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Abstract� This paper de�nes a class of functions with shape preserving properties
��isogeometry�� determined by a given set of intervals on the plane IR�� Based on the
de�nition� we provide very simple one� and three�point local algorithms for convex
and monotone approximation of curves and surfaces by C� generalized cubic splines�
The generalized splines are represented as a linear combination of GB�splines� In 	�D
case tensor�product splines are used� We give the results of some numerical tests�
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�� Introduction

For the shape�preserving interpolation problem solving various types of
generalized cubic splines were successfully applied �Beatson � Wolkowitz ����
Boor ���� Gregory ��	� Sakai � Silanes ��	� Schaback ��
�� By inserting some
parameters in the structure of a spline we can ensure the desired geometric
properties of the spline curve and in particular preserve monotonicity and
convexity of initial data by choosing the parameters properly� The key mo�
ment is here the developing of algorithms for authomatic choice of parameters�
The known algorithms are based mainly on the piecewise representation of the
splines �McCartin ��
� Miroshnichenko �����

In many practical problems initial data are known approximately� There�
fore of interest is developing smoothers of initial data that would work within
a prescribed error and at the same time inherit geometric peculiarities of the
data� The statement of the problem was considered in �Grebennikov ����
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Schmidt � Scholz ��
�� In �Grebennikov ���� a sequential smoother was devel�
oped for this purpose� In �Kvasov � Vanin ���� Kvasov � Yatsenko ��
� direct
isogeometric approximation algorithms were suggested based on the tool of
rational cubic and parabolic B�splines�

In the present paper the problem of isogeometric approximation for in�
terval data is formalized by introducing the notion of a class of functions
with the isogeometry� The algorithms of isogeometric local approximation
are developed on the base of the generalized B�spline tool� The data are
smoothed using one� and three�point local approximation formulae with au�
tomatic choice of the parameters with convexity and monotonicity of initial
data being retained�

By the surface approximation we suppose the initial data be given point
by point as a collection of nonintersecting and in general curvilinear sec�
tions of a ��D body� At the beginning via the algorithm of isogeometric
interpolation �Kvasov � Yatsenko ���� the system of curves along the initial
cross�sections is constructed� The ��D spline is de�ned as the tensor product
of one�dimensional splines� To this end along the orthogonal direction the
set of generalized local approximation splines is generated� On the resulting
surface the system of curvilinear coordinate lines forming the regular meth
is constructed� Along these lines such shape properties of the initial data as
convexity monotonicity the presence of linear sections the angles and the
bends are retained� The possibilities of the algorithm are illustrated by test
examples�

�� The Problem of Isogeometric Approximation

Suppose a set of intervals F � fFi j i � 
� � � � � Ng Fi � �fi � �i� fi � �i�
i � 
� � � � � N  with prescribed small �i � 
 on a grid � � a � x� � x� �
� � � � xN � b be given� We call the problem of searching for a su�ciently
smooth function S�x� � C��a� b� such that S�xi� � Fi i � 
� � � � � N  and S�x�
preserves the shape of the initial data an isogeometric approximation problem�

To formalize this problem we introduce the notations�

�iS � �S�xi���� S�xi���hi� hi � xi�� � xi� i � 
� � � � � N � ��

�iS � �iS ��i��S� i � �� � � � � N � �

and use the interval di�erences �Shokin ����

�iF � h��i �Fi�� � Fi� � ��if � ei��if � ei�� ei � h��i ��i � �i����

i � 
� � � � � N � ��



�iF � �iF ��i��F � ��if �Ei� �if � Ei�� Ei � ei�� � ei�

i � �� � � � � N � ��

�a�� a��� �b�� b�� � �a� � b�� a� � b�� � 
 if and only if a� � b��

The initial data are said to increase �decrease� monotonically on a subin�
terval �xR� xK � K � R if �iF � 
 ��iF � 
� i � R� � � � �K � �� The data
are called convex downwards �upwards� on �xR� xK � K � R � � if �iF � 

��iF � 
� i � R � �� � � � �K � ��

We assume that the intervals �iF  �iF for all i do not contain zeros i�e�
the initial data satisfy the conditions

��if�
� � e�i � i � 
� � � � � N � �� ��if�

� � E�
i � i � �� � � � � N � �� �����

If these inequalities are valid all over the interval �a� b� the initial data
uniquely de�ne monotonicity and convexity of an approximation function
S�x�� If the values of a function S�x� are such that S�xi� � Fi i � 
� � � � � N 
then we have �iS � �iF  i � 
� � � � � N � � �iS � �iF  i � �� � � � � N � ��
Taking into account the inequalities for the initial data we obtain

�iS�if � 
� i � 
� � � � � N � �� �iS �if � 
� i � �� � � � � N � �� �����

De�nition ���� The set of functions I��� F � is called the class of isogeomet�
ric approximants if for any function S�x� � I��� F � the following conditions
are met�
�� S�x� � C��a� b�

�� S�xi� � Fi� i � 
� � � � � N 

�� S�x� is monotonic in �xi� xi���� i � �� � � � � N � � if �i��f�if � 
�

�if�i��f � 

 S�x� is monotonic in �x�� x�� if ��f��f � 
 and in
�xN��� xN � if �N��f�N��f � 


S��x� has one sign change in �xi��� xi���� i � �� � � � � N�� if�i��f�if � 


the number of sign changes of the function S��x� in �a� b� coincides with
that in the sequence ��f���f� � � � ��N��f 
 and

�� S���xi��if � 
� i � �� � � � � N � �
 the number of sign changes of the func�
tion S���x� in x � �a� b� coincides with that in the sequence ��f� ��f� � � � �
�N��f �

The isogeometric approximation problem is by de�nition the problem
of searching for a function S�x� � I��� F �� The solution of isogeometric
approximation problem we seek in the form of generalized cubic spline�



�� A Basis of Generalized B�splines

Let the partition � � a � x� � x� � � � � � xN � b on the interval
�a� b� be given� For a su�ciently smooth function S�x� we set Sri � S�r��xi�
r � 
� �� � i � 
� � � � � N �

De�nition ���� Our generalized cubic spline on the mesh � is a function
S�x� � C��a� b� such that in any subinterval �xi� xi��� it has the form

S�x� � �Si � �i�
�h
�
iS

��

i ���� t� � �Si�� � 	i���h
�
iS

��

i���t

��i�t�h
�
iS

��

i � 	i�t�h
�
iS

��

i���
�����

where t � �x � xi��hi and the functions �i�t�� 	i�t� satisfy the conditions

�
�r�
i ��� � 	

�r�
i �
� � 
� r � 
� �� �� ���i �
� � 	��

i ��� � ��

The set of splines complying with De�nition ��� is denoted by SG� � The
choice of functions �i�t� 	i�t� depending on the parameters is essential for
the properties of the spline� By this reason follow to �Zav�yalov ��
� we call
these ones the de�ning functions�

Let us construct a system of basis functions with minimum�length sup�
ports for the set of generalized cubic splines SG� � As dim�SG� � � �N���N���
� N � � we extend mesh � by adding the points xj � j � ��������� N � ��
N � �� N � � such that x�� � x�� � x�� � a b � xN�� � xN�� � xN���

We demand that the basis splines Bi�x� i � ��� � � � � N � � have the
properties

Bi�x�

�
� 
� if x � �xi��� xi���
� 
 otherwise

�����

N��X
j���

Bj�x� � � for x � �a� b�� �����

To provide property ����� we suppose that in ����� the second derivatives
of the de�ning functions ���i �t� 	

��

i �t� t � �
� �� for the generalized cubic spline
are nonnegative monotonic functions�

According to De�nition ��� the basis spline Bi�x� � di�erent from zero



only in the interval �xi��� xi��� � should have the form

Bi�x� �

�������������
������������

B��

i �xi����i���x�� x � �xi��� xi����

B��

i �xi����vi�� � v�i���x� xi����

�B��

i �xi����i���x� �B��

i �xi��i���x�� x � �xi��� xi��

�B��

i �xi����vi�� � v�i���x� xi����

�B��

i �xi��i�x� �B��

i �xi����i�x�� x � �xi� xi����

B��

i �xi����i���x�� x � �xi��� xi����


� x �� �xi��� xi����

�����

where

�j�x� � �j

�
x� xj
hj

�
h�j � �j�x� � 	j

�
x� xj
hj

�
h�j �

v
�r�
j � 	

�r�
j�����h

��r
j�� � �

�r�
j �
�h��rj � r � 
� ��

As
i��X

j�i��

B��

i �xj��vj � v�j�x � xj�� � 
�

we have
i��X

j�i��

B��

i �xj�v
�

jy
r
j � 
� yj � xj � vj�v

�

j � r � 
� ��

From ����� and ����� for x � �xi� xi��� we get

i��X
j�i��

Bj�x� � �i�x�
i��X

j�i��

B��

j �xi� � �i�x�
i��X
j�i

B��

i �xi���

�B��

i �xi���v
�

i���x� yi��� �B��

i���xi�v
�

i�x � yi� � ��

Because of the linear independance of � x �i�x� and �i�x� we obtain
the equations

i��X
j�i��

B��

j �xi� �
i��X
j�i

B��

j �xi��� � 
�

B��

i �xi���v
�

i��y
r
i�� �B��

i���xi�v
�

iy
r
i � ��r� r � 
� ��

From this system we �nd by elimination

B��

i �xj� �
yi�� � yi��
v�j


�

i���yj�
� j � i� �� i� i� ��



where 
i���x� � �x� yi����x � yi��x� yi����
Using methods in �Zav�yalov et al� ��
� it is possible to show that the

splines Bi�x� i � ��� � � � � N�� are the nonnegative functions with minimum�
length supports such that the identities

N��X
j���

yrjBj�x� � xr � r � 
� � for x � �a� b�

are valid� These functions are linearly independent and form a basis in the
space of generalized cubic splines SG� � Therefore any spline S�x� � SG� can be
uniquely represented in the form

S�x� �
N��X
j���

bjBj�x� for x � �a� b� �����

with some constant coe�cients bj �
Further we consider the case when �averaged nodes� of B�splines

yi � xi � vi�v
�

i i � 
� � � � � N coincide with the nodes of main mesh �
i�e� vi � 	i�����h

�
i�� � �i�
�h

�
i � 
 i � 
� � � � � N and x�i � x� � ih�

xN�i � xN � ihN�� i � �� �� ��
From ����� the expression ����� for spline S�x� in the subinterval �xi� xi���

is transformed to the form

S�x� � bi ��ib�x � xi� � �i�t�h
�
i �ib�v

�

i � 	i�t�h
�
i �i��b�v

�

i��� ���	�

where �jb � �jb��j��b j � i� i� � �jb � �bj�� � bj��hj �
Whence the formulae are followed

S�xi� � bi � �ib

�
	�

i�����

	i�����

�

hi��
�
��i�
�

�i�
�

�

hi

�
��

� �����

S��xi� �
�

v�i
�	�

i�����hi���ib� ��i�
�hi�i��b�� �����

S���xi� � �ib�v
�

i �����

and vice versa

bi�� � S�xi�� hi��S
��xi� � h�i����	i����� � 	�

i������S
���xi��

bi � S�xi�� h�i�i�
�S
���xi�� ����
�

bi�� � S�xi� � hiS
��xi�� h�i ��i�
� � ��i�
��S

���xi��

i � 
� � � � � N�



The choice of de�ning functions �i�t� 	i�t� we subject to conditions�
�i�t� � ��pi� t� 	i�t� � ��qi� �� t� where parameters pi� qi � 
 for all i and
��p� 
� is a strictly monotonic decreasing function�

We display some commonly used examples of de�ning functions �i�t�
	i�t� in ������

a� Rational splines with linear denominator �Sp ath ��
��

�i�t� � Pi��� t����� � pit�� P��
i � ��� � �pi � p�i ��

b� Rational splines with quadratic denominator�

�i�t� � Pi��� t����� � pit��� t��� P��
i � ��� � pi��� � pi��

c� Exponential splines �Koch � Lyche ���� Sp ath ��
��

�i�t� � ��� t��e�pit��	 � 	pi � p�i ��

d� Hyperbolic splines �see �McCartin ��
� and the numerous references in
this paper��

�i�t� �
sinh pi��� t� � pi��� t�

p�i sinh�pi�
�

e� Splines with additional nodes �Pruess �����

�i�t� �
�

	�� � pi��
��� �� � pi�t�

�
�� x� � max�
� x��

Di�erent generalizations of the parabolic splines in �Stechkin � Subbotin
��	� very useful for practical calculations can be easily included in our scheme�
To de�ne such splines we construct the additional mesh � � fxi j i �
��� � � � � N � �g where xi�� � xi � xi xi�� � xi � �ihi � xi�� � �ihi�
Based on the representation ����� we can suggest the following examples of
the de�ning functions �i�t� � ���i� pi� t� 	i�t� � ���i� qi� �� t��

a� �i�t� � Pi��i � t������ � pit� P
��
i � ��� � �ipi�

��

b� �i�t� � Pi��i � t������ � pit��� t�� P��
i � ���� � �ipi�

� � ��i pi��

c� �i�t� � Pie
�pit��i � t��� P

��
i � �� � �ipi�

� � ��

d� �i�t� � ��i��� � pi�� t������



�� One�point Algorithm of Isogeometric Local Approximation

In ����� we set bi � fi i � 
� � � � � N � The coe�cients b�� and bN��

can be computed by di�erent methods depending the problem solved� For
example these coe�cients can be �nd from the one of the following boundary
conditions �Zav�yalov et al� ��
��
I� S��xi� � f �i  i � 
� N �
II� S���xi� � f ��i  i � 
� N �
III� The periodic problem� hN�i � hi fN�i � fi�
IV� S�xi� � fi i � 
� N �

From the condition vi � 
 or ��qi��� 
�h
�
i�� � ��pi� 
�h

�
i  i � 
� N using

the strict monotonicity of function ��p� 
� and the equalities h�� � h� hN �
hN�� we have q�� � p� qN�� � pN � Therefore by adding the �rst and third
equations in ����
� we obtain for the type I boundary conditions at i � 
� N

b�� � f� � �h�f
�

�� bN�� � fN�� � �hN��f
�

N � �����

For the type II boundary conditions by virtue of ����
� we have

b�� � �f� � f� � �h���
�

��
�f
��

� �

bN�� � �fN � fN�� � �h�N��	
�

N�����f
��

N �
�����

In the periodic case b�� � bN�� bN�� � b�� According to ����
� the
case of type IV boundary conditions is equivalent to prescribing S���xi� � 

i � 
� N or by virtue of ���	� �ib � 
 i � 
� N � Of course in left and right
boundary points di�erent types of conditions can be considered�

The parameters qi��� pi i � �� � � � � N � � �in the periodic case i �

� � � � � N� are chosen to guarantee jS�xi� � fij � �i�

By the formula ����� we have

S�xi�� fi �

�
	�

i�����

	i�����

�

hi��
�
��i�
�

�i�
�

�

hi

�
��

�if� i � �� � � � � N � �� �����

As for hi�� � hi the equation vi � 
 yield the inequality qi�� � pi and the
relation ����� permits a simple choice of the parameters qi��� pi� If hi�� � hi
we use

jS�xi�� fij � j�if j

��
�

hi��
�

�

hi

�
	�

i�����

	i�����

	
��

� �i�

Taking into account the constraint for generalized cubic splines
	�

i������	i����� � � we can set

	�

i�����

	i�����
� � � max

�
j�if jhi��hi
hi�� � hi

�

�i
� �� 


�



to de�ne qi�� and the value pi is calculated from condition vi � 
 or

��qi��� 
�h
�
i�� � ��pi� 
�h

�
i � i � �� � � � � N � ��

The case in which hi � hi�� and pi � qi�� is considered in a similar manner�
In case of type I boundary conditions using the formulae ����� and �����

to �nd p� qN�� we analogously have

�����
�

���
�
� � � max

�
h�
��
j��f � f ��j � �� 


�
�

	�

N�����

	N�����
� � � max

�
hN��

�N
jf �N ��N��j � �� 


�
�

For type II boundary conditions by virtue of ����
� we obtain

S�xi� � fi � h�i�i�
�f
��

i � i � 
� N�

whence the restrictions

��i�
��
�� �

h�i jf
��

i j

�i
� i � 
� N�

are satis�ed�
For generalized cubic splines the inequality ���i�
� � 	 is valid and the

p� pN values are chosen by the rule

��i�
��
�� � 	 � max

�
h�i jf

��

i j

�i
� 	� 


�
� i � 
� N�

After the calculation of the parameters p� qN�� the coe�cients bj  j �
��� N � � are found from ������

Lemma ���� The function S���x� changes sign on the interval �xi� xi���� i �

� � � � � N � �� only once if the condition S���xi�S

���xi��� � 
 is ful�lled�

Proof� According to ���	� in x � �xi� xi��� we have

S���x� � ���i �t�S
���xi� � 	��

i �t�S
���xi���� �����

By assumption for t � �
� �� the function ���i �t� � 
 monotonically decreases
�	��

i �t� � 
 monotonically increases�� Therefore if S���xi�S
���xi��� � 
 by



virtue of ����� in x � �xi� xi��� the function S���x� is of constant sign� If
S���xi�S

���xi��� � 
 then by virtue of constant sign

d

dx
S���x� � h��i �����i �t�S

���xi� � 	���

i �t�S���xi���� in �xi� xi���

the function S���x� is monotonic and has precisely one sign change� tu

Theorem ���� If the inequalities

���f � f �����f � 
� f ����f � 
�

�f �N ��N��f��N��f � 
� f �N�N��f � 
�
�����

f ��� ��f � 
� f ��N�N��f � 
 ���	�

�by assumption ��f �� 
 and �N��f �� 
 are valid� the generalized cubic
spline S�x� constructed by Algorithm of one�point local approximation is an
isogeometric approximant�

Proof� In fact by ����� we have S���xi� � �if�v
�

i i � �� � � � � N � �� Since
v�i � 
 and with allowance made for the restrictions on the initial data �����
we derive S���xi��if � 
 i � �� � � � � N � ��

For type I boundary conditions it follows from ����� and ����� that S���x��
� ��f�v

�

� � ��v���
�����f � f ���� Therefore by virtue of ����� and ���	� in the

case of type I and II boundary conditions the inequality S���x��S
���x�� � 


is ful�lled� Analogously the inequality S���xN���S
���xN � � 
 is established�

Taking into account Lemma ��� we conclude that the number of sign changes
of the function S���x� for �a� b� coincides with the one in the sequence �if 
i � �� � � � � N � �� Thus the conditions �� from De�nition ��� are met�

Let us now introduce the mesh  � a � z� � z� � � � � � zN � zN�� � b
where if S���xi���S

���xi� � 
 i � �� � � � � N we set zi � �i � �xi� xi��� ac�
cording to the equality S�xi� � S�xi��� � S���i��xi � xi��� and if S���xi���
�S���xi� � 
 we choose zi � x� from the condition S���x�� � 
 x� � �xi��� xi��

By construction S���zj�S
���xi� � 
 j � i� i 	 �� By virtue of the restric�

tions on the initial data ����� and by ����� we have S���xi� �� 
� Therefore
according to Lemma ��� S���x� is of constant sign and S��x� is monotonic in
�zi� zi��� i � �� � � � � N � � respectively� In �z�� z�� �zN � zN��� the monotonic�
ity of S��x� follows from the inequalities S���xi�S

���xi��� � 
 i � 
� N � �
and from Lemma ����

Let us show that at any in!ection point x� � �xi� xi��� i � �� � � � � N � �
we have S��x���if � 
� From the above it follows that �if�i��f � 
 and one
of the two possible cases �if�if � 
 or �if�if � 
 takes place�



From ���	� for x � �xi� xi��� we have

S��x� � �if � ��i�t�hi�if�v
�

i � 	�

i�t�hi�i��f�v
�

i���

where ��i�t� � 
 	�

i�t� � 
�
Taking into account the signs of the functions ��i�t� 	�

i�t� we have
S��x��if � 
 at �if�if � 
 and therefore S��zi����if � S��x���if � 
�

Now let �if�if � 
� We suppose �if � 
 without loss of generality� The
derivative is extremal at an in!ection point i�e� �iS � S��x��� According
to ����� we have �iS�if � 
 and we again come to the inequality S��x��
��if � 
� The case in which �if � 
 is considered in a similar manner�

By the construction we evidently have S��zi����if � 
 for S���xi� �
S���xi��� � 
 i � 
� � � � � N � �� Therefore we have S��zi����if � 
 i �

� � � � � N � � at the nodes of the grid �

It was proved above that S��x� is monotonic in �zj � zj��� j � i� i�� and
S��zi����if � 
� Hence S��x� is monotonic in �zi� zi���� If now �if�jf � 

j � i 	 � we have S��zi�S

��zi��� � 
� Hence S��x� is of constant signs in
�zi� zi��� and in particular in �xi� xi��� and S�x� is monotonic in �xi� xi���
i � �� � � � � N � ��

Under the assumption that ��f��f � 
 a function S��x� monotonic in
�z�� z�� will be of constant signs in this interval� Therefore S��x����f � 
�
It has been shown above that S��x� is monotonic in �x�� x��� According to
����� f ����f � 
 and since S��x����f � 
 the function S�x� is monotonic in
�x�� x���

For type II boundary conditions by ����� and ����� we have S��x�� �
��f � h��

�

��
�f
��

� � From here it follows that for a suitable choice of the pa�
rameter p� we have S��x����f � 
� As S��x����f � 
 the function S�x� is
again monotonic in �x�� x��� The case of the interval �xN��� xN � is considered
analogously�

Because the inequalities S��x����f � 
 S��zi����if � 
 i � 
� � � � �
N � � S��xN ��N��f � 
 are valid and S��x� is monotonic in �zi� zi��� i �

� � � � � N  the function S��x� changes sign in �zi� zi��� and hence in �xi��� xi���
i � �� � � � � N � � provided �i��f�if � 
� The number of sign inver�
sions of the function S��x� in �a� b� coincides with the one in the sequence
��f���f� � � � ��N��f � tu

	� Three�point Algorithm of Isogeometric Local Approximation

We compute the coe�cients in ����� from formulae ����
� with S���xi�
being approximated using the second divided di�erence

bi � fi � �h�i �hi�� � hi�
���i�
��if� i � �� � � � � N � �� �����



To determine the coe�cients bi for i � ��� 
� N�N �� we use one of the
extended boundary conditions of the same types as in Algorithm of one�point
approximation�

I� S�k��xi� � f
�k�
i  i � 
� N  k � 
� ��

II� S�k��xi� � f
�k�
i  i � 
� N  k � 
� ��

III� The periodic problem� hN�i � hi fN�i � fi�
IV� S�xi� � fi i � 
� �� N � �� N �

Using the formulae ����������
� we write out the explicit form of the
coe�cients bi i � ��� 
� N�N � � for interesting us boundary conditions� To
reduce the exposition the type IV boundary conditions are not considered�
Type I�

b�� � b� � �h�f
�

��

b� � f� � �f� � h�f
�

� � b���� � ����
�����
��
���

bN � fN � �fN � hN��f
�

N � bN������ 	�

N������	N������
���

bN�� � bN�� � �hN��f
�

N �

�����

Type II�

b�� � �f� � b� � �h������
� � ����
��f
��

� �

b� � f� � h�����
�f
��

� �

bN � fN � h�N��	N�����f
��

N �

bN�� � �fN � bN�� � �h�N���	N����� � 	�

N������f
��

N �

�����

Type III� In the case of periodic boundary conditions formula ����� is valid
for i � �� � � � � N and bN�i � bi for all i�

We �nd the parameters pi qi i � 
� � � � � N � � from the isogeometric
conditions formulated in De�nition ��� in two steps� Using the constraints
jbi � fij � �i i � �� � � � � N � � which in view of ����� are equivalent to

�h�i �hi�� � hi�
���i�
�j�if j � �i� i � �� � � � � N � � �����

�in the periodic case i � 
� � � � � N� we �rst �nd pi and obtain qi�� from the
condition vi � 
�

For type I boundary conditions according to ����� the quantities p� qN��

are selected so as to satisfy the inequalities

jb� � f�j � jf� � h�f
�

� � b�jj� � ����
�����
�j
�� � ���

jbN � fN j � jfN � hN��f
�

N � bN��jj�� 	�

N������	N�����j
�� � �N �

�����



For type II boundary conditions by virtue of the formulae ����� the p�
qN�� values we choose from the estimates

jb� � f�j � h�����
�jf
��

� j � ���

jbN � fN j � h�N��	N�����jf
��

N j � �N �
���	�

Finally pi qi we �nd from the constraints jS�xi�� fij � �i i � 
� � � � � N �
According to ����� and ����� we have

S�xi� � fi �H��
i

�
�

�h�i���i���
�

hi�� � hi��
�i��f �

�h�i���i���
�

hi�hi � hi���
�i��f

� �� � �h��i��hi�i�
�� ��hi�� � hi�
���	�

i�����hi�� � ��i�
�hi���if



�

�����

where

Hi �
	�

i�����

	i�����

�

hi��
�
��i�
�

�i�
�

�

hi
�

For generalized cubic splines at any relations between hi�� and hi by virtue
of the condition vi � 
 we have

hih
��
i���i�
� � hi��h

��
i 	i����� � ��	�

Therefore according to the estimate ����� by ����� we obtain

jS�xi�� fij � H��
i �i � �i�

where �i � �i��h
��
i�� �

	
� j�if j� �i��h

��
i �

For hi�� � hi from here as in Algorithm of one�point approximation we
�nd qi�� from the relation

	�

i�����

	i�����
� � � max

�
hi��hi

hi�� � hi

�i
�i
� �� 


�
� i � �� � � � � N � � �����

and the values pi are found from the condition vi � 
�
In the case of type I II boundary conditions for i � �� N � � according

to ����� ����� and using ����� ���	� we come again to the formula ����� that
permits us to choose the parameters q� pN���

For type I boundary conditions and h� � h� hN�� � hN�� we can �nd
q� pN�� using also the relations

	�

����

	����
� � � max

�
h�h�

h� � h�

"��
��

� �� 


�
�

��N���
�

�N���
�
� � � max

�
hN��hN��

hN�� � hN��

"�N��

�N��
� �� 


�
�



where

"�� � ��h
��
� �

�

�
j��f j� �j��f � f ��j� ��h

��
� �j� � ����
�����
�j

���

"�N�� � �N��h
��
N�� �

�

�
j�N��f j� �j�N��f � f �N j� �N��h

��
N���

� j�� 	�

N������	N�����j
���

Theorem 	��� If the inequalities

��f���f � f ��� � j��f j��h
��
� � f ����f � 
�

�N��f�f
�

N ��N��f� � j�N��f j�N��h
��
N��� f �N�N��f � 
�

�����

f ��� ��f � 
� f ��N�N��f � 
� ����
�

are valid� the generalized cubic spline S�x� constructed by Algorithm of three�
point local approximation is an isogeometric approximant�

Proof� By virtue of the restrictions imposed on the initial data ����� and
����� it follows from ���������	� that

�ib�if � 
� i � 
� � � � � N � ��

��ib��i��b��if � 
� i � �� � � � � N � ��
������

From here according to ����� S���xi��if � 
 i � �� � � � � N � �� For the type I
boundary conditions in the point x� we �nd S���x�� � �v���

�����b����b� �
�h��� ����
� � ����
��

���b� � f� � h�f
�

�� from formulae ����� and ������ In
the case ��f � 
 according to ����� we have f �� � ��f � ��h

��
� � Therefore

b� � f� � h�f
�

� � b� � f� � h���f � �� � b� � f� � ��� Taking into account
the estimate ����� we obtain S���x�� � 
 i�e� S���x��S

���x�� � 
� We have
the same inequality for ��f � 
� In a similar way we can arrive at the
estimate S���xN���S

���xN � � 
� For the type II boundary conditions we get
S���xj�S

���xj��� � 
 j � 
� N � � from ����
�� Now using Lemma ��� we
conclude that conditions �� from De�nition ��� are met�

With regard to the ful�lment of inequalities ������ the procedure for
testing condition �� from De�nition ��� does not di�er from the proof of
Theorem ���� The theorem is proved� tu

Remark ���� For f�x� �  and f�x� � x both in the case of one�point and three�point
algorithms for type I� II� IV boundary conditions by immediate checking we have bi � 
and bi � xi� i � �� � � � � N�� respectively and therefore according to ����� the spline with
isogeometry S�x� reproduces the straight lines� For type III boundary conditions the spline
S�x� will be exact for the constants�

Remark ���� For pi � qi � � the equality vi � �� i � � � � � � N � � is valid only for

a uniform grid �� In this case� according to ����� we obtain the well�known three�point

scheme of local approximation by cubic splines in �Zav�yalov et al� �����




� Isogeometric Approximation of Surfaces

Let a domain G � �c� d�� �
� �� in a plane WU be partitioned by straight
lines w � wi i � 
� � � � � N  of the grid �w � c � w� � w� � � � � � wN � d
into N rectangular subdomains� Assume that a grid �i

u � 
 � ui� � ui� �
� � � � uiMi

� � i � 
� �� � � � � N  is given on every straight line w � wi� The

number of the grid nodes and their position on grids �i
u i � 
� � � � � N  are

independent of one another� The values fij of some function f�w� u� are given
with tolerances �ij at the nodes uij  j � 
� � � � �Mi i � 
� � � � � N �

A surface of the class C����G� passing through the points Pij � �wi� u
i
j �

"fij� where "fij � �fij � �ij � fij � �ij � j � 
� � � � �Mi i � 
� � � � � N  can be
constructed by generalizing algorithms of local approximation by splines from
Sections � and �� In addition to being e�cient at constructing the surface
these algorithms also preserve the shape of input data�

The surface is sought in the form of a function�

S�w� u� �
N��X
i���

biBi�w��

where the generalized basis splines Bi�w� are the same as in ������ The func�
tions bi�u� i � ��� � � � � N � � generalize local approximation formulae from
Sections � � �Algorithms � �� and are linear combinations of one�dimensional
interpolation splines with isogeometry Si�u� i � 
� � � � � N in �Kvasov � Yat�
senko ����� These splines de�ne curves along sections w � wi i � 
� � � � � N 
and pass through the points �uij � fij� j � 
� � � � �Mi�

Formally necessary formulae �Algorithms � �� can be obtained by re�

placing the values f
�k�
j in Algorithms � � by the functions S

�k�
j �u� k � 
� �� �

respectively� Similar changes are made in the boundary conditions which can
be speci�ed for the boundary conditions�

As above we consider the four types of boundary conditions� For #one�
point$ scheme we have�
I� �

�wS�wi� u� �
�
�wf�wi� u� i � 
� N �

II� ��

�w�S�wi� u� �
��

�w� f�wi� u� i � 
� N �
III� The periodic problem� hN�i � hi SN�i�u� � Si�u� for hi � wi�� � wi�
IV� S�wi� u� � Si�u� i � 
� N �

For #three�point$ scheme to the type I II boundary conditions we add
the type IV conditions and the type IV boundary conditions are ful�lled for
i � 
� �� N � �� N � As the formulae for functions bi�u� i � ��� � � � � N � � are
the direct generalization of local approximation formulae from Sections � and



� we will consider only the type I boundary conditions� We use the notation
gi�u� �

�
�wf�wi� u� i � 
� N �

Algorithm �� One�point scheme�

b���u� � S��u� � �h�g��u��

bi�u� � Si�u�� i � 
� � � � � N�

bN���u� � SN���u� � �hN��gN �u��

�	���

Algorithm �� Three�point scheme�

b���u� � b��u� � �h�g��u��

b��u� � S��u� � �S��u� � h�g��u� � b��u���� � ����
�����
��
���

bi�u� � Si�u� � �h�i �hi�� � hi�
���i�
��iS�u�� i � �� � � � � N � ��

bN �u� � SN �u� � �SN �u� � hN��gN �u� � bN���u��

� ��� 	�

N������	N������
���

bN���u� � bN���u� � �hN��gN �u��

�	���

where

�iS�u� � �iS�u� ��i��S�u�� �jS�u� � �Sj���u� � Sj�u���hj � j � i� �� i�

In order to calculate the boundary conditions we can use one�parameter
interpolation Lagrange polynomials of the second and third degree� In accor�
dance with isogeometry restrictions ����� ����� ����
� in �Kvasov � Yatsenko
���x �� we put

g��x� �

��
�

�
�wL����w�� u� if �

�wL����w�� u���S�u� � 
 ��S�u� �� 

�
�wL����w�� u� if �

�wL����w�� u���S�u� � 
 ��S�u� � 


� otherwise

gN �u� �

�����
����

�
�wL��N���wN � u� if �

�wL��N���wN � u��N��S�u� � 

�N��S�u� �� 


�
�wL��N���wN � u� if �

�wL��N���wN � u��N��S�u� � 

�N��S�u� � 



� otherwise

�	���

where

L��i�w� u� � Si�u� � �w � wi���iS�u� � �w � wi����i��S�u���wi�� � wi���

L��i�w� u� � �L��i�w� u��wi�� � w� � L��i���w� u��w � wi����wi�� � wi��



Instead of gi�u� i � 
� N  we can also consider interpolation isogeometric
splines in �Kvasov � Yatsenko ���� which are constructed by the prescribed
values �f�wj � u

i
j���w j � 
� � � � �Mi i � 
� N �

In practical calculations every so often it is necessary to recalculate the
prescribed values fij from the nodes of original irregular grid to the nodes of

a regular grid on the domain G i� e� to the points � "wn� "um� m � 
� � � � � "M 
n � 
� � � � � "N � In this case it is su�cient to know the values gj�"um� m �


� � � � � "M  j � 
� N  which can be found using �	����
The isogeometric spline S�w� u� possesses the following properties of pre�

serving the shape of the initial data�

Property 
��� Let functions Sj�u�� j � i � �� � � � � i � �� � � i � N � �
be monotonic and�or convex in the interval �"um� "um���� Then for any �xed
"w � �wi� wi���� the generalized spline S�w� u� constructed by Algorithm � will
be monotonic and�or convex in the interval �"um� "um����

Property 
��� Let functions Sj�u�� j � i � �� � � � � i � �� � � i � N��� be
monotonic and�or convex on the interval �"um� "um��� and satisfy the conditions

S
�k�
j �u��

�k�
j f�u� � 
� j �� 
� N� S

�k�
j �u�g

�k�
j �u� � 
� j � 
� N�

where k � � and�or k � �� respectively� Then for any �xed "w � �wi� wi����
� � i � N � �� the generalized spline S�w� u� constructed by Algorithm � will
be monotonic and�or convex in �"um� "um����

To prove these assertions it is su�cient to take advantage of the relations

�k

�uk
S�w� u� �

N��X
i���

b
�k�
i �u�Bi�w�� k � �� ��

use the expressions �	��� and �	��� for the coe�cients bi�u� and take into
account the �niteness of that the B�splines�Bi�w� � 
 at w � �wi��� wi��� and
Bi�w� � 
 at w �� �wi��� wi����

Property 
��� Let the choice of parameters pi� qi� i � ��� � � � � N � �� of a
generalized spline S�w� u� ensures the following estimate for any "Sj�u� such

that �i
"S�u�� �i "S�u� do not change sign for all u � �
� ���

j "Sj�u� � Sj�u�j � Ej�u�� j � 
� � � � � N�

where Ej�u� are given functions� Then for any �xed u the spline Su�w� �
S�w� u� is an isogeometric approximant�

Proof� The proof of this statement follows from the above reasoning for
one�dimensional local approximation splines� tu



The calculation of spline S�w� u� values can be realized most e�ectively
to minimize the number of arithmetical operation executed for mentioned
above regular resulting mesh� In this case at �rst the coe�cients bi�"um�
i � ��� � � � � N � � are found and then by the formulae for the generalized
B�splines the values S� "wn� "um� n � 
� � � � � "N  m � 
� � � � � "M  are computed�

A nonunique isogeometric surface given point by point as a family of
curvilinear nonintersecting sections can be constructed by introducing the
standard parametrization

x � Sx�w� u�� y � Sy�w� u�� z � Sz�w� u�� �	���

In this case the original points Tij � �xij � yij� zij� j � 
� � � � �Mi i �

� � � � � N  are considered to belong to the parallelepiped

Q
ij � f"�ij j

j"�ij � �ij j � ��ijg� where we put �ij � ��wi� uj� for every coordinate func�
tion in �	��� and ��ij is an admissible deviation with respect to appropriate
variable� The resultant surface is obtained as a triple of isogeometric splines
constructed by the above algorithm�

This algorithm can be assigned to a class of �Gordon �	�� type algorithms
with the di�erence that the local approximation is used here instead of �mix�
ing� the functions bi�u� i � 
� � � � � N  by the use of fundamental splines and
the surface is constructed in the space of isogeometric generalized splines�

�� Numerical Examples

That approximating generalized splines are isogeometric was proved un�
der the restrictions ����� on original data that ensure the uniqueness of mono�
tonicity and convexity conditions� Actually the algorithms we suggest work
well for more general data which is illustrated by the examples given below�
A possibility to vary the parameters of admissible relative deviations from ini�
tial data �i gives us additional tool to control the �smoothness� of the resultant
curves while remaining within the prescribed approximation error�

The �gures below illustrate the application of generalized cubic splines
when prescribed curves and surfaces are approximated point by point� The
de�ning functions were taken in the form

�i�t� � ��pi� t� � Pi��� t����� � pit��� t���

	i�t� � ��qi� �� t�� P��
i � ��� � pi��� � pi��

that corresponds to rational cubic splines with quadratic denominator� In
all cases below more precise three�point local approximation formulae �Algo�
rithms � �� were employed� For comparison the same data were interpolated



using a standard cubic spline in �Zav�yalov et al� ��
� �in our case pi � qi � 

for all i�� The derivatives at end points were calculated using Lagrange poly�
nomials of the second degree� S��x�� � IL�����x�� S

��xN � � IL���N���xN ��
These derivatives were then re�ned according to the isogeometry conditions
����� �for surfaces according to �	����� The limit admissible relative deviation
from initial data was �
%� In the �gures continuous and dashed lines denote
respectively the graphs of the rational spline S�x� and the cubic spline S��x��
Initial points are marked by crosses�

Figure ���a shows an example of approximating a unit�pulse function
f�x� � max�
� �� �jx� ����j� using the points xi � �� 
���i i � 
� �� � � � � 	�
In this case oscillations are typical of the cubic spline while the rational spline
is not sensitive to such outliers� By varying �i we can a�ect the �corner radii��

�a� �b�

Figure ���� Pro�les of interpolation and isogeometric splines� �a� Approximation

of a unit�pulse function� �b� data obtained by �Sp�ath ��
��

The data for Figs� ���b and ��� �Tables ��� and ���� were taken from
�Sp ath �	�� and �Sp ath ��	� respectively� The cubic spline in Fig� ���b has
extra in!ection points on the �rst third fourth and eighth intervals� The
isogeometric spline reveals no such oscillations� Figure ��� re!ects the same
general tendencies in the behaviour of splines S��x� and S�x�� By reducing �i
at proper points we can additionally �press� the curve againts the data �see
Fig� ���b� at an expense of making it more �angular��



Table ���� Data for Fig� ��b�
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�
 ��
 ��� ��� ��
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�
 ��
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Table ���� Data for Fig� ��	�

xi 
 ��
 ��� ��� ��� 	�
 � ��� �


fi � ��� ��� ��
 ��� ��� � 
�� 


�a� �b�

Figure ���� Data obtained by �Sp�ath ����� Variation of the isogeometric curve

with decreasing the tolerance parameters �i�

As the data for Fig� ���a we took a function with discontinuous derivative
obtained by joining line segments and a semicircle f�x� � ����� �x��������
jx � �j � � and f�x� � � otherwise� From the geometric point of view the
interpolation cubic spline curve is unsuitable here whereas the pro�le of the
isogeometric spline is ideal �Fig� ���a��

The case of joining a quadrant of a circle with a line segment is presented
in Fig� ���b� The resultant curve has here a discontinuous curvature at the
joining point� The vertical tangent line on the left boundary was approximated
by the value S��a� � �
� From the viewpoint of geometric requirements the
behaviour of the cubic interpolant is once again far from being satisfactory
while the rational spline once again produces no oscillations and automatically
adjusts boundary conditions�

In many works devoted to isogeometric interpolation algorithms are
tested with �Akima ��
� data �Table ����� The pro�les of splines S��x� and



�a� �b�

Figure ���� Joining of a part of the circle with line segments� �a� Semicircle�

�b� one quadrant of a circle�

S�x� obtained for these data are given in Fig� ���a� On a �steep�gradient�
interval a corridor of admissible deviation from initial data was a maximum�
of �
 � �
 �� � �� � � � � and �i � � at the other points�

�a� �b�

Figure ���� Typical behaviour of interpolation and isogeometric splines� given fast�

and slow�change sections of data� �a� Data obtained by �Akima ����� �b� data obtained

by �Fritsch � Carlson �����



Table ���� Data for Fig� ���a�

xi 
 � � � 	 � � �� �� �� ��

fi �
 �
 �
 �
 �
 �
 �
�� �� �	 	
 ��

Figure ���b presents the results of approximating the data from �Fritsch �
Carlson ��
� namely fxig � f����� ��
�� ����� ���� ���� �
� ��� ��� �
g ffig �
f
� ���	���E � �� �������E � �� 
��	����� 
��	����� 
������
� 
����	�	�

������	� 
�������g� Here �i � 
�� for all i�

A perspective plot of the data for the reconstruction of the �viking ship�
surface is shown in the �gure ���a� The initial data were kindly allowed by
prof� T� Lyche from the University of Oslo� The data is a collection of points
in space all in the same cartesian coordinate system� The original data have
been split into three sets� The �rst set makes up the points along the top
curve in the �gure and the second set the bottom curve� Both of these are
closed curves in the sense that the �rst and last points are identical� The
third set of data points consists of the six ribs� Each rib is meant to be an
open curve so the last point is not the same as the �rst point�

Using these data we constructed a system of nonintersecting curvilinear
sections across the ship from side to side� As body cross�sections we have used
the ribs and four�point sections in aft and bow parts of the ship extracted
from the top and bottom curves� The cartesian coordinates of the nonunique
isogeometric surface were calculated using the standard parametrization in
�	���� In �gures ���b ���c the resulting surface constructed by the algorithm �
is shown in two di�erent projections with �

� �

 lines of a regular mesh�

The main results of this paper were reported at the Third International
Conference on Mathematical Methods in CAGD Ulvik Norway �Kvasov �����



�a� A perspective view of the data�

�b� Isogeometric surface� First projection�



�c� Resulting isogeometric surface�

Figure ���� Approximation of a viking�ship surface�
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