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แลกเปลีÉยนขอ้มูลทีÉคลาดเคลืÉอนระหวางโหนด  พบวาวิธีการทีÉนําเสนอได้รับพืนทีÉครอบคลุม่ ่ Ê  
ทีÉมากกวา่ วิธีการเดิมถึง 19%  32% และ 37%  เมืÉอเกดการยึดครองโหนดอยางเดียวิ ่ หรือเกดการิ  
ยึดครองโหนดรวมกบการโจมตีแบบไมให้หลบั่ ั ่   และการโจมตีแบบให้หลบัตามลาํดบั ผลการ
ทดลองชีให้เห็นวาวิธีการทีÉรวมโปรโตคอลรักษารูปรางเครือขายนันสามารถลดความเสีÉ ยงÊ ่ ่ ่ Ê  
ของการโดนโจมตีไดอ้ยางมีประสิทธิภาพ่  
 

 
 
สาขาวิชาวิศวกรรมโทรคมนาคม ลายมือชืÉอนกัศึกษา  
ปีการศึกษา 2554 ลายมือชืÉออาจารยที์Éปรึกษา  

 

 

 

 

 

 



AKKACHAI  PHUPHANIN : SECURE COVERAGE CONTROL IN 

SHORT-RANGE WIRELESS SENSOR NETWORKS USING 

MULTI-AGENT SYSTEMS.  THESIS ADVISOR : ASST. PROF. 

WIPAWEE  HATTAGAM, Ph.D., 91 PP. 

 

WIRELESS SENSOR NETWORKS/MULTI-AGENT/MALICIOUS NODE/ 

COVERAGE CONTROL 

 

 A wireless sensor network (WSN) is a wireless network consisting of spatially 

distributed autonomous sensory devices that can communicate with each other to 

perform sensing and data processing cooperatively. However, due to limited onboard 

resources, power consumption must be reduced. Coverage control schemes, where 

nodes typically cooperate with each other, are therefore essential for effective 

condition monitoring of the environment. However, nodes are vulnerable to malicious 

attacks which directly affect the area under observation. Therefore, the underlying aim 

of this thesis is to develop a distributed light-weight coverage control scheme which 

countermeasures against malicious attacks in WSNs. This thesis proposed a coverage 

control algorithm based on multi-agent reinforcement learning integrated with 

a topology maintenance protocol in order to obtain a secure and near-optimal coverage 

allocation strategy. The proposed algorithm was designed in such a way that a node 

makes its decisions by considering inputs from multiple neighboring nodes in order to 

tolerate false messages created by malicious nodes.  

Simulation results showed that our algorithm was more robust and efficient by 

consistently attaining higher coverage per unit energy consumed, and achieving 

6-12% of coverage greater than the original DVF algorithm under sleep deprivation 
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and snooze attacks. Furthermore, the network substitution attack was studied where 

inaccurate information was exchanged between nodes. The proposed algorithm gained 

up to 19%, 32% and 37% of coverage higher than the DVF algorithm for the network 

substitution attack alone, and network substitution paired with sleep deprivation and 

snooze attacks, respectively. By integrating the secure topology maintenance protocol, 

our results suggested that vulnerability to such attacks can efficiently be reduced. 
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CHAPTER I 

INTRODUCTION 

 

 This chapter introduces the background on coverage control in multi-agent 

wireless sensor networks (WSNs) and presents the possible malicious attacks on 

WSNs. It also presents the motivation for applying reinforcement learning (RL) to 

achieve maximum coverage, maximize trade-off between area coverage with energy 

consumption and how to handle such malicious node attacks which is the main focus 

of this thesis. 

 

1.1 Significance of the problem 

A wireless sensor network (WSNs) is a wireless network consisting of 

spatially distributed autonomous sensory devices that can communicate with each 

other to perform sensing and data processing cooperatively (Stankovic, A.J., 2008). 

The overall objective of WSNs is to provide a low-cost solution to gather physical 

data from the environment, such as noise, pressure, light, vibration or temperature, at 

different locations, observation and transmit it to a base station. The most common 

energy storage device used in a sensor node is a battery which is suitable for a micro-

sensor with very low power consumption (Yick, J., et al., 2008). Therefore, WSNs 

promises unlimited potential for numerous application areas including environmental 

(Chitnis, L., et al., 2009), medical, military, transportation, entertainment, crisis 

management, homeland defense, and smart space (Han, X., et al., 2010), (Yu, L., et al., 

2007), (Li, M., et al., 2006).  
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Since WSNs are based on limited power sources and must be extremely small, 

their battery supplies are much more constrained. Therefore, processing power, 

memory and wireless communication abilities are very limited in order to reduce 

power consumption. 

Most research works consider WSNs which consist of sensor nodes that 

cooperate with one another. For example, Qiu, W., et al. (2008); Liu, Z., et al. (2008); 

Chen, W., et al. (2007); Wang, C., and Wu, W. (2009) investigated routing protocols, 

which require energy-awareness at all layers of the protocol stack. At the network 

layer, the aim is to cooperatively set up energy-efficient routes and reliably relay data 

from sensor nodes to the sink so that the lifetime of the network is maximized. The 

authors in (Seah, M.W.M., et al., 2007); (Munir, S.A., et al., 2007) proposed 

coordination algorithms between wireless sensor networks node which aim at 

maximizing the coverage of the sensing field while minimizing the total energy 

consumption, thereby increasing the lifetime of network. 

To encourage coordination between sensor nodes, multi-agent systems (MAS) 

have been applied in WSNs. MAS have potential to tackle the resource constraints 

inherent in these networks by efficiently coordinating the activities among the nodes. 

MAS are made up of a number of cooperative agents, each with its own set of states 

and actions, which must coordinate with one another in order to maximize the overall 

benefit for all agents. Seah, M.W.M., et al. (2007); Tham, C.K., and Renaud, J.C. 

(2005); Guestrin, C., et al. (2002), showed that cooperation between sensors in the 

same area can be achieved by a distributed learning algorithm based on distributing 

information of their value functions (a function that gives an estimate of how well an 

agent has performed so far at a given state) among agents. In particular, each agent 
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achieves cooperative decisions by exchanging the value of the state each agent lands 

in with its neighbors. 

However, cooperative behaviors between sensor nodes may not always be 

readily available. This may be caused by selfish behaviors of certain sensor nodes to 

conserve their energy. Furthermore, Vaz de Melo, P.O.S., et al. (2008); Wu, M.Y., et 

al. (2005) studied the conditions of node cooperation in packet forwarding in overlay 

WSNs where two WSNs under different authorities coexist in the same region. They 

showed that there was no guarantee that node cooperation will be beneficial to both 

WSNs. In particular, node cooperation depended on a number of factors, such as, 

network density, hostility of the environment, and network configuration, etc. 

Apart from dealing with non-cooperative behavior from sensor nodes under 

different network authorities, sensor nodes may also experience non-cooperative 

behavior from attacks by other malicious nodes inside or outside of the network. 

These attacks may be used to reduce the lifetime of the sensor network, or to degrade 

the functionality of the sensor application by reducing the network connectivity and 

the sensing coverage that can be achieved. Three types of attacks are common in 

WSNs (Gabrielli, A., et al., 2011). Firstly, the sleep deprivation attack is an attack 

which the adversary tries to induce a node in a specific area to remain active. This 

attack has two effects, (i) it increases the energy expenditure of sensor nodes and 

reduces the estimated lifetime of the network. (ii) in the case of a densely populated 

area, it can lead to increased energy consumption due to congestion and contention at 

the data link layer. Secondly, the snooze attack is an attack which the adversary forces 

the nodes to remain in the sleeping state. This type of attack can be applied to the 

whole network or to a subset of nodes. In the latter case, the adversary can launch an 
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attack to jeopardize the connectivity of the network or to reduce the sensing coverage 

in a region. For example, an adversary can selectively turn off nodes that are 

monitoring an intruder’s path through an area in which a sensor field has been 

deployed for surveillance. Thirdly, the network substitution attack is an attack which 

the adversary deploys some nodes, which are in a set elected by the TMP, to gain 

control of part of or the entire network. Once these nodes are under control, the 

adversary can carry out other attacks such as sharing false or inaccurate information or 

readings with other nodes. This type of attack is difficult to detect since the 

compromised node can still maintain connectivity and appear as it were operating as 

normal. 

To prevent such attacks, topology maintenance protocols (TMPs), such as 

SPAN (Chen, B., et al., 2002), ASCENT (Cerpa, A., and Estrin, D., 2004), PEAS (Ye, 

F., et al., 2003), and CCP (Wang, X., et al., 2003) were critical to the operation of 

wireless sensor networks. These protocols aimed to increase the lifetime of the sensor 

network by maintaining only a subset of nodes in an active or awake state, while 

turning off redundant nodes. There had to be enough active nodes to maintain the 

connectivity of the network as well as to obtain sensing coverage in the area where the 

sensor network was deployed. One research was Karlof, C., and Wagner, D. (2003) 

work that pointed out the security issues on topology maintenance protocols. 

However, Karlof, C., and Wagner, D. (2003) only described the snooze attack against 

GAF (Xu, Y., et al., 2001), SPAN (Chen, B., et al., 2002) authentication protocols. 

They did not discuss effects of the snooze attack on the sensing coverage. Moreover, 

they did not take sleep deprivation and network substitution attacks into consideration 

either. In another related work, Stajano, F., and Anderson, R. (1999) introduced the 
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problem of the sleep deprivation attack. However, they neither considered this attack 

in topology maintenance protocols nor described any countermeasures. Gabrielli, A., 

et al. (2011) proposed a meta-protocol (Meta-TMP) for countering malicious nodes by 

including authentication mechanisms that can be used to prevent outsider attacks and 

certain insider attacks. 

So far, several works on coverage control in the literature have assumed that 

all nodes in the WSN were cooperative (Schneider, J., et al., 1999); (Lauer, M., et al., 

2000); (Renaud, J.C., and Tham, C.K., 2006). Some applications of these networks are 

critical, and sensors are deployed in a hostile environment. For this reason, it is 

mandatory to develop solutions that make WSNs resilient to malicious behaviors. 

Otherwise, it is possible that an adversary can compromise the network functioning. 

For example, the wireless nature of the communication medium makes the data 

exchange vulnerable to eavesdropping attacks. The lack of protection mechanism in 

the network devices makes the sensors vulnerable to physical attacks and 

compromises the data stored inside the sensor. Moreover, the sensor hardware 

constraints such as the memory size and the energy supply can make the security 

techniques used in traditional networks unaffordable in WSNs.  

 A simple, adaptive coverage control method which is not computationally or 

resource demanding is therefore needed. Reinforcement learning (RL) techniques 

(Sutton, R., and Barto, A., 1998); (Kaelbling, L., et al., 1996) have been a common 

approach to coordinately and cooperatively improve the network performance in 

WSNs (Tham, C.K., and Renaud, J.C., 2005). RL is defined as the problem faced by a 

learner of how to take actions, or make optimal decisions, through trial and error 

interactions with a dynamic environment. A common RL method called Q-learning is 

 

 

 

 

 

 



  6

an algorithm which directly approximates the optimal action-value function (a 

function that describes how good an action was, given that the agent is at a particular 

state). Each learning agent takes an action, receives a reward, updates local 

information with an input from the environment, and repeats the process by learning 

its own optimal strategy. Renaud, J.C., and Tham, C.K. (2006) proposed the 

Frequency maximum Q-learning (FMQ) to encourage cooperative coverage control in 

WSNs. FMQ was based on Q-learning, which enabled autonomous self learning, 

adaptive applications with inherent support for efficient resource or task management. 

Their results when compared with that of (Tham, C.K., and Renaud, J.C., 2005) 

showed that the FMQ algorithm consumed more energy and received more average 

rewards than the coverage control approach in (Tham, C.K., and Renaud, J.C., 2005). 

The Multi-agent reinforcement learning (MARL) approach called Distributed 

value function (DVF) in (Tham, C.K., and Renaud, J.C., 2005) was promising and 

warranted potential use for coverage control in WSNs. However, preliminary results 

in this thesis showed that when malicious nodes were present in the system, such as in 

the case when nodes were under sleep deprivation, snooze attacks and network 

substitution attacks, the performance of the WSN was affected by an energy 

consumption increase and average reward reduction. This suggested that the DVF 

algorithm alone strongly relied on cooperation between nodes. To deal with malicious 

node behaviors and vulnerability to attacks, we proposed to solve this problem by 

using a topology maintenance protocol (Gabrielli, A., et al., 2011) in order to obtain a 

secure and near-optimal coverage allocation strategy under energy constraints. Such 

topology maintenance protocol should be designed in such a way that a node makes its 

decision whether to sleep or remain active, based on inputs from multiple neighboring 
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nodes in order to be resilient to false messages or non-cooperative behaviors by 

malicious nodes. 

 

1.2 Research objectives 

1.2.1 To study cooperative coverage control schemes in wireless sensor 

networks and study mechanisms which enhance secure operation for three types of 

attacks on sensors, i.e. sleep deprivation, snooze and network substitution attacks. 

1.2.2 To study how such attacks affect the performance of the DVF 

algorithm and investigate the integration of TMP and DVF algorithm to deal with 

such malicious node behaviors. 

 

1.3 Assumptions  

1.3.1 Cooperative coverage control is beneficial when the network is sparse 

or when the environment is hostile. 

1.3.2 A secure topology maintenance control mechanism integrated with the 

DVF algorithm to deal with such non-cooperative behavior can provide a more 

reliable and secure coverage control than the normal DVF approach. 

 

1.4 Scope of the Research 

1.4.1 The coverage of the wireless sensor network consisted of 5 different 

agents and 40 different agents which were located in the same region. 

1.4.2 Decision methods for choosing the maximum coverage strategy in 

WSNs have been studied. 

1.4.3 Non-cooperative sensor node behavior and multi-agent reinforcement 

learning (MARL) methods have been studied. 
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1.4.4 The performance of the Distributed Value Function algorithm for 

coverage control in a WSN have been evaluated under three types of attacks on a  

sensor node i.e., sleep deprivation, snooze and network substitution attacks. 

1.4.5 Simulations have been carried out by Visual C++. Two algorithms 

have been compared, namely, the Distributed Value Function (DVF) and the proposed 

integrated TMP with DVF algorithm which is the algorithm proposed in this thesis to 

handle non-cooperative behavior. The experimental results have been analyzed to find 

secure and optimal coverage strategies under energy constraints. 

1.4.6 Compared metrics include: 

• Average reward  

In the MARL framework, an action taken by agent changes the 

state of the environment and of the agent. A scalar reward is then returned to the agent 

from the environment. The agent should behave so as to maximize the received 

rewards, or more specifically, the long-term average reward. This metric is to measure 

the amount of incentives which encourage sensor nodes to cooperate. 

• Coverage  

A coverage is the area being monitored by the sensor nodes. This 

metric is to measure the coverage area among sensor nodes.  

• Average energy consumption 

The energy consumption is the energy spent on communication and 

computation. This metric is to verify which algorithm provides the best coverage with 

minimal energy consumption. The average energy consumption is the total energy 

consumption divided by the total duration of simulation. 
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• Trade-off 

The trade-off represents the number of illuminated cells (i.e. the 

coverage) per unit energy consumed. The trade-off is defined as the ratio of achieved 

coverage over the average energy consumption. 

 

1.5 Expected Usefulness 

1.5.1 To conceptually show that the MARL can be applied to find a suitable 

policy for secure coverage control in WSNs with malicious nodes. 

1.5.2 To develop a coverage control algorithm in wireless sensor networks 

which can handle non-cooperative behavior and use energy efficiently.  

  

1.6 Synopsis of Thesis 

 The remainder of this thesis is organized as follows. 

Chapter 2 presents the theoretical background which is the foundation for the 

contributions of this thesis. In this chapter, the definition of single agent and multi-

agent RL are presented. Then, the concept of the Markov decision process formulation 

is reviewed. A brief introduction to an existing tools used for solving the coverage 

control problem called the Distributed Value Function algorithms is then provided. 

 Chapter 3 investigates the coverage control problem in multi-agent WSNs.  

Studied secure coverage control in wireless sensor networks  with malicious nodes 

using multi-agents. In this chapter, we propose to alleviate malicious node attacks by 

using a topology maintaenance protocol in order to obtain a secure and near-optimal 

coverage allocation strategy under energy constraints. 
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 Chapter 4 summarizes all the findings and contributions in this thesis and 

points out possible future research directions. 

 

 

 

 

 

 



 

 

CHAPTER II 

BACKGROUND THEORY 

 

2.1 Introduction 

This thesis proposed a multi-agent secure coverage control scheme for wireless 

sensor networks. A wireless sensor network is a wireless network consisting of 

spatially distributed autonomous devise using sensor that can communicate with each 

other to perform sensing and data processing cooperatively. The overall objective of 

WSN is to provide a low-cost solution to gather physical data from the environment, 

such as noise, pressure, light, observation and transmit power sources and must be 

extremely small, hence their battery capacity constraints are much higher. Therefore, 

processing power, memory and wireless communication abilities are very limited to 

reduce power consumption. 

Due to scarce battery supply, maintaining and maximizing coverage control 

has become a challenging issue in WSNs. Distributed self-adaptive coverage control 

schemes are of particular interest as WSN are typically deployed in dynamically 

changing environment which may be difficult to access and manually configure. Such 

autonomous coverage control can be achieved by multi-agent systems (MAS). The 

implementation of MAS in a WSN require sensor-actuator node with processing 

capability which enable these node to perform tasks in a coordinated manner to 

achieve some desired system-wide objective. 
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This thesis proposed the application of multi-agent reinforcement learning 

(RL) to address the coverage control scheme in WSNs. Reinforcement learning 

(Sutton, R., and Barto, A., 1998) is a computational approach for autonomous goal-

directed learning and decision-making. RL is different from other computational 

approaches in that RL emphasizes on learning by the agent itself from direct 

interaction with its environment, without relying on any supervision or a complete 

model of the environment. In a distributed learning and decision-making system such 

as a multi-agent system, the system’s behavior is influenced by a team of agents acting 

simultaneously and independently (Tham, C.K., and Renaud, J.C., 2005). Thus, the 

state dynamics of the environment are likely to change more frequently than in the 

single agent case. Because it is a learning method that does not need any prior model 

of the environment and can perform online learning, RL is well-suited for cooperative 

multi-agent systems. 

Multi-agent systems (MAS) differ from single-agent systems in that there are 

many different agents that learn a task. Furthermore, all of the agents’ actions affect 

the state of the environment. Thus, the optimal policy not only relies on only one 

agent, but on all agents. There are works which directly applied a commonly used RL 

method called Q-learning to multi-agent systems whereby each agent disregards other 

agents in the system and takes action to maximize its own benefit. By neglecting the 

presence of other agents, suboptimal decisions are likely to be achieved. Therefore, an 

individual agent should consider the effect of joint actions from other agents as well to 

achieve better decisions in MAS. 
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To promote cooperation between sensor nodes, multi–agent systems (MAS) 

have been applied in WSNs. MAS has the potential to tackle the resource constraints 

inherent in these networks by efficiently coordinating the activities among the nodes. 

MAS is made up of a number of agents, each with its own set of states and actions. 

Each agent must coordinate with one another in order to maximize the overall benefit 

for all agents. Seah, M.W.M., et al. (2007) examined how coordination between the 

wireless sensor nodes could lead to maximization of coverage of the sensing field as 

well as minimization of the total energy consumption, thereby increasing the life time 

of network. They tested three algorithms, i.e. the fully distributed Q-learning, the 

Distributed Value Function (DVF) and the coordinated algorithm (COORD).  

Guestrin, C., et al. (2002) presented an algorithm for multi-agent reinforcement 

learning called Coordinated reinforcement learning. In this algorithm, agents 

coordinate both their action selection and their parameter update. Within the limits of 

their parametric representation, the agent determines a joint action without explicitly 

considering every possible action in their exponentially large joint action space. Tham, 

C.K., and Renaud, J.C. (2005) implemented a multi-agent system on a wireless sensor 

network comprising sensor-actuator nodes with processing capability. Their approach 

enabled these nodes to perform tasks in a coordinate manner to achieve maximum 

coverage. Tham, C.K., and Renaud, J.C. (2005) considered the implementation of 

several algorithms including the Indlearners algorithm, the Distributed value function 

(DVF) algorithm and the Opt DRL algorithm. The optimal algorithm for coverage 

control in multi-agent system was found to be the Distributed value function (DVF) 

algorithm, in terms of trade-off between the achieved area coverage and energy 

consumption. The Distributed value function (DVF) algorithm extended a commonly 
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used RL method called, Q-learning, to encourage cooperative behavior between 

agents in multi-agent systems to achieve maximum coverage area in the network. In 

this thesis, this algorithm was used as a benchmark for coverage control comparison in 

presence of malicious node attacks in the WSN.   

This chapter serves as an introductory to the fundamental theory of 

reinforcement learning which the basis of the contribution of this thesis. The next 

section explains the concept of single-agent and multi-agent RL. The following 

section provides a theoretical background on Markov decision process (MDP). A 

description of reinforcement learning is given in section 2.4. Section 2.5 presents the 

multi-agent Q-learning. Section 2.6 presents the distributed reinforcement learning 

and a summary is presented in the final section. 

 

2.2 Single-agent and multi-agent systems 

2.2.1 Single-agent systems 

Before studying and categorizing MAS, we first consider the most 

obvious centralized, single-agent systems. Centralized systems have a single agent 

which makes all the decisions. A single-agent system may have multiple entities, 

several actuators, or several physically separated components. However, if each entity 

sends its perceptions to and receives its actions from a single central process, then 

there is only a single agent in the central process. The central agent models all of the 

entities as a single “self”. 
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In general, the agent in a single-agent system models itself, the 

environment, and the interactions between the agent and environment. The agent is an 

independent entity with its own goal, action, and domain knowledge. In a single-agent 

system, other agents are not recognized by the agent. Thus, even if there are other 

agents in the system, they are not modeled as having a goal. That is, they are just 

considered part of the environment. The point being emphasized is that although 

agents are also a part of the environment, they are explicitly modeled as having their 

own goals, actions, and domain knowledge can be shown in Figure 2.1. 

 

 

 

Figure  2.1  A general-agent framework. The agent models itself, the environment,  

and their interaction. If other agents exist, they are considered 

part of the environment. 
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2.2.2 Multi-agent systems 

Multi-agent systems differ from single-agent systems in that several 

agents co-exist, each with their own goals and actions. From an individual agent’s 

point of view, multi-agent systems differ from single-agent systems in that the 

environment’s dynamics can be affected by other agents. Thus, all multi-agent 

systems can be viewed as having dynamic environments. Figure 2.2 depicts a multi-

agent system where each agent is both part of the environment and modeled as a 

separate entity. There may be any number of agents, with different degrees of 

heterogeneity and with or without the ability to communicate directly. 

 

 

 

Figure  2.2  A multi-agent scenario. Each agent models each other’s goals, 

actions, and domain knowledge. Direct interaction (communication) 

are indicated by the arrows between the agent. 
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2.3 Markov decision process theory 

A Markov decision process (MDP) is a model of a decision-maker interacting 

sequentially with the environment. If the decision-maker sees the environment’s true 

state, it is referred as a completely observable MDP (COMDP). Otherwise, it is 

referred as a partially-observable MDP (POMDP). In this thesis, it is assumed that the 

environment the multi-agent systems is a COMDP. The foundation of Markov 

decision process is presented as follows. 

2.3.1 Markov Decision Process 

A MDP is a discrete-time random decision process defined by a set of 

states, actions and the one-step state transition of the environment. Given any state s 

and action a, the probability of occurrence of each possible next state s' is 

 

1( | , ) ( | , )t t tP s s a P S s S s a a+′ ′= = = =  (2.1) 

 

This equation is called the state transition probability. Similarly, given 

any current state and action, s and a, together with any next state, s', the expected 

value of the incurred reward is 

 

1 1( , , ) , ,t t tR s a s E r S s S s a a+ +′ ′= ⎡ = = = ⎤⎣ ⎦  (2.2) 

 

where [ ]E ⋅  is the expectation operator and 1tr+  is the reward received at time 1t + . 

Equation (2.1) and (2.2), completely specify the most important aspects of the 

dynamics of the MDP. A MDP model can be shown in Figure 2.3. 

 

 

 

 

 

 

 



  18

 

 

Figure  2.3  A MDP model. 

 

A tuple (S, A, P, R) can describe the MDP characteristics, where Sis a 

discrete set of states, Aisa discrete set of actions available in each state, P: S x A  S is 

a mapping from the state-action space to a probability distribution over the state space. 

The function of P is called a state transition probability matrix where each element is 

defined in (2.1).R: S x A R is a mapping of the state-action space which returns the 

reward for taking a particular action in a given state as presented in (2.2). 

The objective of solving a MDP is to find a policy, π , defined as a 

mapping of the state space to the action space, [ ]: S P Aπ → , where P[A] is the 

distribution over the action space. The action-value function  of a given 

policy 

( ),tQ s aπ

π  associates all state-action pairs ( ),s a  with an expected reward for 

performing action a in state s at time step t and following π  thereafter;  
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where is the expected discounted return of the 

agent, 

2
1 2 3

0

... k
t t t t t k

k

R r r r rβ β β
∞

+ + + +
=

= + + + =∑ 1+

β is the discount factor and [ ]E π ⋅ is the expectation operator under policy π . 

The quantity Qπ  is called the action-value function for policy π . The objective of the 

learning task is to find a policy *π  such that the expected value of the return is 

maximized, i.e. find *π  such that  

 

* ( , ) max ( , ) ( , )         Q s a Q s a s a S Aπ π

π
= ∀ ∈ ×  (2.4) 

 

In other words, the objective of MDP is to find a policy to select 

actions at a given state such that the long term average reward is maximized. To 

achieve this, particularly in scenarios where the dynamics of the environment is 

difficult to model (such as in WSNs), a technique called reinforcement learning can be 

used to solve MDPs. 

 

2.4 Reinforcement learning 

 In reinforcement learning (RL), an agent(s) can learn how to map a situation to 

an action so as to maximize a numerical reward signal. RL is computation approach 

which identifies how a system in a dynamic environment can learn to choose optimal 

actions to achieve a particular goal. The learner is not taught which action to take, but 

instead must discover which action achieves the most reward by trial-and-error 

interactions with its environment (Sutton, R., and Barto, A., 1998). 
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In a RL model, the learner or decision maker is called the agent. Everything 

outside the agent is called environment. The interaction between a learning agent and 

its environment can be described in terms of states (st), actions (at) and rewards (rt). 

The agent selects actions and the environment responds to those actions. Furthermore, 

the environment also feedback rewards to the agent, as a consequence of the action 

selection at a given state in terms of a reward signal which the agent tries to maximize 

over time. More specifically, the agent and environment interact with each other in a 

sequence of discrete time steps. At each time step (t), the agent detects some 

representation of the environment’s state (st) and selects an action (at). One time step 

later, the agent receives a numerical reward (rt+1) and finds itself in a new state (st+1). 

Figure 2.4 shows the agent-environment interaction in reinforcement learning. 

 

 
 

Figure  2.4  Diagram of agent-environment interaction in reinforcement learning. 
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2.4.1 The value function 

  Reinforcement learning algorithms are based on estimating value 

functions. A value function is the expected sum of rewards received from starting in 

state s. The value functions quantify how well the decision which the agent has taken 

at a given state was. Since the rewards to be received by the agent depend on the 

actions taken, value functions are thus defined with respect to each particular policy. 

Therefore, we can define the value function of a state under a policyπ , V  by ( )sπ

 

{ }

1
0

( ) |

             | .

t t

k
t k t

k

V s E R s s

E r s

π π

π β
∞

+ +
=

= =

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑ s

 
(2.5)

 

 

2.4.2 The optimal value function 

The aim of solving a MDP is to find an optimal policy that achieves the 

maximum discounted reward over the long run. The optimal state-value function, 

denoted as , is therefore the state-value function at state s that is the maximum 

over all possible policies, 

*( )V s

 

( )*( ) max ,V s V sπ
π

=
 (2.6)

 

 

for all . s S∈

The optimal action-value function, denoted by  is defined in a 

similar manner by 

*( )Q s

 

( )*( ) max , .Q s Q s aπ
π

=
 (2.7) 
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To solve the problem above for an optimal policy, one possible 

solution is through an iterative search method (Puterman, M.L., 1994) that searches 

for a fixed point of the following Bellman equation: 

 

( ) ( )*( ) max , .ta s

V s R P s s a V sπβ
′

⎧ ⎫′ ′= +⎨
⎩

∑ ⎬
⎭  (2.8) 

 

Equation (2.8) is a form of the Bellman optimality equation for . 

The Bellman optimality equation is actually a system of equations, one for each state, 

so if there are N states, then there are N equations in N unknowns. If the dynamics of 

environment are known, then in principle one can solve this system of equations for 

using any one of variety of methods for solving systems of nonlinear equations. 

One can solve a related set of equations for . The Bellman optimality equation 

for defined by 

*( )V s

*( )V s

*( )Q s

*( )Q s

 

( ) ( )* *( ) , max , .t as
Q s R P s s a Q s aβ

′
′

′ ′ ′= + ∑  (2.9)
 

 

2.4.3 Q-learning 

Q-learning (Sutton, R., and Barto, A., 1998) is a RL method for MDPs 

which are controlled by a single agent. Q-learning is an algorithm that does not need a 

model of the environment and can directly approximate the optimal action-value 

function (Q-value) through online learning.  

In Q-learning process, the agent starts with an arbitrary initial Q-value 

at time step 0. Upon selecting action a at state s, the agent obtains an immediate 

reward r from the environment which then transits to a new state. The agent updates 
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the new Q-value with the feedback from the environment. The update rule at time step 

t+1 of the Q-value is given by: 

 

( ) ( ) ( )1( , ) 1 , max ,t t t
a

Q s a Q s a r Q s aα α β+
′

⎡ ⎤′ ′= − + +⎢ ⎥⎣ ⎦
 

(2.6)
 

 

where  [0,1)α ∈ is the learning rate. The process is repeated iteratively so that the 

agent can learn its own optimal policy. Note that the Q value in equation (2.10) can 

converge to  under the assumption that all states and actions have been visited 

infinitely often (Sutton, R., and Barto, A., 1998). 

*( , )Q s a

 

2.5 Multiple agent Q-learning algorithm 

Multi-agent systems differ from single-agent systems in that there are many 

different agents that learn a task and that all of the agents’ actions affect the 

environment. Thus, the optimal policy does not rely on only one agent, but conditions 

on all agents. There are works which directly applied Q-learning to multi-agent 

systems where an individual agent maximizes its own benefit. By doing so, their 

works neglect the presence of the other agents. As a result, suboptimal decisions may 

be reached. Therefore, an individual agent should take account of the effect of joint 

actions as a more suitable strategy for multi-agent systems. 
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2.6 Distributed reinforcement learning 

In recent years, several extensions to RL and Q-learning for distributed 

systems have been proposed. Many interesting problems which require solving with 

reinforcement learning (RL) also have properties that make distributed solutions 

desirable. In scenarios where the state and/or action space are large, a distributed 

approach to perform the computation is desirable because it speeds up computation. In 

many systems such as WSNs, access to sensors and actuators is inherently distributed, 

thus making a distributed solution method an attractive alternative to implementing a 

global high bandwidth communication network. Potential applications include control 

of power grids (or any other distribution of a resource such as water, gas, etc.), 

automobile traffic control, electronic network routing, control of robot teams, and 

communication networks. Figure 2.5 illustrates a distributed RL framework. 

 

 

 

 

 

 

 

 

 

 

 



  25

1
1tr +

0
1tr +

2
1tr +

0
ts

1
ts 2

ts

0
ta 1

ta 2
ta

 
 

Figure  2.5  Distributed RL diagram representing logical nodes in the distributed RL 

 formulation. Each node senses its own state of the environment,  

takes its own action, and receives its own reward signal. 

 

2.6.1 Distributed value functions 

In this section, we present an algorithm for distributed reinforcement 

learning based on distributing the representation of the value function between nodes. 

Each node in the system only has the ability to sense state locally, choose actions 

locally, and receive rewards locally. The goal of the system is to maximize the sum of 

the discounted rewards over all nodes and over time. However, each node is allowed 

to give its neighbors the current estimate of its value function for the states it transits 

through. A value function learning rule (described in the next section) uses 

information that allows each node to learn a value function that is an estimate of a 

weighted sum of future rewards for all the nodes in the network. With this 

representation, each node can choose actions to improve the performance of the 

overall system. 
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2.6.2 Distributed value function (DVF) algorithm  

Usually, in MAS, agents only have local state information since the 

global state of the system is not fully observable from each agent's point of view. 

Hence, Schneider, J., et al. (1999) proposed a Q-learning based algorithm for the DVF 

algorithm. This approach allowed each node to compute its local value function based 

only on available local information. Hence, agents only need to transmit the estimated 

value of the current state they land in, i.e.  for agent i at time t at each iteration. 

The update rule at time step t for agent i is given by 

( )i i
tV s

 

( ) ( ) ( ) ( ) ( )1 1 1
( )

, (1 ) , j ji i i i i i i i i
t t t t t t t t t t

j Neigh i
Q s a Q s a r s f j V sα α γ+ + +

∈

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
∑ 1+

 
(2.11) 

 

( )1 1( ) max , ,
i

i i i i
t t t ta A

V s Q s a+ +∈
=  (2.12) 

 

where α is the learning rate, ( )if j  are factors that weigh the value functions of the 

neighbors of agent i such that 

 

1( ) , if ( ) 0 
| ( ) |

1 , otherwise,

if j Neigh i
Neigh i

⎧= ⎪
⎨
⎪⎩

≠  (2.13) 

 

where ( )j Neigh i∈ is the set of neighbors of node i . 
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2.7 Summary 

In this chapter, an overview of the multi-agent Q-learning algorithm called 

Distributed Value Function has been given. This algorithm was used to determine 

maximum coverage control in WSNs in this thesis. The reason for selecting this 

method was that of the algorithm allowed the agent to rationally determine the near-

optimal policy and receive maximum coverage and maximum trade-off between 

achieved coverage with energy consumption in WSNs. 

However, the DVF algorithm was not designed to handle malicious nodes 

which may be present in the system. In the case when nodes are under sleep 

deprivation and snooze attacks, the performance of the WSN will be affected by an 

energy consumption increase and average reward reduction. This suggests that the 

DVF algorithm alone strongly relies on the cooperation between nodes. To deal with 

malicious node behaviors and vulnerable attacks, we proposed to solve this problem 

by using a topology maintenance protocol in order to obtain a secure and near-optimal 

coverage allocation strategy under energy constraints. 

In the next chapter, asecure multi-agent coverage control scheme for wireless 

sensor networks with malicious nodes is presented.  

 

 

 

 

 

 

 

 

 



 

CHAPTER III 

A SECURE MULTI-AGENT COVERAGE CONTROL 

SCHEME FOR WIRELESS SENSOR NETWORKS  

WITH MALICIOUS NODES 

 

3.1 Introduction 

A wireless sensor network (WSN) is a wireless network consisting of spatially 

distributed autonomous device using sensors that can communicate with each other to 

perform sensing and at processing cooperatively. The overall objective of a WSN is to 

provide a low-cost solution to gather physical data from the environment, such as 

noise, pressure, light, observation and transmit it to a base station. 

Due to scarce battery supply, topology maintenance and coverage control has 

become a challenging issue in WSNs. Works in (Chen, B., et al., 2002); (Cerpa, A., 

and Estrin, D., 2004); (Ye, F., et al., 2003); (Wang, X., et al., 2003) aimed at 

increasing the lifetime of the network by keeping only a subset of sensing nodes active 

and turning off the remaining redundant nodes. While Chen, B., et al. (2002); Cerpa, 

A., and Estrin, D. (2004) attempted to maintain connectivity but not guarantee sensing 

coverage, Ye, F., et al. (2003); Wang, X., et al. (2005) addressed both network 

connectivity and coverage requirement. 

 

 

 

 

 

 

 

 



  29

Distributed self-adaptive coverage control schemes are attractive as WSNs are 

typically spatially-distributed and deployed in dynamically changing environments 

which may be difficult to access and manually reconfigure. Such autonomous 

coverage control can be achieved by multi-agent systems (MAS) (Tham, C.K., and 

Renaud, J.C., 2005). Such distributed approach is also more scalable and compatible 

with resource-constrained sensor nodes. One of such system called the DVF algorithm 

has been investigated in (Tham, C.K., and Renaud, J.C., 2005) where all sensor nodes 

act as agents that cooperate to achieve a common goal of maximum coverage and 

minimum energy consumption. 

However, all of the aforementioned works were designed for trusted and 

cooperative environments. With scarce onboard resources, it is possible that sensor 

nodes may act selfishly by declining to service other nodes (Vaz de Melo, P.O.S., 

et al., 2008); (Singsanga, S., et al., 2010). Sensor nodes may also encounter attacks by 

other malicious nodes inside or outside of the network. These attacks may be used to 

reduce the lifetime of the sensor network, or to degrade the functionality of the sensor 

application by reducing the network connectivity and the sensing coverage that can be 

achieved. We study three types of attacks that can be launched in WSNs: sleep 

deprivation are attacks which the adversary tries to induce a node in a specific area to 

remain active thereby wasting energy and reduce the sensor network lifetime; snooze 

attack which the adversary forces the nodes to remain in the sleeping state thereby 

reducing sensing coverage or network connectivity; and network substitution attack 

which an adversary controls some nodes which were elected to maintain the 

connectivity. Once the adversary takes control of a portion of the network, it can carry 

out other attacks such as sending false information to other nodes. To the best of our 
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knowledge, only Gabrielli, A., et al. (2011) presented countermeasures against these 

types of security attacks in topology maintenance and in WSNs. However, Gabrielli, 

A., et al. (2011) only aimed at maintaining coverage by using a subset of nodes in an 

active or awake state, their objective was not to maximize coverage area per unit 

energy consumed.  

This thesis therefore proposed a coverage control scheme which aimed at 

maximizing the coverage per unit energy consumption and was designed to operate in 

an adversarial malicious environment. In particular, we proposed to integrate the DVF 

algorithm which is an adaptive and distributed multi-agent coverage control scheme 

(Tham, C.K., and Renaud, J.C., 2005) with a secure topology maintenance protocol 

(TMP) (Gabrielli, A., et al., 2011) against malicious node attacks in WSNs. More 

specifically, we incorporated a TMP countermeasure i.e. probing to verify the local 

states and active nodes within a neigh boring area before increasing or reducing its 

coverage to allow tolerance against attacks from multiple nodes within a node’s 

transmission range.  Our contribution centers on the integration of the probing 

mechanism to the DVF scheme and its performance evaluation against sleep 

deprivation, snooze and network substitution attacks. 

 

3.2 Multi-agent coverage control 

A multi-agent coverage control scheme called the Distributed Value Function 

(DVF) has been a common approach to coordinately and cooperatively improve the 

coverage control performance in wireless sensor networks (Tham, C.K., and Renaud, 

J.C., 2005); (Seah, M.W.M., et al., 2007); (Renaud, J., and Tham, C.K., 2006). In this 

method, each node communicates and exchanges information about its value function. 
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A value function is a function that quantifies how well the agent at a node performs at 

a given state s S∈ where is a discrete set of all possible states of the sensor network. S

Let  be the action selected by an agent, where a A∈ A  is the discrete set of all 

possible actions available at each state. The rule, so called policyπ, is defined as a rule 

which the agent selects actions as a function of states. In other words, it is the 

mapping from a state s S∈ and action a A∈ to the probability of selecting action  at a

state s . The value function of state s  under a given policy π is formally defined by 

1
0

( ) k
t k t

k
V s E r s sπ π γ

∞

+ +
=

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑ , where rt+1 is the reward of taking a particular action 

in a given state s  at time t, γ is the discount factor and { }Eπ is the expectation 

operator. Similarly, we define the action value function of taking action  at a given a

state under policy π by 1
0

( , ) ,k
t k t t

k
Q s a E r s s a aπ π γ

∞

+ +
=

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
∑ . The objective is to 

find a policy *π  such that ( )* arg max ,Q s aπ

π
π

∀
= . To achieve this objective, each 

agent i (node) in the DVF algorithm performs an update of its own action value 

function. The update rule at time step t for agent i is given by (Tham, C.K., and 

Renaud, J.C., 2005): 

 

( ) ( ) ( ) ( ) ( )1 1 1
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( , ) 1 , ji i i i i i i i i
t t t t t t t t t

j Neigh i
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where α is the learning rate, ( )if j  are factors that weigh the value functions of the 

neighbors of agent i such that: 

 

1( ) , if ( ) 0 
| ( ) |

1 , otherwis

if j Neigh i
Neigh i

⎧= ≠⎪
⎨
⎪⎩ e,

 (3.3) 

 

where ( )j Neigh i∈ is the set of neighbors of node i (Tham, C.K., and Renaud, J.C., 

2005). Hence, in the DVF algorithm, nodes cooperate not only with their direct 

neighbors but with all the nodes since the value function captures information about 

other nodes which are not direct neighbors as well. Therefore, the DVF algorithm is 

strongly dependent on cooperation from other nodes in the network through the last 

summation term on the right hand side of equation (3.1). The information exchange 

(i.e. the value functions of other nodes) in the DVF algorithm is vulnerable to 

malicious nodes attacks; as such information may be falsely exchanged by a 

compromised node. This has motivated us to improve the resilience of the DVF 

algorithm to malicious nodes. 

 

3.3 Malicious node environment  

So far the DVF algorithm has been studied under the assumption that all nodes 

in the WSN are cooperative (Tham, C.K., and Renaud, J.C., 2005). Hence, like other 

topology maintenance and coverage control schemes assuming this condition, DVF  

is vulnerable to security attacks where malicious nodes send spoofed or false 

messages to defeat the objective of the algorithm. This section describes the types of 

attacks that could occur in a WSN (Gabrielli, A., et al., 2011). These attacks could  
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potentially be used to reduce the lifetime of the sensor network, or reduce the 

achievable network connectivity and sensing coverage. 

3.3.1 Sleep deprivation attack 

In this type of attack, the adversary tries to induce a node in a specific 

area to remain active. This attack has two effects. First, by increasing the energy 

expenditure of sensor nodes, it reduces the estimated lifetime of the network. Second, 

in the case of a densely populated area, it can lead to increased energy consumption 

due to congestion and contention at the data link layer. 

3.3.2 Snooze attack 

In this type of attack, the adversary forces the nodes to remain in the 

sleeping state. This kind of attack can be applied to the whole network or to a subset 

of nodes. In the latter case, the adversary can launch an attack to jeopardize the 

connectivity of the network or to reduce the sensing coverage in a region. For 

example, an adversary can selectively turn off nodes that are monitoring an intruder’s 

path through an area in which a sensor field has been deployed for surveillance. 

3.3.3 Network substitution attack 

In this type of attack, the adversary deploys some nodes, which are in a 

set elected by the TMP, to gain control of part of or the entire network. Once these 

nodes are under control, the adversary can carry out other attacks such as sharing false 

or inaccurate information or readings with other nodes. This type of attack is difficult 

to detect since the compromised node can still maintain connectivity and appear as it 

were operating as normal. 
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3.4 Secure multi-agent coverage control: Part 1 

In order to make the DVF coverage control scheme more robust to malicious 

node attacks, TMP probing procedures were integrated into the DVF framework. The 

probing mechanism verifies whether there are active or inactive nodes in a node’s 

transmission range before decision take any action (i.e. changing the size of coverage 

area). In particular, in our proposed algorithm, a node can tolerate attacks by up to t 

nodes within its transmission range. 

To study the coverage control performance of a WSN under attack, a lighting 

control application of a room represented by a 10 x 10 grid was studied as shown in 

Figure 3.1. This room contained a group of 5 agents deployed on 5 nodes with light 

sensing capabilities, labeled Ml to M5. Each of them had a light source that can 

illuminate the part of the room surrounding the agent. The objective was for the agents 

to learn to cooperate with one another, in presence of malicious nodes, in order to 

completely illuminate the room in an energy-efficient way, i.e. minimize the number 

of lights turned on. The area of agent , denoted as , refers to the 5 x 5 grid square 

centered on agent i . 

i ia

We defined three modes for each sensor node, i.e., sleep mode, work mode and 

probe mode. In sleep mode, a node becomes inactive. In probe mode, a node has just 

awoken from the sleep mode but is checking on other nodes in its transmission  

range whether they are active or not, prior to taking any decision. In work mode, 

nodes are active and can decide to become inactive (since their cells may already  

be covered by other nodes) or to use low or high coverage.  On the other hand, in the 

original DVF algorithm, a node collects and exchanges data with its neighboring 

nodes, and immediately decides whether to be in an active (awake) or to be inactive 
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(asleep) state. In our proposed integrated DVF and TMP algorithm, before a node 

enters work mode, it enters probe mode to check whether or not there exists other 

nodes within its transmission range already in work mode or not. 

 

 

 

Figure  3.1  A 10 x 10 grid room representation. Grey cells are not illuminated, 

 white cells are illuminated by one node and striped cells  

 are illuminated by two nodes. 

 

Local agent state: Each agent i  can sense the level of light in its area. Its local 

state  is state of each agent based on its mode and coverage. The state of mode 

consists of three modes i.e. sleep mode, work mode and probing mode. In sleep mode, 

there is 1 possible state (i.e. no lit cells). In probing and work modes, each has 26 

possible states. Therefore, there are 53 possible states (1+26+26) for the system given 

by: 

is
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( , ) (i i
m cs state of mode state of coverage s s= = , ),i

 

where { }, ,i
ms sleep mode probe mode work mode∈  and { }0,...25 .i

cs ∈  

Local agent actions: Each agent i  has the ability to take one of the following 

three actions in any state it lands in. The action space  is the set of all possible 

actions for each state {Action 0 (Turn off the light), Action 1 (Turn on the light in 

LOW coverage. This illuminates 9 cells around the agent, as shown by Ml, M3 and 

M5 in Fig.1), Action 2 (Turn on the light in HIGH coverage. This illuminates the 25 

cells around the agent, as shown by M2 and M4 in Figure 3.1), and Action 3 (Send 

probe to neighbors and wait for a response within in a finite time. This action allows 

the agent to sense the illuminated cells within its range prior to deciding to take Action 

0, Action 1 or Action 2)}. Once an action is taken, the current local state of the agent 

transits to a new local state accordingly as shown in Figure 3.2.  

iA

iA =

Note that in the distributed learning schemes such as the DVF algorithm, the 

agents use only information that is locally available to make their decisions. The 

reward for agent i , denoted as ( )i i
tr s is a function of agent i’s state at time t and is 

defined by: 

is

 

( )( ) ,i i i i i
t tr s G s C= −  (3.4) 

 

where  is a function of the number of cells illuminated in the area of agent i such 

that  

( )i i
tG s
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( )( ) _ _ _ _ ,i i i
tG s nb cell bright a GAIN CELL BRIGHT= ×  (3.5) 

 

and  is the energy consumption resulting from the action taken by agent i at time t 

such that  

iC

 

0 ,if Action  0 was taken
_ ,if Action  1 was taken
_ ,if Action  2 was taken

_ ,if Action  3 was taken.

i COST LOW
C

COST HIGH
COST PROBE

⎧
⎪
⎪= ⎨
⎪
⎪⎩

 (3.6) 

 

The reward functions and state transitions for the proposed DVF+TMP 

algorithm are shown in Figure 3.2. Note that when the agent decides to take Action0, a 

reward G is obtained since the local cells could still be lit by neighboring nodes and 

the cost is zero since no energy is consumed if the agent becomes inactive. For other 

actions, the agent is rewarded with G subtracted by a non-zero cost in (3.6). 
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Figure  3.2  State transition diagram of the probing mechanism 

 in the DVF+TMP algorithm. 

 

The probe mode was designed in such a way that a node makes its state-

transition decisions, e.g. a decision whether to sleep or remain active, based on inputs 

from multiple neighboring nodes in order to be resilient to false message created by 

malicious nodes. Probing was also performed each instant a node is awaken from an 

inactive state. For Without probing a node’s eligibility to be in sleeping or active state, 

an adversary can launch a resource consumption attack that results in a node staying in 

a active state until its energy is depleted. Four performance metrics were considered: 

(1) the average reward per time step defined by: 

 

( )
,

T
i i

t
t=0

r s
average reward

T
=
∑
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where  is the total number of time steps, and T ( )i i
tr s  is given by (3.4); (2) the 

average energy consumption; (3) the percentage of coverage area from good 

(uncompromised) nodes defined as the total number of cells illuminated by all good 

nodes at a time step divided by the total number of cells in the system; and (4) the 

trade-off which is defined by:  

 

T

i
t=0 i
T

i
t=0 i

number of lit cells by agent (t)
Trade-off =

energy consumption by agent (t)

∀

∀

∑∑

∑∑
 (3.8) 

 

Note that the trade-off in the above equation reflects the total number of 

illuminated cells throughout the simulation over the total amount of energy 

consumption. The trade-off represents the number of illuminated cells (coverage) per 

unit energy consumed. It is expected that the better the system can deal with malicious 

nodes, the better (and more efficient) the uncompromised sensor nodes can decide and 

therefore the higher the trade-off.  

In the simulation, we used GAIN_CELL_BRIGHT = 0.5, COST_LOW = 0.8, 

COST_HIGH = 3, COST_PROBE = 0.5 the learning rate α = 0.4 and the discount 

factor γ = 0.7. The values of the learning rate and discount factor were obtained from 

experimenting a range of values and selecting the parameters which received the best 

performance in terms of average reward per time step. The run length of each 

simulation was T = 20,000 time steps and the results were averaged over 10 runs to 

achieve the desired accuracy. 
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3.5 Results and analysis: Part 1 

 3.5.1 Sleep deprivation and snooze attack 

We assigned each agent to encounter sleep deprivation attack and 

snooze attack and then analyze the results in Figures 3-6. Note also the percentages of 

coverage in the normal situation (no attack) are also shown in Figures 3 and 5 

(represented by DVF and DVF+TMP). Denote “M1-w”, “M2-w”, “M3-w”, “M4-w”, 

“M5-w” for cases when agent 1, 2, 3, 4 and 5 were each attacked by sleep deprivation, 

respectively.  Similarly, denote “M1-s”, “M2-s”, “M3-s”, “M4-s”, “M5-s” for cases 

where agent 1, 2, 3, 4 and 5 were each attacked by snooze attack, respectively. As a 

benchmark to compare the effects from malicious nodes, i.e., sleep deprivation and 

snooze attacks, we observe how each agent operates in the normal situation. We 

compared our proposed integrated DVF and TMP algorithm (abbreviated by 

DVF+TMP) with the original DVF algorithm (abbreviated by DVF). 

Figure 3.3 depicts the sleep deprivation effect on the percent coverage 

of the DVF algorithm compared with the proposed DVF+TMP algorithm. In case of 

sleep deprivation attack on agents 2, 3, 4, and 5, we can see that the percentage of 

coverage for each case differs only slightly. Furthermore, for each case, convergence 

to a policy which obtained the most coverage was achieved. However, in the case 

when agent 1 was attacked by sleep deprivation, the original DVF algorithm attained 

zero coverage.  Note that agent 1 was located in the center of the area and its coverage 

overlapped those of agent 2, 3, 4, and 5 (see Figure 3.1). Such result showed that 

when agent 1 was under sleep deprivation attack, all the other good (uncompromised) 

agents in the system were falsely led to converge to sleep mode thereby attaining zero 

good node coverage with the original DVF scheme. On the other hand, when agent 1 was 
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attacked by sleep deprivation, the proposed DVF+TMP algorithm can attain 75% 

percentage of coverage. Figure 3.4 shows the trade-off results. In the cases of sleep 

deprivation attack on agent 2, 3, 4, 5 trade-off values gradually increased to the 

maximum tradeoff that could be achieved, thereby agreeing with the percentage of 

coverage results. Note that in the case when agent 1 was attacked, we can see that the 

average coverage per energy consumption unit of DVF+TMP was significantly better 

than the original DVF algorithm. 
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Figure  3.3  Sleep deprivation effect on the percentage of coverage. 
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Figure  3.4  Sleep deprivation effect on the trade-off. 

   

Figures 3.5, 3.6 illustrate the snooze attack effect on the percentage of 

coverage and the trade-off in both algorithms. In Figure 3.5, when agent 2, 3, 4, 5 

were attacked by snooze attack, the DVF algorithm learned slower than the 

DVF+TMP algorithm. Furthermore, the final coverage results of the DVF+TMP 

algorithm obtained were up to 10% more than those of the DVF algorithm (i.e. for 

agent M4). Note that when agent 1 was under snooze attack, both algorithms 

eventually attained 100% coverage. This was because all agents must work in  

HIGH mode when agent 1 was attacked, in which case was the optimal policy for the 

system. When considering the trade-off in Figure 3.6, we can see that all agents  
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depicted similar patterns though the DVF+TMP algorithm consistently gave a better 

trade-off (i.e. more cells illuminated per unit energy) than the DVF algorithm. 
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Figure  3.5  Snooze effect on the percentage of coverage. 
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Figure  3.6  Snooze effect on the trade-off. 
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Table  3.1  Randomly generated sleep deprivation attack results. 
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Table  3.2  Randomly generated snooze attack results. 
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So far the nodes under attack have been predetermined. In the next 

experiment, we evaluated the performance of the DVF and DVF+TMP algorithms 

when the malicious nodes were randomly generated. Tables 3.1 and 3.2 show the 

results as the number of malicious nodes were increased from 0 (normal situation) to 4 

(worst case scenario). Table 3.1 shows results from DVF and DVF+TMP algorithms 

under the sleep deprivation attack. Although the average rewards were increased as a 

result of the attack, the average energy consumption was high. However, the 

DVF+TMP algorithm achieved higher average reward per unit energy consumed than 
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the DVF algorithm alone. On the contrary, Table 3.2 shows that as the number of 

nodes under snooze attack increased, the average reward dropped significantly along 

with the energy consumption. Once again, our algorithm attained more average reward 

than the DVF alone. Furthermore, under this attack, the average reward per unit 

energy consumed by the DVF+TMP scheme was also higher than the DVF algorithm. 

The results in Tables 3.1 and 3.2 agreed with the trade-off in Figures 3.3 and 3.5, 

indicating that our method can achieve more coverage per unit energy consumed than 

the DVF alone. 

3.5.2 Network substitution attacks 

In this subsection, we study the performance of the two algorithms in 

presence of network substitution attacks. Under this type of attack, the adversary takes 

control of a node in the system. The compromised node can still maintain connectivity 

and appear to operate normally. However, since it is completely controlled by the 

adversary, it can carry out other types of attacks such as selective or complete packet 

dropping, traffic analysis, send false or inaccurate readings or information. We assume 

that the compromised node exchanges inaccurate information with other agents.  We 

assume that the degree of inaccuracy is inserted by multiplying the value function in 

the last summation term in (3.1) by a parameter ξ randomly chosen from the interval 

[ 1-ξmax, 1+ξmax] where ξmax  = 0.25, 0.5, 0.75 and 1.  Each agent encountered such 

attack and the results obtained were averaged over all agents. Figure 3.7 depicts the 

percentage of achievable coverage obtained from different degrees of inaccurate value 

functions on each algorithm under normal situation (with no sleep deprivation or 

snooze attacks), sleep deprivation and snooze attacks, respectively. The higher the 

degree of inaccuracy, the less the coverage achieved. This confirms our motivation 
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that distributed coverage control schemes rely on node cooperation and thereby are 

vulnerable to malicious node attacks. Furthermore, for each scenario, the DVF+TMP 

algorithm consistently outperforms the DVF algorithm alone by gaining up to 12%, 

25% and 8% more coverage in the normal situation (with no other attacks), sleep 

deprivation and snooze attacks, respectively. 

The effects of inaccurate value functions on the average reward, 

average energy consumption, and the ratio of the two parameters are shown in Tables 

3.3, 3.4 and 3.5 for the normal situation (with no sleep deprivation or snooze attacks), 

sleep deprivation and snooze attacks, respectively. From the three tables it can be seen 

that as the degree of inaccuracy increases, the average reward from both algorithms 

decreased accordingly. However, the DVF+TMP algorithm consumed less average 

energy than the DVF algorithm alone therefore achieved higher efficiency in terms of 

average reward per unit energy consumed for all cases.  

All of these results suggested that the DVF alone relies strongly on the 

cooperation among agents and is vulnerable to security attacks. The proposed 

DVF+TMP scheme can enhance the security and can cope with sleep deprivation, 

snooze and network substitution attacks, thereby improving the resilience of the 

distributed coverage control scheme. 
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Figure  3.7  Effect of inaccuracy on the percentage of coverage. 
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Table  3.3  Effect of inaccuracy in normal scenario. 
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Table  3.4  Effect of inaccuracy in sleep deprivation scenario. 
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Table  3.5  Effect of inaccuracy in snooze scenario. 
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3.5.3 Summary: Part 1 

In this thesis, we proposed the DVF+TMP coverage control scheme 

based on the integration of a distributed learning scheme for multi-agent systems 

called the DVF algorithm and a secure topology maintenance protocol (TMP) to 

countermeasure sleep deprivation, snooze and network substitution attacks in WSNs. 

To evaluate its performance, a lighting control application was studied. The results 

showed that in the presence of malicious nodes in the system, the original DVF 

algorithm was directly affected suggesting that the DVF algorithm alone strongly 

relies on the cooperation between nodes. However, results showed that the proposed 
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DVF+TMP algorithm was more resilient to malicious node attacks by achieving up to 

75% and 10% of coverage more than the DVF algorithm alone under sleep deprivation 

and snooze attack, respectively. The proposed algorithm also attained a better trade-

off in terms of the number of cells illuminated per unit energy consumed. Similar 

results were achieved when the presence of malicious nodes in the system were 

increased. Furthermore, in the network substitution attack where various degrees of 

inaccurate information of value functions were exchanged, the DVF+TMP algorithm 

gained up to 12%, 25% and 8% of coverage than the DVF algorithm alone for the 

normal, sleep deprivation and snooze attack cases, respectively. The proposed 

algorithm also consistently achieved more average reward per unit energy consumed 

than the DVF algorithm. 

 

3.6 Secure multi-agent coverage control: Part 2 

To ensure that performance obtained in part 1 did not owe to a fixed topology 

of agents or the placement of agents. In this section, we extended to a lighting control 

application of a room represented by a 30 x 30 grid and with 40 agents placed 

randomly on the grid was studied as shown in Figure 3.8. This room contained a 

group of 40 agents deployed on 40 nodes with light sensing capabilities, labeled Ml to 

M40. The agents, action, and state space description remain the same as in section 3.4. 
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Figure  3.8  An example 30 x 30 grid room representation. Grey cells are not  

 illuminated, white cells are illuminated by one node  

 and striped cells are illuminated by two nodes. 
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3.7 Results and analysis: Part 2 

3.7.1 Sleep deprivation and snooze attack 

We randomly assigned 5, 10 and 15 nodes to encounter sleep 

deprivation attacks and snooze attacks and then analyze the results. Denote “Sleep 

dep. n nodes” (“Snooze n nodes”) for the case when the system was under attacked by 

n sleep deprived (snooze) nodes. As a benchmark to compare the effects from these 

malicious nodes, we observe how each agent operates in the normal situation (without 

any attacks). We compared our proposed integrated DVF and TMP algorithm 

(abbreviated by DVF+TMP) with the original DVF algorithm (abbreviated by DVF). 
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Figure  3.9  Average rewards for sleep deprivation and snooze attacks from 15 

 malicious nodes in the normal situation. 
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Figure 3.9 depicts the learning progress in terms of the average reward 

at each time step for the DVF algorithm and the DVF+TMP algorithm under normal 

situation, and the cases when 15 nodes were attacked by each type of attack. As time 

progressed, the agents in both algorithms were able to learn to take better decisions as 

depicted by the gradually increasing average reward for all situations. However, our 

algorithm consistently outperformed the original DVF algorithm. 

The effect of the number of malicious nodes on the coverage is shown 

in Figure 3.10 for the sleep deprivation. In the normal situation where no nodes were 

attacked, the percentage of coverage achieved by the DVF and DVF+TMP algorithm 

were 98%, 100% respectively. When the network was attacked by 5, 10, and 15 sleep 

deprivation nodes, the percentage of coverage of the original DVF algorithm reduced 

to 76, 64 and 52%, respectively. On the other hand, the DVF+TMP outperformed the 

DVF algorithm by attaining 88%, 70%, and 59% of coverage. Although it would first 

seem reasonable to expect the coverage to increase since sleep deprived nodes were 

forced to operate under this attack, it should be noted that only the coverage obtained 

from good nodes were considered here. DVF+TMP achieved greater coverage from 

uncompromised nodes since it employed the probing mechanism to check the status of 

the surrounding nodes prior to taking any decisions. 
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Figure  3.10  Effect of the number of sleep deprived nodes  

on the percentage of coverage. 

 

In order to show that the amount of coverage our algorithm gained over 

the original DVF algorithm consumed energy efficiently, the trade-off is illustrated as 

a function of the number of malicious nodes in Figure 3.11. Results show that under 

normal situation, both algorithms performed indifferently. However, as the number of 

sleep deprivation attacked nodes increased, the DVF algorithm was significantly 

affected whereas that of the proposed DVF+TMP algorithm gradually declined. 

Although the higher coverage of the DVF+TMP algorithm was attained by an increase 

in energy consumption, each unit of energy consumed achieved greater coverage 

therefore better efficiency than the original DVF algorithm. 
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Figure  3.11  Effect of the number of sleep deprived nodes on the trade-off. 

 

As for snooze attack results, Figure 3.12 depicts the effect of the 

number of the snooze attacked nodes on the percentage of coverage. With no 

malicious nodes, the percentages of coverage attained by the DVF and DVF+TMP 

algorithm were 98%, 100% respectively. But as the number of malicious nodes 

increased, the percentage of coverage achieved by the uncompromised nodes reduced. 

In particular, the DVF was able to attain up to 74%, 62% and 50% of coverage 

whereas our proposed algorithm attained up to 86%, 68% and 57% of coverage for 5, 

10 and 15 malicious nodes, respectively. Note that prior to taking any actions, each 

node verified the state of the neighboring nodes by using the probing mechanism of 

the DVF+TMP algorithm. As a result, the algorithm was able to identify the snooze 

nodes and increase its coverage accordingly. 
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Figure  3.12  Effect of the number of snooze attacked nodes on 

 the percentage of coverage. 

 

Figure 3.13 shows the trade-off as a function of the number of 

malicious nodes. Note that as the number of snooze nodes increased, the trade-off 

incurred showed how efficient each algorithm utilized its energy. Once again, a 

significant drop in trade-off was observed for the DVF algorithm as opposed to the 

DVF+TMP algorithm where the trade-off was gradually reduced. Therefore, the 

snooze attack results agree with those of the sleep deprivation attacks, showing that 

our algorithm can achieve higher coverage, despite the increase in energy 

consumption due to probing, thereby attaining better trade-off than the DVF 

algorithm. 
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Figure  3.13  Effect of the number of snooze attacked nodes on the trade - off. 

 

3.7.2 Network substitution attacks 

In this subsection, we studied the performance of the two algorithms 

in presence of network substitution attacks. Under this type of attack, the adversary 

takes control of a node in the system. The compromised node can still maintain 

connectivity and appear to operate normally. However, since it is completely 

controlled by the adversary, it can carry out other types of attacks such as selective or 

complete packet dropping, traffic analysis, sending false or inaccurate readings or 

information. In this experiment, we assumed that the compromised node exchanges 

inaccurate information with other agents.  We assumed that the degree of inaccuracy 

was inserted by multiplying the value function in the last summation term in (3.1) by a 

parameter ξ randomly chosen from the interval [ 1-ξmax, 1+ξmax] where ξmax  was varied 

from 0.25 to 1, 2.5, 5, 7.5 and 10. Note that ξmax was varied from 0.25 to 10 to cater 

the larger network (40 agents randomly placed in the area). For this reason, the 

number of neighbors increased, thereby increasing the value functions updated at each  
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node. As a result, a small value of ξmax may not clearly affect the system performance. 

A number of agents were randomly selected to encounter such attack and the results 

obtained were averaged over all agents. 
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Figure  3.14  Average rewards for sleep deprivation and snooze attacks  

 from 15 malicious nodes and the normal situation,  

 all cases with ξmax = 10. 

 

Figure 3.14 illustrates the learning progress of both algorithms in 

presence of an inaccuracy degree of ξmax = 10, under scenarios of a 15-node  

sleep deprivation attack, a 15-node snooze attack and normal situation (with neither 

sleep deprivation nor snooze attacks). It can be observed that as time progressed,  

the DVF+TMP was able to learn to take better decisions as depicted by the gradually 

increasing average reward. Although the learning rate of our algorithm was noticeably 

slow under the sleep deprivation and snooze attack scenarios, the original DVF 
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algorithm was not able to learn improved decisions at all as the observed from the 

breakdown in average reward. 
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Figure  3.15  Effect of inaccuracy on the percentage of coverage  

 with 5 malicious nodes. 
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Figure  3.16  Effect of inaccuracy on the trade-off with 5 malicious nodes. 

 

Figure 3.15 depicts the percentage of achievable coverage obtained 

from different degrees of inaccurate value functions with 5 malicious nodes. Three 

scenarios were compared i.e. under the normal situation (with no sleep deprivation or 

snooze attacks), sleep deprivation and snooze attacks. We observed that the higher the 

degree of inaccuracy, the less the coverage achieved. This confirmed our motivation 

that distributed coverage control schemes rely on node cooperation and thereby are 

vulnerable to malicious node attacks. Furthermore, for each scenario, the DVF+TMP 

algorithm consistently outperformed the DVF algorithm alone by gaining up to 19%, 

32% and 37% more coverage in the normal situation, sleep deprivation and snooze 

attacks, respectively. Figure 3.16 shows the trade-off obtained from different degrees 
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of inaccurate value functions on each algorithm under normal situation, sleep 

deprivation and snooze attacks, respectively. Results show that the DVF+TMP 

algorithm can gain up to 3-8 lit cells per unit energy consumed over the DVF 

algorithm. Similar to the percentage of coverage, as the degree of inaccuracy 

increased, the trade-off decreased because decisions were based on inaccurate 

information exchanged between nodes in the network. 
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Figure  3.17  Effect of inaccuracy on the percentage of coverage  

 with 10 malicious nodes. 
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Figure  3.18  Effect of inaccuracy on the trade-off with 10 malicious nodes. 

 

Figure 3.17 shows the percentage of coverage attained in presence of 

10 malicious nodes. The DVF+TMP algorithm consistently outperformed the DVF 

algorithm alone by gaining up to 27%, 25% and 32% more coverage in the normal 

situation, sleep deprivation and snooze attacks, respectively. However, ξmax within the 

interval [0-1] did clearly not affect the percentage of coverage since it was too small 

compared with the value function. Figure 3.18 presents the trade-off against different 

degrees of inaccurate value functions under normal situation, sleep deprivation and 

snooze attacks, respectively. Results show that the DVF+TMP algorithm can gain up 

to 3-8 lit cells per unit energy consumed over the DVF algorithm. Therefore, the 

results of 10 malicious nodes were in accord with the 5 malicious nodes case, although 

with less coverage and trade-off attained. 
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Figure  3.19  Effect of inaccuracy on the percentage of coverage  

 with 15 malicious nodes. 
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Figure  3.20  Effect of inaccuracy on the trade-off with 15 malicious nodes 

 

Results of the percentage of coverage with 15 malicious nodes are depicted in 

Figure 3.19. The DVF+TMP algorithm consistently outperformed the DVF algorithm 

alone by gaining up to 19%, 12% and 26% more coverage in the normal situation, 

sleep deprivation and snooze attacks, respectively. Figure 3.20 compares the trade-off 

obtained from different degrees of inaccurate value functions on each algorithm under 

normal situation, sleep deprivation and snooze attacks, respectively. The results were 

in agreement with the previous cases of 5 and 10 malicious nodes with ,the 

DVF+TMP gaining 3-8 lit cells per unit consumed energy over the DVF algorithm, 

though achieving the least coverage and trade-off results. 
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3.7.3 Summary: Part 2 

In this thesis, we proposed the DVF+TMP coverage control scheme 

based on the integration of a distributed learning scheme for multi-agent systems 

called the DVF algorithm and a secure topology maintenance protocol (TMP) to 

countermeasure sleep deprivation, snooze and network substitution attacks in WSNs. 

Results showed that the proposed DVF+TMP algorithm was more resilient to 

malicious node attacks by achieving 6-12% of coverage greater than the original DVF 

algorithm under sleep deprivation and snooze attacks. Furthermore, in the network 

substitution attack where various degrees of inaccurate information of value functions 

were exchanged, the DVF+TMP algorithm gained 19 to 37% of coverage more than 

the DVF algorithm alone for the normal, sleep deprivation and snooze attack cases, in 

presence of 5 malicious nodes. When the number of malicious nodes was increased to 

10 and 15 nodes, the DVF+TMP algorithm achieved, respectively, 25% to 32% and 

12% to 26% more coverage than the original DVF algorithm. In terms of trade-off, for 

5-15 malicious nodes, the DVF+TMP algorithm can consistently provide coverage of 

3-8 cells per unit energy consumed greater than the DVF algorithm. By integrating the 

secure topology maintenance protocol, our results suggested that vulnerability to these 

attacks can efficiently be reduced. 
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3.8 Implementation 

The implementation of the Distributed value function integrated with the 

Topology maintenance protocol (DVF+TMP) algorithm requires message information 

exchange between nodes. In terms of memory requirement for storing entries in the Q-

table, DVF+TMP algorithm requires memory storage for storing all values of  

which has 

( , )iQ s a

( )mod mod modprobe e sleep e work eS S S+ + A×  entries at each agent. Suppose 

that each entry requires 8 Bytes, a reasonable amount of memory of 1272 Bytes 

((1+26+26) x 3 x 8 Bytes) was required. The parameters in the learning process such 

as the learning rate (α) and discount factor (γ) were 0.4 and 0.7, respectively. The 

learning rate determines to what extent the newly acquired information will override 

the old information. The discount factor determines the importance of future reward. 

Their values influence the learning process of algorithm. However, such values may 

be tuned later for other environment settings. 

 

3.9 Summary 

This chapter proposed a coverage control scheme which aimed at maximizing 

the coverage per unit energy consumption, and was designed to operate in an 

adversarial malicious environment. In particular, we proposed to integrate the DVF 

algorithm which was an adaptive and distributed multi-agent coverage control scheme 

with a secure topology maintenance protocol (TMP) against malicious node attacks in 

WSNs. More specifically, we incorporated a TMP countermeasure, i.e., probing, to 

verify the local states and active nodes within a neighboring area before increasing or 

reducing its coverage to allow tolerance against attacks from multiple nodes within a 

node’s transmission range.  In this chapter, we divided the experiment into two parts. 
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The first part included 5 agents with fixed topology in a 10x10 grid room. The results 

showed that the proposed DVF+TMP algorithm was more resilient to malicious node 

attacks by achieving up to 75% and 10% of coverage more than the DVF algorithm 

alone under sleep deprivation and snooze attack, respectively. In network substitution 

attack where various degrees of inaccurate information of value functions were 

exchanged, the DVF+TMP algorithm gained up to 12%, 25% and 8% of coverage 

than the DVF algorithm alone for the normal, sleep deprivation and snooze attack 

cases, respectively. To ensure that the results obtained in part 1 was not caused by 

fixed topology, we extended the network to 40 agents in the second part when each 

agent was randomly placed in a 30x30 grid room. The results showed that DVF+TMP 

algorithm was more resilient to malicious node attacks by achieving 6-37% of 

coverage greater than the original DVF algorithm under attacked by malicious nodes.  

Simulation results from both parts showed that the proposed DVF+TMP 

algorithm was more resilient to sleep deprivation and snooze attacks by achieving 6-

75 % coverage more than the original DVF algorithm. Furthermore, in the network 

substitution attack, the DVF+TMP algorithm obtained coverage more than the DVF 

algorithm alone for the network substitution attack only, and network substitution 

attack paired with sleep deprivation and snooze attack scenarios. By integrating the 

secure topology maintenance protocol, our results suggested that vulnerability to these 

attacks can efficiently be reduced. 

 

 

 

 

 

 

 



 

CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

 

4.1 Conclusions 

 In multi-agent system applications in wireless sensor networks, information 

exchange and cooperation between the agents are required to achieve the objective of 

maximum coverage and maximum coverage per unit energy consumption. However, it 

is possible that sensor nodes may act selfishly by declining to service other nodes. 

Sensor nodes may also encounter attacks by other malicious nodes inside or outside of 

the network. These attacks may be used to reduce the lifetime of the sensor network, 

or to degrade the functionality of the sensor application by reducing the network 

connectivity and the sensing coverage that can be achieved. This thesis proposed a 

secure multi-agent coverage control scheme for wireless sensor networks with 

malicious nodes. The research work carried out in this thesis was divided into two 

parts. The first part studied the coverage control performance of a WSN under attack 

by means of a lighting control application of a room represented by a 10 x 10 grid. 

This part contained a group of five agents deployed by fixed on 5 nodes with light 

sensing capabilities, labeled Ml to M5. In the second part, we extended the lighting 

control to a room represented by a 30 x 30 grid and with 40 agents placed randomly 

on the grid. In both parts we studied and compared the performance of 2 algorithms 

namely the existing Distributed Value Function method and the proposed Distributed 

Value Function+Topology Maintenance Protocol algorithm under 3 types malicious 

 

 

 

 

 

 



  72

attacks namely the sleep deprivation, snooze, network subsitution attacks. The original 

contributions and findings in this thesis can be summarized as follows. 

4.1.1 Secure multi-agent coverage control: Part 1 

The purpose of this section is to conceptually show that the Distributed 

value function algorithm can be integrated with the Topology maintenance protocol to 

deal with malicious node behaviors i.e. sleep deprivation, snooze, network substitution 

attacks. Results of the existing multi-agent RL so called the DVF algorithm were 

compared with the proposed DVF+TMP algorithm under the presence of malicious 

nodes. In this part, a lighting control system in a 10 x 10 grid room was studied. The 

room contained a group of five agents deployed on five fixed nodes with light sensing 

capabilities, labeled Ml to M5. In this part, the following contribution and findings 

were made here: 

1) It was found that the DVF coverage control scheme was directly 

affected by the presence of malicious nodes in the network. This is due to the fact that 

DVF relies on cooperation from all nodes to achieve optimal coverage. 

2) The proposed algorithm, which is the integrated DVF with a secure 

Topology maintenance protocol (DVF+TMP) can handle such malicious node attacks 

by introducing a probing mechanism to verify local states and neighboring nodes. 

The performance of the DVF coverage control scheme was evaluated 

under three types attacks on sensor nodes i.e., sleep deprivation, snooze and network 

substitution attacks. The original DVF algorithm can learn the optimal policy i.e. the 

policy which attained the maximum area coverage when full cooperation among nodes 

was available. However, once the system was attacked by three types of malicious 

nodes, the original DVF algorithm failed to learn to achieve the optimal policy. 
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Results showed that in an extreme case when the most critical agent (M1) was 

attacked in by sleep deprivation, the original DVF algorithm attained zero coverage. 

Under snooze attack, the percentage of coverage of the original DVF reduced by 10 % 

when compared with the normal situation. When under the network substitution 

attack, the percentage of coverage reduced by 17% when compared with the normal 

situation. This result suggested that the original DVF method alone relied strongly on 

the cooperation among agents and was vulnerable to security attacks. We proposed to 

integrate DVF with a secure Topology Maintenance Protocol (DVF+TMP) with can 

handle such malicious node attacks by introducing a probing mechanism to check 

node’s eligibility to be in sleeping or active state. When the system encountered sleep 

deprivation attack, the percentage of coverage the proposed DVF+TMP algorithm 

reduced only by 25% in comparison to 100% loss in DVF. Under snooze attack, the 

percentage of coverage did not reduced when compared with the normal situation. 

Finally, for the network substitution attack the percentage of coverage reduced only by 

5% when compared with the normal situation. From all above results, we can see the 

proposed DVF+TMP algorithm is a promising approach to deal with the malicious 

node attacks. 

4.1.2 Secure multi-agent coverage control: Part 2 

  To ensure that the performance obtained in part 1 was not caused by a 

particular fixed topology or the placement of agents, the second part of the experiment 

was conducted. In this part, the network of agents was increased to 40 and the agents 

were randomly placed in an enlarged 30 x 30 grid room. Once again, the coverage 

area achieved and the amount energy consumption when a number of agents were 

under the 3 types of attacks were measured. The results in the second part showed that 
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when agent was increased to 40 and agents were located randomly, the affected the 

number of neighbor nodes increased. For this reason, a small value of ξmax (i.e. ξmax = 

0.25) affected the system performance slightly. But as ξmax increased (ξmax ∈  [1, 10]), 

the network substitution attack affected percentage of coverage and trade-off 

significantly.  

This section was performed to show that when the number of agents 

were increased and agents were placed randomly, the 3 types of malicious node 

attacks i.e., the sleep deprivation, snooze and network substitution attacks can still 

affect the performance of the MAS. The simulation results show that, under normal 

situation (no attack) the DVF and the DVF+TMP algorithms were able to learn to take 

better decisions as depicted by the gradually increasing average reward. However, 

when under the 3 types of attacks, that our algorithm was more resilient by 

consistently attaining higher coverage per unit energy consumed, and achieving 6-

12% of coverage greater than the original DVF algorithm under sleep deprivation and 

snooze attacks.  Furthermore, under the network substitution attack the DVF+TMP 

algorithm gained up to 19%, 32% and 37% of coverage higher than the DVF 

algorithm for the network substitution attack only, and network substitution attack 

paired with sleep deprivation and snooze attack,  respectively. By integrating the 

secure topology maintenance protocol, our results suggest that vulnerability to such 

attacks can efficiently be reduced.  
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4.2 Future work 

 4.2.1 Weighting factors of DVF algorithm 

  The choice of the weighting factor in the DVF algorithm can influence 

its overall performance (Schneider, J., et al., 1999). Additional weighting functions 

need to be studied. These should take into consideration the major constraints of 

WSNs. For example, the section of the neighboring nodes which a node exchanges, its 

value function with may be decided based on communication cost parameter. That is, 

an agent can decide to transmit its value function to its neighbors only when the 

communication cost incurred is less than the expected gain obtained by the exchange 

of the value function. 

 4.2.2 Apply DVF+TMP algorithm to radio model 

  In thesis, to visually study the coverage control performance of a WSN 

under attack, we assumed that the agent functioned as a lighting control illuminating a 

room represented by a 10 x 10 grid and 30 x 30 grid. Therefore, the coverage of each 

agent was considered in terms of the number of cells lit. However, in practice, the 

coverage of nodes must be considered in the form of a radio model, which should 

consider the power received from neighboring nodes to calculate the percentage of 

coverage area. Hence, in the future work, the algorithm should be extended to cater 

the radio model. 
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4.2.3 Performance evaluation of testbed 

The main objective of this thesis was to show that coverage control in 

multi-agent systems in WSNs can be governed by using DVF and DVF+TMP 

algorithms. The coverage control was simulated by Visual C++ programming to 

perform the learning process and evaluate algorithms. Therefore, an important future 

direction is to extend the framework either to employ raw data collected from the field 

measurement for training the learning algorithms, or to implement the framework in 

an actual sensor network. 
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