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CHAPTER 1

INTRODUCTION

The basic problem in the modeling of physical phenomena is to find so-
lutions of differential equations. In general, these equations are very difficult to
solve explicitly. Many solution methods make use of a change of variables that
transforms a given differential equation into another equation with known prop-
erties. Since the class of linear equations is comnsidered to be the simplest class
of equations, there arises the question whether a given differential equation can
be transformed into a linear equation.This problem is called the linearization
problem.

Transformations used..for .solving the-linearization problem considered in
the literature employ point transformations, contact transformations, reduction of
order, differentiation, differential substitutions and generalized Sundman transfor-

mations.

1.1 Historical review

The problem of linearizing a second-order ordinary differential equation via
point transformations was solved by Lie (1883). He showed that any linearizable
second-order equation can be at most cubic in the first-order derivative, and pro-
vided a linearization test in terms of its coefficients. Lie’s approach has also been
applied to third-order and fourth-order ordinary differential equations: In 1997,
Grebot studied the linearization of third-order ordinary differential equations by

means of a restricted class of point transformations, namely t = ¢ (z) ,u = ¥ (z,y).



Complete criteria for linearization by means of point transformations were obtained
in (Ibragimov and Meleshko, 2005). The linearization of fourth-order ordinary dif-
ferential equations via point transformations was discussed by Ibragimov, Meleshko
and Suksern (2008). Two distinctly different classes for linearization are provided.

Another approach was developed by Cartan (1924). He used differential
geometry for solving the linearization problem. In 1940, Chern obtained conditions
for a third-order ordinary differential-equation to be equivalent to the equations

uw” =0 and u"”

+ u = 0 by using Cartan’s approach.

Lie (1883) also noted that all second-order ordinary differential equations
can be mapped into each other by means of contact transformations. Hence, the
solution of the linearization problem via contact transformations is trivial. Lin-
earization of third-order ordinary differential equations with respect to contact
transformations was studied by Neut and Petitot (2002). Ibragimov and Meleshko
(2005) presented the explicit: form of the linearization criteria. In 2005, Dridi
and Neut solved a particular linearization problem for a fourth-order ordinary dif-
ferential equation. They found conditions for a fourth-order ordinary differential
equation to be equivalent to u(¥ = 0 under contact transformations. Complete cri-
teria for fourth-order ordinary differential equations to be linearizable via contact
transformations were given by Suksern, Meleshko and Ibragimov (2009).

The generalized Sundman transformation takes an intermediate place be-
tween point and contact transformations. Since it is weaker than contact trans-
formations it can be applied to the linearization problem of second-order ordinary
differential equations. The generalized Sundman transformation was earlier con-
sidered for second-order ordinary differential equations by Duarte, Moreira and

Santos (1994) using the Laguerre form. The generalized Sundman transformation

was also applied in Euler, Wolf, Leach and Euler (2003) for obtaining necessary and



sufficient conditions for a third-order ordinary differential equation to be equivalent
to the equation u” = 0. Some applications of generalized Sundman transforma-
tions to ordinary differential equations were considered in Berkovich (2001) and
earlier papers, which are summarized in Berkovich (2002).

Sundman symmetries were first introduced in Euler, Wolf, Leach and Euler
(2003). They discovered that all third-order ordinary differential equations that

can be linearized to the equation
u" =0
by the generalized Sundman transformation
u(t) =F(x,y), dt =G y)dzy (F,G #0)
admit the symmetry
F(z,§) = F ' (2)g)s oGlaidi=T"*"(z,y)G(z,y)dx

called a Sundman symmetry transformation. In 2004, Euler and Euler investigated

the Sundman symmetries of second-order autonomous equations
u” + az(uw)(u)? + ar(u)u' + ag(u) =0

where ag, a; and as are differentiable functions. Moreover, they found the Sundman

symmetries of third-order autonomous equations
u” + as(u)(u”)? + ag(u)u'v” + az(u) (') + az(u)(v)? + a1 (w)u' + ag(u) =0

where a; (j=0,1,...,5) are differentiable functions.
There are other approaches for solving the linearization problem of ordinary
differential equations. Ibragimov and Meleshko (2007) gave criteria for a second-

order ordinary differential equation to be linearizable by increasing the order of the



equation using either differentiation of the equation or the Ricatti substitution. A
new algorithm for linearization of a third-order ordinary differential equation was
presented by Meleshko (2006). The algorithm consists of the composition of two
operations: first reducing the order of the equation, and then applying the Lie lin-
earization test to the obtained second-order ordinary differential equation. There
are several papers dealing with the increase of the order of an ordinary differential
equation (Ferapontov and Svirshchevskii, 2007; Andriopoulos and Leach, 2007) or
using a combination of reduction and increase of the order (Abraham-Shrauner,
1993).

Many applications of group analysis employ the use of Lie point symmetries.
For ordinary differential equations which are invariant under Lie point symmetries,
the order of the ordinary differential equation.can be reduced by using the known
order-reduction processes. In 2001, Muriel and Romero introduced a new class of
symmetries and gave a reduction process for ordinary differential equations, using

the invariance of the equations under these symmetries.

1.2 Results obtained in the thesis

The studies considered in the thesis are related with the application of the
generalized Sundman transformation to the linearization problem of second-order
and third-order ordinary differential equations.

The first study presented in the thesis demonstrates that the equation
u” = 0 does not define the class of all equations which are linearizable by the
generalized Sundman transformation. Thus, the linearization problem considered
by Duarte, Moreira and Santos (1994) via the generalized Sundman transforma-

tion is not completely studied. The examples in this thesis show that in contrast

to point transformations, for the linearization problem via generalized Sundman



transformations one needs to use the general form of a linear second-order ordinary
differential equation instead of the Laguerre form.

The second part of the thesis is devoted to applying generalized Sundman
transformations to third-order ordinary differential equations. We have obtained
necessary and sufficient conditions which allow the most general third-order ordi-

nary differential equation to be mapped into the form,
u" Fou =0, (1.1)

where o # 0 is constant. Note that according to the Laguerre theorem, one of the
canonical forms of a linear /third-order ordinary differential equation is (1.1). If
a/(t) # 0, then equation (1.1) is mapped by the generalized Sundman transforma-
tion into a functional equation, which isnot a differential equation.

The thesis is organized as follows. In chapter Tl, we introduce the back-
ground knowledge of point transformations; contact transformations, generalized
Sundman transformations and the main tools for the solving linearization prob-
lem, which are necessary for our study. In chapter I1I, we demonstrate that the
solution of the linearization problem via generalized Sundman transformations of
second-order ordinary differential equations given by Duarte, Moreira and Santos
(1994) only gives particular criteria for linearizable equations. Complete analysis
of compatibility of the arising equations is given for the case F, = 0. We also give
examples which show that the Laguerre form is not sufficient for the linearization
problem via the generalized Sundman transformation. In chapter IV, necessary
and sufficient conditions which allow the most general third-order ordinary dif-

n

ferential equation vy = f(x,y,y’,y") to be transformed to u"” 4+ au = 0 under a

generalized Sundman transformation

uw=F(z,y), dt=G(z,y)dz, (F,G#D0),



are obtained. Here o # 0 is constant. The conclusion of the thesis is presented in
the last chapter.

For solving the problem in the thesis, we have to solve the compatibility
problem, considering an overdetermined system of partial differential equations.
Compatibility analysis requires cumbersome symbolic calculations: prolongations
of a system, substitution of complicated expressions, and matrix calculations.
These operations consist of a large amount of analytical calculations. For this
purpose it is necessary to use a computer system for symbolic calculations. Hence,
the REDUCE system (Hearn, 1987) was used. REDUCE is a system for carrying
out algebraic operations accurately, no matter how complicated the expressions

become.



CHAPTER 11

PRELIMINARY BACKGROUND

The generalized Sundman transformation can be considered as one of the
methods for solving ordinary differential equations. In this thesis, we apply the
generalized Sundman transformation to second-order and third-order ordinary dif-
ferential equations. Let us consider the main tools used in the thesis for solving

the linearization problem.

2.1 Point transformations

Definition 2.1. A transformation

t="p(z.y),

U = @Z)(l’,y)

(2.1)

is called a point transformation. Here it is assumed that @0, — @y, # 0.

2.1.1 The mapping of a function by a point transformation

Assume that yo(x) is a given function. To obtain the transformed function

ug(t), start with the equation

l= gO(IL’, yo(x))

Using Inverse Function Theorem, we can express x as x = «(t). Substituting

into the function ¥ (x, yo(x)), we get the transformed function

uo(t) = (alt), yola(t)))-



Conversely, we have to change uy(t) to yo(z). Applying the Inverse Function

Theorem to point transformations (2.1), we obtain

z = Pt u),
(2.2)
y = (t,w).

Let ug(t) be a given function of . The first equation of (2.2) becomes

2 = p(tyuo(t).

Using the Inverse Function Theorem, we find ¢ = H(x). Substituting ¢ into the
function (¢, ug(t)), the transformed function wo(z) = (H(x), uo(H(z))) is ob-

tained.

2.2 Tangent transformations

Let us consider the transformations of the.independent, dependent variables

and their derivatives

f:f(x,u,p), ﬂ:gzﬁ(x,u,p), p:@b(x,u,p) (23)

Here p is the vector of derivatives of the function u with respect to z: p, =

u® (k=1,2,...,5).

Definition 2.2. A transformation (2.3) is called a tangent transformation if it

preserves the tangent conditions
di — prdz =0, dpy — prrdz = 0.

Contact transformations are a special case of tangent transformations, for
which the transformation of the independent, dependent variables and the first
order partial derivatives are defined through the independent, dependent variables

and the first order partial derivatives:



2.2.1 Contact transformations

Definition 2.3. A transformation

t =8z, y,y),
u=1h(z,y.y), (2.4)
s=g(x,y,y)

15 called a contact transformation if it obeys the contact condition

=0
Cdi

S=U

Let us explain how contact transformations map one function into another.

2.2.2 The mapping of a function by a contact transforma-
tion

Let yo(x) be a given function.! The transformed function ug(t) is found from

the equations

t =@ (z,y0(x), yo(2)) ,

u=1v(z,y0(x),yp(x)) -

Using the Inverse Function Theorem, the first equation gives x = 7(¢). Substituting

x into the second equation, we obtain the transformed function

uo(t) = ¥ (7(t), (7 (1)), yo(7(1))) -
It is assumed that D,p # 0. The derivative is

D,y
D,y

(T(8), yo((£)), %o(7(£)), % (7 (1)) ,

(1) =

where



10

is the total derivative with respect to x.

The contact conditions require that

Dy Vo +Y'tby +y by
9(z,y,y) = (v, 959, y") = PRI (2.5)
Dy Po+ Yoy T Y oy
Thus equation (2.5) can be represented in the form
(9(ps + y/@y) — (Yaft ’y/%)) + y//(g‘foy/ —ty) = 0.
Since the contact condition is satisfied for any vy”, we obtain
g(sal + y/(Py) - wl‘ + y/wyv
(2.6)
9%y = V-
2.3 Generalized Sundman transformations
Definition 2.4. A non-point transformation
u="T(z,y),
(2.7)
dt = G(z,y)dz

where F,G # 0 is called a generalized Sundman transformation.

2.3.1 The mapping of a function by a generalized Sund-

man transformation

Let us explain how a generalized Sundman transformation maps one func-
tion into another.
Assume that yo(z) is a given function. Integrating the second equation of

(2.7), we obtain t = Q(z), where

T

Q) = to + / Gs,y0(s)) ds

o
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with some initial conditions ¢ty and xy. Using the inverse function theorem, we find
r = Q!(t). Substituting z into the function F(z,yo(z)), we get the transformed

function
up(t) = F (Q7' (1), 50(Q7'(1))) -

Conversely, let ug(t) be a given function of ¢. Using the inverse function

theorem we solve the equation
() = e y)

with respect to y: y = ¢ (x,t). Solving the ordinary differential equation

LR T )
we find t = H(x). The function H (z) can be written as an action of a functional
H = L(up). Substituting ¢t = H(z) into the function ¢(z,t), the transformed
function yo(z) = ¢(z, H(x)) is obtained.

Notice that for the case G\, = 0 the action of the functional £ does not
depend on the function ug(t). In this case the generalized Sundman transformation
becomes a point transformation. Conversely, since for a point transformation the
value dt in the generalized Sundman transformation is the total differential of
t, then the compatibility condition for dt to be a total differential leads to the
equation G, = 0. Hence, the generalized Sundman transformation is a point
transformation if and only if G, = 0.

Formulae (2.7) also allows us to obtain the derivatives of ug(t) through the
derivatives of the function yo(x), and vice versa.

Hence, using transformation (2.7), we can relate the solutions of two dif-
ferential equations Q(z,y,y/,...,y™) =0 and P(t,u,2,...,u™) = 0. Therefore

the knowledge of the general solution of one of them gives the general solution of
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the other equation, up to solving one ordinary differential equation of first-order

and finding two inverse functions.

2.4 The equivalence problem

Definition 2.5. Two equations are called equivalent if there exists an invertible

transformation such that one of the equations is transformed into the other.

Definition 2.6. The problem of finding all equations which are equivalent to a
gien equation is called the equivalence problem. If the given equation is a linear

equation, then the equivalence problem is called the linearization problem.

2.5 The Inverse function theorem

Theorem 2.7. (Inverse. Function Theorem). Let f: R"™ — R"™ be continuously
differentiable on some open set contaiming a; and suppose detJ f(a) # 0, where J is
the Jacobian matriz. Then there is some open set V' containing a and an open set
W containing f(a) such that f : V — W has a continuous inverse f~1 : W — V

which is differentiable for all y € W.

2.6 Compatibility theory

There are two approaches for studying compatibility. These approaches are
related to the works of E. Cartan and C. H. Riquier. In this thesis the Riquier

approach is used.
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2.6.1 The Cartan approach

The Cartan approach is based on the calculus of exterior differential forms.
The problem of the compatibility of a system of partial differential equations is
then reduced to the problem of the compatibility of a system of exterior differen-
tial forms. Cartan studied the formal algebraic properties of systems of exterior
forms. For their description he introduced special integer numbers, called charac-
ters. With the help of the characters he formulated a criterion for a given system

of partial differential equations to be involutive.

2.6.2 The Riquier approach

The Riquier approach has-a.different theory of establishing the involution.
This method can be found in (Kuranashi, 1967) and (Pommaret, 1978). The main
advantage is that there is no necessity to reduce the system of partial differential
equations being studied to exterior differential forms. The calculations in the
Riquier approach are shorter than in the Cartan approach. The main operations
of the study of compatibility in the Riquier approach are prolongations of a systems
of a partial differential equations and the study of the ranks of some matrices.

Remark 2.1. In the thesis, the problem of obtaining sufficient condition
of linearization is to analyse compatibility of the overdetermined system. Analysis
of the compatibility of this system consists of comparing mixed derivatives.

Remark 2.2. Roughly writing, a system is involutive if it does not produce

new equations using differentiation and their linear combinations.
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2.6.3 Completely integrable systems

One class of overdetermined systems, for which the problem of compatibility

is solved, is the class of completely integrable systems.

Definition 2.8. A system

0z
oal

= fia,2), (i=1,2,...N; j=1,2,...,7) (2.8)

1s called completely integrable if 4t has a solution for any initial values ag, zg in

some open domain D.

Theorem 2.9. A system of the type (2.8) is completely integrable if and only if

all of the mixzed derivatives equalities

oft aff d N
f Zfﬁay aﬁf Zf] fﬁ (=032, N; 8,5 =1,2,..,7)  (2.9)

are identically satisfied with respect to the variables {a,z) € D.

Corollary 2.10. If in an overdetermined system of partial differential equations
all derivatives of order n are defined and comparison of all mized derivatives of
order n + 1 does not produce new equations of order less or equal to n, then this

system s compatible.

2.7 Laguerre canonical form

According to the Laguerre theorem, in any linear ordinary differential equa-
tion the two terms of orders next below the highest can be simultaneously removed

by a point transformation.

Theorem 2.11. (Laguerre). Any linear kth-order ordinary differential equation

k-1
y*) 4 Zai(x)y(i) =0, k>3
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can be transformed by a point transformation to an equation of the form
k—3
y®) + Z ai(x)y® = 0.
i=0

Notice that the Laguerre forms of second-order and third-order ordinary

differential equations are the linear equations y” = 0 and vy’ +agy = 0, respectively.

2.8 The method of solving the linearization problem

One of the classical methods for solving ordinary differential equations is
the Lie classical method. The first linearization problem for ordinary differential
equations was solved by Lie (1883). He showed that any second-order ordinary
differential equation v’ = F'(x,y,y") obtained from a linear equation u” = 0 by a

change of the independent and dependent variables;,
b=y (r,y), u=yzy), (2.10)
is cubic in the first-order derivative:
V' +a(z,y)y® +b(z,y)y”* +cle,y)y +d(z,y) =0, (2.11)

where

a = A (pytyy — Oyythy)
b = A7! (%«%y - (Pyywx +2 (@ywxy - Somywy)) )
c = A7! (@ywm — Pray +2 (@xwxy - prywx>> )

Here the Jacobian of the change of variables is

A= %«% - prwz 7é 0.
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Moreover, a second-order ordinary differential equation is linearizable if and only

if it has the form (2.11) with the coefficients satisfying the conditions
= 3ag, — 2byy + ¢y — 3a,c + 3a,d + 2b,b — 3c,a — ;b + 6dya = 0,
bes — 2¢4y + 3dy, — 6a,d 4= by + 3byd — 2¢c,a — 3dya + 3d,b = 0.

For ordinary differential equations of higher order, the necessary form of an

equation to be linearizable by point transformations is *
v+ y Ay + A + . =0,

or

@ 4 6D 1 [_y,,i(i+1)

Py ? = Fy + F .=0
y’—i—T’ 9 + Loy ~ A1y + 0]+ )

Y
where ¢ > 3 is the order of the equation, F; = Fj(x,y), A; = Aj(x,y), and ...
denotes terms involving derivatives of order less than ¢ = 1.

The linearization problem for second-order ordinary differential equations
via generalized Sundman transformations was investigated in Duarte, Moreira and
Santos (1994). They obtained that any second-order linearizable ordinary differ-
ential equation which can be mapped into the equation u” = 0 via a generalized

Sundman transformation has to be of the form
Y+ Xe(z, )y + Mz, y)y' + Aol y) = 0. (2.12)
Using the functions
A3 = Ay — 200z, Au = 2oy — 2A 15y + 20002y — Ay A1 4 2205 A0 + 2044,

they showed that equation (2.12) can be mapped into the equation v’ = 0 via a
generalized Sundman transformation provided that the coefficients \;(x,y), (i =

0,1, 2) satisfy the conditions:

*A proof for third-order ODEs can be found in (Meleshko, 2005), a proof for the general case

is given in (Ibragimov, Meleshko and Suksern, 2008).
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(a) if A3 =0, then \; = 0;

(b) if A3 # 0, then A4 # 0 and the following equations have to be satisfied
AT 4 20320 — 2031, + 4N 0 + 4A3A0e — 20304, — A3 =0,

Azy s + A3 203 M, — Azhy, = 0.

Generalized Sundman transformations were also applied in Euler, Wolf,
Leach and Euler (2003) by using the well-known method for obtaining necessary
and sufficient conditions for a third-order ordinary differential equation to be equiv-

alent to the equation v = 0.



CHAPTER III
LINEARIZATION OF SECOND-ORDER
ORDINARY DIFFERENTIAL EQUATIONS
BY GENERALIZED SUNDMAN

TRANSFORMATIONS

In this chapter, generalized  Sundman tramnsformations are applied to a
second-order ordinary differential equation. Because of the nature of generalized
Sundman transformations, the composition of a point transformation with a gen-
eralized Sundman transformation is not necessarily a generalized Sundman trans-
formation. This means that for the linearization problem via generalized Sundman
transformations, it is not sufficient to use the Laguerre form. The calculations in
this chapter demonstrate that the solution given by Duarte, Moreira and Santos

(1994) is only a particular linearizability criterion.

3.1 Necessary conditions for linearization

We start with obtaining necessary conditions for the linearization problem.
First, we find the general form of a second-order ordinary differential equa-
tion

y'=H(z,y,y),
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which can be mapped via a generalized Sundman transformation

u=F(z,y),
(3.1)
dt = G(x,y)dx
into the linear equation
u’ + B+ au =, (3.2)

where a(t), 5(t) and () are some functions and F,G # 0. Notice that the Laguerre
form of a linear second-order ordinary differential equation corresponds to a =
0,6=0and v=0.
The function u and its derivatives &’ and «” are defined by the first formula
(3.1) and its derivatives with respect to x:
WG ="F, + By,

(3.3)
u'G? + (G + Gyy) = Fyy" + 2F, y % F,y” + F,.

The independent variable ¢ is defined by the functional £(u). As noted above, if
G, # 0, then the action of the functional £ depends on the function u. Hence, if
one of the coefficients in (3.2) is not constant and G, # 0, then the substitution of ¢
into equation (3.2) gives a functional equation. Since the case G, = 0 reduces the
generalized Sundman transformation to a point transformation, the generalized
Sundman transformation maps equation (3.2) into a differential equation only for
constant coefficients «, # and 7.

Finding the derivatives «/, v” from (3.3), and substituting them into (3.2)

with constant coefficients, we have the following equation

Y+ Xz, y)y? 4+ Mz, 9)y + Aoz, y) =0, (3.4)
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where the coefficients X;(z,y) (¢ =0, 1,2) are related to the functions F' and G:

Ay = (FyG - F,Gy)/K, (3.5)
M= (2F,G - F,.Gys F,G, + F,G?) /K, (3.6)
M = (F.G - F,G, % F,pG* +aFG* — G*y)/K, (3.7)

and K = GF, #0.
Equation (3.4) presents the necessary form of a second-order ordinary differ-
ential equation which can be mapped into a linear equation (3.2) via a generalized

Sundman transformation.

3.2 Sufficient conditions for linearization

For obtaining sufficient conditions, we have to solve the compatibility prob-
lem, considering (3.5)-(3.7) as an ‘overdetermined system of partial differential
equations for the functions F' and G'with the given coefficients \;(x,y), (i = 0, 1, 2).
Notice that the compatibility conditions (3.5)-(3.7) for the particular case a =
0,6 = 0 and v = 0 were obtained in Duarte, Moreira and Santos (1994). This
case corresponds to the Laguerre form of a linear second-order ordinary differen-
tial equation. It is shown here that for the linearization problem via generalized
Sundman transformations it is not sufficient to use the Laguerre form.

The compatibility analysis depends on the value of F,. A complete study
of all cases is cumbersome. Here a complete solution is given for the case where
F,=0.

Remark 3.1. The motivation of this chapter is to show that for generalized
Sundman transformations, in contrast to point or contact transformations, one
has to use equation (3.2) as the goal for linearization. The complete study of

compatibility of equations (3.5)-(3.7) was not the objective of this research.
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Solving equations (3.5)-(3.7) with respect to Fy,, 8 and ~, we find

F,, = (G,F,+F,G\)/G, (3.8)
B = (Gagx GN)/G?, (3.9)
v = (=Fy\+aFG?)/G?. (3.10)

Since F, = 0, then differentiating F,, with respect to x, we obtain
GGy 5 GaGy )0, G? = 0. (3.11)

Differentiating (3.9) and (3.10) with respect-to = and y, we get the following

equations
@ = (262 NG.GATH \ia@?) /G, (3.12)
Gy = GA3 —.GyAy, (3.13)
2G 0 = 20:G =0, (3.14)
a = (—G,Xo +' Gy + AoA2))/G?, (3.15)
where
A3 = A1y — 2X9,.

Substituting (3.13) into (3.11), it becomes
GGy + G,GA — G*(az + A3) = 0. (3.16)
Comparing the mixed derivatives (Gyy)s = (Guz)y, we find the equation
Gads — G(Aaze + Aoads + Agp) = 0. (3.17)
Differentiating o with respect to x and y, we have
2G,(Aoy + AoA2) + Gy ( Aoz +2X0A1) — G (Aowy + Aoz A2 +4 X2 X0 +2X0A3) = 0, (3.18)

2GG Ao — 6GoA 4 2G,G(Bhoy + 2X0X2) — GP(As +2X5 — M A3) =0, (3.19)
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where

At = 2A0yy — 2A 12y + 200A2y — Ay A1 + 20 A2 + 204,
A5 = Aagz + Aoz A1+ Asz + Aj s,

Further analysis of the compatibility depends on A3.

3.2.1 Case \3 #0

From equation (3.17), we find

Substituting G, into equations (3.14). (3.16); (3:12) and (3.13), we obtain the
equations

)\Ox S 2)\0(—)\1)\3 —|— )\5)/)\3, (321)
Aozzy = —Aagy Al — Aggy — Q)éw — 293 = Agy A + ()xgy)\5))\§1, (3.22)
Mozze = —Aszz — MaAze — AaA3 + Aoz AT+ ATA3 — 20105 + A3 A5 (s + As), (3.23)

GyAs — GAs(Aax + As) = 0. (3.24)

Case \5 # 0

Equation (3.24) gives
Gy = GA3(Aaz + A3)/As. (3.25)

Substituting G, into equations (3.13), (3.18) and (3.19) and comparing the mixed

derivatives (G,), = (Gy)., we get

Ashs (6 X0y Aoz + 2Xaay Ao + 4oz Aoda + 2Xs, A0 + Ao A2 A3 + A As)
(3.26)
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Case M5 =0

Equations (3.21), (3.24), (3.22), (3.23), (3.18) and (3.19) become

)\Ox E T —2)\0/\1./ (327)
Aoz = — s, (3.28)
2G Gy o — 6G2Ng + 2G,G(3Xo, +200A2) — G2(Ay — A Ag) = 0. (3.29)

If Ao # 0, then equation (3:29) defines
Gyy = (6G2Xg — 2G,G(BXoy +2X0 M) + G (A1 — AiA3))/(2G ). (3.30)

In this case, (Gyy)e = (Gay), and (G, )y =(Gy, )» are satisfied. Hence, there are
no other compatibility ‘conditions:—Thus; if A3 £ 0, A5 = 0 and )y # 0, then
conditions (3.27) and(3.28) are sufficient for equation(3.4) to be linearizable by
a generalized Sundman transformation.

If Ay =0, there are no other conditions.

Remark 3.2. If \; = 0, equations (3.21), (3.22), (3.23), (3.24) and (3.26)
become conditions (3.27) and (3.28) respectively.

Thus, sufficient conditions for equation (3.4) in the case A3 # 0 to be lin-
earizable by generalized Sundman transformation are (3.21), (3.22), (3.23) and

(3.26).

3.2.2 Case \3 =0

Notice that the particular case \3 = 0 and \y = 0 was studied in Duarte,
Moreira and Santos (1994). Here the case A3 = 0 and A4 # 0 is considered.

Equation (3.19) for A3 = 0 becomes

2G G yyho — 6G2A + 2G, G (3o, + 200 A2) — GZ2Ay = 0. (3.31)
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The assumption A\g = 0 leads to the contradiction that Ay = 0. Hence, we

have to assume that Ay # 0.

Equations (3.17), (3.14) and (3.18) become
Aoge 7= _>\2z>\17

G = (GAos)/(2M),

Gy Aors = G (A, Ad— AoyAe) = 0,

where

)\6 = )\()w + 2)\0)\1.

Substituting G, into equations (3.13) and (3.12),we get
Aoy, = o =+2X2:A5) /Ao,

Aor = (3As(As = 2X01))/(28).

Case \¢ # 0.

From equations (3.34), we find

Gy — G(_/\Oy/\ﬁ + /\Gy/\())/<>\0)\6)-

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Substituting G, into equations (3.13) and (3.31), and comparing the mixed deriva-

tives (G,)y = (Gy)s, We obtain

)\41 = (—24)\31)\8 - 4)\0)\1>\4)\6 + )\4)\%)/(2)\0)\6)

Case \g = 0.

(3.37)

In this case equation (3.34) is satisfied. We need to check the only condition

(Gyy)w = (Gy)yy, which is

)\41' - _2)\1)\47

(3.38)
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Equation (3.35) becomes

Aoy = 0. (3.39)

Remark 3.3. If \¢ = 0, equations (3.35) becomes condition (3.39).

All obtained results can be summarized to a theorem.

Theorem 3.1. Sufficient conditions for equation (3.4) to be linearizable via a

generalized Sundman transformation with F, = 0 are as follows.
(a) If A3 # 0, then the conditions are (3.21), (3.22), (3.23) and (3.26).
(b) If A3 = 0, X\¢ # 0, then the conditions are (3.32), (3.35), (3.36) and (3.37).
(c) If \3 =0, \¢ = 0, then the-conditions are (3.32), (3.35), (3.36) and (3.38).

Remark 3.4. These conditions extend the criteria obtained in Duarte,

Moreira and Santos (1994).

3.3 Examples

Here, we will give examples demonstrating the obtained results. The equa-
tions in the examples are not linearizable by point transformations and also do not
satisfy the conditions of Duarte, Moreira and Santos (1994).

Example 3.1. Consider the nonlinear ordinary differential equation
'+ (1/y)y? +yy +1/2=0. (3.40)

Since this equation does not satisfy the Lie criteria (Lie, 1883) for linearization it
is not linearizable by point transformations. Equation (3.40) is of the form (3.4)

with coeflicients

)\2:1/3/, )\1:y, /\0:1/2 (341)
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It is straightforward to check that the coefficients (3.41) obey the conditions (3.21),
(3.22), (3.23) and (3.26). Thus, equation (3.40) is linearizable via generalized
Sundman transformation.

For finding the functions ' and G we have to solve equations (3.8), (3.20)

and (3.25), which become
F,=0, F,, = (2F,)/4, G. =0, G, = G/y.

We take the simplest solution, F = y* and G = y, which satisfies (3.8),

(3.20) and (3.25). We obtain the transformation
w=y? | dt=ydz. (3.42)
Equations (3.9), (3.10) and (3.15) give
f=1,y=-3/2,"a=0:

Hence equation (3.40) is mapped by the transformation (3.42) into the linear equa-
tion

u" +u' +3/2 =0. (3.43)

The general solution of equation (3.43) is
U =-c|+ Czeit — 3t/2,

where c1, ¢y are arbitrary constants. Applying the generalized Sundman transfor-
mation (3.42) to equation (3.40) we obtain that the general solution of equation
(3.40) is

y(x) = (e1 + o™ = 3¢(2) /2)'?,
where the function ¢ = ¢(x) is a solution of the equation

dt
d_ = (Cl + Cgeit — 3t/2)1/3
X
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For example, if ¢; = ¢o = 0, then we obtain the particular solution of equation
(3.40)
y=(—z)"2
Example 3.2. Consider the nonlinear ordinary differential equation
Y + xy? gy +1/e*Y = 0. (3.44)
Equation (3.44) is of the form (3.4) with coefficients

/\2 =T, /\1 =Y, )\0 = 1/€2xy. (345)

One easily checks that the coefficients (3.45) do not satisfy the conditions of lin-
earizability by point transformations, but they .obey the conditions (3.27) and
(3.28). Thus, equation (3.44) is lincarizable via a generalized Sundman transfor-
mation.

For finding the funetions Fand G" we have to solve equations (3.8), (3.20)

and (3.30), which become

F,=0, F, =(G,F,+ F,Gx)/G,

G, = —yG, Gy, = (3G, +4G,Gx 4+ 2G%2%) /G.

We take the simplest solution, F' = y and G = e~*¥, which satisfies (3.8),

(3.20) and (3.30). The linearizing generalized Sundman transformation is
u=vy, dt=e "du. (3.46)
Equations (3.9), (3.10) and (3.15) give
B=0,v=-1, a=0.

Hence equation (3.44) is mapped by the transformation (3.46) into the linear equa-
tion

W' +1=0. (3.47)
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The general solution of equation (3.47) is
u = —t2/2 + Clt+ Co,

where ¢y, ¢o are arbitrary constants. Applying the generalized Sundman transfor-
mation (3.46) to equation (3.44) we obtain that the general solution of equation
(3.44) is

y(@) = +8(1)*/2 & c1(w) + ¢,
where the function ¢ = ¢(x) is a solution of the equation

dt

4 ()—a:(—tQ/QJrcl t4c2)
dx

Example 3.3. Consider-the nonlinear second-order ordinary differential
equation
y! + sy + ey Y+ iy H=0, (3.48)
where kq, ko, ks, p1, 1o and pz % 0 are‘arbitrary constants. The Lie criteria (Lie,
1883) show that the nonlinear equation (3.48) is linearizable by a point transfor-
mation if and only if p; = 0 and pus = 0.

From equation (3.48), the coefficients are

Ao = fiy™, A= oy, Aa = psy®®, As = pokoy® [y,
A = 20y B ey g + kagn) + 2uy™ (KT — ky) — kopdy®2 /g2, (3:49)
As = kap3y* [y.
If uo # 0 and puy = 0, then A3 # 0 and A5 # 0. We can check that the

coefficients obey the conditions (3.21), (3.22), (3.23) and (3.26). Thus, equation
y' + psy™y? + pay™y' =0 (3.50)

is linearizable by a generalized Sundman transformation.
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For finding the functions F' and G we have to solve equations (3.8), (3.20)

and (3.25), which become

F, =0, Fjy = F(usy™ "' 4+ ks)/y, G, =0, G, = Gka/y.

“Syk2+1
For example, if ks = k3, we take the simplest solution, F' = %36 k21 and

G = y*2, and the generalized Sundman transformation becomes

1 _ugyP2t! )
u=—e =F || dt =y"dr. (3.51)
3

Equations (3.9), (3.10) and (3.15) give
f=pe, 70, a=0.

Hence equation (3.50) is mapped by the transformation (3.51) into the linear equa-
tion
'+ pu” = 0. (3.52)

If u3 = 0, then equation (3:48) is

Y+ uy®y + iy =0, (3.53)

where ps # 0. The Lie criteria (Lie, 1883) show that the nonlinear equation
(3.53) is linearizable by a point transformation if and only if k& = 3, ks = 1 and
w1 = (po/3)% In the particular case, ky = 3, ko = 1, u1 = 1 and ps = 3, we have
the equation

v+ 3yy + vy =0. (3.54)

Equation (3.54) arises in many areas. Some of these are the analysis of the fusion of
pellets, the theory of univalent functions, the stability of gaseous spheres, operator
Yang-Baxter equations, motion of a free particle in a space of constant curvature,
the stationary reduction of the second member of the Burgers hierarchy (Karasu

and Leach, 2009).
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Remark 3.5. Equation (3.54) is linearizable by a point transformation
and by a generalized Sundman transformation into the equations u” = 0 and
u” + 3u’ + 2u = 0, respectively.

Without loss of the generality™, we can assume that us = 1. Hence, equation
(3.53) becomes

'+ Py + my™ = 0. (3.55)
For this equation the coefficients are

Ao = iyt A =k Ny =0, A3 = koyF2!

Ay = pak (ki — DyP=2= koy? 2Tl N5 = koy?hetl,

If ks = 0, then A\s = 0 and equation (3.55)1s linearizable by a generalized
Sundman transformation.

If ko # 0, then A5 # 0 and conditions (3.21),7(3.22), (3.23), (3.26) are
reduced to

If conditions (3.56) are satisfied, then equation (3.55) is linearizable by a general-
ized Sundman transformation. Notice that in the case ui(ks — k1) = 0, equation
(3.55) is trivially integrated by using the substitution ¥’ = H(y). A nontrivial case
is k1 = 2ky + 1. In this case the functions F' and G are solutions of the compatible

overdetermined system of equations
Fx = O, Fyy = ngy/y, Gx = 0, Gy = k’QG/y (357)

The general solution of equations (3.57) depends on the value of the constant k.

For example, if ky # —1, then a particular solution of system (3.57) is

F =Pt Gq=yk.

*For example, scaling of the independent variable: T = pox.
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Thus, the generalized Sundman transform reduces equation (3.55) into the linear
equation

u” + o + (,ul(k’Q + 1))U =0. (358)

Remark 3.6. Since equations (3.40), (3.48) and (3.53) are autonomous,
their order can be reduced by the substitution v = f(y). It is worth to note that
for equations (3.48) and (3.53) the difficulties in using the generalized Sundman

transformation are similar to solving the original equation by this reduction.



CHAPTER 1V
LINEARIZATION OF THIRD-ORDER
ORDINARY DIFFERENTIAL EQUATIONS
BY GENERALIZED SUNDMAN

TRANSFORMATIONS

In this chapter wefocus on the necessary-and sufficient conditions which

allow the most general third-order ordinary differential equation

1

y" = f(@.y,9.y") (4.1)
to be mapped into the equation

"

" 4 au =0, (4.2)

where a # 0 is constant. The linerization is considered with respect to the gener-

alized Sundman transformation

u=F(x,y), (43)
dt = G(z,y)dx
where F,G # 0.
Recall that the linearization problem via generalized Sundman transfor-
mations for third-order ordinary differential equations has been investigated by
Euler, Wolf, Leach and Euler (2003). They found conditions for all equations (4.1)

which are equivalent to a linear equation u” = 0. This means that they only

gave a particular criterion for applying the generalized Sundman transformation
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for the linearization problem. The main motivation of the study in this chapter
is to extend the equivalence classes of linearizable third-order ordinary differential

equations.

4.1 Necessary conditions for linearization

This section is devoted to finding a representation of a third-order ordinary
differential equation (4.1) which can be obtained from a linear equation (4.2) by
applying a generalized Sundman transformation.

The function v and its derivatives.«’ and «” are defined by the first formula

(4.3) and its derivatives with respect to «:
ua=rF, 1,

u'G? + ' (G + Gy) = By £ 2F,,) + Fyyy” + Fio, (4.4)

u"G? 4+ 3GU (G, + Gy Hu (G +2G .y + Gy + Guz)

— yy/// + 3Fyyy/y// + 3nyy// + 3nyyy/2 + 3mey' + Fynyxmy'?’-

Finding the derivatives «',u”, u” from (4.4) and substituting them into (4.2), we

obtain the following equation

Y" 4 Xs(2, )y + Mz, 9)y'y" + Xz, )y + Aa(z, y)y? (45)

+ (2, y)y + Xo(z,y) =0,
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where the coefficients \;(x,y), (i = 0,1, ...,5) are related to the functions F' and G:

s = (3F,G - F.G,—3F,G,)/(F,G), (4.6)
M = (3F,,G —4F,G,)/(F,G), (4.7)
A3 = (Fy,G® -3F,G,G - kG,G+3F,G.)/(F,G*), (4.8)
Xy = (3F,,G?—6F,,G,G— KRG,,G+ 3F,G, — 3F,G,G (4.9)

—2F,G.,G + 6F,G.Gy)/ (FyG?),
N = (=6F,,G.G + 3R, G? = 3F,G,G — 2F,Gy G + 6F,G,G, (4.10)
—F,G..G + 3F,G) [(F,G?),

N = (FpeaG? —3F, G0 — F,GG + 3F,G2 + FGa)/(F,G?). (4.11)

Equation (4.5) presents the necessary form of a third-order ordinary differ-
ential equation which.can he mapped to a linear equation (4.2) via a generalized
Sundman transformation:.

Notice that if & = 0, then equations (4.6)-(4.11) coincide with the corre-

sponding equations of Euler, Wolf, Leach and Euler (2003).

4.2 Sufficient conditions for linearization

For obtaining sufficient conditions we have to solve the compatibility prob-
lem by considering equations (4.6)-(4.11) as an overdetermined system of par-
tial differential equations for the functions F' and G with the given coeflicients
Xi(z,y), (i = 0,1,...,5). Complete criteria for third-order ordinary differential
equations to be linearizable to equation (4.2) via the generalized Sundman trans-

formation are obtained here.
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From equations (4.6)-(4.11), we can find the derivatives of F' and G:

F,, = (F.G,+3F,G,+ F,GX\5)/(3G), (4.12)
F,, = (F,(4G,+4MG))/(3G), (4.13)
Frow = (3F.G.G+ F,G..G~3F,G2 — FGa + \F,G?)/(G?), (4.14)
Gy = (F,,G°— \F,G*~3F,,G,G + 3F,G2)/(F,G), (4.15)
Guy = (3F,,G* — \F,G* —6F,,G,G — F,G,,G + 3F,G, (4.16)

—-3F,,G.G + 6F,G,G,) [(2F,G),
Gex = (3Fu,G* — MF,G? = 6F,G4G — 3F,.G,G (4.17)

—2F,G,,G + 6F,G G, +3E,G2)/(F,G).

The right hand sides of equations (4.12)-(4.17) can be written through the first-
order derivatives of the functions #, .G and the derivative F,,. For example, after
substituting F,,, found by differentiating (4.13) with respect to y, into (4.15)
we find the expression of the derivative G, through first-order derivatives of the
functions F' and G. Later we refer to equations (4.12)-(4.17) as expressions of the
derivatives presented in the left hand sides through the first-order derivatives of
the functions F', G and the derivative F,.

Comparing the mixed derivatives

(Fz )y = (Fyy)xa (szx)y = (Fccy)zxa
(ny)z = (Gm>ya (Gﬂcy)y = (ny)xa

new equations for the functions, F' and G, are obtained. One of these equations is

(4.18)

F. ¢ + Fyh7 =0, (4.19)
where
A6 = —3Agy + 93 — /\i,

A7 = =3z + 65y — 3X2 + A5,
Further analysis of the compatibility depends on the value of Ag.
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4.2.1 Case Mg #0

Assuming that \g # 0, equation (4.19) gives
Fy =I5 F, 0 /2. (4.20)
Substituting F, into (4.12) and (4.14), we obtain the following equations
Gz = (=3G, 67 + G(3A6, A7 = 3A7h6 — Made A7 — As)3))/(3M), (4.21)
a = (F8)/(OF G )), (4.22)

where

As = 9N (Arzide —AarzAr) H(BAsn+ 2A2) NEA7 + 35, AEN2
+3X62 (662 A6 A7 + 36, A2 — BNz A2 —3A7, XgAz — MaAAZ — 3A502\7)
=36y (BA72 A6 A7 + AsAAZ) + 3 Az (AaAENT + 3N5A8) + A2(3A7, A5 N7
FINNG = BAAZF 2X4 A5 02).
Since the case a = 0 was studied in Euler; Wolf, Leach and Euler (2003), further
study is considered for o # 0. From equation (4.22) we get that \g # 0.

Substituting G, into (4.16) and (4.17), we obtain the conditions

9oy s — 27Asy A6 + 15A5, Mg + 3Aay A6 — 6Acy A7 + Iy ds — 122004 Ag

(4.23)
—9N3A56 + DAINs A6 + 4Ag A6 A7 — AsA2 =0,
— 185y A8 — AZ(18A1, — 362, + 125, My + 2405, 05 + 1207, — 240005
F8AAZ + 95 A7) + 95, (206, A7 — 227,06 + AaAe A7) — By (3N )7 (4.24)
— A5 A7) + 36 A7y (62 — 224 A5A7) + AeA7(—6A2 A4 A6 A7
—9)\3)\5 + 3AZA5 + 2/\4 + 9)‘2y - 27>\3$ —I— 9)\6$) - O
Differentiating o with respect to  and y, we obtain

—4X62A6As — 66, A7 As + 2A7, A6 As + Mgz AZ + Agy As A7 (4.25)

FAs A6 (AaA7 + As6) = 0,
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F, = =5G,FgAs + FG(—12XyAs + 3Agy A6 + AaX6As) /(3G A6 As). (4.26)
Substituting F, into (4.20), we get
F, = 5G,FsAiAs + FGA7(1206,28 — 3Agy A6 — AadgAg)/(BGAZAg). (4.27)

Because the derivatives, F,, and F,,, have been found from equations (4.12) and

(4.13), we need to consider the equations

(#2)y— Fay =0,
(Fy)y — [y = 0.
These equations become

35A§Ag(%’)2 — 14A10/\6(%) — g =0, (4.28)

Mgy A2 — Mgy Ao AT 18AG AL B AG(=62, +9As — 3AuAsAZ — 2)7) 129
FAZ(3A7, At Mshs £ X3)08) = BN (6)7, F A7) = 0,

where
Ao = 366X Ae =198, AG — 180AG, As
+12X6, (65, A6 + MaA6As) + Aa(—3Asy A — 9A3As + ATAg) — 6A3 s,
Ao = (3BAsy + AaAs)Ag — 12X6y As.
Equation (4.28) leads to the condition that 7TAZ;, + 5AgAg > 0.

Differentiating (4.28) with respect to x and y, we obtain

TONIAs (3A10A2 — Ao Aads — 3As,A10) + 15AZAs Aoz + As o) (4.30)

_10)\8)\9(9/\61’/\6 + 6)\6y)\7 - 6/\7y/\6 - 2>\4)\6)\7) + (9)\10/\9 + )\11)/\7 == 0,
18Gy)\6>\12 - G)\H = O, (431)

where
)\11 = _90)‘6y)\8)‘9 + 15)‘9:1/)\6)‘8 — 70)\10)\2)\8 — 9)\10)\9 — 5)\4)\6)\8)‘97
)\12 - 7/\%0 + 5>\8>\9-

Further study depends on Ajs.
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Case \jp =0

From equation (4.31) we have the condition
X = 0. (4.32)

Thus we have shown that, if A\ # 0-and Ao = 0, then conditions (4.23), (4.24),
(4.25) and (4.32) are sufficient for equation (4.5) to be linearizable by a generalized
Sundman transformation. These conditions guarantee that the overdetermined
system of equations (4.21), (4.26), (4.27) and.(4.28) for the functions F' and G is
compatible.

Case A3 #0

From equation (4.31) we find
Gy - G)\11/<18)\6)\12). (433)

Substituting G, into (4.15), (4.16), (4.28), (4.21), (4.26) and (4.27), we get

27)\11y>\12)\6 — 27>\12y>\11)\6 — 27)‘63/)\11)\12 — )\%1

(4.34)
_9)\11)\12>\4)\6 + 162)\%2)\2 = 0,

)\111)\12)\3 + )\Hy)\12)\6)\7 - )\1290)\11)\% - )\12y)\11)\6)\7

F18As, A2 A2 — Ao A1 M2 A — 2065 A1 A 1207 + Ary A1 A2 \g (4.35)
—18AZ, 003 + 6AZ A AN — 6AZNEN; = 0,
3528)\11)\12)\2()\10)\12 - 7)\?0) + 756)\11/\12)\6(14)\10?;)\10)\9 — /\12y)‘9)
FTA1 A2 (10806, A 12 — 75606, A3y + 3241000 + 41M11) (4.36)
—24502 02 \g — 1620A2,\3 = 0,

Gw - G(18)\6y>\12)\7 - 18/\7y)‘12)\6 - )\11)\7 - 6)\12)\4)\6/\7 (4 37)

—6A12A502) /(18 1202),



Fx = F)\7(—126)\i1))0 — 90)‘10>\8>\9 + 5)\11)\8)/(54)‘(23)\8>\12)7

Fy == F<126)\:150 + 90)‘10/\8>\9 - 5)\11)\8)/(54)\6)‘8/\12>-
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(4.38)

(4.39)

Thus we have shown that, if A\g # 0 and A5 # 0, then conditions (4.23),

(4.24), (4.25), (4.34), (4.35) and (4.36) are sufficient for equation (4.5) to be lin-

earizable by a generalized Sundman transformation. These conditions guarantee

that the overdetermined system of equations (4.33), (4.37), (4.38) and (4.39) for

the functions F' and G is compatible.

4.2.2 Case \g =0
Since F, # 0, from (4.19), we-get
A7 = 0.

From the last two equations of (4.18); we obtain

—3\3(F,Gy — F,Gy) + F,G(=9A1, — 3Aise + 9ar — 3hsads — Aishs
F3AoAs — MAZ) = 0,

Moy — 27T A3, + 15A5, A1 — 120004 — I35 + 5ANs = 0,

where

)\13 - 3)\531 - 3)\2 + )\4)\5.

Case \i35=0
Equation (4.41) gives the condition

_9)\1y + 9)\292 - 3)\5:0)\4 —|— 3)\2/\5 —_ )\4)\§ — 0

(4.40)

(4.41)

(4.42)

(4.43)

Thus we have shown that, if \¢ = 0 and ;3 = 0, then conditions (4.40), (4.42) and

(4.43) are sufficient for equation (4.5) to be linearizable by a generalized Sundman
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transformation. These conditions guarantee that the overdetermined system of

equations (4.12)-(4.17) for the functions F' and G is compatible.

Case \i3 #0

From equation (4.41) we find

Gx - (3F1Gy)\]3 + FyG<9)\]y + 3)\151 - 9)\293 + 3)\51;)\4 + )\13)\5

—3Xa A5 £ A)) LBE, M 13).
Substituting G, into (4.16) and (4.17), we obtain the following equations
—2T A1y + iy hs — 183 A —27X5, A + 81300 + 54A3: A5 + 95 \]
—16>\%3 - 24)\13)\2 =+ 2)\13)\4)\5 L 9)\2)\4)\5 —|— 3/\/21/\§ - 0,
F?: = Fy)\l4/3)\?37

where

Mg = 18X15(3A gy At = 3h2us + Aszad)

181, (920 — 6A1zs — 3As,Aa — A13As + 3A2s — AgA2)

(4.44)

(4.45)

(4.46)

F120030(9ae — BAsy s + 3Aads — AAZ) 4 1800 (Bhsehs — 3Aads + AiA2)

350 (3A50 A2 — OAZ, — 6AadaAs + 2X2A2) — OAAZ, + GAZ A2 + 1213002

A3 A — ONIAZ + 6A AN — 6A1 A ishs — 81A2, — 27A%;, — AIAL.

Substituting F, into (4.12) and (4.14) we find that
a = (Fy\is)/(81FGAY),

where

)\15 = 9)\13(9)\13xw)\14 - 3)\14xx)\13) - 27)\1y(9/\13x)\14 - 3)\1490)\13 - >\13/\14)\5)

=913 (4514 — 21N 140 A 13 — 27 A2 A 1a + 5o Aiads — AA13A 1405 — X140 s

+3A14MA2) — I3 A 142(9N2z — A5z Ad + A3 A5 + 3hads — A A2)

—3A13A12 (92w A5 + BAsoA1s — BAsaAads + BAAZ — AAD) 4+ 81NN, + A2,
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By virtue of the condition a # 0, we have that A5 # 0.

Differentiating o with respect to x and y, we obtain the equations

—3X2,A15(18A 1, + 21150 — 18A0uA1s + 6Asuds — 6Aods + 2X4A2)

(4.47)
+3)\§3(3)\15$ - )\15)\5) — )‘14(3)\15y — 4)\15/\4) = O,
Gy — —SFyGAlg, + FG(g)\L;y - 4)\15)\4)/5F)\15. (448)
Substituting G, into (4.15) and (4.16), we get
i, L BB (30us), (4.49)
where 32 = 1 and
As = (=45 X155y A5+ 63N s 3315y A 15 A\ 180AT; A3 — 8AT;A3) /7.
Substituting F), into (4.12) and (4.13), we find the conditions
_5)\%3)\15)\16(9)\131 + 8)\13y Y 9)\2T + 3)‘5x/\4 4 )\13)\5 — 3)\2)\5 + )\4/\%)
| (4.50)
=315y A 14M16 + D162 AT A 15 + Aadis (45 s + A1) = 0,
—27)\15y>\16 + 15)\163/)‘15 + 11)\15)\16)\4 + 9)\%6 - 0 (451)

Thus we have shown that, if A\s = 0 and A3 # 0, conditions (4.40), (4.42), (4.45),
(4.47), (4.50) and (4.51) are sufficient for equation (4.5) to be linearizable by a
generalized Sundman transformation. These conditions guarantee that the overde-
termined system of equations (4.44), (4.46), (4.48) and (4.49) for the functions F’
and G is compatible.

Combining all results obtained, the following theorem is proven.

Theorem 4.1. Sufficient conditions for equation (4.5) to be linearizable to equa-

tion (4.2) by a generalized Sundman transformation are following.
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(a) If ¢ # 0 and Az = 0, then these conditions are (4.23), (4.24), (4.25) and
(4.92).

(b) If \¢ # 0 and M5 # 0, then these conditions are (4.23), (4.24), (4.25), (4.34),

(4.35) and (4.96).
(c) If \¢ =0, A\i3 = 0, then these conditions are (4.40), (4.42) and (4.43).

(d) If \¢ = 0, A3 # 0, then these conditions are (4.40), (4.42), (4.45), (4.47),

(4.50) and (4.51).

4.3 Example

Here, we give examples demonstrating the obtained results.

Example 4.1.

Consider the nonlinear third-order ordinary differential equation
4 3
y/// o 7y/y// + *23/3 + y4 = 0. (452)
Y )
It is an equation of the form (4.5) with the coefficients

M=y M =0, =0, )\3:%, A== X\ =0.

Notice that

As

I

|

<
&
LN
o

A2 = (81(—1440y" + 827y° — 48384y* + 145152)) /y* # 0.

One easily checks that these coefficients obey conditions (b) of the theorem.
Thus equation (4.52) is linearizable via a generalized Sundman transformation.
For the functions F' and G we have to solve equations (4.33), (4.37), (4.38) and
(4.39), which become
G, =Gy, G,=0,
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F,=0, F,=F/y.

We take its simplest solution, F' = y and G = y, which satisfies (4.33),

(4.37), (4.38) and (4.39). We obtain the transformation
u=vy, dt=ydx. (4.53)
Since \g = 9/y?, equation (4.22) gives
a=1.

Hence equation (4.52) is mapped by the transformation (4.53) into the linear equa-
tion

"+ u=.0. (4.54)
The general solution of equation (4:54) has the form

¢ 3 3
u = cren’ + ez (cy 008(775) “+.C3 sin(gt)),

where c¢1, ¢ and c3 are arbitrary constants. Applying the generalized Sundman
transformation (4.53) to equation (4.52), we obtain that the general solution of

equation (4.52) is

¢§0(CQCOS(lg§¢(I))4‘C3Sin<l§§¢(x))%

y(z) = cre™®® fe

where the function ¢ = ¢(x) is a solution of the equation

dt ¢ 3 3
= cre”t +ez(cy cos(Tt) + c3 sin(7t)).

For example, if ¢co = ¢3 = 0 and ¢; # 0, then we obtain the particular solutions of

equation (4.52):

T+cy

where ¢q is constant.



CHAPTER V

CONCLUSIONS

This thesis is devoted to the study of the linearization problem of second-
order and third-order ordinary differential equations via the generalized Sundman

transformation.

5.1 Problems

It is known that all second-order ordinary differential equations can be
mapped to another by means of contact-transformations. Comparing with the
set of contact transformations, the set of generalized Sundman transformation is
weaker: not every second-order ordinary: differential equation can be transformed
to the linear equation. Hence, it is interesting to study how generalized Sundman
transformations can be applied to the linearization problem of second-order as well
as higher-order ordinary differential equations.

Since the composition of a point transformation and a generalized Sundman
transformation is not necessarily a generalized Sundman transformation, then the
Laguerre form does not define the class of all linearizable equations by the gen-
eralized Sundman transformation. The first problem studied in the thesis was to

demonstrate that the equation
u" + fu' + au =7, (5.1)

should be used as the canonical linear equation for the linearization problem via

generalized Sundman transformations instead of the Laguerre form usually used.
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Here «a, 8 and v are constants.

The second problem in the thesis deals with the application of the gen-
eralized Sundman transformations to third-order ordinary differential equations.
We investigated the necessary and sufficient conditions for a third-order ordinary
differential equation to be linearizable by a generalized Sundman transformation

into the more general linear equation

u" Fou =0, (5.2)

where o # 0 is constant.

5.2 Results

The results obtained in the thesis are separated into two parts.

In the first part, the application of the generalized Sundman transformation
for the linearization problem of second-order ordinary differential equations was
analyzed. The general form of second-order ordinary differential equations that are
linearizable via generalized Sundman transformations to linear equations is (3.4).
Theorem 3.1 provides sufficient conditions for linearization. In particular, our
examples, which consist of equations are not linearizable by point transformations,
show that for a linearization problem via the generalized Sundman transformation
one needs to use the general form of a linear second-order ordinary differential
equation instead of the Laguerre form. The results obtained in this part warn
that a researcher has to be careful when using the well-known method for the
linearization problem.

The second part deals with the linearization of third-order ordinary differ-
ential equations by the generalized Sundman transformation. The general form of

third-order ordinary differential equations that are linearizable to a linear equa-
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tion via generalized Sundman transformations is (4.5). Conditions which guarantee
that equations (4.5) can be linearized by a generalized Sundman transformation

are provided by Theorem 4.1.




fu
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APPENDIX A
REMARK TO POINT AND CONTACT

TRANSFORMATIONS

Let us explain how to transform the derivatives in point and contact trans-

formations.

Point transformations

Let y(z) be a given function. First of all, we have to change y(z) to u(t) by

using point transformations

t=p(r,y), u=Yz39). (A1)

The transformed function u(t) is found from equation

t=p(r,y(x)).

Using Inverse Function Theorem, we find x = a (¢) . Thus, we obtain

The first-order derivative is transformed by the formula

_du_&pd_a oY dy do da

u' ( )_E_%dt +8_y%E: (Ve + Y'by) = (A2)

Since t = ¢ (a (t) ,y (a (t))) then

dt Op do Op dy do

dt — Oxdt ' Oydrdt

da
1 = (po+y'oy) —

dt
da 1
dt (z + Y'py)
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Substituting equation (A.3) into equation (A.2), we get

_¢x+y/¢y_D$¢_ !
_wﬁw@@_mw_%mw@%y@»

u' (1)

Notice that D, = % + y'a% + y”a%, + -« is the total derivative with respect to x.

Next, we find the transformation of the second-order derivative. Consider

o
dt?
%@—I— oy dy do az/qd_y’d_oz

Ox dt oy dx dt o dy' dx dt

u'(t) =

do
= (wlx + y/,wly + yllwly/) g
P Yhipt Yy by,
©at+ Yy
mel

D
= (x7y (SL’) ,y' (l‘) 7y// (‘I)) :

In general, we can write

dk—Hu Dx(/}k .
= dtk-+1 e D (p frnd wk‘-ﬁ-l(x, y7 y/,y//’ y///’ 7y(k+1))’ (k‘ = 0’ 17 2’ )

u(k+1)(t)

Notice that g = 1.

Contact transformations

Recall that the contact transformations

t=oyy), uv=v¢vyy), s=glx,vy,y)

. oy _ ! d
satisfy the condition s = u' = .

Let y(x) be a given function. The transformed function u(t) is found from

the equations

t=o(r,y(x),y (v),

uw=1v(z,y(z),y (2).
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By virtue of the Inverse Function Theorem, the first equation gives = = 7(¢), and

then

The first-order derivative is transformed by the formula

du
dt
o dr A dydr o dy dr

Oxydt - Ayudx dt Oy’ dx dt

dr

- (¢m + y'% + y"%') E (A4)

u'(t) =

Since t = @ (7 (t),y (7 (t)),y (7 (t))) then

dt dpdr, | Opdydr " Opdy dr
dt Au-dt ~ Oy dw-dt 0y dr dt
dr
o, (Poatnor=oy) S
dr 1

dt (st Yoy FY0,)

Substituting equation (A.5) into cquation (A4), we obtain

_ etV Ty Dal gy @) (00 (0).

Ce T YOy +y 0y  Dgp

u'(t)
The contact condition requires

wa / !
. A.
ngp(rv,y,y,y) (A.6)

g(z,y,y) =

Thus, the second-order derivative is transformed by the formula

#u
dt?
agd_T Ogdydr  Og dy dr

ordt Toydedt T 0y du dt

dr

dt

u/l (t) —

= (G +Y9y+V"9y)

G+ Y g, + Y9y

Yz + Yoy + Yy
D,g

D,y

= gz, y, v, y").



In general, we can write

Ak,

D.gx-1)

(k+1) (1) — _
u (t) o dek)

Notice that gy = g¢.

Do (

!

lllllll\‘

/ 7 7

LYY Yy s

M
g

E'kaeunFﬂi.l"«"" ’

Y

(k+1))

, (k=1,2, ...

).
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APPENDIX B

THE LIE LINEARIZATION TEST

Since the method used in the thesis is similar to the Lie method, let us
describe Lie’s method in detail.
Lie found necessary and sufficient conditions for a second-order ordinary

differential equation
y' = [(,9,9)

to be linearizable by a change of the independent and dependent variables
£ 2 G g) 0 M ()
into the simplest linear form.of a.second-order ordinary differential equation
u// — O

One starts with obtaining necessary conditions for the linearization problem.

One begins with the general form of a second-order ordinary differential equation

y'=F(x,y,y).

The derivatives are changed as follows

d_u — w — Daﬂb — wery'ilJy
dt V7 Do ™ paty'ey’

du _ Wy = Doy Y1ty b1y +y" Py

Dz ety ey

(B.1)
= m[y”(%% - prwz) + ylg((ﬁywyy - @yywy)

"‘y/Q(%:wyy — Pyt + 2(90y¢:ry - me¢y))
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where

D —24_ ’g_f_ ”i_|_ ”’i_|_...
) y(‘?y yay, yay,,

is the total derivative with respect to x. Finding the derivatives u’ and u” from

(B.1), and substituting them into u” = 0, one obtains the following equation

y' +a(z,y)y” +o(xy)y? +cle,y)y +d(z,y) =0, (B.2)
where
a = A (pg®yy — Puy¥y) (B.3)
b = A (Sﬁxl/)yy = Oy + 2 (@yww - @zzﬂpy)) ) (B~4)
c = AT (pr'@bmx g %x% +2 (‘I’Qx/¢1y - Q‘Qxywx)) ) (B'5)
d = AN @ater — Pralls) s (B.6)

and A = ¢ 1, — py1b, #0-is the Jacobian of the change of variables.

Equation (B.2) presents the necessary form of a second-order ordinary dif-
ferential equation which can be mapped to a linear equation u” = 0 via a point
transformation.

For obtaining sufficient conditions, one has to solve the compatibility prob-
lem, considering equations (B.3)-(B.6) as an overdetermined system of partial dif-
ferential equations for the functions ¢ and 1 with given coefficients a(z,y), b(z,y),

c(x,y) and d(z,y). Let us analyze the compatibility of this system.
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Case ¢, #0

From equations (B.3)-(B.6), one obtains the derivatives

Uyy = (pyytby — ald) /@y,
Vay = (2000 Uy — AP — yy A + bSOyA)/@@Z),
w:m: = (290xy‘;0y7\/)x - %%y% 1 9072[:1/1360 + Soz(}qu\/)xb + %(%d - @Dxc))/@z,

Voo = (202yP0py — O30T PaByyt ©20yb — Popye + 0id) /0y,
The first three equations define all second-order derivatives of the function .

Comparing the mixed derivatives

@y )y el )y A8 = (W),

one finds the following equations
Pyyy = (3030% — 20, 0)fay +ba) + 6o Q@+ (20, — 4a, + 4ca — b°)
—6pypaya + 399;2@)/(2991/)’

Payy = (3020% + 30,02 (=20, + 2ac — b?) + 60,0y 0yyb — 390207,
+2,(2¢y — by + 3ad) — 695 0uyb + 120y 00y04,) / (64).

Forming the mixed derivatives

(Payy)y = (Pyyy)zs  (Pez)yy = (Payy)es
one gets the conditions

6dya — 3cza + cyy — cyb — 20y + 20,0 + 3a,, — 3a,c + 3a,d = 0, (B.7)

—3dya + 3dyy + 3dyb — 2¢4yy — 2¢yC + byy + byc + 3byd — 6a,d = 0.

Thus, it follows that if ¢, # 0, then conditions (B.7) guarantee that the equation

(B.2) can be linearized by a point transformation.
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Case ¢, =0

From equations (B.3)-(B.6), one obtains
a =0, (B.8)

wyy - Tﬁyb’ /(/):ry T (%%x + %%C))/(Q%)’

Comparing the mixed derivatives

(wxy)y = (wyy)wa (wxy)x = ('(/)xér)yv

one gets the following conditions

s s,
(B.9)

Thus, it follows that if ¢, = 0;then the conditions (B.8) and (B.9) guarantee that
the equation (B.2) can be linearized by a point transformation.

Notice that (B.9) is a particular case of (B.7) assuming that a = 0.



APPENDIX C
A LINEARIZATION PROBLEM OF
SECOND-ORDER ODEs UNDER CONTACT

TRANSFORMATIONS

Recall that the contact transformations

t=o(z,uy ) w=s @ ysy), ms = g(z,y,y)

satisfy the conditions

g ((px + ylwy) =, + qu/)yv

(C.1)
9Py = %/ :
Lie showed that all second-order ordinary differential equations
y' = flz,9,9)
can be mapped into
v =0
with respect to contact transformations. Let us consider it in detail.
Since u” = g—i, one needs to find functions ¢(z,y,y’), ¥(x,y,y’) and
g(x,y,y") which satisfy (C.1) and the equation Dg = 0, which is
9z + y,gy + fgy’ = 0. (CQ)

Notice that the Jacobian of the transformation is

A= (1hy — 9y) gy (02 + Y0y + foy) #0.
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Without loss of generality it is assumed that f # 0.

Assume that g(x,y,y’) is some solution of (C.2) such that g, # 0. Since

f # 0, then

9z +Y'gy # 0.
Let us denote

a =1 — g.

The conditions (C.1) become

(z + 929 — ©92) Y (o + 09 +079,) — 99 — gpyy’ =0,
9@y — (dy + wgy + gpy) = 0.

One obtains that
by, —efg, =0,
a, + gy = 0.

The second equation of (C.3) becomes

ay/ = _ngy’ .

Substituting «,, into the first equation of (C.3), the function a(z,y,y’) has to
satisfy the equation

az +y'ay + fay, =0. (C.4)
Notice that the requirement A # 0 leads to
Gy — gy 7 0. (C.5)

Since g, # 0, then for solving equation (C.4) one can change the independent
variables (z,y,y’) into (x,y, g).

Let v = h(z,y,9),a0 = H (x,y,g) . Thus, one gets

Gy = Hz + Hggwa Qy = Hy + Hggy7 Ay = Hggy/‘
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Substituting «,, a, and «,, into equation (C.4), one obtains
H,+hH, =0. (C.6)
From the condition (C.5) and g, # 0, one gets
H, 0.

Finding any solution H(z,y, g) of equation (C.6) satisfying this condition one finds
a contact transformation mapping the equation y” = f(x,y,y’) into the equation

v’ = 0.



APPENDIX D
A PARTICULAR LINEARIZATION
PROBLEM OF SECOND-ORDER ODEs
UNDER GENERALIZED SUNDMAN

TRANSFORMATIONS

In 1994, Duarte, Moreira-and Santos solved a particular linearization prob-
lem of second-order ordinary differential equation Sundman transformation. Let
us analyze the solution of their problem:.

One starts with obtaining necessary conditions for a second-order ordinary

differential equation
y'=F(z,9.9), (D.1)

which can be mapped via the generalized Sundman transformation

u=Fla,y), (D.2)

dt = G(x,y)dx
to the equation

v = 0.

The function w and its derivatives v’ and u” are defined by the first formula (D.2)

and its derivatives with respect to x:
vG=F,+ Fy,

WG+ (G + Gyy') = Fyy" + 2F,y + Fyyy? + F,.
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Finding the derivatives u/,u” from (D.3), and substituting them into «” = 0, one

has the following equation

Y+ Aoz, 9y + M@, 9)y + N2, y) =0, (D-4)

where the functions \; are related to the functions F and G:

Ay = (FyG=HG)/K, (D.5)
N o= (2E,G— F,G, — F,G,)/K, (D.6)
No = (HaG=F.Gy)/K, (D.7)

with K = GF, # 0.

Equation (D.4) presents the necessary form of a second-order ordinary dif-
ferential equation which can be mapped to-a linear equation u” = 0 via the gener-
alized Sundman transformation.

For obtaining sufficient ‘conditions, one has to-solve the compatibility prob-
lem, considering equations (D.5)=(D.7), as an overdetermined system of partial dif-
ferential equations for the functions /' and G with given coefficients \;(x,y), (i =
0,1,2). These conditions are obtained as follows.

From equations (D.5)-(D.7), one can find the derivatives of F:

Fy = (Fy(Gy+GA))/G, (D.8)
Foy = (F.G,+ F,Gs+ F,G\)/(2G), (D.9)
Fho = (F,Gy+ F,G))/G. (D.10)

Comparing the mixed derivatives

(Fm )y = (Fyy)ma (Fm)y = (Fwy)m (D'll)

one obtains the derivatives of G

Goy = (—3F,G2 — 2F,G, Gy + 2F,GGyy + 3F,G.Gy + F,G,GAy D12)

F2F,G2( A1y — 2)a2))/(2F,G),
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Gow = (=3F2G2 — 2F2G,G\s + 2F2G Gy, + 2F, F,G2 (A1, — 2)ay) + 3F2G2+
] Y T vy Yy Yy y-zx

2F2G,G A + F2G* (4o, — 2\, + 40X — A2))/(2F2G).

(D.13)
Comparing the mixed derivatives (G,y), = (G,.),, one gets the equation
F.G,S, — B,G,S1 — F,GS> =0, (D.14)
where
51 = Ay = 2\,
Sy = 2Xoyy — 2May + 2X0A2y — Xy A1 + 2A0p A2 + 204,
Case 5; =0
Equation (D.14).becomes
Sg == 0. (D.15)

Thus, we have shown that-if S; = 0, then the condition (D.15) is sufficient for

equation (D.4) to be linearizable by a generalized Sundman transformation.

Case 57 # 0

From equation (D.14), one can find
G, = (F,G,51 — F,GS3)/(F,5).
Substituting G, into (D.12) and (D.13), one obtains conditions

—S1y Sy + S, 51 + 53 =0,
1y~2 2yl 1 (D]_G)

4)\0yS% — 2)\1955’% — 25’13052 + 2521351 + 4)\0)\25% — )\%512 + S% =0.

Thus, we have shown that if S; # 0, then the condition (D.16) are sufficient for

equation (D.4) to be linearizable by a generalized Sundman transformation.
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Let us observe that the second-order ordinary differential equations

V' + 1Y)y +yy +1/2=0,

'+ ay? a4+ 1/e =0,
can be linearized via generalized Sundman transformations as shown in chapter I1I.
One can check that the coefficients of these equations do not obey the conditions of
Duarte, Moreira and Santos (1994). Thus, the result obtained in the thesis extend
the linearization conditions obtained in-Duarte, Moreira and Santos (1994) to the

general form of a linear second-order ordinary differential equation.



APPENDIX E
THE APPLICATION OF GENERALIZED

SUNDMAN TRANSFORMATIONS

In 2010, Muriel and Romero showed that the class of nonlinear second-order

equations

y' =Mz, y,y") (E.1)

that are linearizable by means of generalized Sundiman transformations into the

Laguerre form of a linear second-order ordinary differential equation
u’ =0

is identified as the class of equations admitting first integrals that are polynomials
of first degree in the first-order derivative.

Recall that Duarte, Moreira and Santos (1994) studied the linearization
problem of second-order ordinary differential equations via a generalized Sundman

transformation
u=F(z,y),
dt = G(z,y)dx
where F,G # 0. They obtained that any second-order ordinary differential equa-

tion which can be mapped into the equation u” = 0 via such a transformation has

to be of the form

y” + )\2(3:7 y)y& + )\1 (.Z', y)y, + )\0(1’, y) = Oa (ES)
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where the functions \; are related to the functions F and G:

Y = (FuG = BG)(FG) = (22, (.4
F, Ey Fy 1

Moo= (QF:I:yG - F:L-Gy - FyGw)/(FyG) - {(a)y + (6)3:](6) ) (E5)

Yo = (Ful— F,Go)/(F,G) = (2’%(2)1. (E.6)

Using the functions
S1= Ay — 2Xa0, 52 = 2Xoyy = 2212y 4 2X0 A2y — A1y A1 + 20y A2 + 2944,

they showed that equation (E.3) can be mapped into the equation v” = 0 via a
generalized Sundman transformation-if the coefficients \;(z,y), (i = 0,1, 2) satisfy
the conditions:

(a) if S; =0, then Sy =0;

(b) if S7 # 0, then S5 # 0 and the following equations have to be satisfied
=51, + S2,91 #+ 9520,

ANoyS? — 201;S? — 251,55 + 255,51 + 4XgAe ST — A2S? + 52 = 0.

In their paper, the authors showed that if a second-order ordinary differen-
tial equation which has the form (E.3) is linearizable via a generalized Sundman
transformation into the equation u” = 0, then equation (E.3) admits a first integral

of the form
w(z,y,y') = Alz,y)y' + B(z,y). (E.7)
If a linearizing generalized Sundman transformation (E.2) is known, then a first

integral (E.7) is defined by
F F
A =Y B ==, E.
(@y) =7 By =5 (E.8)
It is clear that

A"+ Aoz, )y + Mz, 9)y + Xo(@,y)) = Dalw(z,y,7/)),
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where

D—g+ ’34_ ”34_ ”’i_|_...
- Ox yay y@y’ y@y”

is the total derivative operator. Therefore w, defined by (E.7), is a first integral of
(E.3) and A = w, = % is an integrating factor of equation (E.3).

Conversely, let us suppose that (E.1) has a first integral of the form

w(z,y,y') = Alz, )y + B(z,y).

Then

_Ay(/g_By—i_Aa;U/_% (E9)

]V[(ZL',:I%Z/) = 'Zy Te A

and hence (E.1) must be of the form (E.3).. To prove that this case (E.3) is
linearizable by the generalized Sundman transformation (E.2), one first tries to
find a function F' such that

BF, = AF, =0,

This is a first-order linear partial differential equation whose characteristic equation
is
(E.10)

If I(z,y) = K, K € R, is any solution of (E.10) then one chooses F' to be any

non-constant function of the form

Fz,y) = o(I(z,y)). (E.11)
Then G is uniquely determined by
(E.12)

or

G(x,y) = %, (E.13)
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if B #0.

The results can be summarized as a theorem:

Theorem

The ordinary differential equation (E.1) is linearizable by a generalized
Sundman transformation to Laguerre form if and only if (E.1) admits a first inte-
gral of the form w(x,y,y') = A(z,y)y’ + B(z,y). In this case, (E.1) has the form
(E.3). If a linearizing generalized Sundman transformation (E.2) is known then
a first integral w = Ay’ + B of (E.3) is defined by (E.8). Conversely, if a first
integral w = Ay’ + B of (E.3) is known then a linearizing generalized Sundman
transformation can be determined by (E.11)-(E.13), where I(xz,y) is a first integral

of (E.10).
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