
Discrete GB-Splines and Their Properties

Boris I. Kvasov

Abstract. Discrete generalized splines are continuous piecewise de-
fined functions which meet some smoothness conditions for the first
and second divided differences at the knots. Direct algorithms and
recurrence relations are proposed for constructing discrete general-
ized B-splines (discrete GB-splines for short). Properties of discrete
GB-splines and their series are studied. It is shown that discrete GB-
splines form weak Chebyshev systems and that series of discrete GB-
splines have a variation diminishing property.

§1. Introduction

The tools of generalized splines and GB-splines are widely used in solving
problems of shape preserving approximation (e.g., see [7]). By introduc-
ing various parameters into the spline structure, one can preserve char-
acteristics of the initial data such as positivity, monotonicity, convexity,
presence of linear sections, etc. Here, the main challenge is to develop algo-
rithms that choose parameters automatically. Recently, in [2] a difference
method for constructing shape preserving hyperbolic splines as solutions
of multipoint boundary value problems was developed. Such an approach
avoids the computation of hyperbolic functions and has substantial other
advantages. However, the extension of a mesh solution will be a discrete
hyperbolic spline. In this paper we consider more general constructions of
discrete generalized splines and discrete GB-splines, and investigate their
main properties.

§2. Discrete Generalized Splines

Let a partition ∆ : a = x0 < x1 < · · · < xN = b of the interval [a, b]
be given. For fixed τLi

j > 0 and τRi

j > 0, j = i, i + 1, and a function S
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which is defined and continuous on the real line IR we introduce the linear
difference operators

Di,1S(x) =(λRi

i S[x− τLi

i , x] + λLi

i S[x, x+ τRi

i ])(1 − t)

+ (λRi

i+1S[x− τLi

i+1, x] + λLi

i+1S[x, x+ τRi

i+1])t,

Di,2S(x) =2S[x− τLi

i , x, x+ τRi

i ](1 − t) + 2S[x− τLi

i+1, x, x + τRi

i+1]t,

x ∈ [xi, xi+1], i = 0, . . . , N − 1,

where λRi

j = 1 − λLi

j = τRi

j /(τLi

j + τRi

j ), j = i, i+ 1 and t = (x − xi)/hi,
hi = xi+1 − xi. The square parentheses denote the usual first and second
divided differences of the function S.

We associate to ∆ a system of functions {1, x,Φi,Ψi}, i = 0, . . . , N −
1, which are defined and continuous on IR and for given i are linearly
independent on the interval [xi, xi+1]. The functions Φi and Ψi are subject
to the constraints

Φi(xi+1 − τLi

i+1) = Φi(xi+1) = Φi(xi+1 + τRi

i+1) = 0, Di,2Φi(xi) = 1,

Ψi(xi − τLi

i ) = Ψi(xi) = Ψi(xi + τRi

i ) = 0, Di,2Ψi(xi+1) = 1.
(1)

Any element Si of the linear space Υi spanned by the four functions
1, x, Φi, Ψi can be uniquely written as

Si(x) =Si(xi)(1 − t) + Si(xi+1)t+Di,2Si(xi)[Φi(x) − Φi(xi)(1 − t)]
+Di,2Si(xi+1)[Ψi(x) − Ψi(xi+1)t].

(2)

Definition 1. A function S : [a, b] → IR is called a discrete generalized
spline if:
(i) for any integer i, 0 ≤ i ≤ N−1, there exists a unique function Si ∈ Υi

such that
S(x) ≡ Si(x), x ∈ [xi, xi+1]; (3)

(ii) for all integers i = 1, . . . , N − 1, S satisfies the following smoothness
conditions

Si−1(xi) = Si(xi),
Di−1,1Si−1(xi) = Di,1Si(xi),
Di−1,2Si−1(xi) = Di,2Si(xi).

(4)

The set of discrete generalized splines satisfying Definition 1 will be
denoted by SDG

4 . The usual operations of addition of elements from SDG
4

and their multiplication by real numbers give again elements in the set
SDG

4 which hence is a linear space.
Definition 1 generalizes the notion of discrete cubic splines in [8]. If

τLi

j → 0, τRi

j → 0, j = i, i + 1 for all i, then as the limiting case we
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obtain generalized splines in [6]. If τLj

i = τL
i and τ

Rj

i = τR
i , j = i− 1, i,

then according to smoothness conditions (4), the values of the functions
Si−1 and Si at the three consecutive points xi − τL

i , xi, xi + τR
i coincide.

Setting τLi

j = τRi

j = τi, j = i, i+ 1, we obtain Di,1S(x) = S[x− τi, x+ τi]
and Di,2S(x) = 2S[x− τi, x, x+ τi], which is the case discussed in [2].

According to the conditions (4), the discrete generalized spline S de-
fined by (2) and (3) can be written as

S(x) =S(xi)(1 − t) + S(xi+1)t+Mi[Φi(x) − Φi(xi)(1 − t)]
+Mi+1[Ψi(x) − Ψi(xi+1)t],

(5)

for x ∈ [xi, xi+1] and i = 0, . . . , N−1, where Mj = Di,2Si(xj), j = i, i+1.
The functions Φi and Ψi depend on tension parameters which influ-

ence the behaviour of S fundamentally. We call them the defining functions.
In practice one takes Φi to depend on a parameter pi, and Ψi to depend
on a parameter qi, 0 ≤ pi, qi < ∞. In the limiting case when pi, qi → ∞
we require that limpi→∞ Φi(x) = 0, x ∈ (xi, xi+1] and limqi→∞ Ψi(x) = 0,
x ∈ [xi, xi+1) so that the function S in formula (5) turns into a linear
function. Additionally, we require that if pi = qi = 0 for all i, then we get
a discrete cubic spline.

§3. Construction of Discrete GB-Splines

Let us construct a basis for the space of discrete generalized splines SDG
4

by using functions which have local supports of minimum length. Since
dim(SDG

4 ) = N + 3 we extend the grid ∆ by adding the points xj , j =
−3,−2,−1, N + 1, N + 2, N + 3, such that x−3 < x−2 < x−1 < a, b <
xN+1 < xN+2 < xN+3. As in Section 2, for each interval [xi, xi+1], i =
−3,−2,−1, N,N+1, N+2, we introduce the linear space Υi. This permits
us to define the discrete generalized spline S on the extended interval
[x−3, xN+3].

We demand that the discrete GB-splines B−3, . . . ,BN−1 have the
properties

Bi(x) > 0, x ∈ (xi + τRi

i , xi+4 − τ
Li+3
i+4 ), (6)

Bi(x) ≡ 0, x /∈ (xi, xi+4),
N−1∑
j=−3

Bj(x) ≡ 1, x ∈ [a, b]. (7)

According to (5), on the interval [xj , xj+1], j = i, . . . , i+ 3, for each
i = −3, . . . , N − 1 the discrete GB-spline Bi has the form

Bi(x) ≡ B̄i,j(x) = Pi,j(x) + Φj(x)Mj,Bi + Ψj(x)Mj+1,Bi , (8)
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where Pi,j is a linear polynomial and Ml,Bi = Dj,2B̄i,j(xl), l = j, j+ 1 are
constants to be determined.

The smoothness conditions (4) together with the constraints (1) give
the relations

Pi,j(xj) = Pi,j−1(xj) + zjMj,Bi ,

Dj,1Pi,j(xj) = Dj−1,1Pi,j−1(xj) + cj−1,2Mj,Bi ,

where
zj ≡ zj(xj) = Ψj−1(xj) − Φj(xj),

cj−1,2 = Dj−1,1Ψj−1(xj) −Dj,1Φj(xj).
Thus

Pi,j(x) = Pi,j−1(x) + [zj + cj−1,2(x− xj)]Mj,Bi . (9)

According to (4), the condition Bi(x) ≡ 0 for x /∈ (xi, xi+4) is satisfied
if and only if

B̄i,i(xi) = Di,1B̄i,i(xi) = Di,2B̄i,i(xi) = 0,
B̄i,i+3(xi+4) = Di+3,1B̄i,i+3(xi+4) = Di+3,2B̄i,i+3(xi+4) = 0.

Due to (8) and (1), the latter relations are equivalent to

Pi,i ≡ 0, Mi,Bi = 0 and Pi,i+3 ≡ 0, Mi+4,Bi = 0.

Therefore, by repeated use of (9) we obtain

Pi,j(x) =
j∑

l=i+1

[zl +cl−1,2(x−xl)]Ml,Bi = −
i+3∑

l=j+1

[zl +cl−1,2(x−xl)]Ml,Bi .

In particular, the following identity is valid,
i+3∑

j=i+1

[zj + cj−1,2(x− xj)]Mj,Bi ≡ 0,

from which one obtains the equalities
i+3∑

j=i+1

cj−1,2y
r
jMj,Bi = 0, r = 0, 1, yj = xj − zj

cj−1,2
. (10)

Thus the formula for the discrete GB-spline Bi takes the form

Bi(x) =




Ψi(x)Mi+1,Bi , x ∈ [xi, xi+1),
(x − yi+1)ci,2Mi+1,Bi + Φi+1(x)Mi+1,Bi + Ψi+1(x)Mi+2,Bi ,

x ∈ [xi+1, xi+2),
(yi+3 − x)ci+2,2Mi+3,Bi + Φi+2(x)Mi+2,Bi + Ψi+2(x)Mi+3,Bi ,

x ∈ [xi+2, xi+3),
Φi+3(x)Mi+3,Bi , x ∈ [xi+3, xi+4),
0, otherwise.

(11)
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After substituting formula (11) into the normalization condition (7)
written for x ∈ [xi, xi+1], i = 0, . . . , N − 1, we obtain

i∑
j=i−3

Bj(x) = Φi(x)
i−1∑

j=i−3

Mi,Bj + Ψi(x)
i∑

j=i−2

Mi+1,Bj

+ (yi+1 − x)ci,2Mi+1,Bi−2 + (x− yi)ci−1,2Mi,Bi−1 ≡ 1.

Due to the linear independence of functions 1, x, Φi, and Ψi on
[xi, xi+1], the latter relation is satisfied if and only if

i−1∑
j=i−3

Mi,Bj =
i∑

j=i−2

Mi+1,Bj = 0, (12)

yi+1ci,2Mi+1,Bi−2 − yici−1,2Mi,Bi−1 = 1,

ci,2Mi+1,Bi−2 − ci−1,2Mi,Bi−1 = 0.
(13)

In particular, from (13) we derive the identity

(yi+1 − x)ci,2Mi+1,Bi−2 + (x− yi)ci−1,2Mi,Bi−1 ≡ 1.

Solving system (13) and using (10) or (12), we obtain

Mj,Bi =
yi+3 − yi+1

cj−1,2ω′
i+1(yj)

, j = i+ 1, i+ 2, i+ 3,

ωi+1(x) = (x− yi+1)(x − yi+2)(x − yi+3)

or with the notation cj,3 = yj+2 − yj+1, j = i, i+ 1,

Mi+1,Bi =
1

ci,2ci,3
,

Mi+2,Bi = − 1
ci+1,2

( 1
ci,3

+
1

ci+1,3

)
,

Mi+3,Bi =
1

ci+2,2ci+1,3
.

(14)

§4. Properties of Discrete GB-Splines

The functions B−3, . . . ,BN−1 possess many of the properties inherent in
the usual discrete polynomial B-splines. To provide inequality (6), in what
follows we need to impose additional conditions on the functions Φj and
Ψj which, as the reader may readily check, are satisfied by all the defining
functions given in Section 8. The proofs of the following four assertions
repeat those given in [5].
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Lemma 1. Let the conditions

0 < 2Φj(xj) < −hiDj,1Φj(xj), 0 < 2Ψj(xj+1) < hjDj,1Ψj(xj+1),

j = i+ 1, i+ 2, i+ 3, be satisfied. Then in (14)

cj,k > 0, j = i, . . . , i+ 4 − k; k = 2, 3,

and, therefore,

(−1)j−i−1Mj,Bi > 0, j = i+ 1, i+ 2, i+ 3.

Theorem 1. Let the conditions of Lemma 1 be satisfied, the functions
Φj and Ψj be convex and Dj,2Φj and Dj,2Ψj be strictly monotone on the
interval [xj , xj+1] for all j. Then the functions B−3, . . . ,BN−1 have the
following properties:

(a) Bj(x) > 0 for x ∈ (xj + τ
Rj

j , xj+4 − τ
Lj+3
j+4 ), and Bj(x) ≡ 0 if x /∈

(xj , xj+4);
(b) Bj satisfies the smoothness conditions (4);

(c) Φj(x) = cj−1,2cj−2,3Bj−3(x), Ψj(x) = cj,2cj,3Bj(x) for x ∈ [xj , xj+1],
j = 0, . . . , N − 1, and

N−1∑
j=−3

yr
j+2Bj(x) ≡ xr, r = 0, 1 for x ∈ [a, b]. (15)

Lemma 2. The functions B−3, . . . ,BN−1 are splines from SDG
4 with finite

supports of minimal length.

Theorem 2. The functions B−3, . . . ,BN−1 are linearly independent on
[a, b] and form a basis of the space of discrete generalized splines SDG

4 .

§5. Local Approximation by Discrete GB-Splines

According to Theorem 2, any discrete generalized spline S ∈ SDG
4 can be

uniquely written in the form

S(x) =
N−1∑
j=−3

bjBj(x), x ∈ [a, b] (16)

for some coefficients bj .
If the coefficients bj in (16) are known, then by virtue of formula (11)

we can write out an expression for the discrete generalized spline S on the
interval [xi, xi+1], which is convenient for calculations,

S(x) = bi−2 + b
(1)
i−1(x− yi) + b

(2)
i−1Φi(x) + b

(2)
i Ψi(x), (17)

where

b
(k)
j =

b
(k−1)
j − b

(k−1)
j−1

cj,4−k
, k = 1, 2; b

(0)
j = bj. (18)

The representations (16) and (17) allow us to find a simple and effec-
tive way to approximate a given continuous function f from its samples.
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Theorem 3. Let a continuous function f be given by its samples f(yj),
j = −1, . . . , N + 1, where yj is defined in (10). Then for bj = f(yj+2),
j = −3, . . . , N−1, formula (16) is exact for linear polynomials and provides
a formula for local approximation.

Proof: It suffices to employ the identities (15). Inserting the coefficients
bj−2 = 1 and bj−2 = yj in formula (16), and using the identities (15), we
prove the first assertion of the theorem.

For bj−2 = f(yj), formula (17) can be rewritten as

S(x) =f(yi) + f [yi, yi+1](x − yi) + (yi+1 − yi−1)f [yi−1, yi, yi+1]c−1
i−1,2Φi(x)

+ (yi+2 − yi)f [yi, yi+1, yi+2]c−1
i,2 Ψi(x), x ∈ [xi, xi+1].

This is the formula of local approximation. The theorem is thus proved.

Corollary 1. Let a continuous function f be given by its samples fj =
f(xj), j = −2, . . . , N + 2. Then by setting

bj−2 = fj −
(
Ψj−1(xj)f [xj , xj+1] − Φj(xj)f [xj−1, xj ]

)
c−1
j−1,2 (19)

in (16), we obtain a formula of three-point local approximation, which is
exact for linear polynomials.

Proof: It suffices to check the result for the monomials 1 and x. Then
according to (19), we obtain bj−2 = 1 and bj−2 = yj, and it only remains
to make use of the identities (15). This proves the corollary.

Equation (17) permits us to write the coefficients of the spline S in
its representation (16) in the form

bj−2 =

{
S(yj) −Dj−1,2S(xj−1)Φj−1(yj) −Dj,2S(xj)Ψj−1(yj), yj < xj ,

S(yj) −Dj,2S(xj)Φj(yj) −Dj+1,2S(xj+1)Ψj(yj), yj ≥ xj .

According to this formula we have bj−2 = S(yj)+O(h
2

j ), hj = max(hj−1, hj).
Hence it follows that the control polygon (e.g., see [3]) converges quadrat-
ically to the function f when bj−2 = f(yj), or if the formula (19) is used.

§6. Recurrence Formulae for Discrete GB-Splines

Let us define functions

Bj,2(x) =



Dj,2Ψj(x), x ∈ [xj , xj+1),

Dj+1,2Φj+1(x), x ∈ [xj+1, xj+2],

0, otherwise,

j = i, i+ 1, i+ 2. (20)



362 Boris I. Kvasov

We assume that the functions Dj,2Ψj and Dj+1,2Φj+1 are strictly mono-
tone on [xj , xj+1) and [xj+1, xj+2], respectively. The splines Bj,2 are a
generalization of the “hat-functions” for polynomial B-splines. They are
nonnegative, and furthermore, Bj,2(xj) = Bj,2(xj+2) = 0, Bj,2(xj+1) = 1.
Let us denote

D1S(x) ≡ Di,1Si(x),
D2S(x) ≡ Di,2Si(x),

x ∈ [xi, xi+1], i = 0, . . . , N − 1;

then from (4) D1S and D2S are well defined if S ∈ SDG
4 . With the

previous notation, according to (11), (14) and (20) we obtain

D2Bi(x) =
i+3∑

j=i+1

Mj,BiBj−1,2(x)

=
1
ci,3

(Bi,2(x)
ci,2

− Bi+1,2(x)
ci+1,2

)
− 1
ci+1,3

(Bi+1,2(x)
ci+1,2

− Bi+2,2(x)
ci+2,2

)
. (21)

In addition, the function D1Bi satisfies the relation

D1Bi(x) =
Bi,3(x)
ci,3

− Bi+1,3(x)
ci+1,3

, (22)

where

Bj,3(x) =




Dj,1Ψj(x)
cj,2 , x ∈ [xj , xj+1),

1 + Dj+1,1Φj+1(x)
cj,2 − Dj+1,1Ψj+1(x)

cj+1,2
, x ∈ [xj+1, xj+2),

−Dj+2,1Φj+2(x)
cj+1,2

, x ∈ [xj+2, xj+3),
0, otherwise.

(23)
Using formula (23), it is easy to show that the functions B−2, . . . ,BN−1

satisfy the first and second smoothness conditions in (4), have supports of
minimum length, are linearly independent and form a partition of unity:

N−1∑
j=1

Bj,3(x) ≡ 1, x ∈ [a, b].

Figures 1 and 2 show the graphs of the discrete GB-splines Bj,2, Bj,3,
and Bj (from left to right) on a uniform mesh with step size hi = 1 and
with τLi

j = τRi

j = τ , j = i, i+ 1, for all i. We have chosen discretization
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Fig. 1. The discrete GB-splines Bj,k, k = 2, 3, 4 (from left to right) on a uniform
mesh with step size hi = 1, no tension and discretization parameter
τ = 0.1 (a) and τ = 0.33 (b).
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Fig. 2. Same as Figure 1, but with discretization parameter τ = 0.5 (a) and
with tension parameters qi = 50, for all i (b).

parameter τ = 0.1 (Fig. 1(a) and Fig. 2(b)), τ = 0.33 (Fig. 1(b)) and
τ = 0.5 (Fig. 2(a)) for

Ψi(x) = ψi(qi, t)h2
i =

τ̂i sinh qit− t sinh(qiτ̂i)
4
τ̂i

sinh2 qi τ̂i

2 sinh qi
h2

i , τ̂i =
τ

hi
,

Φi(x) = ψi(qi, 1 − t)h2
i .

This is a special case of Example 4 in Section 8. In Figures 1 and 2(a) we
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Fig. 3. The discrete GB-splines Bj,4 on a uniform mesh (a) and on a non-
uniform mesh (b). The asterisk ∗ denotes the xi. For both plots qi = 2
and τ = 0.5.

have parameters qi = 0, i.e. we have conventional discrete cubic B-splines
(e.g., see [8]). Visually, the presence of intervals where the B-spline Bj is
negative is more visible with growing discretization parameter τ . In Figure
2(b) the tension parameters are qi = 50 for all i, whence the shape of the
graphs is practically unchanged when τ increases from 0.1 to 0.5. As the
limit for qi → ∞ we obtain the pulse function for Bj,2, the “step-function”
for Bj,3 and the “hat-function” for Bj (all of height 1).

Figure 3 shows the graphs of discrete GB-splines Bj,4 on a uniform
mesh (left) and on a nonuniform mesh (right), where the asterisk ∗ denotes
the xi. For both plots qi = 2 and τ = 0.5.

Applying formulae (21) and (22) to the representation (16), we also
obtain

D1S(x) =
N−1∑
j=−2

b
(1)
j Bj,3(x), D2S(x) =

N−1∑
j=−1

b
(2)
j Bj,2(x), (24)

where b(k)
j , k = 1, 2 are defined in (18).

§7. Series of Discrete GB-Splines (Uniform Case)

Let us suppose that each step size hi = xi+1 − xi of the mesh ∆ : a =
x0 < x1 < · · · < xN = b is an integer multiple of the same tabulation step,
τ , of some uniform mesh refinement on [a, b]. For θ ∈ IR, τ > 0 define
IRθτ = {θ + iτ : i is an integer} and let IRθ0 = IR. For any a, b ∈ IR and
τ > 0 let [a, b]τ = [a, b] ∩ IRaτ .
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The functions Bj,2, Bj,3, and Bj with τLi

j = τRi

j = τ , j = i, i + 1
for all i are nonnegative on the discrete interval [a, b]τ . This permits us
to reprove the main results for discrete polynomial splines in [9] for series
of discrete generalized splines. In particular, if in (16) and (24) we have
coefficients b(k)

j > 0, k = 0, 1, 2, j = −3 + k, . . . , N − 1, then the spline S
will be a positive, monotonically increasing and convex function on [a, b]τ .

Denote by supp τBi = {x ∈ IRa,τ |Bi(x) > 0} the discrete support of
the spline Bi, i.e. the discrete set (xi + τ, xi+4 − τ)τ .

Theorem 4. Assume that ζ−3 < ζ−2 < · · · < ζN−1 are prescribed points
on the discrete line IRa,τ . Then

D = det (Bi(ζj)) ≥ 0, i, j = −3, . . . , N − 1

and strict positivity holds if and only if

ζi ∈ supp τBi, i = −3, . . . , N − 1. (25)

The proof of this theorem repeats that of Theorem 8.66 in [9, p. 355].
The following three statements follow immediately from Theorem 4.

Corollary 2. The system of discrete GB-splines B−3, . . . ,BN−1 associated
with knots on IRa,τ is a weak Chebyshev system according to the definition
given in [9, p. 36], i.e. for any ζ−3 < ζ−2 < · · · < ζN−1 in IRa,τ we have
D ≥ 0 and D > 0 if and only if condition (25) is satisfied. In the latter

case the discrete generalized spline S(x) =
∑N−1

j=−3 bjBj(x) has no more
than N + 2 zeros.

Corollary 3. If the conditions of Theorem 4 are satisfied, then the solu-
tion of the interpolation problem

S(ζi) = fi, i = −3, . . . , N − 1, fi ∈ IR (26)

exists and is unique.

Let A = {aij}, i = 1, . . . ,m, j = 1, . . . , n, be a rectangular m × n
matrix with m ≤ n. The matrix A is said to be totally nonnegative
(totally positive) (e.g., see [4]) if the minors of all order of the matrix are
nonnegative (positive), i.e. for all 1 ≤ p ≤ m, we have

det (aikjl
) ≥ 0 (> 0) for all

1 ≤ i1 < · · · < ip ≤ m,

1 ≤ j1 < · · · < jp ≤ n.

Corollary 4. For arbitrary integers −3 ≤ ν−3 < · · · < νp−4 ≤ N − 1 and
ζ−3 < ζ−2 < · · · < ζp−4 in IRa,τ we have

D̄p = det {Bνi(ζj)} ≥ 0, i, j = −3, . . . , p− 4
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and strict positivity holds if and only if

ζi ∈ supp τ Bνi , i = −3, . . . , p− 4

i.e. the matrix {Bj(ζi)}i,j=−3,...,N−1 is totally nonnegative.

The last statement is proved by induction based on Theorem 4 and
the recurrence relations for the minors of the matrix {Bj(ζi)}. The proof
does not differ from that of Theorem 8.67 described in [9, p. 356].

Since the supports of discrete GB-splines are finite, the matrix of
system (26) is banded and has seven nonzero diagonals in general. The
matrix is tridiagonal if ζi = xi+2, i = −3, . . . , N − 1.

An important particular case of the problem in which S′(xi) = f ′
i ,

i = 0, N , can be obtained by passing to the limit as ζ−3 → ζ−2, ζN−1 →
ζN−2.

de Boor and Pinkus [1] proved that linear systems with totally non-
negative matrices can be solved by Gaussian elimination without pivoting.
Thus, the system (26) can be solved effectively by the conventional Gauss
method.

Denote by S−(v) the number of sign changes (variations) in the se-
quence of components of the vector v = (v1, · · · , vn), with zeros being
neglected. Karlin [4] showed that if a matrix A is totally nonnegative,
then it decreases the variation, i.e.

S−(Av) ≤ S−(v).

By Corollary 4, the totally nonnegative matrix {Bj(ζi)}i,j=−3,...,N−1

formed by discrete GB-splines decreases the variation.
For a bounded real function f , let S−(f) be the number of sign

changes of the function f on the real axis IR, without taking into account
the zeros

S−(f) = sup
n
S−[f(ζ1), . . . , f(ζn)], ζ1 < ζ2 < · · · < ζn.

Theorem 5. The discrete generalized spline S(x) =
∑N−1

j=−3 bjBj(x) is a
variation diminishing function, i.e. the number of sign changes of S does
not exceed that in the sequence of its coefficients:

S−
( N−1∑

j=−3

bjBj

)
≤ S−(b), b = (b−3, . . . , bN−1).

The proof of this statement is the same as that of Theorem 8.68 for
discrete polynomial B-splines in [9, p. 356].
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§8. Examples of Defining Functions

Let us give some choices of the defining functions Φi and Ψi for discrete
generalized splines that conform to the sufficiency conditions derived ear-
lier in the paper. Putting

Ψi(x) = ψi(t)h2
i = ψ(qi, τ̂Li

i , τ̂Ri

i , t)h2
i , Φi(x) = ψ(pi, τ̂

Ri

i+1, τ̂
Li

i+1, 1 − t)h2
i ,

τ̂Li

j = τLi

j /hi, τ̂Ri

j = τRi

j /hi; j = i, i+ 1; 0 ≤ pi, qi <∞,

we consider some possibilities for choosing the functions ψi which, due to
the constraints (1), satisfy the conditions

ψi(−τ̂Li

i ) = ψi(0) = ψi(τ̂Ri

i ) = 0, Di+1,2ψi(1) = h−2
i . (27)

1) Discrete rational spline with linear denominator:

ψi(t) = Ci
(t+ τ̂Li

i )t(t− τ̂Ri

i )
1 + qi(1 − t)

.

2) Discrete rational spline with quadratic denominator:

ψi(t) = Ci
(t+ τ̂Li

i )t(t− τ̂Ri

i )
1 + qit(1 − t)

.

3) Discrete exponential spline:

ψi(t) = Ci(t+ τ̂Li

i )t(t− τ̂Ri

i )exp
( − qi(1 − t)

)
.

4) Discrete hyperbolic spline:

ψi(t) = Ci,1

[
sinh qit− t

sinh qiτ̂Ri

i

τ̂Ri

i

]
+Ci,2

[
cosh qit− 1− t

cosh qiτ̂Ri

i − 1
τ̂Ri

i

]
.

5) Discrete cubic spline with additional knots:

ψi(t) =
1
2

(t− βi + τ̂Li

i )(t− βi)+(t− βi − τ̂Ri

i )
3(1 − βi) + ε̂i+1 − ε̂i

,

ε̂j = τ̂Ri

j − τ̂Li

j , j = i, i+ 1; βi = 1 − (1 + qi)−1, E+ = max(0, E).

The points xi +αihi (αi = (1+pi)−1) and xi +βihi fix the position of two
additional knots of the spline on the interval [xi, xi+1]. By moving these
knots one can perform a transfer from a discrete cubic spline to piecewise
linear interpolation.
6) Discrete spline of variable order:

ψi(t) = Ci(t+ τ̂Li

i )tki(t− τ̂Ri), ki = 1 + qi.

The constants Ci in the expressions for the function ψi above are
calculated from the condition (27) for the second divided difference of
ψi. To find Ci,k, k = 1, 2, one needs additionally to use the condition
ψi(−τ̂Li

i ) = 0. It is easy to check that in all cases we get the corresponding
defining functions in [5] by setting τ̂Li

j = τ̂Ri

j = 0, j = i, i+ 1.
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