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The tunneling spectroscopy of a metal/ferromagnet junction are theoretically

studied using a scattering matrix approach. In one-band model, there is a change

in slope of the conductance spectrum at the energy equivalent to the bottom of the

minority band. In the absence of interfacial spin-flip scattering, the normal scattering

always suppress the conductance spectrum. But when the spin-flip scattering exists,

the conductance spectrum is enhanced to a maximum value. The spin polarization of

current in the metallic regime is increased with the strength of the spin-flip scattering

to a maximum value. In the tunneling regime, the 1D spin polarization of current is

weakly dependent on the strength of the spin-flip scattering. On the contrary, the

2D and 3D spin polarization of current is increased with the strength of the spin-flip

scattering until it reaches a higher maximum value than in the metallic limit. In

two-band model, s-band and d-band coupling is considered. The spin-flip scattering

is ignored. If the coupling is zero, the two bands can cross at some points in the

energy spectra. When the coupling between bands is non-zero, a gap is opened up at

the crossing points. There are kinks appearing in the density of states corresponding

to the crossing points. In both regimes, the conductance is largest, when the effective

mass of electron in the majority band of the ferromagnet material is about the same

as that of metal.
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CHAPTER I

INTRODUCTION

1.1 Motivation

In the past three decades, an exciting field called spintronics has emerged. It

involves the study of using electron spin, in addition to charge, to control the motion

of electron (Prinz, 1959; Žutić et al., 2004; Fert, 2008). Among many applications of

spintronics devices are the read heads of hard disks greatly contributed to the fast

rise in the density of stored information and led to the extension of the hard disk

technology to consumer’s electronics. These devices are constructed from layers of

alternating ferromagnetic and non-magnetic materials, which exhibit giant magne-

toresistance (GMR)(Binasch et al., 1989; Baibich et al., 1988). That is, the resistance

of the layers strongly depends on the magnetization direction in the magnetic layers.

The resistance is much larger when the magnetizations of the two adjacent magnetic

layers are opposite in direction than when they are in the same direction.

Since the discovery of GMR, the electron charge and spin transport properties

across the interface between metal and ferromagnetic material have been extensively

studied. Theoretical calculations of this type of junction have assumed one-band

dispersion model for ferromagnet. For instance, in the study of Andreev reflection

at a ferromagnet/superconductor interface (Kashiwaya et al., 1999; de Jong and

Beenakker, 1995), it was found that the Andreev reflection can occur at the inter-

face and is strongly affected by the exchange energy of the ferromagnet. The dou-

ble junction systems of ferromagnet/superconductor/ferromagnet are also studied by

many groups (Yamashita et al., 2003; Dong et al., 2003; Dong et al., 2002; Božović

and Radović, 2002). They studied the effect of different parameters on charge and
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spin transport of this system. It was mainly found that if the thickness of the su-

perconducting layer is less than the coherence length of the superconductor, then

the spin polarization is unaffected by the superconducting layer (Yamashita et al.,

2003). Thus, to obtain a high spin polarization of conductance, one needs to make

the superconducting layer thinner than its coherence length. In the study of ferro-

magnet/metal/superconductor double junctions by Ohtori and Imamura (Ohtori and

Imamura, 2009), it was found that the exchange energy and the spin polarization of

a ferromagnet can be determined from the period of the conductance oscillation.

The conductance spectra in ferromagnet and other materials like two-

dimensional electron gas with Rashba spin-orbit coupling were also studied within

one-band approximation model (Larsen et al., 2002; Matsuyama et al., 2002). It was

found that the conductance spectra can be modulated by either changing the mag-

netization directions or the Rashba coupling strength. In all of the above studies, it

was assumed that the itinerant electrons come from the d band and those from the

s band are completely neglected because the density of states of d-band electrons is

much larger than that of the s-band electrons (Matsuyama et al., 2002; Petrovykh

et al., 1998; Stoner, 1938; Stoner, 1933). Therefore, the conductivity and magnetism

properties are mainly as a result of these electrons. In addition, the exchange energy,

the splitting between the energies of the majority-spin electrons and minority-spin

electrons, in the d-band Ed
ex is much larger than that in the s-band Es

ex as illustrated,

in Figures 1.3 - 1.4 (Nautiyal and Auluck, 1986; Nautiyal and Auluck, 1985; Turner

et al., 1984; Callaway and Wang, 1977; Wang and Callaway, 1977; Pessa et al., 1975;

Batallan et al., 1975; Wang and Callaway, 1974; Mijnarends, 1973; Zornberg, 1970).

However, the existence of the s-band electrons can affect the transport properties in

some cases and it is worth considering.

The band structure calculations of two ferromagnets Fe and Ni are shown in

Figures 1.3 - 1.4. As can be seen in both figures, there are coupling regions between
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the s-band and d-band energy dispersions near the Fermi level, called s-d mixing.

In these figures, the band structures are shown along the most important lines of

symmetry in the Brillouin zone. We can distinguish parabola, starting from Γ and

continuing above EF . Consequently, they represent the band of the 4s electrons,

which overlaps the band of 3d electrons and the Fermi energy lies in both bands. So

that, s-d mixing is inevitable.

There are other ferromagnets found in the recent experiments. For instance,

Ga1−xMnxAs exhibits hysteretic electroluminescence polarization (Ohno et al., 1999).

Technically, in this ferromagnetic semiconductor the Fermi level and the exchange

energy can be changed by changing doping concentration (Petrovykh et al., 2007).

This means the electrons from the s band can also conduct electricity in this material

and both s-band and d-band electrons can affect the electronic properties.

The main focus of this work is to take into account both s and d-band electrons

by developing an alternative way, a two-band approximation, to study transport

properties of a metal/ferromagnetic material junction. In particular, we will give the

answers to the following main questions.

• When do we need a two-band model in describing a ferromagnetic material?

• What are the new features detectable in charge transport when a two-band

model is included?

Two-band model has been used in other materials like Y1−yCayBa2Cu3O1−δ

(YBCO with Ca-doping) (Pasanai and Atkinson, 2010; Ngai et al., 2007). K. Pasanai

and W. A. Atkinson showed that chain (one-dimensional system of CuO) can become

superconductivity due to the proximity (coupling) effect between chain and plane

(two-dimensional system of CuO2) layers. Consequently, the effect of the coupling

strength between chain and plane layers makes the energy dispersion of a chain and a

plane layer change. This change strongly depends on how big of the coupling strength

between bands. This idea is very similar to what happen in ferromagnetic materials.
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Figure 1.1 As the interatomic distance d is decreased to d0, the 4s and 3d levels
form energy bands. Taken from Solid State Physics (Ashcroft and Mermin, 2003).

The physics of a coupling between energy bands in a solid can be understood

as follows. When two atoms are brought close together to form a solid, the positions

of the energy levels are modified. When two atoms are well separated, their, for

example, 1s shells (each containing two electrons) have exactly the same energy.

When they are closer, their electron clouds begin to overlap and the 1s shells are now

split into two levels with two electrons in each. When N atoms come together, these

shells from N atoms will form bands, N levels packed closely each other. The extent

of the splitting between each level is different for a different shells as indicated in

Figure 1.1. In transition elements, the outermost electrons in the transition elements

are in 3d and 4s shells, and when they are brought together until the interatomic

distance is d0, they are the first to overlap and the corresponding levels form a band

as shown in the figure. The 3d band is narrower than the 4s band because the 4s

electrons are farther from the nucleus. Technically, experimental evidence for above

statements was found by the X-ray emission spectra of solid metal (Piper et al., 2010;

Kobayashi et al., 2008; Okabayashi et al., 2001; Fujioka et al., 1997).
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3d 4s

E

Zn

Cu

Ni
Co
Fe
Mn

N(E) N(E)

Figure 1.2 Schematic description of the density of states of 3d (wide) and 4s (narrow)
bands. Taken from Solid State Physics (Ashcroft and Mermin, 2003).

Figure 1.3 Band structure of Fe. Solid lines refer to energy dispersion of spin-up
(majority spin band) while dash lines refer to spin-down band (minority spin band).
The data are taken from J. Callaway and C. S. Wang (Callaway and Wang, 1977).
The exchange energy Eex in each band can be fitted from this figure. The s band is
indicated by number 1, while number 2 or 3 refers to the d band. The hybridization
between s-band and d-band occurs around the energy around -0.7 - -0.8 Rydberg.
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Figure 1.4 Band structure of ferromagnetic Ni. Solid lines refer to energy dispersion
of spin-up (majority spin band) while dash lines refer to spin-down band (minority
spin band). The hybridization region occur around Fermi level. The data are taken
from J. Callaway and C. S. Wang (Wang and Callaway, 1977).

Figure 1.5 Brillouin zone of (a) fcc ferromagnetic and (b) bcc ferromagnetic Fe.
Taken from Solid State Physics (Ashcroft and Mermin, 2003).
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Table 1.1 Valence electron distribution in 3d and 4s shells in some transition ele-
ments.

Number of electrons in Shell Ti V Cr Mn Fe Co Ni

3d 2 3 5 5 6 7 8

4s 2 2 1 2 2 2 2

Table 1.2 Saturation magnetization in 3d metals, where n is the number of electron
per atom of 3d and 4s, the magnetic moments per atom is expressed by µH . The
data are taken from Introduction to Magnetic Materials (Cullity and Graham, 2008).

Mn Fe Co Ni Cu

n 7 8 9 10 11

µH (observed) (µB/atom) 0 2.22 1.72 0.60 0

µH (calculated) (µB/atom) 3.60 2.60 1.60 0.60 -0.40

In Figures 1.3 - 1.4, the band structures of Fe and Ni are shown respectively.

It can be seen that the exchange energy of Fe is larger than that of Ni. The dispersion

relations in Figures 1.3 - 1.4 also show that the exchange energy (the energy between

spin-up and spin-down) at the bottom of the d band are larger than that in the s

band, but they are almost the same value at the hybridization region (the mixing

between s-band and d-band region).

A short conclusion here is that the tunneling spectroscopy calculations in the

past were only considered the electrons that live near the Fermi level and carry a large

magnetization. Because of this reason, the electrons from the s band are completely

neglected in those calculations. Interestingly, if the Fermi level and exchange splitting

in the s band Es
ex can be changed in a ferromagnet semiconductor, by changing doping

concentration, then the electron from this band has to be taken into account in the

calculation. In this thesis, the tunneling spectroscopy of ferromagnetic materials will

be studied using a two-band (s-d mixing) model.
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1.2 Outline of thesis

The main focus of this thesis is to use an alternative model to study of the

tunneling spectroscopy of ferromagnetic materials. The main calculations concern

with the density of states and the conductance spectra of a hybridization between

s-band and d-band dispersion relations (s-d mixing) within the free electron approx-

imation model. The main results of these calculations will be compared with those

from one-band model.

This thesis is organized as follows. In Chapter II, we use one-band model

to consider the effect of dimensionality and spin-flip scattering on charge and spin

transport of metal/ferromagnetic material junction. In Chapter III, we consider s-d

mixing model and calculate basic physical properties of a ferromagnet like, the en-

ergy dispersion relation and the density of states. We look into how the s-d coupling

strength affect these properties. In Chapter IV, we calculated the tunneling spec-

troscopy of the junction using the two-band approximation. Finally, the conclusions

of this thesis are addressed in the last Chapter.

 

 

 

 

 

 

 

 



CHAPTER II

CHARGE AND SPIN TRANSPORT OF M/FM

JUNCTION WITHIN A ONE-BAND MODEL

2.1 Introduction

Since the discovery of giant magnetoresistance, the electron charge and spin

transport properties across metal/ferromagnetic material (M/FM) interface have

been extensively studied (Fert, 2008; Grunberg, 2008). It is known that the mov-

ing magnetization of a ferromagnet pumps a spin current into the attached metal

(Tserkovnyak et al., 2002). Nonetheless, conversion of excess spins occurs even when

the interface is transparent and results in a spin accumulation that decays over the

spin-flip diffusion lengths in both materials (van Son et al., 1987). This effect causes

the spin-coupled interface resistance (Jedema et al., 2003), and makes the spin dif-

fusion length in the ferromagnetic material the limiting factor to obtain a large spin

polarization. This problem, called the conductivity mismatch, leads to the poor effi-

ciency of spin injection from a metallic ferromagnet into a semiconductor (Schmidt

et al., 2000; Filip et al., 2000). Surprisingly, a way to enhance the efficiency is to

insert a thin insulating layer between the two materials (Filip et al., 2000; Fert and

Jaffrès, 2001; Rashba, 2000). The inserted layer acts as a tunnel barrier for the

electrons to scatter without spin flipping. These studies suggest that the interface

properties play a crucial role in determining the efficiency of both charge and spin

transport.

In addition to the non-spin-flip scattering, electrons can undergo a spin-flip

scattering at the interface as well. This type of scattering can be created by embed-
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ding magnetic impurities at the interface (Guinea, 1998; Lyu et al., 1998; Jansen and

Moodera, 2000; Vedyayev et al., 2001). In the presence of spin-flip scattering, spin-up

and spin-down states are coupled and there are some consequences of this coupling.

For instance, the non-spin-flip scattering, when present alone, is found to suppress

the conductance of a metal/two-dimensional electron gas junction. However, when

the spin-flip scattering is also present, the conductance can be increased with the

strength of the non-spin-flip scattering (Srisongmuang et al., 2008). Similarly, in the

study of the tunneling magnetoresistance of a nonmagnetic metal island sandwiched

by two ferromagnetic electrodes, asymmetry between the interface spin-flip strengths

of spin-up and spin-down electrons can result in an enhancement in the tunnel mag-

netoresistance (Ma et al., 2009; Ma et al., 2010). In a FM/SC junction, the absence of

current perpendicular to the plane magnetoresistance was predicted due to Andreev

reflection at the interface in phase coherent theory (Taddei et al., 1999). This predic-

tion was in contradiction with what was observed in magnetic multilayers sandwiched

between superconducting electrodes (Pratt et al., 1991). By an inclusion of a small

amount of interfacial spin-flip scattering, the giant magnetoresistance effect with a

superconductor contact can be explained (Wang et al., 2010).

In this chapter, using a scattering theory, we study the impact of the interfacial

spin-flip scattering on charge and spin transport across M/FM interface in one, two

and three-dimensional systems. Specifically, we calculate their total conductance and

the spin polarization of conductance spectra and current. As in previous work on a

metal/Rashba system junction (Srisongmuang et al., 2008), in some circumstances

we find the spin-flip scattering can help increase both the total conductance and

spin-polarization of conductance. Whereas the behavior of the enhancement of the

total conductance are similar in all dimensional cases, for the spin polarization of

conductance the behavior of its enhancement in one-dimensional (1D) system is very

different from that in two-dimensional (2D) and three-dimensional (3D) systems.
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Figure 2.1 The sketches of (a) the geometries of 1D, 2D, and 3D M/FM junctions,
and (b) the energy spectra of electrons in a metal (left) and in a ferromagnetic ma-
terial (right). EF , Eex, and E0 are the Fermi energy of the metal, the ferromagnetic
exchange energy and the off-set energy, respectively. The zero is set to be the Fermi
level of the metal. The circles, with arrows pointing left or right, represent same-
energy quasiparticle states that are considered in the scattering process. a and b
denote the incident and reflected states, spin orientation of which can be either up
or down. c and d are the spin down and spin up outgoing states, respectively.

2.2 Model and formulation

2.2.1 The wave functions

In this work, M/FM junction system is illustrated in Figure 2.1. In this figure,

a normal metal is in x < 0 region while a ferromagnet is in x > 0 region, each of

which can be represented by an infinite 1D, 2D, and 3D dimensional systems. The

current in the system flows along the x direction. For simplicity, the potential at

the interface is modeled by the Dirac delta function. The spin-flip scattering at the
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interface is also considered in this study. In the calculation, we consider the ballistic

regime and only use the one-band approximation.

The Hamiltonian of the system is given by the following expression.

H(x) =

(−~2

2
~∇ 1

m(x)
~∇+ V (x, y, z)

)



1 0

0 1


 + Eexm̂ · σ̂ (2.1)

where ~∇ = x̂ ∂
∂x

is for 1D system, ~∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

is for 2D system, and ~∇ =

x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

is for 3D system. The effective mass m(x) is position dependent:

[m(x)]−1 = m−1Θ(−x) + (m∗)−1Θ(x), (2.2)

where m and m∗ are electron effective masses in the metal and the ferromagnet,

respectively, and Θ(x) is the Heaviside step function. The potential barrier is modeled

by

V (x, y, z) = Uδ(x) + E0Θ(x)− EF Θ(−x), (2.3)

where U =




u↑↑ u↑↓

u↓↑ u↓↓


 refers to the scattering potential at the interface, δ(x) is

the Dirac delta function, E0 is the off-set energy of ferromagnetic system, and EF is

Fermi energy in the metal side (see Figure 2.1 for illustration). The exchange energy

in the ferromagnet is represented by Eex. The value of E0 dictates the energy-state

occupancy of electrons in the ferromagnet. That is, when E0 ≥ Eex, all the energy

states are unoccupied, but when E0 ≤ Eex they are partially occupied. When we

consider the conductance spectrum due to applied electric potential energy, the value

of E0 will shift the conductance feature along the applied potential energy axis. In

order to see all features coming from the ferromagnetic energy bands, we henceforth

set E0 = Eex. The vector m̂ denotes the unity vector of the magnetization in the

ferromagnetic electrode. In this work, the spin-quantization axis is chosen in the ẑ
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direction and all spin states are expressed in the basis




1

0


 ,




0

1


 of the eigenstates

with respect to the Pauli matrices σz.

For the injection of a given spin degree of freedom from a metal side, the

wave function in each region can be written as the linear combination of the injected,

and either the reflected or the transmitted eigenstates. Electrons with spin-up and

spin-down are equally likely to be injected from the metal side. The wave functions

in metal have the following forms.

Ψ
(1)
M (~r) =







1

0


 eiqxx +




r
(1)
q↑

r
(1)
q↓


 e−iqxx


 ei~q‖·~r‖ (2.4)

Ψ
(2)
M (~r) =







0

1


 eiqxx +




r
(2)
q↑

r
(2)
q↓


 e−iqxx


 ei~q‖·~r‖ (2.5)

where r
(i)
qσ are the amplitudes of reflected states with spin σ for the incident state

with spin-up (i = 1) and spin-down (i = 2) and r‖ is a position vector along the line

or plane of the interface, depending on the dimensionality of the system. In 1D case,

qx = q and q‖ = 0. In 2D case, qx = qcosφq, and q‖ = q sin φq, where φq are the angle

between the wave vectors q and the +x direction. In 3D case, qx = q sin θqcosφq and

q‖ = ẑqcosθq + ŷq sin θq sin φq, where θq is the angle between the wave vector q and

the +z direction and φq is the angle between the projection of the wave vector q on

the xy plane and the +x direction.

Similarly, due to the ballistic scattering, we obtain the quasiparticle wave

function in the ferromagnetic region as a linear combination of two outgoing states

with the same energy and the same k‖ as those of the incident state:

Ψ
(i)
FM(r) =







t
(i)
k↑

0


 eikx↑x +




0

t
(i)
k↓


 eikx↓x


 ei~k‖·~r‖ (2.6)
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where i = 1, 2 refer to the wave function of the ferromagnetic material corresponding

to the two cases of spin orientations of the incident electrons. t
(i)
kσ are the transmission

amplitudes of electrons to σ-spin state. Like the electron wave vector in metal,

kxσ = kσ and k‖ = 0 in 1D case. In 2D case, kxσ = kσcosφkσ, and because of the

translation symmetry along the interface, the momentum parallel to the interface

is conserved, i. e. k‖ = kσ sin φkσ = q‖, where φkσ are the angles between the

wave vectors kσ and the +x direction. In 3D case, kxσ = kσ sin θkσcosφkσ and k‖ =

ẑkσcosθkσ + ŷkσ sin θkσ sin φkσ = q‖, where θkσ is the angle between the wave vector kσ

and the +z direction and φkσ is the angle between the projection of the wave vector

kσ on the xy plane and the +x direction.

The relation between the angles are

q sin[θq] = k↑ sin[θk↑] = k↓ sin[θk↓] (2.7)

for 2D system, and

qcos[φq] = k↑cos[φk↑] = k↓cos[φk↓] (2.8)

q sin[θq] sin[φq] = k↑ sin[θk↑] sin[φk↑] = k↓ sin[θk↓] sin[φk↓] (2.9)

for 3D system.

All coefficients, rqσ and tkσ, can be obtained from the appropriate matching

conditions at the interface, which are given by

Ψ
(i)
M (x = 0, r‖) = Ψ

(i)
FM(x = 0, r‖) = Ψ

(i)
0 (2.10)
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for the continuity of the wave function at the interface and

(
m

m∗
∂Ψ

(i)
FM

∂x
− ∂Ψ

(i)
M

∂x

)∣∣∣∣∣
x=0

= 2qF




Z↑↑ Z↑↓

Z↓↑ Z↓↓







Ψ
(i)
0↑

Ψ
(i)
0↓


 (2.11)

for the discontinuity of the slope of the wave function at the interface due to the

presence of the Dirac delta potential at the interface. Here the unitless parameter

Z = mU/~2qF =




Z↑↑ Z↑↓

Z↓↑ Z↓↓


. The potential strength of the spin-up Z↑↑ and

spin-down Z↓↓ components are set to be equal (Z↑↑ = Z↓↓ = Z0). The off-diagonal

elements Z↑↓ and Z↓↑ are chosen to be real and equal to ensure the Hermitian property

of the Hamiltonian. These off-diagonal elements refer to the spin-flip scattering at

the interface Z↑↓ = Z↓↑ ≡ Zf .

2.2.2 Reflection and transmission probabilities

The analytical expressions of each coefficient are obtained by using the above

matching conditions. That is,

tk↑ =
2iq

ik↑ − 2qF Z0 + iq −
(

4q2
F Z2

f

ik↓−2qF Z0+iq

) (2.12)

tk↓ =

(
2qF Zf

ik↓ − 2qF Z0 + iq

)
t↑ (2.13)

for the injection of electron with spin-up form the metal side. In this case, the

reflection coefficient of the electron with spin-up and spin-down are respectively rq↑ =

tk↑ − 1 and rq↓ = tk↓.
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When the incident electron is in spin-down state,

tk↓ =
2iq

ik↓ − 2qF Z0 + iq −
(

4q2
F Z2

f

ik↑−2qF Z0+iq

) (2.14)

tk↑ =

(
2qF Zf

ik↑ − 2qF Z0 + iq

)
tk↓ (2.15)

Again, rq↑ = tk↑ and rq↓ = tk↓ − 1 in this injection case. Not surprisingly, we can

easily interpret that the spin-flip scattering makes the amplitude of the transmission

of the opposite spin configuration of the injection spin state non-zero. The reflection

and the transmission probabilities of the given spin configuration are

Rq↑(q↓) = |rq↑(q↓)|2, (2.16)

Tk↑(k↓) = |k↑(↓)
q
||tk↑(k↓)|2. (2.17)

2.2.3 Current density and conductance

The electric current density is

jx
σ(eV ) = e

∑

k,kx>0

vx
kσTkσ[f(Ek − eV )− f(Ek)] (2.18)

where e is the electron charge, vx
kσ is the component of the electron group velocity in

the x direction, and the transmission probability Tk = (Tk↑ + Tk↓).

In 1D case, Equation 2.18 becomes

jx
σ(eV ) =

eL

h

∞∫

0

dEkTkσ[f(Ek − eV )− f(Ek)] (2.19)

where L is the size of the ferromagnetic material and h is Planck’s constant. Setting
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the temperature to zero, we obtain

jx
σ(eV ) =

eL

h

eV∫

0

dEkTkσ. (2.20)

Notice that Tkσ is now written as a function of energy Ek. The corresponding 1D

conductance at zero temperature is defined as

G1D
σ (eV ) ≡ 1

L

djx
σ

dV

e2

h
Tkσ(eV ) (2.21)

In 2D case, the current density at zero temperature is

jx
σ(eV ) =

eL2

2πh

eV∫

0

dEk

√
η[Ek − E0 + σEex]

π∫

−π

dϕkσTkσ(Ek, ϕkσ)cos(ϕkσ) (2.22)

where η = m/m∗, L2 is the size of the ferromagnetic system, and σ is positive

(negative) for spin-up (spin-down) current. Tkσ is now a function of energy Ek and

ϕkσ. The 2D conductance is

G2D
σ (eV ) ≡ 2π

qF L2

djx
σ

dV
=

e2

h

√
η[Ek − E0 + σEex]

EF

π∫

−π

dϕkσTkσ(Ek, ϕkσ)cos(ϕkσ) (2.23)

Lastly in 3D case, the current density at zero temperature is

jx
σ(eV ) =

eL3q2
F

4π2h

eV∫

0

dEk

√
η[Ek − E0 + σEex]

EF

π∫

0

dθkσ sin2(θkσ)

×
π∫

−π

dϕkσTkσ(Ek, θkσ, ϕkσ)cos(ϕkσ), (2.24)

where L3 is the size of the ferromagnetic system. Tkσ becomes a function of energy
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Ek, θkσ, and ϕkσ. The 3D conductance is

G3D
σ (eV ) ≡ 4π2

q2
F L3

djx
σ

dV
=

e2

h

[
η[Ek − E0 + σEex]

EF

] π∫

0

dθkσ sin2(θkσ)

×
π∫

−π

dϕkσTkσ(Ek, θkσ, ϕkσ)cos(ϕkσ), (2.25)

The total conductance in n-dimensional case GnD
total(eV ) is the sum of both spin up

and spin down conductance, i.e., GnD
total(eV ) =

∑
σ

GnD
σ (eV )

In addition to the total conductance spectrum, the difference between the

spin-up and the spin-down conductance and current are considered as well. The spin

polarization of conductance PG and current PI are defined as

P nD
G (eV ) =

GnD
↑ (eV )−GnD

↓ (eV )

GnD
↑ (eV ) + GnD

↓ (eV )
(2.26)

P nD
I (eV ) =

jnD
↑ (eV )− jnD

↓ (eV )

jnD
↑ (eV ) + jnD

↓ (eV )
(2.27)

P nD
G(I) measures the relative difference in the conductances (current) of opposite spin

orientations in n-dimensional system. In the next section, the dependence on the

dimensionality of the system and the strength of the spin-flip scattering of the total

conductance and spin polarization of conductance will be examined.

2.3 Results and discussion

We now show and discuss the the dimensionality and the interfacial scattering

effect on the total conductance and the spin polarization of conductance spectra of

a M/F junction. Because we only focus on the above mentioned effects, we keep the

following parameters: E0, η, and EF , fixed throughout this section. As mentioned

in the previous section, the choice of E0 only affects the shift of the spectra along

the energy axis. Thus, in order to see the feature in both total conductance and
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spin polarization of conductance spectra when positive voltage is applied, we set

E0 = Eex. This setting makes the spectra of the conductance and spin polarization

of conductance start at zero applied voltage.

The value of the ratio of the electron effective masses in the two materials η,

and that of the Fermi energy of the metal EF , affect the mismatch of the electron

group velocities. Changing their values are expected to cause the same effect as

changing the strength of the non-spin flip interface scattering (Blonder and Tinkham,

1983), which is parameterized by Z0. So, we set η = 1 and EF = 10Eex for the

purpose of illustration in all plots. We first show the results related to the total

conductance and later the spin polarization of conductance.

2.3.1 Total conductance

The conductance is in units of e2/h in all relevant plots. First, we consider

the dimensional effect on the total conductance spectrum. The spectrum and its

derivative in each dimensional case are shown in Figure 2.2, for zero spin-flip non-

spin-flip scattering: Zf = Z0 = 0. The total conductance spectrum is suppressed,

when these two parameters are not zero, but its shape does not change much.

In all dimensional cases, the total conductance spectrum and its derivative

starts at zero applied voltage, which is the position equivalent to the bottom of the

spin up band of the ferromagnetic material. As the applied voltage is increased, the

total conductance is also increased at a different rate in different dimensional systems.

However, in all cases, there is a change in the slope of the total conductance spectrum

at the applied potential energy eV = 2Eex, which is equivalent to the bottom of the

spin down band of the ferromagnetic material. As can be seen in Figure 2.2, this

change in slope is the most prominent in 1D spectrum and least prominent in 3D

spectrum. One can see a more prominent feature at this energy in the differential

conductance spectrum plots for all dimensional cases.
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Figure 2.2 Plots of total conductance spectra Gtotal (solid curves) and their corre-
sponding derivatives Eex[dGtotal/d(eV )] (dashed curves) in (a) 1D, (b) 2D, and (c)
3D system. Z0 and Zf are set to be zero.
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Figure 2.3 Plots of 1D total conductance spectra G1D
total as a function of applied

potential energy eV . 0 ≤ Zf ≤ 2. In (a), Z0 = 0.0, in (b), Z0 = 0.5, and in (c), Z0

= 1.0.

 

 

 

 

 

 

 

 



22

0 2 4 6 8 10
eV/E

ex

0

0.5

1

1.5

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(a)

Z
0
 = 0.0

0 2 4 6 8 10
eV/E

ex

0

0.5

1

1.5

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(b)

Z
0
 = 0.5

0 2 4 6 8 10
eV/E

ex

0

0.5

1

1.5

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(c)

Z
0
 = 1.0

Figure 2.4 Plots of 2D total conductance spectra G1D
total as a function of applied

potential energy eV . 0 ≤ Zf ≤ 2 for three different values of the parameter Z0. In
(a), Z0 = 0.0, in (b), Z0 = 0.5, and in (c), Z0 = 1.0.

 

 

 

 

 

 

 

 



23

0 2 4 6 8 10
eV/E

ex

0

1

2

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(a)

Z
0
 = 0.0

0 2 4 6 8 10
eV/E

ex

0

1

2

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(b)

Z
0
 = 0.5

0 2 4 6 8 10
eV/E

ex

0

1

2

G
to

ta
l

Z
f
 = 0.00

0.25
0.50
0.75
1.00
2.00

(c)

Z
0
 = 1.0

Figure 2.5 Plots of 3D total conductance spectra G1D
total as a function of applied

potential energy eV . 0 ≤ Zf ≤ 2 for three different values of the parameter Z0. In
(a), Z0 = 0.0, in (b), Z0 = 0.5, and in (c), Z0 = 1.0.
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Figure 2.6 Plots of 1D total conductance spectra G1D
total at eV = 3Eex as a function

of spin-flip scattering strength parameter Zf for various values of spin-flip scattering
strength parameter Z0.

In addition to the change in slope at eV = 2Eex, the dimensionality of the

system also affects the slope of the conductance spectrum at large applied voltage.

Because k↑↓ and q are almost unchanged at large energy, the transmission probability

Tkσ is weakly dependent of energy at large energy. Thus, following Eq. 2.21, 2.23,

and 2.25, for large eV we have

GnD
total(eV ) ∼ (eV )

n−1
2 ⇒ dGnD

total(eV )

d(eV )
∼ n− 1

2
(eV )

n−3
2 (2.28)

That is, G1D
total converges to a constant, G2D

total ∼ (eV )1/2 , and G3D
total ∼ (eV )1.

Let us now consider the interfacial scattering effect. The presence of either

type of interfacial scattering generally reduces the value of the total conductance.

These behaviors are similar in all dimensional systems. We show the plots of to-

tal conductance with different values of Z0 and Zf in case of 1D, 2D, and 3D M/F

junctions in Figure 2.3 - 2.5, respectively. The value of Z0 determines whether the

junction behavior is in the metallic (high transmission) or tunneling (low transmis-

sion) regime. The change of the total conductance spectrum in the presence of
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the interfacial spin-flip scattering varies with the junction behavior. In the metallic

regime: Z0 ≤ 0.5, the increase in Zf suppresses the total conductance spectrum. In

the intermediate regime: Z0 ≈ 0.5, small increase in Zf from zero does not change

GnD
total much, but once Zf ≥ Z0, GnD

total starts to decrease with Zf . On the contrary,

in the tunneling regime: Z0 > 0.5, the increase in Zf surprisingly enhances the total

conductance spectrum until it reaches its maximum value, when Zf ≈ Z0. When

Zf > Z0, the conductance spectrum is suppressed. Here, we only show, in Figure 2.6,

the plots of the 1D total conductance at eV = 3Eex as a function of the parameter Zf

to illustrate the above mentioned fact. The results in higher dimensional systems or

at other values of eV are similar, and thus are not shown. This enhancement of the

total conductance due to the interfacial spin-flip scattering in the tunneling regime

was also predicted to happen in metal/Rashba system junction(Srisongmuang et al.,

2008).

2.3.2 Spin polarization of conductance and current

Let us now consider the spin polarization of conductance P nD
G and current

P nD
I to see how relative difference in spin-up and spin-down conductances is affected

by the dimensionality and interfacial scattering. The plots of P nD
G(I)(eV ) in three cases

of dimensionality are shown in Figure 2.7 - 2.8. In these figures, Z0 is set to zero

(metallic regime), and Zf is varied from 0 to 2. Due to the fact that there are only

electrons with spin-up when the energy is less than Eex, P nD
G(I)(eV ≤ Eex) is equal

to one as expected. When the energy is great than Eex, electrons with both types

of spin exist and P nD
G(I)(eV > Eex) is less than one and is decreased with the applied

voltage indicating that the number of spin-up and spin-down electrons are closer

to each other at higher energies. It is also noticeable that as the applied voltage

increases, P 1D
G(I)(eV ) approaches zero faster than P 2D

G(I)(eV ) and P 3D
G(I)(eV ). From the

P nD
G(I) spectra in Figure 2.7 - 2.8, we can also see that increase in Zf can enhance
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Figure 2.7 Plots of spin polarization of conductance spectra as a function of applied
potential energy eV in (a) 1D, (b) 2D, and (c) 3D system for Z0 = 0 and 0 ≤ Zf ≤ 2.
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Figure 2.8 Plots of spin polarization of current as a function of applied potential
energy eV in (a) 1D, (b) 2D, and (c) 3D system for Z0 = 0 and 0 ≤ Zf ≤ 2.
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Figure 2.9 Plots of spin polarization of current P nD
I as a function of potential

strength Z0 in (a) 1D, (b) 2D, and (c) 3D system for various the spin-flip scattering
0 ≤ Zf ≤ 5.
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Figure 2.10 Plots of 1D spin polarization of current P nD
I as a function of (a) potential

strength Z0 and 0 ≤ Zf ≤ 5 and (b) spin-flip scattering Zf and 0 ≤ Z0 ≤ 5.
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P nD(eV > Eex). This enhancement is strongest in 1D system and weakest in 3D

system.

The effect of the interfacial scattering on P nD
I can be seen more clearly in

Figure 2.9. We chose to plot P nD(eV = 3Eex) as a function of Zf at various value

of Z0. The plots of P nD(eV ) at other values of eV as a function of Zf show similar

dependence on Zf . In 1D case, in the metallic and intermediate regime the presence

of Zf enhances P 1D. When Zf →∞, it reaches its maximum values

P nD
max(E) =

k↑(E)− k↓(E)

k↑(E) + k↓(E)
(2.29)

independent of Z0. The increase with Zf does not happen in the tunneling limit.

The presence the spin-flip scattering does not affect P 1D much. Its value is already

close to P 1D max even when Zf is small.

Things are somewhat different in 2D and 3D systems. In the metallic regime,

P 2D(eV ) and P 3D(eV ) behave similarly to P 1D(eV ). That is, they are increased with

Zf to a maximum value, as Zf approaches infinity. However, in the intermediate and

tunneling limit, P 2D(eV ) and P 3D(eV ) is increased with Zf until they reaches a

maximum at Zf ≈ Z0 and then is decreased with Zf to a value at Zf →∞:

P 2D,3D
max (E) =

〈k↑(E)〉 − 〈k↓(E)〉
〈k↑(E)〉+ 〈k↓(E)〉 , (2.30)

where 〈f〉 is the average over angle or solid angle of f in 2D and 3D system. Sur-

prisingly, this maximum at Zf ≈ Z0 in the spin polarization of conductance does not

happen in 1D system, because G1D
↑ −G1D

↓ is relatively much lower than G1D
↑ + G1D

↓

in comparison to those in higher dimensional systems but this maximum value does

happens in the spin polarization of current as shown in Figure 2.9.
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2.4 Conclusions

We have considered the effect of dimensionality and interfacial scattering, in-

cluding spin-flip scattering, on the the total conductance and spin polarization of

conductance of M/F junction. The total conductance spectrum of M/F junction in

1D system contains sharpest feature at the energy equivalent to the bottom of the

minority band. The presence of interfacial scattering generally suppresses the total

conductance spectra in all dimensional cases. However, there is a special circum-

stance, like in the tunneling limit, in which the total conductance can be enhanced

by the presence of the interfacial spin-flip scattering, and a maximum value of to-

tal conductance can be reached, when the strength of the non-spin-flip and spin-flip

scattering are equal. This enhancement happens in all dimensional systems.

As expected, the value of spin polarization of conductance is equal to one in

all energies between the bottoms of the two bands of the ferromagnetic material, and

is decreased as the energy becomes higher than the bottom of the minority band.

This decrease is more rapidly in 1D than in 2D and 3D systems. Also, the value of

the spin polarization of conductance is larger in 1D than in 2D and 3D system.

In 1D junction in the metallic regime, the interfacial spin-flip scattering en-

hances the spin polarization of conductance and current to a maximum value. In

the tunneling regime, the spin polarization of conductance and current is close to

this maximum even when the strength of the spin-flip scattering is negligible. The

increase in the strength of this scattering does not affect the spin polarization of con-

ductance and current in this limit. In 2D and 3D junctions, the behavior of the spin

polarization of conductance and current in the metallic regime is similar to that in 1D

junctions, but in the tunneling limit its value can reach to a different maximum when

the strength of the non-spin-flip and spin-flip scattering are equal. This maximum is

higher than the maximum value in the metallic regime.

 

 

 

 

 

 

 

 



CHAPTER III

ELECTRONIC PROPERTIES OF

FERROMAGNET WITHIN A TWO-BAND

MODEL

3.1 s-d band coupling Hamiltonian

From the band structure calculations of ferromagnetic material, there are the

hybridization regions between the s band and the d band near Fermi level. In prin-

ciple, this scenario is caused by a mixing or overlap of the wave functions of electron

with spin-up and spin-down from both bands. Because of this reason, we consider

the kinetic energy of valence electrons with spin-up and spin-down from both bands

(the s band and the d band) via the coupling strength t. The Hamiltonian in this

case is

HFM =




ξd
↑(k) 0 t↑↑ t↑↓

0 ξd
↓(k) t↓↑ t↓↓

t↑↑ t↓↑ ξs
↑(k) 0

t↑↓ t↓↓ 0 ξs
↓(k)




, (3.1)

where ξ
s(d)
σ (k) is the kinetic energy of electron in the s(d) band, and with spin σ

configuration. t↑↑(↓↓) is the coupling strength between spin-up (down) electrons from

the s band and the d band, t↑↓(↓↑) is the coupling strength between opposite-spin

electrons from the s band and the d band.

We assume that the mixing between the different spin configurations from

different bands is zero (t↑↓ and t↓↑ = 0). We set t↑↑ = t↓↓ = t because there is

no any evidence that confirms which coupling is more dominated. Also, Coulomb
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interaction (charge interaction) is neglected in this thesis. Thus, the Hamiltonian in

Eq. 3.1 becomes

HFM =




ξd
↑(k) 0 t 0

0 ξd
↓(k) 0 t

t 0 ξs
↑(k) 0

0 t 0 ξs
↓(k)




, (3.2)

where the energy dispersions in each band within a free electron approximation in

this model are given by equations below.

ξd
↑(k) =

~2k2

2m∗
d

− Ed
ex − Ed

F−↑, (3.3)

ξd
↓(k) =

~2k2

2m∗
d

+ Ed
ex − Ed

F−↓, (3.4)

ξs
↑(k) =

~2k2

2m∗
s

− Es
ex − Es

F−↑, (3.5)

ξs
↓(k) =

~2k2

2m∗
s

+ Es
ex − Es

F−↓, (3.6)

where superscript s(d) refers to the s band (d band) while subscript ↑ (↓) refers to

spin-up (down) configuration. The electron effective mass in s-band is indicated by

m∗
s, while m∗

d is for d-band. These two effective masses are different as can be seen in

the band structure calculations. However, the electron effective mass of different spin

bands in the same energy band are assumed to be equal. That is m∗
s↑ = m∗

s↓ = m∗
s

and m∗
d↑ = m∗

d↓ = m∗
d. This is because the slope of energy dispersion of electron

with spin-up and spin-down in either s or d-band has almost the same value. It is

found from the band structure calculations that the exchange energy in s-band (Es
ex)

and d-band (Ed
ex) are different. Some exchange energies in ferromagnet are shown in

Table 3.1. Fermi energies of electron with spin-up E
d(s)
F−↑ and spin-down E

d(s)
F−↓ bands

are also different.

The dispersion relations in Equations 3.3 - 3.6 are plotted in Figure 3.1(a). In

this figure, the energy bands are shifted by E0 (no Fermi level) because we want to
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Table 3.1 The exchange energies of some ferromagnetic materials. Es
ex is the ex-

change energy in s-band, while Ed
ex is that in d-band. The data are taken from D. Y.

Petrovykh et al. (Petrovykh et al., 1998) and J. Callaway and C. S. Wang (Callaway
and Wang, 1977).

Crystal Es
ex(eV ) Ed

ex(eV )

Ni 0.23 -

Ni0.8Fe0.2 0.27 -

Fe 1.36 2.56

compare the results with those from one-band model in Chapter II. One significant

thing we have seen in this figure is the crossing points between the same spin bands

but different energy band dispersions (ξd
↓ and ξs

↓) as indicated by solid arrows. These

crossing points are due to our parameters m∗
d 6= m∗

s. In particular, these crossing

points can effect the electronic transport in the M/FM junction as will be seen in the

next chapter.

The eigenvalues are given by

λd
mix−↑(k) =

ξd
↑(k) + ξs

↑(k)

2
+

√√√√
∣∣∣∣∣
ξd
↑(k)− ξs

↑(k)

2

∣∣∣∣∣

2

+ t2, (3.7)

λd
mix−↓(k) =

ξd
↓(k) + ξs

↓(k)

2
+

√√√√
∣∣∣∣∣
ξd
↓(k)− ξs

↓(k)

2

∣∣∣∣∣

2

+ t2, (3.8)

λs
mix−↑(k) =

ξd
↑(k) + ξs

↑(k)

2
−

√√√√
∣∣∣∣∣
ξd
↑(k)− ξs

↑(k)

2

∣∣∣∣∣

2

+ t2, (3.9)

λs
mix−↓(k) =

ξd
↓(k) + ξs

↓(k)

2
−

√√√√
∣∣∣∣∣
ξd
↓(k)− ξs

↓(k)

2

∣∣∣∣∣

2

+ t2, (3.10)

where subscript mix refers to the system of a hybridization (s-d mixing), so that

these four equations are 4 mixing bands. We still superscript either d or s in these

equations because we want to remind the reader that these 4 mixing bands can

become the energy bands in the normal case (no coupling) when t = 0.
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That is, when t = 0, the eigenvalues become

λd
mix−↑(k) = ξd

↑(k) (3.11)

λd
mix−↓(k) = ξd

↓(k) (3.12)

λs
mix−↑(k) = ξs

↑(k) (3.13)

λs
mix−↓(k) = ξs

↓(k) (3.14)

At k = 0, the eigenvalues are

λd
mix−↑, 0 =

Ed
0 − Ed

ex − Es
ex + Es

0

2
+

√∣∣∣∣
Ed

0 − Ed
ex + Es

ex − Es
0

2

∣∣∣∣
2

+ t2, (3.15)

λd
mix−↓, 0 =

Ed
0 + Ed

ex + Es
ex + Es

0

2
+

√∣∣∣∣
Ed

0 + Ed
ex − Es

ex − Es
0

2

∣∣∣∣
2

+ t2, (3.16)

λs
mix−↑, 0 =

Ed
0 − Ed

ex − Es
ex + Es

0

2
−

√∣∣∣∣
Ed

0 − Ed
ex + Es

ex − Es
0

2

∣∣∣∣
2

+ t2, (3.17)

λs
mix−↓, 0 =

Ed
0 + Ed

ex + Es
ex + Es

0

2
−

√∣∣∣∣
Ed

0 + Ed
ex − Es

ex − Es
0

2

∣∣∣∣
2

+ t2. (3.18)

The corresponding eigenenergies are

ψ±↑ =
1

N±
↑




−(
ξd
↑(k)−ξs

↑(k)∓
√
|ξd
↑(k)−ξs

↑(k)|2+4t2

2t
)

0

1

0




, (3.19)

ψ±↓ =
1

N±
↓




0

−(
ξd
↓(k)−ξs

↓(k)∓
√
|ξd
↓(k)−ξs

↓(k)|2+4t2

2t
)

0

1




, (3.20)

where superscript +(−) refers to the wave function of eigenvalue λ
d(s)
mix−σ band with
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spin σ, and the normalization factors are

[N±
↑ ]2 =

2[ξd
↑(k)− ξs

↑(k)]2 ∓ 2[ξd
↑(k)− ξs

↑(k)]
√
|ξd
↑(k)− ξs

↑(k)|2 + 4t2 + 8t2

4t2
, (3.21)

[N±
↓ ]2 =

2[ξd
↓(k)− ξs

↓(k)]2 ∓ 2[ξd
↓(k)− ξs

↓(k)]
√
|ξd
↓(k)− ξs

↓(k)|2 + 4t2 + 8t2

4t2
. (3.22)

One can see from the eigenenergies that there are a mixing between the same spin

configuration from different energy bands.

3.2 Energy dispersion relation

We now look more closely at the energy dispersion relation for each band. We

start by considering the definition of the electron effective mass m∗ in the crystal

within the free electron approximation model. The electron effective mass is defined

by

1

m∗ =
1

~2

d2E

dk2
, (3.23)

where E = E(k) is the energy dispersion relation. That is, the electron effective mass

is inversely proportional to the curvature of the energy dispersion relation. In the

band structure picture, the effective mass of the d band is larger than that of the s

band: m∗
d > m∗

s. The electron and hole effective masses m∗
e and m∗

h in some materials

are shown in Table 3.2.

In Figure 3.1, the energy dispersion relations of four mixed bands are shown in

the case where (a) t = 0 and (b) t = 0.05 eV , respectively. Clearly, the figure shows

the two kinds of the crossing points between bands. That is, in Figure 3.1(a) the

crossing points between the same spin direction from different bands are indicated

by the solid arrows, while the dashed arrows indicate the crossing points between the
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Figure 3.1 Energy dispersion relations of ferromagnet in a two-band model. In
these plots, we take Ed

ex = 0.2 eV , Es
ex = 0.1 eV , Es

0 = 0.1 eV , Ed
0 = 0.5 eV , and

the electron effective masses in d-band and s-band are m∗
d = 0.5me and m∗

s = 0.3me,
respectively, where me is electron mass. The coupling between the same spin bands
are taken to be (a) t = 0 eV , and (b) t = 0.05 eV . In (a), the crossing points occur
at different energy bands as indicated by arrows. In (b), the corresponding avoiding
crossing points are indicated by solid arrows.
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Table 3.2 The electron m∗
e and hole m∗

h effective masses in direct band gap semicon-
ductors and some ferromagnets. The data are taken from Introduction to solid state
physics (Kittel, 2005).

Crystal Electron (m∗
e/me) Heavy hole (m∗

h/mh) Light hole (m∗
h/mh)

InSb 0.015 0.39 0.021

InAs 0.026 0.41 0.025

InP 0.073 0.4 0.078

GaSb 0.047 0.3 0.06

GaAs 0.066 0.5 0.082

Cu2O 0.99 - 0.58

Fe 1 - -

Table 3.3 Carrier mobilities at room temperature of some materials, in cm2/V − s.
The data is taken from Introduction to solid state physics (Kittel, 2005).

Crystal Electrons Holes Crystal Electrons Holes

Diamond 1800 1200 GaAs 8000 300

Si 1350 480 GaSb 5000 1000

Ge 3600 1800 PbS 550 600

InSb 800 450 PbSe 1020 930

InAs 30000 450 PbTe 2500 1000

InP 4500 100 AgCl 50 -

AlAs 280 - KBr(100 K) 100 -

AlSb 900 400 SiC 100 10-20
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bands with the opposite spin directions. When t is present as shown in Figure 3.1(b)

the crossing points in the first case are affected by this t, and are opened up, whereas

the crossing points in the second case still cross.

As t increases, the gaps opened at the first kind of crossing points become

larger, as can be seen in Figure 3.2(a) and (c). However, the crossing points between

the bands of the opposite spin directions still cross.

3.3 Density of states

In this section, we show the density of states of electron in the ferromagnet in

two-band model. By definition (Marder, 2000), the density of states is

ρD(ε) =

(
L

2π

)D
∞∫

−∞

dkδ(ε− εk) (3.24)

where index D refers to dimension of the system. dk is dkx for 1D system, dkxdky

for 2D system, dkxdkydkz for 3D system in cartesian coordinate. δ(ε− εk) is Dirac

delta function. Our main interest is the effect of the coupling strength on the DOS.

However, before we show the results of the density of states in the two-band model,

we will discuss those in the one-band model first.

3.3.1 DOS in the one-band model

The DOS depends on the dimensionality of the system. By using Eq. 3.24,

the DOS in 1D, 2D, and 3D systems are

ρ1D
↑(↓)(ε) ∝

1√
E ∓ Eex

, (3.25)

ρ2D
↑(↓)(ε) ∝ constant, (3.26)

ρ3D
↑(↓)(ε) ∝

√
E ∓ Eex, (3.27)
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Figure 3.2 Energy dispersion relations of two-band ferromagnet. The exchange
energies and the effective mass of s and d-band are the same as in Figure 3.1. In (a)
t = 0.1 eV and (b) t = 0.2 eV .

 

 

 

 

 

 

 

 



41

0 1 2
E (eV)

0

2

4

6

ρ/
ρ 0

ρ↑

ρ↓

ρ↑

ρ↓

ρ↑

ρ↓

1D

1D

2D

2D

3D

3D

Figure 3.3 Density of states in one-band model. Eex = 0.2 eV , ρ0 are
√

m∗/8π2~2,

m∗/4π~2, and
√

2m∗3/4π4~6 for 1D, 2D, and 3D system respectively.

3.3.2 DOS in the two-band model

In this section, we will consider the density of states of ferromagnet in the

two-band model.

Case I: t = 0

In this case, the DOS is still calculated from Equation 3.24. We set me and ~

to be 1, for simplicity. Other parameters such as Es
ex, Ed

ex, E0, m∗
d, m∗

s, and t are

set to be similar to those in experiments.

In Figure 3.4, the DOS of a ferromagnet in the two-band model in 1D, 2D, and

3D system are shown when t = 0. It is found that the DOS in this case is the same

as that in the one-band model as shown in Figure 3.3. Because there are two energy

bands, the crossing points between bands occur. Again, there are two kinds of these

crossing points as mentioned in the previous section. That is, the first kind of the

crossing points occur between the bands with the same spin direction. The second

kind of the crossing points occur between the bands with spin in opposite direction.

Case II: t 6= 0
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Figure 3.4 The DOS of two-band ferromagnet when t = 0 are plotted for (a) 1D, (b)
2D, and (c) 3D system. Parameters are for Ed

ex = 0.2 eV , Es
ex = 0.1 eV , Es

0 = 0.1 eV ,
Ed

0 = 0.5 eV , m∗
d = 0.5me and m∗

s = 0.3me, respectively, where me is electron mass.
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Figure 3.5 The DOS of two-band system are plotted for (a) 1D, (b) 2D, and (c) 3D
systems. The exchange energies and the electron effective masses are the same as in
Figure 3.4, but t = 0.05 eV . Subscript mix refers to s-d mixing system.
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Figure 3.6 The DOS of two-bands ferromagnet are plotted for (a) 1D, (b) 2D, and
(c) 3D systems. The exchange energies and the electron effective masses are the same
as in Figure 3.4, but t = 0.1 eV .
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Figure 3.7 The the DOS of two-bands ferromagnet are plotted for (a) 1D, (b) 2D,
and (c) 3D systems. The exchange energies and the electron effective masses are the
same as in Figure 3.4, but t = 0.2 eV .
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In Figures 3.5 - 3.7, the DOS of ferromagnet in 1D, 2D, and 3D system are

shown in the two-band model when t is increased. The crossing points of the first

kind open up as gaps. The gaps strongly depend on the coupling strength t as shown

in Figure 3.7. Other than that, each energy band is either shifted up or shifted down

due to the presence of the coupling strength t.

3.4 Conclusions

In this chapter, the energy dispersion relation and the density of states of a

ferromagnet in the two-band model are calculated. There are two important physical

features, which are the crossing points and gaps. In the first feature, the crossing

points occur at two different places. That is, the first crossing points occur between

the bands with the same spins. This type of crossing points is affected by the coupling

strength tremendously. Another type of crossing point occurs between the bands of

the opposite spins. These crossing points are not affected by the coupling strength

as much.

 

 

 

 

 

 

 

 



CHAPTER IV

TUNNELING SPECTROSCOPY IN THE

TWO-BAND APPROXIMATION

One of the powerful tools used to detect the electronic properties of a system

is tunneling spectroscopy. In this Chapter, we will examine which features in the

dispersion relation will show up in the conductance spectra.

4.1 The wave functions

The Hamiltonian of an M/FM junction is

H = p̂
1

m(x)
p̂ +




Ed
0 − Ed

ex 0 0 0

0 Ed
0 + Ed

ex 0 0

0 0 Es
0 − Es

ex 0

0 0 0 Es
0 + Es

ex




+ U0δ(x)− EF Θ(−x) (4.1)

where p̂ is momentum operator, U0 =




u0 0 0 0

0 u0 0 0

0 0 u0 0

0 0 0 u0




, δ(x) is the Dirac delta

function, E
d(s)
0 is the off-set energy of the d(s) band in the ferromagnet, E

d(s)
ex is the

exchange energy of spin-up (down) of the d (s) band, and EF is Fermi energy in

the metal (see Figure 4.1 for illustration), the position dependence of the electron
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effective mass is (Zulicke and Schroll, 2001)

1

m(x)
=

1

m∗
M

Θ(−x) +
1

m
d(s)∗
FM

Θ(x), (4.2)

where m∗
M is the electron effective mass in metal, Θ is the Heaviside step function,

m
d(s)∗
FM is the electron effective mass of the d (s) band in the ferromagnet.

By solving eigenvalue problem, one can obtain the four corresponding of the

eigenstates in a metal state;

ψ1↑ =




1

0

0

0




eiq·r; ψ2↓ =




0

1

0

0




eiq·r; ψ3↑ =




0

0

1

0




eiq·r; ψ4↓ =




0

0

0

1




eiq·r, (4.3)

where q =
√

(Ek − EF )2m∗
M/~2.

In the ferromagnetic state, the four eigenstates are (see the detail how to

obtain these eigenstates in Chapter III)

ψ±↑ =
1

N±
↑




−(
ξd
↑(k)−ξs

↑(k)∓
√
|ξd
↑(k)−ξs

↑(k)|2+4t2

2t
)

0

1

0




eik
d(s)
mix−↑·r, (4.4)

ψ±↓ =
1

N±
↓




0

−(
ξd
↓(k)−ξs

↓(k)∓
√
|ξd
↓(k)−ξs

↓(k)|2+4t2

2t
)

0

1




eik
d(s)
mix−↓·r, (4.5)

where N±
σ are the corresponding normalization factors. The other parameters are

already defined in Chapter III.
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Figure 4.1 Schematic illustration of the energy dispersion relation of one-band
metal/two-band ferromagnet junction. The potential at the interface is defined by a
delta potential Uδ(x). EF = 10Ed

ex, t = 0.05 eV .

In this work, the energy dispersion relations of the electrons in the metal and

the ferromagnet are illustrated in Figure 4.1. In this figure, the one-band metal is

in the x < 0 region while the two-band ferromagnet is in the x > 0 region. For

the injection of a given spin state from the metal side, the wave function of the

quasiparticle in each region can be written as the linear combination of injected, and

either reflected (ri,σ) or transmitted (tj,σ) states, where i refers to 1-4 states with spin

σ in a metal side (see Equation 4.3 for illustration) while j refer to the four mixed

states in ferromagnetic side. In this work, the scattering at the interface is considered

to be a ballistic regime. There can be four equally possibly injected wave functions
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in metal. There are

Ψ
(1)
M (~r) =







1

0

0

0




eiqxx +




r
(1)
1↑

0

r
(1)
3↑

0




e−iqxx




ei~q‖·~r‖ (4.6)

Ψ
(2)
M (~r) =







0

0

1

0




eiqxx +




r
(2)
1↑

0

r
(2)
3↑

0




e−iqxx




ei~q‖·~r‖ (4.7)

Ψ
(3)
M (~r) =







0

1

0

0




eiqxx +




0

r
(3)
2↓

0

r
(3)
4↓




e−iqxx




ei~q‖·~r‖ (4.8)

Ψ
(4)
M (~r) =







0

0

0

1




eiqxx +




0

r
(4)
2↓

0

r
(4)
4↓




e−iqxx




ei~q‖·~r‖ (4.9)

where ψ
(l)
M (~r) refers to the total wave function of each injection process with spin-up

(l = 1, 2) and spin-down (l = 3, 4) in metal. qx = q =
√

(2m∗
M/~2)(E + EF ) in 1D

system, where ~q‖ = 0 in 1D system, EF is the Fermi energy in the metal, and mM is

its electron effective mass. ~r‖ is a position vector along the line in 1D system. Here,

r
(l)
i,σ is the amplitude of reflected electron with spin σ in metal state, where i = 1, 3

refer to spin-up and i = 2, 4 refer to spin-down components (see Equation 4.1 and

Equation 4.3 for these indexes).
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In the ferromagnetic side, the total wave function can also be written as a

linear combination of transmission states. There are

Ψ
(l=1,2)
FM (~r) =




t
(l)−d
mix−↑
N+
↑




−
(

ξd
↑(k)−ξs

↑(k)−
√
|ξd
↑(k)−ξs

↑(k)|2+4t2

2t

)

0

1

0




eikd
x−mix−↑x

+
t
(l)−s
mix−↑
N−
↑




−
(

ξd
↑(k)−ξs

↑(k)+
√
|ξd
↑(k)−ξs

↑(k)|2+4t2

2t

)

0

1

0




eiks
x−mix−↑x




ei~k‖·~r‖

(4.10)

for the case of injection electron with spin-up (l = 1, 2) from metal, and

Ψ
(l=3,4)
FM (~r) =




t
(l)−d
mix−↓
N+
↓




0

−
(

ξd
↓(k)−ξs

↓(k)−
√
|ξd
↓(k)−ξs

↓(k)|2+4t2

2t

)

0

1




eikd
x−mix−↓x

+
t
(l)−s
mix−↓
N−
↓




0

−
(

ξd
↓(k)−ξs

↓(k)+
√
|ξd
↓(k)−ξs

↓(k)|2+4t2

2t

)

0

1




eiks
x−mix−↓x




ei~k‖·~r‖

(4.11)

for the case of injection electron with spin-down (l = 3, 4) from metal, where ξ
d(s)
σ are

already defined in Equations 3.3 - 3.6 in previous chapter. Here, k
d(s)
x−mix−σ = k

d(s)
mix−σ
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in 1D system, k‖ = 0 in 1D system. The expressions of these wave vectors are already

defined in Equations 3.7 - 3.10 in Chapter III. The coefficients of the transmission as

electron with spin-up in λd
mix−↑-band and λs

mix−↑-band in each injection (l) process

are respectively indicated by tdmix−↑ and tsmix−↑. Also, t
(l)−d(s)
mix−↓ is the coefficient of the

transmission state with spin-down in λ
d(s)
mix−↓-band, corresponding to each injection

(l) process. All of the corresponding normalization factors are already defined in

Chapter III.

4.1.1 The matching conditions

The first matching condition is the continuity of the wave function at the

interface;

ψ
(l)
M (x = 0) = ψ

(l)
FM(x = 0) = ψ

(l)
0 , (4.12)

where index l refers to each injection process from a metal side (see Equations 4.6 -

4.9 for illustration). The second matching condition is the discontinuity of the slope

of the wave function due to the presence of the potential at the interface. That is,

m∗
M

m∗
d

dΨ
(l)
FM

dx

∣∣∣∣∣
0+

− dΨ
(l)
M

dx

∣∣∣∣∣
0−

= 2kF Z0Ψ
(l)
0 , (4.13)

for λd
mix−σ bands, and

m∗
M

m∗
s

dΨ
(l)
FM

dx

∣∣∣∣∣
0+

− dΨ
(l)
M

dx

∣∣∣∣∣
0−

= 2kF Z0Ψ
(l)
0 . (4.14)

for λs
mix−σ-bands, where a unitless parameter Z0 = m∗

Mu0/~2qF , and qF is Fermi wave

vector in metal. In this chapter, we neglect the spin-flip scattering at the interface

because we have already known this effect on the transport properties in chapter II.
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4.1.2 Reflection and transmission probabilities

We can calculate the reflection and transmission amplitudes,

r
(l)
i,σ, t

(l)−d
mix−σ t

(l)−s
mix−σ, from the matching conditions. From these amplitudes, one

can obtain the corresponding probabilities. The definitions of the reflection and

transmission probabilities R and T are (Shankar, 1994)

R =
|Jreflection(x)|
|Jincident| , (4.15)

T =
|Jtransmission(x)|

|Jincident| , (4.16)

where J is the particle current density, which is equal to

J =
i~
2m

[ψ(x)
dψ∗(x)

dx
− ψ∗(x)

dψ(x)

dx
], (4.17)

where m is quasiparticle mass, and ψ(x) is the wave function of the particle. Af-

ter substitution of the corresponding ψ(x), the following reflection and transmission

probabilities can be obtained.

R
(l)
i,σ = |r(l)

i,σ|2, (4.18)

T
(l)−d
mix−σ = |t(l)−d

mix−σψ
(l)−d
mix−σ|2

mM

md

kd
x−mix−σ

qx

, (4.19)

T
(l)−s
mix−σ = |t(l)−s

mix−σψ
(l)−s
mix−σ|2

mM

ms

ks
x−mix−σ

qx

, (4.20)

where

ψ
d(s)
mix−↑ =

−[ξd
↑(k)− ξs

↑(k)∓
√
|ξd
↑(k)− ξs

↑(k)|2 + 4t2]

2tN±
↑

(4.21)

ψ
d(s)
mix−↓ =

−[ξd
↓(k)− ξs

↓(k)∓
√
|ξd
↓(k)− ξs

↓(k)|2 + 4t2]

2tN±
↓

(4.22)
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T
(l)-d

T
(l)-s

mix,σ

mix,σmix,σ

Figure 4.2 The sketch of probabilities across the M/FM junction, where (l) refers to
the four injection processes, and i refers to reflected as electron with spin-up (i = 1, 3)
and spin-down (i = 2, 4).

We set the effective masses in spin-up and spin-down bands of electrons from the

same band to be equal, i. e. m∗
d↑ = m∗

d↓ and m∗
s↑ = m∗

s↓.

The total probability

R
(l)
i,σ(E) + T

(l)−d
mix−σ(E) + T

(l)−s
mix−σ(E) = 1, (4.23)

where l refers to the four injection processes as explained in the text above. We use

the probabilities to calculate the electric current density across the junction as will

be discussed next.

4.2 Results and discussion

We now calculate the conductance spectra of the 1D M/FM junction G1D

using the two-band approach. We use a Landauder formula:

G1D
σ (eV ) =

e2

h
[Tmix−σ], (4.24)

where the total probability Tmix−σ = [T
(1)−d(s)
mix−σ + T

(2)−d(s)
mix−σ + T

(3)−d(s)
mix−σ + T

(4)−d(s)
mix−σ ]/4.

 

 

 

 

 

 

 

 



55

0 1 2 3 4 5
eV

0

0.5

1

G
to

ta
l

ξ↑

t = 0 eV

ξ↓

d

d crossing points

Figure 4.3 Plot of the conductance spectra G as a function of energy E. Parameters
are for Z0 = 0, Es

ex = 0.1 eV , Ed
ex = 0.2 eV , Es

0 = 0.1 eV , Ed
0 = 0.5 eV , m∗

M = 0.5me,
m∗

d = 0.5me, m∗
s = 0.3me. The coupling strength t is zero. Solid arrows are indicated

the bottom of each corresponding band.

The results are shown in Figure 4.3 - 4.6. In Figure 4.3, the conductance

spectrum G in a case where the coupling strength t = 0. There are rich features

occurring at the energy below the crossing point of the same spin band as indicated

by dash circles. In this figure, the first and the second kinks indicated by arrows

occur at the bottom of ξd
σ bands. Surprisingly, there is no any feature from ξs

σ bands.

As t increase, the conductance spectra are shown in Figure 4.4. In this figure,

there are three important features. First, there are kinks at the bottom of λs
mix−σ

bands and these kinks will be dominated with increasing t. Second, there still are

kinks at the bottom of λd
mix−σ bands as also shown in Figure 4.3 where t = 0. Third,

there are two peaks at the avoiding crossing points of the same spin band as indicated

by dashed circles. In particular, the curve between these avoiding crossing points of

this conductance spectrum is more smoothly with t increase. Eventually, these peaks

will almost disappear with large t (t = 0.2 eV ). Interestingly, the conductance spectra

in the large eV in the case where t is not zero behave like the one-band model. That

is, G1D
total ∼ constant at large applied voltage eV . This behavior confirm that our

expressions in two-band model are expected.
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Figure 4.4 Plots of the conductance spectra G as a function of energy E. Parameters
are for Z0 = 0, Es

0 = 0.1, Ed
0 = 0.5, Es

ex = 0.1, Ed
ex = 0.2, m∗

M = 0.5me, m∗
d = 0.5me,

m∗
s = 0.3me. In (a) t = 0.05 eV , (b) t = 0.1 eV , and (c) t = 0.2 eV . Solid arrows are

indicated the bottom of each corresponding band.
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Figure 4.5 Plots of the conductance spectra G as a function of applied biased voltage
eV for various Z0. The exchange energies and the electron effective masses are the
same as in Figure 4.4, but t = 0.05 eV .

In two-band model, we also consider the effect of the interfacial non-spin-flip

scattering Z0 at the interface on the conductance spectra. In Figure 4.5, the effect

of Z0 on G, where t = 0.05 eV , is shown. It is found that the conductance spectra

G decrease with increasing Z0. This is an expected result, because we have already

seen this feature in the one-band model. In this figure, the spectra in the metallic

limit contain kinks at the bottom of the each band and the peaks at the avoiding

crossing points. In the tunneling limit, these kinks and peaks are not as distinct

and the conductance spectra look more smoothly. On the other words, the features

predicted as the two-band model are most prominent in the metallic limit.

Because there are three electron effective masses, m∗
M , m∗

s, m∗
d, in this junc-

tion, we closely look into the effect of the electron effective mass on the conductance

spectra G as shown in Figure 4.6. In this figure, the electron effective mass in metal

m∗
M is varied but m∗

d = 0.5me and m∗
s = 0.3me stay the same. This plot is very

interesting, because one can obtain an idea why many people model the Hamiltonian

of ferromagnet by taking into account only the electrons from the d band. In Figure
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Figure 4.6 Plot of the conductance spectra G as a function of biased voltage eV
for various of the effective masses in metal m∗

M . Parameters are for Z0 = 0.0, Es
0 =

0.1 eV , Ed
0 = 0.5 eV , Es

ex = 0.1 eV , Ed
ex = 0.2 eV . The electron effective masses in

ferromagnet are m∗
d = 0.5me, m∗

s = 0.3me fixed, where me is electron mass.

4.6, the increase G with increasing m∗
M until m∗

M is approximately equal to me can

be seen. When m∗
M is larger than me, G decrease. Also, the conductance is largest

when m∗
M is very close to m∗

d. In this case, some electrons from metal can transmit

into the s band. When m∗
M is larger than m∗

d (m∗
M >> m∗

s), the conductance G is

increased because electrons can still transmit to the d band.

4.3 Conclusions

There are three important features occurring in the conductance spectra of

the two-band model of a ferromagnetic material. There are only kinks at the bottom

of the λd
mix−σ band when t = 0. When t is increased, the kinks at both the bottom of

λs
mix−σ band and λd

mix−σ band are presented. The peaks in the conductance spectra

at either the crossing points, when t = 0, or avoiding crossing points when t 6= 0 are

presented. These peaks are more prominent in the metallic limit than in the tunneling

limit. Lastly, the conductance spectra are large, when the electron effective mass in

the metal is a bit larger than that of the d band.

 

 

 

 

 

 

 

 



CHAPTER V

CONCLUSIONS

This thesis is a theoretical study the charge and spin transport in

metal/ferromagnetic material junction using a scattering formalism. We consider

both one-band and two-band approximations in describing the electronic properties

of ferromagnetic materials.

In the one-band approximation, the main effects we have concentrated on is

the dimensionality, the normal and spin-flip scattering at the interface. We found

the following.

(i) There is a change of the slope of the conductance spectrum at the en-

ergy corresponding to the bottom of the minority band. This change occurs in all

dimensional systems but it is most prominent in 1D system.

(ii) When the applied voltage is large, the conductance spectrum in all dimen-

sional systems varies as GnD
total ∼ (eV )

n−1
2 , where n is the dimensional number.

(iii) The conductance spectrum is suppressed, when the interfacial normal

scattering strength is increased in the absence of the spin-flip scattering. When the

spin-flip scattering is present, the conductance spectrum in the tunneling limit in

all dimensional cases reaches the maximum value, when the normal scattering and

non-spin-flip scattering strengths are equal.

(iv) The spin polarization of conductance is equal to one at the energy below

the bottom of minority band, and is decreased when the energy is higher. This

decrease is more rapid in 1D system than in 2D and 3D system.

(v) The spin polarization of conductance strongly depends on the dimension-

ality of the system. That is, in 1D system the spin polarization of conductance in a
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metallic limit is increased with the spin-flip scattering strength to a maximum value.

In the tunneling limit, the spin polarization of conductance is independent of the

spin-flip scattering strength. In 2D and 3D system, the spin polarization of conduc-

tance is increased and reaches to a maximum value when the normal scattering and

the spin-flip scattering strength are almost the same.

(vi) The spin polarizations of current in 1D, 2D, and 3D systems behave very

similarly. That is, it can be enhanced to a maximum value when the normal scattering

strength is equal to spin-flip scattering strength.

In the two-band model approximation, the s-d band mixing is included. The

effect of the s-d coupling strength on the tunneling conductance spectrum of a ferro-

magnetic material is mainly considered. We have calculated the conductance spec-

trum G with varying the coupling strength t, and the electron effective masses. Our

main findings are as follows.

(i) Because we have four energy dispersion relations, there are two kinds of

the crossing points between bands, when the coupling strength t is equal to zero.

They are the crossing points between the bands with the same spins and the crossing

points between the bands with opposite spins. The first kind of the crossing points

are opened as gaps when t is non-zero, while the second kind of the crossing points

do not change much. The amplitudes of the gaps strongly depend on t.

(ii) When t = 0, in the conductance spectrum in the low energy region, there

are two kinks at the energies equivalent to the bottoms of the λd
mix−σ bands, but

there are no features from the λs
mix−σ bands. In addition, there are two sharp peaks

occurring at the energy corresponding to the crossing points between the bands with

the same spin. In the higher energy region, the conductance spectrum behaves like

that in the one-band model.

(iii) When t is presented, in the low energy region the four kinks still occur

at the energies corresponding to the bottoms of the s-d mixing bands. The peaks at
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the energy corresponding to the avoiding crossing points are also presented. In the

higher energy region, the conductance spectrum still behaves like in the one-band

model.

(iv) When the spin-flip scattering at the interface is not considered, the con-

ductance spectrum is suppressed with the increasing normal scattering. This effect

is similar to that in the one-band model.

(v) As long as, the effective mass in the metal is the same as that in the d

band, the one-band approximation is enough to describe electronic properties of a

ferromagnetic material. However, when this is no longer true, one needs to use the

two-band approximation, to include the effect of the s band electrons.
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