
Approximation by Lagrange Splines

Boris I� Kvasov� and Anirut Luadsong
School of Mathematics� Suranaree University of Technology

University Avenue ���� ������ Nakhon Ratchasima� Thailand

boris�math�sut�ac�th and anirut�math�sut�ac�th

Abstract� Polynomials and their smooth piecewise analogs known as splines
are used as the basic means of approximation in nearly all areas of numerical
analysis� For this reason� the representation and evaluation of polynomials and
splines is a fundamental topic in numerical analysis� We will discuss this topic
in the context of local spline interpolation� the simplest and certainly the most
widely used technique for obtaining spline approximation� One central point of
this paper is a generalization of Horner�s rule for the simultaneous evaluation of
the interpolating polynomial and its derivatives� Such an algorithm is usually
not found in standard textbooks on numerical analysis�
We will study the simplest piecewise polynomial approximations known as La�
grange interpolating splines in detail� Using a very simple approach we show
how to obtain smooth analogues of Lagrange splines which only approximate
the data while still providing the same order of approximation as Lagrange in�
terpolating splines� Such functions are usually called quasi�interpolants� We
then study the commonly used Lagrange splines� such as piecewise cubic and
piecewise quadratic Lagrange polynomials in detail� Relations between discrete
polynomial splines and Lagrange splines are investigated including a generaliza�
tion of Marsden�s identity �����

�� Polynomial Interpolation Problem

Let a real�valued function f de�ned on some interval �a� b� be stored in tabular form
�xi� fi�� i � 	� � � � � N � where fi � f�xi� and where the points xi form an ordered
sequence a � x� � x� � � � � � xN � b


A typical interpolation problem consists of the selection of a function PN from
a given class of functions in a way such that the graph of PN passes through the
given set of data points� that is� PN �xi� � fi� i � 	� � � � � N � where the points xi are
called the interpolation nodes


The traditional and simplest method for solving the interpolation problem is
the construction of an interpolating polynomial PN 
 The interpolation conditions

PN �xi� �
NX
j��

ajx
j
i � fi� i � 	� � � � � N �����

are equivalent to the system of linear algebraic equations�
���
� x� x�� � � � xN�
� x� x�� � � � xN�
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The matrix of system ��
�� is called the Vandermonde matrix and its determi�
nant is the Vandermonde determinant
 In our case the Vandermonde determinant
D �

Q
��i�j�N �xj � xi� is nonzero� so that system ��
�� has a unique solution


This proves the existence and uniqueness of an interpolating polynomial of degree
� N 
 However a direct solution of system ��
�� can in general not be recommended
as its matrix �with 
almost� linearly dependent rows� is often ill�conditioned
 The
evaluation of the interpolating polynomial can be performed very e�ciently by us�
ing the Lagrange interpolation formula which permits us to write down the solution
of system ��
�� explicitly


�� Lagrange Interpolation Formula

Let us consider the Lagrange formula for the interpolating polynomial

LN �x� �
NX
j��

fjlj�x�� �����

where the Lagrange coe�cient polynomial lj with the property

lj�xi� �

�
� if i � j�
	� otherwise

has the explicit form

lj�x� �
�x� x�� � � � �x� xj����x� xj��� � � � �x� xN �

�xj � x�� � � � �xj � xj����xj � xj��� � � � �xj � xN �
� j � 	� � � � � N

and can be written in short as

lj�x� �
�N �x�

�x� xj���N �xj�
� j � 	� � � � � N� �����

�N �x� � �x� x���x� x�� � � � �x� xN ��

The graph of the Lagrange coe�cient polynomial l� with N � �	 and nodes xi � i�
i � 	� � � � � �	 is given in Figure �
�


One can easily verify that

LN �xi� � fi� i � 	� � � � � N�

According to ��
�� and ��
�� the number of arithmetic operations necessary to
compute the value of the interpolating polynomial in Lagrange form �or Lagrange
interpolating polynomial for short� is proportional to N�


Lemma ���� The Lagrange interpolating polynomial is exact for polynomials of
degree � N � that is� for any polynomial Pk of degree k � N the following identity
is valid�

Pk�x� �
NX
j��

Pk�xj�lj�x�� 	 � k � N�
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Figure ���� The graph of the Lagrange coe	cient polynomial
l� with N 
 �� and nodes xi 
 i� i 
 �� � � � � ���

Proof� It is su�cient to verify the validity of the above formula for monomials�
that is� to prove the identity

xk �
NX
j��

xkj lj�x�� k � 	� � � � � N�

Now the polynomial of the degree N �

Fk�N �x� � xk �
NX
j��

xkj lj�x�� 	 � k � N�

has N � � zeros� Fk�N �xi� � 	� i � 	� � � � � N 
 So by the Fundamental Theorem of
Algebra� Fk�N must be identically equal to zero
 This proves the lemma
 tu

Let us estimate the error in polynomial interpolation
 For an integer k � 	�
we denote by Ck � Ck�a� b� the set of functions on �a� b� which have k continuous
derivatives


Theorem ���� Let f be a function in CN���a� b�� and let LN be the polynomial of
degree � N which interpolates the function f at N�� distinct points x�� x�� � � � � xN
in the interval �a� b�� Then� for each x in �a� b�� there exists a number �x in �a� b�
such that

f�x�� LN �x� �
�

�N � ���
f �N�����x��N �x�� �����

Proof� If x is one of the nodes of interpolation xi� the assertion is obviously true
since both sides of ��
�� reduce to 	
 So let x be any point other than a node� and
consider the function

��x� � f�x�� LN �x�� C�N �x��
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where C is the real number that makes ��x� � 	� that is�

C � �f�x�� LN �x����N �x��

Now � � CN���a� b� and � vanishes at N � � points x� x�� x�� � � � � xN 
 By
Rolle�s theorem� �� has at least N � � distinct ze ros in �a� b�
 Similarly� ��� has at
least N distinct zeros in �a� b�
 Repeating this argument� we conclude eventually
that ��N��� has at least one zero� say �x� in �a� b�
 Now

��N�����x� � f �N�����x�� C�N � ���

� f �N�����x�� �N � ���
f�x�� LN �x�

�N �x�
� 	�

and upon solving for f � we have the equality ��
��
 This proves the theorem
 tu

Example ���� If the function f�x� � sinx is approximated by a polynomial of
degree � which interpolates f at ten points in the interval �	� ��� how large is the
error on this interval�
Solution
 Let us apply theorem �
�
 It is clear that jf ������x�j � � and j�x �
x�� � � � �x� x	�j � �
 Thus� for all x in �	� ��� according to ��
��

j sinx� L	�x�j � �

�	�
� ���� �	�
�

If one does not need the interpolating polynomial LN itself but only its value
LN �x� at x� then one can use the Aitken interpolation scheme
 Let L��k�� and
L��k�� be the Lagrange interpolating polynomials associated with the data �xi� fi�
for i � 	� � � � � k � � and i � �� � � � � k correspondingly

Lemma ���� Let f be de�ned at x�� x�� � � � � xk and x� and xk be two distinct
numbers in this set� Then the Aitken interpolation formula

L��k�x� �
xk � x

xk � x�
L��k���x� �

x� x�
xk � x�

L��k���x�� �����

k � �� � � � � N�

describes the Lagrange interpolating polynomial of degree � k which interpolates
f at the k � � points x�� x�� � � � � xk�

Proof� The polynomial on the right side of ��
�� has degree � k and interpolates
the data �xi� fi�� i � 	� � � � � k
 As the di�erence of two interpolating polynomials of
degree k would have k � � zeros and therefore would be equal identically to zero�
such an interpolating polynomial is unique and thus coincides with the Lagrange
interpolating polynomial Lk � L��k
 This proves the lemma
 tu
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�� Newton Interpolating Polynomial

Let us consider the recurrence relation for Lagrange interpolating polynomials
of a di�erent kind

Lk�x� � Lk���x� � ck�x� x�� � � � �x� xk���� k � �� � � � � N�

By the interpolation condition Lk�xk� � fk we have here

ck �
fk � Lk���xk�

�xk � x�� � � � �xk � xk���
� f �x�� � � � � xk��

This notation is usually called a divided di�erence of order k
 In particular� if k � 	
then one sets c� � f �x�� � f�
 Therefore�

Lk�x� � Lk���x� � f �x�� � � � � xk��x� x�� � � � �x� xk���� �����

As according to ��
�� and ��
���

Lk�x� �
kX

j��

fj
�k�x�

�x� xj���k�xj�
� �����

then by looking at each kth degree term in ��
�� and comparing with the coe�cient
of xk in ��
�� we obtain

f �x�� � � � � xk� �
kX

j��

fj
��k�xj�

� �����

From this formula� we obtain an important property of the divided di�erence
 Let
�i�� � � � � ik� be some permutation of �	� � � � � k�
 Then it is easily seen that

f �xi� � � � � � xik � �
kX

j��

fij
��k�xij �

�
kX

j��

fj
��k�xj�

� f �x�� � � � � xk��

Thus� the divided di�erence is invariant under any permutation of its arguments

The formula ��
�� can be rewritten in the form

Lk�x� � Lk���x� �
x� x�
xk � x�

�L��k���x�� L��k���x��� ����	�

As
L��k���x� � f� � f �x�� x���x� x�� � � � �

� f �x�� � � � � xk��� x���x� x�� � � � �x� xk����

L��k���x� � f� � f �x�� x���x� x�� � � � �
� f �x�� � � � � xk��� xk��x� x�� � � � �x� xk����
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using the property of invariance of the divided di�erence under permutation of its
arguments� one obtains

L��k���x�� L��k���x� � �f �x�� � � � � xk�� f �x�� � � � � xk�����x� x�� � � � �x� xk����

Substituting this expression into ��
�	� and comparing with ��
�� one arrives at the
recurrence formula

f �x�� � � � � xk� �
f �x�� � � � � xk�� f �x�� � � � � xk���

xk � x�
�

Summing up the equalities ��
�� for k ranging from � to N � we obtain Newton�s
divided di�erence formula for the interpolating polynomial or a formula for the
Newton interpolating polynomial

LN �x� � L��x� �
NX
k��

f �x�� � � � � xk��k���x�

which can be rewritten as

LN �x� � c� � c��x� x�� � � � �� cN �x� x�� � � � �x� xN���� ������

where
c� � f �x�� � f��

ck �
f �x�� � � � � xk�� f �x�� � � � � xk���

xk � x�
� k � �� � � � � N�

������

Let us consider the Newton polynomial interpolating a function f at points
x�� � � � � xN � t� where t �� xi� i � 	� � � � � N 
 Then according to ��
����

LN���x� � LN �x� � f �x�� � � � � xN � t��N �x�� ������

As LN���t� � f�t�� then by setting x � t in ��
��� we obtain

f�t�� LN �t� � f �x�� � � � � xN � t��N �t�� ������

Comparing this formula with ��
�� we conclude that

f �x�� � � � � xN � x� �
�

�N � ���
f �N�����x��

If we set x � xN�� and N � n�� then this formula can be rewritten in symmetric
form�

f �x�� � � � � xn� �
f �n����

n�
������

for some � � �x�� xn�
 Let us note that if f is a polynomial of the degree N and of
the form ��
�� then

f �x�� � � � � xn� x� �

�
polynomial of degree N � n� �� if n � N � ��
aN � if n � N � ��
	� if n � N � �
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The proof of this equality can easily be obtained by induction
 The description of
further valuable properties of divided di�erences can be found in ����������


�� Evaluation of the Newton Interpolating Polynomial
and Its Derivatives by a Generalized Horner�s Rule

Formally� to �nd the value of the l�th derivative of the Newton interpolating

polynomial L
�l�
N � 	 � l � N at x � z for some given real number z� one can consider

a substitution of the variable x by the formula x � y � z in ��
���� where y is a
new variable
 After this substitution and after collecting similar terms one obtains

LN �y � z� � A� �A�y � � � �� ANy
N �

where Al � L
�l�
N �z��l�� l � 	� � � � � N 


After the reverse substitution y � x� z one �nds that

LN �x� � A� � A��x� z� � � � �� AN �x� z�N � ������

We are interested� however� in a more e�cient method for evaluating the New�
ton interpolating polynomial and its derivatives which generalizes the well�known
algorithm of nested multiplication or Horner�s rule


Let us rename ak�� � ck� k � 	� � � � � N and rewrite the polynomial LN in the
form

LN �x� � PN���x� � a��� �
NX
k��

ak�� �k���x�� �k���x� �
k��Y
i��

�x� xi�� ������

By using parentheses we transform the representation ��
��� into the form

PN���x� �a��� � �x� x���a����

� � �� �x� xN����aN���� � �x� xN���aN��� � � ��� ������

To evaluate the polynomial PN�� at x � z we form the sequence of numbers

aN�� � aN���

ak�� � ak�� � �z � xk�ak����� k � N � �� � � � � 	� ������

starting with the innermost parentheses in ��
���
 It follows from ��
��� and ��
���
that LN �z� � PN���z� � a���
 To �nd the value of the polynomial PN�� one needs
to perform N multiplications and N additions only


To evaluate the lth �	 � l � N� derivative of the Newton interpolating poly�
nomial� let us consider the polynomial

PN�l�x� �al�l �
NX

k�l��

ak�l�k�l���x�

�al�l � �x� x���al���l�

� � �� �x� xN�l����aN���l � �x� xN�l���aN�l� � � ��� ����	�
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Let us set

aN�l�� � aN�l�

ak�l�� � ak�l � �z � xk�l�ak���l��� k � N � �� � � � � l� ������

It follows from ��
�	� and ��
��� that PN�l�z� � al�l�� �	 � l � N� and to evaluate
the polynomial PN�l at x � z� one needs to perform N � l multiplications and N � l
additions only


Lemma ���� Let PN�N�� � 	� The following equalities are valid

PN�l�x� � PN�l�z� � �x� z�PN�l���x�� l � 	� � � � � N� ������

Proof� If k � N � l � 	 then equality ��
��� is evident as in this case we have
PN�N �x� � PN�N �z� � aN�N by ��
�	�
 Now suppose the equality ��
��� is satis�ed
for all k � 	� � � � � N � l� �l � l� � N�
 We show that it is also ful�lled for k � N � l

Using formulae ��
��� one obtains

PN�l�z� � �x� z�PN�l���x�

�al�l�� � �x� x� � x� � z�
	
al���l�� �

NX
k�l��

ak�l��

k�l��Y
i��

�x� xi�



�al�l � �x� x��
	
al���l�� � �x� x� � x� � z�

NX
k�l��

ak�l��

k�l��Y
i��

�x� xi�



�al�l � �x� x���al���l � � � �� �x� xN�l����aN���l��

� �x� xN�l�� � xN�l�� � z�aN�l��� � � �� � PN�l�x��

This proves the lemma
 tu

By repeated di�erentiation of equality ��
��� and setting l � 	 and x � z we
obtain

P
���
N���z� � PN���z�� � � 	� � � � � N�

As LN � PN��� this permits us to rewrite the representation ��
��� in the form

LN �x� � PN���z� � �x� z�PN���z� � � � �� �x� z�NPN�N �z��

where PN�l�z� � al�l��� l � 	� � � � � N and aN�N�� � aN��

Thus� the following result is valid


Theorem ���� Let LN be a polynomial of the form ������� where one needs to

evaluate the derivatives L
�l�
N � 	 � l � N at x � z�

Set ak�� � ck� k � 	� � � � � N � and aN�l�� � aN��� l � 	� � � � � N � and evaluate

ak�l�� � ak�l � �z � xk�l�ak���l��� k � N � �� � � � � l� l � 	� � � � � N�
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If

PN�l�x� � al�l �
NX

k�l��

ak�l �k�l���x�� l � 	� � � � � N�

then
L
�l�
N �z��l� � PN�l�z� � al�l��� 	 � l � N�

Let us note that if xi � 	 for all i then the polynomial LN in ��
��� takes the
form LN �x� � c��c�x�� � ��cNxN and the algorithm described above is reduced to
the well�known algorithm of nested multiplication� also called Horner�s rule� which
can be found in many textbooks on numerical analysis� see e
g
 ������	�������


The algorithm above can be easily coded
 Let us assume that we have two
arrays of the data t�� � n � �� and f �� � n � ��
 First� by using formula ��
��� one
computes the divided di�erences


for i �� � to n� � do a�i� �� f �i��
for i �� � to n do

for j �� n� � downto i� � do
a�j� �� �a�j�� a�j � �����t�j�� t�j � i���

The computation of the divided di�erences can also be performed by a di�erent
algorithm �����

a�n� �� �� f �n� ���
for i �� n downto � do
begin

a�i� �� f �i��
for j �� i� � to n� � do
a�j� �� �a�j�� a�j � �����t�j�� t�i���

end

Now in order to evaluate L
�l�
N � 	 � l � N � at x � z one can use the following

loops


for i �� � to n� � do d�i� �� a�i��
k �� ��
for i �� � to l � � do
begin

if i � � then k �� k 	 �i� ���
if i � n� � then
for j �� n downto i do
d�j� �� d�j���z� t�j� i����	d�j���

end�
vnewn �� k 	 d�l � ���

Example ���� Four values of the function f�x� � ���� � x�� are given in table
�
�
 Form a cubic Newton interpolating polynomial L� from the data of this table
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Then evaluate L������ and L
�
������ using the generalization of Horner�s rule
 Finally�

estimate the error of the approximation thus obtained


Table ���� The initial data

i xi fi
	 �� 	
�

� 	 �
	

� � 	
�

� � 	
�

Solution� By the data of the table �
�� using formulae ��
���� we �rst form the
table of divided di�erences


Table ���� Divided di�erences values�

xi fi f �xi� xi��� f �xi� xi��� xi��� f �xi� � � � � xi���

�� 	
�

	 �
	 	
�

� 	
� �	
� �	
�

� 	
� �	
� 	
� 	
�

According to ��
���� the cubic Newton interpolating polynomial L� takes the
form

L��x� �c� � c��x� x�� � c��x� x���x� x��

� c��x� x���x� x���x� x��

�	�� � 	���x� ��� 	���x� ��x� 	���x� ��x�x� ���
By setting ai�� � ci� i � 	� � � � � �� let us rewrite the polynomial L� in the form

L��x� � P����x� � a��� � �x� x���a��� � �x� x���a��� � �x� x��a�����

� 	�� � �x� ���	�� � x��	�� � �x� ��	�����

The value of the function P��� at z � ��� can be found by Horner�s rule

a��� � a��� � 	���

a��� � a��� � �z � x��a��� � �	�� � 	�� � 	�� � �	���
a��� � a��� � �z � x��a��� � 	�� � �����	��� � �	���
a��� � a��� � �z � x��a��� � 	�� � �����	��� � 	����

Thus� L������ � P�������� � 	���

In order to evaluate the derivative L�������� let us write down the polynomial

P����x� � a��� � �x� x���a��� � �x� x��a����

� �	�� � �x� ����	�� � x � 	����
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Computations are again performed by Horner�s rule�

a��� � a��� � 	���

a��� � a��� � �z � x��a��� � �	�� � ��� � 	�� � �	���
a��� � a��� � �z � x��a��� � �	�� � �����	��� � �	����

Therefore� L������� � P�������� � �	���

Using the explicit formula for the function f we �nd a bound for the error of

approximation�

f������ L������ � 	��	���� 	��� � 	�	�����
f ������� L������� � �	����	� � 	��� � 	�	�����

�� Convergence of the Interpolating Polynomials

The choice of polynomials as a tool for approximation of functions is usually
motivated by the following well�known theorem by Weierstrass


Theorem ���� Let f be a function which is continuous on the interval �a� b� and
let 	 � 	� Then there exists a polynomial PN of degree N � N�	� for which

max
a�x�b

jf�x�� PN �x�j � 	�

However� we are interested in the interpolation problem and in particular in the
convergence of the interpolation process
 That is� if f is a continuous function on
�a� b� and PN �xi� � f�xi�� i � 	� � � � � N � will the quantity maxa�x�b jf�x�� PN �x�j
tend to zero as N 
��

One can give examples where one does not have convergence
 The most fa�
mous one was given by Runge in ��	�
 Let the function f�x� � ���� � ��x�� be
interpolated on the interval ���� �� by using equally spaced nodes xi � �� � �i�N �
i � 	� � � � � N 
 Then one can show �see ���� that

lim
N��

max
��
������jxj��

jf�x�� LN �x�j ���

Figure �
� illustrates the divergence of the interpolation process for Runge�s exam�
ple
 In Figure �
�� the interpolating polynomial L�� deviates substantially from the
interpolated function near the ends of the interval ���� ��
 The oscillations tend to
in�nity with growing of N 


Even more� the following result by Faber �see ��	�� is valid


Theorem ���� For any prescribed system of nodes

a � x
�N�
� � x

�N�
� � � � � � x

�N�
N � b �N � 	� ������

there exists a continuous function f on �a� b� such that the interpolating polynomials
for f using these nodes fail to converge uniformly to f �

However� convergence of the interpolation process can be ensured by a special
choice of the interpolation nodes �see ��	��
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Figure ���� Runge�s function interpolated by 
th�degree and ��th�degree
interpolating polynomials using equidistant data�

Theorem ���� If f is a continuous function on �a� b�� then there exists a system of
nodes as in equation ������ such that the polynomials PN which interpolate f at
these nodes converge to f � that is�

lim
N��

max
a�x�b

jPN �x�� f�x�j � 	�

In practice one often chooses the roots of the Chebyshev polynomials as a
system of interpolation nodes which guarantee the convergence �see ����
 As a rule�
the problem of convergence disappears if one turns to interpolation by piecewise
Lagrange polynomials which are also called Lagrange splines ���


	� Piecewise Linear Interpolation

The simplest example of Lagrange splines which guarantee the convergence of
the interpolation process to the interpolated function is piecewise linear interpola�
tion
 In this case� one has a Lagrange interpolating polynomial of �rst degree on
each interval �xi� xi���� i � 	� � � � � N � �

Li���x� � fi
xi�� � x

hi
� fi��

x� xi
hi

� hi � xi�� � xi� ������
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Thus� on the whole interval �a� b� one has a set of N Lagrange interpolating poly�
nomials of �rst degree forming a linear Lagrange spline or� what is the same� a
Lagrange spline of the �rst degree


Setting x�� � a and b � xN��� let us de�ne linear basis splines �B�splines for
short�

Bj���x� � �xj�� � xj�
�x� xj� xj��� xj���� j � ��� � � � � N � ��

where 
�x� y� � �x� y�� � max�	� x� y�� or according to formula ��
��

Bj���x� ��xj�� � xj�

j��X
k�j

�x� xk��
��j���xk�

� j � ��� � � � � N � ��

�j���x� ��x� xj��x� xj����x� xj����

The functions Bj�� can be written in the form

Bj���x� �

���

���

x� xj
hj

� xj � x � xj���

xj�� � x
hj��

� xj�� � x � xj���

	� otherwise


������

It is easy to show �see chapter �� that the functions Bj��� j � ��� � � � � N � �
are linearly independent on the interval �a� b�
 Every Lagrange spline of �rst degree
SL
� can be uniquely represented in the form

SL
� �x� �

N��X
j���

fj��Bj���x�� x � �a� b�� ������

On the interval �xi� xi��� only the basis splines Bj��� j � i� �� i are di�erent from
zero in this sum and by formula ��
���� the representation ��
��� takes the form
��
���


Let us also note that linear Lagrange splines are exact for polynomials of �rst
degree� that is� every polynomial of �rst degree P� can be written in the form

P��x� �
N��X
j���

P��xj���Bj���x�� x � �a� b��

It is su�cient to verify this equality for the monomials � and x� that is� to show
the validity of the identities

N��X
j���

x�j��Bj���x� � x�� � � 	� �� x � �a� b��

This can be easily done by using formula ��
���
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Example ���� Let the function f be interpolated on the interval �a� b� by a linear
Lagrange spline on the set of equally spaced nodes xi � a � i�b � a��N � i �
	� � � � � N � and suppose that in the evaluation of f � round�o� errors do not exceed
	 � 	
 How many interpolation nodes have to be chosen to provide an exactness of
approximation E �	 � E��

Solution� Let f�xi� � �fi � 	i� i � 	� � � � � N � where 	i is a round�o� error
 Let us
set h � �b� a��N 
 Using equality ��
��� on the interval �xi� xi���� i � 	� � � � � N � ��
we have

jf�x�� Li���x�j �
���f�x�� �fi

xi�� � x

h
� �fi��

x� xi
h

���
�
���f�x�� f�xi�

xi�� � x

h
� f�xi���

x� xi
h

� 	i
xi�� � x

h
� 	i��

x� xi
h

���
��
�
�xi�� � x��x� xi�jf ����x�j�max�j	ij� j	i��j�

�h�

�
max

xi�x�xi��
jf ���x�j� 	 � E�

Let maxa�x�b jf ���x�j �M 
 As in our case h � �b� a��N � we have the estimate

�

�

	 b� a

N


�
M � E � 	 or N � �b� a�M���

���E � 	�����
�

Example ���� Under the conditions of example �
�� what number of interpolation
nodes provides the minimal error of approximation for f � on �a� b��
Solution� On the interval �xi� xi���� i � 	� � � � � N � �� one has

f ��x�� L�i���x� � f ��x��
�fi�� � �fi

h

� f ��x�� f�xi���� f�xi�

h
�
	i�� � 	i

h
�

Using the Taylor expansion we obtain

f�xi� � f�x� � f ��x��xi � x� � f ������
�xi � x��

�
� �� � �xi� x��

f�xi��� � f�x� � f ��x��xi�� � x� � f ������
�xi�� � x��

�
� �� � �x� xi����

Hence

f�xi���� f�xi�

h
� f ��x� � f ������

�xi�� � x��

�h
� f ������

�xi � x��

�h
�
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This gives us the estimate

���f ��x�� f�xi���� f�xi�

h

��� � �x� xi�
� � �xi�� � x��

�h
max

xi�x�xi��

jf ���x�j�

Then

jf ��x�� L�i���x�j �
h

�
max

xi�x�xi��
jf ���x�j� j	ij� j	i��j

h

� h

�
M �

�	

h
� 
�h� 	��

The function 
 takes a minimal value with respect to h if 
��h� 	� �M����	�h� � 	
or h � ��	�M����
 As h � �b�a��N then we have to choose N � �M�	�����b�a���



� Interpolation by Cubic Lagrange Splines

The approximation can be improved by replacing piecewise linear interpo�
lation by piecewise cubic Lagrange polynomials
 Suppose we have data �xi� fi��
i � ��� � � � � N��
 To obtain a cubic Lagrange spline� one takes the cubic Lagrange
polynomial on every interval �xi� xi���� i � 	� � � � � N � ��

Li���x� �
i��X

j�i��

fj
�i�����x�

�x� xj���i�����xj�
� �i�����x� �

i��Y
j�i��

�x� xj�� ������

On the whole interval �a� b�� we have a set of N cubic Lagrange polynomials forming
a continuous function which is called a cubic Lagrange spline
 If we do not have
the endpoint data �xj� fj�� j � ��� N � �� then we can extend the polynomial
L��� to the interval �x�� x�� and the polynomial LN���� to the interval �xN��� xN �

However� in this case the goodness of approximation on the intervals �x�� x�� and
�xN��� xN � will be lower �see �����


Using formula ��
�� on the interval �xi� xi��� one has the estimate

jf�x�� Li���x�j � �

��
j�i�����x�j max

xi���x�xi��
jf ����x�j � �

���
�h�jjf ���jjC�a�b
� ������

where �h � maxi hi and jjf jjC�a�b
 � maxa�x�b jf�x�j

Setting x�� � x�� � x�� � a and b � xN�� � xN�� � xN��� let us consider

the cubic Lagrange B�splines

BL
j���x� �

��

��

�k�����x�
�x� xj����

�
k�����xj���

� if x � �xk� xk����

k � j� � � � � j � ��
	� otherwise�

������

j � ��� � � � � N � �
 The graph of the spline BL
j�� with equally spaced nodes xi � i�

i � �� � � � � � is shown on Figure �
�
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Figure ���� Cubic Lagrange B�spline with equally
spaced nodes xi 
 i� i 
 �� � � � � 
�

It is easy to show �see chapter �� that the functions BL
j��� j � ��� � � � � N � �

are linearly independent
 Every cubic Lagrange spline SL
� can be uniquely written

in the form

SL
� �x� �

N��X
j���

fj��B
L
j���x�� x � �a� b�� ����	�

In this sum only the B�splines BL
j��� j � i � �� � � � � i will be di�erent from zero on

the interval �xi� xi���
 Using formula ��
��� we verify that the representation ��
�	�
coincides with formula ��
��� on the interval �xi� xi���

SL
� �x� �

N��X
j���

fj��B
L
j���x� �

iX
j�i��

fj��B
L
j���x� �

i��X
j�i��

fj �i�����x�

�x� xj���i�����xj�
� ������

Cubic Lagrange splines are exact on cubic polynomials� that is� every cubic
polynomial P� can be uniquely represented in the form

P��x� �
N��X
j���

P��xj���B
L
j���x�� x � �a� b��

To prove this formula we verify it on the monomials x�� � � 	� �� �� �� that is� we
show that the following equalities are valid

x� �
N��X
j���

x�j��B
L
j���x�� � � 	� �� �� �� x � �a� b�� ������
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or in equivalent form

�y � x�� �
N��X
j���

�y � xj���
�BL

j���x�� x � �a� b��

As in ��
��� we have on the interval �xi� xi���� i � 	� � � � � N � �� that
N��X
j���

x�j��B
L
j���x� �

i��X
j�i��

x�j �i�����x�

�x� xj���i�����xj�
� x�� � � 	� �� �� ��

This proves the equalities ��
���

Unfortunately� on a coarse mesh the graph of a cubic Lagrange spline can have

corners as the derivatives of consecutive polynomials are not ajusted smoothly
 An
exception is the case of equally spaced nodes �hi � h for all i� where the second
derivative of a cubic Lagrange spline turns to be continuous


Let us use a simple approach to show how we can smoothly adjust consecu�
tive cubic Lagrange polynomials to obtain a smooth function while still providing
practically the same accuracy as with Lagrange interpolating spline


�� Local Approximation by Cubic Lagrange Splines

Let us consider a 
corrected� cubic Lagrange polynomial on the interval
�xi� xi���� i � 	� � � � � N � ��

Si���x� � Li���x� � Ci���x� xi�
� � Ci���xi�� � x���

We will assume that

S
�r�
i�����xi � 	� � S

�r�
i�� �xi � 	�� r � 	� �� �� i � �� � � � � N � �� ������

Let us write the consecutive cubic Lagrange polynomials on the intervals
�xi��� xi� and �xi� xi��� in the form

Si�����x� � fi�� � f �xi��� xi��x� xi���

� f �xi��� xi� xi����x� xi����x� xi�

� f �xi��� xi��� xi� xi����x� xi����x� xi��x� xi���

� Ci�����x� xi���
� � Ci�����xi � x���

Si���x� � fi�� � f �xi��� xi��x� xi���

� f �xi��� xi� xi����x� xi����x� xi�

� f �xi��� xi� xi��� xi����x� xi����x� xi��x� xi���

� Ci���x� xi�
� � Ci���xi�� � x���

Subtracting these polynomials one has

Si���x��Si�����x� � �i���x� xi����x� xi��x� xi���

� �Ci�� � Ci������x� xi�
� � Ci���xi�� � x�� � Ci�����x� xi���

��
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where �i�� � �xi�� � xi���f �xi��� � � � � xi���

Hence� using the conditions ��
��� one obtains the system of equations

h�i��Ci���� � h�iCi�� � 	�

�h�i��Ci���� � �h
�
iCi�� � �hi��hi�i���

�hi��Ci���� � �hiCi�� � �hi�� � hi��i���

������

The equations in the overdetermined system ��
��� are linearly dependent

This system has a unique solution

Ci���� � � h�i �i��
�hi���hi�� � hi�

� Ci�� �
	hi��

hi


�
Ci�����

Hence� a smooth cubic Lagrange spline takes the form

Si���x� � Li���x��
h�i���i����

�hi�hi � hi���
�x� xi�

� � h�i���i��

�hi�hi�� � hi�
�xi�� � x�� ������

on the interval �xi� xi���
 We loose the property of interpolation
 Instead� we have
the property of local approximation
 Let us show that nevertheless the accuracy of
approximation will practically be the same as for the cubic Lagrange interpolating
spline


Using ��
��� we can rewrite formula ��
��� in the form

f�x�� Si���x� �f �xi��� � � � � xi��� x��i�����x� �
h�i���i����

�hi�hi � hi���
�x� xi�

�

�
h�i���i��

�hi�hi�� � hi�
�xi�� � x��

�
h
�i�����x� �

h�i���xi�� � xi���

�hi�hi � hi���
�x� xi�

� �
h�i���xi�� � xi���

�hi�hi�� � hi�

� �xi�� � x��
i
f �xi��� � � � � xi��� ��� � � �xi��� xi����

Hence� one has the estimate for x � �xi� xi���

jf�x�� Si���x�j �
h
t���� t�� �

�

�

i
�h�i max

xi�����xi��
jf �xi��� � � � � xi��� ��j

���
��
�h�i max

xi�����xi��
jf �xi��� � � � � xi��� ��j�

where �hi � maxji�jj�� hj and t � �x� xi��hi

Using equality ��
��� we can rewrite this estimate in the form

jf�x�� Si���x�j �
h
t���� t�� �

�

�

i�h�i
��
M � ��

����
�h�M� ������

where M � jjf ���jjC�a�b


Comparing now the estimates ��
��� and ��
��� we conclude that when re�

placing a cubic Lagrange interpolating spline by a local approximating one obtains
practically the same accuracy of approximation �compared with the estimate ��
����
the constant in the estimate ��
��� is increased only slightly�


Applications of local approximation methods to the problems of computer
aided geometric design �CAGD for short� are described in �����
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�� Local Approximation by Cubic B
Splines

Let us use one more approach ��	� for obtaining the formula of local approxi�
mation ��
���
 Let us consider cubic B�splines

Bj���x� � �xj�� � xj�
��x� xj� � � � � xj���� 
��x� y� � �x� y����

j � ��� � � � � N � �
 The graph of the cubic B�spline Bj�� with equally spaced nodes
xi � i� i � �� � � � � � is shown on Figure �
�


Figure ���� Cubic B�spline Bj�� with equally
spaced nodes xi 
 i� i 
 �� � � � � 
�

Using formula ��
�� one can also rewrite the spline Bj�� in the form

Bj���x� � �xj�� � xj�

j��X
k�j

�x� xk�
�
�

��j���xk�
� �j���x� �

j��Y
k�j

�x� xk��

It is easy to show �see chapter �� that the functions Bj��� j � ��� � � � � N � �
are linearly independent on �a� b� and have the properties

Bj���x�

�
� 	� if x � �xj � xj����
	� otherwise�

�y � x�� �
N��X
j���

�y � xj����y � xj����y � xj���Bj���x�� x � �a� b�� ������

Equality ��
��� can also be rewritten in the equivalent form

x� �
�

C�
�

N��X
j���

symm��xj��� xj��� xj���Bj���x�� x � �a� b�� ������
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where C�
� �

�
�
�

�
is the usual binomial coe�cient and

symm��x� y� z� � ��

symm��x� y� z� � x� y � z�

symm��x� y� z� � xy � xz � yz�

symm��x� y� z� � xyz�

Let us consider the following formula of local approximation by cubic B�splines

Sf �x� �
N��X
j���

bj��B��j�x�� ������

where bj � bj���fj�� � bj��fj � bj��fj��
 If we set bj�� � �� bj��� � bj���

bj��� � �
h�j

�hj���hj�� � hj�
� bj�� � �

h�j��
�hj�hj�� � hj�

�

then formula ��
��� will be exact for cubic polynomials
 To verify this property�
one can use the monomials x�� � � 	� �� �� �
 Substituting these monomials into
��
��� we obtain the equalities ��
���


According to formula ��
��� one has

f�x� � Li���x� � Ri���x��

where Ri���x� � f �xi��� � � � � xi��� x��i�����x�

As the spline Sf is exact for cubic polynomials� then

Sf �x� � Li���x� � SRi��
�x��

Using formula ��
��� one has on the interval �xi� xi���

SRi��
�x� � bi�����Ri���xi���Bi�����x� � bi����Ri���xi���Bi���x�

�
i��X

j�i��

�j�x�Ri���xj��

where �j are some cubic polynomials
 As Ri���xj� � 	 for j � i� �� � � � � i� � then

Sf �x� � Li���x� � bi�����Ri���xi���Bi�����x� � bi����Ri���xi���Bi���x��

Substituting here the expressions for B�splines and for the remainder we again
obtain the formula ��
���
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��� Interpolation by Quadratic Lagrange Splines

One can also perform the interpolation by piecewise quadratic Lagrange poly�
nomials
 Suppose one has data �xi� fi� with i � ��� � � � � N or i � 	� � � � � N�� and
considers quadratic Lagrange polynomials on the intervals �xi� xi���� i � 	� � � � � N�
��

Lj���x� �

j��X
k�j

fk
�j���x�

�x� xk���j���xk�
����	�

for j � i� � or j � i correspondingly
 This gives us a set of N quadratic Lagrange
polynomials forming a continuous function on �a� b� which is also called a quadratic
Lagrange spline
 If we have only the data �xi� fi�� i � 	� � � � � N � then one can extend
the polynomial L��� to the interval �x�� x�� or the polynomial LN���� to the interval
�xN��� xN �
 Let us assume that we have the data �xi� fi�� i � 	� � � � � N � �


Using formula ��
�� one has on the interval �xi� xi���

jf�x�� Li���x�j � �

��
j�i���x�j max

xi�x�xi��
jf ����x�j �

p
�

�
�h�i jjf ���jjC�a�b
� ������

Setting x�� � x�� � a and b � xN�� � xN�� let us de�ne quadratic Lagrange
B�splines

BL
j���x� �

��

��

�k���x�
�x� xj����

�
k���xj���

� if x � �xk� xk����

k � j� j � �� j � ��
	� otherwise�

������

j � ��� � � � � N � �
 The graph of a quadratic Lagrange B�spline Bj�� with equally
spaced nodes xi � i� i � �� � � � � � is given on Figure �
�


Figure ���� Quadratic Lagrange B�spline Bj�� with equally
spaced nodes xi 
 i� i 
 �� � � � � ��
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It is easy to show �see chapter �� that the functions BL
j��� j � ��� � � � � N�� are

linearly independent
 Any quadratic Lagrange spline SL
� can be uniquely written

in the form

SL
� �x� �

N��X
j���

fj��B
L
j���x�� x � �a� b�� ������

In this sum only the B�splines BL
j��� j � i� �� i� �� i will be di�erent from zero on

the interval �xi� xi���
 Using formula ��
��� we verify that the representation ��
���
coincides with formula ��
�	� on the interval �xi� xi���


Quadratic Lagrange splines are exact for quadratic polynomials� that is� for
any quadratic polynomial P� the following representation is valid

P��x� �
N��X
j���

P��xj���B
L
j���x�� x � �a� b��

Again� we prove this formula by showing that it is valid on the monomials x��
� � 	� �� �� that is�

x� �
N��X
j���

x�j��B
L
j���x�� � � 	� �� �� x � �a� b� ������

or in the equivalent form

�y � x�� �
N��X
j���

�y � xj���
�BL

j���x�� x � �a� b��

The equalities ��
��� can be veri�ed directly by using formula ��
���
 For x �
�xi� xi���� i � 	� � � � � N � �� one has

N��X
j���

x�j��B
L
j���x� �

i��X
j�i

x�j �i���x�

�x� xj���i���xj�
� x�� � � 	� �� ��

��� Local Approximation by Quadratic Lagrange Splines

The derivative of a quadratic Lagrange spline is a discontinuous function
 To
obtain a smooth quadratic spline let us apply the same approach as used in section
�
� for cubic Lagrange splines


Let us consider a 
corrected� quadratic Lagrange polynomial on the interval
�xi� xi���� i � 	� � � � � N � ��

Si���x� � Li���x� � Ci���x� xi�
� � Ci���xi�� � x���

We will assume that

S
�r�
i�����xi � 	� � S

�r�
i�� �xi � 	�� r � 	� �� i � �� � � � � N � �� ������
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Let us write the polynomials belonging to the consecutive intervals �xi��� xi� and
�xi� xi��� in the form

Si�����x� � fi � f �xi� xi����x� xi�

� f �xi��� xi� xi����x� xi��x� xi���

� Ci�����x� xi���
� � Ci�����xi � x���

Si���x� � fi � f �xi� xi����x� xi�

� f �xi� xi��� xi����x� xi��x� xi���

� Ci���x� xi�
� � Ci���xi�� � x���

Subtracting these polynomials one obtains

Si���x�� Si�����x� � �i���x� xi��x� xi��� � �Ci�� � Ci������x� xi�
�

� Ci���xi�� � x�� � Ci�����x� xi���
��

where �i�� � �xi�� � xi���f �xi��� � � � � xi���

Hence� using the condition ��
��� one has the system of equations

h�i��Ci���� � h�iCi�� � 	�

�hi��Ci���� � �hiCi�� � �hi�i���
from which

Ci�� � � hi���i��
��hi�� � hi�

� Ci���� �
	 hi
hi��


�
Ci���

Thus� on the interval �xi� xi��� the smooth quadratic Lagrange spline takes the
form

Si���x� � Li���x��
h�i���i����

�hi�hi � hi���
�x� xi�

� � hi���i��
��hi�� � hi�

�xi�� � x��� ������

Let us estimate the error of approximation by formula ��
���
 Using ��
��� one
has

f�x�� Si���x� �f �xi� xi��� xi��� x��i���x� �
h�i���i����

�hi�hi � hi���
�x� xi�

�

�
hi���i��

��hi�� � hi�
�xi�� � x��

�
h
�i���x� �

h�i���xi�� � xi�

�hi�hi � hi���
�x� xi�

� �
hi���xi�� � xi���

��hi�� � hi�

� �xi�� � x��
i
f �xi� xi��� xi��� ��� � � �xi��� xi����

From here� for x � �xi� xi��� we have the estimate

jf�x�� Si���x�j �
h
t��� t���� t� �

�

�

i
�h�i max

xi�����xi��
jf �xi� xi��� xi��� ��j

�� � �
p
�

��
�h�i max

xi�����xi��
jf �xi� xi��� xi��� ��j�



g

where �hi � maxj hj � i� � � j � i� � and t � �x� xi��hi

Using equality ��
��� one can rewrite this estimate in the form

jf�x�� Si���x�j �
h
t��� t���� t� �

�

�

i�h�i
�
M � � � �

p
�

��
�h�M�

where M � jjf ���jjC�a�b



��� The Case of Discrete Cubic Spline

Let us consider the case where the functions �j and  j are chosen by formula
��	
�� and where we use the coe�cients from ��	
��� in the representation ��	
���
�or ��	
����

bj�� � bj���fj�� � bj��fj � bj��fj�� ��	��	�

with

bj��� � � �j�xj�

cj����hj��
� bj�� � � j���xj�

cj����hj
� bj�� � �� bj��� � bj��� ��	����

On the interval �xi� xi���� this spline Sf depends on only � values fi��� � � � �
fi�� of the function f 
 Let us construct a cubic Lagrange polynomial Li�� interpo�
lating f in the points xi��� � � � � xi��
 Then

f�x� � Li���x� � Ri���x� ��	����

with
Ri���x� � Qi���x�f �xi��� � � � � xi��� x��

Q��i�x� � �x� xi����x� xi��x� xi����x� xi����

By means of detailed calculation it is possible to verify that the discrete cubic spline
Sf is exact for cubic polynomials
 When 


Li

j � 
Ri

j � 
 � j � i� i�� for all i such a
property was proved in Lyche ����
 This permits us to write down

Sf �x� � Li���x� � SRi��
�x��

where SRi��
is a discrete cubic spline constructed by the values of the remainder

Ri��

According to the formula ��	
��� one can write

SRi��
�x� � bi�����Ri���xi���Bi���x� � bi����Ri���xi���Bi�x�

�
i��X

j�i��

pj�x�Ri���xj�� x � �xi� xi����

where pj � j � i� �� � � � � i � �� are some cubic polynomials
 However Ri���xj� � 	�
j � i� �� � � � � i� �
 Therefore on the interval �xi� xi����

Sf �x� � Li���x� � bi�����Ri���xi���Bi���x� � bi����Ri���xi���Bi�x��
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Using formulae ��	
���� ��	
�	�� and ��	
���� this representation can be rewritten
as

Sf �x� � Li���x��Qi���xi���f �xi��� � � � � xi���
�i���xi����i�x�

hi��ci����ci����ci����

�Qi���xi���f �xi��� � � � � xi���
 i�x� i���xi���

hi��ci��ci����ci��
� ��	����

If 

Lj

j � hj��� 

Rj

j � hj � 

Lj

j��� 

Rj

j�� � hj�� for all j� then cj���k � �xj�� �
xj�k�������k�� k � �� �� and by formula ��	
�� one obtains �j�xj� �  j�xj��� � 	

Formula ��	
��� �or ��	
�	�� gives bj�� � fj � and from ��	
��� Sf �x� � Li���x�
 If



Lj

i � 

Rj

i � 	� i � j� j � � for all j� then Sf is a conventional cubic spline
 In this
case� cj���k � �xj�k�� � xj����k� k � �� �� �j�xj� �  j�xj��� � h�j � and formula
��	
��� turns into

Sf �x� � Li���x�� �xi�� � xi���f �xi��� � � � � xi���
h�i��h

�
i

��hi�� � hi�
��� t��

� �xi�� � xi���f �xi��� � � � � xi���
h�ih

�
i��

��hi � hi���
t��

This result was obtained in chapter �


Let us now estimate the error of approximation
 From ��	
��� and ��	
���

ei�x� � f�x�� Sf �x� � Qi���x�f �xi��� � � � � xi��� x�

�Qi���xi���f �xi��� � � � � xi���
�i���xi����i�x�

hi��ci����ci����ci����

�Qi���xi���f �xi��� � � � � xi���
 i�x� i���xi���

hi��ci��ci����ci��
� ��	����

Let us denote �hi � max
j

hj � ji� jj � �
 Then from ��	
��� one obtains the estimate

jei�x�j � C�h�i max
xi�����xi��

jf �xi��� � � � � xi��� ��j

or� if f � C��xi��� xi����

jei�x�j � C�
�h�i jjf ���jjC�i� C� � C���� jjgjjC�i � max

xi���x�xi��
jg�x�j� ��	����

Here C� � ����� if Sf coincides on �xi� xi��� with an interpolating cubic Lagrange
polynomial Li��� and C� � ������� if Sf is a cubic spline
 The last one is usually
called a quasi�interpolant because it gives the same order of approximation as a
conventional cubic interpolational spline of chapter �
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��� Piecewise Cubic Lagrange Polynomial

If 

Lj

j � hj��� 

Rj

j � hj � 

Lj

j��� 

Rj

j�� � hj�� for all j then using ��	
�� and
��	
��� one can rewrite the representation ��	
��� in the form

Bi�x� �

��

��

Q��j�x�
�x� xi���Q

�
��j�xi���

� if x � �xj � xj����

j � i� � � � � i� ��
	� otherwise


��	����

The basis spline ��	
��� is also a fundamental discrete cubic spline with the property
Bi�xj� � �i���j 
 Any piecewise cubic Lagrange polynomial Sf �x� � L��i�x� if
x � �xi� xi���� i � 	� � � � � N � �� where the cubic polynomial L��i�xj� � fj � f�xj��
j � i� �� � � � � i� �� can be uniquely written in the form

Sf �x� �
N��X
j���

fj��Bj�x�� x � �a� b��

This formula is exact for cubic polynomials because using ��	
���� we obtain in any
interval �xi� xi���� i � 	� � � � � N � ��

iX
j�i��

xrj��Bj�x� �
i��X

j�i��

xrjQ��i�x�

�x� xj�Q���i�xj�
� xr� r � 	� �� �� ��

This proves the identity

�y � x�� �
N��X
j���

�y � xj���
�Bj�x�� x � �a� b��
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