

รูปที่ 6.72 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 80 kHz

รูปที่ 6.73 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 80 kHz

รูปที่ 6.74 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 80 kHz

รูปที่ 6.75 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 81 kHz

รูปที่ 6.76 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 81 kHz

รูปที่ 6.77 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรดขาเข้า และขาออกที่ความถี่ 81 kHz

รูปที่ 6.78 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 82 kHz

รูปที่ 6.79 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 82 kHz

รูปที่ 6.80 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 82 kHz

รูปที่ 6.81 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 83 kHz

รูปที่ 6.82 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 83 kHz

รูปที่ 6.83 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 83 kHz

รูปที่ 6.84 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 84 kHz

รูปที่ 6.85 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 84 kHz

รูปที่ 6.86 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 84 kHz

รูปที่ 6.87 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 85 kHz

รูปที่ 6.88 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 85 kHz

รูปที่ 6.89 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 85 kHz

รูปที่ 6.90 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 86 kHz

รูปที่ 6.91 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่กวามถี่ 86 kHz

รูปที่ 6.92 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรดขาเข้า และขาออกที่ความถี่ 86 kHz

รูปที่ 6.93 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 87 kHz

รูปที่ 6.94 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 87 kHz

รูปที่ 6.95 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 87 kHz

รูปที่ 6.96 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 88 kHz

รูปที่ 6.97 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 88 kHz

รูปที่ 6.98 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรคขาเข้า และขาออกที่ความถี่ 88 kHz

รูปที่ 6.99 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติที่ความถี่ 89 kHz

รูปที่ 6.100 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 89 kHz

รูปที่ 6.101 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรค ขาเข้าและขาออกที่ความถี่ 89 kHz

รูปที่ 6.102 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่ความถี่ 90 kHz

รูปที่ 6.103 ภาพตัดกำลังงานสูญเสียทางกล (W) ภายในหม้อแปลงไพอิโซอิเล็กทริกแบบ 3 มิติ ที่กวามถี่ 90 kHz

รูปที่ 6.104 กำลังงานสูญเสียทางกล (W) ของหม้อแปลงไพอิโซอิเล็กทริกบริเวณขั้วอิเล็กโทรค ขาเข้าและขาออกที่ความถี่ 90 kHz

จากรูปที่ 6.72 - 6.104 เป็นรูปที่แสดงผลการจำลองการกระจายกำลังงานสูญเสียทางกลของ หม้อแปลงไพอิโซอิเล็กทริก โดยแสดงผลการจำลองในช่วงกวามถี่ 80 - 90 kHz ซึ่งหลังจากผ่าน กระบวนการกำนวณด้วยวิธีไฟในท์อิลิเมนท์แล้วได้นำค่าศักย์ไฟฟ้าและการกระจัดเชิงกลนำมาใช้ ในการกำนวณเพื่อหาค่ากำลังงานสูญเสียทางกลแล้วนำค่าต่าง ๆ ที่ได้จากการกำนวณนั้นมาแสดงผล การจำลองทั้งในแบบ 3 มิติ แบบภาพตัดและแบบ 2 มิติด้วยกัน โดยที่ในแบบ 2 มิตินั้นจะขยายไป ในส่วนของบริเวณขั้วอิเล็ก โทรดขาเข้าและขั้วอิเล็ก โทรดขาออกของหม้อแปลงไพอิโซอิเล็กทริก เพื่อให้ผลการจำลองนั้นสอดกล้องกับผลการจำลองการกระจายของค่าศักย์ไฟฟ้าและการกระจัด เชิงกล แล้วจากรูปที่ 6.72 - 6.86 ที่อยู่ในช่วงกวามถี่ 80 - 84 kHz จะพบว่ารูปร่างการกระจายของ กำลังงานสูญเสียทางกลที่เกิดขึ้นนั้นมีลักษณะของการกระจายที่ค่อนข้างจะเหมือนกัน โดยจะมีสิ่งที่ เปลี่ยนแปลงในแต่ละความถี่คือค่ากำลังงานสูญเสียทางกลที่เกิดขึ้น โดยที่ค่ากำลังงานสูญเสียทางกล นั้นจะมีก่าเพิ่มสูงมากขึ้นเรื่อย ๆ ตามลำดับ ตั้งแต่ก่าความถี่ที่ 80 kHz จนถึงที่ก่ากวามถี่ 84 kHz ซึ่งที่ก่าความถี่ 84 kHz นี้เป็นก่าความถี่ทำให้เกิดกำลังงานสูญเสียทางกลที่สูงสุด โดยจะพบว่าด่า กำลังงานสูญเสียทางกลที่ได้จากการจำลองผลนั้นจะสัมพันธ์กับผลการจำลองของการกระจัดเชิงกล ที่เกิดขึ้นในช่วงกวามถี่80 - 84 kHzโดยที่ผลของระยะการกระจัดเชิงกลจะมีก่าเพิ่มสูงมากขึ้น เรื่อย ๆ และจะมีก่าการกระจัดเชิงกลสูงสุดอยู่ที่ความถี่ 84 kHz เช่นกันกับการกระจายกำลังงาน

สูญเสียทางกล เพราะว่าในช่วงความถี่ 80 - 84 kHz นั้นเป็นช่วงความถี่ธรรมชาติของหม้อแปลง ้ไพอิโซอิเล็กทริกจึงส่งผลทำให้ระยะการกระจัคเชิงกลและกำลังงานสูญเสียทางกลนั้นเพิ่มสูงขึ้น แล้วในสำหรับความถี่ต่อมาที่ค่าความถี่ 85 kHz คังรูปที่ 6.87 - 6.89 โดยจะพบว่ารูปร่างการกระจาย ของกำลังงานสูญเสียทางกลที่เกิดขึ้นนั้นยังมีลักษณะที่คล้ายกับผลการจำลองกระจายของกำลังงาน ้สูญเสียทางกลในค่าความถี่ที่ผ่านมา เพราะว่าที่ค่าความถี่ 85 kHz นั้นยังอยู่ในช่วงความถี่ธรรมชาติ ของหม้อแปลงไพอิโซอิเล็กทริกแต่เป็นค่าความถี่ที่กำลังจะผ่านไปจากความถี่ธรรมชาติของ หม้อแปลงไพอิโซอิเล็กทริก จึงส่งผลทำให้ระยะของการกระจัดเชิงกลที่เกิดขึ้นนั้นมีค่าลดลงแล้วมี ผลทำให้กำลังงานสูญเสียทางกลมีค่าน้อยลงตามไปด้วยเช่นกัน แล้วสำหรับผลการจำลองในช่วง ้ความถี่ที่ 86 - 87 kHz ดังแสดงในรูปที่ 6.90 - 6.95 จะสังเกตเห็นว่ารูปร่างการกระจายของกำลังงาน ้สิญเสียทางกลที่เกิดขึ้นนั้นค่อนข้างจะมีลักษณะที่คล้ายกับผลการจำลองที่ผ่านมาอีกเช่นกัน แต่จะ พบว่าก่ากำลังงานสูญเสียทางกลที่ความถี่ 86 kHz ที่เกิดขึ้นนั้นจะมีก่าสูงมากกว่าที่ความถี่ 85 kHz เพราะว่าที่ความถี่ 86 kHz นั้นจะมีระยะการกระจัดเชิงกลที่สูงกว่าความถี่ 85 kHz ดังแสดงในรูปที่ 6.53 - 6.58 จึงส่งผลให้เกิดค่ากำลังงานสูญเสียทางกลที่เพิ่มขึ้นและในความถี่ถัดมาที่ความถี่ 87 kHz นั้นมีระยะการกระจัคเชิงกลที่ลดลงและทำให้ค่ากำลังงานสูญเสียทางกลลคลงจากความถี่ 86 kHz เช่นกันและสำหรับในที่ค่าความถี่ 88 - 90 kHz คังแสคงในรูปที่ 6.96 - 6.104 จะพบว่ารูปร่างการ กระจายของกำลังงานสูญเสียทางกลที่เกิดขึ้นนั้นมีรูปร่างที่เปลี่ยนแปลงไปแล้วจะสังเกตเห็นอีกว่า รูปร่างการกระจายนั้นมีลักษณะคล้ายกับรูปร่างการกระจัดเชิงกลที่เกิดขึ้นดังแสดงในรูปที่ 6.62 - 6.70 จึงมีผลทำให้รูปร่างการกระจายของกำลังงานสูญเสียทางกลที่เกิดขึ้นในช่วงที่ไม่เป็น ้ความถี่ธรรมชาตินั้นมีรูปร่างที่ต่างกันโดยในช่วงความถี่ 88 - 90 kHz นี้เป็นช่วงที่มีค่ากำลังงาน สูญเสียทางกลที่ค่อนข้างน้อยเมื่อเทียบกับค่ากำลังงานสูญเสียทางกลที่เกิดขึ้นในช่วงความถึ่ ้ธรรมชาติ โดยที่ก่ากำลังงานสูญเสียทางกลที่ก่อนข้างน้อยนี้เป็นผลมาจากที่ก่าระยะการกระจัด ้เชิงกลที่เกิดขึ้นของหม้อแปลงไพอิโซอิเล็กทริกนั้นมีค่าที่น้อยโดยจากผลการจำลองการกระจายของ ้กำลังงานสูญเสียทางกลทั้งหมดสามารถนำมาแสดงผลในลักษณะของกราฟได้ดังรูปที่ 6.104

รูปที่ 6.105 กำลังงานสูญเสียทางกลของหม้อแปลงไพอิโซอิเล็กทริกในช่วงความถี่ 80 - 90 kHz

จากผลการจำลองการกระจาขของกำลังงานสูญเสียทางกลที่เกิดขึ้นในช่วงความถี่ 80 - 90 kHz ดังแสดงในรูปที่ 6.104 กำลังงานสูญเสียทางกลของหม้อแปลงไพอิโซอิเล็กทริกนั้นจะ มีค่าสูงสุดอยู่ที่ความถี่ 84.13 kHz โดยให้กำลังงานสูญเสียทางกลสูงถึง 3.58 W ซึ่งกำลังงานสูญเสีย ทางกลที่เกิดขึ้นในการสั่นสะเทือนแบบต่าง ๆ ทั้งหมดนั้นจะสัมพันธ์กับผลการจำลองของการ กระจายการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริก โดยสังเกตได้จากรูปร่างการกระจายของ กำลังงานสูญเสียในช่วงความถี่ 80 - 87 kHz ดังแสดงในรูป 6.72 - 6.95 ที่จะมีลักษณะการกระจายที่ กล้ายกับการกระจายของการกระจัดเชิงกล ดังแสดงในรูปที่ 6.38 - 6.61 และสำหรับในช่วงความถี่ 88 - 90 kHz ดังแสดงในรูปที่ 6.62 - 6.70 ที่ลักษณะรูปร่างการกระจายของการกระจัดเชิงกลนั้นมี การเปลี่ยนแปลงก็จะพบว่ารูปร่างการกระจายของกำลังงานสูญเสียทางกลนั้นก็จะมีลักษณะที่ เหมือนกับรูปร่างการกระจายที่เปลี่ยนไป ดังแสดงในรูปที่ 6.96 - 6.104 แล้วยังมีอีกบางสิ่งที่มีความ สอดคล้องกันระหว่างกำลังงานสูญเสียทางกลและการกระจัดเชิงกลที่นอกเหนือจากรูปร่างการ กระจายแล้วก็อบริเวณตำแหน่งของการกระจัดเชิงกลที่มีก่ามากก็จะพบว่าที่บริเวณตำแหน่งของ กำลังงานสูญเสียทางกลที่ตำแหน่งนั้นก็จะมีก่ามากและถ้าบริเวณตำแหน่งของการกระจัดเชิงกลที่มี ค่าน้อยที่บริเวณตำแหน่งของกำลังงานสูญเสียทางกลก็จะมีค่าน้อยลงเช่นกัน

6.6 ประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริก

สำหรับการคำนวณหาค่าประสิทธิภาพนั้นสามารถคำนวณได้โดยผ่านทฤษฎีการถ่ายโอน กำลังงานไฟฟ้าสูงสุดโดยมีหลักการว่าการถ่ายโอนกำลังงานไฟฟ้าจะมีค่าสูงสุดเมื่อค่า ความด้านทานโหลดที่นำมาต่อมีค่าเท่ากับค่าความด้านทานของหม้อแปลงไพอิโซอิเล็กทริกสำหรับ การแก้ปัญหาวิเคราะห์วงจรไฟฟ้าในเรื่องทฤษฎีการถ่ายโอนกำลังไฟฟ้าสูงสุดจะมีลักษณะ วงจรไฟฟ้าดังรูปที่ 6.105

รูปที่ 6.106 วงจรการถ่ายโอนกำลังงานไฟฟ้าสูงสุด

เมื่อ V_{in} คือ ศักย์ไฟฟ้าขาออกของหม้อแปลงไพอิโซอิเล็กทริก R_L คือ ความต้านทานโหลด R_s คือ ความต้านทานของหม้อแปลงไพอิโซอิเล็กทริกโดยสำหรับหม้อแปลง ไพอิโซอิเล็กทริกในงานวิจัยนี้มีค่าเท่ากับ 5800 Ω (มณฑกานต์ พีรศักดิ์โสภณ, 2553)

โดยที่ประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริกนั้นสามารถหาได้จากการเปรียบเทียบ กันระหว่างค่ากำลังงานไฟฟ้าที่ตกคร่อมโหลด (P_{load}) และค่ากำลังงานไฟฟ้าที่ตกคร่อมหม้อแปลง ไพอิโซอิเล็กทริก (P_{in}) สำหรับค่าที่ได้จากการคำนวณต่าง ๆ นั้นสามารถสรุปได้ดังตารางที่ 6.1 ซึ่งจะแสดงผลที่ค่าความถี่ 84.13 kHz เนื่องจากเป็นค่าความถี่ที่ทำให้เกิดค่าศักย์ไฟฟ้าที่บริเวณ ขั้วอิเล็กโทรดขาออก ระยะการกระจัดเชิงกลและค่ากำลังงานสูญเสียทางกลมากที่สุดได้ดังต่อไปนี้

R_{load} (k Ω)	P _{load} (W)	P _{in} (W)	Efficiency (%)
1	66.23	73.43	90.19
2	100.367	107.85	93.32
3	118.64	125.84	94.27
4	127.55	134.75	94.65
5	131.28	138.16	94.80
6	131.96	139.16	94.82
7	130.84	138.04	94.78
8	128.64	135.84	94.70
9	125.83	133.03	94.58
10	122.67	129.87	94.45
20	92.01	99.21	92.74
30	71.68	78.88	90.87
40	58.39	65.59	89.02
50	49.17	56.37	87.22
60	42.44	49.64	85.49
70	37.31	44.51	83.82
80	33.28	40.48	82.21
90	30.03	37.23	80.66
100	27.35	34.55	79.16
200	14.46	21.66	66.76
300	9.82	17.02	57.70
400	7.43	14.63	50.81
500	5.98	13.18	45.39
600	5.00	12.20	41.01
700	4.30	11.50	37.40
800	3.77	10.97	34.38
900	3.35	10.55	31.81

ตารางที่ 6.1 ผลการคำนวณประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริก

1000

3.02

10.22

29.60

โดยจากตารางที่ 6.1 นั้นจะประกอบไปด้วยค่ากำลังงานไฟฟ้าที่ตกคร่อมโหลด ค่ากำลังงาน ไฟฟ้าที่ตกคร่อมหม้อแปลงไพอิโซอิเล็กทริกและประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริกเมื่อ เทียบกับที่ค่าโหลดต่าง ๆ ซึ่งค่าประสิทธิภาพที่ได้จากการคำนวณนั้นสามารถนำมาแสดงผลได้ ดังรูปที่ 6.106

รูปที่ 6.107 ประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริก

รูปที่ 6.106 เป็นการแสดงผลประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริก โดยเป็นผล ที่ได้จากการกำนวณเมื่อเทียบกับก่ากวามด้านโหลดต่าง ๆ ที่กวามถี่ 84.13 kHz เนื่องจากเป็น ช่วงกวามถี่ที่มีอัตราการขยายศักย์ไฟฟ้าสูงสุดและในช่วงที่เกิดอัตราการขยายศักย์ไฟฟ้าสูงสุดก็ จะเกิดระยะการกระจัดเชิงกลที่สูงสุดซึ่งมีผลทำให้เกิดกำลังงานสูญเสียทางกลสูงสุดค้วยเช่นกัน โดยจะนำก่ากำลังงานสูญเสียทางกลที่เกิดขึ้นที่บริเวณขั้วอิเล็กโทรดขาออกมาใช้ในการกำนวณ เนื่องจากบริเวณขั้วอิเล็กโทรดขาออกของหม้อแปลงไพอิโซอิเล็กทริกเป็นบริเวณที่มีก่ากำลังงาน สูญเสียทางกลสูงสุดและเป็นบริเวณที่จะถูกนำไปต่อใช้งานจึงใช้บริเวณขั้วอิเล็กโทรดขาออกเป็น พื้นที่ศึกษา โดยจะวิเกราะห์เฉพาะก่ากำลังงานสูญเสียทางกลเท่านั้นเพราะว่าก่ากำลังงานสูญเสียทาง ใฟฟ้านั้นจะมีก่าน้อยมาก ๆ เมื่อเทียบกับก่ากำลังงานสูญเสียทางกลและจากทฤษฎีประสิทธิภาพการ ถ่ายโอนกำลังงานไฟฟ้าสูงสุดจะเกิดขึ้นเมื่อก่าความต้านทานของโหลดมีก่าเท่ากับก่ากวามต้านทาน ของหม้อแปลงไพอิโซอิเล็กทริก ซึ่งจากตารางที่ 6.1 และจากรูปที่ 6.106 จะสังเกตเห็นว่า ประสิทธิภาพของหม้อแปลงไพอิโซอิเล็กทริกจะสูงสุดประมาณถึง 94% เมื่อค่าต้านทานโหลด มีค่าประมาณเท่ากับ 5.8 kΩ และจากรูปวงจรที่ 6.105 นั้นสามารถคำนวณหาค่าศักย์ไฟฟ้าที่ตก คร่อมโหลดได้ ซึ่งผลที่จะแสดงในรูปถัดไปจะเป็นการแสดงผลอัตราการขยายของค่าศักย์ไฟฟ้า ที่เกิดขึ้นในสภาวะที่โหลดมีเท่ากับ 1345 Ω ภายในช่วงความถี่ 80 - 90 kHz แสดงได้ดังรูปที่ 6.107

รูปที่ 6.108 ผลการคำนวณอัตราการขยายของค่าศักย์ไฟฟ้าที่เกิดขึ้นในสภาวะที่โหลด มีค่าเท่ากับ 1345 Ω

เนื่องจากผลความถี่ธรรมชาติในรูปที่ 5.19 ของบทที่ 5 นั้นจะเป็นผลความถี่ธรรมชาติ ในสภาวะที่โหลดเท่ากับ 1345 Ω จึงเลือกศึกษาที่ก่าความต้านทานนี้เพื่อที่จะสามารถเทียบผลกันได้ โดยจากรูปที่ 6.107 จะสังเกตเห็นว่าอัตราการขยายของก่าศักย์ไฟฟ้าจะมีก่าสูงสุดอยู่ที่ก่าความถึ่ 84.13 kHz และให้อัตราการขยายของก่าศักย์ไฟฟ้าสูงถึง 6.6 เท่า เมื่อเทียบกับก่าศักย์ไฟฟ้างาเข้าของ หม้อแปลงไพอิโซอิเล็กทริกแล้วสำหรับผลอัตราการขยายของก่าศักย์ไฟฟ้าในรูปที่ 5.19 ของบทที่ 5 นั้นจะพบว่าอัตราการขยายของก่าศักย์ไฟฟ้าจะมีก่าสูงสุดอยู่ที่ก่าความถี่ 82.29 kHz โดยจะให้อัตรา การขยายของก่าศักย์ไฟฟ้าสูงถึง 7.15 เท่า ซึ่งจากผลการกำนวณและผลการทคลองเพื่อหาก่าอัตรา การขยายของก่าศักย์ไฟฟ้าที่เกิดขึ้นในสภาวะที่โหลดมีก่าเท่ากับ 1345 Ω นั้นจะมีก่าที่ใกล้เกียงกัน

้ จากผลความถี่ธรรมชาติในตารางที่ 5.2 ของบทที่ 5 นั้นจะพบว่าค่าความถี่ธรรมชาติในช่วง ความถี่ 0 - 100 kHz นั้นจะมีค่าความถี่ธรรมชาติอยู่หลาย ๆ โหมคความถี่ธรรมชาติด้วยกัน ้โดยเนื้อหาในส่วนนี้จะแสดงผลการจำลองในช่วงความถี่ธรรมชาติที่โหมคอื่น ๆ เพื่อเป็นการยืนยัน ้ คำตอบของความถี่ธรรมชาติที่ได้จากการคำนวณว่าในโหมดอื่น ๆ ก็สามารถที่จะให้เกิดค่า ้ศักย์ไฟฟ้าที่บริเวณขั้วอิเล็กโทรคขาออกของหม้อแปลงไพอิโซอิเล็กทริก เกิคระยะการกระจัคเชิงกล ที่สูงและเกิดกำลังงานสูญเสียทางกลที่สูงด้วยเช่นกัน แล้วจะสังเกตด้วยว่าโดยในโหมดอื่น ๆ ของความถี่ธรรมชาตินั้นจะเกิดรูปร่างการกระจัดเชิงกลอย่างไรซึ่งตามหลักทฤษฎีแล้วในแต่ละ ์ โหมดความถี่ธรรมชาติจะต้องให้รูปร่างการกระจัดเชิงกลที่แตกต่างกันไป สำหรับการแสดงผลนั้น เพื่อให้เห็นถึงลักษณะการกระจายของผลการจำลองที่เปลี่ยนแปลงไปเมื่อมีการเปลี่ยนแปลงของ ้ความถี่จึงแบ่งผลการจำลองออกเป็น 3 แบบให้เหมือนกับการจำลองผลในแบบก่อน ๆ โดยในแบบ แรกนั้นจะแสดงผลการกระจายของผลการจำลองในแบบ 3 มิติเพื่อให้เห็นผลการจำลองทั่วทั้ง ปริมาตรของหม้อแปลงไพอิโซอิเล็กทริกและแบบที่สองจะแสดงผลภาพตัดของหม้อแปลง ้ไพอิโซอิเล็กทริกเพื่อให้เห็นถึงผลการจำลองภายในหม้อแปลงและในแบบที่สามจะแสดงผลใน แบบ 2 มิติโดยจะแสดงผลบริเวณขั้วอิเล็กโทรดขาเข้าและขั้วอิเล็กโทรดขาออกของหม้อแปลง ้ไพอิโซอิเล็กทริกเพื่อให้สอดคล้องกับการแสดงผลการจำลองในแบบก่อน ๆ อีกเช่นกันแล้วเพื่อให้ เห็นถึงลักษณะการกระจายของผลการจำลองในอีกหลาย ๆ มุมมองได้อย่างชัคเจนยิ่งขึ้นโดยจะ แสดงผลการจำลองในช่วงความถี่ 30 - 40 kHz และ 70 - 78 kHz เนื่องจากเป็นช่วงค่าความถึ ธรรมชาติในโหมด 2 และ 3 ที่ได้จากการคำนวณเพราะฉะนั้นแล้วผลการจำลองควรจะมีความ แตกต่างจากช่วงความถี่ 80 - 90 kHz โดยจะแสดงผลการจำลองออกเป็นดังนี้

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 30kHz ดังแสดงด้วยรูปที่ 6.109 - 6.111 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 32kHz ดังแสดงด้วยรูปที่ 6.112 - 6.114 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ไฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 34kHz ดังแสดงด้วยรูปที่ 6.115 - 6.117 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 36kHz ดังแสดงด้วยรูปที่ 6.118 - 6.120 ตามลำดับ

5. ผลการจำลองการกระจายค่าศักย์ไฟฟ้าของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 38 kHz ดังแสดงด้วยรูปที่ 6.121 - 6.123 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 40 kHz ดังแสดงด้วยรูปที่ 6.124 - 6.126 ตามลำดับ 7. ผลการจำลองการกระจายค่าศักย์ไฟฟ้าของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 70kHz ดังแสดงด้วยรูปที่ 6.127 - 6.129 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 72kHz ดังแสดงด้วยรูปที่ 6.130 - 6.132 ตามลำดับ

 ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 74kHz ดังแสดงด้วยรูปที่ 6.133 - 6.135 ตามลำดับ

10. ผลการจำลองการกระจายค่าศักย์ ใฟฟ้าของหม้อแปลง ไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพคัด และแบบ 2 มิติที่ความถี่ 76kHz ดังแสดงด้วยรูปที่ 6.136 - 6.138 ตามถำดับ

11.ผลการจำลองการกระจายค่าศักย์ไฟฟ้าของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพศัค และแบบ 2 มิติที่ความถี่ 78 kHz คังแสดงด้วยรูปที่ 6.139 - 6.141 ตามลำคับ

รูปที่ 6.109 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 30 kHz

รูปที่ 6.110 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 30 kHz

รูปที่ 6.111 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรคขาเข้าและขาออก ที่ความถี่ 30 kHz

รูปที่ 6.112 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 32 kHz

รูปที่ 6.113 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 32 kHz

รูปที่ 6.114 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรดขาเข้าและขาออก ที่ความถี่ 32 kHz

รูปที่ 6.115 การกระจายตัวของศักย์ใฟฟ้า (V) แบบ 3 มิติที่ความถี่ 34 kHz

รูปที่ 6.116 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 34 kHz

รูปที่ 6.117 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็ก โทรคขาเข้าและขาออก ที่ความถี่ 34 kHz

รูปที่ 6.118 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 36 kHz

รูปที่ 6.119 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 36 kHz

รูปที่ 6.120 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรคขาเข้าและขาออก ที่ความถี่ 36 kHz

รูปที่ 6.121 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 38 kHz

รูปที่ 6.122 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 38 kHz

รูปที่ 6.123 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็ก โทรคขาเข้าและขาออก ที่ความถี่ 38 kHz

รูปที่ 6.124 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 40 kHz

รูปที่ 6.125 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 40 kHz

รูปที่ 6.126 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็ก โทรคขาเข้าและขาออก ที่ความถี่ 40 kHz

รูปที่ 6.127 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 70 kHz

รูปที่ 6.128 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 70 kHz

รูปที่ 6.129 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็ก โทรคขาเข้าและขาออก ที่ความถี่ 70 kHz

รูปที่ 6.130 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 72 kHz

รูปที่ 6.131 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 72 kHz

รูปที่ 6.132 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรดขาเข้าและขาออก ที่ความถี่ 72 kHz

รูปที่ 6.133 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 74 kHz

รูปที่ 6.134 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 74 kHz

รูปที่ 6.135 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็ก โทรคขาเข้าและขาออก ที่ความถี่ 74 kHz

รูปที่ 6.136 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 76 kHz

รูปที่ 6.137 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 76 kHz

รูปที่ 6.138 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรคขาเข้าและขาออก ที่ความถี่ 76 kHz

รูปที่ 6.139 การกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 78 kHz

รูปที่ 6.140 ภาพตัดการกระจายตัวของศักย์ไฟฟ้า (V) แบบ 3 มิติที่ความถี่ 78 kHz

รูปที่ 6.141 การกระจายตัวของศักย์ไฟฟ้า (V) บริเวณขั้วอิเล็กโทรคขาเข้าและขาออก ที่ความถี่ 78 kHz

จากรูปที่ 6.109 - 6.141 เป็นรูปที่แสดงผลการจำลองการกระจายค่าศักย์ไฟฟ้าของหม้อ แปลงไพอิโซอิเล็กทริกในช่วงความถี่ 30 - 40 kHz และ 70 - 78 kHz ซึ่งหลังจากผ่านกระบวนการ ้ กำนวณโดยใช้วิธีไฟไนท์อิลิเมนท์แล้ว ได้นำก่าศักย์ไฟฟ้าที่มากสุดที่บริเวณขั้วอิเล็กโทรดขาออก ้ของหม้อแปลงไพอิโซอิเล็กทริกมาใช้ในการจำลองผลเชิงกราฟิกค่าการกระจายตัวของศักย์ไฟฟ้า ้ที่เกิดขึ้นบริเวณขั้วอิเล็กโทรดขาออกของหม้อแปลงไพอิโซอิเล็กทริกแล้วได้แสดงผลทั้งแบบ 3 มิติ แบบภาพตัดและแบบ 2 มิติในแบบ 2 มิตินั้นจะขยายไปในส่วนของบริเวณขั้วอิเล็กโทรคขาเข้าและ ขั้วอิเล็กโทรคขาออกของหม้อแปลงไพอิโซอิเล็กทริก สำหรับผลการจำลองการกระจายตัวของค่า ้ศักย์ไฟฟ้าในช่วงความถี่ 30 - 40 kHz และ 70 - 78 kHz นั้นจะสังเกตเห็นว่าค่าศักย์ที่เกิดขึ้นบริเวณ ขั้วอิเล็กโทรดขาออกจะมีค่าเพิ่มขึ้นมากเรื่อย ๆ ตั้งแต่ที่ค่าความถี่ 30 kHz และ 70 kHz โดยจะมี ้ ค่าสูงสุดอยู่ที่ค่าความถี่ 32 kHz และ 74 kHz ดังแสดงในรูปที่ 6.112 - 6.114 และ 6.133 - 6.135 ซึ่งที่ ้ ก่าความถี่ 32 kHz นั้นจะให้ก่าศักย์ไฟฟ้าสูงถึง 250 V โดยจะมีก่าเป็น 5 เท่าเมื่อเทียบกับก่า ้ศักย์ไฟฟ้าขาเข้าที่มีค่า 50 V จากที่ค่าความถี่ 32 kHz และ 74 kHz เป็นความถี่ที่ทำให้เกิดค่า ศักย์ไฟฟ้าได้สูงที่สุดแสดงว่ากวามถี่นี้คือกวามถี่ธรรมชาติของหม้อแปลงไพอิโซอิเล็กทริกในช่วง ้ความถี่ 30 - 40 kHz และ 70 - 78 kHz โดยที่ความถี่ 32 kHz และ 74 kHz นี้จะใกล้เคียงกับผลความถี่ ธรรมชาติที่ได้จากการทคลองจริงและจากการคำนวณด้วยวิธีไฟในท์อิลิเมนท์ดังแสดงไว้ใน ตารางที่ 5.2 ในบทที่ 5 และหลังจากที่ค่าความถี่ 32 kHz และ 74 kHz นั้นจะพบว่าค่าศักย์ไฟฟ้า ที่เกิดขึ้นบริเวณขั้วอิเล็กโทรดขาออกนั้นจะลดลงเรื่อย ๆ ตามลำดับจนถึงที่ก่ากวามถี่ 40 kHz และ 78 kHz ซึ่งจากผลการจำลองการกระจายของค่าศักย์ไฟฟ้าในช่วงความถี่คังกล่าวนี้จะสามารถสรุป ้ได้ว่าจะเริ่มต้นจากสภาวะที่ค่าศักย์ไฟฟ้าที่เกิดขึ้นบริเวณขั้วอิเล็กโทรดขาออกนั้นมีก่าน้อยกว่าก่า ้ศักย์ไฟฟ้างาเข้ามาก ๆ แล้วจะเพิ่มสูงขึ้นเรื่อย ๆ จนศักย์ไฟฟ้าที่เกิดขึ้นบริเวณขั้วอิเล็กโทรดงาออก ้นั้นมากกว่าก่าศักย์ไฟฟ้าขาเข้าในที่ก่ากวามถี่ธรรมชาติของหม้อแปลงไพอิโซอิเล็กทริกแล้ว ้ศักย์ไฟฟ้าที่เกิดขึ้นบริเวณขั้วอิเล็กโทรดขาออกก็จะลดลงเรื่อย ๆ จนกลับเข้าสู่สภาวะเริ่มต้นใหม่ และจะเป็นแบบนี้สำหรับทุก ๆ ของช่วงความถี่ที่ใกล้เคียงกับความถี่ธรรมชาติ

ในส่วนต่อจากนี้จะแสดงผลการจำลองการกระจายของการกระจัดเชิงกลที่เกิดขึ้นในช่วง กวามถี่ 30 - 40 kHz และ 70 - 78 kHz เนื่องจากทฤษฎีกวามถี่ธรรมชาตินั้นบอกไว้ว่ารูปร่างการ สั่นสะเทือนนั้นอาจจะมีรูปร่างที่แน่นอนหรือไม่นอนก็ได้และจากเรื่องความถี่ธรรมชาติในเส้นเชือก จะพบว่าที่ก่าความถี่ธรรมชาติต่าง ๆ ก็ให้รูปร่างการสั่นสะเทือนที่ต่าง ๆ กันด้วย เพราะฉะนั้นเพื่อ เป็นการเปรียบเทียบความแตกต่างของการกระจัดเชิงกลที่เกิดขึ้นในช่วงกวามถี่ 80 - 90 kHz จึงได้ จำลองการกระจายของการกระจัดเชิงกล ซึ่งจะแบ่งผลการจำลองออกเป็น 3 แบบเหมือนกับการ จำลองผลการกระจายของค่าศักย์ไฟฟ้า โดยแบบแรกจะแสดงผลในแบบ 3 มิติเพื่อให้เห็นถึงผลการ จำลองการกระจัดเชิงกลทั่วทั้งปริมาตรของหม้อแปลงไพอิโซอิเล็กทริกและแบบที่สองจะแสดงผล ภาพตัดของหม้อแปลงไพอิโซอิเล็กทริกเพื่อให้เห็นถึงผลการจำลองภายในหม้อแปลงและในแบบที่ สามจะแสดงผลในแบบ 2 มิติโดยจะแสดงผลบริเวณขั้วอิเล็กโทรดขาเข้าและขั้วอิเล็กโทรดขาออก ของหม้อแปลงไพอิโซอิเล็กทริกเพื่อให้สอดกล้องกับการแสดงผลการจำลองของก่าศักย์ไฟฟ้าและ เพื่อให้เห็นถึงการกระจายของการกระจัดเชิงกลในอีกหลาย ๆ มุมมองได้อย่างชัดเจนยิ่งขึ้น โดยจะ แสดงผลการจำลองออกเป็นดังนี้

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 30kHz ดังแสดงด้วยรูปที่ 6.142 - 6.144 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 32kHz ดังแสดงด้วยรูปที่ 6.145 - 6.147 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 34kHz ดังแสดงด้วยรูปที่ 6.148 - 6.150 ตามลำดับ

 4. ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 36kHz ดังแสดงด้วยรูปที่ 6.151 - 6.153 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่กวามถี่ 38 kHz ดังแสดงด้วยรูปที่ 6.154 - 6.156 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 40kHz ดังแสดงด้วยรูปที่ 6.157 - 6.159 ตามลำดับ

7. ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 70kHz ดังแสดงด้วยรูปที่ 6.160 - 6.162 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 72kHz ดังแสดงด้วยรูปที่ 6.163 - 6.165 ตามลำดับ

 ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 74kHz ดังแสดงด้วยรูปที่ 6.166 - 6.168 ตามลำดับ

10.ผลการจำลองการกระจัดเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 76kHz ดังแสดงด้วยรูปที่ 6.169 - 6.171 ตามลำดับ

11.ผลการจำลองการกระจัคเชิงกลของหม้อแปลงไพอิโซอิเล็กทริกในแบบ 3 มิติ แบบภาพตัด และแบบ 2 มิติที่ความถี่ 78kHz ดังแสดงด้วยรูปที่ 6.172 - 6.174 ตามลำดับ