) suggests to choose 
ic such that 

 
0 exp( ) when k exp ,

exp( / ),

fi i i f i

i i i

T T m n

c m n D

  

 
 

where 
fiT  is the expected final temperature and 

im
 
and 

in are the free parameters to 

help tune ASA for specific problems 

 For the cooling schedule of 
cos tT , the schedule function is defined below 

   
1/

c 0,( ) exp( )D

c c c cT k T c k 
  

where 0,cT
 
denotes the initial temperature of the acceptance function, 

ck is the number 

acceptance, and 
cc denotes the cooling scaling factor for 

cT .  

 

5.4.3 Reannealing 

 For a multi-dimensional optimization problem, an objective function may not 

depend on each parameter at the same proportion. It is more efficient to rescale the 

temperature of each variable which is called a reannealing. By this temperature 
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rescaling, a simulated annealing algorithm allows to have larger 
i  for an insensitive 

parameter and smaller 
i for a sensitive parameter. By changing a suitable

i , the 

algorithm can speed up the search process. The reannealing may be added into the 

normal simulated annealing after each number of acceptance-events, 
AN . That is for 

every cycle of 
AN , the algorithm evaluates the sensitiveness of each variable given by 

 
* * *

*

( . ) ( )
i

f t t e f t
s

t





 


 
 

where ( )f t  denotes the objective function, 
*t is the vector of the best point recorded, 

 is the small real number and e  is the D-dimensional unit vector.  

 We define 
max

1
max{ }.i

i D
s s

 
  

 The new value of k  and T  for each parameter can be calculated by the 

formula below, 

 

'

' max

'

0 '

( / ),

(ln( / ) / ) .

ik ik i

D

i i ik i

T T s s

k T T c




 (5.11)  

And 
0iT is reset to 1 to begin the search after a reannealing. 

 

5.4.4 Matlab Optimization Toolbox  

To code a proper and efficient program to implement a simulated annealing 

algorithm requires a tremendous work in coding and testing. A poor algorithm will 

result in not converging to the global optimum or taking an unreasonable time to 

reach the optimal point. Fortunately, the Matlab Optimization Toolbox provides all 

the proper coding and varieties of options to be tailored to one’s specific problem. We 

describe briefly in this chapter, the algorithms and options that we apply to our 
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calibration problem. We refer to the Global Optimization Toolbox version 2012 in this 

thesis. The SA algorithm in the Toolbox consist of 5 components, 

1. Random Search Generation 

This is similar to step 2 in the generic algorithm. The Toolbox provides 

two distributions in this step 

 @annealingfast; The distribution is similar to the FSA algorithm 

 @annealingboltz; The distribution is similar to the GSA algorithm 

2. Acceptance determination 

This is similar to step 3 in the generic algorithm.  

3. Annealing function 

There are 3 annealing functions provided in the Toolbox, 

 @temperatureexp (default); 
0 *0.95 ^T T k  

 @termperaturefast; 
0 /T T k  

 @termperatureboltz; 
0 / logT T k  

4. Reannealing 

The algorithm of this component is similar to the reannealing that we have 

discussed except that it does now allow to change the control parameter .ic  

5. Ending criteria 

Provide the criteria to end the algorithm when the average change in the 

objective function is relative to stopping criteria. The details are provided 

as in section 6-14 in the Global Optimization Toolbox User’s Guide. 
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5.5 Calibrating the Model 

5.5.1 Implementation 

In this part, we will calibrate the model to the DAX index option prices on 

July 5, 2002 which we take from Sepp (2003) as shown in Table 1. Based on (4.18), 

(4.22) and (4.23), our model has 12 parameters namely v0, k , θ, σ, ρ, λ, uJ , vJ, r0, α, ω 

and β. 

We run the calibration algorithm in the MATLAB optimization toolbox which 

provides both simulated annealing algorithm and gradient based optimization 

algorithms. Then we compare our model with the jump-diffusion model with 

stochastic volatility model (JDSV). 

The simulated annealing tool, in the MATLAB’s optimization toolbox, 

provides a lot of options that are catered to many natures of problems, including the 

generating of distributions, annealing schedules and stopping criterions. The 

MATLAB code for our simulated annealing algorithm is listed in the appendix. We 

have run the optimization a number of times and finally set the initial temperature at 

400. Busetti (2003) and Ledesma, Aviña and Sanchez (2008) provide a general 

concept to set these control parameters, including the idea on the setup of initial 

temperature and annealing schedule for a simulated annealing algorithm. For the 

generating of distributions option, the Boltzmann generating function seems to be the 

best choice to obtain a stable minimum point to our problem. We compare our model 

(JDSVSI) with the jump-diffusion model with stochastic volatility (JDSV) which has 

8 parameters namely v0, k , θ, σ, ρ, λ, uJ and vJ. The data points that are the in-sample 

on this calibration are all the data in Table 1 except for the columns of 1 month and 18 

months that we use as the out-of-sample points. 
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Due to the nature of the simulated annealing method, the search for the 

candidate points being random can locate only the neighborhood of the minimum 

point (Basin of Attraction). We need a gradient based method, here called the “local 

search” algorithm, to find the precise minimum point. With both algorithms, the 

parameters of the precise JDSV and JDSVSI can be obtained. 

 

5.5.2 Calibration Results 

After running the Matlab Optimization Toolbox, we will have the result of 

optimization which produces the calibrated parameters and the value of the minimum 

of objective function. The examples of the results of both simulated annealing and 

local search algorithms are shown in the appendix. Table 5.2 presents the sum of 

square price differences of the model option price and the BS option price. The 

benchmark for the comparison is the sum of discrepancies of option values due to 1% 

change in the BS implied volatility generated from Table 5.1. This 1% is the normal 

spread between bid and offer in the usual two ways market. The result shows the sum 

of square price differences for the JDSVSI model is lower than the sum of square 

price differences of the JDSV model. We believe that the reason is that the JDSVSI 

model has more parameters than the JDSV model so it can fit better.  Both models 

have minimum objective functions slightly higher than the benchmark due to the 

noise factors from the observed data and some discrepancies of the models. 

Considering only the noise factor included in the prices collected, these minimum of 

the sum of price differences are quite in line with our expectation. 

The parameters of the calibration of each model are shown in Table 5.3 and 

Table 5.4 which is the source to produce the implied volatility structure of each model 
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in Table 5.5 and Table 5.6. In Figure 5.5, we show the data point error of the implied 

volatility between the BS model and the JDSV model and between the BS model the 

JDSVSI model.  Then we calculate the square error in implied volatility of each 

model compared to the market implied volatility in Table 5.7 and Table 5.8.  

The first row of Table 5.3 and Table 5.4 present the parameters generated 

from the simulated annealing algorithm and the parameters in the second low are 

generated from the local search algorithm with the initial point from the first row. For 

Table 5.7 and Table 5.8, the second last line presents the sum of the square error of 

each column and the last line is the error of each column adjusted by the sum of 

square error for all columns. As expected, the errors of the JDSV model are smaller 

for short maturities, but the errors of JDSVSI model are smaller in the long maturities 

in accordance with the finding from Bakshi (1997). This is because the effect of the 

interest rate part cannot take much effect in the short tenors especially for the 2 weeks 

and 1 month data, where the adjusted error of the JDSVSI model read at 0.5858 and 

0.1384 compared to those of JDSV model which read at 0.5499 and 0.1109.  In terms 

of the fitting accuracy, the total errors of the out-of -sample data points shown on the 

last line of column of 1 month and l8 months of both tables are within the average 

except for the error for 1 month of the JDSVSI model.  
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Table 5.2 Comparison of the sum of square price differences in each model. 

 
Sum of Square Price 

Differences 
Percent over BS 

1% Difference in BS  Model 419.3167 100.00% 

JDSV 503.6367 120.11% 

JDSVSI 460.3675 109.79% 

 

As we have done so far, the calibration method is still not regularized. We see 

from Table 5.3 and Table 5.4 that some parameters have changed in large values from 

the simulated annealing algorithm to the local search algorithm. This indicates that the 

domain function is rather flat (This is also confirmed by Figure 5.2) and may cause 

the stability problem of the solution. Even though the domain of the objective 

function is well behaved, it is hard to be certain if the data of option prices does not 

contain some noises. These problems can be solved by the regularization method. Due 

to lack of time series data of option prices which is necessary for a statistical prior 

estimate, we will not perform the regularized calibration in this thesis. But we 

summarize the regularized calibration procedure in the following, 

Regularized Calibration Procedure 

 The average of time series of calibrated parameters is set as statistical prior 

0.p  

 The unregularized parameters are obtained by the method implemented in the 

beginning of this section. The minimum of the calculated objective function is 

denoted by ( 0)    which is the unregularized intrinsic error of the model. 

This error is due to the collection of data by averaging the bid and offer prices 
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or the bias in prices in the quotations. By this way, the model error may be 

estimated to be 

 
2

1 1

( 0)

           [ ( , ) ( , )] .

bid offer

N M
bid offer

ij i ij i ij

i j

C C

w C T K C T K

 

 

  

 
 (5.12) 

 Therefore it is useless to calibrate to get the exact parameters of the model as 

our data is not the true value but lie in the range of bid offer spread. 

 Find the suitable regularization parameter  according to the Morozov’s 

discrepancy principle. This is to solve the root of the following equation, 

 
2

2

0

1 1

min [ ( , , ) ( , )] .
N M

M

ij p i ij i ij p p

i j

c w C T K C T K    
 

     (5.13) 

 This equation is the translation of equation (5.10) and in practice c is in the 

range of around 1.1 to 1.5 according to Cont and Tankov (2004). 

 Run the optimization for the regularized equation  again with this 

regularization parameter  derived from (5.13), 

 
2

* 2

0

1 1

arg min [ ( , , ) ( , )] .
N M

M

P ij p i ij i ij p p

i j

w C T K C T K


    
 

     (5.14) 

The set of 
*

p  is the set of the calibrated parameters from the regularized 

optimization. According to (5.14), we add the penalty term 
2

0p p   to 

help stabilize the solution as this term is convex. And by adding this term, it 

will penalize a solution that is far from the statistical prior. 

 

Either unregularized or regularized calibrations are lengthy processes, 

especially by the global optimization algorithms. A practitioner may not do these 
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calibrations as often by considering whether the changes in the market variables need 

a recalibration. Many papers suggest a local search algorithm instead when the market 

does not move much or the stability of the model variables allows. 
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CHAPTER VI 

CONCLUSION AND RESEARCH POSSIBILITIES 

 

6.1 Conclusion 

This thesis has proposed the asset price dynamic by the jump-diffusion 

process with stochastic volatility and stochastic interest rate, where the stochastic 

volatility is generated from the time changed Levy process. This stochastic volatility 

has similar characteristics as the CIR process which exhibits both volatility clustering 

and leverage properties as indicated by several empirical studies. The derivation of a 

price of a European call option follows the combination of Lewis Fourier transform 

method and modular pricing method which are both based on the risk neutral 

expectation pricing method. This combination produces the formula as a single 

generalized Fourier transform integral that results in computation efficiency.  

By the Modular Pricing method, our derivation has reduced the four 

dimensional stochastic factors problem into each one or two dimensional problem. 

And by the Lewis Fourier Transform method, we have a pricing formula as a single 

integral on the complex domain that corresponds to the domain of the Carr and Wu 

leverage neutral measure. The numerical computation for the option pricing is 

handled with the direct integration method, which although not a sophisticated 

method, produces a stable and accurate price. 

The most difficult part of this thesis is the calibration method, as the concept 

of global optimization is still very recent and most algorithms are difficult to 
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guarantee the convergence in practice. Also most algorithms are not efficient and take 

a very long time to produce a reasonable and satisfactory result. In this thesis, we 

apply both simulated annealing algorithm to locate the neighborhood of the optimum 

point and local search algorithm to search for the precise optimum point. The fitness 

to the one single day market prices is quite satisfactory but we do not test with a time 

series of the market data.  

 

6.2 Research Possibilities 

Although the model provides a very good fit for market price data, this is done 

for one particular day and only for European option prices. We believe this model and 

calibration is sufficient as a plain vanilla option pricer. However, as discussed in 

chapter 2 and chapter 3, a good model should provide a correct hedging scheme and 

can give a good fit to an option price with complicated structure. So we give some 

clues here for a further research. 

1. The good fit of the model parameters through time series data of market prices 

is needed in order to test if the model will predict a set of correct hedging 

parameters. Even though we believe our model is capable, this test should give 

some further knowledge of the characteristics of this model. And if the model 

can fit to a time series of market prices without unstable calibrated parameters, 

then we can be sure that the model can describe the dynamic of the asset price 

well. Then it is not necessary to waste a lot of time to calibrate the model as 

often as it should be. 

2. With the development to provide more complicated structures with different pay 

off structures or some other features to better hedge the clients’ exposure, new 
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structures are constantly launched. The dynamics of the asset price may suit 

some particular structures or some asset classes but provide poor description to 

others. A study how this model can give a right price and right hedging 

parameters to some complicated structures is worth as clue to validate or 

improve the model. 
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APPENDIX 

MATLAB CODES  

 

MATLAB codes for a European call option pricing - JDSVSI model 

 

%Numerical Integration for JDSVSI 

%hctrans2 is the function of an option value. 

 

function y = 

hctrans2(u,s,k,t,v0,kappa,theta,sigmav,rho,lamda,uj,vj,r0

,alpha,omega,beta) 
kmax=round(max(500,10/(v0*t)^0.5)); 
cnt = 0; 
for phi = -(kmax / 10):0.2: kmax 
cnt = cnt + 1; 
int_x(cnt,1) = phi; 
pass_phi = phi+u*i; 
int_y(cnt,1) = inth2(pass_phi, s, k, t,v0, kappa, theta, sigmav, rho, 

lamda, uj, vj,r0,alpha,omega,beta); 
end 
y=-(1 / (2 * pi)) * k* trapnumint(int_x, int_y) 
end 
 

%The Integrand of JDSVSI 
function y = 

inth2(u,s,k,t,v0,kappa,theta,sigmav,rho,lamda,uj,vj,r0,alpha,omega,be

ta) 
exy=exy2(u,s,k); 
char1=(si(u,t,r0,alpha,omega,beta)*phihestsi(-

u,s,k,t,v0,kappa,theta,sigmav,rho))/exp(t*purejump(-u,lamda,uj,vj)); 
y=real(exy*char1); 
end 

 
%Calculation of exp(-izx0)H(z) as in Eq. 4.5 
function y = exy2(u,s,k) 
k1=log(s/k); 
y=exp(-i*u*k1)/(u^2-i*u); 
end 
 

%Calculation of Characteristic Function Stochastic Interest Part  
%as in Eq. 4.21 
function y = si(u,t, r0,alpha,omega,beta ) 
p=-((u*i)+1); 
q=alpha; 
r=0.5*(beta^2); 
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d=(q^2+(4*p*r))^0.5; 
g=(q+d)/(q-d); 
gg1= (q+d)/(2*r); 
gg2=(1-exp(d*t))/(1-(g*exp(d*t))); 
gg=gg1*gg2; 
hh1=alpha*omega/(beta)^2; 

hh2=(q+d)*t; 
hh3=2*log((1-(g*exp(d*t)))/(1-g)); 
hh=hh1*(hh2-hh3); 
y=exp((gg*r0)+hh); 
end 

 
%Calculation of Characteristic Function Time Change Levy Part 
%as in Eq. 4.17 
function y= phihestsi(u,s,k,t,v0,kappa,theta,sigmav,rho ) 
km=kappa-(u*sigmav*rho*i); 
alp=0.5*(i*u+u^2); 
d=(km^2+(2*alp*sigmav^2))^0.5; 
g=(km+d)/(km-d); 
cc1=-kappa*theta/(sigmav)^2; 
cc2=(km+d)*t; 
cc3=2*log((1-(g*exp(d*t)))/(1-g)); 
c=cc1*(cc2-cc3); 
dd1=-(km+d)/sigmav^2; 
dd2=(1-exp(d*t))/(1-(g*exp(d*t))); 
dd=dd1*dd2; 
y=exp(-c-(dd*v0)); 
end 

 
% Calculation of Characteristic Function of Compensated Compound 

Poisson 
% as in Eq. 4.22 
function y = purejump(u,lamda,uj,vj) 
y1=lamda*(1-exp((i*u*uj)-(0.5*u^2*vj))); 
y2=i*u*lamda*(exp(uj+0.5*vj)-1); 
y=y1+y2; 
end 

 
% A Trapezoidal Procedure 
function z= trapnumint(x,y ) 
[n,m]=size(x); 
a=0; 
for t=2:1:n 
    a=a+(0.5*(x(t)-x(t-1))*(y(t-1) + y(t))); 
end  
z=a; 
end 
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MATLAB code for a Simulated Annealing and Local Search  

 

% Simulated Annealing Procedure for JDSVSI 
v0=0.120; 
kappa=7.0385; 
theta= 0.0190; 
sigmav=0.3954; 
rho=-0.7505; 
lamda=0.3616; 
uj=-0.2786; 
vj=0.2600 
r0=0.0313 
alpha=1.8785 
omega=0.005 
beta=0.2989 
options = 

saoptimset('PlotFcns',{@saplotbestf,@saplottemperature,@saplotf,@sapl

otstopping},'TemperatureFcn', 

@temperatureboltz,'annealingFcn',@annealingboltz,'InitialTemperature'

,400); 
ObjectiveFunction = @(x) 

evaluevega1(x,v0,kappa,theta,sigmav,rho,lamda,uj,vj,r0,alpha,omega,be

ta); 
x0 = [0.12 4.2 0.02 0.22 -0.5 0.4 -0.4 0.14 0.02 1.7 0.01 0.3];  
lb=[0.001 0.1 0.001 0.01 -0.95 0.01 -0.6 0.01 0.01 0.1 -0.05 0.001]; 
ub=[0.3 12.0 0.3 0.57 0.1 0.8 0.1 0.4 0.20 4.0 0.12 0.9]; 

  
[x,fval,exitFlag,output] = 

simulannealbnd(ObjectiveFunction,x0,lb,ub,options) 

 

 
% A Local Search for JDSVSI 
v0=0.07; 
kappa=2.2; 
theta= 0.078; 
sigmav=0.324; 
rho=-0.72; 
lamda=0.017; 
uj=-0.155 
vj=0.151 
r0=0.05 
alpha=0.2 
omega=0.05 
beta=0.20 
options = optimset('Display','iter','Algorithm','active-set'); 
ObjectiveFunction = @(x) 

evaluevegaalpha1(x,v0,kappa,theta,sigmav,rho,lamda,uj,vj,r0,alpha,ome

ga,beta); 
x0 = [0.1293 8.1756 0.0154 0.3055 -0.7472 0.3810 -0.5676 0.1907 

0.0351 1.9501 0.0101 0.1388 0.00];   % Starting point 
lb=[0.001 0.1 0.001 0.01 -0.95 0.01 -0.6 0.01 0.01 0.1 -0.05 0.01 

0.000] 
ub=[0.6 12.0 0.6 0.55 0.1 0.8 0.1 0.4 0.20 4.0 0.7 0.86 0]  
[x,fval] = fmincon(ObjectiveFunction,x0,[],[],[],[],lb,ub,[],options) 
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Sample of Optimization Result from MATLAB – Simulated Annealing 

 

 

 

 

 

 

 

Optimization terminated: change in best function value less than 

options.TolFun. 

 

x = 

 

  Columns 1 through 6 

 

    0.1583   11.3981    0.0188    0.4810   -0.6681    0.3677 

 

  Columns 7 through 12 

 

   -0.5257    0.1793    0.0330    2.9368   -0.0003    0.7644 

 

 

fval = 0.8796 

exitFlag =1 

 

output =  

 

iterations: 12345 

funccount: 12610 

message: [1x80 char] 

rngstate: [1x1 struct] 

problemtype: 'boundconstraints' 

temperature: [12x1 double] 

totaltime: 3.0140e+04 
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Sample of Optimization Result from MATLAB – Local Search 

 

 

 

 

Local minimum possible. Constraints satisfied. 

  

       fmincon stopped because the predicted change in the objective function 

is less than the default value of the function tolerance and constraints  

are satisfied to within the default value of the constraint tolerance. 

       <stopping criteria details> 

    

       Active inequalities (to within options.TolCon = 1e-06): 

    lower      upper     ineqlin   ineqnonlin 

       9         12                       

       13         13                       

    

       x = 

      

        Columns 1 through 7 

    

           0.1369    9.1408    0.0228    0.4788   -0.5882    0.2968   -0.5388 

         Columns 8 through 13 

    

           0.1640    0.0100    2.9800   -0.0088    0.8600         0 

 

       

       fval = 0.4559 
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