USING LINEAR ALKYL BENZENE SULFONATE

TO REDUCE INTERFACIAL TENSION

OF CRUDE OIL

Pipat Pipatpongsanon

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in Geotechnology

Suranaree University of Technology

Academic Year 2011

การใช้สารอัลคิลเชิงเส้นของเบนซีนซัลโฟเนต เพื่อลดแรงตึงผิวของน้ำมันดิบ

นายพิพัฒน์ พิพัฒน์พงศานนท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีธรณี มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2554

USING LINEAR ALKYL BENZENE SULFONATE TO REDUCE INTERFACIAL TENSION OF CRUDE OIL

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

Member (Thesis Advisor)

(Dr. Chongpan Chonglakmani)

Member

(Prof. Dr. Sukit Limpijumnong)

(Assoc. Prof. Flt. Lt. Dr. Kontorn Chamniprasart)

Vice Rector for Academic Affairs

Dean of Institute of Engineering

พิพัฒน์ พิพัฒน์พงศานนท์ : การใช้สารอัลกิลเชิงเส้นของเบนซีนซัลโฟเนต เพื่อลดแรงตึงผิวของ น้ำมันดิบ (USING LINEAR ALKYL BENZENE SULFONATE TO REDUCE INTERFACIAL TENSION OF CRUDE OIL) อาจารย์ที่ปรึกษา : อาจารย์ คร.อัฆพรรค์ วรรณโกมล, 127 หน้า.

การวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาการลดค่าแรงตึงผิวของน้ำมันคิบ โดยการเติมสารละลายลดแรง ์ ตึงผิวลงในน้ำมันคิบ สารอัลกิลเชิงเส้นของเบนซีนซัลโฟเนตถูกเลือกมาใช้เป็นสารเติมแต่งเพื่อลดแรงตึง ้ผิวในงานวิจัยครั้งนี้ ผลกระทบอันเนื่องมาจากความเข้มข้นของสารอัลคิลเชิงเส้นของเบนซีนซัลโฟเนตที่ ความเข้มข้นร้อยละ 5 10 และ 15 โดยปริมาตร และอุณหภูมิในช่วง 40 ถึง 90 องศาเซลเซียส ระหว่าง สารละลายอัลคิลเชิงเส้นของเบนซีนซัล โฟเนตและน้ำมันคิบ จากแหล่งน้ำมันสันทรายซึ่งตั้งอยู่ที่แอ่งฝาง จะถูกทำการวัดค่าโดยวิธีใช้วงแหวนและแผ่นวัดค่าความตึงผิวตามมาตรฐานของ ASTM D971-99 ์ โปรแกรม Eclipse 100 จะถูกนำมาใช้เพื่อทำการกำนวณอัตราการผลิตและผลตอบแทนทางเศรษฐศาสตร์ ้จากผลการศึกษาที่ได้พบว่า ค่าแรงตึงผิวลดลงได้มากที่สุดถึงร้อยละ 20 เมื่อมีการเติมสารละลายอัลกิลเชิง เส้นของเบนซีนซัลโฟเนตที่มีความเข้มข้นร้อยละ 10 โคยปริมาตรให้กับตัวอย่างน้ำมันคิบในการจำลอง ้แหล่งกักเก็บ โดยการอัดสารลดแรงตึงผิวที่เตรียมไว้เพื่อช่วยในการผลิตพบว่าประสิทธิภาพการผลิต ้น้ำมันสูงสุดกิดเป็นร้อยละ 25.33 ซึ่งได้มาจากวิธีการอัดสารลดแรงตึงผิวนี้ที่มีความเข้มข้นร้อยละ 15 โดย ปริมาตรที่อัตราการอัด 200 บาร์เรลต่อวัน ในส่วนของการประเมินทางเศรษฐศาสตร์พบว่าเมื่ออัตรา ดอกเบี้ยเงินกู้ (Discount Rate) เท่ากับร้อยละ 8 มูลค่าปัจจุบันสุทธิ (NPV) ที่สูงที่สุดมีมูลค่าเท่ากับ 9,479,412 คอลล่าสหรัฐ ซึ่งได้จากวิธีการอัคสารละลายอัลคิลเชิงเส้นของเบนซีนซัลโฟเนตในอัตราการ อัด 200 บาร์เรลต่อวัน ที่ความเข้มข้นของสารละลายร้อยละ 5 โดยปริมาตร ในขณะที่อัตราผลตอบแทน ภายใน (IRR) ที่สูงที่สุดเท่ากับร้อยละ 31.96 ได้จากวิธีการอัดสารละลายอัลกิลเชิงเส้นของเบนซึนซัล โฟเนต ในอัตราการอัด 100 บาร์เรลต่อวัน ที่ความเข้มข้นของสารละลายร้อยละ 5 โดยปริมาตร

สาขาวิชา <u>เทคโนโลยีธรณี</u> ปีการศึกษา <u>2554</u> ลายมือชื่อนักศึกษา_____ ลายมือชื่ออาจารย์ที่ปรึกษา_____

PIPAT PIPATPONGSANON : USING LINEAR ALKYL BENZENE SULFONATE TO REDUCE INTERFACIAL TENSION OF CRUDE OIL. THESIS ADVISOR : AKKHAPUN WANNAKOMOL, Ph.D., 127 PP.

LINEAR ALKYL BENZENE SULFONATE/INTERFACIAL TENSION/ SURFACTANT/CRUDE OIL/FANG' OIL FIELDS

This research aimed to study the reduction of interfacial tension (IFT) by adding the surfactant solution into crude oil. Linear Alkyl Benzene Sulfonate (LAS) was selected to use as IFT reducing additive in this research. The effect of LAS concentration (5%, 10%, and 15% of concentration by volume) and temperature (40°C - 90°C) on IFT between LAS solution and crude oil from Sansai oil field located in Fang basin were measured by Ring and Plate Method based on ASTM D971-99 standard. In term of production rate and economics return calculation, Eclipse 100 program was applied for these purposes. As a result, it was found that the maximum of 20% crude oil IFT reducing occurred after adding LAS solution at 10% by volume at 70°C to crude oil sample. In reservoir simulation with prepared surfactant solution injection, the highest oil recovery efficiency of 25.33% was from the 200 bbl/day surfactant solution injection rate model at concentration of 15% by volume. In economic evaluation with 8% discount rate, the highest net present value of 9,479,412 US\$ was from 200 bbl/day surfactant solution injection rate model at concentration of 5% by volume. While the highest internal rate of return of 31.96% was from 100 bbl/day surfactant solution injection rate model at concentration of 5% by volume.

School of Geotechnology

Student's Signature

Academic Year <u>2011</u>

Advisor's Signature

ACKNOWLEDGEMENTS

I wish to acknowledge the Suranaree University of Technology (SUT) for this research funding and research facilities.

I would like to express my sincere appreciation and gratitude to Dr.Akkhapun Wannakomol, my thesis advisor, who gave a critical review and constant encouragement throughout the course of this research. Further appreciation is extended to Assoc. Prof. Kriangkrai Trisarn: chairman, School of Geotechnology and Dr.Chongpan Chonglakmani who are member of my examination committee. In addition, I am grateful for the lecturers of geotechnology: Asst. Prof. Dr.Aim-orn Tassanasorn, Asst. Prof. Thara Lekuthai, Lecturer Chatetha Chumkratoke, and other persons for their suggestions and all their help. I would like to acknowledge the Northern Petroleum Development Center, Defence Energy Department, Fang, Chiang - Mai, Thailand for crude oil providing in this research.

Finally, I most gratefully acknowledge my parents and friends for all their supports throughout the period of this research.

Pipat Pipatpongsanon

TABLE OF CONTENTS

ABSTRACT (THAI) I		
ABSTRACT (ENGLISH)		
ACKNOWLEDGEMENTSIII		
TABLE OF CONTENTS IV		
LIST OF TABLES		
LIST OF FIGURESXII		
ABBREVIATIONSXVI		
CHAPTER STATES		
I INTRODUCTION		
1.1 Rationale and background1		
1.2 Research objectives		
1.3 Research methodology		
1.3.1 Literature review		
1.3.2 Experiments 2		
1.3.3 Petroleum economic		
1.3.4 Thesis writing and presentation		
1.4 Scope and limitations of the study		
1.5 Thesis contents		

TABLE OF CONTENTS (Continued)

V

II	LITE	LITERATURE REVIEWS		
	2.1	Introduction		
2.2 Description and measurement of Interfacial tension (IFT)				
		2.2.1 The Du-Nouy ring method		
		2.2.2 Wilhelmy plate method		
		2.2.3 Spinning drop method		
	2.3	Classification and use of surfactant to reduce IFT9		
	2.4	Linear alkyl benzene sulfonate (LAS)11		
		2.4.1 Category identification and justification11		
		2.4.2 Human health		
		2.4.3 Environment14		
	2.5	Fang' oil fields		
		2.5.1 Geologic setting		
		2.5.2 Subsurface structure		
		2.5.3 Subsurface lithostratigraphy16		
		2.5.4 Petroleum system		
		2.5.5 Exploration history22		
III	RESE	EARCH METHOLOLOGY24		
	3.1	Introduction		
	3.2	Experiments		
		3.2.1 IFT test		
		3.2.2 Modified viscosity test		

TABLE OF CONTENTS (Continued)

Page

	3.2.3	Obtainable data from previous study		
3.3	Reserv	voir simulation program	28	
	3.3.1	Reservoir model input parameters		
	3.3.2	Flood pattern design	29	
3.4	Econo	mic evaluation	31	
	3.4.1	Basic assumptions	31	
	3.4.2	Other assumptions	32	
RESU	JLTS A	ND DISCUSSIONS	33	
4.1	Introd	uction	33	
4.2	Exper	imental results and discussions	33	
4.2.1 Interfacial tension of crude oil				
	4.2.2	Modified water viscosity	35	
4.3	Reserv	Reservoir simulation results and discussions		
	4.3.1	Model water flood base case results	36	
	4.3.2	Model inj100_case1 results	39	
	4.3.3	Model inj100_case2 results	43	
	4.3.4	Model inj100_case3 results	46	
	4.3.5	Model inj200_case1 results	50	
	4.3.6	Model inj200_case2 results	53	
	4.3.7	Model inj200_case3 results	57	
	4.3.8	Model inj300_case1 results	60	
	4.3.9	Model inj300_case2 results	64	
	 3.3 3.4 RESU 4.1 4.2 4.3 	3.2.3 3.3 Reserv 3.3.1 3.3.2 3.4 Econo 3.4.1 3.4.2 RESULTS A 4.1 Introd 4.2 Expert 4.2.1 4.2.2 4.3 Reserv 4.3.1 4.3.2 4.3.1 4.3.2 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9	 3.2.3 Obtainable data from previous study	

TABLE OF CONTENTS (Continued)

Page

		4.3.10 Model inj300_case3 results	67
	4.4	Economic evaluation results	71
\mathbf{V}	CON	CLUSIONS AND RECOMMENDATIONS	82
	5.1	Introduction	82
	5.2	Conclusions	82
		5.2.1 Experiments	82
		5.2.2 Reservoir simulation	83
		5.2.3 Economic evaluation	85
	5.3	Recommendations	87
REFERENCES		<u>i</u> BB <u>i</u>	88
APPENDICES	E 10		
	ENDIX A OBTAINABLE DATA	90	
	APPE	ENDIX B RESERVOIR SIMULATION RAW DATA	98
	APPE	ENDIX C CASH FLOW TABLE	108
BIOGRAPHY			127

LIST OF TABLES

Page

Table

2.1	Reservoir properties	20
2.2	Fluid properties	21
2.3	Reserve estimation	23
3.1	Cases description	29
3.2	Wells description	30
3.3	Expenditure cost details in cash flow analysis	32
4.1	Crude oil IFT from laboratory without adding surfactant solution	33
4.2	Crude oil IFT from laboratory with surfactant solution of 5%	
	by volume LAS concentration	34
4.3	Crude oil IFT from laboratory with surfactant solution of 10%	
	by volume LAS concentration	34
4.4	Crude oil IFT from laboratory with surfactant solution of 15%	
	by volume LAS concentration	34
4.5	Modified water viscosity at 40 $^{\rm o}{\rm C}$ and 70 $^{\rm o}{\rm C}$	36
4.6	Oil recovery efficiency	71
4.7	Cash flow summary of water flood base case	72
4.8	Cash flow summary of surfactant flood model inj100_case1	73
4.9	Cash flow summary of surfactant flood model inj100_case2	74
4.10	Cash flow summary of surfactant flood model inj100_case3	75
4.11	Cash flow summary of surfactant flood model inj200_case1	76

LIST OF TABLES (Continued)

Table

4.12	Cash flow summary of surfactant flood model inj200_case2	.77
4.13	Cash flow summary of surfactant flood model inj200_case3	.78
4.14	Cash flow summary of surfactant flood model inj300_case1	.79
4.15	Cash flow summary of surfactant flood model inj300_case2	.80
4.16	Cash flow summary of surfactant flood model inj300_case3	.81
A.1	Gas properties of Sansai oil field	.91
A.2	Gas properties of Mae-Soon oil field	.91
A.3	Compressibility factor of Sansai oil field	.91
A.4	Compressibility factor of Mae-Soon oil field	.91
A.5	Gas formation volume factors of Sansai oil field	.92
A.6	Gas formation volume factors of Mae-Soon oil field	.92
A.7	Gas viscosity of Sansai oil field	.92
A.8	Gas viscosity of Mae-Soon oil field	.92
A.9	Gas isothermal compressibility at initial reservoir pressure	.92
A.10	Density of crude oil	.93
A.11	Specific gravity of crude oil	.93
A.12	API gravity of crude oil	.93
A.13	Dynamic viscosity of crude oil	.93
A.14	Solution gas-oil ratio of Sansai oil field	.94
A.15	Solution gas-oil ratio of Mae-Soon oil field	.94
A.16	Oil isothermal compressibility of Sansai oil field	.94

A.17 Oil isothermal compressibility of Mae-Soon oil field......94

Page

LIST OF TABLES (Continued)

Table		Page
A.18	Oil formation volume factor of Sansai oil field	94
A.19	Oil formation volume factor of Mae-Soon oil field	95
A.20	Water resistivity and water salinity of Sansai oil field and	
	Mae-Soon oil field	95
A.21	Water formation volume factor of Sansai oil field	95
A.22	Water formation volume factor of Mae-Soon oil field	95
A.23	Water isothermal compressibility of Sansai oil field	96
A.24	Water isothermal compressibility of Mae-Soon oil field	96
A.25	Water viscosity of Sansai oil field	96
A.26	Water viscosity of Mae-Soon oil field	96
A.27	Rock properties of Fang' oil fields	97
A.28	Rock permeability of Fang' oil fields	97
A.29	Fluid saturation of Fang' oil fields	97
A.30	Rock isothermal compressibility of Fang' oil fields	97
B.1	Oil production and surfactant solution injection data of surfactant flood	
	model name case1_inj100	99
B.2	Oil production and surfactant solution injection data of surfactant flood	
	model name case2_inj100	100
B.3	Oil production and surfactant solution injection data of surfactant flood	
	model name case3_inj100	101
B.4	Oil production and surfactant solution injection data of surfactant flood	
	model name case1_inj200	

LIST OF TABLES (Continued)

Table	P	age
B.5	Oil production and surfactant solution injection data of surfactant flood	
	model name case2_inj200	103
B.6	Oil production and surfactant solution injection data of surfactant flood	
	model name case3_inj200	104
B.7	Oil production and surfactant solution injection data of surfactant flood	
	model name case1_inj300	105
B.8	Oil production and surfactant solution injection data of surfactant flood	
	model name case2_inj300	106
B.9	Oil production and surfactant solution injection data of surfactant flood	
	model name case3_inj300	107
C.1	The cash flow table of model case1_inj100	109
C.2	The cash flow table of model case2_inj100	111
C.3	The cash flow table of model case3_inj100	113
C.4	The cash flow table of model case1_inj200	115
C.5	The cash flow table of model case2_inj200	117
C.6	The cash flow table of model case3_inj200	119
C.7	The cash flow table of model case1_inj300	121
C.8	The cash flow table of model case2_inj300	123
C.9	The cash flow table of model case3_inj300	125

LIST OF FIGURES

Figure

Page

2.1	Du Nouy ring method
2.2	Wilhelmy plate method7
2.3	Spinning drop method
2.4	Chemical structure of Linear Alkyl Benzene Sulfonate in dishwashing liquid11
3.1	Phase behavior of the system from the experiment
3.2	Kruss tension meter K10ST
3.3	Haake - Viscometer550
4.1	IFT of crude oil with and without adding surfactant solution and
	selected ratio
4.2	Fluids in place profiles vs. time of water flood base case
4.3	Cumulative fluids production profiles vs. time of water flood base case
4.4	Fluids production rate profiles vs. time of water flood base case
4.5	GOR, Water cut, and Pressure vs. time of water flood base case
4.6	Recovery efficiency of oil vs. time of water flood base case
4.7	Fluids in place profiles vs. time of model inj100_case140
4.8	Cumulative fluids production profiles vs. time of model inj100_case140
4.9	Fluids production rate profiles vs. time of model inj100_case141
4.10	GOR, Water cut, and Pressure vs. time of model inj100_case141
4.11	Recovery efficiency of oil vs. time of model inj100_case142
4.12	FTITSUR and FTIRSUR profiles vs. time of model inj100_case142

LIST OF FIGURES (Continued)

Figure

4.13	Fluids in place profiles vs. time of model inj100_case24	13
4.14	Cumulative fluids production profiles vs. time of model inj100_case24	14
4.15	Fluids production rate profiles vs. time of model inj100_case24	14
4.16	GOR, Water cut, and Pressure vs. time of model inj100_case24	15
4.17	Recovery efficiency of oil vs. time of model inj100_case24	15
4.18	FTITSUR and FTIRSUR profiles vs. time of model inj100_case24	16
4.19	Fluids in place profiles vs. time of model inj100_case34	17
4.20	Cumulative fluids production profiles vs. time of model inj100_case34	17
4.21	Fluids production rate profiles vs. time of model inj100_case34	18
4.22	GOR, Water cut, and Pressure vs. time of model inj100_case34	18
4.23	Recovery efficiency of oil vs. time of model inj100_case34	19
4.24	FTITSUR and FTIRSUR profiles vs. time of model inj100_case34	19
4.25	Fluids in place profiles vs. time of model inj200_case15	50
4.26	Cumulative fluids production profiles vs. time of model inj200_case15	51
4.27	Fluids production rate profiles vs. time of model inj200_case15	51
4.28	GOR, Water cut, and Pressure vs. time of model inj200_case15	52
4.29	Recovery efficiency of oil vs. time of model inj200_case15	52
4.30	FTITSUR and FTIRSUR profiles vs. time of model inj200_case15	52
4.31	Fluids in place profiles vs. time of model inj200_case25	54
4.32	Cumulative fluids production profiles vs. time of model inj200_case25	54
4.33	Fluids production rate profiles vs. time of model inj200_case25	55
4.34	GOR, Water cut, and Pressure vs. time of model inj200_case25	55

LIST OF FIGURES (Continued)

Figure

4.35	Recovery efficiency of oil vs. time of model inj200_case2	56
4.36	FTITSUR and FTIRSUR profiles vs. time of model inj200_case2	56
4.37	Fluids in place profiles vs. time of model inj200_case3	57
4.38	Cumulative fluids production profiles vs. time of model inj200_case3	58
4.39	Fluids production rate profiles vs. time of model inj200_case3	58
4.40	GOR, Water cut, and Pressure vs. time of model inj200_case3	59
4.41	Recovery efficiency of oil vs. time of model inj200_case3	59
4.42	FTITSUR and FTIRSUR profiles vs. time of model inj200_case3	60
4.43	Fluids in place profiles vs. time of model inj300_case1	61
4.44	Cumulative fluids production profiles vs. time of model inj300_case1	61
4.45	Fluids production rate profiles vs. time of model inj300_case1	62
4.46	GOR, Water cut, and Pressure vs. time of model inj300_case1	62
4.47	Recovery efficiency of oil vs. time of model inj300_case1	63
4.48	FTITSUR and FTIRSUR profiles vs. time of model inj300_case1	63
4.49	Fluids in place profiles vs. time of model inj300_case2	64
4.50	Cumulative fluids production profiles vs. time of model inj300_case2	65
4.51	Fluids production rate profiles vs. time of model inj300_case2	65
4.52	GOR, Water cut, and Pressure vs. time of model inj300_case2	66
4.53	Recovery efficiency of oil vs. time of model inj300_case2	66
4.54	FTITSUR and FTIRSUR profiles vs. time of model inj300_case2	67
4.55	Fluids in place profiles vs. time of model inj300_case3	68

LIST OF FIGURES (Continued)

Figure

4.56 Cumulative fluids production profiles vs. time of model inj300_case368 4.57 Fluids production rate profiles vs. time of model inj300_case369 GOR, Water cut, and Pressure vs. time of model inj300_case369 4.58 Recovery efficiency of oil vs. time of model inj300_case3......70 4.59 FTITSUR and FTIRSUR profiles vs. time of model inj300_case370 4.60 5.1 5.2 5.3 5.4 **B**.1 3-D reservoir model of case2_inj100 at the end of production period100 **B.2 B.3** 3-D reservoir model of case3_inj100 at the end of production period101 ไลยเทคโนโล 3-D reservoir model of case1_inj200 at the end of production period102 **B.4 B.5** 3-D reservoir model of case2_inj200 at the end of production period103 B.6 3-D reservoir model of case3_inj200 at the end of production period104 **B.**7 3-D reservoir model of case1_inj300 at the end of production period105 **B.8** 3-D reservoir model of case2_inj300 at the end of production period106 **B.9** 3-D reservoir model of case3_inj300 at the end of production period107

Page

ABBREVIATIONS

bbl	=	barrel
bbl/day	=	barrel per day
bbl/month	=	barrel per month
bbl/year	=	barrel per year
bbl/STB	=	barrel per stock tank barrel
Bcf	=	Billion cubic feet
Bcfd	=	Billion cubic feet per day
BOD	=	oil barrel per day
BTU	=	British thermal unit
сс	=	cubic centimeter
°C	=	degree Celsius
dynes/cm	= 57	dynes/centimeter
^o F/100 ft	=	fahrenheit degree per 100 feet
ft ³ /SCF	=	cubic foot per standard cubic foot
g/l	=	gram per liter
g/cc	=	gram per cubic centimeter
L/kg	=	liter per kilogram
mN/m	=	millinewton per meter
mm	=	millimeter
mg/kg bw/day	=	milligram per kilogram bodyweight per day

ABBREVIATIONS (Continued)

mg/m ³	=	milligram per cubic meter
Ma	=	Million ages
Mcf/bbl	=	Thousand cubic feet per barrel
mD	=	milli Darcy
MMbbl	=	Million barrels
MMcf	=	Million cubic feet
MMcfd	=	Million cubic feet per day
MMcf/month	=	Million cubic feet per month
MMcf/year	=	Million cubic feet per year
MMSTB	=	Million stock tank barrel
MMUS\$	=	Million US\$
MMUS\$/km	=	Million US\$ per kilometer
MMUS\$/well	= 5	Million US\$ per well
Pa	=	Pascalunniulatia
ppg	=	pound per gallon
ppm	=	part per million
psi	=	pound square inch
SCF/STB	=	standard cubic foot per stock tank barrel
US\$/bbl	=	US\$ per barrel
US\$/kg	=	US\$ per kilogram
US\$/MMBTU	=	US\$ per Million British thermal unit
US\$/MMcf	=	US\$ per Million cubic feet

ABBREVIATIONS (Continued)

FGIP	=	Gas in place
FWIP	=	Water in place
FOIP	=	Oil in place
FGPT	=	Gas production total
FOPT	=	Oil production total
FWPT	=	Water production total
FGPR	=	Gas production rate
FOPR	=	Oil production rate
FWPR	=	Water production rate
FGOR	=	Gas oil ratio
FWCT	=	Water cut
FPR	=	Reservoir pressure
FOE	= 5	Oil efficiency
FTIRSUR	=	Surfactant injection rate
FTITSUR	=	Surfactant injection total

CHAPTER I

INTRODUCTION

1.1 Rationale and background

Secondary oil recovery methods have been developed and applied to many reservoirs around the world. The waterflooding is the widespread method caused from low cost, availability and well known. This method help to improve oil recovery compared to primary production. However, some wells can be produced only one-third of residual oil after primary production and left the two-third behind. To solve this problem, the Enhance oil recovery (EOR) is the applicable method. Surfactant flood is one kind of EOR that has been employed for more than 40 years in particular of USA in depleted oil reservoirs after waterflooding. This technology has been increasing interest and develops in many countries because of the high oil price. There are many of researches for finding the new agents to bring the residual oil up from the reservoir. But almost agents that used in flood process have hazard to the environment and very expensive. Thus, chemical flood is the process that is unattractive in some countries. However, chemical flood is still needed for some oil reservoirs.

Due to its properties that can reduce crude oil interfacial tension, soluble in water, inexpensive and affable with environment so this research selected LAS as an IFT reducing agent to study. The expected result of this study is that this surfactant would reduce crude oil IFT and can be an alternative IFT reducing agent to use in flooding process in the future.

1.2 Research objectives

The main objectives of this research are (1) to study the physical properties of crude oil mixed with LAS solution, (2) to study the effect of temperature and mixing ratio on interfacial tension and rheological properties of crude oil and surfactant solution, (3) to compare oil recovery efficiency between waterflooding process with and without adding LAS solution by simulation, and (4) to evaluate economics return from using LAS as crude oil IFT reducing agent.

1.3 Research methodology

1.3.1 Literature review

Relevant literatures were searched, reviewed, summarized and documented. The summary of the literature review were given in the thesis which included description and measurement of IFT, the classification and the use of surfactant to reduce IFT of crude oil, and specification of LAS substance that used in this research. The sources of information were from text book, journals, technical reports, and conference papers.

1.3.2 Experiments

Section 1:

1) Prepared LAS solution in the ratios between LAS and water at 5%, 10%,

and 15% by volume respectively.

2) Mixed LAS solution and crude oil sample in 30 cc. glass cups in predefined ratios. Stir the compound until they dissolved into the solvent and then cooled down to room temperature.

3) Measured IFT of crude oil at range of temperature 40° C - 90° C.

Section 2:

Run waterflooding test in Eclipse E100 reservoir simulation program by using the optimum data from previous section.

1.3.3 Petroleum economics

The petroleum economics of the hydrocarbon resource from the Eclipse E100 program was evaluated. The results of cash flow analysis were studied and analyzed to determine the base case from Internal Rate of Return (IRR) and Net Present Value (NPV).

1.3.4 Thesis writing and presentation

All research activities, methods, and results of experimental and petroleum economics evaluation were fully documented and complied with the thesis. Finally, the thesis would be submitted at the end of the research.

1.4 Scope and limitations of the study

This research aimed to study interfacial tension of crude oil and surfactant solution when the surfactant concentration and temperature were changed. IFT test was a static test by ignoring influence of high pressure and salinity in the open system. The study of IFT and modified water viscosity were limited only in laboratory scale. IFT of LAS solution and crude oil were measured by Du-Nouy Ring method and Wilhelmy Plate method with KRUSS K10ST Tension Meter based on ASTM D971-99 standard. Modified water viscosity test was measured by Haake-Viscometer550. Crude oil samples used in this study were only from Fang Basin, Chiang-Mai, Thailand. Eclipse E100 program was used to run reservoir simulation test for oil recovery prediction. The simulation Model used in this study simulated from Sansai oil field, Fang basin, Chiang-Mai, Thailand. The other input parameters included surfactant adsorption of reservoir rock, emulsification, and displacement efficiency of surfactant were negligible.

1.5 Thesis contents

Chapter I introduced the study by describing the rationale and background, research objectives, research methodology, scope and limitations. **Chapter II** summarized results of the literature review. **Chapter III** described the method of this study. **Chapter IV** analyzed the results and the discussions from experimental which were laboratory works, reservoir simulation testing and petroleum economic evaluation. **Chapter V** reported the conclusions and gave some recommendations for future studies.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter is comprised of literature review of Sansai oil field located in Fang basin, Chiang Mai Province, Thailand. The description and measurement of IFT, the classification and use of surfactant to reduce crude oil IFT and the description of Linear Alkyl Benzene Sulfonate (LAS) and its harzard to human health or environment.

2.2 Description and measurement of Interfacial Tension (IFT)

The term of surface tension is reserved for the specific case in which the surface is between a liquid and its vapor or air. If the surface is between two different liquid and a solid the term interfacial tension (IFT) is used. IFT between water and pure hydrocarbon are about 30-50 dynes/cm at room temperature (Green and Willhite, 1998).

There are several methods to measure IFT as follows:

American Society of Testing Material (ASTM) recommends standard test methods for IFT following by D971-99 standardize.

2.2.1 The Du Nouy ring method

The universally accepted technique for measuring interfacial tension is by the Du Nouy ring which is a precise geometry made of Pt-Ir. International standards for both the liquid/gas and liquid/liquid interface, from a range of industries e.g. electrical insulation & electronics, water & environmental, rubber and surfactants, are based on this technique. The methods for cleaning the ring are described in these standards but it should be noted that new health and safety rules might preclude their use. Depending on the test material, water or a 'legal' solvent should be used to remove the test liquid from the surface followed by an acetone rinse and a final clean water rinse before flaming to red heat. The measurement requires the ring to be wetted by the liquid and then pulled it through the interface while measuring the force exerted on the ring. The ring must sit square and parallel to the interface as failure to do so will result in errors in the measurements. The maximum force of the vertical constituent is directly proportional to the surface tension as illustrated in figure 2.1 (Carole Moules, Camtel Ltd., 2002).

Figure 2.1 Du Nouy Ring methods (after <u>http://www.ipc.uni-stuttgart.de</u>).

$$\sigma = \frac{F \max - Fv}{L \cos \theta}$$
(2.1)

Where	σ	=	surface or interfacial tension
	Fmax	=	maximum force
	Fv	=	weight of volume of liquid lifted
	L	=	wetted length
	θ	=	contact angle

The contact angle Θ decreases as the extension increases and has the value 0° at the point of maximum force; this means that the term $\cos \Theta$ has the value 1.

2.2.2 Wilhelmy plate method

A detection plate made of platinum or glass is used in this method. When the bottom of a vertically oriented detection plate makes contact with a liquid surface, the liquid wets the plate surface upward and meniscus is created. At this moment, the surface area of the liquid is expanded and surface tension tends to contract the surface area as a counteraction, and immerse the plate downward as illustrated in figure 2.2.

This method determines surface tension by measuring the force bringing the plate downward via a counter balance. Surface Tension is a force for each length, and is calculated in relation to the perimeter of plate (double the plate's thickness and width) corrected for buoyancy caused by immersing the plate (Kyowa Interface Science CO., Ltd., 2007).

Figure 2.2 Wilhelmy plate method (after Holmberg, K., 2002).

$$\ell = \frac{F}{L\cos\theta} \tag{2.2}$$

Where	ł	=	surface or interfacial tension (mN/m)
	L	=	wetted perimeter (2w+2d) of Wilhelmy plate (mm)
	θ	=	the contact angle between the liquid phase and the plate $(^{\circ})$
	F	=	force (mN/m)

2.2.3 Spinning drop method

This technique relies on the fact that gravitational acceleration has little effect on the shape of a fluid drop suspended in a liquid, when drop and the liquid are contained in a horizontal tube spun about its longitudinal axis. At low rotational velocities, the fluid drop will take on an ellipsoidal shape, but when a velocity is sufficiently large, it will become cylindrical. Under this latter condition, the radius of the cylindrical drop is determined by the interfacial tension, the density difference between the drop and the surrounding fluid, and the rotational velocity of the drop (Drelich, J. *et. al.*, 2002).

This method is particularly suited to the measurement of very low interfacial tensions. A drop of liquid A is placed in a tube filled with liquid B, which has a higher density than A. On spinning the tube as shown in Figure 2.2 the drop of A moves to the axis of the tube and with increasing velocity of rotation, w, the drop becomes ellipsoidal and finally an elongated cylinder. Rotational velocities of about 20,000 rpm may be used as illustrated in figure 2.3. Consider an element of the cylinder of volume V. The centrifugal force on it is $w^2r^2\Delta\rho/2$. Integrating for a cylinder of length 1 is $\pi\omega^2\Delta\rho r_0^4 1/4$, and the interfacial free energy is $2\pi r_0 l\sigma$. The total energy, E, is thus

$$E = \frac{\omega^2 \Delta p r_o^2 V}{A} + \frac{2V\sigma}{r_o}$$
(2.3)

Since $V = \pi r_0^2$ l. Putting dE/dr₀ = 0 we obtain

$$\sigma = \frac{\omega^2 \Delta p r_o^2}{A} \tag{2.4}$$

Values of interfacial tension as low as 10^{-3} mN/m can be measured readily and accurately. Precision bore tubing must be used and the apparatus constructed with precision. Account must be taken for the lens effect produced by the outer fluid.

Figure 2.3 Spinning drop method (after http://www.thermopedia.com).

2.3 Classification and Use of Surfactant to reduce IFT

Surfactants are classified according to the ionic nature of the head group as anionic, cationic, nonionic and zwitterionic. Anionic and nonionic have been used as surfactants in EOR processes. Anionic surfactants have been the most widely used because they have good surfactant properties, are relatively stable, exhibit low adsorption on reservoir rock,

and can manufactured economically. Nonionics have used primarily as cosurfactant to improve the behavior of surfactant systems. Nonionic are much more tolerant of high-salinity brine, but their surface-active properties (reduction of IFT) are not generally as good as anionic. Cationics are not use because they adsorb strongly on reservoir rock.

The most common surfactants used in micellar/polymer flooding are sulfonated hydrocarbon. The term "crude oil sulfonates" refers to the product when a crude oil is sulfonated after it has been topped. Petroleum sulfonates are sulfonates produced when an intermediate-molecular-weight refinery stream sulfonated, while "synthetic sulfonates" are the product when a relative pure organic compound is sulfonate. Crude oil and petroleum sulfonates have been use for low salinity application (< 2 to 3 wt.% NaCl). These surfactants have been widely use because they are effective at attaining low IFT, relatively inexpensive, and reported to be chemically stable (Green and Willhite, 1998).

Hong Chen *et al.* (2004) investigated IFT between oil solutions of cationic gemini surfactants. It is found that gemini surfactant are more effective and efficient than corresponding conventional surfactants in reducing IFT and can lower the tension of kerosene-water interface to ultra-low at very low concentration without other additives. The additional of salt results in more effectiveness of surfactant in reducing the tension of kerosene-water interface and showed that gemini surfactant has synergism with salt. The experiment use crude oil from Zhongyuan oil field of China.

Stefan Iglauer *et al.* (2009) investigated four different types of surfactants for effectiveness in tertiary oil recovery (TOR). They used basic screening analysis, which included IFT measurements, adsorption measurements and phase behavior studies. Performance in terms of EOR means that the surfactant generates a low IFT and shows low adsorption on the reservoir rock material. Surfactants are a) di-tridecyl sulfosuccinic acid ester, b) coconut diethanolamide; c) alkylpolygycosides, and d) alkyl propoxy sulfate

sodium salts were tested on for enhanced oil recovery used coreflood tests on Berea Sandstone. Due to reductions of IFT led to significant additional incremental oil recovery for 40% TOR, 15% TOR, 75% TOR and 35-50% TOR, respectively.

2.4 Linear Alkyl Benzene Sulfonate (LAS)

LAS are synthetic anionic surfactant that been introduced in the 1960 as more biodegradable replacements for highly branched alkyl benzene sulfonate. LAS are nonvolatile compounds produced by Alkylation and Sulfonation of benzene, International Journal of Analytical Chemistry (2009).

Figure 2.4 Chemical structure of Linear Alkyl Benzene Sulfonate in Dishwashing Liquid (SIDS Initial Assessment Report for 20th SIAM, 2005).

2.4.1 Category identification and justification

The LAS molecule contains an aromatic ring sulfonated at the para position and attached to a linear alkyl chain at any position except the terminal carbons. The alkyl carbon chain typically has 10 to 14 carbon atoms and the linearity of the alkyl chains ranges from 87 to 98%. While commercial LAS consists of more than 20 individual components, the ratio of the various homologs and isomers, representing different alkyl chain lengths and aromatic ring positions along the linear alkyl chain, is relatively constant in currently produced products, with the weighted average carbon number of the alkyl chain based on production volume per region between 11.7-11.8. LAS are supported as a category because of the close consistency of the mixtures, their commercial uses, fate, and health and environmental effects. LAS is the primary cleaning agent used in many laundry detergents and cleaners at concentrations up to 25% in consumer products, and up to 30% in commercial products, with the exception of one reported product at 45% in concentrated solid form that is mechanically dispensed into diluted solution for dishwashing.

2.4.2 Human health

Substantial data exist for mammalian toxicity. The available data indicate that LAS exhibits slight acute toxicity. Oral LD50 values for rats range from 1,080 to 1,980 mg/kg bw. Oral LD50 values for mice are 2,160 and 2,250 mg/kg bw for males and females, respectively. The rat dermal LD50 value was greater than 2,000 mg/kg bw. The oral and dermal acute toxicity data for LAS generally indicate low hazard potential when all studies are considered together. Acute inhalation toxicity data indicate that LAS is moderately toxic, with mortality occurring at respirable particle concentrations of 310 mg/m^3 (MMAD = 2.5 microns). In a series of studies on rabbits, LAS was not irritating to the skin or eyes at low concentrations (0.5-2.5%), moderately irritating at 5% by volume, and more severely irritating at higher (about 50%) concentrations. In studies that included rinsing, eye irritation effects diminished with rinsing after 30 seconds of exposure and were slight with rinsing after 4 seconds of exposure. In a low volume eye test (LVET) using a 35% by volume LAS solution, rabbits experienced moderate irritation that was completely reversible by day 35 (Note that the maximum concentration of LAS is 25% in consumer products and normally less than 30% in commercial products.). Accidental eye exposure in 231 manufacturing employee incidents and 284 consumer incidents established that eye

irritation effects of exposure during manufacturing and use of products containing LAS and other surfactants are moderate, transient and reversible. In 15 repeated dose studies with rats, mice, and monkeys exposed to LAS via oral and dermal routes, LOAELs ranged from 115 to 750 mg/kg bw/day. The corresponding NOAELs ranged from 40 to 250 mg/kg bw/day. Effects commonly observed included suppressed body weight gain, diarrhea, and increases in relative liver weight, differences in enzymatic and serum-biochemical parameters, and mild degeneration and desquamation of the tubular epithelium in the kidneys. In four well-designed in vitro bacterial (Salmonella) mutagenicity studies, LAS shows no evidence of mutagenicity either with or without S9 metabolic activation. LAS showed no evidence of causing increased cell transformation in an in vitro cell transformation assay. In in vivo studies, no significant differences in chromosome aberrations were seen when mice were given either oral doses up to 800 mg/kg bw/day or dietary doses up to 1170 mg/kg bw/day. In a mouse micronucleus study, LAS did not induce a clastogenic effect. Rats given dietary doses up to 450 mg/kg bw/day also showed no significant differences in chromosome aberrations. Collectively, these data support that LAS is not genotoxic. The highest dose tested in four carcinogenicity studies with rats was 300 mg/kg bw/day. In the most documented study, rats were administered up to 250 mg LAS/kg body weight/day in the diet for two years. Results of this study indicate no gross or histopathological evidence of a carcinogenic effect. No evidence of tumorigenesis was observed in any of the carcinogenicity studies. While the quality and focus of the studies precludes a definitive assessment, the results of the genetic toxicology and rodent bioassay studies collectively provide strong weightof-evidence support that LAS is not genotoxic and is not a rodent carcinogen. Similarly, no evidence of reproductive or fertility effects was observed in any of the three available reproductive toxicity studies in which rats were given dietary doses over three to four generations. NOAELs from these reproductive

studies ranged from 70 to 350 mg/kg bw/day, which were the highest doses tested. In 17 developmental toxicity studies, effects such as embryo death or deformities, and litter loss were most often observed only at maternally toxic doses and were associated with the irritation effects of LAS on skin or the gastrointestinal tract. No decreases in litter size, no changes in litter parameters, no malformations or significant differences in skeletal defects were observed at oral doses up to 780 mg/kg bw/day in rats and at dermal doses of 500 mg/kg bw/day in mice and 90 mg/kg bw/day in rabbits. All of the studies included in the dossier are considered reliable, but all with limitations. The results are consistent with each other and these data are used in a weight-of-evidence approach. Based on these considerations, the highest NOAEL value below the lowest LOAEL from all of the mammalian toxicity studies is the most appropriate. Therefore, the NOAEL is 85 mg/kg bw/day. This value comes from a rat drinking water, 9-month repeated dose toxicity study. The lowest LOAEL (115 mg/kg/day) was associated with increased weight of the cecum and slight degeneration of the renal tubules.

2.4.3 Environment

Pure LAS is a solid at ambient temperatures with a melting point of 198.5°C. The boiling point for LAS could not be determined experimentally due to decomposition beginning at 444°C. LAS has a low vapor pressure (calculated as 3-5 x 10-13 Pa). LAS is water soluble, with a critical micelle concentration (CMC) value of 0.1 g/L and forms a clear solution in water at concentrations up to 250 g/L. Although it is impossible to accurate measure an octanol-water partition coefficient for surface-active agents like LAS, an octanol-water partition coefficient of log 3.32 has been calculated for C11.6 LAS. Kd values for LAS in activated sludge and sediment increased with increasing alkyl chain length of LAS homologues with Kd values for C12 LAS of 3210 L/kg in activated sludge and 330 L/kg in river sediment.

In activated sludge, sorption and desorption equilibriam for LAS were achieved very rapidly, and comparison of the extent of sorption and biodegradation shows that the absorbed fraction as well as the soluble fraction of LAS is available for biodegradation. Based on Fugacity III modeling results using the most relevant input parameters, more than 99% of the residual (nonbiodegraded) fraction of LAS distribute to the soil. LAS does not undergo significant degradation by abiotic mechanisms under environmentally relevant conditions as photolyzable and hydrolyzable groups are absent from the chemical structure (SIDS Initial Assessment Report for 20th SIAM, 2005).

2.5 Fang' Oil Fields

Nopparat Settakul (2009) studied and summarized geology and petroleum system of Fang basin as follows. Fang basin is the oldest oilfield in Thailand and still producing oil. Local inhabitants found the first oil seepage on the ground surface in the dense jungle over a hundred years ago. Pioneer explorers from different government sectors involved in oil exploration and production but are still far away from being economically viable have investigated the oilfield. When the Defense Energy Department (DED) took responsibility for the site in 1956, a new era of modern technologies of geological survey, 3-D seismic survey, and directional drilling wells have been applied. From a gallon to a thousand barrels of oil, daily production has significantly increased. The oil discovery in Fang basin encourages further activities in petroleum exploration both onshore and offshore in Thailand.

The Fang' oil fields are located in Fang intermontane basin, Northern Thailand. Fang basin is approximately 150 km north of Chiang Mai or 850 km from Bangkok, the capital of Thailand. The surface area is approximately 600 km² (W 12 \times L 50 km), probably the smallest intermontane basin in which petroleum has been discovered in the country. The basin lies NE-SW with an elongated shape and is surrounded by older
formations of rocks from Cambrian and Igneous rocks to more recent sediments. The highest peak is around 2,000 m and the basin is about 450 m above mean sea level.

2.5.1 Geologic setting

The Fang basin is approximately 25-40 million years old and with layers in the Oligocene period. It is as deep as 10,000 ft in the deepest part of the basin. The lithologic assemblage is related to an episode of extension. Rifting started over 20 million years ago when the thick sequences of lacustrine sediments were deposited during the Miocene period. This sequence is called Maesod formation. Subsequent tectonic activity resulted in the deposition of thick sequences of coarse alluvial sediments that unconformably overlay the lacustrine sequences. This tectonic activity may be broadly related to changes in tectonic stress patterns caused by the progressive Indo-Eurasian collision. The coarse clastics are termed of Maefang formation and possibly span the latter Miocene to the Pliocene-Pleistocene period.

2.5.2 Subsurface structure

Fang basin is divided into 3 extensional sub-basins as interpreted from gravity and seismic surveys. These sub-basins are postulated by firstorder Riedel shear faults. The Riedel shears are clearly visible on satellite images cutting across Pre-Tertiary basements surrounding the Fang basin. These shears result from left lateral shear coupled with movement that initiated the basin. Within the subbasins, there occurs a swarm of cross-basin faults which are parallel with the Riedel shears; these are interpreted as coincident second order Riedel shears. The interpretation is based partly on the extensive network of seismic profiles across the Huai Ngu subbasin.

10

2.5.3 Subsurface lithostratigraphy

From the geological data, there are 2 major formations from the upper zone of Mae Fang formation to lower zones of Mae Sod formation as follows:

Mae Fang formation (Quaternary+Recent)

The post-rift of Mae Fang formation overlies discordantly above the Mae-Sod formation. The thickness of the Mae Fang formation from the surface varies from 1,000-1,800 ft. The minimum thickness is found on top of the Mae-Soon structure. The thickness will increase down dip from the crest of the structure. Mae Fang formation is mainly composed of coarse clastic sediments of soil, lateritic sands, loose sands, gravels, cobbles and pebbles, carbonized woods and clay on the top and towards the basin edge. Sizes of sands vary from coarse to very coarse grains, roundness from angular to subangular, poorly sorted and interbedded with reddish clays. While down dip towards the central basin clay-shale and arkosic sandstone are interbedded. This formation overlies discordantly with the Mae Sod formation. The Mae Fang formation shows energetic alluvial and fluvial deposits.

Mae Sod formation (Middle Tertiary)

The Mae Sod formation is composed of brown to gray shale, yellowish mudstone generally interbedded with sand and sandstone with a series of channels of sand paleodelta and fluvial sand. Basal conglomerate lies unconformity with Pre-Tertiary rocks and continues with sequences of lacustrine shale and mudstone. The color of the sediments indicates a reducing environment in the central, deeper part of the basin while an oxidizing environment develops in the shallow part of basin. Organic shale in the central part of the basin plays an important role as a potential source of rocks. The upper part of the Tertiary sediments is interbedded with 4 packages of sand which are important reservoir rocks in the Fang basin. Only 2 packages of sands have been proven to be producing sands. The sand thickness varies from 1-10 m. The thickness of the Mae Sod formation varies from the margin of the basin towards the centre of the basin. At the Mae-Soon structure, the thickness is approximately 3,500 ft or total thickness (Mae Fang+Mae Sod formation)

5,000 ft from the surface. Seismic interpretations indicate that the thickest part of the Mae Sod formation might reach up to 8,000 ft at the deepest part of the basin.

Basement (Pre-Tertiary)

The age of the basement of the Fang basin ranges from Mesozoic continental clastics to Cambrian marine clastics.

Environment of deposition

The Mae Sod Formation was laid down following initial basin rifting in the later Oligocene or early Miocene periods. Sands and shale alternate in the lower part of the formation indicating a fluvial to shallow lacustrine environment of deposition. A 75-100 ft lignite seam indicating a change in environment to swamps and peat bogs for a period caps this lower sequence. The upper portion of the Mae Sod is dominated by organic rich shale with minor sandstone beds occurring, especially in the lower part of the upper section. This lithology indicates a lacustrine dominated environment following the deposition of the peat. The Mae Sod formation is then overlain by the coarse clastic dominated Mae Fang formation, returning to a more fluvial tile dominated environment. The Mae Fang is not considered a viable rock source because of its dominant sandy lithology and shallow, immature depth of burial. The above description is based on the Fang basin but appears to be a valid generalization for most of the Thai Cenozoic intermontane basins.

2.5.4 Petroleum system

Petroleum source rocks

Source or potential source samples can be found from both outcrops and cores. Oil seepage can be seen near the edge of the basin. The oil found in the Fang basin is most likely from lacustrine shales found in the Mae Sod formation. The geochemical analysis of potential source rocks has been done by using cores and cuttings from selected wells of Mae-Soon and Sansai reservoirs. The analysis indicated very interesting results. Total organic carbons (TOC) are very abundant between 1.12-2.67% with a maximum of 3.03%. Extraction soluble organic matter (EOM) is as high as 1,646 ppm. Kerogen type III is approximately 20-25%, indicative of a lacustrine paleo-environment. The maturation scale indicates that the top oil window should start below 4,000 ft. While the core indicates that maturation starts from 7,750 ft. Mean vitrinite reflectance (RO%) from core analysis is only 0.44% at 3,000 ft which is lower than the ideal level of maturation of RO 0.5-1.2% and with a temperature (Tmax) of 437-470°C in the Fang basin. Therefore, the most favorable source rocks are the Mae Sod shales that are within and below the oil window.

Migration

The current producing pay intervals are above the mature source rocks. This indicates the migration of fluids at certain distances from the source rocks to charge the oil reservoirs above. The contributing factors in the migration path from the depths are fractures and faults along permeable rocks during compaction and compression in the late Tertiary period. From the size of the basin and location of reservoirs and production zones the distance of migration is short. After oil generation, oil might migrate in different directions around to the potential traps. Evidence supporting this statement comes from biodegradation of oil being found at a very shallow depth in Chaiprakarn and Pongnok reservoirs, both sides of the basin, suggesting migration routes from the depths.

Oil reservoirs

Within the Fang basin, all productions come from the Mae Sod formation. The current producing reservoirs are distributed into widespread sections of the sorted sands and coarse clastics in some cases.

Reservoir distribution

Generally, interbedded sand and sandstones in the upper zones of the Mae Sod formation are dominant reservoir rocks in the Mae-Soon reservoir and others. The sand member that gives the lowest production includes 4 layers of sand. The thickness of each sand layer varies from 5-45 ft. The depth of this sand is about 2,386-2,487 ft that is the main producer of wells. The thickest part of this sand is in a North-South direction. Porosity decreases towards the margin of the reservoir. The sand member gives the highest production includes 5 sands, 5-15 ft in thickness for each sand, with a total thickness of about 55 ft. The depth is about 2,160-2,255 ft. Most of the old wells are from this sand 2,300 ft in depth. The thickness of the sand varies from place to place. The trend in thickness North-South is 55 ft and decreasing to 10-15 ft at the edge of reservoir.

Reservoir properties

Cores analysis from some wells shows interesting results of porosity up to 25%, permeability higher than 200 milliDarcy (mD), some loose clastics as high as 2,000-3,000 mD found in the well IF 26 (Table 2.1).

Table 2.1 Reservoir properties (after Settakul, N., 2009).

Donth		Down og biliter	Demesiter	Fluid saturation (%)		Domoiter
Well	(ft)	(md)	(%) (abs)	Oil (Sor)	Water (Sw)	(g/cc)
BS-110	2,755.0	231	25.7	6.1	54.4	2.67
IF-26-1	2,581.1	2,390	25.4	17.5	33.0	2.65
IF-26-2	2,587.1	3,440	26.7	20.5	34.7	2.64

Fluid properties

Physical properties of oil from Mae-Soon, Pongnok and Lankrabreau are quite similar with a very high content of paraffin wax up to 18%.

Properties	Chiprakarn crude	Mae-Soon crude	Pongnok crude	Lankrabreau crude
API gravity	16.40	30.8	37.6	38.2
Pour point	65 °F	95 °F	92 °F	90 °F
Sulphur (%)	0.28	0.18	016	0.5
Paraffin wax(%wt)	-	18	18.62	14.5-20
Specific gravity	0.957	0.872	0.873	0.675-0.85
Color	Brownish black	Brownish black	Brownish black	Brownish black

Table 2.2 Fluid properties (after Settakul, N., 2009).

Seals

Due to the interbedded sand/shale nature of the Mae Sod formation, the sands are effectively sealed from each other in a vertical sense by the thick, intervening shale. In the upper part of the Mae Sod, the shale to sand ratio is higher than the lower section. Many of reservoir sands appear to be lateraling continuous over larger distances, allowing for lengthy up dip migration pathways. Up dip structural seals are formed by both stratigraphic and faulting mechanisms.

Traps

Combinations of structural and stratigraphic traps are very important at the Mae-Soon reservoir in the Fang basin. Traps or plays in the Fang basin will reflect its evolution during much of its history as a continental interior subsidence. Traps will thus exclusively involve tension faults as well as unconformities caused by uplift and erosional systems.

Proven traps

Structural traps of rollover anticlines originate from growth faulting and compaction on the Pre-Tertiary basement. The anticlinal axis consists of a NNW-SSE trending conforming to the basin N-S trending, dipping 5-10° around the crest. Major faults are characterized by a listric geometry, which has resulted in the formation of a rollover structure in the hanging wall of the fault. The major fault identified from seismic

interpretations is in the NE-SW direction and dipping 85°W. The fault is characteristic of a trust and strike slip fault. The western block has moved along the strike south about 150 ft and vertical displacement is about 250 ft. Minor faults are found associated with the Mae-Soon and Nongyao reservoirs. Combination traps of up dip truncation and lithostratigraphic pinchout from porous rocks to impermeable rocks have been proved to exist in Sansai, Pongnok, and Banthi reservoirs along the eastern trend of the Fang basin. In Chaiprakarn, some leakage of oil, probably uplift of the basin and erosion exposed crude oil near the surface and this degraded oil may have provided an effective trap

Potential traps

These traps might be formed under unconformities in the Pre-Tertiary basement. Synrift sediments forming potential anticlines drape drape anticline during the initial rifting. Paleogeomorphogic traps of burial Pre-Tertiary limestone or sandstones would form a good quality reservoir under unconformity.

2.5.5 Exploration history

Exploration

Oil was first found in the Fang basin over a hundred years ago when local inhabitants discovered oil seepage on the ground in the dense jungle. They believed it to be magic oil and used the oil as an ointment for skin infections. The Lord of Chiang Mai ordered a shallow well to be built called the "Lord's Well". Today, there is a memorial well called "Boh Tonkam"

In 1921, General Pra Kampangphet Akkarayothin (HM), the Director General of the Royal State Railway Department and a US geologist, Mr. Wallace Lee conducted a geological survey and drilled 2 shallow wells with a steam engine drilling rig in 1922 but these wells were dry and abandoned.

Drilling

Over 240 wells have been recorded since the first drilling well started in the Fang basin over 40 years ago. The wells are from different locations. Now only 5 locations are producing oil and 2 fields have been abandoned.

Production

The total production from the Fang basin is approximately 9 million barrels (MMBbl) from the following 7 reservoirs since early 1960 to the present day. I. Chaiprakarn reservoir (abandoned 1984), II. Mae-Soon reservoir, III. Pongnok reservoir (abandoned 1985), IV. Sansai reservoir, V. Nongyao reservoir, VI. Sanjang reservoir, and VII. Banthi reservoir. The latest Banthi reservoir was discovered from 3-D seismic interpretation in 2001. A total of 7 wells were drilled, 3 wells were directional wells. Five wells are producing at a rate of 150 BOD,

Reserve estimation

The Mae-Soon reservoir has produced 7 MMbbl since 1963. Production started from 100 barrel per day up to nearly 1,000 barrels per day at the peak of production

Table 2.3 Reserve Estimation of Fang	oil fields (after Settakul, N., 2009)
---	---------------------------------------

Field	Probable(MMbbl)	Proven (MMbbl)	Recoverable(MMbbl)
Mae-Soon	23.0-30.0	10.0-15.0	8.00
Sansai	20.0	7.0	3.00
Nongyao	5.0	3.0	2.00
Samjang	5.0	1.5	0.75
Pongnok	6.0	3.0	1.50
Banthi	8.0	3.0	1.50
Chiprakarn	4.5	1.5	1.00

CHAPTER III

RESEARCH METHODOLOGY

3.1 Introduction

This research aimed to study interfacial tension between crude oil and LAS solution when surfactant concentration and temperature were changed. This chapter is divided into 3 sections, (I) Experimental that is consisted of IFT test and modified water viscosity test which required by simulation program and this section is also shown the obtainable data of Fang' oil fields from previous study. (II) Simulation models that used in Reservoir Simulation program to predict oil recovery by simulated surfactant flooding test, and (III) Economic evaluation.

3.2 Experiments

Materials

Crude oil samples that used in this study were from Fang' oil fields which provided by Northern Petroleum Development Center, Defence Energy Department, Fang, Chiang Mai province, Thailand.

Methods

3.2.1 IFT test

IFT of LAS solution and crude oil were measured by Wilhelmy Plate Method and Du Nouy Ring method with KRUSS K10ST Tension Meter illustrated in figure 3.1. This instrument has range of result 1-999 dyne/cm and range of temperature 0-100°C. IFT test processes were as follows:

• Prepared LAS solution in ratios between LAS and water of 5%, 10%, and 15% by volume.

• Mixed LAS solution and crude oil sample in 30 cc glass cups with the ratios of 5%, 10%, and 15% by volume, respectively. Stir the compound until they were dissolved into the solvent and then cooled down to room temperature. The mixed solution was immiscible and clearly separated into surfactant solution and crude oil.

• Measured IFT of crude oil at range of temperature 40-90°C. This was because at the temperature below 40°C crude oil samples were became a wax which could not be measured.

Phase behavior in the measuring cup from the experiment illustrated in figure 3.1, oil phase was on the top of system and clearly separated from surfactant solution phase which was below.

3.2.2 Modified water viscosity test

Modified viscosities of water after adding surfactant are measured by

HAAKE-Viscometer550 illustrated in figure 3.2.

Test processes were as follows:

- Prepared LAS solution in the ratios of 5%, 10%, and 15% by volume.
- Measured modified viscosity of water at range of temperature 40-90°C.

Figure 3.1 Phase behavior of the system from the experiment.

Figure 3.2 Kruss tension meter K10ST.

Figure 3.3 Haake - Viscometer550.

3.2.3 Obtainable data from previous study

Required data that need in reservoir simulation program were collected and

adapted from works of Chumkratoke, C., (2004) which were composed of 4 sections.

- 1. Gas properties
- 2. Crude oil properties
- 3. Water properties
- 4. Reservoir rock properties

See appendix A for obtainable data

3.3 Reservoir simulation program

This study was run surfactant flood test compared with water flood test in reservoir simulation program. The reservoir conditions used in simulator were adapted from previous study of Chumkratoke, C., (2004).

3.3.1 Reservoir model input parameters

The reservoir simulation model is required the input data which had been showed in previous section that can be divided into

1. Grid Section

Grid section is required the porosity, permeability, depth, and thickness for each layer in Fang' oil fields. Porosity and permeability in this section were set into x, y, z for each layer.

2. PVT Section

PVT section is required fluid properties data that variable with pressure such as IFT of crude oil, fluid viscosity, fluid density, fluid formation volume factor, solution gas-oil ratio, modified water viscosity, etc.

3. SCAL Section

SCAL section is required rock properties which were set in the table as relative permeability versus fluid saturation data. This section was used the information to defined transition zone and flow condition of each phase to another phases.

4. Initialization Section

Initialization section is defined the initial condition of reservoir simulation. Simulator used this information to calculate the initial hydrostatic pressure gradient for each zone in reservoir model and allocated initial saturation for each phase in every grid cell. The required data were datum depth, pressure at datum depth, water-oil contact depth, and bubble point pressure at datum depth.

5. Schedule Section

This section is defined the data of producing well and injection well which required well and completion locations, production and injection rate, skin factor, well radius, well control and etc.

3.3.2 Flood pattern design

According to surfactant flood process, reservoir need to be injected by fresh water as a preflush sometimes used to change rock or fluid properties. Then the surfactant slug is injected to mix with the oil and change its properties, decreasing the interfacial tension and viscosity or changing rock wettability these effects mobilized more oil. Fresh water is injected at last as drive water.

Surfactant flooding pattern in this study relied on the reservoir structure, drainage area, number of well, production and injection activity. The summary of surfactant flooding pattern design, production and injection rate, and concentration of surfactant solution used in each model are showed in table 3.31

Case name	Surfactant concentration	Water/Surfactant inj. description	Initial oil production (bbl/d/well)	Water/Surfactant solution inj. (bbl/d/well)
Water flood base case	-	Water injection after 13 th year	200	200
::::100		Fresh water inj. 2 nd year		100
	5% by vol	Surfactant inj. at 3 rd year	100	100
Case I		Fresh water inj. 9 th year		100
::::100		Fresh water inj. 2 nd year		100
inj100_	10% by vol	Surfactant inj. at 3 rd year	100	100
Case2		Fresh water inj. 9 th year		100
::::100	150/ here 1	Fresh water inj. 2 nd year		100
inj100_	15% by voi	Surfactant inj. at 3 rd year	100	100
Case 3		Fresh water inj. 9 th year		100

Table 3.1 Cases description.

Case name	Surfactant concentration	Water/Surfactant inj. description	Initial oil production (bbl/d/well)	Water/Surfactant solution inj. (bbl/d/well)
:::::200	50/ her real	Fresh water inj. 2 nd year		200
1nj200_	5% by voi	Surfactant inj. at 3 rd year	200	200
Casel		Fresh water inj. 9 th year		200
::::200	100/ heres	Fresh water inj. 2 nd year		200
1nj200_	10% by voi	Surfactant inj. at 3 rd year	200	200
Case2		Fresh water inj. 9 th year		200
::200	150/ 11	Fresh water inj. 2 nd year		200
1nj200_	15% by voi	Surfactant inj. at 3rd year	200	200
Cases		Fresh water inj. 9 th year		200
::200	5 0/ h1	Fresh water inj. 2 nd year		300
1nj300_	5% by voi	Surfactant inj. at 3 rd year	300	300
Casel		Fresh water inj. 9 th year		300
::200		Fresh water inj. 2 nd year		300
1nj300_	10% by vol	Surfactant inj. at 3 rd year	300	300
Case2		Fresh water inj. 9 th year		300
::::200		Fresh water inj. 2 nd year		300
111J300_	15% by vol	Surfactant inj. at 3rd year	300	300
Cases		Fresh water inj. 9 th year		300

 Table 3.1 Cases description (continued).

These cases had the same number of production well and injection well, location in ายาลัยเทคโนโลยีสุรบ simulator, and well activity as showed in table 3.32.

Table 3.2 Wells description.

Year	Well Name	Location	Well Activity	Injecting/Producing Phase
1	S 3	(6,8)	Producer	Oil
2	INJ1	(7,13)	Injector	Fresh Water
3	INJ1	(7,13)	Injector	Surfactant Solution
5	S 6	(12,17)	Producer	Oil
8	S10	(6,11)	Producer	Oil
9	INJ1	(7,13)	Injector	Fresh Water
10	S11	(11,10)	Producer	Oil

Note: Life time of these cases is limited at 20 years

3.4 Economic evaluation

The objective of this chapter is to determine economic evaluation from the simulation results of surfactant flood compare with the water flood. The parameters that used in cash flow analysis were as follows:

3.4.1 Basic assumptions

a.	Oil price (US\$)	80
b.	Income tax (%)	50
c.	Escalation factor (%)	2
d.	Discount rate (%)	8
e.	Tangible cost (%)	20
f.	Intangible cost (%)	80
g.	Depreciation of tangible cost (%)	20
h.	Sliding scale royalty	
	Production level (bbl/day)	Rate (%)
	0-2000	5.00
	2,000-5,000	6.25
	5,000-10,000	10.00
	10,000-20,000	12.50
	>20,000	15.00
i.	Reserve size (MMSTB)	<10,000,000

3.4.2 Other assumptions

- a. The oil price is constant over the production period.
- Increasing rate of capital expenditure comes from the price increasing of machinery and equipment used in oil industries, and given to two percent year.
- c. Discount rate of money is 8.00 percent (Bank of Thailand, August 2011).
- d. Operating cost is escalated 2 percent each year forward.
- e. LAS cost is 1,300 US\$/ton (after http://www.phoenixdo4u.com, August 2011).
- f. The others expense used in cash flow analysis were showed in the table 3.33.

Table 3.3 Expenditure cost details in cash flow analysis.

Expenditure cost detail	Price
Concession	0.25 MMUS\$
Geological and geophysical survey	0.5 MMUS\$
Production facility	0.75 MMUS\$
Drilling & completion production well	1.5 MMUS\$
Drilling exploration & appraisal well	1 MMUS\$
Facility costs of water injection well	0.05 MMUS\$
Facility costs of surfactant injection well	0.062 MMUS\$
Maintenance costs of water injection well	0.03 MMUS\$
Maintenance costs of surfactant injection well	0.05 MMUS\$
Cost of surfactant	1.3 US\$/kg
Abandonment cost	0.0125 MMUS\$
Operation cost of production	20 US\$/bbl
Operation cost of water injection	0.5 US\$/bbl
Operation cost of surfactant injection	1 US\$/bbl

CHAPTER IV

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results and some discussions from previous chapters it was separated into 3 parts consisted of (I) experimental, laboratory results and discussions including IFT tested and modified water viscosity tested, (II) reservoir simulation results and discussions, and (III) economic evaluation results and discussions, respectively.

4.2 Experimental results and discussions

4.2.1 Interfacial Tension of crude oil

Measured IFT of crude oil without adding surfactant solution was showed in table 4.1 and measured crude oil IFT with adding surfactant solution at 5%, 10%, and 15% by volume concentration were showed in table 4.2 through table 4.4 respectively. IFT of crude oil with and without adding surfactant solution at selected ratio was illustrated in figure 4.1.

Temperature (°C)	IFT (dynes/cm)
40	31.87
50	27.27
60	26.73
70	26.53
80	26.03
90	25.47

Table 4.1 Crude oil IFT from laboratory without adding surfactant solution.

Table 4.2 Crude oil IFT from laboratory with surfactant solution of 5% by volume LAS

Temperature (°C)	IFT (dynes/cm)
40	29.97
50	27.6
60	27.43
70	26.8
80	26.5
90	26.2

concentration.

 Table 4.3 Crude oil IFT from laboratory with surfactant solution of 10% by volume LAS

concentration.

Temperature (°C)	IFT (dynes/cm)
40	29.1
50	21.8
60	21.4
70	21.1
80	21.47
90	21.3

 Table 4.4
 Crude oil IFT from laboratory with surfactant solution of 15% by volume LAS concentration.

Temperature (°C)	IFT (dynes/cm)
40	27.9
50	26.6
60	25.6
70	26.53
80	26.47
90	26.37

From figure 4.1 at 40 °C IFT of crude oil at 0% by volume concentration was

31.87 dynes/cm. When a surfactant was added to solvent at 5% concentration, the dissolved surfactant molecules were dispersed as monomers. As the concentration of surfactant increased to 10% by volume concentration, the molecules tended to aggregate. Above a specific concentration called the critical micelle concentration (CMC), further addition of

surfactant to 15% by volume results in the formation of micelle. The concentration of surfactant as monomers essentially increased above the CMC. It could be concluded that surfactant added at concentration above the CMC resulted in formation of additional micelles.

Figure 4.1 IFT of crude oil with and without adding surfactant solution at selected ratio.

4.2.2 Modified water viscosity

Modified water viscosity is the viscosity of water that dissolved with surfactant at any concentration as the function of temperature which required by simulation program. According to the scope and limitation of this study, modified water viscosity was measured by ignoring high pressure. Modified water viscosity are showed in table 4.1.

Concentration (%)	Modified water viscosity (centipoises)	
	@40°C	@ 70 °C
5	1.12	4.28
10	1.96	9.56
15	5.02	20.1

Table 4.5 Modified water viscosity at 40°C and 70°C.

In general, when the temperature is increased, viscosity of water is decreased. However, as noticed from table 4.1, when added more surfactant solution concentration this affected in the increasing in viscosity. This was because the addition of surfactant into the water would be resulted in higher concentration of the solution. Another reason was from experimental that was operated in the open system. Therefore, at high temperature, water in surfactant solution could be evaporated from the system.

4.3 Reservoir simulation results and discussions

From previous chapter, total 10 flooding cases included one water flood base case and 9 surfactant flood cases were tested to observe and to compare the production efficiency to find the best case giving the highest recovery efficiency. The reservoir simulation results in each case was depicted as the oil recovery efficiency profile, fluid in place profile, cumulative fluids production profile, fluids production rate profile, gas-oil ratio water-cut and pressure profile, surfactant injection rate and total surfactant injection, and perspective view at the end of project life time from reservoir simulation program, respectively.

4.3.1 Model water flood base case results

Water flood base case results are showed in figure 4.2 through figure 4.6.

Figure 4.2 Fluids in place profiles vs. time of water flood base case.

Figure 4.3 Cumulative fluids production profiles vs. time of water flood base case.

Figure 4.4 Fluids production rate profiles vs. time of water flood base case.

Figure 4.5 GOR, Water cut, and Pressure vs. time of water flood base case.

Figure 4.6 Recovery efficiency of oil vs. time of water flood base case.

4.3.2 Model inj100_case1 results

-

Model inj100_case1 is the surfactant flood at the injection rate 100 bbl/day with 5% by volume concentration and the simulation results are showed in figure 4.7 through figure 4.12.

Figure 4.7 Fluids in place profiles vs. time of model inj100_case1.

Figure 4.8 Cumulative fluids production profiles vs. time of model inj100_case1.

Figure 4.9 Fluids production rate profiles vs. time of model inj100_case1.

Figure 4.10 GOR, Water cut, and Pressure vs. time of model inj100_case1.

Figure 4.11 Recovery efficiency of oil vs. time of model inj100_case1.

Figure 4.12 FTITSUR and FTIRSUR profiles vs. time of model inj100_case1.

4.3.3 Model inj100_case2 results

Model inj100_case2 is the surfactant flood at the injection rate 100 bbl/day with 10% by volume concentration and the simulation results are showed in figure 4.13 through figure 4.18.

Figure 4.13 Fluids in place profiles vs. time of model inj100_case2.

Figure 4.14 Cumulative fluids production profiles vs. time of model inj100_case2.

Figure 4.15 Fluids production rate profiles vs. time of model inj100_case2.

Figure 4.16 GOR, Water cut, and Pressure vs. time of model inj100_case2.

Figure 4.17 Recovery efficiency of oil vs. time of model inj100_case2.

Figure 4.18 FTITSUR and FTIRSUR profiles vs. time of model inj100_case2.

4.3.4 Model inj100_case3 results

-

Model inj100_case3 is the surfactant flood at the injection rate 100 bbl/day with 15% by volume concentration and the simulation results are showed in figure 4.19 through figure 4.24.

Figure 4.19 Fluids in place profiles vs. time of model inj100_case3.

Figure 4.20 Cumulative fluids production profiles vs. time of model inj100_case3.

Figure 4.21 Fluids production rate profiles vs. time of model inj100_case3.

Figure 4.22 GOR, Water cut, and Pressure vs. time of model inj100_case3.

Figure 4.23 Recovery efficiency of oil vs. time of model inj100_case3.

Figure 4.24 FTITSUR and FTIRSUR profiles vs. time of model inj100_case3.

4.3.5 Model inj200_case1 results

Model inj200_case1 is the surfactant flood at the injection rate 200 bbl/day with 5% by volume concentration and the simulation results are showed in figure 4.25 through figure 4.30.

Figure 4.25 Fluids in place profiles vs. time of model inj200_case1.

Figure 4.26 Cumulative fluids production profiles vs. time of model inj200_case1.

Figure 4.27 Fluids production rate profiles vs. time of model inj200_case1.

Figure 4.28 GOR, Water cut, and Pressure vs. time of model inj200_case1.

Figure 4.29 Recovery efficiency of oil vs. time of model inj200_case1.

Figure 4.30 FTITSUR and FTIRSUR profiles vs. time of model inj200_case1.

4.3.6 Model inj200_case2 results

Model inj200_case2 is the surfactant flood at the injection rate 200 bbl/day with 10% by volume concentration and the simulation results are showed in figure 4.31 through figure 4.36.

Figure 4.31 Fluids in place profiles vs. time of model inj200_case2.

Figure 4.32 Cumulative fluids production profiles vs. time of model inj200_case2.

Figure 4.33 Fluids production rate profiles vs. time of model inj200_case2.

Figure 4.34 GOR, Water cut, and Pressure vs. time of model inj200_case2.

Figure 4.35 Recovery efficiency of oil vs. time of model inj200_case2.

Figure 4.36 FTITSUR and FTIRSUR profiles vs. time of model inj200_case2.

4.3.7 Model inj200_case3 results

Model inj200_case3 is the surfactant flood at the injection rate 200 bbl/day with 15% by volume concentration and the simulation results are showed in figure 4.37 through figure 4.42.

Figure 4.37 Fluids in place profiles vs. time of model inj200_case3.

Figure 4.38 Cumulative fluids production profiles vs. time of model inj200_case3.

Figure 4.39 Fluids production rate profiles vs. time of model inj200_case3.

Figure 4.40 GOR, Water cut, and Pressure vs. time of model inj200_case3.

Figure 4.41 Recovery efficiency of oil vs. time of model inj200_case3.

Figure 4.42 FTITSUR and FTIRSUR profiles vs. time of model inj200_case3.

4.3.8 Model inj300_case1 results

2

Model inj300_case1 is the surfactant flood at the injection rate 300 bbl/day with 5% by volume concentration and the simulation results are showed in figure 4.43 through figure 4.48.

Figure 4.43 Fluids in place profiles vs. time of model inj300_case1.

Figure 4.44 Cumulative fluids production profiles vs. time of model inj300_case1.

Figure 4.45 Fluids production rate profiles vs. time of model inj300_case1.

Figure 4.46 GOR, Water cut, and Pressure vs. time of model inj300_case1.

Figure 4.47 Recovery efficiency of oil vs. time of model inj300_case1.

Figure 4.48 FTITSUR and FTIRSUR profiles vs. time of model inj300_case1.

4.3.9 Model inj300_case2 results

Model inj300_case2 is the surfactant flood at the injection rate 300 bbl/day with 10% by volume concentration and the simulation results are showed in figure 4.49 through figure 4.55.

Figure 4.49 Fluids in place profiles vs. time of model inj300_case2.

Figure 4.50 Cumulative fluids production profiles vs. time of model inj300_case2.

Figure 4.51 Fluids production rate profiles vs. time of model inj300_case2.

Figure 4.52 GOR, Water cut, and Pressure vs. time of model inj300_case2.

Figure 4.53 Recovery efficiency of oil vs. time of model inj300_case2.

Figure 4.54 FTITSUR and FTIRSUR profiles vs. time of model inj300_case3

4.3.10 Model inj300_case3 results

Model inj300_case3 is the surfactant flood at the injection rate 300 bbl/day with 15% by volume concentration and the simulation results are showed in figure 4.55 through figure 4.60.

Figure 4.55 Fluids in place profiles vs. time of model inj300_case3.

Figure 4.56 Cumulative fluids production profiles vs. time of model inj300_case3.

Figure 4.57 Fluids production rate profiles vs. time of model inj300_case3.

Figure 4.58 GOR, Water cut, and Pressure vs. time of model inj300_case3.

Figure 4.59 Recovery efficiency of oil vs. time of model inj300_case3.

Figure 4.60 FTITSUR and FTIRSUR profiles vs. time of model inj300_case3.

Table 4.2 presents oil recovery efficiency for each case from reservoir simulation. It could be concluded that the highest recovery efficiency was 26.33% in case of inj200_case3 at 15% by volume concentration and the lowest recovery efficiency was 19.4% in case of water flood base case. Considered for each case at injection rate 100, 200, and 300 bbl/day, when the IFT and modified water viscosity was increased, the oil recovery was also increased. It is also noticeable from table 4.2 that after injection rate was over 200 bbl/d, the oil recovery efficiency percent was not so different. This might be resulted from the limitations and assumptions of input parameters of reservoir simulation model.

Case name	Concentration (%)	Oil Recovery Efficiency (%)
Water flood base case	<i>H</i> - H	19.4
Inj100_case1	5	23.01
Inj100_case2	10	23.22
Inj100_case3	15	23.88
Inj200_case1	5	24.9
Inj200_case2	10	24.99
Inj200_case3	15	26.33
Inj300_case1	Dans Scalas	24.13
Inj300_case2	างเลยเทคเเงลง	24.41
Inj300_case3	15	25.48

Table 4.6 Oil recovery efficience	y.	
-----------------------------------	----	--

4.4 Economic evaluation results

The economic analysis were calculated and analyzed by using Microsoft Office Spreadsheet. The economic result of water flood base case is showed in table 4.3. Table 4.4 through table 4.6 are showed economic results of surfactant flood cases for injection rate at 100 bbl/day 5%, 10%, and 15% by volume concentrations respectively. Table 4.7 through table 4.9 are showed economic results of surfactant flood cases for injection rate at 200 bbl/day 5%, 10%, and 15% by volume concentrations. The last economic results of surfactant flood cases for injection rate at 300 bbl/day 5%, 10%, and 15% by volume

concentrations are showed in table 4.10 through table 4.12. Internal rate of return (IRR) and Net present value (NPV) for each case are also illustrated in each table.

	Cash flow summary										
	Oil	Cross			Governm	nent take	Annual	Discount			
Year	production	GIUSS	CAPEX	OPEX	Dovolty	Income	Annual cash flow	cash flow			
	total	(MMUS\$)	(MMUS\$)	(MMUS\$)	(MMIIS\$)	tax	(MMUS\$)	(NPV@8%)			
	(bbl/year)	(101101000)			(1411410.54)	(MMUS\$)	(101101050)				
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231			
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429			
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794			
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963			
5	54,750	4.380	0.000	1.185	0.219	0.000	2.866	1.950			
6	54,750	4.380	0.000	1.209	0.219	1.421	1.421	0.895			
7	51,057	4.085	0.000	1.150	0.204	1.310	1.310	0.764			
8	41,960	3.357	0.000	0.964	0.168	1.057	1.057	0.571			
9	100,928	8.074	1.750	2.365	0.404	2.053	2.053	1.027			
10	84,255	6.740	0.000	2.014	0.337	2.195	2.195	1.017			
11	70,015	5.601	0.000	1.707	0.280	1.807	1.807	0.775			
12	69,669	5.574	1.750	1.732 -	0.279	1.126	1.126	0.447			
13	54,456	4.357	0.000	1.381	0.218	1.324	1.324	0.487			
14	71,036	5.683	1.750	1.838	0.284	1.070	1.070	0.364			
15	57,008	4.561	0.000	1.504	0.228	1.304	1.304	0.411			
16	45,770	3.662	0.000	1.232	0.183	1.013	1.013	0.296			
17	36,699	2.936	0.000	1.008	0.147	0.836	0.836	0.226			
18	38,883	3.111	0.050	1.182	0.156	0.727	0.727	0.182			
19	42,108	3.369	0.000	1.298	0.168	0.846	0.846	0.196			
20	43,567	3.485	0.000	1.366	0.174	0.867	0.867	0.186			
21	43,157	3.453	0.000	1.381	0.173	0.844	0.844	0.168			
22	42,211	3.377	0.000	1.380	0.169	0.809	0.809	0.149			
23	40,309	3.225	0.000	1.349	0.161	0.857	0.857	0.146			
24	37,111	2.969	0.000	1.275	0.148	0.773	0.773	0.122			
Total	1,079,699	86.376	8.800	28.522	4.319	22.240	22.045	7.963			
			-			IRR	41.93%	31.42%			
						PIR	2.505	0.905			

Table 4.7 Cash flow summary of water flood base case.

			Cash	flow sum	nary			
	Oil	Cross			Governm	nent take	Ammal	Discount
Year	production total (bbl/year)	Gross revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956
6	54,750	4.380	0.075	1.262	0.219	1.382	1.382	0.871
7	54,750	4.380	0.362	1.282	0.219	1.197	1.197	0.699
8	54,750	4.380	0.362	1.308	0.219	1.184	1.184	0.640
9	107,612	8.609	2.112	2.573	0.430	2.016	2.016	1.008
10	95,290	7.623	0.362	2.330	0.381	2.269	2.269	1.051
11	87,267	6.981	0.362	2.181	0.349	2.045	2.045	0.877
12	76,631	6.130	2.112	1.960	0.307	1.096	1.096	0.435
13	67,494	5.400	0.000	1.773	0.270	1.623	1.623	0.597
14	113,904	9.112	1.750	3.009	0.456	2.114	2.114	0.720
15	83,127	6.650	0.000	2.257	0.333	1.920	1.920	0.605
16	74,220	5.938	0.000	2.063	0.297	1.679	1.679	0.490
17	63,753	5.100	0.000	1.817	0.255	1.459	1.459	0.394
18	55,073	4.406	0.000	1.610	0.220	1.233	1.233	0.309
19	48,875	3.910	0.000	1.465	0.196	1.125	1.125	0.261
20	44,329	3.546	0.000	1.362	0.177	1.004	1.004	0.215
21	40,395	3.232	0.000	1.272	0.162	0.899	0.899	0.179
22	37,083	2.967	0.000	1.197	0.148	0.811	0.811	0.149
23	34,226	2.738	0.000	1.133	0.137	0.734	0.734	0.125
24	32,478	2.598	0.000	1.100	0.130	0.684	0.684	0.108
Total	1,280,907	102.473	10.997	34.142	5.124	26.473	26.287	9.271
						IRR	42.52%	31.96%
						PIR	2.390	0.843

Table 4.8 Cash flow summary of surfactant flood model inj100_case1.

	Cash flow summary										
	Oil	Chase			Governm	nent take	Annual	Discount			
Year	production total (bbl/year)	revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)			
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231			
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429			
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794			
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963			
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956			
6	54,750	4.380	0.075	1.262	0.219	1.382	1.382	0.871			
7	54,750	4.380	0.649	1.294	0.219	1.048	1.048	0.611			
8	54,750	4.380	0.649	1.320	0.219	1.035	1.035	0.559			
9	107,659	8.613	2.399	2.587	0.431	1.867	1.867	0.934			
10	95,310	7.625	0.649	2.343	0.381	2.120	2.120	0.982			
11	87,502	7.000	0.649	2.200	0.350	1.901	1.901	0.815			
12	78,005	6.240	2.399	2.007	0.312	0.981	0.981	0.390			
13	70,378	5.630	0.000	1.846	0.282	1.696	1.696	0.624			
14	115,187	9.215	1.750	3.043	0.461	2.146	2.146	0.731			
15	87,013	6.961	0.000	2.360	0.348	2.017	2.017	0.636			
16	75,050	6.004	0.000	2.085	0.300	1.699	1.699	0.496			
17	64,226	5.138	0.000	1.830 -	0.257	1.471	1.471	0.398			
18	55,593	4.447	0.000	1.624	0.222	1.245	1.245	0.312			
19	48,851	3.908	0.000	1.464	0.195	1.124	1.124	0.260			
20	43,675	3.494	0.000	1.343	0.175	0.988	0.988	0.212			
21	40,309	3.225	0.000	1.270	0.161	0.897	0.897	0.178			
22	37,265	2.981	0.000	1.203	0.149	0.815	0.815	0.150			
23	34,874	2.790	0.000	1.153	0.139	0.749	0.749	0.128			
24	32,596	2.608	0.000	1.104	0.130	0.687	0.687	0.108			
Total	1,292,641	103.411	12.717	34.527	5.171	25.867	25.680	8.932			
						IRR	41.42%	30.95%			
						PIR	2.019	0.702			

Table 4.9 Cash flow summary of surfactant flood model inj100_case2.

			Cash	flow sum	nary			
	Oil	Chase			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956
6	54,750	4.380	0.000	1.262	0.219	1.394	1.394	0.879
7	54,750	4.380	0.973	1.301	0.219	0.888	0.888	0.518
8	54,750	4.380	0.973	1.327	0.219	0.875	0.875	0.473
9	107,654	8.612	2.723	2.594	0.431	1.707	1.707	0.854
10	95,373	7.630	0.973	2.352	0.381	1.962	1.962	0.909
11	87,688	7.015	0.973	2.212	0.351	1.740	1.740	0.746
12	78,963	6.317	2.723	2.039	0.316	0.840	0.840	0.333
13	71,422	5.714	0.000	1.873	0.286	1.723	1.723	0.633
14	119,571	9.566	1.750	3.156	0.478	2.256	2.256	0.768
15	88,960	7.117	0.000	2.411	0.356	2.065	2.065	0.651
16	77,702	6.216	0.000	2.156	0.311	1.764	1.764	0.515
17	67,285	5.383	0.000	1.914	0.269	1.545	1.545	0.418
18	58,946	4.716	0.125	1.718	0.236	1.315	1.315	0.329
19	52,311	4.185	0.000	1.563	0.209	1.201	1.201	0.278
20	47,805	3.824	0.000	1.463	0.191	1.080	1.080	0.232
21	43,789	3.503	0.000	1.373	0.175	0.972	0.972	0.193
22	39,978	3.198	0.000	1.285	0.160	0.872	0.872	0.160
23	37,304	2.984	0.000	1.228	0.149	0.804	0.804	0.137
24	35,193	2.815	0.000	1.186	0.141	0.744	0.744	0.117
Total	1,329,092	106.327	14.714	35.602	5.316	25.747	25.561	8.683
						IRR	40.26%	29.87%
						PIR	1.737	0.590

Table 4.10 Cash flow summary of surfactant flood model inj100_case3.

			Cash	flow sum	nary			
	Oil	Chase			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,750	4.380	0.000	1.185	0.219	0.000	2.866	1.950
6	54,900	4.392	0.075	1.286	0.220	1.376	1.376	0.867
7	54,750	4.380	0.724	1.312	0.219	1.001	1.001	0.584
8	54,750	4.380	0.724	1.338	0.219	0.988	0.988	0.534
9	109,500	8.760	2.474	2.648	0.438	1.869	1.869	0.935
10	109,500	8.760	0.724	2.701	0.438	2.442	2.442	1.131
11	99,428	7.954	0.724	2.509	0.398	2.161	2.161	0.927
12	70,788	5.663	2.474	1.847	0.283	0.749	0.749	0.298
13	63,251	5.060	0.000	1.689	0.253	1.504	1.504	0.553
14	129,198	10.336	1.750	3.429	0.517	2.485	2.485	0.846
15	102,858	8.229	0.000	2.802	0.411	2.398	2.398	0.756
16	86,076	6.886	0.000	2.406	0.344	1.958	1.958	0.571
17	73,568	5.885	0.000	2.111	0.294	1.685	1.685	0.455
18	64,969	5.197	0.000	1.913	0.260	1.458	1.458	0.365
19	57,346	4.588	0.000	1.733	0.229	1.313	1.313	0.304
20	50,547	4.044	0.000	1.570	0.202	1.136	1.136	0.244
21	43,447	3.476	0.000	1.390	0.174	0.956	0.956	0.190
22	38,679	3.094	0.000	1.273	0.155	0.833	0.833	0.153
23	35,278	2.822	0.000	1.194	0.141	0.744	0.744	0.127
24	32,595	2.608	0.000	1.133	0.130	0.672	0.672	0.106
Total	1,386,177	110.894	13.170	37.469	5.545	27.728	27.533	9.479
						IRR	41.66%	31.17%
						PIR	2.091	0.720

Table 4.11 Cash flow summary of surfactant flood model inj200_case1.

			Cash	flow sum	mary			
	Oil	Chase			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,750	4.380	0.000	1.185	0.219	0.000	2.866	1.950
6	54,900	4.392	0.075	1.286	0.220	1.376	1.376	0.867
7	54,750	4.380	1.298	1.313	0.219	0.714	0.714	0.417
8	54,750	4.380	1.298	1.339	0.219	0.701	0.701	0.379
9	109,500	8.760	3.048	2.649	0.438	1.582	1.582	0.791
10	109,500	8.760	1.298	2.702	0.438	2.155	2.155	0.998
11	106,871	8.550	1.298	2.692	0.427	2.066	2.066	0.886
12	80,495	6.440	3.048	2.090	0.322	0.710	0.710	0.282
13	70,199	5.616	0.000	1.865	0.281	1.680	1.680	0.618
14	136,722	10.938	1.750	3.623	0.547	2.674	2.674	0.910
15	107,914	8.633	0.000	2.936	0.432	2.523	2.523	0.795
16	87,441	6.995	0.000	2.443	0.350	1.991	1.991	0.581
17	71,681	5.735	0.000	2.059 -	0.287	1.639	1.639	0.443
18	60,890	4.871	0.000	1.798	0.244	1.360	1.360	0.340
19	51,911	4.153	0.000	1.578	0.208	1.184	1.184	0.274
20	43,580	3.486	0.000	1.367	0.174	0.973	0.973	0.209
21	38,501	3.080	0.000	1.243	0.154	0.842	0.842	0.167
22	34,655	2.772	0.000	1.151	0.139	0.741	0.741	0.136
23	32,003	2.560	0.000	1.092	0.128	0.670	0.670	0.114
24	29,778	2.382	0.000	1.044	0.119	0.610	0.610	0.096
Total	1,390,790	111.263	16.610	37.455	5.563	26.190	25.996	8.838
						IRR	39.72%	29.37%
						PIR	1.565	0.532

Table 4.12 Cash flow summary of surfactant flood model inj200_case2.

			Cash	flow sum	mary			
	Oil	Chase			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	Gross revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,750	4.380	0.000	1.185	0.219	0.000	2.866	1.950
6	54,900	4.392	0.075	1.286	0.220	1.376	1.376	0.867
7	54,750	4.380	1.946	1.327	0.219	0.383	0.383	0.223
8	54,750	4.380	1.946	1.353	0.219	0.369	0.369	0.200
9	109,500	8.760	3.696	2.663	0.438	1.250	1.250	0.625
10	109,500	8.760	1.946	2.717	0.438	1.823	1.823	0.845
11	109,800	8.784	1.946	2.778	0.439	1.810	1.810	0.776
12	88,317	7.065	3.696	2.300	0.353	0.578	0.578	0.230
13	82,584	6.607	0.000	2.179	0.330	1.994	1.994	0.733
14	151,729	12.138	1.750	4.012	0.607	3.050	3.050	1.038
15	116,079	9.286	0.000	3.151	0.464	2.725	2.725	0.859
16	94,676	7.574	0.000	2.638	0.379	2.169	2.169	0.633
17	79,964	6.397	0.000	2.287	0.320	1.840	1.840	0.497
18	67,803	5.424	0.000	1.992	0.271	1.526	1.526	0.382
19	57,981	4.639	0.000	1.751	0.232	1.328	1.328	0.308
20	48,057	3.845	0.000	1.497	0.192	1.078	1.078	0.231
21	39,796	3.184	0.000	1.282	0.159	0.872	0.872	0.173
22	33,327	2.666	0.000	1.111	0.133	0.711	0.711	0.131
23	29,596	2.368	0.000	1.018	0.118	0.616	0.616	0.105
24	27,654	2.212	0.000	0.977	0.111	0.562	0.562	0.089
Total	1,465,511	117.241	20.503	39.504	5.862	26.059	25.864	8.478
						IRR	37.42%	27.24%
						PIR	1.262	0.414

Table 4.13 Cash flow summary of surfactant flood model inj200_case3.

	Cash flow summary										
	Oil	Crease			Governm	nent take	Annual	Discount			
Year	production total (bbl/year)	Gross revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)			
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231			
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429			
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794			
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963			
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956			
6	54,750	4.380	0.075	1.303	0.219	1.362	1.362	0.858			
7	54,750	4.380	1.086	1.304	0.219	0.824	0.824	0.481			
8	54,750	4.380	1.086	1.330	0.219	0.811	0.811	0.438			
9	109,500	8.760	2.836	2.640	0.438	1.692	1.692	0.846			
10	109,500	8.760	1.086	2.692	0.438	2.265	2.265	1.049			
11	109,800	8.784	1.086	2.753	0.439	2.253	2.253	0.966			
12	95,790	7.663	2.836	2.460	0.383	1.212	1.212	0.481			
13	82,386	6.591	0.000	2.197	0.330	1.977	1.977	0.727			
14	129,508	10.361	1.750	3.460	0.518	2.481	2.481	0.845			
15	91,898	7.352	0.000	2.537	0.368	2.114	2.114	0.666			
16	73,539	5.883	0.000	2.094	0.294	1.638	1.638	0.478			
17	59,638	4.771	0.000	1.754	0.239	1.334	1.334	0.361			
18	51,078	4.086	0.000	1.549	0.204	1.111	1.111	0.278			
19	43,840	3.507	0.000	1.373	0.175	0.979	0.979	0.227			
20	40,245	3.220	0.000	1.296	0.161	0.881	0.881	0.189			
21	35,728	2.858	0.000	1.188	0.143	0.764	0.764	0.152			
22	32,406	2.592	0.000	1.111	0.130	0.676	0.676	0.124			
23	30,332	2.427	0.000	1.069	0.121	0.618	0.618	0.105			
24	28,533	2.283	0.000	1.034	0.114	0.567	0.567	0.089			
Total	1,342,871	107.430	15.342	36.331	5.371	25.560	25.374	8.901			
						IRR	40.73%	30.30%			
						PIR	1.654	0.580			

Table 4.14 Cash flow summary of surfactant flood model inj300_case1.

			Cash	flow sum	mary			
	Oil	Cross			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	Gross revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956
6	54,750	4.380	0.075	1.303	0.219	1.362	1.362	0.858
7	54,750	4.380	1.946	1.402	0.219	0.345	0.345	0.201
8	54,750	4.380	1.946	1.430	0.219	0.331	0.331	0.179
9	109,500	8.760	3.696	2.742	0.438	1.211	1.211	0.606
10	109,500	8.760	1.946	2.797	0.438	1.783	1.783	0.826
11	109,800	8.784	1.946	2.860	0.439	1.769	1.769	0.759
12	100,050	8.004	3.696	2.675	0.400	0.836	0.836	0.332
13	92,143	7.371	0.000	2.445	0.369	2.224	2.224	0.818
14	152,760	12.221	1.750	4.062	0.611	3.064	3.064	1.043
15	92,824	7.426	0.000	2.561	0.371	2.137	2.137	0.674
16	71,762	5.741	0.000	2.046	0.287	1.594	1.594	0.465
17	57,444	4.595	0.000	1.693 -	0.230	1.281	1.281	0.346
18	49,165	3.933	0.000	1.496	0.197	1.065	1.065	0.267
19	41,022	3.282	0.000	1.293	0.164	0.912	0.912	0.211
20	36,145	2.892	0.000	1.177	0.145	0.785	0.785	0.168
21	32,419	2.594	0.000	1.089	0.130	0.687	0.687	0.137
22	30,058	2.405	0.000	1.040	0.120	0.622	0.622	0.114
23	28,304	2.264	0.000	1.006	0.113	0.572	0.572	0.097
24	26,512	2.121	0.000	0.970	0.106	0.523	0.523	0.082
Total	1,358,556	108.684	20.503	37.274	5.434	23.105	22.919	7.723
						IRR	36.96%	26.82%
						PIR	1.118	0.377

Table 4.15 Cash flow summary of surfactant flood model inj300_case2.

			Cash	flow sum	mary			
	Oil	Chase			Governm	nent take	Annual	Discount
Year	production total (bbl/year)	Gross revenue (MMUS\$)	CAPEX (MMUS\$)	OPEX (MMUS\$)	Royalty (MMUS\$)	Income tax (MMUS\$)	cash flow (MMUS\$)	cash flow (NPV@8%)
1	0.000	0.000	0.250	0.000	0.000	0.000	-0.250	-0.231
2	0.000	0.000	0.500	0.000	0.000	0.000	-0.500	-0.429
3	0.000	0.000	1.000	0.000	0.000	0.000	-1.000	-0.794
4	0.000	0.000	1.750	0.000	0.000	0.000	-1.310	-0.963
5	54,900	4.392	0.000	1.189	0.220	0.000	2.874	1.956
6	54,750	4.380	0.075	1.303	0.219	1.362	1.362	0.858
7	54,750	4.380	2.920	1.318	0.219	0.000	-0.199	-0.116
8	54,750	4.380	2.920	1.344	0.219	0.000	-0.225	-0.122
9	109,500	8.760	4.670	2.654	0.438	0.768	0.768	0.384
10	109,500	8.760	2.920	2.707	0.438	1.341	1.341	0.621
11	109,800	8.784	2.920	2.769	0.439	1.328	1.328	0.570
12	94,797	7.584	4.670	2.451	0.379	0.262	0.262	0.104
13	90,868	7.269	0.000	2.412	0.363	2.192	2.192	0.806
14	213,746	17.100	1.750	5.640	0.855	4.593	4.593	1.564
15	95,109	7.609	0.000	2.622	0.380	2.193	2.193	0.691
16	76,515	6.121	0.000	2.174	0.306	1.711	1.711	0.499
17	63,677	5.094	0.000	1.865	0.255	1.432	1.432	0.387
18	51,844	4.147	0.000	1.571	0.207	1.130	1.130	0.283
19	42,021	3.362	0.000	1.321	0.168	0.936	0.936	0.217
20	35,580	2.846	0.000	1.160	0.142	0.772	0.772	0.166
21	30,541	2.443	0.000	1.034	0.122	0.644	0.644	0.128
22	27,025	2.162	0.000	0.948	0.108	0.553	0.553	0.102
23	24,799	1.984	0.000	0.898	0.099	0.493	0.493	0.084
24	23,706	1.896	0.000	0.881	0.095	0.460	0.460	0.073
Total	1,418,177	113.454	26.342	38.259	5.673	22.171	21.560	6.838
						IRR	32.79%	22.95%
						PIR	0.818	0.260

Table 4.16 Cash flow summary of surfactant flood model inj300_case3.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This chapter is divided into 2 parts which are conclusions and recommendations. In conclusions part, it presents the conclusion from three main parts (I) experimental and laboratory results including IFT and modified viscosity test, (II) reservoir simulation results, and (III) economic evaluation results, respectively. In recommendation part, it comprises of some recommendations for the future study.

5.2 Conclusions

5.2.1 Experiments

a. IFT test

IFT of crude oil measured at 40° C at 0%, 5%, 10%, and 15% by

volume LAS concentration was 31.87, 29.96, 29.1, and 27.9 dynes/cm respectively. After elevating temperature to 70°C, the IFT of crude oil at 0%, 5%, 10%, and 15% LAS concentration was decreased to 26.53, 26.8, 21.1, and 26.53 dynes/cm, respectively. Therefore, it could be concluded that the changing in crude oil IFT might be resulted from the concentration and temperature of the solutions were changed.

b. Modified water viscosity

Unlike IFT of crude oil, viscosity of modified water tended to increase with temperature increasing. Results from measurement stated that the viscosity of water at 40°C with 0%, 5%, 10%, and 15% by volume LAS concentration was 0.653, 1.12, 1.96, and 5.02 cp, respectively. However, when the temperature of solution was elevated to

70°C, the viscosity of water was changed to 0.4, 4.28, 9.56, and 20.1 cp, respectively.

5.2.2 Reservoir simulation

This section presents results from reservoir simulation which separated to oil recovery efficiency and oil production in figure 5.1 and figure 5.2. For figure 5.1 was showed oil recovery efficiency in comparison between water flood and surfactant flood in each case. Figure 5.2 was showed oil production in comparison between water flood and surfactant flood.

Figure 5.1 Oil recovery efficiency comparisons.

Oil recovery efficiency of water flood base case was 19.4%. In case of 100 bbl/day surfactant injection rate at 5%, 10%, and 15% by volume LAS concentration, oil recovery efficiency were higher than water flood base case 3.61%, 3.82%, and 4.48% respectively. In case of 200 bbl/day surfactant injection rate at 5%, 10%, and 15% by volume LAS concentration, oil recovery efficiency were higher than water flood base case

5.5%, 5.59%, and 6.93% respectively. In case of 300 bbl/day surfactant injection rate at 5%, 10%, and 15% by volume LAS concentration, oil recovery efficiency were higher than water flood base case 4.73%, 5.01%, and 6.08% respectively.

Figure 5.2 Total oil production comparisons.

Total oil production of water flood base case was 1,079,699 bbl. In case of 100 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, total oil production total were higher than water flood base case 201,208 bbl, 212,942 bbl, and 249,393 bbl respectively. In case of 200 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, total oil production were higher than water flood base case 306,478 bbl, 311,091 bbl, and 385,812 bbl respectively. In case of 300 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, total oil production were higher than water flood base case 306,478 bbl, 311,091 bbl, and 385,812 bbl respectively. In case of 300 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, total oil production were higher than water flood base case 263,172 bbl, 278,857 bbl, and 338,478 bbl respectively.

5.2.3 Economic evaluation

This section presents results from economic evaluations in term of NPV and IRR as illustrated in figure 5.3 through figure 5.4.

Figure 5.3 NPV with 8% discount rate.

Net present value (NPV) with 8% discount rate of water flood base case was 7,962,744 US\$. In case of 100 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, NPV with 8% discount rate were higher than water flood base case 1,308,335 US\$, 969,681 US\$, and 720.209 US\$ respectively. In case of 200 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, NPV with 8% discount rate were higher than water flood base case 1,516,668 US\$, 875,496 US\$, and 515,367 US\$ respectively. In case of 300 bbl/day surfactant injection rates at 5% by volume LAS concentration NPV with 8% discount rate was higher than water flood case

938,282 US\$. But at 10%, and 15% by volume LAS concentration, NPV with 8% discount rate were lower than water flood case 239,343 US\$ and 1,125,195 US\$ respectively.

Internal rate of return (IRR) with 8% discount rate of water flood base case was 31.42%. Only injection rate 100 bbl/day 5% LAS concentration case IRR was higher than water flood base case 0.54%. The other cases at 10% and 15% by volume LAS concentration IRR were lower than water flood base case 0.47% and 1.55% respectively. In case of 200 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, IRR with 8% discount rate were lower than water flood base case 0.25%, 2.05%, and 4.18% respectively. In case of 300 bbl/day surfactant injection rates at 5%, 10%, and 15% by volume LAS concentration, IRR with 8% discount rate were lower than water flood base case 1.12%, 4.6%, and 8.47% respectively.

Therefore, it could be concluded that the surfactant flood would give higher economic returns than those of water flood case only when the injected fluid had 5% by volume LAS concentration and the injection rate was not over than 100 bbl/day.

5.3 Recommendations

The uncertainties and adequacies of the research investigation and experiments lead to recommendation for further study as follows.

- The spinning drop tension method should be used to measure the IFT of crude oil because this method has more resolution than ring and plate methods.
- In reservoir simulation, the input parameters included surfactant adsorption of reservoir rock, emulsification, and displacement efficiency of surfactant should be performed.
- For economic evaluation part, oil price should be up to date because it plays an important role in NPV, IRR, and PIR predicting accuracy.
REFERENCES

- American Society of Testing Material. (1989). Standard test Method for Interfacial Tension of Oil against Water by Ring Method. ASTM: D971-99.
- Bailey, A. I. Surface and Interfacial Tension. [online] Available : http://www.thermopedia. com.
- Camtel Ltd. (2002). Standard test Method for Interfacial Tension of Oil against Water by Ring Method – ASTM: D971-99 +44(0) 1763 244280.
- Carel J. Van Oss. (1994). Interfacial Forces in Aqueous Media. State University of New York at Buffalo, Buffalo, New York.
- Chumkratoke, C. (2004). Simulation Study of Oil Recovery Improvement by Water Flooding in Fang Oil Field. Master Thesis, School of Geotechnology. Suranaree University of Technology.
- Drelich, J. et. al. (2002). Measurement of Interfacial Tension on Fluid-Fluid System. Michigan Technological University, Houghton, Michigan.
- Drew Myers. (2006). Surfactant Science and Technology (3rd ed.). Wiley Interscience a John Wiley & Sons, INC., Publication.
- Hong Chen et al. (2004). The Ultralow Interfacial Tensions between Crude Oils and Gemini Surfactant Solutions. Elsevier.
- Holmberg, K. (2002). Handbook of Applied Surface and Colloid Chemistry New York, Wiley and Sons. 219p.
- International Journal of Analytical Chemistry. (2009). Hindawi Publishing Corporation. Article ID 404836.

Measurement of Surface Tension. (2007). Kyowa Interface Science CO., Ltd.

Research Unit of Colloid and interface Science Group. (2011). Measuring Principle. [online] Available : http://www.ipc.uni-stuttgart.de.

Settakul, N. (2009). Fang Oilfield Development. Walailak J Sci. & Tech 2009; 6(1): 1-15.

Shah D. O. and Schechter R. S. (1977). Improved Oil Recovery by Surfactant and

Polymer Flooding. Academic Press INC.

SIDS Initial Assessment Report for 20th SIAM. (2005). Linear Alkyl Benzene Sulfonate.

Stefan Iglauer et al. (2009). New Surfactant Classes for Enhanced Oil Recovery and

their Tertiary Oil Recovery Potential. California Institute of Technology.

Zhongbin Ye. et. al. (2008). The Effect of Temperature on the Interfacial Tension between Crude Oil and Gemini Surfactant Solution. Elsevier.

Gas Properties

1. Gas composition

Table A.1 Gas properties of Sansai oil field (after Chumkratoke, C., 2004).

Gas composition	Content (%)	
Gas Oxygen (O ₂)	0.5162	
Gas Nitrogen (N ₂)	5.1077	
Gas Methane (CH ₄)	79.7008	
Gas Carbon Dioxide (CO ₂)	3.2131	
Gas Ethane (C_2H_6)	2.7744	
Gas Hydrogen (H ₂)	1.6287	
Gas Hydrogen Sulfide (H ₂ S)	7.0591	
Total	100	

 Table A.2 Gas properties of Mae-Soon oil field (after Chumkratoke, C., 2004).

Gas composition	Content (%)	
Gas Oxygen (O ₂)	0.2578	
Gas Nitrogen (N ₂)	4.1915	
Gas Methane (CH ₄)	36.829	
Gas Carbon Dioxide (CO ₂)	3.218	
Gas Ethane (C_2H_6)	18.4014	
Gas Hydrogen (H ₂)	3.8361	
Gas Hydrogen Sulfide (H ₂ S)	33.2662	
Total	100	
^{เอ} ทยาลัยเทคโนโลยีส์รูร์		

2. Compressibility factor (z)

Table A.3 Compressibility factor of Sansai oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Compressibility factor (z)
950	0.939
400	0.971

Table A.4 Compressibility factor of Mae-Soon oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Compressibility factor (z)
900	0.86
300	0.959

3. Gas formation volume factors (**B**_g)

Table A.5 Gas formation volume factors of Sansai oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Gas formation volume factors (ft ³ /SCF)
950	0.0176
400	0.0432

Table A.6 Gas formation volume factors of Mae-Soon oil field (after Chumkratoke, C.,

Reservoir pressure (psi)	Gas formation volume factors (ft ³ /SCF)
900	0.017
300	0.05693

4. Gas viscosity (μ_g)

2004).

Table A.7 Gas viscosity of Sansai oil field (after Chumkratoke, C., 2004).

Gas viscosity (cp)		
0.014		
0.0135		

Table A.8 Gas viscosity of Mae-Soon oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Gas viscosity (cp)
900	0.0148
300	0.0136

5. Gas isothermal compressibility (C_g)

Table A.9 Gas isothermal compressibility at initial reservoir pressure (after Chumkratoke,

C., 2004).

Oil field	Gas isothermal compressibility (psi ⁻¹)
Sansai	131.2 x 10 ⁻⁵
Mae-Soon	132.67 x 10 ⁻⁵

Crude Oil Properties

1. Density of crude oil (ρ_0)

Table A.10Density of Crude Oil (after Chumkratoke, C., 2004).

Oil field	(g/cc)	(lb/ft^3)	(lb/gallon)
Mae-Soon	0.85	53	7.1
Banthi	0.89	56	7.4
Nongyao	0.84	52.3	7
Sansai	0.86	54	7.2

Specific gravity of crude oil (γ_0) 2.

 Table A.11 Specific gravity of crude oil (after Chumkratoke, C., 2004).

Oil Field	(°API)
Mae-Soon	0.85
Banthi	0.89
Nongyao	0.84
Sansai	0.86

API gravity (°API) 3.

 Table A.12 API gravity of crude oil (after Chumkratoke
 C., 2004).

Oil field		
Mae-Soon	35.1	
Banthi	-	
Nongyao	37.75	
Sansai	34	

4. Oil viscosity (µ₀)

Table A.13 Dynamic viscosity of crude oil (after Chumkratoke, C., 2004).

Oil field	Oil viscosity (cp)
Mae-Soon	12
Banthi	11.2
Nongyao	12
Sansai	20.1

Table A.14 Solution gas-oil ratio of Sansai oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	R _S (SCF/STB)
950	165.01
400	58.237
200	25.279

Table A.15 Solution gas-oil ratio of Mae-Soon oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	R _S (SCF/STB)
900	215.05
300	57.29
150	24.87

6. Oil isothermal compressibility (C₀)

Table A.16 Oil isothermal compressibility of Sansai oil field (after Chumkratoke, C.,

2004).

Reservoir pressure (psi)	Oil isothermal compressibility (psi ⁻¹)
950	1.337 x 10 ⁻⁵
400	3.174 x 10 ⁻⁵
⁷ ่าวักยาลัยเทคโนโลยีส์รูบ	

Table A.17 Oil isothermal compressibility of Mae-Soon oil field (after Chumkratoke, C.,

2004).

Reservoir pressure (psi)	Oil isothermal compressibility (psi ⁻¹)
900	$1.132 \ge 10^{-5}$
300	3.395 10 ⁻⁵

7. Oil formation volume factor (B_o)

Table A.18 Oil formation volume factor of Sansai oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Oil formation volume factor (bbl/STB)
950	1.035
400	1.040
200	1.055

Table A.19 Oil formation volume factor of Mae-Soon oil field (after Chumkratoke, C.,

2()04	1)	
~	<i>,</i> 0	.,	•

Reservoir pressure (psi)	Oil formation volume factor (bbl/STB)
900	1.041
300	1.049
150	1.061

Water Properties

1. Water salinity

Table A.20 Water resistivity and water salinity of Sansai oil field and Mae-Soon oil field

(after Chumkratoke, C., 2004).

Oilfield	Temperature	Resistivity	Γ	NaCl concentration	on
On neia	(° F)	(Ωm)	(ppm)	(grain/gal)	(gram/lit)
Sansai	85	5.92	780	45	0.7704
Mae-Soon	85	2.98	1600	96	1.64352

2. Water formation volume factor (B_w)

Table A.21 Water formation volume factor of Sansai oil field (after Chumkratoke, C.,

2004).

```
<sup>้ วัทยา</sup>ลัยเทคโนโลยีส์รุ่<sup>ร</sup>์
```

Reservoir pressure (psi)	Water formation volume factor (bbl/STB)
950	1.02677
400	1.0283
200	1.0284

Table A.22 Water formation volume factor of Mae-Soon oil field (after Chumkratoke, C.,

2004).

Reservoir pressure (psi)	Water formation volume factor (bbl/STB)
900	1.0280
300	1.0284
150	1.0285

3. Water isothermal compressibility (C_w)

Table A.23 Water isothermal compressibility of Sansai oil field (after Chumkratoke, C.,

2004).

Reservoir pressure (psi)	Water isothermal compressibility (psi ⁻¹)
950	3.134 x 10 ⁻⁶
400	3.171 x 10 ⁻⁶
200	3.186 x 10 ⁻⁶

Table A.24 Water Formation volume factor of Mae-Soon oil field (after Chumkratoke, C.,

^{2004).}

Reservoir pressure (psi)	Water isothermal compressibility (psi ⁻¹)
900	3.133×10^{-6}
300	3.175 x 10 ⁻⁶
150	3.185 10 ⁻⁶

4. Water viscosity (μ_w)

Table A.25 Water viscosity of Sansai oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Water viscosity (centipoises)		
950	0.375		
400 1813 5000	0.366		
200	0.363		

Table A.26 Water viscosity of Mae-Soon oil field (after Chumkratoke, C., 2004).

Reservoir pressure (psi)	Water viscosity (centipoises)
900	0.3907
300	0.381
150	0.378

Reservoir Rock Properties

1. Rock porosity (Ø)

Table A.27 Rock porosity of Fang' oil fields (after Chumkratoke, C., 2004).

Oil field	Porosity (%)
Sansai	18-33
Mae-Soon	25-29
Banthi	20-25
Nongyao	18-28

2. Rock permeability

Rock permeability of Fang' oil fields are showed in table 3.28.

Table A.28 Rock permeability of Fang' oil fields (after Chumkratoke, C., 2004).

Oil field	Permeability (md)
Sansai	24-329
Mae-Soon	20-300
Banthi	200-300
Nongyao	18-500

3. Fluid saturation

Table A.29 Fluid Saturation of Fang' oil fields (after Chumkratoke, C., 2004).

Oil field	Saturation (%)
Sansai	20-80
Mae-Soon	17-35
Banthi	10-50
Nongyao	58-64

4. Rock isothermal compressibility (C_f)

Table A.30 Rock isothermal compressibility in Fang' oil fields (after Chumkratoke, C.,

2004).

Oil field	Isothermal compressibility (psi ⁻¹)
Sansai	20-80
Mae-Soon	17-35
Banthi	10-50
Nongyao	58-64

APPENDIX B

RESERVOIR SIMULATION RAW DATA

TIME	БОЕ	FOPR	FOPT	FTIRSUR	FTITSUR	FWIR
(YEARS)	FUE	(STB/DAY)	(STB)	(KG/DAY)	(KG)	(STB/DAY)
0	0	0	0	0	0	0
1	0.0098358	150	54900	0	0	100
2	0.0196715	150	109650	763.1382	763.25405	100
3	0.0295355	150	164400	763.1382	279350.99	100
4	0.0393716	150	219150	763.1382	557938.75	100
5	0.058704	277.94586	326762.47	763.1382	836526.45	100
6	0.0758223	248.37828	422052.28	763.1382	1115114.2	100
7	0.0914993	229.3075	509319.13	763.1382	1394465.2	100
8	0.1052658	196.27614	585950.25	763.1382	1673052.9	100
9	0.1173908	177.94757	653444.63	0	1673052.9	100
10	0.1369803	264.74704	767348.69	0	1673052.9	100
11	0.1527863	220.74127	850475.44	0	1673052.9	100
12	0.1661195	188.52888	924695	0	1673052.9	100
13	0.1775723	162.53169	988447.63	0	1673052.9	100
14	0.1874659	141.67505	1043520.6	0	1673052.9	100
15	0.1962461	127.16184	1092395.9	0	1673052.9	100
16	0.2042096	115.9796	1136724.9	0	1673052.9	100
17	0.2114663	106.01073	1177120	0	1673052.9	100
18	0.218128	97.502464	1214202.9	0	1673052.9	100
19	0.2242765	91.220329	1248428.8	0	1673052.9	100
20	0.2301109	86.918732	1280906.5	0	1673052.9	100
	57,50 SUD - SUSSISSUN					

Table B.1 Oil production and surfactant solution injection data of surfactant flood model

name case1_i	inj100.
--------------	---------

บาลัยเทศแองโลย

Figure B.1 3-D reservoir model of case1_inj100 at the end of production period.

TIME (YEARS)	FOE	FOPR (STB/DAY)	FOPT (STB)	FTIRSUR (KG/DAY)	FTITSUR (KG)	FWIR (STB/DAY)
0	0	0	0	0	0	0
1	0.009836	150	54900	0	0	100
2	0.019671	150	109650	0	0	100
3	0.029536	150	164400	1367.2893	500503.86	100
4	0.039372	150	219150	1367.2893	999640.26	100
5	0.058713	277.76495	326809.22	1367.2893	1498776.6	100
6	0.075834	248.46866	422118.97	1367.2893	2014533	100
7	0.091554	230.95084	509620.88	1367.2893	2498416.7	100
8	0.105567	201.703	587625.69	1367.2893	2997553.2	100
9	0.11821	185.41527	658004	0	0	100
10	0.138406	272.38522	773190.75	0	0	100
11	0.154534	224.17259	860203.44	0	0	100
12	0.168017	190.10422	935253.06	0	0	100
13	0.179554	164.47528	999478.56	0	0	100
14	0.189541	143.18335	1055071.6	0	0	100
15	0.198317	126.1338	1103922.8	0	0	100
16	0.206163	114.74178	1147597.3	0	0	100
17	0.213404	105.92898	1187906.6	0	0	100
18	0.220099	98.413193	1225171.1	0	0	100
19	0.226364	92.566788	1260044.8	0	0	100
20	0.232219	86.229332	1292641	0	0	100

 Table B.2
 Oil production and surfactant solution injection data of surfactant flood model

name	case2_	_inj	100.
name	Case2_	_ուղ	100.

ราวอักยาลัยเทศแนต์อย่สร

Figure B.2 3-D reservoir model of case2_inj100 at the end of production period.

TIME	FOE	FOPR	FOPT	FTIRSUR	FTITSUR	FWIR
(YEARS)	TOE	(STB/DAY)	(STB)	(KG/DAY)	(KG)	(STB/DAY)
0	0	0	0	0	0	0
1	0.009836	150	54900	0	0	100
2	0.019671	150	109650	0	0	100
3	0.029536	150	164400	2050.9341	750755.82	100
4	0.039372	150	219150	2050.9341	1499460.5	100
5	0.058712	277.89935	326803.66	2050.9341	2248165.1	100
6	0.075845	248.85858	422176.72	2050.9341	2996869.6	100
7	0.091598	231.67853	509865.12	2050.9341	3747625.6	100
8	0.105783	204.61707	588827.75	2050.9341	4496330.1	100
9	0.118613	189.22858	660249.31	0	4496330.1	100
10	0.139304	281.41077	779820.06	0	4496330.1	100
11	0.156075	233.37685	868780.13	0	4496330.1	100
12	0.169972	199.07022	946481.81	0	4496330.1	100
13	0.182121	171.96619	1013766.4	0	4496330.1	100
14	0.19271	151.93669	1072712	0	4496330.1	100
15	0.202108	137.23865	1125023.3	0	4496330.1	100
16	0.210696	125.96106	1172827.8	0	4496330.1	100
17	0.21848	114.7	1216616.5	0	4496330.1	100
18	0.225699	105.0971	1256594.4	0	4496330.1	100
19	0.232445	99.521591	1293898.8	0	4496330.1	100
20	0.238767	93.242805	1329091.8	0	4496330.1	100

Table B.3 Oil production and surfactant solution injection data of surfactant flood model

name c	case3_	<u>inj</u> 1	.00.
--------	--------	--------------	------

Figure B.3 3-D reservoir model of case3_inj100 at the end of production period.

TIME	FOF	FOPR	FOPT	FTIRSUR	FTITSUR	FWIR
(YEARS)	FUE	(STB/DAY)	(STB)	(KG/DAY)	(KG)	(STB/DAY)
0	0	0	0	0	0	0
1	0.009836	150	54750	0	0	0
2	0.019672	150	109650	0	1526.5081	200
3	0.029537	150	164400	1526.2764	558701.98	200
4	0.039375	150	219150	1526.2764	1115877.5	200
5	0.059048	300	328650	1526.2764	1673052.9	200
6	0.078721	300	438150	1526.2764	2230228.4	200
7	0.096582	232.86678	537578.06	1526.2764	2788930.4	200
8	0.109299	181.62619	608366.31	1526.2764	3346105.8	200
9	0.120662	169.01862	671617.06	0	3346105.8	200
10	0.143872	310.5582	800815.38	0	3346105.8	200
11	0.16235	258.56204	903673.31	0	3346105.8	200
12	0.177681	217.11562	989749.25	0	3346105.8	200
13	0.190924	189.30333	1063317.1	0	3346105.8	200
14	0.202596	166.38675	1128285.6	0	3346105.8	200
15	0.213002	148.6017	1185631.1	0	3346105.8	200
16	0.221972	128.74915	1236178.5	0	3346105.8	200
17	0.22989	112.04826	1279625	0	3346105.8	200
18	0.236839	100.89437	1318304.4	0	3346105.8	200
19	0.243093	92.671303	1353582.3	0	3346105.8	200
20	0.249032	86.613708	1386176.9	0	3346105.8	200

 Table B.4
 Oil production and surfactant solution injection data of surfactant flood model

name case1_	inj200.
-------------	---------

Figure B.4 3-D reservoir model of case1_inj200 at the end of production period.

TIME (YEARS)	FOE	FOPR (STB/DAY)	FOPT (STB)	FTIRSUR (KG/DAY)	FTITSUR (KG)	FWIR (STB/DAY)
0	0	0	0	0	0	0
1	0.009836	150	54750	0	0	200
2	0.019672	150	109650	0	0	200
3	0.029536	150	164400	2734.5785	1001007.7	200
4	0.039374	150	219150	2734.5785	1999280.5	200
5	0.059048	300	328650	2734.5785	2997553.2	200
6	0.078722	300	438150	2734.5785	3995825.9	200
7	0.097924	263.95016	545020.69	2734.5785	4990622.9	200
8	0.11229	203.98965	625515.69	2734.5785	5995106.4	200
9	0.124921	184.12984	695714.25	0	5995106.4	200
10	0.149557	326.44925	832436.25	0	5995106.4	200
11	0.168716	266.96921	940350.44	0	5995106.4	200
12	0.184651	216.42319	1027791.1	0	5995106.4	200
13	0.197433	179.50668	1099472.4	0	5995106.4	200
14	0.208348	155.23058	1160362.3	0	5995106.4	200
15	0.217698	129.59857	1212272.9	0	5995106.4	200
16	0.225555	111.79623	1255852.4	0	5995106.4	200
17	0.232465	99.891434	1294353.8	0	5995106.4	200
18	0.238764	90.876244	1329008.9	0	5995106.4	200
19	0.244443	84.545135	1361011.5	0	5995106.4	200
20	0.249863	78.889229	1390789.6	0	5995106.4	200

 Table B.5
 Oil production and surfactant solution injection data of surfactant flood model

name	case2_	_inj200.
name	case2_	_mj200.

Figure B.5 3-D reservoir model of case2_inj200 at the end of production period.

TIME (VEARS)	FOE	FOPR (STB/DAV)	FOPT (STB)	FTIRSUR (KG/DAV)	FTITSUR (KC)	FWIR (STB/DAV)
$(\mathbf{I}\mathbf{E}\mathbf{A}\mathbf{K}\mathbf{S})$	0	0	(311)	$(\mathbf{R}\mathbf{G}/\mathbf{D}\mathbf{A}\mathbf{I})$	(K O)	0
1	0.009836	150	54750	0	0	200
2	0.019672	150	109650	4101.8683	0	200
3	0.029535	150	164400	4101.8683	1501511.6	200
4	0.039372	150	219150	4101.8683	2998921	200
5	0.059048	300	328650	4101.8683	4493248.9	200
6	0.07867	300	438150	4101.8683	5989979.4	200
7	0.098354	300	547950	4101.8683	7488612.3	200
8	0.114317	240.83913	636266.56	0	8983886	200
9	0.129078	215.42461	718850.19	0	8992660.3	200
10	0.156247	357.43753	870578.75	0	8992660.3	200
11	0.177121	285.07938	986657.69	0	8992660.3	200
12	0.194166	237.7627	1081333.9	0	8992660.3	200
13	0.208507	201.94402	1161297.6	0	8992660.3	200
14	0.220723	171.2914	1229100.4	0	8992660.3	200
15	0.231152	146.25868	1287081.8	0	8992660.3	200
16	0.239777	119.21666	1335138.5	0	8992660.3	200
17	0.246908	99.419891	1374934.9	0	8992660.3	200
18	0.252907	85.328125	1408261.6	0	8992660.3	200
19	0.258321	78.217346	1437857.3	0	8992660.3	200
20	0.263289	73.530838	1465510.9	0	8992660.3	200

Table B.6 Oil production and surfactant solution injection data of surfactant flood model

name case3_	_inj200.
-------------	----------

Figure B.6 3-D reservoir model of case3_inj200 at the end of production period.

TIME (YEARS)	FOE	FOPR (STB/DAY)	FOPT (STB)	FTIRSUR (KG/DAY)	FTITSUR (KG)	FWIR (STB/DAY)
0	0	0	0	0	0	0
1	0.0098358	150	54900	0	0	300
2	0.0196714	150	109650	0	0	300
3	0.0295369	150	164400	2289.4146	838052.96	300
4	0.0393748	150	219150	2289.4146	1673816.2	300
5	0.0590456	300	328650	2289.4146	2527613.1	300
6	0.078716	300	438150	2289.4146	3356394.2	300
7	0.098374	300	547950	2289.4146	4183395.4	300
8	0.1155652	252.68234	643740.31	2289.4146	5019158.8	300
9	0.1304525	192.49661	726126.31	0	5019158.8	300
10	0.1536248	284.60696	855634.19	0	5019158.8	300
11	0.1701303	226.03178	947532.06	0	5019158.8	300
12	0.1833664	178.04404	1021071.5	0	5019158.8	300
13	0.1940068	148.56641	1080709	0	5019158.8	300
14	0.2031003	130.35136	1131786.9	0	5019158.8	300
15	0.2112105	117.00247	1175627.3	0	5019158.8	300
16	0.218441	104.06034	1215872.1	0	5019158.8	300
17	0.2248596	92.988533	1251600.3	0	5019158.8	300
18	0.230681	85.552261	1284005.9	0	5019158.8	300
19	0.23613	80.527	1314337.8	0	5019158.8	300
20	0.2412558	76.156898	1342870.9	0	5019158.8	300

 Table B.7
 Oil production and surfactant solution injection data of surfactant flood model

name case1_inj300

Figure B.7 3-D reservoir model of case1_inj300 at the end of production period.

TIME	FOE	FOPR	FOPT	FTIRSUR	FTITSUR	FWIR
(YEARS)	TOL	(STB/DAY)	(STB)	(KG/DAY)	(KG)	(STB/DAY)
0	0	0	0	0	0	0
1	0.009836	150	54900	0	0	300
2	0.019671	150	109650	0	0	300
3	0.029539	150	164400	4101.8678	1501511.6	300
4	0.039377	150	219150	4101.8678	2998920.8	300
5	0.059048	300	328650	4101.8678	4512025.3	300
6	0.078719	300	438150	4101.8678	6019345	300
7	0.098444	300	547950	4101.8678	7495250.7	300
8	0.116339	264.53485	647999.94	4101.8678	8992659.3	300
9	0.132975	244.75549	740142.56	0	8992659.3	300
10	0.160208	295.11594	892902.44	0	8992659.3	300
11	0.176999	224.01474	985726.62	0	8992659.3	300
12	0.189897	172.81271	1057488.8	0	8992659.3	300
13	0.200307	144.18349	1114932.3	0	8992659.3	300
14	0.208989	122.97942	1164097	0	8992659.3	300
15	0.216509	106.2863	1205118.8	0	8992659.3	300
16	0.223002	93.193802	1241263.4	0	8992659.3	300
17	0.228826	85.35778	1273682.6	0	8992659.3	300
18	0.234226	79.786896	1303740.1	0	8992659.3	300
19	0.23931	74.951828	1332043.8	0	8992659.3	300
20	0.244073	70.520302	1358555.8	0	8992659.3	300

 Table B.8
 Oil production and surfactant solution injection data of surfactant flood model

name case2_inj300	١.	•
-------------------	----	---

Figure B.8 3-D reservoir model of case2_inj300 at the end of production period.

TIME (VEAPS)	FOE	FOPR (STB/DAV)	FOPT (STB)	FTIRSUR (KC/DAV)	FTITSUR (KC)	FWIR (STR/DAV)
$(\mathbf{I}\mathbf{E}\mathbf{A}\mathbf{K}\mathbf{S})$	0	0	0	(KG/DAT)	0	0
1	0.0098358	150	54900	0	0	300
2	0.0196714	150	109650	0	0	300
3	0.0295372	150	164400	6152.8022	2252267.6	300
4	0.0393755	150	219150	6152.8022	4498381.3	300
5	0.0590465	300	328650	6152.8022	6768409.3	300
6	0.0787176	300	438150	6152.8022	9014934.4	300
7	0.0984422	300	547950	6152.8022	11242877	300
8	0.1153881	257.56668	642746.69	6152.8022	13488990	300
9	0.131715	3054.4275	733614.31	0	13488990	300
10	0.1700362	295.97589	947360.75	0	13488990	300
11	0.1871705	231.8898	1042470.1	0	13488990	300
12	0.2009268	190.84727	1118985.3	0	13488990	300
13	0.2124052	157.84482	1182661.9	0	13488990	300
14	0.2217103	127.77355	1234505.4	0	13488990	300
15	0.2292754	104.82251	1276526.5	0	13488990	300
16	0.2356643	90.893356	1312106.9	0	13488990	300
17	0.241164	78.137009	1342648	0	13488990	300
18	0.2460041	70.326904	1369672.6	0	13488990	300
19	0.2504807	66.498512	1394471.3	0	13488990	300
20	0.2547798	63.591602	1418177.3	0	13488990	300

Table B.9 Oil production and surfactant solution injection data of surfactant flood model

name	case3_	_inj	j300.	
		_	,	

รี่หารักยาลัยเทศแน่นส

Figure B.9 3-D reservoir model of case3_inj300 at the end of production period.

<u> </u>
11
case1_
model
ofı
table
flow
cash
The
C.1
Table

			-										_	_											_		<u> </u>
Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62 000
Facility cost of water injection well (\$) 50 000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandomment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12.500
Facility cost of production well (\$) 250.000\$/well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1 000 000
nd completion roduction well (\$)	TANK .	1 IANG				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1 200 000
Drilling at costs of p	21V MILL					1,200,00	-	-	-	0	1,200,00	0	0	1,200,00	0	1,200,00	0	0	0	0	0	0	0	0	0	0	4 800 00
Cost of surfactant (\$) 1.3 \$/kg						0	0	0	362,109	362,109	362,109	362,109	362,109	362,109	0	0	0	0	0	0	0	0	0	0	0	0	2 172 654
Surfactant injection rate (kg/year)						0	0	0	278,545	278,545	278,545	278,545	278,545	278,545	0	0	0	0	0	0	0	0	0	0	0	0	1 671 273
Water injection rate (bbl/year)						0	0	36,500	0	0	0	0	0	0	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	474 500
on or surfactant 1 well	Previous	production well				0	0	ī		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
No. of water mjecto	New injection	well					0	0	0	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well						2	0	0	0	0	-	0	0	2	0	5	0	0	0	0	0	0	0	0	0	0	4
Exploration wells (\$)				7	1,000,000	n	IJ	ລັງ	10	nc	ſ	ifa	15	d.	3												1 000 000
Geological and geophysical surveys (\$)				500,000				-11				110															500.000
Concession (\$)			250,000																								250.000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,600	219,000	219,000	219,000	430,450	381,159	349,067	306,524	269,978	455,616	332,507	296,878	255,011	220,292	195,501	177,316	161,580	148,332	136,904	129,911	5.123.626
Income (\$)						0	4,392,000	4,380,000	4,380,000	4,380,000	8,608,998	7,623,185	6,981,348	6,130,490	5,399,550	9,112,325	6,650,140	5,937,565	5,100,210	4,405,838	3,910,024	3,546,320	3,231,608	2,966,632	2,738,072	2,598,216	102.472.520
Incremental oil from surfactant injection (bbl/year)							150.00		3,693.23	12,789.93	6,684.31	11,034.97	17,252.00	6,962.06	13,038.07	42,867.81	26,118.75	28,449.24	27,053.95	16,190.09	6,767.43	762.18	2,761.96	5,127.96	6,083.40	4,633.00	201.207.70
Oil production total from water injection (bblyear) *Base case							54,750.00	54,750.00	51,056.77	41,960.07	100,928.16	84,254.84	70,014.85	69,669.06	54,456.31	71,036.25	57,008.00	45,770.32	36,698.68	38,882.88	42,107.87	43,566.82	43,157.06 -	42,210.86 -	40,309.30 -	37,110.70	
Oil production total (bbl/day) ((0	150	150	150	150	295	261	239	210	185	312	228	203	175	151	134	121	Ħ	102	94	68	
Oil production total 1 (bblyear)						0	54,900	54,750	54,750	54,750	107,612	95,290	87,267	76,631	67,494	113,904	83,127	74,220	63,753	55,073	48,875	44,329	40,395	37,083	34,226	32,478	1 280 907
Year						\circ		2	~	4	5	9	7	∞	9	9	Ξ	12	13	14	15	16	17	18	19	20	

Cumulative discourted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	409,899	1,108,429	1,748,289	2,756,623	3,807,582	4,684,551	5,119,808	5,716,654	6,436,279	7,041,588	7,531,665	7,926,067	8,234,584	8,495,201	8,710,514	8,889,089	9,038,179	9,163,218	9,271,079			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	870,850	698,530	639,860	1,008,334	1,050,960	876,968	435,257	596,847	719,624	605,310	490,077	394,402	308,516	260,617	215,313	178,575	149,090	125,039	107,862	9,271,079	31.96%	0.843
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Annual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,381,930	1,197,158	1,184,336	2,015,664	2,268,943	2,044 <i>,77</i> 4	1,096,051	1,623,198	2,113,676	1,920,144	1,678,977	1,459,294	1,232,837	1,124,745	1,003,567	898,915	810,532	734,162	683,969	26,286,762	42.52%	2.390
Income tax (\$)			0	0	0	0	0	1,381,930	1,197,158	1,184,336	2,015,664	2,268,943	2,044,774	1,096,051	1,623,198	2,113,676	1,920,144	1,678,977	1,459,294	1,232,837	1,124,745	1,003,567	898,915	810,532	734,162	683,969	26,472,873	R	PIR
Cumulative taxable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,577,749	4,972,065	7,340,738	11,372,065	15,909,951	19,999,498	22,191,601	25,437,997	29,665,348	33,505,637	36,863,590	39,782,179	42,247,854	44,497,345	46,504,478	48,302,309	49,923,372	51,391,696	52,759,635			
azable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,763,860	2,394,316	2,368,673	4,031,328	4,537,886	4,089,547	2,192,103	3,246,396	4,227,351	3,840,289	3,357,953	2,918,589	2,465,675	2,249,491	2,007,133	1,797,831	1,621,063	1,468,324	1,367,939	52,759,635		
Total allow T expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,616,140	1,985,684	2,011,327	4,577,670	3,085,299	2,891,801	3,938,387	2,153,154	4,884,974	2,809,851	2,579,612	2,181,621	1,940,163	1,660,533	1,539,187	1,433,777	1,345,569	1,269,748	1,230,277	49,712,885		
peration cost of urfactant injection	1\$/1 bb1 of	increment oil				0	0	0	37,765	38,521	39,291	40,077	40,879	41,696	0	0	0	0	0	0	0	0	0	0	0	0	238,229		
pertation cost of water njection	0.5\$/1 bb1 of	water				0	0	20,149	0	0	0	0	0	0	23,145	23,608	24,080	24,562	25,053	25,554	26,065	26,587	27,119	27,661	28,214	28,778	330,578		
Maintenance cost C of surfactant injection facility	10.0000	10,000tygear		2	1	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434	0	0	4	9	0	0	0	0	0	0	0	0	71,040		
Maintenance cost] of water injection facility		50,000tytear				0	Ŋ	33,122	a	Н	P		Į	ai	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of oroduction well	000411	100/\$07				0	1,188,511	1,208,968	1,233,148	1,257,811	2,521,703	2,277,603	2,127,556	1,905,623	1,711,984	2,946,941	2,193,680	1,997,795	1,750,374	1,542,309	1,396,119	1,291,580	1,200,500	1,124,106	1,058,251	1,024,281	32,958,843		
	Ē	Lotal				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	4	/year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
nse (\$)	ţł,	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expe	ł.)" year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
eciation (20%)	ţĻ	4"" year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depr	Ę	5 year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	puv	Z year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	, st	l' year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

 Table C.1 The cash flow table of model case1_inj100 (Continued).

case2_inj100.
of model
v table c
cash flov
.2 The
Table C

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandonment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.000\${well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
d completion oduction well (\$)		UNIT				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling an costs of pr	CIV F dat VL	UNTAINU				1,200,000	0	0	0	-	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of surfactant (\$) 1.3 \$Nkg						0	0	0	648,779	648,779	648,779	648,779	648,779	648,779	0	0	0	0	0	0	0	0	0	0	0	0	3,892,673
Surfactant injection rate (kg/year)						0	0	0	499,061	499,061	499,061	499,061	499,061	499,061	0	0	0	0	0	0	0	0	0	0	0	0	2,994,364
Water injection rate (bbbyear)						0	0	36,500	0	0	0	0	0	0	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	474,500
kon or surfactant m well	Previous	production well				0	0		2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. of water injec injecti	New injection	well				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				2			0	ę	0	0		0	0	-		-	0	6	0	0	0	0	0	0	0	0	4
Exploration wells (\$)					1,000,000	6	'n	IJ	à	EJI	n	ิลโ	uſ	ai	ย์ส	55	2										1,000,000
Geological and geophysical surveys (\$)				500,000																							500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royałty sliding scal (\$)						0	219,600	219,000	219,000	219,000	430,637	381,239	350,008	312,019	281,513	460,747	348,051	300,198	256,902	222,372	195,405	174,698	161,237	149,058	139,495	130,385	5,170,564
Income (\$)						0	4,392,000	4,380,000	4,380,000	4,380,000	8,612,738	7,624,780	7,000,153	6,240,385	5,630,265	9,214,940	6,961,015	6,003,970	5,138,040	4,447,443	3,908,096	3,493,960	3,224,744	2,981,160	2,789,896	2,607,696	103,411,280
Incremental oil from surfactant injection (bbl/year)							150.00		8,257.79	14,879.97	13,672.58	17,133.54	22,234.91	15,152.65	20,488.77	50,336.17	34,629.78	32,961.77	30,509.02	14,726.81	6,141.66	252.69	2,184.81	4,590.59	4,152.24	3,562.08	266,532.99
Oil production total from water injection (bblyear) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19 -	42,494.11 -	41,855.09 -	39,025.94 -	36,158.28 -	
Oil production total (bbl/day)						0	150	150	150	150	295	261	240	214	193	316	238	206	176	152	134	120	110	102	96	68	
Oil production total (bbl/year)						0	54,900	54,750	54,750	54,750	107,659	95,310	87,502	78,005	70,378	115,187	87,013	75,050	64,226	55,593	48,851	43,675	40,309	37,265	34,874	32,596	1,292,641
Year						0		~	3	4	5	9	5	~	9	10	11	12	13	14	15	16	17	18	19	20	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	409,899	1,021,217	1,580,260	2,514,314	3,496,109	4,311,360	4,700,955	5,324,649	6,055,219	6,690,915	7,186,938	7,584,442	7,896,082	8,156,566	8,368,590	8,546,770	8,696,623	8,824,148	8,932,425			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	870,850	611,319	559,042	934,055	981,795	815,250	389,596	623,694	730,570	635,696	496,023	397,504	311,640	260,485	212,023	178,180	149,853	127,526	108,277	8,932,425	30.95%	0.702
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Annual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,381,930	1,047,693	1,034,748	1,867,180	2,119,622	1,900,870	981,068	1,696,212	2,145,825	2,016,536	1,699,347	1,470,772	1,245,318	1,124,174	988,230	896,930	814,680	748,764	686,604	25,680,391	41.42%	2.019
Income tax (\$)			0	0	0	0	0	1,381,930	1,047,693	1,034,748	1,867,180	2,119,622	1,900,870	981,068	1,696,212	2,145,825	2,016,536	1,699,347	1,470,772	1,245,318	1,124,174	988,230	896,930	814,680	748,764	686,604	25,866,501	RR	PIR
Cumulative tazable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,577,749	4,673,134	6,742,631	10,476,990	14,716,233	18,517,972	20,480,108	23,872,533	28,164,183	32,197,254	35,595,949	38,537,493	41,028,129	43,276,477	45,252,937	47,046,797	48,676,157	50,173,684	51,546,892			
lazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,763,860	2,095,385	2,069,496	3,734,359	4,239,243	3,801,739	1,962,136	3,392,425	4,291,650	4,033,072	3,398,695	2,941,544	2,490,636	2,248,347	1,976,461	1,793,860	1,629,360	1,497,527	1,373,207	51,546,892		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,616,140	2,284,615	2,310,504	4,878,379	3,385,537	3,198,414	4,278,249	2,237,840	4,923,290	2,927,944	2,605,275	2,196,496	1,956,807	1,659,749	1,517,499	1,430,884	1,351,800	1,292,369	1,234,489	51,864,388		
Operation cost of surfactant injection	1\$/1 bb1 of	increment oil				0	0	0	50,027	51,027	52,048	53,089	54,150	55,233	0	0	0	0	0	0	0	0	0	0	0	0	315,574		
Operation cost of water njection	0.5\$/1 bbl of	water				0	0	20,149	0	0	0	0	0	0	23,145	23,608	24,080	24,562	25,053	25,554	26,065	26,587	27,119	27,661	28,214	28,778	330,578		
Maintenance cost (of surfactant injection facility	10.00001	10,000 trigear			0	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434	0	0	0	0	3	0	0	0	0	0	0	0	71,040		
Maintenance cost] of water injection facility	14000 00	ou,uuutugear				0	01	33,122	12	2	9	Ð	0	5	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of production well	000411	100/\$07				0	1,188,511	1,208,968	1,233,148	1,257,811	2,522,799	2,278,079	2,133,287	1,939,784	1,785,134	2,980,127	2,296,228	2,020,138	1,763,357	1,556,874	1,395,431	1,272,510	1,197,950	1,129,611	1,078,281	1,028,018	33,266,045		
	E	T 0131				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	th th	/_ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
nse (\$)	ų.	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expe	ł.	D"year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
eciation (20%)	ŧ	4" year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depr	F	5 ⁻ year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	puo	Z year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	ţ	l' year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

 Table C.2
 The cash flow table of model case2_inj100 (Continued).

_inj100.
case3_
model
ble of
flow ta
e cash
3 The
ole C.
Tab

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$)						0	0	0	0	0	0	0	0	0	0	0	0	0	0	50,000	0	0	0	0	0	0	50,000
Abandorment cost (\$) 12,500\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250 000\$kwell						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
ompletion uction well		UNIAL				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and c costs of prod (\$)	TAUT ALCO	DNIAINU				1,200,000	0	0	0	0	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of surfactant (\$) 1.3 \$Nkg	1					0	0	0	973,168	973,168	973,168	973,168	973,168	973,168	0	0	0	0	0	0	0	0	0	0	0	0	5,839,009
Surfactant injection rate (kg/year)						0	0	0	748,591	748,591	748,591	748,591	748,591	748,591	0	0	0	0	0	0	0	0	0	0	0	0	4,491,546
Water njection rate (bbbyear)						0	0	36,500	0	-	0	0	0	0	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	36,500	474,500
on or surfactant i well	Previous	production well				0	7	-		4	4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
No. of water injection injection	New injection	well				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				C	k.	1		0	0	0		0	0		0		6	0	0	0	0	0	0	0	0	0	4
ixploration wells (\$)					1,000,000	0j	36	11:	àc		0	Ē.	12	ยี	a	ÿ											1,000,000
Geological and I geophysical surveys (\$)				500,000					10		ir:	10	10														500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,600	219,000	219,000	219,000	430,615	381,492	350,754	315,851	285,686	478,283	355,840	310,807	269,138	235,782	209,245	191,218	175,155	159,912	149,218	140,772	5,316,367
Income (\$)						0	4,392,000	4,380,000	4,380,000	4,380,000	8,612,293	7,629,845	7,015,072	6,317,010	5,713,725	9,565,660	7,116,806	6,216,134	5,382,767	4,715,648	4,184,904	3,824,360	3,503,096	3,198,232	2,984,352	2,815,440	106,327,344
Incremental oil from surfactant injection (bbblyear)							150.00		8,257.79	14,879.97	13,667.02	17,196.85	22,421.40	16,110.47	21,532.02	54,720.17	36,577.16	35,613.83	33,568.11	18,079.37	9,601.76	3,877.31	1,294.59	1,877.19	1,721.54	965.28	302,983.79
Oil production total from water injection (bblyear) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19	42,494.11	41,855.09 -	39,025.94 -	36,158.28 -	
Oil						0	150	150	150	150	295	261	240	216	196	328	244	213	184	161	143	131	120	110	102	96	
Oil production total j (bbl/year)						0	54,900	54,750	54,750	54,750	107,654	95,373	81,688	78,963	71,422	119,571	88,960	77,702	67,285	58,946	52,311	47,805	43,789	39,978	37,304	35,193	1,329,092
Year p						0		~	~	4	5	5	~	~	6	9	=	12	13	14	5	16	17	8	61	2	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	417,744	936,046	1,408,924	2,263,089	3,171,710	3,917,874	4,251,285	4,884,690	5,652,670	6,303,594	6,818,615	7,236,187	7,565,145	7,843,486	8,075,199	8,268,381	8,428,715	8,565,572	8,682,953			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	878,696	518,301	472,878	854,165	908,622	746,164	333,411	633,406	767,980	650,924	515,021	417,572	328,958	278,342	231,713	193,182	160,334	136,857	117,381	8,682,953	29.87%	0.500
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0:630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Anmal cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,394,380	888,277	875,264	1,707,480	1,961,646	1,739,785	839,584	1,722,625	2,255,705	2,064,841	1,764,432	1,545,023	1,314,521	1,201,239	1,080,004	972,445	871,663	803,552	744,333	25,560,690	40.26%	1 727
Income tax (\$)			0	0	0	0	0	1,394,380	888,277	875,264	1,707,480	1,961,646	1,739,785	839,584	1,722,625	2,255,705	2,064,841	1,764,432	1,545,023	1,314,521	1,201,239	1,080,004	972,445	871,663	803,552	744,333	25,746,800	RR	Ē
Cumulative taxable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,602,649	4,379,203	6,129,732	9,544,691	13,467,983	16,947,554	18,626,723	22,071,972	26,583,382	30,713,064	34,241,929	37,331,975	39,961,017	42,363,495	44,523,503	46,468,393	48,211,720	49,818,824	51,307,490			
Lazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,788,760	1,776,554	1,750,529	3,414,959	3,923,292	3,479,571	1,679,169	3,445,250	4,511,410	4,129,682	3,528,865	3,090,045	2,629,043	2,402,478	2,160,008	1,944,890	1,743,326	1,607,104	1,488,666	51,307,490		
Total allow 1 expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,591,240	2,603,446	2,629,471	5,197,334	3,706,553	3,535,501	4,637,842	2,268,475	5,054,250	2,987,124	2,687,269	2,292,722	2,086,605	1,782,426	1,664,352	1,558,206	1,454,906	1,377,248	1,326,774	55,019,854		
Dperation cost of utfactant injection	1\$/1 bb1 of	increment oil				0	0	0	56,868	58,006	59,166	60,349	61,556	62,787	0	0	0	0	0	0	0	0	0	0	0	0	358,731		
Dperation cost of water njection	0.5\$/1 bb1 of	water				0	10	20,149	0	0	0	0	0	0	23,145	23,608	24,080	24,562	25,053	25,554	26,065	26,587	27,119	27,661	28,214	28,778	330,578		
Maintenance cost (of surfactant injection facility	10 000\$/vear	malahaata		100	5	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434	0	0	0	2 th	9	0	0	0	0	0	0	0	71,040		
Maintenance cost] of water injection facility	30 000\$/vear	malatoria				0	'n	33,122	lá	5	0	9	÷.	12	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of production well	20\$/hbl	70.000				0	1,188,511	1,208,968	1,233,148	1,257,811	2,522,668	2,279,593	2,137,833	1,963,602	1,811,596	3,093,550	2,347,618	2,091,525	1,847,346	1,650,761	1,494,268	1,392,843	1,301,354	1,211,863	1,153,437	1,109,916	34,298,213		
	Total	101/ 1				110,000	110,000	110,000	110,000	110,000	0	0	0	110,000	110,000	220,000	220,000	220,000	110,000	120,000	10,000	10,000	10,000	10,000	0	0	1,700,000		
	7th west	/ ycai										0	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	10,000			
1se (\$)	6 th uear	v ycau									0		0	0	0	0	0	0	110,000	0	110,000	0	0	0	10,000	0			
Tangible Exper	5 th uear	r jaar								110,000			0	0	0	0	0	110,000	0	110,000	0	0	0	10,000	0	0			
ciation (20%)	dth mear	4 ycar							110,000				0	0	0	0	110,000	0	110,000	0	0	0	10,000	0	0	0			
Depre	2 ^{kl} uear	n yaan						110,000					0	0	0	110,000	0	110,000	0	0	0	10,000	0	0	0	0			
	And usar	7 year					110,000						0	0	110,000	0	110,000	0	0	0	10,000	0	0	0	0	0			
	1st usar	1 ycar				110,000							0	110,000	0	110,000	0	0	0	10,000	0	0	0	0	0	0			

Table C.3 The cash flow table of model case3_inj100 (Continued).

l_inj200.
case1
of model
v table o
flov
cash
The
C.4
Table

Cost of storage and mising facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandomment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.0008/well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
nd completion or duction well (\$)	UNUL 2	UNIAL D				0 300,000	0	0	0	0	0 300,000	0	0	0 300,000	0	0 300,000	0	0	0	0	0	0	0	0	0	0	0 1,200,000
Drilling a costs of t	Ш	NTYTNI				1,200,00	0	0	0	-	1,200,00	0	0	1,200,00	0	1,200,00	0	0	0	0	0	0	0	0	0	0	4,800.00
Cost of surfactant (\$) 1.3 \$Mg						0	0	0	724,218	724,218	724,218	724,218	724,218	724,218	0	0	0	0	0	0	0	0	0	0	0	0	4,345,309
Surfactant injection rate (kg/year)						0	0	0	557,091	557,091	557,091	557,091	557,091	557,091	0	0	0	0	0	0	0	0	0	0	0	0	3,342,545
Water injection rate (bbl/year)						0	0	73,000	0	0	0	0	0	0	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	949,000
ion or surfactant n well	Previous	production well				0	0	Ζ				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. of water inject	New injection	well				0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				C	÷	-	0	0	0	0	-	0	0	2	0	10	>	0	0	0	0	0	0	0	0	0	4
Exploration wells (\$)					1,000,000	n	B	เล้	E11	n	อโเ	I.	ละี	jð	S	5											1,000,000
Geological and geophysical surveys (\$)				500,000																							500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,000	219,600	219,000	219,000	438,000	438,000	397,712	283,153	253,003	516,793	411,432	344,304	294,271	259,874	229,382	202,190	173,786	154,718	141,112	130,378	5,544,708
Income (\$)						0	4,380,000	4,392,000	4,380,000	4,380,000	8,760,000	8,760,000	7,954,245	5,663,060	5,060,060	10,335,866	8,228,634	6,886,075	5,885,428	5,197,480	4,587,640	4,043,792	3,475,720	3,094,352	2,822,232	2,607,568	110,894,152
Incremental oil from surfactant injection (bbl/year)								150.00	8,257.79	14,879.97	15,513.36	31,323.79	34,161.06	7,936.09	13,361.21	64,347.74	50,475.02	43,988.09	39,851.37	24,102.27	14,635.96	6,620.21	952.39	3,175.69	3,748.04	3,563.68	360,068.89
Oil production total from water injection (bbl/year) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19	42,494.11	41,855.09 -	39,025.94 -	36,158.28 -	
Oil production total (bbl/day)						0	150	150	150	150	300	300	272	194	173	354	282	236	202	178	157	138	119	106	97	68	
Oil production total (bbl/year)						0	54,750	54,900	54,750	54,750	109,500	109,500	99,428	70,788	63,251	129,198	102,858	86,076	73,568	64,969	57,346	50,547	43,447	38,679	35,278	32,595	1.386.177
Year						0		~	~	4	Ś	\$	2	~	6	9	Ξ	12	13	4	5	16	1	≈	19	20	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-466,500	400,550	984,737	1,518,564	2,453,383	3,584,608	4,511,622	4,809,123	5,362,209	6,208,325	6,964,130	7,535,554	7,990,958	8,355,703	8,659,850	8,903,573	9,093,481	9,246,735	9,373,410	9,479,412			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,950,372	867,050	584,188	533,826	934,820	1,131,225	927,014	297,500	553,086	846,116	755,805	571,424	455,404	364,745	304,146	243,723	189,908	153,254	126,675	106,002	9,479,412	31.17%	0.720
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Annual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	1,375,899	1,001,195	988,075	1,868,709	2,442,229	2,161,463	749,156	1,504,187	2,485,206	2,397,540	1,957,667	1,685,004	1,457,529	1,312,605	1,135,982	955,967	833,171	743,767	672,179	27,533,267	41.66%	2.091
Income tax (\$)			0	0	0	0	0	1,375,899	1,001,195	988,075	1,868,709	2,442,229	2,161,463	749,156	1,504,187	2,485,206	2,397,540	1,957,667	1,685,004	1,457,529	1,312,605	1,135,982	955,967	833,171	743,767	672,179	27,727,530	R	띮
Cumulative taxable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-194,263	2,557,535	4,559,924	6,536,074	10,273,492	15,157,951	19,480,877	20,979,190	23,987,564	28,957,975	33,753,055	37,668,389	41,038,397	43,953,456	46,578,665	48,850,630	50,762,564	52,428,905	53,916,439	55,260,797			
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	2,751,798	2,002,390	1,976,150	3,737,418	4,884,459	4,322,926	1,498,313	3,008,374	4,970,411	4,795,080	3,915,334	3,370,008	2,915,058	2,625,210	2,271,964	1,911,934	1,666,341	1,487,534	1,344,358	55,260,797		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,514,263	1,640,202	2,377,610	2,403,850	5,022,582	3,875,541	3,631,319	4,164,747	2,051,686	5,365,454	3,433,554	2,970,742	2,515,420	2,282,422	1,962,430	1,771,828	1,563,786	1,428,011	1,334,698	1,263,210	55,633,355		
Detation cost of utfactant injection	1\$/1 bbl of	increment oil				0	0	0	67,583	68,934	70,313	71,719	73,154	74,617	0	0	0	0	0	0	0	0	0	0	0	0	426,320		
peration cost of water njection	0.5\$/1 bb1 of	water				0	0	40,299	0	0	0	0	0	0	46,291	47,217	48,161	49,124	50,107	51,109	52,131	53,174	54,237	55,322	56,428	51,557	561,156		
daintenance cost C of surfactant injection facility	10.00002	10,000%/year		5	5	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434		0	14	~	0	0	0	0	0	0	0	0	71,040		
Maintenance cost R of water injection facility	14000 00	50,000t/year				0	18	33,122	ລັ	o	ß	L	ſ	į	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of production well	1100	199/\$02				0	1,185,263	1,212,281	1,233,148	1,257,811	2,565,934	2,617,253	2,424,045	1,760,326	1,604,345	3,342,636	2,714,377	2,316,938	2,019,858	1,819,432	1,638,070	1,472,760	1,291,184	1,172,501	1,090,778	1,027,968	35,766,908		
bed a	Ē	I otal				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	t,	7" year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
(g) ast	ŧ	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expe	ŧ	5" year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
eciation (20%)	4	4" year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depr	1	3" year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	h	2 ^m year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	ţ	1° year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

 Table C.4 The cash flow table of model case1_inj200 (Continued).

case2_inj200.
model
table of
ash flow
The c
able C.5
Table C.5

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandomment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.0008/well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
completion action well)	CIVIE	IANG				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and (costs of prod (\$	TLTT ATC	TNIANG				1,200,000	0	0	0	0	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of Surfactant (\$) 1.3 \$Mg						0	0	0	1,297,557	1,297,557	1,297,557	1,297,557	1,297,557	1,297,557	0	0	0	0	0	0	0	0	0	0	0	0	7,785,345
Surfactant injection rate (kg/year)						0	0	0	998,121	998,121	998,121	998,121	998,121	998,121	0	0	0	0	0	0	0	0	0	0	0	0	5,988,727
Water njection rate (bbl/year)						0	0	73,000	0	0	0	0	0	0	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	949,000
on or surfactant , well	Previous	production well				0	0	Δ	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. of water injection injection	New injection	well				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				5		-	9	0	0	0	-	0	0	Ì	0	1	ф	0	0	0	0	0	0	0	0	0	4
Exploration] wells (\$)				-	1,000,000	Dr	B	าล่	13	In	ดโ	uſ	a	18	S	Ò											1,000,000
Geological and geophysical surreys (\$)				500,000																							500,000
concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
koyalty sliding scal (\$)						0	219,000	219,600	219,000	219,000	438,000	438,000	427,483	321,980	280,794	546,888	431,657	349,763	286,725	243,560	207,642	174,318	154,006	138,620	128,010	119,112	5,563,158
Income (\$)						0	4,380,000	4,392,000	4,380,000	4,380,000	8,760,000	8,760,000	8,549,655	6,439,600	5,615,885	10,937,760	8,633,135	6,995,253	5,734,504	4,871,192	4,152,848	3,486,360	3,080,112	2,772,408	2,560,208	2,382,248	111,263,168
Incremental oil from surfactant injection (bbl/year)								150.00	8,257.79	14,879.97	15,513.36	31,323.79	41,603.69	17,642.84	20,309.02	71,871.42	55,531.28	45,352.81	37,964.82	20,023.67	9,201.06	347.69	3,992.71	7,199.99	7,023.34	6,380.18	364,681.59
Oil production total from water injection (bbl/year) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19 -	42,494.11 -	41,855.09 -	39,025.94 -	36,158.28 -	1,026,108.01
Oil production total (bbb/day) (0	150	150	150	150	300	300	293	221	192	375	296	240	196	167	142	119	105	95	88	82	
Oil production total j (bbl/year)						0	54,750	54,900	54,750	54,750	109,500	109,500	106,871	80,495	70,199	136,722	107,914	87,441	71,681	60,890	51,911	43,580	38,501	34,655	32,003	29,778	1,390,790
Year 1						0		~	~	4	5	6	~	~	0	9	=	12	13	4	15	19	5	8	61	2	

nued).
) (Conti
el case2
of mode
<i>w</i> table
ash flov
The c
C
Table

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-466,500	400,550	817,216	1,195,925	1,987,113	2,985,341	3,871,593	4,153,613	4,771,378	5,681,696	6,477,038	7,058,239	7,501,267	7,841,519	8,115,797	8,324,491	8,491,666	8,628,011	8,742,112	8,838,240			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,950,372	867,050	416,666	378,709	791,188	998,228	886,252	282,020	617,765	910,317	795,343	581,200	443,029	340,252	274,278	208,693	167,176	136,344	114,101	96,128	8,838,240	29.37%	0.532
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0:630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Armual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	1,375,899	714,092	700,964	1,581,589	2,155,100	2,066,419	710,174	1,680,089	2,673,779	2,522,962	1,991,159	1,639,214	1,359,653	1,183,702	972,711	841,535	741,242	669,941	609,565	25,995,526	39.72%	1.565
Income tax (\$)			0	0	0	0	0	1,375,899	714,092	700,964	1,581,589	2,155,100	2,066,419	710,174	1,680,089	2,673,779	2,522,962	1,991,159	1,639,214	1,359,653	1,183,702	972,711	841,535	741,242	669,941	609,565	26,189,789	IRR	PIR
Cumulative tazable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-194,263	2,557,535	3,985,719	5,387,647	8,550,825	12,861,026	16,993,864	18,414,212	21,774,390	27,121,947	32,167,871	36,150,188	39,428,615	42,147,921	44,515,325	46,460,747	48,143,817	49,626,302	50,966,184	52,185,315			
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	2,751,798	1,428,185	1,401,927	3,163,178	4,310,201	4,132,839	1,420,348	3,360,178	5,347,557	5,045,923	3,982,318	3,278,427	2,719,305	2,367,405	1,945,422	1,683,070	1,482,484	1,339,883	1,219,131	52,185,315		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,514,263	1,640,202	2,951,815	2,978,073	5,596,822	4,449,799	4,416,817	5,019,252	2,255,707	5,590,203	3,587,212	3,012,935	2,456,077	2,151,887	1,785,443	1,540,938	1,397,042	1,289,924	1,220,325	1,163,117	59,077,853		
Operation cost of surfactant injection	1\$/1 bbl of	increment oil				0	0	0	68,448	69,817	71,214	72,638	74,091	75,573	0	0	0	0	0	0	0	0	0	0	0	0	431,781		
Detration cost of water njection	0.5\$/1 bb1 of	water				0	0	40,299	0	0	0	0	0	0	46,291	47,217	48,161	49,124	50,107	51,109	52,131	53,174	54,237	55,322	56,428	57,557	561,156		
Maintenance cost (of surfactant injection facility	10.00001	IU,UUUAIJEAT		0	5	0	0		11,262	11,487	11,717	11,951	12,190	12,434		0	12	0	0	0	0	0	0	0	0	0	71,040		
Maintenance cost bf water injection facility	20.00001	JU,UUUAGER				0	78	33,122	ລັ	4	ŀ	L	li	Ĩ	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation] cost of production well	000011	100/th7				0	1,185,263	1,212,281	1,233,148	1,257,811	2,565,934	2,617,253	2,605,495	2,001,708	1,780,575	3,537,290	2,847,810	2,353,672	1,968,061	1,705,211	1,482,822	1,269,742	1,144,221	1,050,511	989,507	939,141	35,747,458		
	Π.4.1	T 0131				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	Ψ	/ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
nse (\$)	417	o year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expe	47) year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
eciation (20%)	,th	4 year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depr	H.	5 year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	pro	Z year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	1st	I'' year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

_inj200.
case3
of model
v table c
l flov
cash
The
C.6
Table

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandonment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.000\${well}						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
completion duction well ()	UI U	UNIT				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and costs of pro (TATTANT					1,200,000	-	-	-	0	1,200,000	-	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of surfactant (\$) 1.3 \$Nkg						0	0	0	1,946,337	1,946,337	1,946,337	1,946,337	1,946,337	1,946,337	0	0	0	0	0	0	0	0	0	0	0	0	11,678,019
Surfactant injection rate (kg/year)						0	0	0	1,497,182	1,497,182	1,497,182	1,497,182	1,497,182	1,497,182	0	0	0	0	0	0	0	0	0	0	0	0	8,983,092
Water injection rate (bbl/year)						0	0	73,000	0	0	0	0	0	0	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	949,000
ion or surfactant n well	Previous	production well				0	0	Z		-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. of water inject	New injection	well				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well			1	5		-	¢	0	0	0	-	0	0	-	0	19	0	0	0	0	0	0	0	0	0	0	4
Exploration wells (\$)					1,000,000	n	ยา	ลั	ĒJII	nr	าโเ	ſ	์ยี	a	5	р.											1,000,000
Geological and geophysical surveys (\$)				500,000																							500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,000	219,600	219,000	219,000	438,000	438,000	439,200	353,266	330,335	606,914	464,316	378,705	319,855	271,211	231,926	192,227	159,186	133,307	118,383	110,614	5,862,044
Income (\$)						0	4,380,000	4,392,000	4,380,000	4,380,000	8,760,000	8,760,000	8,784,000	7,065,325	6,606,690	12,138,285	9,286,315	7,574,097	6,397,096	5,424,224	4,638,512	3,844,536	3,183,712	2,666,136	2,367,656	2,212,288	117,240,872
Incremental oil from surfactant injection (bblyear)								150.00	8,257.79	14,879.97	15,513.36	31,323.79	44,533.00	25,464.40	32,694.09	86,877.98	63,696.03	52,588.36	46,247.22	26,936.57	15,271.86	4,129.51	2,697.71	8,528.39	9,430.24	8,504.68	439,402.89
Oil production total from water injection (bollyeat) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19	42,494.11	41,855.09	39,025.94	36,158.28	1,026,108.01
Oil production total (bbWday)						0	150	150	150	150	300	300	301	242	226	416	318	259	219	186	159	132	109	91	18	92	
Oil production total (bbl/year)						0	54,750	54,900	54,750	54,750	109,500	109,500	109,800	88,317	82,584	151,729	116,079	94,676	79,964	67,803	57,981	48,057	39,796	33,327	29,596	27,654	1,465,511
Year I						0		~	~	4	5	6	~	~	0	9	=	12	13	14	15	16	17	.∞	6	8	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-466,500	400,550	623,846	823,433	1,448,696	2,293,223	3,069,520	3,299,056	4,032,116	5,070,489	5,929,677	6,562,708	7,060,070	7,441,836	7,749,477	7,980,678	8,153,807	8,284,570	8,389,431	8,478,111			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,950,372	867,050	223,296	199,587	625,263	844,526	776,297	229,536	733,061	1,038, <i>37</i> 3	859,188	633,031	497,361	381,766	307,641	231,201	173,129	130,763	104,861	88,680	8,478,111	27.24%	0.414
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Armual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	1,375,899	382,690	369,422	1,249,904	1,823,269	1,810,045	578,010	1,993,649	3,049,902	2,725,490	2,168,729	1,840,245	1,525,545	1,327,687	1,077,620	871,502	710,897	615,689	562,335	25,864,268	37.42%	1.262
Income tax (\$)			0	0	0	0	0	1,375,899	382,690	369,422	1,249,904	1,823,269	1,810,045	578,010	1,993,649	3,049,902	2,725,490	2,168,729	1,840,245	1,525,545	1,327,687	1,077,620	871,502	710,897	615,689	562,335	26,058,531	RR	PIR
Cumulative taxable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-194,263	2,557,535	3,322,916	4,061,759	6,561,566	10,208,105	13,828,195	14,984,216	18,971,513	25,071,318	30,522,298	34,859,755	38,540,246	41,591,337	44,246,710	46,401,951	48,144,955	49,566,749	50,798,127	51,922,798			
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,865,737	2,751,798	765,381	738,843	2,499,808	3,646,539	3,620,090	1,156,020	3,987,298	6,099,804	5,450,980	4,337,457	3,680,490	3,051,091	2,655,374	2,155,241	1,743,004	1,421,794	1,231,379	1,124,671	51,922,798		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,514,263	1,640,202	3,614,619	3,641,157	6,260,192	5,113,461	5,163,910	5,909,304	2,619,393	6,038,481	3,835,335	3,236,639	2,716,606	2,373,133	1,983,138	1,689,295	1,440,708	1,244,342	1,136,277	1,087,617	65,318,074		
Dperation cost of urfactant injection	1\$/1 bbl of	increment oil				0	0	0	82,473	84,123	85,805	87,521	89,272	91,057	0	0	0	0	0	0	0	0	0	0	0	0	520,251		
Dperation cost of water njection	0.5\$/1 bb1 of	water				0	0	40,299	0	0	0	0	0	0	46,291	47,217	48,161	49,124	50,107	51,109	52,131	53,174	54,237	55,322	56,428	57,557	561,156		
faintenance cost (of surfactant injection facility	10.0000	10,000 by gear		10.	5.	0		0	11,262	11,487	11,717	11,951	12,190	12,434	0	0	12	0	0	0	0	0	0	0	0	0	71,040		
Maintenance cost M of water injection facility	20.0000	50,000tyfear				0	78	33,122	ລັ	4	1f	Į,	l'	Ĩ	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of production well	0000111	100/tn7				0	1,185,263	1,212,281	1,233,148	1,257,811	2,565,934	2,617,253	2,676,912	2,196,211	2,094,720	3,925,541	3,063,274	2,548,434	2,195,460	1,898,806	1,656,234	1,400,191	1,182,707	1,010,243	915,087	872,139	37,707,649		
	Ē	T OTAL				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	ţ	/ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
se (\$)	Ą	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expen	,th	o‴year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
ciation (20%) [*]	,th	4‴year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depre	F.	5 year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	par	2 year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	ţ	l" year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

Table C.6 The cash flow table of model case3_inj200 (Continued).

_inj300.
case1
model
of
table
flow
cash
The
C.7
Table

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well	-					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandonment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$)						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
ompletion uction well	TAL T	DNIAL				300,000	0	0	0	-	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and c costs of prod	TATT ALC	DNTWINT				1,200,000	0	0	0	0	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of surfactant (\$) 1.3 \$hkg	1					0	0	0	1,086,327	1,086,327	1,086,327	1,086,327	1,086,327	1,086,327	0	0	0	0	0	0	0	0	0	0	0	0	6,517,963
Surfactant injection rate (kg/year)						0	0	0	835,636	835,636	835,636	835,636	835,636	835,636	0	0	0	0	0	0	0	0	0	0	0	0	5,013,818
Water tijection rate (bbl/year)						0	0	109,500	0	0	0	0	0	0	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	1,423,500
on or surfactant well	Previous	production well				0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Vo. of water injection injection	New injection	well				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				5		5	0	0	0	0	-	0	0	1	0	19	0	0	0	0	0	0	0	0	0	0	4
xploration I wells (\$)					1,000,000	n	ยา	a	E I III	no	- Fi	152	ยี	3	30												1,000,000
Jeological and I eophysical surveys (\$)				500,000					011																		500,000
)ncession (\$) gg			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
oyalty sliding scal (\$)						0	219,600	219,000	219,000	219,000	438,000	438,000	439,200	383,161	329,544	518,032	367,591	294,158	238,550	204,312	175,362	160,979	142,913	129,622	121,328	114,132	5,371,484
Income (\$) R						0	4,392,000	4,380,000	4,380,000	4,380,000	8,760,000	8,760,000	8,784,000	7,663,225	6,590,880	10,360,630	7,351,830	5,883,155	4,771,000	4,086,232	3,507,232	3,219,584	2,858,256	2,592,448	2,426,552	2,282,648	107,429,672
Incremental oil from surfactant injection (bblyear)							150.00		8,257.79	14,879.97	15,513.36	31,323.79	44,533.00	32,938.15	32,496.46	64,657.30	39,514.96	31,451.59	25,921.02	10,211.67	1,130.86	3,682.39	6,765.91	9,449.49	8,694.04	7,625.18	316,762.89
Oil production total from water injection (bbl/year) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54	43,927.19 -	42,494.11 -	41,855.09 -	39,025.94 -	36,158.28 -	
Oil production total (bbl/day) (0	150	150	150	150	300	300	301	262	226	355	252	201	163	140	120	110	88	68	83	78	
Oil production total [(bbl/year)						0	54,900	54,750	54,750	54,750	109,500	109,500	109,800	95,790	82,386	129,508	91,898	73,539	59,638	51,078	43,840	40,245	35,728	32,406	30,332	28,533	1,342,871
Year						0		~	~	4	5	6	~	~	0	9	Ξ	12	13	14	15	16	5	≌	6	20	

									_																				_
Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	397,201	878,117	1,316,364	2,162,727	3,212,086	4,178,148	4,659,370	5,386,335	6,231,074	6,897,379	7,375,415	7,736,051	8,014,180	8,241,087	8,430,164	8,581,898	8,706,247	8,811,531	8,901,026			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	858,153	480,915	438,248	846,363	1,049,359	966,062	481,222	726,965	844,738	666,305	478,036	360,636	278,130	226,907	189,077	151,734	124,349	105,285	89,494	8,901,026	30.30%	0.580
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Armual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,361,780	824,204	811,166	1,691,883	2,265,488	2,252,508	1,211,798	1,977,073	2,481,160	2,113,633	1,637,724	1,334,358	1,111,411	979,264	881,279	763,802	676,026	618,176	567,498	25,374,122	40.73%	1.654
Income tax (\$)			0	0	0	0	0	1,361,780	824,204	811,166	1,691,883	2,265,488	2,252,508	1,211,798	1,977,073	2,481,160	2,113,633	1,637,724	1,334,358	1,111,411	979,264	881,279	763,802	676,026	618,176	567,498	25,560,232	RR	PIR
Cumulative tazable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,537,450	4,185,859	5,808,191	9,191,956	13,722,932	18,227,948	20,651,544	24,605,689	29,568,009	33,795,276	37,070,723	39,739,439	41,962,261	43,920,790	45,683,349	47,210,953	48,563,005	49,799,357	50,934,354			
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,723,561	1,648,409	1,622,332	3,383,766	4,530,976	4,505,016	2,423,596	3,954,145	4,962,321	4,227,267	3,275,447	2,668,716	2,222,822	1,958,529	1,762,559	1,527,605	1,352,051	1,236,353	1,134,997	50,934,354		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,656,439	2,731,591	2,757,668	5,376,234	4,229,024	4,278,984	5,239,629	2,636,735	5,398,310	3,124,563	2,607,708	2,102,284	1,863,410	1,548,703	1,457,025	1,330,651	1,240,397	1,190,199	1,147,651	56,495,318		
Operation cost of turfactant injection	1\$/1 bbl of	increment oil				0	0	0	59,454	60,643	61,856	63,093	64,355	65,642		0	0	0	0	0	0	0	0	0	0	0	375,046		
Dperation cost of water njection	0.5\$/1 bb1 of	water				0	0	60,448	0	0	0	0	0	0	69,436	70,825	72,241	73,686	75,160	76,663	78,196	79,760	81,356	82,983	84,642	86,335	991,733		
Maintenance cost of surfactant injection facility	10 00001	10,000 to the set		2	14	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434		0	-	9	0	0	0	0	0	0	0	0	71,040		
Maintenance cost : of water injection facility	20 00001	ou,uuutugear				0	n °	33,122	a	81	p	ิคโ	0	a	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416		
Operation cost of production well	000011	100/107				0	1,188,511	1,208,968	1,233,148	1,257,811	2,565,934	2,617,253	2,676,912	2,382,064	2,089,707	3,350,645	2,425,146	1,979,488	1,637,390	1,430,428	1,252,298	1,172,581	1,061,805	982,322	937,850	899,876	34,350,136		
	Ē	10121				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	,th	/ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
nse (\$)	ŧ	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expe	ţ,	o year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
eciation (20%)	4	4 year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Dept	F	5 year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	14	Z year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	ţ	l' year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

Table C.7The cash flow table of model case1_inj300 (Continued).
Ю.
nj3(
.E
case2
labc
Ш
s of
table
flow
cash
The
C.8
able
[

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandorment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.000\$/well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
:ompletion uction well	TANG	UNTRI				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and c costs of prod (\$	TNTTANG	UNTAINU				1,200,000	0	0	0	0	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of utfactant (\$) 1.3 \$Nkg						0	0	0	1,946,336	1,946,336	1,946,336	1,946,336	1,946,336	1,946,336	0	0	0	0	0	0	0	0	0	0	0	0	11,678,018
Surfactant injection rate (kglyear)						0	0	0	1,497,182	1,497,182	1,497,182	1,497,182	1,497,182	1,497,182	0	0	0	0	0	0	0	0	0	0	0	0	8,983,090
Water injection rate (bbl/year)						0	0	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	2,080,500
m or surfactant well	Previous	production well				0	0	Ζ	-	-	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
lo. of water injection	Vew injection	well				0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
No. of No. of well	4			C,		2	9	0	0	0		0	0	Ż	0	19	~	0	0	0	0	0	0	0	0	0	4
sploration wells (\$)					,000,000	n	E).	là	C 11	2	กโ	S.	ละี	jð	5	2											,000,000
Geological and E geophysical surveys (\$)				500,000				I CI	0I				61.4														500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,600	219,000	219,000	219,000	438,000	438,000	439,200	400,200	368,570	611,040	371,297	287,049	229,774	196,659	164,087	144,578	129,677	120,230	113,215	106,048	5,434,223
Income (\$)						0	4,392,000	4,380,000	4,380,000	4,380,000	8,760,000	8,760,000	8,784,000	8,003,995	7,371,410	12,220,790	7,425,934	5,740,974	4,595,480	3,933,176	3,281,744	2,891,568	2,593,536	2,404,600	2,264,296	2,120,960	108,684,464
Incremental oil Fom surfactant injection (bbl/year)							150.00		8,257.79	14,879.97	15,513.36	31,323.79	44,533.00	37,197.78	42,253.08	87,909.30	40,441.27	29,674.33	23,727.02	8,298.47	1,687.74	7,782.59	10,074.91	11,797.59	10,722.24	9,646.28	332,447.79
Oil production total from water injection (bbl/year) *Dase case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54 -	43,927.19 -	42,494.11 -	41,855.09 -	39,025.94 -	36,158.28 -	1,026,108.01
Oil production total (bbl/day) ((0	150	150	150	150	300	300	301	274	252	419	254	197	157	135	112	66	68	82	78	73	
Oil production total (bbl/year)						0	54,900	54,750	54,750	54,750	109,500	109,500	109,800	100,050	92,143	152,760	92,824	71,762	57,444	49,165	41,022	36,145	32,419	30,058	28,304	26,512	1,358,556
Year						0		~	~	4	5	\$	5	~	6	9	Ξ	12	13	4	15	16	1	≈	19	20	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	397,201	598,509	777,330	1,382,980	2,208,984	2,967,787	3,299,926	4,117,718	5,160,873	5,834,421	6,299,726	6,645,969	6,912,609	7,124,026	7,292,490	7,429,013	7,543,495	7,640,994	7,723,402			
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	858,153	201,308	178,821	605,650	826,003	758,803	332,139	817,792	1,043,155	673,549	465,305	346,243	266,640	211,417	168,464	136,522	114,482	97,499	82,409	7,723,402	26.82%	0.377
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158			
Armual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,361,780	345,007	330,984	1,210,698	1,783,279	1,769,255	836,383	2,224,087	3,063,947	2,136,611	1,594,107	1,281,105	1,065,499	912,414	785,204	687,230	622,387	572,460	522,567	22,918,895	36.96%	1.118
Income tax (\$)			0	0	0	0	0	1,361,780	345,007	330,984	1,210,698	1,783,279	1,769,255	836,383	2,224,087	3,063,947	2,136,611	1,594,107	1,281,105	1,065,499	912,414	785,204	687,230	622,387	572,460	522,567	23,105,005	RR	PIR
Cumulative tazable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,537,450	3,227,464	3,889,432	6,310,828	9,877,386	13,415,897	15,088,663	19,536,836	25,664,730	29,937,951	33,126,165	35,688,376	37,819,373	39,644,202	41,214,609	42,589,070	43,833,844	44,978,765	46,023,900			
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,723,561	690,014	696'199	2,421,396	3,566,558	3,538,510	1,672,766	4,448,173	6,127,894	4,273,221	3,188,214	2,562,210	2,130,998	1,824,828	1,570,408	1,374,461	1,244,774	1,144,921	1,045,135	46,023,900		
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,656,439	3,689,986	3,718,031	6,338,604	5,193,442	5,245,490	6,331,229	2,923,236	6,092,897	3,152,713	2,552,760	2,033,270	1,802,178	1,456,916	1,321,160	1,219,075	1,159,826	1,119,375	1,075,825	62,660,564		
Dperation cost of urfactant injection	1\$/1 bbl of	increment oil				0	0	0	62,398	63,646	64,919	66,218	67,542	68,893	0	0	0	0	0	0	0	0	0	0	0	0	393,616		
)peration cost of water njection	0.5\$/1 bb1 of	water				0	0	60,448	61,657	62,891	64,148	65,431	66,740	68,075	69,436	70,825	72,241	73,686	75,160	76,663	78,196	79,760	81,356	82,983	84,642	86,335	1,380,676		
Maintenance cost (of surfactant injection facility	10.00004	10,000 bigear		10.	5.	0	0	0	11,262	11,487	11,717	11,951	12,190	12,434	6	0	4	0	0	0	0	0	0	0	0	0	71,040		
Maintenance cost] of water injection facility	20 00001	50,000kiyear				0	78	33,122	33,785	34,461	35,150	35,853	36,570	37,301	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	756,535		
Operation cost of production well	0.000.00	100/07				0	1,188,511	1,208,968	1,233,148	1,257,811	2,565,934	2,617,253	2,676,912	2,487,990	2,337,182	3,952,224	2,449,591	1,931,649	1,577,152	1,376,849	1,171,785	1,053,117	963,465	911,143	875,139	836,135	34,671,957		
	Ē	Total				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000		
	4	/ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0			
rse (\$)	łł,	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0			
Tangible Expet	뒥)" year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0			
ciation (20%)	łł,	4" year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0			
Depre	Ę	5" year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0			
	par	Z year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0			
	ţ	l" year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0			

 Table C.8
 The cash flow table of model case2_inj300 (Continued).

case3
model
e of
table
flow
cash
The
C.9
Table

Cost of storage and mixing facility for surfactant injection well (\$)	62,000\$/well					0	0	62,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	62,000
Facility cost of water injection well (\$) 50.000\$/well						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abandomment cost (\$) 12,500\$/well						0	0	12,500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12,500
Facility cost of production well (\$) 250.000\$(well						250,000	0	0	0	0	250,000	0	0	250,000	0	250,000	0	0	0	0	0	0	0	0	0	0	1,000,000
completion buction well)	TANC	TAINU				300,000	0	0	0	0	300,000	0	0	300,000	0	300,000	0	0	0	0	0	0	0	0	0	0	1,200,000
Drilling and (costs of prod (\$	TATT AND	UNIAINU				1,200,000	0	0	0	0	1,200,000	0	0	1,200,000	0	1,200,000	0	0	0	0	0	0	0	0	0	0	4,800,000
Cost of Cost of 1.3 \$hkg	L					0	0	0	2,919,505	2,919,505	2,919,505	2,919,505	2,919,505	2,919,505	0	0	0	0	0	0	0	0	0	0	0	0	17,517,028
Surfactant injection rate (kg/year)						0	0	0	2,245,773	2,245,773	2,245,773	2,245,773	2,245,773	2,245,773	0	0	0	0	0	0	0	0	0	0	0	0	13,474,637
Water njection rate (bblyear)						0	0	109,500	0	0	0	0	0	0	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	109,500	1,423,500
on or suffactant 1 well	Previous	production well				0	0	Z	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. of water inject	New injection	well				0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0
No. of Production well				5		-	ę	0	0	0	-	0	0	-	0	19	0	0	0	0	0	0	0	0	0	0	4
Exploration wells (\$)					1,000,000	n	٤J	ลั	F	nc	กโเ	ſа	ยี	3	5	•											1,000,000
Geological and geophysical surveys (\$)				500,000																							500,000
Concession (\$)			250,000																								250,000
2% Escal Factor			1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	1.5769	
Royalty sliding scal (\$)						0	219,600	219,000	219,000	219,000	438,000	438,000	439,200	379,187	363,470	854,986	380,437	306,061	254,706	207,374	168,084	142,322	122,164	108,098	99,195	94,824	5.672,709
Income (\$)						0	4,392,000	4,380,000	4,380,000	4,380,000	8,760,000	8,760,000	8,784,000	7,583,735	7,269,410	17,099,715	7,608,748	6,121,216	5,094,128	4,147,480	3,361,688	2,846,432	2,443,288	2,161,968	1,983,896	1,896,480	113,454,184
Incremental oil from surfactant injection (bbl/year)							150.00		8,257.79	14,879.97	15,513.36	31,323.79	44,533.00	31,944.53	40,978.08	148,895.86	42,726.44	34,427.35	29,960.12	10,977.27	688.44	8,346.79	11,953.01	14,830.49	14,227.24	12,452.28	392,069.29
Oil production total from water injection (bblyear) *Base case							54,750.00	54,750.00	46,492.21	39,870.03	93,986.64	78,176.21	65,267.00	62,852.16	49,889.54	64,850.58	52,382.91	42,087.85	33,716.48	40,866.23	42,709.54 -	43,927.19 -	42,494.11 -	41,855.09 -	39,025.94 -	36,158.28 -	1,026,108.01
Oil production total (bbl/day)						0	150	150	150	150	300	300	301	260	249	586	261	210	174	142	115	97	25	74	89	65	
Oil production total (bbl/year)						0	54,900	54,750	54,750	54,750	109,500	109,500	109,800	94,797	90,868	213,746	95,109	76,515	63,677	51,844	42,021	35,580	30,541	27,025	24,799	23,706	1,418,177
Year						0		2	~	4	Ś	9	~	~	6	9	Ξ	12	13	14	15	16	17	≌	19	20	

Cumulative discounted cash flow (\$)			-231,481	-660,151	-1,453,983	-2,416,872	-460,951	397,201	281,143	159,441	543,603	1,164,930	1,734,602	1,838,647	2,644,570	4,208,140	4,899,558	5,398,911	5,786,043	6,068,770	6,285,679	6,451,307	6,579,196	6,680,934	6,764,977	6,837,549		
Discounted cash flow (\$)			-231,481	-428,669	-793,832	-962,889	1,955,921	858,153	-116,058	-121,703	384,162	621,327	569,672	104,045	805,923	1,563,571	691,418	499,352	387,132	282,727	216,909	165,628	127,889	101,739	84,043	72,571	6,837,549	22.95%
8.0% DISC FACTOR		1.000	0.926	0.857	0.794	0.735	0.681	0.630	0.583	0.540	0.500	0.463	0.429	0.397	0.368	0.340	0.315	0.292	0.270	0.250	0.232	0.215	0.199	0.184	0.170	0.158		
Annual cash flow (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	1,361,780	-198,903	-225,263	767,941	1,341,399	1,328,269	262,003	2,191,807	4,592,510	2,193,295	1,710,753	1,432,396	1,129,784	936,115	771,984	643,770	553,106	493,457	460,187	21,560,279	32.79%
Income tax (\$)			0	0	0	0	0	1,361,780	0	0	767,941	1,341,399	1,328,269	262,003	2,191,807	4,592,510	2,193,295	1,710,753	1,432,396	1,129,784	936,115	771,984	643,770	553,106	493,457	460,187	22,170,555	RR
Cumulative taxable income (\$)			-250,000	-750,000	-1,750,000	-3,060,000	-186,111	2,537,450	2,338,547	2,113,284	3,649,167	6,331,965	8,988,504	9,512,511	13,896,124	23,081,144	27,467,733	30,889,238	33,754,030	36,013,597	37,885,827	39,429,795	40,717,335	41,823,546	42,810,460	43,730,834		
Tazable income (\$)			-250,000	-500,000	-1,000,000	-1,310,000	2,873,889	2,723,561	-198,903	-225,263	1,535,883	2,682,799	2,656,539	524,007	4,383,613	9,185,020	4,386,589	3,421,505	2,864,791	2,259,567	1,872,230	1,543,967	1,287,540	1,106,211	986,914	920,374	43,730,834	
Total allow expense (\$)			250,000	500,000	1,000,000	1,310,000	1,518,111	1,656,439	4,578,903	4,605,263	7,224,117	6,077,201	6,127,461	7,059,729	2,885,796	7,914,695	3,222,159	2,699,711	2,229,337	1,887,913	1,489,458	1,302,465	1,155,748	1,055,757	996,982	976,106	69,723,350	
Dperation cost of urfactant injection	1\$/1 bbl of	increment oil				0	0	0	73,589	75,061	76,562	78,093	79,655	81,248	0	0	0	0	0	0	0	0	0	0	0	0	464,208	
)peration cost of water njection	0.5\$/1 bb1 of	water				0	0	60,448	0	0	0	0	0	0	69,436	70,825	72,241	73,686	75,160	76,663	78,196	79,760	81,356	82,983	84,642	86,335	991,733	
daintenance cost (of surfactant injection facility	10.0000	10,000 by ear		0	5	0	•	0	11,262	11,487	11,717	11,951	12,190	12,434	0	0	28	0	0	0	0	0	0	0	0	0	71,040	
Maintenance cost] of water injection facility	20 00001	50,000kiyear				-	78	33,122	ລັ	4	16	L	la	Ĩ	38,047	38,808	39,584	40,376	41,184	42,007	42,847	43,704	44,578	45,470	46,379	47,307	543,416	
Operation cost of production well	0000111	100/\$07				0	1,188,511	1,208,968	1,233,148	1,257,811	2,565,934	2,617,253	2,676,912	2,357,355	2,304,842	5,530,076	2,509,895	2,059,588	1,748,287	1,451,868	1,200,330	1,036,678	907,649	819,206	766,766	747,639	36,188,716	
· · ·	Ē	10121				110,000	110,000	122,400	122,400	122,400	12,400	12,400	0	110,000	110,000	220,000	220,000	220,000	110,000	110,000	0	0	0	0	0	0	1,712,000	
	th	/ year										12,400	0	0	0	0	0	0	0	110,000	0	110,000	0	0	0	0		
se (f)	Ą	6" year									12,400		0	0	0	0	0	0	110,000	0	110,000	0	0	0	0	0		
Tangible Exper	łł.	o‴year								122,400			0	0	0	0	0	110,000	0	110,000	0	0	0	0	0	0		
ciation (20%) ⁷	łł	4‴year							122,400				0	0	0	0	110,000	0	110,000	0	0	0	0	0	0	0		
Depre	F	5 year						122,400					0	0	0	110,000	0	110,000	0	0	0	0	0	0	0	0		
	hur	2 year					110,000						0	0	110,000	0	110,000	0	0	0	0	0	0	0	0	0		
	ţ	l' year				110,000							0	110,000	0	110,000	0	0	0	0	0	0	0	0	0	0		

Table C.9 The cash flow table of model case3_inj300 (Continued).

0.260

0.818

뛾

BIOGRAPHY

Mr. Pipat Pipatpongsanon was born on March 3, 1983 in Surin province, Thailand. He received his Bachelor's Degree in Engineering (Transportation) from Suranaree University of Technology (SUT) in 2006. During Bachelor's Degree he worked in Civil Research Unit (CRU) at SUT as a part time student. After graduation, he has been employed under the position of Sales Engineer by the office of Onvalla Co., Ltd., Thailand. From 2008 to 2011, he studied for his Master's Degree of Engineering at School of Geotechnology, Institute of Engineering at SUT with the major in Petroleum Technology.

