On Shape Preserving Thin Plate Splines

Boris I. Kvasov

Abstract. This paper addresses a new approach in solving the prob-
lem of shape preserving spline interpolation. Based on the formula-
tion of the latter problem as a differential multipoint boundary value
problem for thin plate tension spline we consider its finite-difference
approximation. The resulting system of linear equations can be ef-
ficiently solved by successive over-relaxation (SOR) iterative method
or using finite-difference schemes in fractional steps. We consider the
basic computational aspects and illustrate the main advantages of this
original approach.

§1. Introduction

Spline theory is mainly grounded on two approaches: the algebraic one
(where splines are understood as smooth piecewise functions, see, e.g.,
[8]) and the variational one (where splines are obtained via minimization
of quadratic functionals with equality and/or inequality constraints, see,
e.g., [5]). Although less common, a third approach [3], where splines are
defined as the solutions of differential multipoint boundary value problems
(DMBVP for short), has been considered in one-dimesional case in [1,4].
Even though some of the important classes of splines can be obtained
from all three schemes, specific features sometimes make the last one an
important tool in practical settings. We want to illustrate this fact by the
example of shape preserving thin plate tension splines.

For the numerical treatment of a DMBVP we replace the differential
operator by its finite-difference approximation. This gives us a linear sys-
tem of difference equations with a matrix of special structure. The latter
system can be efficiently treated by the SOR iterative method or by apply-
ing a finite-difference scheme in fractional steps [9]. We present a numerical
example illustrating the main features of this approach.

Curve and Surface Fitting: Saint-Malo 2002 1
XXX (eds.), pp. 1-10.

Copyright © 2002 by Nashboro Press, Nashville, TN.

ISBN XXX.

All rights of reproduction in any form reserved.



4 D. 1. AUVASOV

§2. Problem Formulation

Let us consider a rectangular domain Q = Q UT where
Q={(z,y) |la<z<b, c<y<d}

and I is the boundary of Q. We consider on © a mesh of lines A = A, x A,
with
Ay:a=xyg<x1 < - <Tyy1 =D,

Ayic=yo<y1 < <ymt1 =d,
which divides the domain € into the rectangles ﬁij = ;; UT;; where
Qij ={(z,y) | v € (xs,Tiv1), ¥ € (Y5, Yj+1)}

and I';; is the boundary of Q;;,:=0,...,N, j=0,..., M.
Let us associate to the mesh A the data

(zi,yj, fij)y i=0,...,N+1, j=0,....,M+1,

2, i=0,N+1, =0, M+1,
5, i=0,....,N+1, j=0M+1,
127, i=0,N+1, j=0,M+1,

where N
Fio) = 9" f(wi,y5)

drrdys r,s =0,2.

We denote by C%2[Q] the set of all continuous functions f on Q having
continuous partial and mixed derivatives up to the order 2. We call the
problem of searching for a function S € C*2[Q] such that S(z;,y;) = fij,
t =0,....N+1, 5 =0,...,M + 1, and S preserves the shape of the
initial data the shape preserving mterpolatlon problem. This means that
wherever the data increases (decreases) monotonically, S has the same
behaviour, and S is convex (concave) over intervals where the data is
convex (concave).

Evidently, the solution of the shape preserving interpolation problem
is not unique. We are looking for a solution of this problem as a thin plate
tension spline.

Definition 1. An interpolating thin plate tension spline S with a set of
tension parameters {0 < p;;,q;i; < oo |i=0,...,N, j=0,...,M}isa
solution of the DMBVP
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in each €5, h; =201 — x5, [ = yj41 — vy,
1=0,...,N, 7=0,..., M,

oz 0, =€ (ziTit1), Y =Yj (2)

i=0,...,N, 7=0,...,M+1,

a2 =0, z=u1x; YE(YjYj+1), (3)
i=0,....N+1, j=0,...,M,

S € >[4, (4)
with the interpolation conditions
S(.T,,y]):f”, ZZO,,N—|—1, ]:0,,M—|—1, (5)

and the boundary conditions

S0 (g, y) = i(j270)7 i=0,N +1, §=0,....,M+1,
SO (i, ) =%, i=0,.. N+1 j=0,M+1, (6)
8(2’2)($17y3) :fz(272)7 t=0,N+1, .] =0,M + 1.

If all tension parameters of the thin plate tension spline S in (1)—(6)
are zero then one obtains a smooth thin plate spline [2], interpolating the
data (x;,y;, fij), ¢ = 0,...,N, 5 = 0,..., M. If the tension parameters
pi; and ¢;; approach infinity then in the rectangles ﬁij, t = 0,...,N,
j =0,..., M, the thin plate tension spline S turns into a linear function
separately by x and y, and obviously preserves the shape properties of
the data on ﬁij. So, by changing values of the shape control parameters
pi; and g;; one can preserve various characteristics of the data including
positivity, monotonicity, convexity, as well as linear and planar sections.
By increasing one or more of these parameters the surface is pulled towards
an inherent shape while at the same time keeping its smoothness. Thus,
the DMBVP gives a reasonable mathematical formulation of the shape
preserving interpolation problem.
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63. Finite-Difference Approximation of DMBVP

For practical purposes, it is often necessary to know the values of the so-
lution S of a DMBVP only over a prescribed grid instead of its global
analytic expression. In this section, we consider a finite-difference approx-
imation of the DMBVP. This provides a linear system whose solution is
called a mesh solution. It turns out that the mesh solution is not a tabu-
lation of S but it can be extended on € to a smooth function which has
shape properties very similar to those of S.

Let n;,m; € N, ¢+ = 0,...,N, j = 0,...,M, be given such that
hi/n; =1;/m; = h. We are looking for a mesh function

{wiji |k =-1,...,ni+1,i=0,...,N;l=—=1,...,mj+1,j =0,..., M},

satisfying the difference equations

2 2
|:A% + 2A1A2 + A% — <%> A1 — (%ﬂ) A2:| Uik;jl == 0) (7)
? J

k=1,...,n;—1,4=0,...,N; [=1,...,m; —1, j=0,..., M,

2
|:A% — <%> A1:| uik;jl = 0, (8)

0, ifj=0,...,M—1,
0,my ifj=M,

2
- (3) e g
J

k:L”wm—Li:QHWNJ:{

0 ifi=0,... N—1
k= ’ P ’ ’ oo l=1,....m; —1, 7=0,.... M
07 nN lf 7 = N, ) ) ) ] ) .] ) ) )
where
Avagir g — ik 133l — 2Uik;j1 + Ui k—1;51
1WUsk;51 52 )
Aogir oy — ikiid 1 — 2Uik;j1 + Wiksji—1
2Wik; 9l — 7,2 .

The smoothness condition (4) is changed to

ui—l,nifl;jl :U”L'O;jl?
Ui—1,n; 141550 — Ui—1,n; 1 —1350  Uily50 — Uq,—1;51 (10)

2h 2h ’
A1, =A1uio:50,

i=1,...,N, 1=0,....,m;, j=0,..., M,
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Wik;j—1,mj_1 —UWik;505
Uiksj—1,m;_1+1 = Uikyj—1m;_1—1  Uik;51 — Uik;j,—1 (11)
2h 2h ’
Aotik;j—1,m; , =A2uik;jo,

k=0,...,n;, i=0,...,N, j=1,..., M.

Conditions (5) and (6) take the form

w050 =Jfij UN,ny:j0 =S N+1,55 12)
Wi0:M,may =Fi,M+1,  UNny:Mmy =fN+1,M+1,
t1=0,...,N, 7=0,..., M,
and
Al’u,()();j() :f(gjz-’o), ] =0,..., M; AIUOO;M,mM = (5,2],\21_17
A1UN,nN;j0 = 1(\72;01)7]'7 J=0,..., M; AluN,nN;M,mM = 1(\r2-’|?1),M-|-17
AZUiO;OO :fi((?’z), 1 =0,...,N; AZUN,nN;OO = 1(\?;31),0?
Aotio;Mmy = ﬁﬁp i=0,...., Ny AoUNpnyMmy = 1(\?;31),1\4“7
A1A2u00,00 = 53’2), A1A2uN ny ;00 = 1(\r2_’|_21),0a
AlAQUOO;M,mM = (5,211321-17 A1A2UN,nN;M,mM = ](Vz—fl),M—{—l'
(13)
We can evaluate all tension parameters p;;, ¢;;, ¢ = 0,...,N, j =
0,...,M, by one of the algorithms for their automatic selection, see, e.g.,

[6,7], etc., and first find the mesh solution on the main mesh A. The latter
can be achieved in the three steps.

First step. Construct discrete hyperbolic tension splines [1] in
the x direction by solving the M + 2 systems (8). As a result, one finds
the values of the mesh solution on the lines of the mesh A in x direction.

Second step. Construct discrete hyperbolic tension splines in
the y direction by solving the N + 2 systems (9). This gives us the values
of the mesh solution on the lines of the mesh A in y direction.

Third step. Construct discrete hyperbolic tension splines in the x
and y directions interpolating the data fi(j2,0)7 t=0,N+1,5=0,...,M+1,
and fi(f’z), t=0,....N+1,5=0,M + 1, on the boundary I'. This gives
us the values

Alu(](];jlv AIUN,nN;jla lZO,...,mj, jZO,...,M,

A2Uik;007 AZUik;M,mMa kZO,...,TLi, iZO,...,
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Now the system of difference equations (7)—(13) can be substantially
simplified by eliminating the unknowns

Uikl k=—-1,n;+1,:=0,...,N, l:(),...,mj, 3=0,....,.M,

Uikl k=0,...,n;, 0 =0,...,N, | = —l,mj+1, 3=0,....,.M,
using relations (10), (11), and the boundary values (14), and eliminating
the known values of the mesh solution on the mesh A.

As a result one obtains a system with (n; — 1)(m; — 1) difference
equations and the same number of unknowns in each rectangle €2;;, i =
0,...,N,j5=0,...,M. This linear system can be efficiently solved by the
SOR algorithm or applying finite-difference schemes in fractional steps on
single- or multi-processor computers.

64. SOR Algorithm

Using a piecewise linear interpolation of the mesh solution from the main
mesh A onto the refinement let us define a mesh function

{ul) |k =0,...,n;, i=0,...,N, 1=0,...,mj, j=0,...,M}. (15)
In each rectangle €2;;, ¢« = 0,...,N, 7 = 0,..., M, the difference
equation (8) can be rewritten in componentwise form

1
Uik; 51 :? {ﬂij [Ui,k—l;jl + Ui,k+1;ﬂ] + vij [Uik;j,l—l + Uz’k;j,H—l]
J

2
= 2[Wi k14,01 Ui k- 14,041 F Ui k1,01 + Ui kt1g041)  (16)
= WUik;5,1—2 — WUik;j,1+2 — Wi k—2;51 — Ui,k+2;jl},
where
pi; \’ ai; \° pi; \’ ai; \°
a”:20+2 &Yy _+_2 117 , ﬁ”_8+ 1.7 , —8+ 1.7 .
n; mj n; mJ

Now using (16) we can write down SOR iterations to obtain a numer-
ical solution on the refinement

- 1 (v+1) (v) (v+1)
Uikijl =~ {ﬁij [ tujr + Wins 1) F Vig [Wikeg 1 + uz(Z;)j,H—l]
1]

(v+1) (v) (v)
- 2[ ik—1iji—1 T Ui g—1:j041 T Wi g1,0—1 T U k+1;j,l+1]

Oy u) (v+1) _ (v)
Uikigi—2 — Yiksj 42 = Wi k—2:51 = Ui kt2;41

v+1 v
“Ek;r'l) Ek)]l + w(Tik;j1 — z(k;)jz)a l<w<2, v=01,...,

k=1,...,n;—1,4=0,...,N, l=1,....m; =1, 5=0,...,M.
Note that outside the domain Q the extra unknowns U0, — 1351, UN,nn+1:51>
l = O,...,mj, j = 0,...,M, and Uik;0,—15 Wik;M,mpr+15 k = 0,...,n¢,
i=0,...,N, are eliminated using (14) and are not part of the iterations.
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§5. Method of Fractional Steps

The system of difference equations obtained in section 3 can be efficiently

solved by the method of fractional steps [9]. Using the initial approxima-

tion (15) let us consider in each rectangle ;;,¢=0,...,N, j=0,..., M,

the following splitting scheme
n+1/2 _ . n

u + A11Un+1/2 + A12un = 0,
-
un+1 - un+1/2 (17)
+ A22U,n+1 + Alzu”+1/2 = 0,

T

where

Dii\2 L\ 2
Ay =AT —pAy, Agy = Aj — gz, Ay = AtAy, p= (ﬂ> ) Q= (—> ;
U:{Uz’k;jl | kzl,...,ni—l, iZO,...,N;
l=1,...,mj—1, j=0,...,M}.
Equations (17) can be rewritten in the form

(I + TAll)u”+1/2 =(I — 7A12)u",
(I + TAQQ)U;TL+1 :(I — TA12)’LLn+1/2,

where [ is an identity operator. Eliminating from here the fractional step
u™t1/2 yields

(I—f— TAll)(I—F TAQQ)Un+1 = (I — TA12)2’U,n.

After some simple transformations we obtain the following scheme in whole
steps, equivalent to the scheme (17),

un~|—1 —u”
—I—(All+A22)Un+1+2A12UH+T(A11A22UH+1—A%Q’U,n) =0. (18)
-

It follows from here that the scheme (18) and the equivalent scheme
(17) for the tension thin plate equation (1) possess the property of complete
approximation [9] only in the case if

A11A22 = A%Z or Dij = qij = 0 for all Z,j

Let us prove the unconditional stability of the scheme (17) or, which
is equivalent, the scheme (18). Using usual harmonic analysis [9] assume
that

u = nnemrz, un+1/2

; r —I; —Y;
= ’I]n+1/26W2, z = kl h + ]CQy l.yj . (19)
? J
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Substituting equations (19) into equations (17) we obtain the amplification
factors

p1 = h+1/2 1 —aias 05 = M+l 1—ajas
1= - 9 2 — — )
n 1 —pyTay + af Mtz 1 —qy/Taz + a3
p=pipz = (1= araz)”
(1 — py/Tay + a?)(1 — q\/Tas + a2)’
where

4 kih
al:_£81n2< ; 1)’ k1:17"'7ni_17 nlh’:hl?

h? 2 h;
4

agz—gsinz @z , k2:17~-'7mj_17 mjh:l]
h 2 1

It follows from here that

0<p< (1—@1(12)2 < <1—a1a2>2<1
—U T (14+ad)(1+a2) ~ \1+aia

for any 7. This proves the strong stability of the scheme (17).

At each fractional step in (17) one has to solve a linear system with
a symmetric positive definite pentadiagonal matrix. This is much cheaper
than directly solving the linear system (7). However, in general the scheme
(17) has the property of incomplete approximation [9]. For this reason, in
iterations we have to use small values of the iteration parameter 7, e.g.,

VT /h? = const.

§6. Numerical Example

The approach developed in this paper was tested on several practical exam-
ples. Because of space limitations we consider here only one such example.
The initial topographical data is shown in Figure 1. Figure 2 is obtained
by setting all tension parameters to zero, that is, considering usual thin
plate spline interpolating the data. It gives oscillations which are unnat-
ural for the data. The situation can be substantially improved by using
thin plate tension spline with automatic selection of the shape control
parameters. The resulting shape preserving spline in Figure 3 perfectly
reproduces the data shape and simultaneously keeps a smooth surface.

Applying the SOR iterative method or using the method of fractional
steps we obtain practically the same results. However the method of frac-
tional steps converges about three times faster than the SOR iterations.
But the operation count at each step of the SOR iterative method is ap-
proximately three times less than that in the method of fractional steps.
Therefore, the performance of both methods is very similar. They can be
also easily modified for use on parallel processor computers.
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Fig. 2. A surface “without tension”.
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