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CHAPTER I

PRELIMINARIES ON RISK MODEL

Risk theory has become the natural language for formulating quantitative

models of finance markets. In this chapter, we introduce some terminology of

insurance, the description of the risk model and research problems. The reader is

assumed to have some background knowledge of random variables and probability.

1.1 Mathematical Finance and Risk Theory

The general goal of mathematical finance and risk management is to mathe-

matically quantify the behavior of financial instruments today and under different

possible environments in the future. This implies that we have some mathematical

or empirical procedure for determining values under various circumstances. While

the road is long, and while there has been substantial progress, for many reasons,

this goal is only partially achievable in the end and must be tempered with good

judgment, especially in the case of problematic and rare extreme events, which are

difficult to characterize, in which most of the risk lies.

In fact, financial risk theory can be considered as an indispensable part

of Mathematical Finance. The latter was born in 1900 with the contribution of

Louis Bachelier (Paris) on speculation in markets, then around the same time, the

contribution of Philip Lundberg (Uppsala, Sweden) to the research on actuarial

calculations became the cornerstone of the theory of non-life insurance. Since then,

a rich theory has been developed for the study in financial risk measurement and

management.
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1.2 Classical Risk Model

In 1903 the Swedish actuary Fillip Lundberg laid the foundations of modern

risk theory. Risk theory is a synonym for non-life insurance mathematics, which

deals with the modeling of claims that arrive in a non-life insurance business and

which gives advice on how much premium has to be charged in order to avoid

insolvency (ruin) of the non-life insurance company.

One of Lundberg’s main contributions was the introduction of a simple

model which is capable of describing the basic dynamics of a homogeneous in-

surance portfolio. By this we mean a portfolio of contracts of policies for similar

risks such as car insurance for a particular kind of car, insurance against theft

in households or insurance against water damage of one-family homes. There are

three assumptions in the model:(all processes are defined in a probability space

(Ω,F ,P).)

• Claims happen at the times Ti satisfying 0 ≤ T1 ≤ T2 ≤ · · · . We call them

claim arrivals of claim time or, simply arrivals.

• The ith claim arriving at time Ti causes the claim size of claim severity Yi.

The sequence of {Yi} constitutes an independent and identically distributed

sequence of non-negative random variables.

• The claim size processes {Yi} and the claim arrival processes {Ti} are mu-

tually independent.

Now we can define the claim number process

N(t) = max{i ≥ 1 : Ti ≤ t},

i.e. N = {N(t)}t≥0 is a counting process on [0,∞): N(t) is the number of claims

in the time interval [0, t].
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The objective of main interest from the point of view of a non-life insurance

company is the total claim amount process:

S(t) =

N(t)∑
i=1

Yi, t ≥ 0. (1.1)

It is also often called a compound process.

Later on in the 1930s, Harald Cramér, the famous Swedish statistician and

probabilist, extensively developed collective risk theory by using the total claim

amount process S(t) with arrivals Ti which are generated by a Poisson process. The

homogeneous Poisson process plays a major role in non-life insurance mathematics.

If we specify the claim number process as a homogeneous Poisson process the

resulting model which combines claim sizes and claim arrivals is called Cramér-

Lundberg model:

The Poisson process and the homogeneous Poisson process as mentioned

above, are define as follows:

Definition 1.1. (Poisson process)

A stochastic process {N(t)}t≥0 is said to be a Poisson process if the following

conditions hold:

(i) The process starts at zero, i.e. N(0) = 0 a.s.

(ii) The process has independent increments, i.e. N(ti−1, ti] and N(ti, ti+1] are

indepent where i = 0, 1, 2, . . . , n, n ≥ 1 and N(ti−1, ti] = N(ti)−N(ti−1).

(iii) The increment N(s, t], 0 < s < t < ∞, has a Poisson distribution

Poi(µ(s, t]) where µ is the mean value function of N , i.e. N(s, t] ∼
Poi(µ(s, t])

(iv) The sample paths of the process {N(t)}t≥0 are càdlàg, i.e. N(t) is right-

continuous for t ≥ 0 and limits from the left for t > 0 exists.



4

A Poisson process is said to be a homogeneous Poisson process if the incre-

ment N(s, t], in condition (iii), has a Poisson distribution Poi(λ(s, t]) where λ is

the intensity of N , i.e. N(s, t] ∼ Poi(λ(t− s)).

Next, let p(t) denote the premium income in the time interval [0, t]. In the

Cramér-Lundberg model, it is assumed that p(·) is a deterministic linear function:

that is,

p(t) = c0t

where c0 > 0 is a constant called the premium rate. Therefore the quantity

X(t) = x + p(t)− S(t) = x + c0t−
N(t)∑
i=1

Yi (1.2)

is the insurer’s balance (or surplus) at time t ≥ 0 with the constant x ≥ 0 as initial

capital. Moreover, the process {X(t)}t≥0 is called the risk process (or surplus

process).

Furthermore, the model (1.2) only at time Ti is the following

X(Ti) = x + c0Ti − S(Ti). (1.3)

From the fact that

N(Tn) = max{i ≥ 1 : Ti ≤ Tn} = n a.s.,

then, for convenience, we set X(Tn) = Xn, S(Tn) = Sn and let Zn := Tn − Tn−1

which is called inter− arrival time. Therefore, the model (1.3) can be written in

the form:

Xn = x + c0Tn − Sn

= x + c0Tn − c0Tn−1 + c0Tn−1 − Sn−1 − Yn

= (x + c0Tn−1 − Sn−1) + c0(Tn − Tn−1)− Yn

= Xn−1 + c0Zn − Yn

= x + c0

n∑

k=1

Zk −
n∑

k=1

Yk (1.4)
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where X0 = x.

The model (1.4) is usually considered under the assumption that {Yk}k≥1

and {Zk}k≥1 are independent.

1.3 Ruin Theory

1.3.1 Ruin Probability(Ruin), Net Profit Condition and

Expected Value Principle

Definition 1.2. (Ruin, Ruin probability)

Ruin is the set of events that Xn falls below zero.That is

Ruin = {ω ∈ Ω | Xn(ω) < 0 for some n ≥ 1}

=

{
ω ∈ Ω | inf

n≥1
Xn(ω) < 0

}
(1.5)

Set

T = inf{Tn > 0, Xn < 0}; (1.6)

T is called the ruin time ; it is the first time the surplus falls below zero. The ruin

probability is then given by

Φ(x) = P (T < ∞) = P (Xn < 0 for some n ≥ 1|X0 = x) = P

(
inf
n≥1

Xn < 0|X0 = x

)
.

(1.7)

Note that Φ(x) depends on the premium rate c0 as well.

Lemma 1.1. (Ruin with probability 1)

If E[Z1] and E[Y1] are finite and the condition

E[Y1]− c0E[Z1] ≥ 0

holds, then ruin occurs with probability 1 for every fixed x > 0.
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Proof : See Mikosch (2004).

From virtue of Lemma 1.1, any non-life insurance company should choose

the premium rate c0 in such a way that E[Y1]− c0E[Z1] < 0. Hence, we make the

following definitions:

Definition 1.3. (Net profit condition)

The risk process satisfies the net profit condition if

E[Y1]− c0E[Z1] < 0.

Definition 1.4. (Expected value principle)

The risk process satisfies the expected value principle if

c0 = (1 + θ)
E[Y1]

E[Z1]
,

for some 0 < θ < 1 which is called a safety loading.

1.3.2 Bounds for Ruin Probability

In this section we derive an elementary upper bound for the ruin probability

Φ(x).

Definition 1.5. (Adjustment or Lundberg coefficient)

Assume that the moment generating function of Y1−c0Z1 exists in some neighbor-

hood (−d, d), d > 0, of the origin. If a unique positive solution d0 to the equation

m
Y1−c0Z1

(d̃) = E[ed̃(Y1−c0Z1)] = 1, d̃ ∈ (−d, d) (1.8)

exists it is called the adjustment or Lundberg coefficient

Theorem 1.2. (The Lundberg inequality : Mikosch (2004))

Assume that the risk process satisfies the net profit condition and the adjustment

or Lundberg coefficient d0 exists. Then the following inequality holds for all x ≥ 0

Φ(x) ≤ e−d0x. (1.9)



7

Proof : Let Wn = Yn − c0Zn for all n ≥ 1 and set

Sn =
n∑

k=1

Wk.

From equation (1.7), ruin probability can be written in the form:

Φ(x) = P

(
inf
n≥1

(−Sn) < −x

)
= P

(
max
n≥1

Sn > x

)
. (1.10)

Let

Φn(x) = P

(
max
1≤k≤n

Sk > x

)
.

Thus {Φn(x)}n≥1 is non-decreasing sequence and Φn(x) → Φ(x) as n →∞ for all

x. From this, it suffices to prove that

Φn(x) ≤ e−d0x for all n ≥ 1. (1.11)

We prove inequality (1.11) by induction. We start with n = 1. By the definition

of the adjustment coefficient, we get

Φ1(x) = P (W1 > x)

= P (d0W1 > d0x)

= P (ed0W1 > ed0x)

≤ E
[
ed0W1

]

ed0x
(By Markov’s inequality)

= e−d0xm
W1

(d0)

= e−d0x.

This proves for n = 1. Now assume that inequality (1.11) holds for n = k ≥ 1 and

let FW1 be the distribution function of W1. Then

Φk+1(x) = P

(
max

1≤n≤k+1
Sn > x

)

= P (W1 > x) + P

(
max

2≤n≤k+1
Sn > x, W1 ≤ x

)
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= P (W1 > x) + P

(
max

2≤n≤k+1
(Sn −W1) + W1 > x, W1 ≤ x

)

=

∫ ∞

x

dFW1(u) +

∫ x

−∞
P

(
max
1≤n≤k

Sn + u > x

)
dFW1(u)

=

∫ ∞

x

dFW1(u) +

∫ x

−∞
P

(
max
1≤n≤k

Sn > x− u

)
dFW1(u)

=

∫ ∞

x

dFW1(u) +

∫ x

−∞
Φk(x− u)dFW1(u)

≤
∫ ∞

x

ed0(u−x)dFW1(u) +

∫ x

−∞
ed0(u−x)dFW1(u)

=

∫ ∞

−∞
ed0(u−x)dFW1(u)

= e−d0x

∫ ∞

−∞
ed0udFW1(u)

= e−d0xE
[
ed0W1

]

= e−d0xm
W1

(d0)

= e−d0x.

This proves inequality (1.11) for n = k + 1 and concludes the proof.

1.4 Insurance and Reinsurance

In law and economics, insurance is a form of risk management primarily

used to hedge against the risk of a contingent, uncertain loss. Insurance is defined

as the equitable transfer of the risk of a loss, from one entity to another, in ex-

change for payment. An insurer is a company selling the insurance; an insured

or policyholder is the person or entity buying the insurance policy. The insurance

rate is a factor used to determine the amount to be charged for a certain amount

of insurance coverage, called the premium.

Reinsurance is insurance that is purchased by a non-life insurance company

(insurer) from a reinsurer as a means of risk management, to transfer risk from

the insurer to the reinsurer.
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Reinsurance treaties are mutual agreements between different non-life insur-

ance companies with the aim to reduce the risk in a particular insurance portfolio

by sharing the risk of the occurring claims as well as premium in this portfolio.

In a sense, reinsurance is insurance for non-life insurance companies. Reinsur-

ance is a necessity for portfolios which are subject to catastrophic risks such as

earthquakes, failure of nuclear power stations, major windstorms, industrial fire,

flooding, war, riots, etc. There are many types of reinsurance treaties, non-life

insurance company handles mostly two types of treaties as follows:

• Proportional reinsurance. In a proportional reinsurance treaty each individ-

ual claim of size y is divided between insurer and reinsurer to a proportional-

ity factor b ∈ [0, 1]. Hence if we let h(b, y) be a (measurable) function which

stands for the part of the claim size y paid by the insurer; then the remaining

part y− h(b, y) called reinsurance recovery is paid by the reinsurer. In the

case of a proportional reinsurance, we have:

h(b, y) = by.

• Excess-of-loss reinsurance. In excess of loss (XL) reinsurance, each claim of

size y is divided between the insurer and the reinsurer according to priority

b ∈ [0,∞]. Again if we let h(b, y) be a (measurable) function which stands

for the part of the claim size y paid by the insurer; then the remaining part

y− h(b, y) called reinsurance recovery is paid by the reinsurer. In the case

of an excess of loss reinsurance, we have:

h(b, y) = min{b, y}.

The above constant b is called the ceding company’s retention level or retention

level.
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1.5 Shareholder Input

Shareholder input means the amount of money that the shareholders put

into the firm.

1.6 An Extension of Risk Model

Usually, the risk process (1.4) was considered under the assumption that

{Yn}n≥1 and {Zn}n≥1 are independent. For example, Schal (2004) applied this

model with reinsurance and investment as control parameters and proved the ex-

istence of an optimal plan for the exponential utility function under the assumption

of independence as mentioned above. In 2010, Klongdee, Sattayatham and Sanga-

roon extended the study of Schal (2004) and proved the existence of the optimal

plan for the exponential utility function under the additional assumption that a

reinsurer has the opportunity to default.

In Chapter II, we study the model (1.4) together with two controllers, i.e.

reinsurance and shareholder input allowing the firm to reach a desired target.

Finally, we find an optimal control policy which minimizes a reasonable objective

function.

Moreover, the ruin probability for the model (1.4) is interesting as found

in Pavlovao and Willmot (2004), Dickson (2005) and Li (2005b). All of these

articles study the ruin probability as a function of the initial capital x ≥ 0. In

the opposite direction, Sattayatham, Sangaroon and Klongdee (To be plublished)

considered the initial capital for this model via the ruin probability when Zn =

1, n = 1, 2, 3, . . . .

In Chapter III, we extend the study of Sattayatham, Sangaroon and

Klongdee (To be plublished) when the claims can be controlled by reinsurance.
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We prove the existence of the minimum initial capital and apply the bisection

method to approximate the minimum initial capital for exponential claims.



CHAPTER II

CONTROL PROBLEM

In this chapter, we study the control problem of a discrete-time surplus

process under two controllers, i.e., reinsurance and shareholder input which allow

a firm to reach a desired target. Moreover, we have proved the existence of an

optimal plan and we obtain a formula for the value function which gives an optimal

control policy. An example shows some numerical calculations for getting an

optimal plan.

Furthermore, we assume that all the processes are defined in a probability

space (Ω,F , P ).

2.1 Model Description

Firstly, we recall the discrete-time surplus process without control which

consists of the claim size process {Yn}n≥1 and the claim arrival process {Tn}n≥0.

The inter-arrival process {Zn}n≥1 is defined by

Zn := Tn − Tn−1,

is the length of time between the (n− 1)th claim and the nth claim. By period n,

we shall mean the random interval [Tn−1, Tn), n ≥ 1.

Now let the constant c0 represent the premium rate for one unit time. The

random variable c0

n+1∑
i=1

Zi = c0Tn+1 describes the inflow of capital into the business

in [0, Tn+1], and
n+1∑
i=1

Yi describes the outflow of capital due to payments for claims
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occurring in [0, Tn+1]. Therefore, the quantity

Xn+1 = x + c0

n+1∑
i=1

Zi −
n+1∑
i=1

Yi, n = 0, 1, 2, . . . (2.1)

is the insurer’s balance (or surplus) at time Tn+1 with the constant x ≥ 0 as initial

capital.

In summary, the discrete-time surplus process (2.1) can be written in the

form:

X0 = x, Xn+1 = Xn + c0Zn+1 − Yn+1, n = 0, 1, 2, . . . . (2.2)

Usually, this model was considered under the assumptions that {Yn}n≥1

and {Zn}n≥1 are independent. In 2004, Schal applied this model with reinsurance

and investment as control parameters and proved the existence of an optimal

plan for the exponential utility function under the assumption of independence

as mentioned above. Recently, Klongdee, Sattayatham and Sangaroon (2010)

applied this model with reinsurance and investment as control parameters and

proved the existence of an optimal plan for the exponential utility function under

the additional assumption that a reinsurer has opportunity to default.

In this chapter, we studied this model together with two controllers, i.e.,

reinsurance and shareholder input allowing the firm to reach a desired target.

Moreover, we find an optimal control policy which minimizes a reasonable objective

function.

Now let {Xn}n≥0 be the surplus process which can be controlled by choosing

a retention level b ∈ [b, b], 0 ≤ b ≤ b ≤ b ≤ ∞, of reinsurance for one period. Next,

for each retention level b, an insurer pays a premium rate to a reinsurer which is

deducted from c0. As a result, the insurer’s income rate will be represented by

the function c(b). The level b stands for the control action without reinsurance, so

that c0 = c(b) and the level b is the smallest retention level which can be chosen.
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As a consequence, we obtain the net income rate c(b) where 0 ≤ c(b) ≤ c0 for all

b ∈ [b, b] and c(b) is non-decreasing. By the expected value principle, c0 and c(b)

can be calculated as follows :

c0 = (1 + θ0)
E[Y ]

E[Z]
and c(b) = c0 − (1 + θ1)

E[Y − h(b, Y )]

E[Z]
(2.3)

where Y is a claim size, Z is an inter-arrival time, and 0 < θ0 < 1, 0 < θ1 < 1

are the safety loading of the insurer and reinsurer respectively. The measurable

function h(b, y) is the part of the claim size y paid by the insurer, and the remaining

part y − h(b, y) which is called reinsurance recovery is paid by the reinsurer. In

the case of an excess of loss reinsurance, we have:

h(b, y) = min{b, y} with retention level 0 ≤ b ≤ b ≤ b = ∞.

In the case of a proportional reinsurance, we have:

h(b, y) = by with retention level 0 ≤ b ≤ b ≤ b = 1.

Furthermore, the surplus process can also be controlled by shareholder input, i.e.,

the insurance company can ask its shareholders for input their money δ ∈ [0,∞), so

that the firm can reach a desired target A. Hence the two controllers for the surplus

process, b and δ will stand for reinsurance and shareholder input respectively. Note

that, we can interpret the target A as an initial capital for supporting the growth

of various policies in the future.

Let bn and δn be the two control actions at the time Tn. Therefore, the

surplus process (2.2) can be modified to be the following:

Xn+1 = Xn + δn + c(bn)Zn+1 − h(bn, Yn+1), n = 0, 1, 2, . . . (2.4)

where X0 = x. It is convenient to rewrite (2.4) into an equivalent form

Xn+1 = Xn + L(bn, δn, Yn+1, Zn+1), n = 0, 1, 2, . . . (2.5)
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where L(b, δ, y, z) = δ + c(b)z−h(b, y). We see that the process {Xn}n≥0 is driven

by the sequence of the control actions {(bn, δn)}n≥0, the sequence of inter-arrival

times {Zn}n≥1 and the sequence of claims {Yn}n≥1. Let us assume that {Zn}n≥1

and {Yn}n≥1 are independent and identically distributed (iid) sequences of random

variables with finite variance, i.e., we make the following assumption:

Assumption 2.1. Independence Assumption (IA)

The sequence of inter-arrival times {Zn}n≥1 and the sequence of claims {Yn}n≥1

are iid sequences with finite variances. Moreover, for each n ∈ {1, 2, 3, . . .}, Zn

and Yn are independent.

We immediately get from Assumption 2.1 that {h(bn, Yn+1)}n≥0 is an independent

sequence.

Remark 2.1. Let n ∈ {0, 1, 2, . . .} and f be the density of Yn+1, then the variance

of h(bn, Yn+1) is finite.

Proof : We prove by cases :

Case 1. h(bn, Yn+1) = bnYn+1. We get

V ar[h(bn, Yn+1)] = V ar[bnYn+1]

= b2
nV ar[Yn+1].

Since bn < ∞ and Yn+1 has finite variance, then V ar[h(bn, Yn+1)] < ∞.

Case 2. h(bn, Yn+1) = min{bn, Yn+1}. We get

V ar[h(bn, Yn+1)]

= E [h2(bn, Yn+1)]− (E[h(bn, Yn+1)])
2

= E
[
b2
n1Yn+1>bn + Y 2

n+11Yn+1≤bn

]− (
E[bn1Yn+1>bn + Yn+11Yn+1≤bn ]

)2

= b2
nP [Yn+1 > bn] +

∫

y≤bn

y2f(y)dy −

bnP [Yn+1 > bn] +

∫

y≤bn

yf(y)dy




2

.
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Since Yn+1 has finite variance, then

∫

y≤bn

y2f(y)dy < ∞ and 0 ≤
∫

y≤bn

yf(y)dy < ∞.

Thus V ar[h(bn, Yn+1)] < ∞ and this proves case 2.

From case 1 and 2, Remark 2.1 holds.

2.2 A Value Function with Finite Horizon

Let {Xn}n≥0 be a surplus process with value in a state space (S, Ξ) which

is a measurable space. The surplus process can be controlled at the beginning

of every period [Tn, Tn+1), n = 0, 1, 2, . . . on a measurable space (U,0) which is

called a control space. In addition, the model is further specified by the following

quantities:

• N ∈ {2, 3, 4, . . .} is a time horizon (number of periods);

• TN is a time at the time horizon N ;

• αN ∈ (0, 1] is a positive real constant;

• g : S × U → (−∞,∞] is a one− period cost function, which is measurable

and bounded from below;

• V̂ : S → (−∞,∞] is a cost function for time horizon N , which is measurable

and bounded from below.

Definition 2.1. A plan for the time horizon N over a control space U is a (finite)

sequence π = {un}N−1
n=0 of u0 = (b0, δ0) = (b0, 0) and un = (bn, δn) ∈ U for n =

1, 2, 3, . . . , N − 1. The set of all plans for the time horizon N over the space U is

denoted by P(N, U). A plan π ∈ P(N,U) is said to be stationary, if b0 = b1 and

(bn, δn) = (b1, δ1) for n = 1, 2, 3, . . . , N − 1.
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For each initial state x ∈ S and plan π = {(bn, δn)}N−1
n=0 ∈ P(N, U), the

surplus process (2.5) can be written in the form

Xn+1 = x +
n∑

k=0

L(bk, δk, Yk+1, Zk+1), n = 0, 1, 2, . . . , N − 1 (2.6)

with X0 = x.

Definition 2.2. Let x ∈ S be an initial state and π = {un}N−1
n=0 ∈ P(N, U) where

N is the time horizon. The total cost function ΦN(x, π) and the value function

VN(x) for the time horizon N are defined by

ΦN(x, π) = E

[
N−1∑
n=0

g(Xn, un) + αN V̂ (XN)|X0=x

]
and

VN(x) = inf
π∈P(N,U)

ΦN(x, π) respectively (2.7)

when the Xn are random variables which satisfy equation (2.6). A plan π̃ ∈
P(N, U) is said to be optimal, if inf

π∈P(N,U)
ΦN(x, π) = ΦN(x, π̃).

2.3 Main Results

Firstly, we note that it is natural to assume that the target A should satisfy

the condition

A ≥ E [XN |X0=x] , (2.8)

where XN is the random variable which satisfies equation (2.2). The above expec-

tation can be calculated as follows:

E [XN |X0=x] = E [XN−1 + c0ZN − YN |X0=x] = x + c0

N∑
n=1

E[Zn]−
N∑

n=1

E[Yn].

Since the goal of this chapter is to find retention level and shareholder

input that can make the firm reach a desired target A, the case of shareholder

input greater than A is uninteresting. So, we assume that

S = R and U = [b, b]× [0, A] (2.9)
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are the state space and the control space respectively.

In this section, we studied the surplus model (2.6) when the insurance

company is controlled by choosing retention level bn and shareholder input δn at

the beginning of the period [Tn, Tn+1) in order to reach a desired target A at the

time horizon N .

We studied the cost function under the assumption that the insurance com-

pany is solvent (not ruined) and we look for a control policy that ensures the min-

imization of the distance from the surplus at the time horizon N to the target A.

Therefore, we define the one− period cost function and the cost function at the

time horizon N respectively, as follows:

g(x, u) = g(x, (b, δ)) = δ2 and V̂ (x) = (x− A)2

where u = (b, δ) ∈ U and x ∈ S. Thus, we obtain the total cost function of model

(2.7) as

ΦN(x, π) =
N−1∑
n=1

δ2
n + αNE

[
(XN − A)2|X0=x

]
(2.10)

where π = {(bn, δn)}N−1
n=0 ∈ P(N,U).

Remark 2.2. By substituting π = {(bn, δn)}N−1
n=0 ∈ P(N,U) into equation (2.10),

one gets

ΦN(x, π) =
N−1∑
n=1

δ2
n + αN

{
N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}
+ G2

N(x, π)

}

(2.11)

where GN(x, π) = x− A +
N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)]. Moreover 0 ≤ ΦN(x, π) <

∞.

Proof : Let π = {(bn, δn)}N−1
n=0 ∈ P(N,U). Then

ΦN(x, π)

=
N−1∑
n=1

δ2
n + αNE

[
(XN − A)2|X0=x

]
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=
N−1∑
n=1

δ2
n + αNE

(
x +

N−1∑
n=0

L(bn, δn, Yn+1, Zn+1)− A

)2

=
N−1∑
n=1

δ2
n + αNV ar

(
x +

N−1∑
n=0

L(bn, δn, Yn+1, Zn+1)− A

)

+αN

(
x +

N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)]− A

)2

=
N−1∑
n=1

δ2
n + αNV ar

(
x− A +

N−1∑
n=0

{δn + c(bn)Zn+1 − h(bn, Yn+1)}
)

+αN

(
x− A +

N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)]

)2

=
N−1∑
n=1

δ2
n + αN

{
N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}
+ G2

N(x, π)

}

where GN(x, π) = x− A +
N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)].

Finally, we shall prove that 0 ≤ ΦN(x, π) < ∞. By definition 2.2,

ΦN(x, π) ≥ 0. Next, we will show that ΦN(x, π) is finite. By Assumption 2.1 and

Remark 2.1, Zn+1 and h(bn, Yn+1) have a finite variance (n = 0, 1, 2, . . . , N − 1).

Then we have
N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}
< ∞,

N−1∑
n=1

δ2
n < ∞ and

GN(x, π) = x− A +
N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)]

= x− A +
N−1∑
n=0

{δn + c(bn)E[Zn+1]− E[h(bn, Yn+1)]}

< ∞.

This proves Remark 2.2.

Remark 2.3. Define a subset P∗(N,U) of P(N, U) by

P∗(N,U) = {π ∈ P(N,U)|GN(x, π) = 0}.

We have
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(i) P∗(N, U) is not empty.

(ii) P∗(N, U) contains an element of the form π := {(bn, δn)}N−1
n=0 where

δ1 = δ2 = · · · = δN−1.

Proof of (i): We choose an arbitrary finite sequence bn ∈ [b, b],

n = 0, 1, 2, . . . , N − 1 and δ0 = 0, δn =
A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1
−

c(bn)E[Zn+1] + E[h(bn, Yn+1)], n = 1, 2, 3, . . . , N − 1. From inequality (2.8), we

have

A ≥ x +
N∑

n=1

c0E[Zn]−
N∑

n=1

E[Yn] = x +
N∑

n=0

(c0E[Zn]− E[Yn]). (2.12)

Since E[h(bn, Yn+1)] ≤ E[Yn+1] for each bn, n = 0, 1, 2, . . . , and θ1 > 0, then it

follows from the expected value principle and equation (2.3) that

0 < c(bn)E[Zn+1]− E[h(bn, Yn+1)]

= E[Zn+1]

(
c0 − (1 + θ1)

E[Yn+1 − h(bn, Yn+1)]

E[Zn+1]

)
− E[h(bn, Yn+1)]

= c0E[Zn+1]− (1 + θ1)E[Yn+1 − h(bn, Yn+1)]− E[h(bn, Yn+1)]

= c0E[Zn+1]− (1 + θ1)E[Yn+1] + θ1E[h(bn, Yn+1)]

= c0E[Zn+1]− E[Yn+1] + θ1(E[h(bn, Yn+1)]− E[Yn+1])

≤ c0E[Zn+1]− E[Yn+1]. (2.13)

From inequality (2.12) and summing both sides of inequality (2.13), one gets

0 < x +
N−1∑
n=0

(c(bn)E[Zn+1]−E[h(bn, Yn+1)]) ≤ x +
N−1∑
n=0

(c0E[Zn+1]−E[Yn+1]) ≤ A.

(2.14)

Claim that 0 ≤ δn ≤ A, n = 1, 2, . . . , N − 1.

Firstly, assume that there exists δm < 0 for some m ∈ {1, 2, . . . , N − 1}. It

follows from the definition of δm that

A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1
< c(bm)E[Zm+1]− E[h(bm, Ym+1)]. (2.15)
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Putting n = 0 in inequality (2.13), we get

−c0E[Z1] + E[Y1] ≤ −c(b0)E[Z1] + E[h(b0, Y1)].

Hence

A− x− c0E[Z1] + E[Y1] ≤ A− x− c(b0)E[Z1] + E[h(b0, Y1)] (2.16)

Since the sequences {Yn}n≥1 and {Zn}n≥1 satisfy iid property, then E[Zm+1] −
E[Ym+1] = E[Z1]− E[Y1]. Hence

A− x− c0E[Z1] + E[Y1]

N − 1
≤ A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1
(By (2.16))

< c(bm)E[Zm+1]− E[h(bm, Ym+1)] (By (2.15))

≤ c0E[Zm+1]− E[Ym+1] (By (2.13))

= c0E[Z1]− E[Y1].

Thus A < x+N(c0E[Z1]−E[Y1]). It follows from inequality (2.14) and iid property

of the sequences {Yn}n≥1 and {Zn}n≥1 , that

x + N(c0E[Z1]− E[Y1]) = x +
N−1∑
n=0

(c0E[Zn+1]− E[Yn+1]) ≤ A.

This is a contradiction and then δn ≥ 0, n = 1, 2, . . . , N − 1.

Next assume that there exists δm > A for some m ∈ {1, 2, . . . , N − 1}.
Again by definition of δm we have

A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1
> A + c(bm)E[Zm+1]− E[h(bm, Ym+1)]. (2.17)

Since c(bm)E[Zm+1]− E[h(bm, Ym+1)] > 0 for all m, thus inequality (2.17) satisfy

A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1
> A

Thus

A− x− c(b0)E[Z1] + E[h(b0, Y1)] > (N − 1)A.
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Hence −(N −2)A > x+ c(b0)E[Z1]−E[h(b0, Y1)] ≥ x ≥ 0. This is a contradiction

since −(N − 2)A is negative and cannot be greater than zero. Therefore we have

the claim and then the plan π := {(bn, δn)}N−1
n=0 ∈ P(N, U). Moreover, one can see

that

GN(x, π)

= x− A +
N−1∑
n=1

δn +
N−1∑
n=0

(c(bn)E[Zn+1]− E[h(bn, Yn+1)])

= x− A +
N−1∑
n=1

(
A− x− c(b0)E[Z1] + E[h(b0, Y1)]

N − 1

)

−
N−1∑
n=1

(c(bn)E[Zn+1]− E[h(bn, Yn+1)]) +
N−1∑
n=0

(c(bn)E[Zn+1]− E[h(bn, Yn+1)])

= x− A + (A− x− c(b0)E[Z1] + E[h(b0, Y1)])

−
N−1∑
n=1

(c(bn)E[Zn+1]− E[h(bn, Yn+1)]) +
N−1∑
n=0

(c(bn)E[Zn+1]− E[h(bn, Yn+1)])

= x− A + (A− x)

−
N−1∑
n=0

(c(bn)E[Zn+1]− E[h(bn, Yn+1)]) +
N−1∑
n=0

(c(bn)E[Zn+1]− E[h(bn, Yn+1)]) = 0.

Then P∗(N, U) is not empty. This proves (i).

Proof of (ii): By choosing

δ0 := 0, δn :=

A− x−
N−1∑

k=0

(c(bk)E[Zk+1]− E[h(bk, Yk+1)])

N − 1
, n = 1, 2, . . . , N − 1.

Hence δ1 = δ2 = · · · = δN−1. By the same proof as in case (i), we have 0 ≤ δn ≤
A, n = 0, 1, 2, ..., N − 1. Thus the plan π := {(bn, δn)}N−1

n=0 ∈ P(N, U). Again

we have GN(x, π) = 0. Hence the plan π := {(bn, δn)}N−1
n=0 ∈ P∗(N, U) which this

proves (ii).

Lemma 2.4. Let x ∈ S be an initial state and A be the target at the time horizon

N . Assume that (N − 1)αN > 1 and let π = {(bn, δn)}N−1
n=0 ∈ P∗(N,U) be such

that δ1 = δ2 = · · · = δN−1 > 0. Then

ΦN(x, π) < ΦN(x, ((b0, 0), (b1, 0), ..., (bN−1, 0))).
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Proof: Let π = {(bn, δn)}N−1
n=0 ∈ P∗(N,U) be such that δ1 = δ2 = · · · = δN−1 > 0.

Hence GN(x, π) = 0. It follows from equation (2.11) and the iid property of

Z1, Z2, . . . , ZN (Assumption 2.1) that

ΦN(x, π) =
N−1∑
n=1

δ2
n + αN

N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}

= (N − 1)δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

.

Next, we consider

ΦN(x, ((b0, 0), (b1, 0), ..., (bN−1, 0)))

= αNE

(
x− A +

N−1∑
n=0

c(bn)Zn+1 −
N−1∑
n=0

h(bn, Yn+1)

)2

= αNV ar

(
x− A +

N−1∑
n=0

{c(bn)Zn+1 − h(bn, Yn+1)}
)

+αN

(
x− A +

N−1∑
n=0

{c(bn)E[Zn+1]− E[h(bn, Yn+1)]}
)2

= αN

N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}

+αN

(
x− A + (N − 1)δ1 − (N − 1)δ1 +

N−1∑
n=0

{c(bn)E[Zn+1]− E[h(bn, Yn+1)]}
)2

= αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN (GN(x, π)− (N − 1)δ1)
2

= αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN ((N − 1)δ1)
2

= αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN(N − 1)(N − 1)δ2
1.

Since (N − 1)αN > 1, we obtain

ΦN(x, ((b0, 0), (b1, 0), ..., (bN−1, 0)))

> αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ (N − 1)δ2
1 = ΦN(x, π).

The proof is complete.

Theorem 2.5. Let x ∈ S be an initial state and A be the target at the time

horizon N . Assume that (N − 1)αN > 1. Then there exists π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈
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P(N, U)− P∗(N,U) such that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

ΦN(x, π̃) < ΦN(x, ((b̃0, 0), (b̃1, 0), ..., (b̃N−1, 0))).

Proof: Let π = {(bn, δn)}N−1
n=0 ∈ P∗(N,U) be such that δ1 = δ2 = · · · = δN−1 > 0.

From equation (2.11) and the iid property of Z1, Z2, ..., ZN (Assumption 2.1), we

get

ΦN(x, π) = (N−1)δ2
1+αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

and GN(x, π) = 0.

Choose a plan π̃ = {(b̃n, δ̃n)}N−1
n=0 defined by

δ̃n =
N − 1

N
δn and b̃n = bn, n = 0, 1, 2..., N − 1.

Obviously, δ̃0 = 0, δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

GN(x, π̃) = x− A +
N−1∑
n=1

δ̃n +
N−1∑
n=0

(c(b̃n)E[Zn+1]− E[h(b̃n, Yn+1)]) 6= 0.

Hence π̃ ∈ P(N,U)−P∗(N, U). Next, we shall show that

ΦN(x, π̃) < ΦN(x, ((b̃0, 0), (b̃1, 0), ..., (b̃N−1, 0))).

From equation (2.11) and the iid property of Z1, Z2, . . . , ZN , we get

ΦN(x, π̃)

=
N−1∑
n=1

δ̃2
n + αN

N−1∑
n=0

{
V ar[Z1]c

2(b̃n) + V ar[h(b̃n, Yn+1)]
}

+ αNG2
N(x, π̃)

= (N − 1)δ̃2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(b̃n) + V ar[h(b̃n, Yn+1)]
}

+ αN

(
x− A + (N − 1)δ̃1 +

N−1∑
n=0

{
E[Z1]c(b̃n)− E[h(b̃n, Yn+1)]

})2

= (N − 1)
(N − 1)2

N2
δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN

(
x− A + (N − 1)

(N − 1)

N
δ1 +

(N − 1)

N
δ1 − (N − 1)

N
δ1

+
N−1∑
n=0

{E[Z1]c(bn)− E[h(bn, Yn+1)]}
)2
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= (N − 1)
(N − 1)2

N2
δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN

(
GN(x, π)− (N − 1)

N
δ1

)2

= (N − 1)
(N − 1)2

N2
δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+ αN

(
(N − 1)

N
δ1

)2

≤ (N − 1)
(N − 1)2

N2
δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

+

(
(N − 1)

N
δ1

)2

=

{
(N − 1)2

N2
+

N − 1

N2

}
(N − 1)δ2

1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

=
N − 1

N
(N − 1)δ2

1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

< (N − 1)δ2
1 + αN

N−1∑
n=0

{
V ar[Z1]c

2(bn) + V ar[h(bn, Yn+1)]
}

= ΦN(x, π).

By virtue of Lemma 2.4, we have

Φ(x, π) < ΦN(x, ((b0, 0), (b1, 0), ..., (bN−1, 0))) = ΦN(x, ((b̃0, 0), (b̃1, 0), ..., (b̃N−1, 0))).

Thus

ΦN(x, π̃) < ΦN(x, ((b̃0, 0), (b̃1, 0), ..., (b̃N−1, 0))).

The proof is now complete.

Lemma 2.6. Let x ∈ S be an initial state and A be the target at the time horizon

N . Assume that (N − 1)αN > 1. If π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N,U) is an optimal

plan, then δ̃1 = δ̃2 = · · · = δ̃N−1 > 0.

Proof: Let π̃ = {b̃n, δ̃n)}N−1
n=0 ∈ P(N, U) be an optimal plan. From equation

(2.11), we have

ΦN(x, π̃) =
N−1∑
n=1

δ̃2
n + αN

{
N−1∑
n=0

{c2(b̃n)V ar[Zn+1] + V ar[h(b̃n, Yn+1)]}+ G2
N(x, π̃)

}

(2.18)
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where GN(x, π̃) = x− A +
N−1∑
n=1

δ̃n +
N−1∑
n=0

(c(b̃n)E[Zn+1]− E[h(b̃n, Yn+1)]).

First, we show that δ̃1 = δ̃2 = · · · = δ̃N−1. We work by a contradiction. Assume

that δ̃i 6= δ̃i+1 for some i ∈ {1, 2, ..., N − 2}. Let a plan π0 = {(bn, δn)}N−1
n=0 be

defined by

δn =





δ̃i + δ̃i+1

2
, n = i, i + 1

δ̃n , n 6= i, i + 1

and bn = b̃n, n = 0, 1, 2, . . . , N − 1.

Obviously, π0 ∈ P(N,U) and

GN(x, π0)

= x− A +
N−1∑
n=1

δn +
N−1∑
n=0

c(bn)E[Zn+1]−
N−1∑
n=0

E[h(bn, Yn+1)]

= x− A +
N−1∑

n=1,n6=i,i+1

δn + δi + δi+1 +
N−1∑
n=0

c(bn)E[Zn+1]−
N−1∑
n=0

E[h(bn, Yn+1)]

= x− A +
N−1∑

n=1,n6=i,i+1

δ̃n + 2(
δ̃i + δ̃i+1

2
) +

N−1∑
n=0

c(b̃n)E[Zn+1]−
N−1∑
n=0

E[h(b̃n, Yn+1)]

= x− A +
N−1∑
n=1

δ̃n +
N−1∑
n=0

c(b̃n)E[Zn+1]−
N−1∑
n=0

E[h(b̃n, Yn+1)]

= GN(x, π̃). (2.19)

Moreover,
N−1∑
n=1

δ2
n <

N−1∑
n=1

δ̃2
n. To see this, we note that since δ̃i 6= δ̃i+1, then δ̃i and

δ̃i+1can not be equal to zero at the same time. Hence 2δ̃iδ̃i+1 < δ̃2
i + δ̃2

i+1. Thus
N−1∑
n=1

δ2
n

=
N−1∑

n=1,n6=i,i+1

δ2
n + δ2

i + δ2
i+1

=
N−1∑

n=1,n6=i,i+1

δ̃2
n + 2

(
δ̃i + δ̃i+1

2

)2

=
N−1∑

n=1,n6=i,i+1

δ̃2
n +

1

2
(δ̃2

i + 2δ̃iδ̃i+1 + δ̃2
i+1)

<

N−1∑

n=1,n6=i,i+1

δ̃2
n +

1

2
(δ̃2

i + δ̃2
i + δ̃2

i+1 + δ̃2
i+1)
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=
N−1∑

n=1,n6=i,i+1

δ̃2
n + δ̃2

i + δ̃2
i+1

=
N−1∑
n=1

δ̃2
n. (2.20)

It follows from inequality (2.18), (2.19) and (2.20) that ΦN(x, π0) < ΦN(x, π̃)

which is a contradiction. Hence δ̃1 = δ̃2 = · · · = δ̃N−1. Next, we try show

that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0. Assume that there exists δ̃m = 0 for some

m ∈ {1, 2, . . . , N − 1}. Then δ̃1 = δ̃2 = · · · = δ̃N−1 = 0. By Theorem 2.5, there

exists π′ = {(b′n, δ′n)}N−1
n=0 ∈ P(N, U) such that δ′1 = δ′2 = · · · = δ′N−1 > 0 and

ΦN(x, π′) < ΦN(x, π̃). This contradicts the optimal plan of π̃ and then the proof

is complete.

Next, we prove the existence of min
π∈P(N,U)

ΦN(x, π). We note that P(N, U)

is a compact subset of the Euclidean space (R2)N . We can easily see this by

utilizing the compactness U = [b, b]× [0, A] in R2. What remaining is to prove the

continuity of ΦN(x, π) on P(N, U).

Lemma 2.7. The function c(b) and h(b, y) are continuous on [b, b] for each y.

Proof: First, we show that h(b, y) is continuous on [b, b] for each y.

Let y ≥ 0 be fixed and b0 ∈ [b, b] be arbitrary. We proof by cases:

Case 1. h(b, y) = by. We get lim
b→b0

h(b, y) = lim
b→b0

by = b0y = h(b0, y).

Case 2. h(b, y) = min{b, y}. We get

lim
b→b0

h(b, y) = lim
b→b0

min{b, y} = lim
b→b0

1

2
(b+y−|b−y|) =

1

2
(b0+y−|b0−y|) = h(b0, y).

From cases 1 and 2, we have h(b, y) is continuous on [b, b].

Next, we show that c(b) is continuous on [b, b]. Note that
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c(b) = c0 − (1 + θ1)
E[Y − h(b, Y )]

E[Z]

= c0 − (1 + θ1)
E[Y ]

E[Z]
+ (1 + θ1)

E[h(b, Y )]

E[Z]

= c0 − (1 + θ1)
E[Y ]

E[Z]
+

1 + θ1

E[Z]

∫

Ω

h(b, Y (ω))dP (ω)

= c0 − (1 + θ1)
E[Y ]

E[Z]
+

1 + θ1

E[Z]

∞∫

−∞

h(b, y)fY (y)dy (2.21)

where fY is the density function of Y .

From equation (2.21) it suffices to show that

∞∫

−∞

h(b, y)fY (y)dy is continuous

on [b, b]. Let b0 ∈ [b, b] be arbitrary and g̃ be a function on R defined by

g̃(y) = yfY (y).

By Assumption 2.1, we have

∞∫

−∞

g̃(y)dy =

∞∫

−∞

yfY (y)dy =

∫

Ω

Y (ω))dP (ω) = E[Y ] < ∞.

Since h(b, y) ≤ y, then h(b, y)fY (y) ≤ yfY (y) = g̃(y). By Lebesgue Dominated

Convergence Theorem (F. Jones, 1993, page 153) and the continuity of h(b, y) on

[b, b], we get

lim
b→b0

∞∫

−∞

h(b, y)fY (y)dy =

∞∫

−∞

lim
b→b0

h(b, y)fY (y)dy =

∞∫

−∞

h(b0, y)fY (y)dy.

Hence

∞∫

−∞

h(b, y)fY (y)dy is continuous on [b, b] and so c(b) is continuous on [b, b].

Lemma 2.8. The mapping F : U 7→ R define by

F (b, δ) = δ2 + αNE

[
x− A

N
+ δ + c(b)Z1 − h(b, Y1)

]2

is continuous on U .
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Proof: By Assumption 2.1, the random variables Y1 and Z1 are independent, then

we have

F (b, δ) = δ2 + αNE

[
x− A

N
+ δ + c(b)Z1 − h(b, Y1)

]2

=

∫

Ω

(
δ2 + αN

[
x− A

N
+ δ + c(b)Z1(ω)− h(b, Y1(ω))

]2
)

dP (ω)

=

∞∫

−∞

∞∫

−∞

(
δ2 + αN

[
x− A

N
+ δ + c(b)z − h(b, y)

]2
)

fY1(y)fZ1(z)dydz

=

∞∫

−∞

∞∫

−∞

f((y, z), (b, δ))dydz (2.22)

where f((y, z), (b, δ)) =

(
δ2 + αN

[
x− A

N
+ δ + c(b)z − h(b, y)

]2
)

fY1(y)fZ1(z)

and, fY1 and fZ1 are the density function of Y1 and Z1 respectively.

Let ĝ be a function on R2 defined by

ĝ(y, z) = (5A2 + 2A(c0z + y) + c2
0z

2 + y2)fY1(y)fZ1(z).

Now, we consider
∞∫

−∞

∞∫

−∞

ĝ(y, z))dydz

=

∞∫

−∞

∞∫

−∞

(5A2 + 2A(c0z + y) + c2
0z

2 + y2)fY1(y)fZ1(z)dydz

= 5A2 + 2A

∞∫

−∞

∞∫

−∞

(c0z + y)fY1(y)fZ1(z)dydz +

∞∫

−∞

∞∫

−∞

(c2
0z

2 + y2)fY1(y)fZ1(z)dydz

= 5A2 + 2A

∫

Ω

(c0Z1(ω) + Y1(ω))dP (ω) +

∫

Ω

(c2
0Z

2
1(ω) + Y 2

1 (ω))d(ω)

= 5A2 + 2A(c0E[Z1] + E[Y1]) + c2
0E[Z2

1 ] + E[Y 2
1 ].

Since Y1 and Z1 have finite variances (by Assumption 2.1), we obtain

∞∫

−∞

∞∫

−∞

ĝ(y, z)dydz < ∞. (2.23)

From equation (2.9) and inequality (2.22), we have
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f((y, z), (b, δ))

=

(
δ2 + αN

[
x− A

N
+ δ + c(b)z − h(b, y)

]2
)

fY1(y)fZ1(z)

≤
(

δ2 +

[
x− A

N
+ δ + c(b)z − h(b, y)

]2
)

fY1(y)fZ1(z)

=

(
δ2 +

[
x− A

N
+ δ

]2

+2

[
x− A

N
+ δ

]
[c(b)z − h(b, y)] + [c(b)z − h(b, y)]2

)
fY1(y)fZ1(z)

≤
(

δ2 +

[
x− A

N
+ δ

]2

+2

[
x− A

N
+ δ

]
[c(b)z + h(b, y)] + [c(b)z]2 + [h(b, y)]2

)
fY1(y)fZ1(z)

= (A2 + 4A2 + 2A [c0z + y] + c2
0z

2 + y2) fY1(y)fZ1(z)

=
(
5A2 + 2A [c0z + y] + c2

0z
2 + y2

)
fY1(y)fZ1(z) = ĝ(y, z). (2.24)

By Lemma 2.7, for each fixed y and z, the function f((y, z), (b, δ)) is continuous

in the variable (b, δ) on U . So, by Lebesgue Dominated Convergence Theorem (F.

Jones, 1993, page 153), we obtain F (b, δ) is continuous on U .

Theorem 2.9. Let x ∈ S be fixed and A be the target at the time horizon N , then

ΦN(x, π) is continuous on P(N, U).

Proof : From equation (2.11) and iid property of Yn and Zn, we have

ΦN(x, π)

=
N−1∑
n=1

δ2
n + αNE

[
x− A +

N−1∑
n=1

δn +
N−1∑
n=0

c(bn)Zn+1 −
N−1∑
n=0

h(bn, Yn+1)

]2

=
N−1∑
n=0

δ2
n + αNE

[
x− A +

N−1∑
n=0

δn +
N−1∑
n=0

c(bn)Zn+1 −
N−1∑
n=0

h(bn, Yn+1)

]2

=

∞∫

−∞

∞∫

−∞

· · ·
∞∫

−∞

∞∫

−∞

(
N−1∑
n=0

δ2
n + αN

[
x− A +

N−1∑
n=0

δn +
N−1∑
n=0

c(bn)zn+1

−
N−1∑
n=0

h(bn, yn+1)

]2

 fY1(y1)fZ1(z1) . . . fY1(yN)fZ1(zN)dy1dz1 . . . dyNdzN
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=

∞∫

−∞

∞∫

−∞

· · ·
∞∫

−∞

∞∫

−∞

f((y1, . . . , yN , z1, . . . , zN , π)dy1dz1 . . . dyNdzN

where f((y1, . . . , yN , z1, . . . , zN)), π)

=

(
N−1∑
n=0

δ2
n + αN

[
x− A +

N−1∑
n=0

δn +
N−1∑
n=0

c(bn)zn+1

−
N−1∑
n=0

h(bn, yn+1)

]2

 fY1(y1)fZ1(z1) . . . fY1(yN)fZ1(zN)

and, fY1 and fZ1 are the density function of Y1 and Z1 respectively.

Let g∗ be a function on R2N defined by

g∗(y1, . . . , yN , z1, . . . , zN)

=

(
(N + N2)A2 + 2NA

N∑
n=1

(c0zn + yn)

+
N∑

n=1

(c2
0z

2
n + y2

n) +
N∑

m,n=1:n 6=m

(c2
0zmzn + ymyn)

)
fY1(y1)fZ1(z1) . . . fY1(yN)fZ1(zN).

Since the sequences {Yn}n≥1 and {Zn}n≥1 are iid and have finite variances, we

obtain

∞∫

−∞

∞∫

−∞

· · ·
∞∫

−∞

∞∫

−∞

g∗(y1, . . . , yN , z1, . . . , zN)dy1dz1 . . . dyNdzN < ∞.

By the same proof as in inequality (2.24), one gets

f((y1, . . . , yN , z1, . . . , zN), π) ≤ g∗(y1, . . . , yN , z1, . . . , zN .)

Thus, by Lebesgue Dominated Convergence Theorem, we obtain Theorem 2.9.

Theorem 2.10. Let x ∈ S be an initial state and A be the target at the time

horizon N . Assume that (N − 1)αN > 1. Then there exists an optimal plan

π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N,U) such that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

VN(x) = (N − 1)δ̃2
1 + αN

{
N−1∑
n=0

V ar[Z1]c
2(b̃n) +

N−1∑
n=0

V ar[h(b̃n, Yn+1)] + G2
N(x, π̃)

}

where GN(x, π̃) = x− A + (N − 1)δ̃1 +
N−1∑
n=0

E[Z1]c(b̃n)−
N−1∑
n=0

E[h(b̃n, Yn+1)].
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Proof: From Theorem 2.9, we have ΦN(x, π) is continuous on P(N,U). Since

P(N, U) is a compact subset of (R2)N , then there exists a plan π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈

P(N, U) such that inf
π∈P(N,U)

ΦN(x, π) = ΦN(x, π̃). Hence π̃ is an optimal plan. By

Lemma 2.6, we have δ̃1 = δ̃2 = · · · = δ̃N−1 > 0. From equation (2.7) and (2.11),

we have

VN(x) = (N − 1)δ̃2
1 + αN

{
N−1∑
n=0

V ar[Z1]c
2(b̃n) +

N−1∑
n=0

V ar[h(b̃n, Yn+1)] + G2
N(x, π̃)

}

where GN(x, π̃) = x − A + (N − 1)δ̃1 +
N−1∑
n=0

E[Z1]c(b̃n) −
N−1∑
n=0

E[h(b̃n, Yn+1)]. This

proves Theorem 2.10.

Corollary 2.11. Let x ∈ S be an initial state and A be the target at the time

horizon N . Assume that (N−1)αN > 1 and h(b, y) is the proportional reinsurance.

Then there exists an optimal plan π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N, U) such that π̃ is

stationary and

VN(x) = (N − 1)δ̃2
1 + αN

{
Nc2(b̃0)V ar[Z1] + Nb̃2

0V ar[Y1] + G2
N(x, π̃)

}
(2.25)

where GN(x, π̃) = x− A + (N − 1)δ̃1 + Nc(b̃0)E[Z1]−Nb̃0E[Y1].

Proof: From Theorem 2.10, there exists an optimal plan π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈

P(N, U) such that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

ΦN(x, π̃) = (N − 1)δ̃2
1 + αN

{
V ar[Z1]

N−1∑
n=0

c2(b̃n) + V ar[Y1]
N−1∑
n=0

b̃2
n + G2

N(x, π̃)

}
(2.26)

where GN(x, π̃) = x− A + (N − 1)δ̃1 + E[Z1]
N−1∑
n=0

c(b̃n)− E[Y1]
N−1∑
n=0

b̃n.

Next, we shall show that π̃ is a stationary plan. Since δ̃1 = δ̃2 = · · · = δ̃N−1, we

are left to show that b̃0 = b̃1 = · · · = b̃N−1. We work by a contradiction. Assume

that b̃i 6= b̃i+1 for some i ∈ {0, 1, 2, ..., N − 2}. Let a plan π0 = {(bn, δn)}N−1
n=0 be
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defined by

bn =





b̃i + b̃i+1

2
, n = i, i + 1

b̃n , n 6= i, i + 1

and δn = δ̃n for n = 0, 1, 2, ..., N − 1.

Obviously, π0 ∈ P(N,U) and

GN(x, π0)

= x− A + (N − 1)δ1 + E[Z1]
N−1∑
n=0

c(bn)− E[Y1]
N−1∑
n=0

bn

= x− A + (N − 1)δ1 + E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(bn) + c(bi) + c(bi+1)

}

− E[Y1]

{
N−1∑

n=0,n6=i,i+1

bn + bi + bi+1

}

= x− A + (N − 1)δ̃1 + E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) + 2c

(
b̃i + b̃i+1

2

)}

− E[Y1]

{
N−1∑

n=0,n6=i,i+1

b̃n + 2

(
b̃i + b̃i+1

2

)}

= x− A + (N − 1)δ̃1

+ E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) + 2

{
c0 − (1 + θ1)

(
1− b̃i + b̃i+1

2

)
E[Y1]

E[Z1]

}}

− E[Y1]
N−1∑
n=0

b̃n

= x− A + (N − 1)δ̃1

+ E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) +

{
2c0 − (1 + θ1)(2− b̃i − b̃i+1)

E[Y1]

E[Z1]

}}

− E[Y1]
N−1∑
n=0

b̃n

= x− A + (N − 1)δ̃1

+ E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) +

{
2c0 − (1 + θ1)(1− b̃i + 1− b̃i+1)

E[Y1]

E[Z1]

}}

− E[Y1]
N−1∑
n=0

b̃n

= x− A + (N − 1)δ̃1

+ E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) +

{
2c0 − (1 + θ1)(1− b̃i)

E[Y1]

E[Z1]
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−(1 + θ1)(1− b̃i+1)
E[Y1]

E[Z1]

}}
− E[Y1]

N−1∑
n=0

b̃n

= x− A + (N − 1)δ̃1 + E[Z1]

{
N−1∑

n=0,n6=i,i+1

c(b̃n) + c(b̃i) + c(b̃i+1)

}
− E[Y1]

N−1∑
n=0

b̃n

= x− A + (N − 1)δ̃1 + E[Z1]
N−1∑
n=0

c(b̃n)− E[Y1]
N−1∑
n=0

b̃n

= GN(x, π̃). (2.27)

Moreover, we have
N−1∑
n=0

b2
n <

N−1∑
n=0

b̃2
n and

N−1∑
n=0

c2(bn) <

N−1∑
n=0

c2(b̃n). To see this, we

note that since b̃i 6= b̃i+1 (i.e., b̃i and b̃i+1 can not be equal to zero at the same time)

and c(b̃i), c(b̃i+1) > 0, then 2b̃ib̃i+1 < b̃2
i + b̃2

i+1 and 2c(b̃i)c(b̃i+1) < c2(b̃i) + c2(b̃i+1)

respectively. This implies that
N−1∑
n=0

b2
n

=
N−1∑

n=0,n6=i,i+1

b2
n + b2

i + b2
i+1

=
N−1∑

n=0,n6=i,i+1

b̃2
n + 2

(
b̃i + b̃i+1

2

)2

=
N−1∑

n=0,n6=i,i+1

b̃2
n +

1

2
(b̃2

i + 2b̃ib̃i+1 + b̃2
i+1)

<

N−1∑

n=0,n6=i,i+1

b̃2
n +

1

2
(b̃2

i + b̃2
i + b̃2

i+1 + b̃2
i+1)

=
N−1∑

n=0,n6=i,i+1

b̃2
n + b̃2

i + b̃2
i+1

=
N−1∑
n=0

b̃2
n (2.28)

and
N−1∑
n=0

c2(bn)

=
N−1∑

n=0,n6=i,i+1

c2(bn) + c2(bi) + c2(bi+1)

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) + 2c2

(
b̃i + b̃i+1

2

)
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=
N−1∑

n=0,n6=i,i+1

c2(b̃n) + 2

(
c0 − (1 + θ1)(1− b̃i + b̃i+1

2
)
E[Y1]

E[Z1]

)2

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) +
1

2

(
2c0 − (1 + θ1)(2− b̃i − b̃i+1)

E[Y1]

E[Z1]

)2

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) +
1

2

(
2c0 − (1 + θ1)(1− b̃i + 1− b̃i+1)

E[Y1]

E[Z1]

)2

=
N−1∑

n=0,n6=i,i+1

c2(b̃n)

+
1

2

(
2c0 − (1 + θ1)(1− b̃i)

E[Y1]

E[Z1]
− (1 + θ1)(1− b̃i+1)

E[Y1]

E[Z1]

)2

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) +
1

2

(
c(b̃i) + c(b̃i+1)

)2

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) +
1

2

(
c2(b̃i) + 2c(b̃i)c(b̃i+1) + c2(b̃i+1)

)

<

N−1∑

n=0,n6=i,i+1

c2(b̃n) +
1

2

(
c2(b̃i) + c2(b̃i) + c2(b̃i+1) + c2(b̃i+1)

)

=
N−1∑

n=0,n6=i,i+1

c2(b̃n) + c2(b̃i) + c2(b̃i+1)

=
N−1∑
n=0

c2(b̃n). (2.29)

It follows from inequality (2.26), (2.27), (2.28) and (2.29) that ΦN(x, π0) <

ΦN(x, π̃) which contradicts the optimal plan of π̃ and then the proof is complete.

2.4 Example

In this section, we give an example of an optimal plan which can make a

surplus approaching to the target A at a time horizon N. We begin by assuming

that h(b0, y) is the proportional reinsurance with retention level b0, an initial capi-

tal x = 10, a time horizon N = 100, the target A = 60 and αN = 0.05, 0.10, 0.20.

We consider the safety loading of the insurer and reinsurer in three cases as follows:

(a). θ0 = 0.20, θ1 = 0.25 (b). θ0 = 0.25, θ1 = 0.25 and (c). θ0 = 0.30, θ1 = 0.25.
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Suppose that the error of this estimate is e = 0.1. By Corollary 2.11, we know

that the optimal plan π is stationary, thus it suffices to find b0 and δ1. We assume

that {Yn}100
n=1 is a sequence of claims with iid exponential Exp(1.2) and {Zn}100

n=1 is

a sequence of inter-arrival times with iid exponential Exp(1). We solved for b0, δ1

under the conditions that |E[XN ] − A| ≤ 0.1 (or equivalently, |GN(x, π)| ≤ 0.1)

and ΦN(x, π) is minimum. We get several optimal plans which satisfy the given

parameters and the error e = 0.1.

Case (a): If θ0 = 0.20 and θ1 = 0.25, the optimal plan is as follows:

π = {(b0, δ0) = (0.88, 0), (b1, δ1) = · · · = (b99, δ99) = (0.88, 0.361)} for αN = 0.05.

π = {(b0, δ0) = (0.51, 0), (b1, δ1) = · · · = (b99, δ99) = (0.51, 0.439)} for αN = 0.10.

π = {(b0, δ0) = (0.31, 0), (b1, δ1) = · · · = (b99, δ99) = (0.31, 0.481)} for αN = 0.20.

Case (b): If θ0 = 0.25 and θ1 = 0.25, the optimal plan is as follows:

π = {(b0, δ0) = (0.78, 0), (b1, δ1) = · · · = (b99, δ99) = (0.78, 0.340)} for αN = 0.05.

π = {(b0, δ0) = (0.49, 0), (b1, δ1) = · · · = (b99, δ99) = (0.49, 0.401)} for αN = 0.10.

π = {(b0, δ0) = (0.25, 0), (b1, δ1) = · · · = (b99, δ99) = (0.25, 0.452)} for αN = 0.20.

Case (c): If θ0 = 0.30 and θ1 = 0.25, the optimal plan is as follows:

π = {(b0, δ0) = (0.68, 0), (b1, δ1) = · · · = (b99, δ99) = (0.68, 0.319)} for αN = 0.05.

π = {(b0, δ0) = (0.40, 0), (b1, δ1) = · · · = (b99, δ99) = (0.40, 0.378)} for αN = 0.10.

π = {(b0, δ0) = (0.21, 0), (b1, δ1) = · · · = (b99, δ99) = (0.21, 0.418)} for αN = 0.20.

Note that, VN(x) can be calculated by putting b0, δ1 and c(b0), (c(b0) := θ0 − θ1 +

(1 + θ1)b0) into equation (2.25). The value of these parameters for each case was

shown in Table 2.1:
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Table 2.1 The Value of b0, δ1 and VN

Case (a) Case (b) Case (c)

θ0 = 0.20, θ1 = 0.25 θ0 = 0.25, θ1 = 0.25 θ0 = 0.30, θ1 = 0.25

b0 : δ1 : VN b0 : δ1 : VN b0 : δ1 : VN

αN = 0.05 0.88:0.361:19.4192 0.78:0.340:16.8581 0.68:0.319:14.4928

αN = 0.1 0.51:0.439:23.2832 0.49:0.401:20.1928 0.40:0.378:17.3579

αN = 0.2 0.31:0.481:25.8231 0.25:0.452:22.4509 0.21:0.418:19.2677

The numerical results in Table 2.1 show a minimum value VN(10) = 19.4192

satisfy an optimal plan π = {(b0, δ0) = (0.88, 0), (b1, δ1) = · · · = (b99, δ99) =

(0.88, 0.361)} for α = 0.05, θ0 = 0.20 and θ1 = 0.25 etc.

Finally, suppose that the time horizon N and the safety loading of the

reinsurer θ1 are fixed. By virtue of Remark 2.3, for each fixed retention level, we

can find a shareholder input which satisfies the condition that |E[XN ] − A| ≤ e

for a given error e. Hence, if the error of estimate is decreased we can still find an

optimal plan according to Corollary 2.11.



CHAPTER III

MINIMUM INITIAL CAPITAL PROBLEM

In this chapter, we studied a minimum initial capital problem of the

discrete-time surplus process (2.1) when the inter-arrival times Zn = 1, n ∈
{1, 2, 3, . . .} and the claim can be controled by reinsurance. Moreover, we con-

sider the relationship between ruin probability and initial capital.

We assume that all processes are defined in a probability space (Ω,F ,P).

3.1 Model Description

Now, we recall the discrete-time surplus process (2.1) in the situation

that the possible insolvency can occur only at claim arrival times Tn = n, n ∈
{1, 2, 3, . . .}. Hence

Zn = 1, n ∈ {1, 2, 3, . . .}.

Therefore, the surplus process (2.1) can modify as follows:

Xn = x + c0

n∑
i=1

Zi −
n∑

i=1

Yi

= x + nc0 −
n∑

i=1

Yi (3.1)

where X0 = x ≥ 0 and c0 > 0 are the initial capital and the premium rate for one

unit time respectively as mentioned in the previous chapter.

The general approach for studying the ruin probability in the discrete-time

surplus process (3.1) is through the so-called Gerber − Shiu discounted penalty

function; as found in, Pavlovao and Willmot (2004), Dickson (2005) and Li
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(2005a-b). These articles study the ruin probability as a function of the initial

capital x.

In the opposite direction, Sattayatham, Sangaroon and Klongdee (To be

published) considered the initial capital for the discrete-time surplus process (3.1)

via a function of the ruin probability.

In this chapter, we extend the model (3.1) when the claims can be controlled

by reinsurance.

Let {Xn}n≥0 be the surplus process as mentioned in equation (3.1) which

can be controlled by choosing a retention level b ∈ [b, b] of reinsurance for one pe-

riod as mentioned in the previous chapter. Moreover, by the net profit condition,

the premium rate for one unit time c0 and the net income rate c(b) satisfy the

following:

c0 >
E[Y ]

E[Z]
and c(b) >

E[h(b, Y )]

E[Z]
, (3.2)

where Y is claim size and Z is inter-arrival time.

For each n ∈ {1, 2, 3, . . .}, let bn−1 be a retention level (control action) at the

time Tn−1. Therefore, we can modify the surplus process (3.1) to be the following:

Xn = x +
n∑

i=1

c(bi−1)−
n∑

i=1

h(bi−1, Yi) (3.3)

where X0 = x.

We see that the process {Xn}n≥0 is driven by the sequence of retention

levels (control actions) {bn−1}n≥1 and the sequence of claims {Yn}n≥1. So, we

make the following assumption:

Assumption 3.1. Independence Assumption (IA)

The sequence of claims {Yn}n≥1 is a sequence of independent and identically dis-

tributed (iid) random variables.

From Assumption IA, it follows that {h(bn−1, Yn)}n≥1 is an independent sequence.
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Definition 3.1. Let N ∈ {1, 2, 3, . . .} be a time horizon (number of periods).

A plan for the time N is a (finite) sequence π = {bn−1}N
n=1 of bn−1 ∈ [b, b] for

n = 1, 2, 3, . . . , N . A set of all plans for the time horizon N over control space

[b, b] is denoted by P(N, [b, b]). A plan π ∈ P(N, [b, b]) is said to be stationary, if

b0 = b1 = · · · = bN−1.

3.2 Main Results

In this section, we consider the finite-time ruin probabilities of the discrete-

time surplus process as in equation (3.3) where the sequence of claims {YN}n≥1

satisfies Assumption IA. Let FY1 be the distribution function of Y1, i.e.,

FY1(y) = P (Y1 ≤ y).

Let N ∈ {1, 2, 3, . . .} be a time horizon and x ≥ 0 be an initial capital. The

survival probability at a time n ∈ {1, 2, 3, . . . , N} is defined by

ϕn(x, π) := P (X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, . . . , Xn ≥ 0|X0 = x) (3.4)

where π ∈ P(N, [b, b]). Moreover, the ruin probability at a time n ∈
{1, 2, 3, . . . , N} is defined by

Φn(x, π) = 1− ϕn(x, π). (3.5)

Definition 3.2. Let {Xn}n≥0 be the surplus process as in equation (3.3), driven

by the sequence of control actions {bn−1}n≥1 and the sequence of claims {Yn}n≥1.

Let {c(bn−1)}n≥1 be a sequence of net income rates and x ≥ 0 be an initial capital.

For each the time horizon N ∈ {1, 2, 3, . . .}, let π ∈ P(N, [b, b]) and α ∈ (0, 1). If

ΦN(x, π) ≤ α, then x is called an acceptable initial capital corresponding to

(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). Particularly, if

x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}
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exists, x∗ is called the minimum initial capital corresponding to

(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1) and is written as

x∗ := MIC(α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

3.2.1 Ruin and Survival Probability

We defined the total claim process by

Sn := h(b0, Y1) + h(b1, Y2) + · · ·+ h(bn−1, Yn)

for all n ∈ {1, 2, 3, . . .}. The survival probability at the time horizon N as men-

tioned in equation (3.4) can be expressed as follows:

ϕN(x, π) = P

(
S1 ≤ x + c(b0), S2 ≤ x +

2∑
n=1

c(bn−1), . . . , SN ≤ x +
N∑

n=1

c(bn−1)

)

= P

(
N⋂

n=1

{
Sn ≤ x +

n∑

k=1

c(bk−1)

})
(3.6)

From equation (3.6), we have

ϕN(x, π) = E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]
, (3.7)

where

1A(x) =





1 , x ∈ A

0 , else ,

for all A ⊆ R. For each a ∈ R and x ≥ 0, we obtain

1(−∞,0](a− x) =





1 , x ≥ a,

0 , x < a.

Then, 1(−∞,0](a − x) is non-decreasing in x and right continuous on (0,∞]. This

implies that
N∏

n=1

1(−∞,0](an−x) is also non-decreasing in x and right continuous on
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(0,∞] where an ∈ R, n = 1, 2, 3, . . . , N . For each plan π = {b0, b1, b2, . . . , bN−1},
by the Dominated Convergence Theorem, we get

lim
u→x+

ϕN(u, π) = lim
u→x+

E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
lim

u→x+

N∏
n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− u

)]

= E

[
N∏

n=1

1(−∞,0]

(
Sn −

n∑

k=1

c(bk−1)− x

)]

= ϕN(x, π).

Therefore, ϕN(x, π) is non-decreasing in x and right continuous on (−∞,∞). This

implies that ΦN(x, π) = 1− ϕN(x, π) is non-increasing in x and also right contin-

uous on (−∞,∞).

Theorem 3.1. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), and let x ≥ 0 be given.

Then

lim
x→∞

ϕN(x, π) = 1 and lim
x→∞

ΦN(x, π) = 0.

Proof: Let ω ∈ Ω be fixed and f(x, ω) =
N∏

n=1

1(−∞,0]

(
Sn(ω)−

n∑

k=1

c(bk−1)− x

)
.

From equation (3.7), we have ϕN(x, π) = E[f(x, ω)]. From the definition of

ΦN(x, π), its suffice to show that lim
x→∞

E[f(x, ω)] = 1.

For each n ∈ {1, 2, 3, · · · , N}, there exists Xn(ω) such that

Sn(ω)−
n∑

k=1

c(bk−1)− x < 0 for all x ≥ Xn(ω), i.e.,

N∏
n=1

1(−∞,0]

(
Sn(ω)−

n∑

k=1

c(bk−1)− x

)
= 1 (3.8)

for all x ≥ Xn(ω).

Let X∗
0 (ω) = max{X1(ω), X2(ω), . . . , Xn(ω)}. Then f(x, ω) = 1 for all

x ≥ X∗
0 (ω). We have

lim
x→∞

f(x, ω) = 1 (3.9)
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for all x ≥ X∗
0 (ω). By Monotone Convergence Theorem, we have

lim
x→∞

E[f(x, ω)] = E
[

lim
x→∞

f(x, ω)
]

= 1. (3.10)

The proof is now complete.

Corollary 3.2. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), α ∈ (0, 1). Then there

exists smallest x̃ ≥ 0 such that, for all x ≥ x̃, x is an acceptable initial capital

corresponding to (α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Proof: Let

x̃ = sup{x ≥ 0 | ΦN(x, π) > α}. (3.11)

Case 1. ΦN(x̃, π) > α. Since ΦN(x, π) is non-increasing in x, by (3.11) we have

ΦN(x, π) ≤ α for all x > x̃, i.e., ΦN(x, π) ≤ α on (x̃,∞). Thus

lim
x→x̃+

ΦN(x, π) ≤ α.

Since ΦN(x, π) right continuous on (x̃,∞) and non-increasing in x, then

α < ΦN(x̃, π) = lim
x→x̃+

ΦN(x, π) ≤ α.

Hence, ΦN(x̃, π) = α. As a result x̃ is a smallest real constant such that, for all

x ≥ x̃, x is an acceptable initial capital corresponding to

(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Case 2. ΦN(x̃, π) ≤ α. Since ΦN(x, π) is non-increasing in x, by (3.11) we have

ΦN(x, π) > α for all x < x̃ and ΦN(x, π) ≤ α for all x ≥ x̃, i.e., x̃ is a smallest real

constant such that, for all x ≥ x̃, x is an acceptable initial capital corresponding

to (α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).
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3.2.2 Bounds of the Ruin Probability

In this part, we describe the upper bound of the ruin probability with

negative exponential. In order to prove the following lemma, we shall use an

equivalent definition of the ruin probability which will be given as follows:

Φn(x, π) = P

(
max
1≤k≤n

(
k∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)
, n = 1, 2, 3, . . . , N.

Lemma 3.3. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1), and

let x ≥ 0 be given. Then the ruin probability at the time N satisfies the following

equation

ΦN(x, π) = Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y)

(3.12)

where Φ0(x, π) = 0.

Proof: We prove equation (3.12) by induction. We start with N = 1. Since

Φ0(x, π) = 0 for all x ≥ 0 then

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

Φ0(x + c(b0)− h(b0, y), π)dFY1(y) = 0.

This proves equation (3.12) for N = 1. Now assume that equation (3.12) holds for

1 < n ≤ N − 1. Then

ΦN(x, π) = P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

}
⋂

Ω

)

= P

({
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x

}

⋂ {{h(b0, Y1)− c(b0) > x}⋃ {h(b0, Y1)− c(b0) ≤ x}})

= P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) > x

)

+ P

(
max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)
.
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Since π is stationary and {Yn}n≥1 is an iid sequence, then

{
ω ∈ Ω : max

1≤n≤N

(
n∑

i=1

(h(bi−1, Yi)(ω)− c(bi−1))

)
> x, h(b0, Y1)(ω)− c(b0) > x

}

= {ω ∈ Ω : h(b0, Y1)(ω)− c(b0) > x} .

This result implies

ΦN(x, π) = P (h(b0, Y1)− c(b0) > x) +

P

(
max

2≤n≤N

(
h(b0, Y1)− c(b0) +

n∑
i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π) +

P

(
h(b0, Y1)− c(b0) + max

2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x, h(b0, Y1)− c(b0) ≤ x

)

= Φ1(x, π) + E

[
1

h(b0,Y1)−c(b0)≤x, h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]

= Φ1(x, π) + E

[
1

h(b0,Y1)−c(b0)≤x
· 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x

]

= Φ1(x, π)

+ E

[
E

[
1h(b0,Y1)−c(b0)≤x · 1

h(b0,Y1)−c(b0)+ max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
>x
|σ(Y1)

]]

= Φ1(x, π)

+ E

[
1h(b0,Y1)≤x+c(b0) · E

[
1

max
2≤n≤N

„
nP

i=2
(h(bi−1,Yi)−c(bi−1))

«
+(h(b0,Y1)−x−c(b0))>0

|σ(Y1)

]]

= Φ1(x, π) + E
[
1

h(b0,Y1)≤x+c(b0)
· E [

1(0,∞)(Z + W |σ(Y1))
]]

(3.13)

where Z = max
2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
and W = h(b0, Y1)−x−c(b0). Since

{h(bn−1, Yn)}n≥1 is an independent sequence, then Z and W are independent. It

follows from Dudley, R. M. (2002, exercise 9, page 341) that
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E
[
1(0,∞)(Z + W )|σ(Y1)

]
=

∫

ω∈ Ω

1(0,∞)(Z(ω) + W |σ(Y1))dPZ(ω)

=

∫

ω∈ Ω

1(0,∞)(Z(ω) + W )dPZ(ω)

=

∫

R

1(0,∞)(z + W )dFZ(z).

This implies that

ΦN(x, π) = Φ1(x, π) + E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + W )dFZ(z)







= Φ1(x, π) + E


1h(b0,Y1)≤x+c(b0) ·




∫

R

1(0,∞)(z + h(b0, Y1)− x− c(b0))dFZ(z)







= Φ1(x, π)

+

∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}




∫

R

1(0,∞)(z + h(b0, Y1)(ω)− x− c(b0))dFZ(z)


 dP (ω)

= Φ1(x, π) +

∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

E
[
1Z>x+c(b0)−h(b0,Y1)(ω)

]
dP (ω)

= Φ1(x, π) +

∫

{ω∈Ω:h(b0,Y1)(ω)∈[0,x+c(b0)]}

P (Z > x + c(b0)− h(b0, Y1)(ω)) dP (ω)

= Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

P (Z > x + c(b0)− h(b0, y)) dFY1(y). (3.14)

Since π is stationary and {Yn}n≥1 is an iid sequence, then

P (Z > x + c(b0)− h(b0, y))

= P

(
max

2≤n≤N

(
n∑

i=2

(h(bi−1, Yi)− c(bi−1))

)
> x + c(b0)− h(b0, y)

)

= P

(
max

1≤n≤N−1

(
n∑

i=1

(h(bi−1, Yi)− c(bi−1))

)
> x + c(b0)− h(b0, y)

)

= ΦN−1(x + c(b0)− h(b0, y), π). (3.15)

From equation (3.14) and (3.15), we get
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ΦN(x, π) = Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x + c(b0)− h(b0, y), π)dFY1(y).

This proves equation (3.12).

Remark 3.4. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1). As-

sume that {Yn, n ≥ 1} is an iid sequence of exponential distribution with intensity

λ > 0, i.e., Y1 has the probability density function

f(y) = λe−λy.

By Lemma 3.3, the ruin probability can be written in a recursive form as follows:

Case 1: For h(b0, y) = min{b0, y}. Assume b0 ≥ x + c(b0). We get

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π) +
[λ(x + nc(b0))]

n−1

(n− 1)!
e−λ[x+nc(b0)] x + c(b0)

x + nc(b0)
(3.16)

for n = 1, 2, 3, . . . , N . We will use mathematic induction and Lemma 3.3 to show

the recursive form (3.16) holds. Now as b0 ≥ x + c(b0), then

Φ1(x, π) = P (h(b0, Y1) > x + c(b0))

= P (Y1 > x + c(b0))

=

∞∫

x+c(b0)

λe−λydy

= e−λ(x+c(b0)).

This proves equation (3.16) for n = 1. Let 1 < k ≤ N − 1. Assume that equation

(3.16) holds for 1 < n ≤ k. By Lemma 3.3 and the inductive assumption, we get

Φn+1(x, π)

= Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

Φn(x + c(b0)− h(b0, y), π)dFY1(y)

= Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

Φn−1(x + c(b0)− h(b0, y), π)dFY1(y)



48

+

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

[λ(x + (n + 1)c(b0)− h(b0, y))]n−1

(n− 1)!

· e−λ[x+(n+1)c(b0)−h(b0,y)] x + 2c(b0)− h(b0, y)

x + (n + 1)c(b0)− h(b0, y)
dFY1(y)

= Φn(x, π) +

∫

{y∈R:0≤y≤x+c(b0)}

[λ(x + (n + 1)c(b0)− y)]n−1

(n− 1)!

· e−λ[x+(n+1)c(b0)−y] x + 2c(b0)− y

x + (n + 1)c(b0)− y
λe−λydy

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!
·

∫

{y∈R:0≤y≤x+c(b0)}

[x + (n + 1)c(b0)− y]n−1

· x + 2c(b0)− y

x + (n + 1)c(b0)− y
dy

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!
·

∫

{y∈R:0≤y≤x+c(b0)}

[x + (n + 1)c(b0)− y]n−1

· x + (n + 1)c(b0)− y − (n + 1)c(b0) + 2c(b0)

x + (n + 1)c(b0)− y
dy

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!
·

∫

{y∈R:0≤y≤x+c(b0)}

[x + (n + 1)c(b0)− y]n−1

·
[
1− (n− 1)c(b0)

x + (n + 1)c(b0)− y

]
dy

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!
·




x+c(b0)∫

0

[x + (n + 1)c(b0)− y]n−1 dy

− (n− 1)c(b0)

x+c(b0)∫

0

[x + (n + 1)c(b0)− y]n−2dy



 .

Let w = x + (n + 1)c(b0)− y. We get

Φn+1(x, π)

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!
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·





x+(n+1)c(b0)∫

nc(b0)

wn−1dw − (n− 1)c(b0)

x+(n+1)c(b0)∫

nc(b0)

wn−2dw





= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!

·
{[

[x + (n + 1)c(b0)]
n

n
− [nc(b0)]

n

n

]

− (n− 1)c(b0)

[
[x + (n + 1)c(b0)]

n−1

n− 1
− [nc(b0)]

n−1

n− 1

]}

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!

·
{

[x + (n + 1)c(b0)]
n

n
− nn−1c(b0)

n − c(b0)[x + (n + 1)c(b0)]
n−1 + nn−1c(b0)

n

}

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!

·
{

[x + (n + 1)c(b0)]
n

n
− c(b0)[x + (n + 1)c(b0)]

n−1

}

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!

·
{

[x + (n + 1)c(b0)]
n

n
− nc(b0)[x + (n + 1)c(b0)]

n

n[x + (n + 1)c(b0)]

}

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

(n− 1)!

[x + (n + 1)c(b0)]
n

n

{
1− nc(b0)

x + (n + 1)c(b0)

}

= Φn(x, π) +
λne−λ[x+(n+1)c(b0)]

n!
[x + (n + 1)c(b0)]

n x + c(b0)

x + (n + 1)c(b0)
.

This proves case 1.

Case 2: For h(b0, y) = b0y. By the same proof as in case 1, we get

Φ0(x, π) = 0 and

Φn(x, π) = Φn−1(x, π) +
1

(n− 1)!

[
λ

b0

(x + nc(b0))

]n−1

e
− λ

b0
(x+nc(b0)) x + c(b0)

x + nc(b0)
(3.17)

for all n = 1, 2, 3, . . . , N . Further, for b0 = b̄0 = 1, we also obtain the recursive

form as

Φ0(x, π) = 0 and Φn(x, π) = Φn−1(x, π) +
1

(n− 1)!
[λ(x + nc0)]

n−1 e−λ(x+nc0) x + c0

x + nc0
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for all n = 1, 2, 3, . . . , N .

Definition 3.3. (Sub-adjustment coefficient). Let s > 0 and Y be a non-negative

random variable. If there exists d0 > 0 such that

E
[
ed0Y

] ≤ ed0s, (3.18)

then d0 is called a sub-adjustment coefficient of (s, Y ). Specifically, if (3.18) is an

equality then d0 is called an adjustment coefficient of (s, Y ).

Theorem 3.5. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, and let c(b0) >

0 be a net income rate. If d0 > 0 is a sub-adjustment coefficient of (c(b0), h(b0, Y1)),

then

Φn(x, π) ≤ e−d0x, (3.19)

for all x ≥ 0 and all n = 1, 2, 3, . . . , N.

Proof: Let h(b0, y) = min{b0, y}, x ≥ 0 and d0 > 0 be a sub-adjustment coefficient

of (c(b0), h(b0, Y1)), i.e.,

E
[
ed0h(b0,Y1)

] ≤ ed0c(b0).

We prove this theorem by induction. We start with n = 1,

Φ1(x, π) = P (h(b0, Y1) > x + c(b0))

= P (d0h(b0, Y1) > d0(x + c(b0)))

= P (ed0h(b0,Y1) > ed0(x+c(b0)))

≤ E
[
ed0h(b0,Y1)

]

ed0(x+c(b0))
(By Markov’s inequality)

≤ ed0c(b0)

ed0(x+c(b0))

= e−d0x.

Let k ≤ N − 1. Assume that inequality (3.19) holds for 1 < n ≤ k. Next, we show

that inequality (3.19) holds for n = k + 1. By Lemma 3.3 we get
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Φk+1(x, π) = Φ1(x, π) +

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

Φk(x + c(b0)− h(b0, y), π)dFY1(y).

(3.20)

Firstly, we consider the second term of the right-hand side of equation (3.20). By

using the inductive assumption, we have
∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

Φk(x + c(b0)− h(b0, y), π)dFY1(y)

≤
∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y). (3.21)

Next, we calculate the first term of right-hand side of equation (3.20).

Φ1(x, π)

= P (h(b0, Y1) > x + c(b0))

= P
(
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1)) > ed0(x+c(b0))

)

≤ E
[
ed0h(b0,Y1)1(x+c(b0),∞)(h(b0, Y1))

]

ed0(x+c(b0))
(By Markov’s inequality)

=

∫

R

ed0h(b0,y)1(x+c(b0),∞)(h(b0, y))dFY1(y)

ed0(x+c(b0))

=

∫

{y∈R:x+c(b0)<h(b0,y)<∞}

ed0h(b0,y)dFY1(y)

ed0(x+c(b0))

=

∫

{y∈R:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y). (3.22)

From inequality (3.21) and (3.22), the equation (3.20) can be modified to be the

following

Φk+1(x, π)
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≤
∫

{y∈R:x+c(b0)<h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

+

∫

{y∈R:0≤h(b0,y)≤x+c(b0)}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=

∫

{y∈R:0≤h(b0,y)<∞}

e−d0(x+c(b0)−h(b0,y))dFY1(y)

=
e−d0x

ed0c(b0)

∫

R

ed0h(b0,y)dFY1(y)

=
e−d0x

ed0c(b0)
E

[
ed0h(b0,Y1)

]

≤ e−d0x

ed0c(b0)
ed0c(b0)

= e−d0x.

This proves equation (3.19) for n = k +1 in the case h(b0, y) = min{b0, y}. By the

same proof of this case, we also get equation (3.19) holds for h(b0, y) = b0y.

Corollary 3.6. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1),

and let c(b0) > 0 be a net income rate. Assume that d0 > 0 is a sub-adjustment

coefficient of (c(b0), h(b0, Y1)), then there exists an acceptable initial capital x(x ≥
0) corresponding to (α, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1) such that

0 ≤ x ≤ − lnα

d0

or α ≤ e−d0x.

Proof : Let d0 > 0 be a sub-adjustment coefficient of (c(b0), h(b0, Y1)). By Theorem

3.5, we have

ΦN(u, π) ≤ e−d0u,

for all u ≥ 0. Let α ∈ (0, 1). By Corollary 3.2, there exists v ≥
0 which is an acceptable initial capital corresponding to (α, N, {c(bn−1) =

c(b0)}n≥1, {h(b0, Yn)}n≥1). By Definition 3.2, we have

ΦN(v, π) ≤ α.
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Since ΦN(v, π) is non-increasing in v for each π, then there exists 0 ≤ x ≤ v such

that α = ΦN(x, π) ≤ e−d0x. Hence x is an acceptable initial capital corresponding

to (α, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1). The proof is now complete.

Note: We know that a smaller ruin probability can be controlled by a larger initial

capital. However, an insurance company usually does not possess unlimited initial

capital, but only a small initial capital that must be sufficient for a predetermined

solvency (not ruin) condition for the firm is preferable. If an acceptable ruin

probability is fixed, the firm can find an interval of acceptable initial capital by

virtue of Corollary 3.6.

Example 3.1. (Exponential claims under the proportional reinsurance). We

assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1), and

{Xn}n≥0 is a sequence of surplus which satisfies the model (3.3). Let N ∈
{1, 2, 3, . . .}, and π ∈ P(N, [b, b]) be stationary. Suppose that h(b0, y) is the pro-

portional reinsurance with retention level b0, and c(b0) > 0 is a net income rate

which is calculated by the expected value principle, i.e.,

c(b0) = c0 − (1 + θ1)E[Y1 − h(b0, Y1)] = θ0 − θ1 + b0(1 + θ1). (3.23)

Assume that α = 0.05, θ0 = θ1 = 0.1, and b0 = 0.6. Then there exists an

adjustment coefficient d0 = 0.2935569060 of (c(b0), b0Y1) such that

0 ≤ x ≤ −ln0.05

0.2935569060
= 10.20494566

which is an interval of acceptable initial capital with corresponding to

(1, N, {c(bn−1) = c(b0)}n≥1, {b0Yn}n≥1)

Let

f(d) := E
[
edb0Y1

]− edc(b0).
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Note that

E
[
edb0Y1

]
=

∞∫

0

edb0yfY1(y)dy =

∞∫

0

edb0ye−ydy =
1

1− db0

and

edc(b0) = edb0(1+θ1). (3.24)

By Definition 3.3, d0 is an adjustment coefficient of (c(b0), b0Y1) if f(d0) = 0.

Hence E
[
ed0b0Y1

]
= ed0c(b0). By substituting b0 and θ1 into equation (3.24), we get

1

1− 0.6d0

= e0.66d0 .

Solving for d0, we get d0 = 0.2935569060. By Corollary 3.6, we get

0 ≤ x ≤ −ln0.05

0.2935569060
= 10.20494566

which is an interval of acceptable initial capital corresponding to

(0.05, N, {c(bn−1) = 0.66}n≥1, {0.6Yn}n≥1). This means that ΦN(x, π) ≤ 0.05 for

all 0 ≤ x ≤ 10.20494566.

Example 3.2. (Exponential claims under the excess of loss reinsurance). We

assume that {Yn}n≥1 and {Xn}n≥0 are the sequences given in example 3.1. Let

N ∈ {1, 2, 3, . . .}, and π ∈ P(N, [b, b]) be stationary. Suppose that h(b0, y) is the

excess of loss reinsurance with retention level b0. By the expected value principle,

the net income rate c(b0) satisfies the following equation

c(b0) = c0 − (1 + θ1)E[Y1 − h(b0, Y1)] = θ0 − θ1 + (1 + θ1)[1− e−b0 ]. (3.25)

Assume that α = 0.05, θ0 = θ1 = 0.1 and b0 = 100. Then there exists a sub-

adjustment coefficient d0 = 0.17 of (c(b0), h(b0, Y1)) such that

0 ≤ x ≤ − ln0.05

0.17
= 17.6220

which is an interval of acceptable initial capital with corresponding to

(0.05, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1)
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Let

f(d) := E
[
edh(b0,Y1)

]− edc(b0).

Note that

E
[
edh(b0,Y1)

]
=

∞∫

0

edh(b0,y)e−ydy =

b0∫

0

edye−ydy +

∞∫

b0

eb0de−ydy =
deb0(d−1) − 1

d− 1
,

and edc(b0) = ed(1+θ1)[1−e−b0 ]. (3.26)

By Definition 3.3, d0 is a sub-adjustment coefficient of (c(b0), h(b0, Y1)) if f(d0) ≤ 0.

Hence E
[
ed0h(b0,Y1)

] ≤ ed0c(b0). By substituting b0, θ0 and θ1 into equation (3.26),

we get

d0e
100(d0−1) − 1

d0 − 1
≤ e1.1d0[1−e−100].

Solving for d0, we get d0 = 0.17. By Corollary 3.6, we get

0 ≤ x ≤ − ln0.05

0.17
= 17.6220

which is an interval of acceptable initial capital with corresponding to

(0.05, N, {c(bn−1) = 1.1}n≥1, {h(100, Yn)}n≥1). This means that ΦN(x, π) ≤ 0.05

for all 0 ≤ x ≤ 17.6220.

3.2.3 Existence of Minimal Capital

Let α ∈ (0, 1). As a result of Corollary 3.2 that {x ≥ 0 :

ΦN(x, π) ≤ α} is a non-empty set. Since the set {x ≥ 0 : ΦN(x, π) ≤
α} is an infinite set, then there are many acceptable initial capitals cor-

responding to (α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). In this section, we

will prove the existence of a minimum initial capital that correspond to

(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). , i.e.,

min
x≥0

{x : ΦN(x, π) ≤ α} = x∗.
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The following lemma and theorems are proved in Klongdee’ Ph.D. disser-

tation (2010).

Lemma 3.7. Let a, b and α be real numbers such that a ≤ b. If f is non-increasing

and right continuous on [a, b] and α ∈ [f(b), f(a)], then there exists d ∈ [a, b] such

that

d = min{x ∈ [a, b] : f(x) ≤ α}.

Proof: Let

S := {x ∈ [a, b] : f(x) ≤ α} . (3.27)

Since α ∈ [f(b), f(a)], i.e., f(b) ≤ α ≤ f(a), then we have b ∈ S. Hence S is a

non empty set. Since S is a subset of the closed and bounded interval [a, b], then

there exists d ∈ [a, b] such that d = inf S. Next, we consider the following cases:

Case 1. d = b. We know that b ∈ S, thus b = min S.

Case 2. a ≤ d < b. Since d = inf S, then there exists dn ∈ S such that

d ≤ dn < d + 1/n

for all n ∈ {1, 2, 3, . . .}. Since f is non-increasing and dn ∈ S, then

f(dn) ≤ α.

Since f is right continuous at d, we have

f(d) = lim
n→∞

f(dn) ≤ α.

Therefore, d ∈ S, i.e., d = min S. This completes the proof.

Theorem 3.8. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Then

there exists x∗ ≥ 0 such that

x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}.
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Proof: Let π ∈ P(N, [b, b]). We consider by case.

Case 1: For ΦN(0, π) ≤ α. We get min
x≥0

{x : ΦN(x, π) ≤ α} = 0.

Case 2: For ΦN(0, π) > α. By Corollary 3.2, there exists x̃ > 0 such that

ΦN(x̃, π) ≤ α. Hence α ∈ [ΦN(x̃, π), ΦN(0, π)]. Since ΦN(x, π) is non-increasing

in x and right continuous on [0,∞). Then ,by Lemma 3.7, there exists x∗ ∈ [0, x̃]

such that

x∗ = min
x∈[0,x̃]

{x : ΦN(x, π) ≤ α} = min
x∈[0,∞)

{x : ΦN(x, π) ≤ α}.

From case 1 and 2, we have x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}.

Next, we approximate the minimal initial capital x∗ by the bisection

method.

Theorem 3.9. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Assume

that v0, x0 ≥ 0 such that v0 < x0. Let {vm}m≥1 and {xm}m≥1 be two real sequences

defined by




vm = vm−1 and xm =
xm−1 + vm−1

2
, if ΦN

(
xm−1 + vm−1

2
, π

)
≤ α

vm =
vm−1 + xm−1

2
and xm = xm−1, if ΦN

(
xm−1 + vm−1

2
, π

)
> α

for all m = 1, 2, 3, . . .. If ΦN(x0, π) ≤ α < ΦN(v0, π), then

lim
m→∞

xm = min
x≥0

{x : ΦN(x, π) ≤ α} = x∗.

Proof: Obviously, {xm}m≥1 is non-increasing and {vm}m≥1 is non-decreasing.

Moreover, vm ≤ xm for all m ∈ {1, 2, 3, . . .}. Thus, {xm}m≥1 and {vm}m≥1 are

convergent. Since

0 ≤ xm − vm =
x0 − v0

2m
→ 0 as m →∞,

then there exists x∗ ∈ [v0, x0] such that

lim
m→∞

xm = lim
m→∞

vm := x∗.
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Since ΦN(x, π) is right continuous in x for each π and ΦN(xm, π) ≤ α for all m,

then

ΦN(x∗, π) = lim
m→∞

ΦN(xm, π) ≤ α.

Since ΦN(x, π) is non-increasing in x for each π and ΦN(vm, π) > α for all m, then

ΦN(x, π) > α for x < x∗. Therefore

x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}. (3.28)

This completes the proof.

3.3 Numerical Results

In this section, we provide numerical illustration of main results. We

approximate the minimal initial capital of the discrete-time surplus process (3.3)

by using Theorem 3.9 according to the following cases:

3.3.1 Proportional Reinsurance Case

We assume that {Yn}n≥1 is a sequence of claims with iid exponential Exp(1)

and h(b0, y) is the proportional reinsurance with retention level b0. Let N ∈
{1, 2, 3, . . .} be the time horizon and π = {bn−1 = 0.6}N

n=1 be stationary. We

choose model parameters as follows: θ0 = θ1 = 0.10 which gives c(b0) = 0.66 and

θ0 = θ1 = 0.25 which gives c(b0) = 0.75. Moreover, we choose α = 0.05, α = 0.1

and α = 0.2. As a result, we get the table of the minimum initial capital below:
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Table 3.1 Minimum Initial Capital in the Proportional Reinsurance Case

α = 0.05 α = 0.1 α = 0.2

N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25

10 3.3909 : 2.7854 2.5919 : 2.0384 1.7358 : 1.2562

20 4.4983 : 3.3728 3.4846 : 2.4796 2.3918 : 1.5524

30 5.2438 : 3.6605 4.0747 : 2.6854 2.8148 : 1.6829

40 5.8067 : 3.8215 4.5137 : 2.7963 3.1233 : 1.7504

50 6.2558 : 3.9175 4.8593 : 2.8605 3.3619 : 1.7884

100 7.6364 : 4.0664 5.8902 : 2.9559 4.0471 : 1.8426

200 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

300 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

400 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

500 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

1, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

5, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

10, 000 8.5466 : 4.0881 6.5345 : 2.9690 4.4496 : 1.8497

Table 3.1 shows an approximation of min
x≥0

{x : ΦN(x, π) ≤ α} with m = 25,

v0 = 0, x0 = 20 as mentioned in Theorem 3.9 and ΦN(x, π) is computed by using

the recursive form as mentioned in equation (3.17). The numerical results in

Table 3.1 show a minimum initial capital x = 3.3909 for α = 0.05, N = 10 and

θ0 = θ1 = 0.1 etc.
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3.3.2 Excess of Loss Reinsurance Case

Again we assume that {Yn}n≥1 is a sequence of claims with iid exponential

Exp(1) and h(b0, y) is the excess of loss reinsurance with retention level b0 = 100.

Let N ∈ {1, 2, 3, . . .} be the time horizon and π = {bn−1 = 100}N
n=1 be stationary.

We choose model parameters as follows: θ0 = θ1 = 0.10 which give c(b0) = 1.1 and

θ0 = θ1 = 0.25 which give c(b0) = 1.25. Moreover, we choose α = 0.05, α = 0.1

and α = 0.2. As a result, we get the table of the minimum initial capital as below:

Table 3.2 Minimum Initial Capital in the Excess of Loss Reinsurance Case

α = 0.05 α = 0.1 α = 0.2

N θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25 θ0 = 0.1 : θ0 = 0.25

10 5.6515 : 4.6424 4.3198 : 3.3973 2.8930 : 2.0936

20 7.4972 : 5.6213 5.8076 : 4.1327 3.9863 : 2.5874

30 8.7396 : 6.1009 6.7911 : 4.4756 4.6913 : 2.8048

40 9.6779 : 6.3692 7.5229 : 4.6605 5.2054 : 2.9174

50 10.4264 : 6.5291 8.0989 : 4.7675 5.6031 : 2.9806

100 12.7273 : 6.7773 9.8169 : 4.9265 6.7452 : 3.0709

200 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

300 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

400 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

500 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

1, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

5, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

10, 000 14.2443 : 6.8135 10.8909 : 4.9484 7.4160 : 3.0828

Table 3.2 shows an approximation of min
x≥0

{x : ΦN(x, π) ≤ α} with m = 25,
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v0 = 0, x0 = 20 as mentioned in Theorem 3.9 and ΦN(x, π) is computed by using

the recursive form as mentioned in equation (3.16). The numerical results in Table

3.2 show a minimum initial capital x = 5.6516 for α = 0.05, N = 10 and θ0 = 0.1,

etc.



CHAPTER IV

CONCLUSIONS

This thesis is devoted to the study of the two different discrete-time surplus

processes: the classical surplus process is considered under the conditions of rein-

surance and shareholder input, and the classical surplus process is considered under

the condition of reinsurance and the inter-arrival times Zn = 1, n ∈ {1, 2, 3, . . .}.
Therefore, the results obtained are separated into two parts.

In the first part, we find formula for the control problem of the discrete-time

surplus process

Xn+1 = Xn + δn + c(bn)Zn+1 − h(bn, Yn+1), n = 0, 1, 2, . . . (4.1)

where X0 = x is an initial capital, {(bn, δn)}n≥0 is the sequence of control actions,

{Zn}n≥1 is the sequence of inter-arrival times and {Yn}n≥1 is the sequence of claims.

We start by imposing assumptions, and we define a plan, the total cost

function and the value function for the time horizon N as follows:

Assumption 4.1. Independence Assumption (IA)

The sequence of inter-arrival times {Zn}n≥1 and the sequence of claims {Yn}n≥1

are iid sequences with finite variances. Moreover, for each n ∈ {1, 2, 3, . . .}, Zn

and Yn are independent.

Definition 4.1. A plan for the time horizon N over a control space U is a (finite)

sequence π = {un}N−1
n=0 of u0 = (b0, δ0) = (b0, 0) and un = (bn, δn) ∈ U for n =

1, 2, 3, . . . , N − 1. The set of all plans for the time horizon N over the space U is

denoted by P(N, U). A plan π ∈ P(N,U) is said to be stationary, if b0 = b1 and

(bn, δn) = (b1, δ1) for n = 1, 2, 3, . . . , N − 1.
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Definition 4.2. Let x ∈ S be an initial state and π = {un}N−1
n=0 ∈ P(N, U) where

N is the time horizon. The total cost function ΦN(x, π) and the value function

VN(x) for the time horizon N are defined by

ΦN(x, π) = E

[
N−1∑
n=0

g(Xn, un) + αN V̂ (XN)|X0=x

]
and

VN(x) = inf
π∈P(N,U)

ΦN(x, π) respectively (4.2)

when αN ∈ (0, 1], Xn’s are random variables which satisfy equation (4.1), g(·, ·) is

a one− period cost function and V̂ (·) is a cost function for time horizon N . A

plan π̃ ∈ P(N, U) is said to be optimal, if inf
π∈P(N,U)

ΦN(x, π) = ΦN(x, π̃).

The main results of this part are summarized as follows:

Remark 4.1. Let π = {(bn, δn)}N−1
n=0 ∈ P(N, U), one gets

ΦN(x, π) =
N−1∑
n=1

δ2
n + αN

{
N−1∑
n=0

{
c2(bn)V ar[Zn+1] + V ar[h(bn, Yn+1)]

}
+ G2

N(x, π)

}

(4.3)

where GN(x, π) = x− A +
N−1∑
n=0

E[L(bn, δn, Yn+1, Zn+1)].

Lemma 4.2. Let x ∈ S be an initial state and A be the target at the time horizon

N . Assume that (N − 1)αN > 1 and let π = {(bn, δn)}N−1
n=0 ∈ P∗(N,U) be such

that δ1 = δ2 = · · · = δN−1 > 0. Then

ΦN(x, π) < ΦN(x, ((b0, 0), (b1, 0), ..., (bN−1, 0)))

where P∗(N, U) = {π ∈ P(N, U)|GN(x, π) = 0}.

Theorem 4.3. Let x ∈ S be an initial state and A be the target at the time

horizon N . Assume that (N − 1)αN > 1. Then there exists π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈

P(N, U)− P∗(N,U) such that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

ΦN(x, π̃) < ΦN(x, ((b̃0, 0), (b̃1, 0), ..., (b̃N−1, 0))).
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Lemma 4.4. Let x ∈ S be an initial state and A be the target at the time horizon

N . Assume that (N − 1)αN > 1. If π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N,U) is an optimal

plan, then δ̃1 = δ̃2 = · · · = δ̃N−1 > 0.

Theorem 4.5. Let x ∈ S be fixed and A be the target at the time horizon N , then

ΦN(x, π) is continuous on P(N, U).

Theorem 4.6. Let x ∈ S be an initial state and A be the target at the time

horizon N . Assume that (N − 1)αN > 1. Then there exists an optimal plan

π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N,U) such that δ̃1 = δ̃2 = · · · = δ̃N−1 > 0 and

VN(x) = (N − 1)δ̃2
1 + αN

{
N−1∑
n=0

V ar[Z1]c
2(b̃n) +

N−1∑
n=0

V ar[h(b̃n, Yn+1)] + G2
N(x, π̃)

}

where GN(x, π̃) = x− A + (N − 1)δ̃1 +
N−1∑
n=0

E[Z1]c(b̃n)−
N−1∑
n=0

E[h(b̃n, Yn+1)].

Corollary 4.7. Let x ∈ S be an initial state and A be the target at the time horizon

N . Assume that (N − 1)αN > 1 and h(b, y) is the proportional reinsurance. Then

there exists an optimal plan π̃ = {(b̃n, δ̃n)}N−1
n=0 ∈ P(N, U) such that π̃ is stationary

and

VN(x) = (N − 1)δ̃2
1 + αN

{
Nc2(b̃0)V ar[Z1] + Nb̃2

0V ar[Y1] + G2
N(x, π̃)

}

where GN(x, π̃) = x− A + (N − 1)δ̃1 + Nc(b̃0)E[Z1]−Nb̃0E[Y1].

In the second part, we find the relationship between the initial capital and

ruin probability of the discrete-time surplus process

Xn = x +
n∑

i=1

c(bi−1)−
n∑

i=1

h(bi−1, Yi) (4.4)

where X0 = x is an initial capital.

Again we start by imposing assumption, define a plan for the time horizon

N and define the minimum initial capital as follows:
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Assumption 4.2. Independence Assumption (IA)

The claims {Yn}n≥1 form an independent and identically distributed (iid) sequence

of random variables.

Definition 4.3. Let N ∈ {1, 2, 3, . . .} be a time horizon (number of periods).

A plan for the time N is a (finite) sequence π = {bn−1}N
n=1 of bn−1 ∈ [b, b] for

n = 1, 2, 3, . . . , N . A set of all plans for the time horizon N over control space

[b, b] is denoted by P(N, [b, b]). A plan π ∈ P(N, [b, b]) is said to be stationary, if

b0 = b1 = · · · = bN−1.

Define the survival probability and the ruin probability at a time n ∈
{1, 2, 3, . . . , N} as follows :

ϕn(x, π) := P (X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, . . . , Xn ≥ 0|X0 = x) (4.5)

and

Φn(x, π) = 1− ϕn(x, π). (4.6)

where N ∈ {1, 2, 3, . . .} is a time horizon, π ∈ P(N, [b, b]) and x ≥ 0 is an initial

capital.

Definition 4.4. Let {Xn, n ≥ 0} be the surplus process as in equation (5.4) which

is driven by the sequence of control actions {bn−1, n ≥ 1} and the sequence of claims

{Yn, n ≥ 1}. Let {c(bn−1)}n≥1 be the sequence of the net income rates and x ≥ 0 be

an initial capital. For each the time horizon N ∈ {1, 2, 3, . . .}, let π ∈ P(N, [b, b])

and α ∈ (0, 1). If ΦN(x, π) ≤ α, then x is called an acceptable initial capital

corresponding to (α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1). Particularly, if

x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}

exists, x∗ is called the minimum initial capital corresponding to

(α, N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1) and is written as

x∗ := MIC(α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).
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Definition 4.5. (Sub-adjustment coefficient). Let s > 0 and Y be a non-negative

random variable. If there exists d0 > 0 such that

E
[
ed0Y

] ≤ ed0s, (4.7)

then d0 is called a sub-adjustment coefficient of (s, Y ). Specifically, if (5.5) is an

equality then d0 is called an adjustment coefficient of (s, Y ).

The main results of this part are summarized as follows:

Theorem 4.8. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), and let x ≥ 0 be given.

Then

lim
x→∞

ϕN(x, π) = 1 and lim
x→∞

ΦN(x, π) = 0.

Corollary 4.9. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]), α ∈ (0, 1). Then there

exists the smallest x̃ ≥ 0 such that, for all x ≥ x̃, x is an acceptable initial capital

corresponding to (α,N, {c(bn−1)}n≥1, {h(bn−1, Yn)}n≥1).

Lemma 4.10. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1), and

let x ≥ 0 be given. Then the ruin probability at the time N satisfies the following

equation

ΦN(x, π) = Φ1(x, π)+

∫

{y:0≤h(b0,y)≤x+c(b0)}

ΦN−1(x+c(b0)−h(b0, y), π)dFY1(y) (4.8)

where Φ0(x, π) = 0.

Theorem 4.11. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, and let

c(b0) > 0 be a net income rate. If d0 > 0 is a sub-adjustment coefficient of

(c(b0), h(b0, Y1)), then

Φn(x, π) ≤ e−d0x, (4.9)

for all x ≥ 0 and all n = 1, 2, 3, . . . , N.
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Corollary 4.12. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) be stationary, α ∈ (0, 1),

and let c(b0) > 0 be a net income rate. Assume that d0 > 0 is a sub-adjustment

coefficient of (c(b0), h(b0, Y1)), then there exists an acceptable initial capital x(x ≥
0) corresponding to (α, N, {c(bn−1) = c(b0)}n≥1, {h(b0, Yn)}n≥1) such that

0 ≤ x ≤ − lnα

d0

or α ≤ e−d0x.

Theorem 4.13. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Then

there exists x∗ ≥ 0 such that

x∗ = min
x≥0

{x : ΦN(x, π) ≤ α}.

Theorem 4.14. Let N ∈ {1, 2, 3, . . .}, π ∈ P(N, [b, b]) and let α ∈ (0, 1). Assume

that v0, x0 ≥ 0 such that v0 < x0. Let {vm}m≥1 and {xm}m≥1 be two real sequences

defined by





vm = vm−1 and xm =
xm−1 + vm−1

2
, if ΦN

(
xm−1 + vm−1

2
, π

)
≤ α

vm =
vm−1 + xm−1

2
and xm = xm−1, if ΦN

(
xm−1 + vm−1

2
, π

)
> α

for all m = 1, 2, 3, . . .. If ΦN(x0, π) ≤ α < ΦN(v0, π), then

lim
m→∞

xm = min
x≥0

{x : ΦN(x, π) ≤ α} = x∗.
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APPENDIX A

PRELIMINARY ON FINANCIAL RISK

MANAGEMENT

A.1 Financial Risk

Financial risk has traditionally been separated into market risk, credit risk,

operational risk and liquidity risk. Moreover, at present, as the insurance industry

(non-life and life insurance) has grown at a faster pace in many countries over the

world, for insurance business we also need to be concerned about insurance risk.

• Market risk is the risk due to the fluctuations of market variables. It is the

best known type of risk in the banking and securities industry. It is the risk

of a change in value of a financial position due to changes in the value of

the underlying assets on which that position depends, such as cash products

(equities, bond), derivatives (plain vanilla, exotics), interest rates, foreign

exchange (FX) rates, commodities, etc. Each area will have its own specific

risk management requirement.

• Credit risk, or default risk, is the possibility that a counterparty will be

unable to satisfy the contracts. In the U.S., many default risks are monitored

by credit rating firms such as Standard & Poor’s, Moody’s, or some other

rating agencies. Investors control default risk by monitoring the ratings of

the bonds they hold or consider for a purchase.

• Operational risk: A better definition is provided by the Basel Committee of
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Banking Supervision. The risk of loss resulting from inadequate or failed in-

ternal processes, people and systems or from external events. This definition

includes legal risk, but excludes strategic and reputational risk.

• Liquidity risk means risk resulting from a financial institution’s failure to

pay its debts and obligations because of its inability to convert assets into

cash, or its failure to procure enough funds, or if it can, that the funds come

with an exceptionally high cost that may effect the institution’s income and

capital fund now or in the future.

• Insurance risk is concerned with the possibility that an insurance company

does not have enough funds to pay compensations to its costomers, and cause

for insolvency occurs when its surplus becomes negative.

Risk models have attracted much attention in the insurance business, in

connection with the possible insolvency and the capital reserve of a insurance

company.

A.2 Regulatory Framework on Finance

∗In the past one would rely to a large extent on self-regulating or local reg-

ulations, since there were rules. However, 20th century has seen key developments

leading to the present regulatory risk management framework.

Much of the regulatory drive originated from the Basel Committee of Bank-

ing Supervision. In 1974, this committee was established by the Central-Bank

Governors of the Group of Ten (G-10) which consists of Belgium, Canada, France,

Italy, Germany, Japan, The Netherlands, Sweden, The United Kingdom and The

United States. The Group of Ten is made up (oddly) of eleven industrial countries

∗This exposition follows McNeil et al.(2005)
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which consult and cooperate on economic, monetary and financial matters. The

Basel Committee does not possess any formal supranational supervising authority,

and hence its conclusions do not have legal force. Rather, it formulates broad su-

pervisory standards and guidelines and recommends statements of best practice in

the expectation that an individual authorities will take steps to implement them

through detailed arrangements–statutory or otherwise–which are best suited to

their own national systems.

A.2.1 The First Basel Accord (Basel I)

In 1988, the first Basel Accord (Basel I) was born by the Basel Committee

of Banking Supervision. Basel I took an important step towards an international

minimum capital standard. Its main emphasis was on credit risk, by then clearly

the most important source of risk in the banking industry. In hindsight, how-

ever, Basel I took an approach which was fairly coarse and measured risk in an

insufficiently differentiated way. Also its treatment of derivatives was considered

unsatisfactory.

In 1993, the G-30 (an influential international body consisting of senior

representatives of the private and public sectors and academia) published a sem-

inal report addressing for the first time so called off-balance-sheet products in a

systematic way, as presented below.
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Figure A.1 Balance Sheet

Around the same time, the banking industry clearly saw the need for a proper

risk management of these new products. At J.P. Morgan, for instance, the famous

Weatherstone 4.15 report asked for a one-day, one-page summary of the bank’s

market risk to be delivered to the chief executive officer (CEO). Value-at-Risk

(VaR) as a market risk measure was born.

In a highly dynamic world with round-the-clock market activities, the need

for instant market valuation of trading positions (known as marking-to-market)

became a necessity. Moreover, in markets where so many positions (both long

and short) were written on the same underlying, managing risks based on simple

aggregation of nominal positions became unsatisfactory. Banks are pushed to

consider netting effects, i.e. the composition of long versus short positions on the

same underlying.

In 1996, an important Amendment to Basel I prescribed a so called

standardized model for market risk, but at the time allowed bigger (more so-

phisticated) banks to opt for an internal, VaR based model. Legal implementa-

tion was to be achieved by the year 2000. The coarseness problem for the credit

risk remained unresolved and banks continued to claim that they were not given

enough incentives to diversify credit portfolios and that the regulatory capital

rules currently in place were far too risk insensitive. Because of overcharging

on the regulatory capital side of certain credit positions, banks started shifting
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business away from certain market segments that they perceived offering a less

attractive risk-return profile.

A.2.2 The Second Basel Accord (Basel II)

In 2001, the second Basel Accord (Basel II) was initiated. The main theme

of this accord consisted of three pillars which cover market risk, credit risk, oper-

ational risk, liquidity risk and insurance risk as follows :

• Pillar I. Banks are required to calculate a minimum capital charge, referred

to as regulatory capital, with the aim of bringing the quantification of this

minimal capital more in line with the bank’s economic loss potential. Under

the Basel II framework, there will be a capital charge for credit risk, market

risk, insurance risk, liquidity risk, and operational risk. Whereas the treat-

ment of market risk is unchanged relative to the 1996 Amendment of the

Basel I capital accord, the capital charge for credit risk was revised substan-

tially. In computing the capital charge for credit risk and operational risk,

banks may choose between three approaches of increasing risk sensitivity and

complexity.

• Pillar II. A quantitative approach to risk management should be embedded

in a well-functioning corporate governance structure. The best practice risk

management imposes clear constraints on the organization of the institu-

tion, i.e. the board of directors, management, employees, and internal and

external audit processes. In particular, the board of directors assumes the

ultimate responsibility for oversight of the risk landscape and the formula-

tion of the company’s risk appetite.

It should be note that this pillar is related to the supervisory review process,
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local regulators review the various checks and balances put into place. This

pillar recognizes the necessity of an effective overview of the bank’s inter-

nal assessments of their overall risk, and ensures that management requites

effective and had set aside adequate capital for the various risks.

• Pillar III. This pillar seeks to establish market discipline through a better

public disclosure of risk measures and other information relevant to risk

management. In particular, banks have to offer greater insight into the

adequacy of their capitalization.

The three-pillar concept is a key conceptual change within the Basel II framework.

In spite of this concept, the Basel Committee aims to achieve a more holistic

approach to risk management that focuses on the interaction between the differ-

ent risk categories. At the same time the three-pillar concept clearly signals the

existing difference between quantifiable and non-quantifiable risks.

Figure A.2 The Three-Pillars in the Basel II Framework
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A.2.3 Solvency I and II

†The first EU non-life and life directives on solvency margins appeared

around 1970 and in Basel I was defined as an extra capital buffer against unfore-

seen events such as higher than expected claims levels or unfavourable investment

results. In 1997, the Muller report appeared under the heading ”Solvency of in-

surance undertaking” leading to a review of the solvency rules and initiated the

Solvency I project, which was completed in 2002 and came into force in 2004.

Meanwhile, Solvency II was initiated in 2001 with the publication of the influen-

tial Sharma report; the detailed technical rules of Solvency II are currently being

worked out.

At the heart of Solvency II lies a risk-oriented assessment of overall solvency,

honoring the three-pillar concept from Basel II. Insurers are encouraged to measure

and manage their risks based on internal models. Consistency between Solvency

II (Insurance) and Basel II (Banking) is adhered to as much as possible. The new

framework should allow an efficient supervision of insurance groups (holding) and

financial conglomerates (bank-assurance).

The EU Insurance Solvency Sub-Committee (2001) focuses on the differ-

ences between the Basel II and Solvency II framework as illustrated in the following

statement:

The difference between the two prudential regimes goes further in that their actual

objectives differ. The prudential objective of the Basel Accord is to reinforce the

soundness and stability of the international banking system. To that end, the ini-

tial Basel Accord and the draft New Accord are directed primarily at banks that are

internationally active. The draft New Accord attaches particular importance to the

self-regulating mechanisms of a market where practitioners are dependent on one

†This exposition follows McNeil et al.(2005)
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another. In the insurance sector, the purpose of prudential supervision is to pro-

tect policyholders against the risk of (isolated) bankruptcy facing every insurance

company. The systematic risk, assuming that it exists in the insurance sector, has

not been deemed to be of sufficient concern to warrant minimum harmonisation of

prudential supervisory regimes at international level; nor has it been the driving

force behind European harmonisation in this field.

More so than in the case of banking regulation, the regulatory framework

for insurance companies has a strong local flavour since many local statutory rules

prevail. The various solvency committees in EU member countries and beyond are

trying to come up with some global principles which would be binding on a larger

geographical scale. Furthermore, the difference between the Basel II and Solvency

II framework results in an increased harmonization of supervisory methodology

between the different legislative entities, based on a wide international cooperation

with actuarial, financial, and accounting bodies.

In principle on solvency II, all risks under Basel II are to be analysed in-

cluding underwriting; credit risk, market risk, insurance risk, operational risk and

liquidity risk. Strong emphasis is put on the modelling of interdependencies and

a detailed analysis of street tests. The system should be as much as possible prin-

ciple based rather than rule based and there should be prudent regulation which

focus on the total balance sheet, handing assets and liabilities in a single common

framework.

The final decision on Solvency I and II is based on a two-tier procedure. This

involves setting a first safety barrier at the level of the so-called target capital based

on risk sensitive, market-consistent valuation. Breaches of this early-warning level

would trigger regulatory intervention. The second and final tier is the minimum

capital level calculated with solvency rules satisfy the following :
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• Tier I is a capital which meets the following criteria in full:

(i). Subordination to policyholder liabilities.

(ii). Fully available to absorb losses in the event of a winding up.

(iii). Fully available to absorb losses in a going concern situation.

(iv). Of substantially sufficient duration given the nature of the liabilities.

(v). Free of mandatory servicing costs.

• Tier II is a capital which meet other points except the once listed above.

The amount of Tier II capital is not to exceed Tier I capital.

A.3 The Shareholder’s View

‡It is widely believed that proper financial risk management can increase

the value of a corporation and hence shareholder value. In fact, this is the main

reason why corporations which are not subject to regulation by financial supervi-

sory authorities engage in risk management activities. Understanding the relation-

ship between shareholder value and financial risk management also has important

implications for the design of risk-management (RM) systems. Questions to be

answered include the followings.

• When does RM increase the value of a firm, and which risks should be

managed?

• How should RM consider factors concerning investment policy and capital

budgeting?

‡This exposition follows McNeil et al.(2005)
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There is a rather extensive corporate finance literature on the issue of corporate

risk management and shareholder value. We briefly discuss some of the main

arguments. In this way we hope to alert the reader to the fact that there is more

to RM than the mainly technical questions related to the implementation of RM

strategies dealt.

The first thing to note is that from a corporate-finance perspective, it is

by no means obvious that in a world with perfect capital markets RM enhances

shareholder value. While individual investors are typically risk averse and should

therefore manage the risk in their portfolios, it is not clear that RM or risk reduc-

tion at the corporate level, such as hedging a foreign-currency exposure or holding

a certain amount of risk capital, increase the value of a corporation. The rationale

for this-at first surprising-observation is simple. If investors have access to perfect

capital markets, they can do the RM transactions they deem necessary via their

own trading and diversification. The following statement from the chief invest-

ment officer of an insurance company exemplifies this line of reasoning:

If our shareholders believe that our investment portfolio is too risky, they should

short futures on major stock market indices.

The potential irrelevance of corporate RM for the value of a corporation is

an immediate consequence of the famous Modigliani-Miller Theorem (Modigliani

and Miller, 1958). This result, marking the beginning of modern corporate finance

theory, that, in an ideal world without taxes, bankruptcy cost and informational

asymmetries, with frictionless and arbitrage-free capital markets, the financial

structure of a firm and hence also its RM decisions-are irrelevant for the firm’s

value. Hence, in order to find reasons for corporate RM, one has to ”turn the

Modigliani-Miller Theorem upside down” and identify situations where RM en-

hances the value of a firm by deviating from the unrealistically strong assumptions
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of the theorem. This leads to the following rationale for RM.

• RM can reduce tax costs. Under a typical tax regime the amount of tax to

be paid by a corporation is a convex function of its profits. By reducing the

variability in a firm’s cash flow, RM can therefore lead to a higher expected

after-tax profit.

• RM can be beneficial, since a company may (and usually will) have better

access to capital markets than individual investors.

• RM can increase a firm’s value in the presence of bankruptcy costs, as it

makes bankruptcy less likely.

• RM can reduce the impact of costly external financing on the firm’s value,

as it facilitates the achievement of optimal investment.

The last two points merit a more detailed discussion. Bankruptcy costs consist

of direct bankruptcy costs, such as the cost of lawsuits, and the more important

indirect bankruptcy costs. The latter may include liquidation costs, which can be

substantial in the case of intangibles like research and development (R&D) and

know-how. This is why high R&D spending appears to be positively related to

the use of RM techniques. Moreover, increased likelihood of bankruptcy often

has a negative effect on key employees, management, and customer relations, in

particular in areas where a client wants a long-term business relationship. For

instance, few customers would want to enter into a life insurance contract with an

insurance company which is known to be close to bankruptcy. On a related note,

banks which are close to bankruptcy might be faced with the unpalatable prospect

of a bank run, where depositors try to withdraw their money simultaneously.
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A.4 Economic Capital

§Economic capital is the capital that shareholders should invest in the com-

pany in order to limit the probability of default to a given confidence level over a

given time horizon. More broadly, economic capital offers a firm-wide language for

discussing and pricing risk related directly to the principle concerns of manage-

ment and other key stakeholders; namely, institutional solvency and profitability.

In this broader sense, economic capital represents the emerging best practice for

measuring and reporting all kinds of risk across a financial organization.

Economic capital is so called because it measures risk in term of economic

realities rather than potentially misleading regulatory or accounting rules. More-

over, part of the measurement process involves converting a risk distribution into

the amount of capital that is required to support the risk, in line with the insti-

tution’s target financial strength (e.g. credit rating). Hence, the calculation of

economic capital is a process that begins with the quantification of the risks that

any given company faces over a given time period. These risks include those that

are well-defined by a regulatory point of view, such as credit risk, market risk,

insurance risk and operational risk, and also include other categories like liquidity

risk, reputational risk and strategic or business risk.

§This exposition follows McNeil et al.(2005)
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