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Abstract. Polynomials and their smooth piecewise analogs known as splines
are used as the basic means of approximation in nearly all areas of numerical
analysis. For this reason, the representation and evaluation of polynomials and
splines is a fundamental topic in numerical analysis. We will discuss this topic
in the context of local spline interpolation, the simplest and certainly the most
widely used technique for obtaining spline approximation. One central point of
this paper is a generalization of Horner’s rule for the simultaneous evaluation of
the interpolating polynomial and its derivatives. Such an algorithm is usually
not found in standard textbooks on numerical analysis.

We will study the simplest piecewise polynomial approximations known as La-
grange interpolating splines in detail. Using a very simple approach we show
how to obtain smooth analogues of Lagrange splines which only approximate
the data while still providing the same order of approximation as Lagrange in-
terpolating splines. Such functions are usually called quasi-interpolants. We
then study the commonly used Lagrange splines, such as piecewise cubic and
piecewise quadratic Lagrange polynomials in detail. Relations between discrete
polynomial splines and Lagrange splines are investigated including a generaliza-
tion of Marsden’s identity [16].

1. Polynomial Interpolation Problem

Let a real-valued function f defined on some interval [a, b] be stored in tabular form
(i, fi), @ = 0,..., N, where f; = f(x;) and where the points z; form an ordered
sequence a = xg < r1 < -+ < xy = b.
A typical interpolation problem consists of the selection of a function Py from
a given class of functions in a way such that the graph of Py passes through the
given set of data points, that is, Py(x;) = fi;, i =0,..., N, where the points z; are
called the interpolation nodes.
The traditional and simplest method for solving the interpolation problem is
the construction of an interpolating polynomial Py. The interpolation conditions
N .
§=0

are equivalent to the system of linear algebraic equations
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The matrix of system (1.2) is called the Vandermonde matrix and its determi-
nant is the Vandermonde determinant. In our case the Vandermonde determinant
D = [ly<icj<n(®j — xi) is nonzero, so that system (1.2) has a unique solution.
This proves the existence and uniqueness of an interpolating polynomial of degree
< N. However a direct solution of system (1.2) can in general not be recommended
as its matrix (with “almost” linearly dependent rows) is often ill-conditioned. The
evaluation of the interpolating polynomial can be performed very efficiently by us-
ing the Lagrange interpolation formula which permits us to write down the solution
of system (1.2) explicitly.

2. Lagrange Interpolation Formula

Let us consider the Lagrange formula for the interpolating polynomaial

N
Ly(x) =) filj(x), (1.3)
j=0
where the Lagrange coefficient polynomial [; with the property

1 ifi=,
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otherwise

has the explicit form

li(z) = (x_ZCO)'”(;U_%_I)@_wﬁl)-”(:g_fg]v) 1J=0,...,N
! (25 — o) -+ (w5 — wj_1)(x; — xjq1) -+ (25 — aN)’ T
and can be written in short as
li(z) = wn (@) j=0,...,N, (1.4)

(& — zj)wiy (z;)’
wn(z) = (x —xz0)(x —21) -+ - (x — TN).
The graph of the Lagrange coefficient polynomial /5 with N = 10 and nodes z; = 1,

t=20,...,10 is given in Figure 1.1.
One can easily verify that

LN(xi):fh i:O,...,N.

According to (1.3) and (1.4) the number of arithmetic operations necessary to
compute the value of the interpolating polynomial in Lagrange form (or Lagrange
interpolating polynomial for short) is proportional to N2.

Lemma 1.1. The Lagrange interpolating polynomial is exact for polynomials of
degree < N, that is, for any polynomial Pj, of degree k < N the following identity
is valid,

Pu(z) =) Pe(x;)lj(x), 0<k<N.



Figure 1.1. The graph of the Lagrange coefficient polynomial
Is with N = 10 and nodes z; =¢,7=0,...,10.

Proof: It is sufficient to verify the validity of the above formula for monomials,
that is, to prove the identity

N
k= Zaz?lj(a:), k=0,...,N.
§=0

Now the polynomial of the degree N,

N
Fn(z) = 2F — Zaz?lj(a:), 0<k<N,

J=0

has N + 1 zeros: Fj, n(z;) =0,7=0,...,N. So by the Fundamental Theorem of
Algebra, Fj, n must be identically equal to zero. This proves the lemma. O

Let us estimate the error in polynomial interpolation. For an integer k£ > 0,
we denote by C¥ = C¥[a, b] the set of functions on [a, b] which have k continuous
derivatives.

Theorem 1.1. Let f be a function in CN+1[a, b], and let Ly be the polynomial of
degree < N which interpolates the function f at N +1 distinct points xg,x1,...,TN
in the interval [a,b]. Then, for each x in [a,b], there exists a number &, in |a,b]

such that .

_ — = (N1
f(z) = Ln(z) = (N+1)!f (&o)wn (). (1.5)
Proof: If x is one of the nodes of interpolation x;, the assertion is obviously true
since both sides of (1.5) reduce to 0. So let x be any point other than a node, and

consider the function

®(z) = f(z) — Ln(z) — Cwn(z),



where C' is the real number that makes ®(z) = 0, that is,
C=(f(z) - Ln(z))/wn(z).

Now ® € CN*l[a,b] and ® vanishes at N + 2 points x, o, 21,...,Tn. By
Rolle’s theorem, @ has at least N + 1 distinct ze ros in (a,b). Similarly, ®” has at
least NV distinct zeros in (a,b). Repeating this argument, we conclude eventually
that ®(N+1) has at least one zero, say &, in (a,b). Now

() = FHI (&) — C(NV + 1))
J (@) — L ()

= f(N“)(Em) — (N +1) o (7)

= O7
and upon solving for f, we have the equality (1.5). This proves the theorem. 0O

Example 1.1. If the function f(x) = sinz is approximated by a polynomial of
degree 9 which interpolates f at ten points in the interval [0, 1], how large is the
error on this interval?

Solution. Let us apply theorem 1.1. It is clear that |f(19(&,)| < 1 and |(z —
xg) - - (x — x9)| < 1. Thus, for all = in [0, 1], according to (1.5)

1
|sinz — Lo(z)| < o1 <28 1077,

If one does not need the interpolating polynomial Ly itself but only its value
Ly(z) at x, then one can use the Aitken interpolation scheme. Let Lgp—1 and
L1 r—1 be the Lagrange interpolating polynomials associated with the data (z;, f;)
for:=0,...,k—1and:=1,...,k correspondingly.

Lemma 1.2. Let f be defined at zg,x1,...,x, and xy and xy be two distinct
numbers in this set. Then the Aitken interpolation formula

Tp — X T — Xo

Lo Ly 1.6
op — zg Ok 1($)+$k_$0 1,k—1(2), (1.6)

k=1,...,N,

LO,k(JJ) =

describes the Lagrange interpolating polynomial of degree < k which interpolates
f at the k + 1 points xg,x1,...,Tk.

Proof: The polynomial on the right side of (1.6) has degree < k and interpolates
the data (z;, f;), 1 = 0,..., k. As the difference of two interpolating polynomials of
degree k£ would have k£ + 1 zeros and therefore would be equal identically to zero,
such an interpolating polynomial is unique and thus coincides with the Lagrange
interpolating polynomial L = Lg . This proves the lemma. O



3. Newton Interpolating Polynomial

Let us consider the recurrence relation for Lagrange interpolating polynomials
of a different kind

Li(x) = Lg_1(x) + cx(x — o) -+ (. — 2—1), k=1,...,N.
By the interpolation condition Ly(zy) = fir we have here

fr — Li—1(xy)
(Tr, — 20) - (Th — Tp—1)

Ck = :f[x()v"ka]'

This notation is usually called a divided difference of order k. In particular, if £ =0
then one sets co = f[zg] = fo. Therefore,

Li(z) = Lg—1(x) + flxo, ..., zg)(x — z0) -+ - (. — xf—1). (1.7)

As according to (1.3) and (1.4),

N, wk(®)
Li(z) =Y f; . (1.8)

then by looking at each kth degree term in (1.8) and comparing with the coefficient
of ¥ in (1.7) we obtain

k
flwo, ...,z = Z w;{;j)' (1.9)

From this formula, we obtain an important property of the divided difference. Let
(0, .- .,%x) be some permutation of (0,...,k). Then it is easily seen that

k f k
f[a:io,...,a:ik] Zw ] Z
j= k

flzo, ...\ xK).

o

Thus, the divided difference is invariant under any permutation of its arguments.
The formula (1.6) can be rewritten in the form

r —XTp

Lk(l') = Lk_l(l') +

[Ll,k_l(a:) — LO,k;—l(l')]- (110)

T — Lo
As
Log_1(z) = f1+ fleg, zo) (@ — 1) + -
[mlv y Ll— la'TO](«T_«Tl)"'(CU—.Tk_I),
Ll,k;—l( ) fl""f[a: 1'2](37—271)4— .-

["Elv 7$k—17$k](x_$1)"'(x—iL'k_l),



using the property of invariance of the divided difference under permutation of its
arguments, one obtains

Lig—1(x) — Lo g—1(z) = (flz1, ..., z6] — flzo, ..., 2p—1])(x —21) - - (. — p—1).

Substituting this expression into (1.10) and comparing with (1.7) one arrives at the
recurrence formula

f[l'la"')wk]_f[l'())"')wk—l]
T — X0 .

flxo, ..., xx] =

Summing up the equalities (1.7) for k ranging from 1 to N, we obtain Newton’s
divided difference formula for the interpolating polynomial or a formula for the
Newton interpolating polynomial

N
Ly(z) = Lo(x) + Zf[xo, ooy Tplwg—1 ()
k=1
which can be rewritten as
LN(x) =co+ 01(95 - 960) +oeet CN(ﬂﬁ - 370) T (95 - ~TN—1)7 (1-11)
where
co = flzo] = fo,
o — flz1, ... 2k — f[a:o,...,;ck_1]7 E—1.....N. (1.12)
T — X0

Let us consider the Newton polynomial interpolating a function f at points
xo,...,TN,t, where t # x;, 4 =0,..., N. Then according to (1.11),

Lyii(z) = Ly(z) + flxo, ..., zN, tlwn(z). (1.13)
As Ly11(t) = f(t), then by setting z = ¢ in (1.13) we obtain

Comparing this formula with (1.5) we conclude that

FNTD(E,).

1
flwo,...,xn, 2] = ]
If we set © = zn41 and N = n —1 then this formula can be rewritten in symmetric
form,

_f(e

n!

flzo, ... zn] (1.15)

for some £ € [xg, x,]. Let us note that if f is a polynomial of the degree N and of
the form (1.1) then

polynomial of degree N —n —1, ifn <N —1,

f[xov'-'7$n7$]:{aN7 lfn:N—l,
0, ifn>N—1.



The proof of this equality can easily be obtained by induction. The description of
further valuable properties of divided differences can be found in [2,4,5,15].

4. Evaluation of the Newton Interpolating Polynomial
and Its Derivatives by a Generalized Horner’s Rule

Formally, to find the value of the [-th derivative of the Newton interpolating
polynomial Lg\l,), 0 <1 < N at ¢ = z for some given real number z, one can consider
a substitution of the variable x by the formula x = y + z in (1.11), where y is a
new variable. After this substitution and after collecting similar terms one obtains

Ln(y+z) = Ao+ Ay + -+ Any™,

where A, = L\ (z)/11,1=0,...,N.
After the reverse substitution ¥y = x — z one finds that

Ly(z) = Ao+ Ay(z — 2) + -+ An(z — 2)V. (1.16)

We are interested, however, in a more efficient method for evaluating the New-
ton interpolating polynomial and its derivatives which generalizes the well-known
algorithm of nested multiplication or Horner’s rule.

Let us rename a0 = cg, K = 0,..., N and rewrite the polynomial Ly in the
form
N k—1
Ly(z) = Pyno(z) =aoo+ Y akowk—1(z), wi—1(z) = [[(z—=). (1.17)
k=1 i=0

By using parentheses we transform the representation (1.17) into the form

Pno(z) =a0,0 + (x — z0)(a1,0+
st (iL' — xN_z)(aN_l,o + (.’17 — .TN_l)aN,o) - ) (1.18)

To evaluate the polynomial Py at = z we form the sequence of numbers

aN.1 = anN.Q,
T (1.19)
ag1 = ako+ (2 —xk)agy11, k=N-—-1,...,0,

starting with the innermost parentheses in (1.18). It follows from (1.18) and (1.19)
that Ly(z) = Pn,o(z) = ap,1. To find the value of the polynomial Py o one needs
to perform N multiplications and N additions only.

To evaluate the [th (0 < < N) derivative of the Newton interpolating poly-
nomial, let us consider the polynomial

N

Pyy(x) =ai;+ Y apwp—i-1(x)
k=l+1

=ay; + (.17 — $0)(al+1,l+
ot (r—avae)(anv—1 + (T —aN_—1)anyg) ). (1.20)



Let us set

GN,1+1 = OGN, (1 21)
Ak, 14+1 = Akl + (Z — xk_l)akﬂyl“, k=N — 1, cey l.

It follows from (1.20) and (1.21) that Py (2) = a; ;41 (0 <1 < N) and to evaluate
the polynomial Py ; at = 2, one needs to perform N —[ multiplications and N —1
additions only.

Lemma 1.3. Let Py n4+1 = 0. The following equalities are valid

PN,I(.T) = PN,I(Z) + (.T — Z)PNJ_|_1(.T), l=0,...,N. (1.22)
Proof: If k = N — [ = 0 then equality (1.22) is evident as in this case we have
Py n(z) = Pnn(2) = an,n by (1.20). Now suppose the equality (1.22) is satisfied

forallk=0,...,N—1I' (I <I' < N). We show that it is also fulfilled for k = N —1.
Using formulae (1.21) one obtains

Pni(2) + (z — 2)Pnyy1()

N k—[1—2
=aj ;41 + (JJ — Xo+xo — Z) (al—{—l,l-f—l + Z Ok, 1+1 H (.T — .Tl)>
k=[+2 =0
N k—I1—2
=ay; + (z — xo) (al+1,l+1 +(z —z1+ 21— 2) Z Ak 1+1 H (x — %))
k=1+2 i=1

=a;;+ (r —xo)(arr10+ -+ (. —rn_i—2)(an—1,1+1

+(r—xN_i—1+TN_i1—1 — 2)ani+1) ) = Pny(x).

This proves the lemma. O

By repeated differentiation of equality (1.22) and setting [ = 0 and = = z we
obtain

P](\,()fg(z) =Pna(2), a=0,...,N.

As Ly = Py, this permits us to rewrite the representation (1.16) in the form
Lyn(z) = Pno(2) + (& — 2)Pn,1(2) + -+ (2 — 2)V Py n (),

where Py ;(2) = aji41, 1 =0,...,N and ay n+1 = ano-
Thus, the following result is valid.

Theorem 1.2. Let Ly be a polynomial of the form (1.11), where one needs to
evaluate the derivatives Lg\l,), 0<I<N atx=z.
Set axo=ck, k=0,...,N,and an 41 =anp, | =0,..., N, and evaluate

k141 :ak,l+(z—mk_1)ak+1,l+1; k=N-1,...,1, 1=0,...,N.



If
N

Prni(x) =ar; + Z aggwi—1—1(x), (=0,...,N,
k=Il+1
then
Lg\l,)(z)/l! = Pni(z) =ar141, 0<I<N.

Let us note that if z; = 0 for all 4 then the polynomial Ly in (1.11) takes the
form Ly (z) = co+cio+---+cenx? and the algorithm described above is reduced to
the well-known algorithm of nested multiplication, also called Horner’s rule, which
can be found in many textbooks on numerical analysis, see e.g. [3,5,10,11,13].

The algorithm above can be easily coded. Let us assume that we have two
arrays of the data t[1 : n + 1] and f[1 : n + 1]. First, by using formula (1.12) one
computes the divided differences.

for i :=1 to n+1 do afi] := f[i];
for i :=1to n do
for j:=n+1 downto 7+ 1 do

alj] := (alj] — alj = 1])/(t[5] = t[j — i]);

The computation of the divided differences can also be performed by a different
algorithm [17]:

aln+ 1] := fln + 1];
for 7 :=n downto 1 do
begin
ali] := f[i];
for j:=i1+1ton+1do
alj] == (alj] — aly — 1))/ (¢[5] — t[i]);

end

Now in order to evaluate Lg\l,), 0 <l < N,at x =z one can use the following
loops.

for i :=1 to n+ 1 do d[i] := a[i];

k=1,
fori:=1tol+1do

begin

if i >1 then k:=Fkx (i — 1);

if 1 <n+1 then

for j :=n downto ¢ do
dlj] := dj]+ (z—t[j —i+1]) xd[j+1]

end;

vnewn =k x d[l + 1];

Example 1.2. Four values of the function f(x) = 1/(1 + 22) are given in table
1.1. Form a cubic Newton interpolating polynomial L3 from the data of this table.



Then evaluate L3(1.5) and L5(1.5) using the generalization of Horner’s rule. Finally,
estimate the error of the approximation thus obtained.

Table 1.1. The initial data

i o | S
01| -1 0.5
1 0 1.0
2 1 0.5
3 2 0.2

Solution. By the data of the table 1.1, using formulae (1.12), we first form the
table of divided differences.

Table 1.2. Divided differences values.

zi | fi | fleiwipa] | fles i waige] | flre, .o, igs]
-1 10.5
1.0 0.5
1105 -0.5 -0.5
210.2 -0.3 0.1 0.2

According to (1.11), the cubic Newton interpolating polynomial L3 takes the

form
L3(z) =co + c1(x — xg) + co(x — 20)(x — 21)

+ c3(x — zo)(x — z1) (T — z2)
=0.5+0.5(x+1) - 05(x+ 1)z +0.2(z + 1)z(z - 1).

By setting a; 0 = ¢;, © =0, ..., 3, let us rewrite the polynomial L3 in the form

Lg(.’IZ) = Pg’o(l') = G0,0 + (iL' — .To)(al,o + (.’17 — xl)(az,o + (iL' — xz)ag,o))
=05+ (z+1)(0.5+ 2(—=0.5 + (z — 1)0.2)).

The value of the function P5y at z = 1.5 can be found by Horner’s rule

az1 = azo = 0.2,

a21 =020+ (2 —x2)az1 = —0.5+0.5-0.2 = —0.4,
a11=a1,0+ (z—x1)az1 = 0.5+ 1.5(—0.4) = —0.1,
ap1 = ap,0 + (z — xp)ar1 = 0.5+ 2.5(—0.1) = 0.25.

Thus, L3(15) = P3,0(1.5) = 0.25.
In order to evaluate the derivative L5(1.5), let us write down the polynomial

Psqi(z) =a11+ (x — o) (a21 + (z —z1)az 1)
=—0.14 (z+1)(-0.4+z-0.2).



Computations are again performed by Horner’s rule,

a3 2 = 43,1 = 02,
G20 =ap1+ (2 —1)aze = —0.4+1.5-0.2 = 0.1,
a12 = a1+ (2 — xo)age = —0.1+ 2.5(=0.1) = —0.35.

Therefore, L5(1.5) = P53 1(1.5) = —0.35.
Using the explicit formula for the function f we find a bound for the error of
approximation,

F(1.5) — L3(1.5) = 0.30769 — 0.25 = 0.05769,
F/(1.5) — L} (1.5) = —0.28402 + 0.35 = 0.06598.

5. Convergence of the Interpolating Polynomials

The choice of polynomials as a tool for approximation of functions is usually
motivated by the following well-known theorem by Weierstrass.

Theorem 1.3. Let f be a function which is continuous on the interval [a,b] and
let € > 0. Then there exists a polynomial Py of degree N = N(g) for which
- P, .
max |f(z) - Pn(z)| <e

However, we are interested in the interpolation problem and in particular in the
convergence of the interpolation process. That is, if f is a continuous function on
la,b] and Py (z;) = f(x;), ¢ =0,..., N, will the quantity max,<,<s |f(x) — Pn(2)]
tend to zero as N — oo?

One can give examples where one does not have convergence. The most fa-
mous one was given by Runge in 1901. Let the function f(z) = 1/(1 + 2522) be
interpolated on the interval [—1, 1] by using equally spaced nodes x; = —1 4 2i/N,
i=0,...,N. Then one can show (see [8]) that

li —L = 0.
Noso 0.726I.I.l.a§)|(m|<1 £ () n ()] =oc
Figure 1.2 illustrates the divergence of the interpolation process for Runge’s exam-
ple. In Figure 1.2, the interpolating polynomial Loy deviates substantially from the
interpolated function near the ends of the interval [—1,1]. The oscillations tend to
infinity with growing of N.
Even more, the following result by Faber (see [10]) is valid.

Theorem 1.4. For any prescribed system of nodes

(N) (N)

a<zV <M< .caM<p v>0) (1.23)

there exists a continuous function f on [a, b] such that the interpolating polynomials
for f using these nodes fail to converge uniformly to f.

However, convergence of the interpolation process can be ensured by a special
choice of the interpolation nodes (see [10]).



Figure 1.2. Runge’s function interpolated by 5th-degree and 20th-degree
interpolating polynomials using equidistant data.

Theorem 1.5. If f is a continuous function on [a, b], then there exists a system of
nodes as in equation (1.23) such that the polynomials Py which interpolate f at
these nodes converge to f, that is,

li ax |P, — = 0.

i max [Py (x) — f(2)]

In practice one often chooses the roots of the Chebyshev polynomials as a
system of interpolation nodes which guarantee the convergence (see [2]). As a rule,
the problem of convergence disappears if one turns to interpolation by piecewise
Lagrange polynomials which are also called Lagrange splines [1].

6. Piecewise Linear Interpolation

The simplest example of Lagrange splines which guarantee the convergence of
the interpolation process to the interpolated function is piecewise linear interpola-
tion. In this case, one has a Lagrange interpolating polynomial of first degree on
each interval [x;, x;14],i=10,...,N —1
.~T1l+1 — T

Lii(z) = fi I

r —I;

hi

+ fit1 hi = x;v1 — ;. (1.24)



Thus, on the whole interval [a, b] one has a set of N Lagrange interpolating poly-
nomials of first degree forming a linear Lagrange spline or, what is the same, a
Lagrange spline of the first degree.

Setting x_1 < a and b < 41, let us define linear basis splines (B-splines for
short)

Bji(x) = (xj42 — xj)elx, ), Tj41, 42|, j=—1,...,N —1,
where ¢(z,y) = (z — y)4+ = max(0,x — y), or according to formula (1.9)
Bj1(z) =(z; —x-)jizw = —1,...,N—1
3,1 J+2 J - wé-)z(xk) v ) R )
wj2(2) =(@ — ;) (® — 2j11)(* — Tjt2).

The functions Bj; can be written in the form

T — T;
hj]’ z; << Tjy,
Bii(x) =< Tjpo— 1.25
J’l( ) J}ZT? Tjt+1 S T < Tjt2, ( )
0, otherwise.

It is easy to show (see chapter 3) that the functions Bj i, j = —1,...,N — 1
are linearly independent on the interval [a, b]. Every Lagrange spline of first degree
SL can be uniquely represented in the form

SE(z) = z_: fi+1Bj1(x), x € a,b]. (1.26)

j=-1

On the interval [x;,z;11] only the basis splines Bj 1, j =4 — 1,7 are different from
zero in this sum and by formula (1.25), the representation (1.26) takes the form
(1.24).

Let us also note that linear Lagrange splines are exact for polynomials of first
degree, that is, every polynomial of first degree P; can be written in the form

Pl(a:) = z_: P1($j+1)Bj,1(.T), T € [a,b].

j=—1

It is sufficient to verify this equality for the monomials 1 and z, that is, to show
the validity of the identities

N-1
Z i Bii(r) =2 a=0,1, z€la,b].
j=—1

This can be easily done by using formula (1.25).



Example 1.3. Let the function f be interpolated on the interval [a, b] by a linear
Lagrange spline on the set of equally spaced nodes z; = a + i(b — a)/N, i =
0,...,N, and suppose that in the evaluation of f, round-off errors do not exceed

¢ > 0. How many interpolation nodes have to be chosen to provide an exactness of
approximation F (¢ < F)?

Solution. Let f(z;) = fi + &, i=0,..., N, where ¢; is a round-off error. Let us
set h = (b—a)/N. Using equality (1.5), on the interval [x;, z; 1], 1 =0,...,N —1,
we have

F(@) = Lin@)] =|f(@) = FEE—2 + fn T

h
I; — T r —I;
:‘f(i'?) — fla) =" — Fwign)
h h
I, — T r —I;
pe T

1
<5 @1 — @) (@ — )| f7 (&) + max(leil, leiva])
M [f"(z)|+e<E
-8 $i§1§012)$(i+1 v =5

Let max,<g<p |f"(x)| = M. As in our case h = (b — a)/N, we have the estimate

(b—a)M'/?

1/b—a
s B(E - o)/

2
3 —)MgE—s or N>
Example 1.4. Under the conditions of example 1.3, what number of interpolation

nodes provides the minimal error of approximation for f’ on [a, b]?
Solution. On the interval [z;,2;41],7=0,...,N — 1, one has

)~ L) = () - T2 T

— f/(l') . f(l'i—i—l)h_ f(xz) n 67;_|_1h— €5 .

Using the Taylor expansion we obtain

r)?

F) = @)+ f @)+ eI g (),
Flrin) = 1) + /@) @i — )+ 7(6) P 6 € o),

Hence

frigr) = flz) woe \(@igr—x)? (= x)?
+ . = f'(z) + f (52)+T—f (fl)T'



This gives us the estimate

flwigr) = f(x)| _ (& —x) + (w31 — 2)?

/ _ < /! .
fi(z) h < o N Srfgéﬂ]lf (z)]

Then " el |

il T |€it1

/ _ 7/ < " € +
@) = L@ <5, max |f(@)]+ P
h 26
< =M+ — =p(h,e).

The function ¢ takes a minimal value with respect to h if ' (h, &) = M/2—2¢/h? = 0
or h = 2(e/M)*2. As h = (b—a)/N then we have to choose N > (M/e)'/?(b—a)/2.

7. Interpolation by Cubic Lagrange Splines

The approximation can be improved by replacing piecewise linear interpo-
lation by piecewise cubic Lagrange polynomials. Suppose we have data (z;, f;),
t=—1,...,N+1. To obtain a cubic Lagrange spline, one takes the cubic Lagrange
polynomlal on every interval [z;,z;41], 1 =0,...,N — 1,

i+2 i+2

= > f] “”’—1’?(“7) wi—1a(@) = ] (z—=;). (1.27)

(z — 5”3’)%’—1,3(5'31')7

j=i—1 j=i1—1

On the whole interval [a, b], we have a set of N cubic Lagrange polynomials forming
a continuous function which is called a cubic Lagrange spline. If we do not have
the endpoint data (xj, f;), 7 = —1,N + 1, then we can extend the polynomial
L1 3 to the interval [zo, z2] and the polynomial Ly_2 3 to the interval [zy_2, zN].
However, in this case the goodness of approximation on the intervals [z, z1] and
[xn_1,zn] will be lower (see [19]).

Using formula (1.5) on the interval [z;, z;11] one has the estimate

f(#) = Lig(®)| < Slwicis(@)|  max  [f®(x) h’4||f(4)||0ab (1.28)

- 4:! mi71S$S$i+2 | - 384:

where h = max; h; and || f||c[a,p] = MaXe<a<p | f(2)].
Setting z_3 < z_2 <z_1 <aand b < xyiy1 < Tnyy2 < Tnis, let us consider
the cubic Lagrange B-splines

WEe—1 3(.7]) .
: , if x € |zg, o ,
By = | T gl STl
3,3 k=37,...,7+3, '
0, otherwise,

j=-=3,...,N — 1. The graph of the spline BjL,3 with equally spaced nodes z; = 1,
t=1,...,5is shown on Figure 1.3.



Figure 1.3. Cubic Lagrange B-spline with equally
spaced nodes z; =14,1=1,...,5.

It is easy to show (see chapter 3) that the functions BjL,37 j=-3,...,N—-1

are linearly independent. Every cubic Lagrange spline S can be uniquely written
in the form

N-1
Sy(w) = fi42Bfs(w), =€ a,b]. (1.30)
j=—3
In this sum only the B-splines B]-L73, Jj=1—3,...,t will be different from zero on

the interval [z;, z;11]. Using formula (1.29) we verify that the representation (1.30)
coincides with formula (1.27) on the interval [z;, z; 1]

142

N-1 7
S = 3 fraBly@) = 3 feaBlhy() = Y D19 g g

(z — xj)%’—1,3($j)

j=-3 j=i—3 j=i—1

Cubic Lagrange splines are exact on cubic polynomials, that is, every cubic
polynomial P3 can be uniquely represented in the form

N-1
Py(x) = Y P3(zj42)Bl3(z), € [a,b].
j=—3
To prove this formula we verify it on the monomials 2%, a = 0,1, 2, 3, that is, we

show that the following equalities are valid

N-1
= Z $?+2Bﬁ3($), a=0,1,2,3, z € [a,b], (1.32)
j=—3



or in equivalent form

(-1P= 3 (y— 2742)°Bly(a). =€ [a,b]

j=-3

As in (1.31) we have on the interval [z;, z;41], ¢ = 0,..., N — 1, that

N-1 i+2 o
¥ w;i—1.3(T)
Zx‘?‘ B-L(x)zz J ’ =z% «a=0,1,2,3.
+2D53
j=—3 ’ ’ j=i1 (5'3_551')”;—1,3(5'31') ’ T

This proves the equalities (1.32).

Unfortunately, on a coarse mesh the graph of a cubic Lagrange spline can have
corners as the derivatives of consecutive polynomials are not ajusted smoothly. An
exception is the case of equally spaced nodes (h; = h for all i) where the second
derivative of a cubic Lagrange spline turns to be continuous.

Let us use a simple approach to show how we can smoothly adjust consecu-
tive cubic Lagrange polynomials to obtain a smooth function while still providing
practically the same accuracy as with Lagrange interpolating spline.

8. Local Approximation by Cubic Lagrange Splines
Let us consider a “corrected” cubic Lagrange polynomial on the interval
[.Ti,$¢+1], 1= 0,...,N— 1,
Sia(@) = Lig(x) + Cii(z — 2:)° + Cip(wigr — 2)°.
We will assume that

ST (i —0) = S0 (z; +0), r=0,12, i=1,...,N-1. (1.33)

Let us write the consecutive cubic Lagrange polynomials on the intervals
[€;_1, ;] and [x;, 2;11] in the form

Si—13(x) = fic1 + flwimy, zi)(x — 7-1)
+ flxic1, zi, Tiv1](x — zi—1) (z — x;)
+ flrico, wim1, i, i1 ](x — zi-1) (2 — 23) (2 — 2i41)
+Ci11(x — m-1)* + Ci_yo(m; — 7)3,
Sia(w) = fic1 + flwio1, mil(x — 2i1)
+ flri—1, Ty i) (2 — 1) (2 — 34)
+ flTim1, Ti, Tig1, Tiga) (T — 7im1) (7 — @) (T — @igy)

+ Cii(z — z;)® + Ci2(Tit1 — z)3.
Subtracting these polynomials one has

Sisz(@®)—=Sic13(x) =0; a(r —xi—1)(x — 24)(x — ®iy1)
+ (Cix+ Ciz12)(m — 23)° + Cia(wig1 — )° — Cimya1 (2 — wiy)?,



where 9i,4 = ($¢+2 - $i—2)f[$¢—27 ce ,$i+2]-
Hence, using the conditions (1.33) one obtains the system of equations

hi 1Ci11—hCin=0,
3h?_1Ci_11+ 3hiCi2 = —hi_1hi0; 4, (1.34)
3hi—1Ci—11 — 3hiCi 2 = (hi—1 — h;)0; 4.

The equations in the overdetermined system (1.34) are linearly dependent.
This system has a unique solution

hZ0; .4 hi_1

B
3hi—1(hi—1 + h;) ’ hi

Hence, a smooth cubic Lagrange spline takes the form

3
Ci—11= ) Ci—1,1.

h’z'2+]_9i~|—1,4 3 hg_]_giA 3
Sis(x) = L; 3(x) Shs (b & higa) (x — z;) S £ ) (xi41 —z)° (1.35)
on the interval [x;, z;11]. We loose the property of interpolation. Instead, we have
the property of local approximation. Let us show that nevertheless the accuracy of
approximation will practically be the same as for the cubic Lagrange interpolating
spline.
Using (1.14) we can rewrite formula (1.35) in the form

h?, .0;
f(z) = Sis(w) =flrio1,. .., Tiy2, T]wi—13(7) + 3h,~EJfZ: ++f:i1) (z — z;)°
h%_lgiA 3
T Sy + oy G+ )
hi1(Tigs — Tio1) hi 1 (Tig2 — Tia)
3h¢(hi + hi+1) 3hz’(hi—1 + hi)

X (g1 — $)3]f[$¢—1,---733i+2,§], £ € [Ti_a, miqs)].

= |wi—13(7) + (z — ;)% +

Hence, one has the estimate for = € [z;, ;1]
21_
@) = Sia(@)] <[22+ Z]h¢ max  [flwir,. o wi00.€]
3 Ti—2<E<wiys
35,

§4_8hi mi_2ré1?%<mi+3 |flzizt, .o, mig2, &

where h; = max);_jj<2 hj and t = (z — x;)/h;.
Using equality (1.15) we can rewrite this estimate in the form
21 hi 35

mm—&QMSRQ—N+§ﬂM§ﬁ5MM
where M = [|f®*)]|g[q4)-

Comparing now the estimates (1.28) and (1.36) we conclude that when re-
placing a cubic Lagrange interpolating spline by a local approximating one obtains
practically the same accuracy of approximation (compared with the estimate (1.28),
the constant in the estimate (1.36) is increased only slightly).

Applications of local approximation methods to the problems of computer

aided geometric design (CAGD for short) are described in [6,9].

(1.36)



9. Local Approximation by Cubic B-Splines

Let us use one more approach [20] for obtaining the formula of local approxi-
mation (1.35). Let us consider cubic B-splines

Bj,S(x) = ($j+4 - xj)‘PS[xaxj: . --7$j+4]7 e3(z,y) = (z — y)iv

J=—3,...,N—1. The graph of the cubic B-spline B; 3 with equally spaced nodes
r; =1t,1=1,...,5 is shown on Figure 1.4.

Figure 1.4. Cubic B-spline Bj 3 with equally
spaced nodes z; =14,1=1,...,5.

Using formula (1.9) one can also rewrite the spline B; 3 in the form

Jjt+4

I e — )3
Bjs(x) = (€44 — x;) Z ﬁ wja(r) = H.(:U — o).

It is easy to show (see chapter 3) that the functions Bj3, j = —3,...,N — 1
are linearly independent on [a, b] and have the properties

. >0, ifz € (z),T)44),
Bjs(x) { 0, otherwise,

(y—=)° = i (Y = wj11)(y = zj42)(y — 7j43) Bj3(2), @ fa,b].  (1.37)

j=-3
Equality (1.37) can also be rewritten in the equivalent form

1 N-1

2% — on Z symme (Tj41, Tjy2, i4+3)Bjs(z), € [a,b], (1.38)
3 j:_3



where C% = (2) is the usual binomial coefficient and

symmo(z,y, z) = 1,
symmq(z,y,2) =x +y + 2,
symma(z,y,2) = xy +x2 + Y2,
symmg(z,y, z) = xyz

Let us consider the following formula of local approximation by cubic B-splines
N-1
S(x) = Y bjr2Bs;(@), (1.39)
j=-3
where bj = bj,_lfj_l + bj,ofj + bjylfj_f_l. If we set bj,o =1- bj,_l — bj,l,

h2 oy
hy_a(hjr+hy) 7 R (b + hy)

b]a_l =

then formula (1.39) will be exact for cubic polynomials. To verify this property,
one can use the monomials %, o = 0,1,2,3. Substituting these monomials into
(1.39) we obtain the equalities (1.38).

According to formula (1.14) one has
f(z) = Li3(x) + Ri3(x),

where R; 3(z) = flzi—1,. .., Tit2, ¥|wi—1 3(2).
As the spline Sy is exact for cubic polynomials, then

Sy(x) = Liz(x) + Sg; , (x).
Using formula (1.39) one has on the interval [x;, x;11]

SR, (@) = bi—1,—1R; 3(wi—2)Bi_3 3(x) + biyo 1R 3(iy3)Bi3(v)

i+2
+ > ()R a(a;),
j=i—1
where 1); are some cubic polynomials. As R; 3(z;) =0 for j=i—1,...,7+ 2 then

S¢(x) = Lig(x) + bi—1,—1Ri 3(xi—2)Bi—3,3(x) + biy21Ri 3(xiys)Bis(x).

Substituting here the expressions for B-splines and for the remainder we again
obtain the formula (1.35).



10. Interpolation by Quadratic Lagrange Splines

One can also perform the interpolation by piecewise quadratic Lagrange poly-
nomials. Suppose one has data (z;, f;) withi=—1,...,N or i=0,...,N+1 and
considers quadratic Lagrange polynomials on the intervals [z;, ;41], i =0,..., N —
L,

Jj+2
x)

Z i @2l

.77 — xk

foryj=i—1lorj=1 correspondlngly. This gives us a set of N quadratic Lagrange
polynomials forming a continuous function on [a, b] which is also called a quadratic
Lagrange spline. If we have only the data (z;, f;), i = 0,..., N, then one can extend
the polynomial Lg 2 to the interval [z, z2] or the polynomial Ly _s 2 to the interval

[xN_2,zN]. Let us assume that we have the data (z;, f;), i=10,..., N + 1.
Using formula (1.5) one has on the interval [z;, z;1]

\/g,
?h’?Hf(?’)HC[a,b]- (1.41)

(1.40)

wj w’ o (k)

() = Lip(r)] < Hlwin(e)] max |fO(2)] <

z; <z<T;y2

Setting z_» < x_1 < aand b < xn41 < N2 let us define quadratic Lagrange
B-splines

wk 2(x) .
’ , if x € |zg,x ,
BL — ('T - ;Uj+2) wllc,Z(mj+2) [ g k+1] 1.42
i2(®) = k=j,j+1,j+2 (1.42)
0, otherwise,

Jj=—2,...,N —1. The graph of a quadratic Lagrange B-spline B; » with equally
spaced nodes x; =4, 1 =1,...,4 is given on Figure 1.5.

Figure 1.5. Quadratic Lagrange B-spline Bj 2 with equally
spaced nodes z; =4, 4 =1,...,4.



It is easy to show (see chapter 3) that the functions BjL,z, j=-2,...,N—1 are

linearly independent. Any quadratic Lagrange spline S5 can be uniquely written
in the form

N-1
Sy(x) = > fi42Bfa(w), € a,b]. (1.43)
j=—2

In this sum only the B-splines BjL’z, J=1—2,1— 1,1 will be different from zero on
the interval [z;, z;41]. Using formula (1.42) we verify that the representation (1.43)
coincides with formula (1.40) on the interval [x;, z;41].

Quadratic Lagrange splines are exact for quadratic polynomials, that is, for
any quadratic polynomial P» the following representation is valid

Py(x) = i: Pz(xﬁz)BjL,z(x), x € [a,b].

Jj==2

Again, we prove this formula by showing that it is valid on the monomials =%,
a=0,1,2, that is,

N-1
= Z x?‘JrQBjL,Q(x), a=0,1,2, z€|a,b] (1.44)
j=—2

or in the equivalent form

N-1

(y—a)= Y (y—zj42)’Bfs(2), @€ [ab].

j=—2

The equalities (1.44) can be verified directly by using formula (1.42). For z €
[, x501], 4 =0,...,N — 1, one has

N-1 i+2 a
% w; o(x)
E xs B-L(a:):g L =z% «a=0,1,2.
+2D550
= = (@ —aj) wis(z)) ’ Y

11. Local Approximation by Quadratic Lagrange Splines

The derivative of a quadratic Lagrange spline is a discontinuous function. To
obtain a smooth quadratic spline let us apply the same approach as used in section
1.8 for cubic Lagrange splines.

Let us consider a “corrected” quadratic Lagrange polynomial on the interval
[.Ti,CUH_l], 1= 0,...,N— 1,

Si,z(l’) = Li,z(él?) + C,"l(a? — :Ui)2 + Ci,2($i+1 — .I')z.
We will assume that

S (i —0) = S0 (x; +0), r=0,1, i=1,...,N—1. (1.45)



Let us write the polynomials belonging to the consecutive intervals [z;_1,x;] and
[, x;11] in the form
Si—12(7) = fi + flzi, wiga](x — 2)
+ flwio1, mi, wia] (v — ) (2 — @iga)
+Ci—11(x — $i—1)2 + Ci—12(xi — 55)2,
Sip(z) = fi + floi, vip1] (@ — 23)
+ flwi, iy, Tigol( — ) (T — wi41)
+ Cii(z — z;)? + Cio(Tit1 — )2,
Subtracting these polynomials one obtains
Si2(w) = Si—1,0(2) = Oi3(r — 3) (2 — 1) + (Cig = Cimr2) (2 — 13)?
+ Cio(iz1 — 2)* — Ci_11(x — m_1)3,
where 91;’3 = (CEH_Q — a:,-_l)f[a:i_l, Ce ,.TH_Q].
Hence, using the condition (1.45) one has the system of equations
h? 1Ci—11—hiCin =0,
2hi1Ci_11 + 20 Ci 0 = —h;0; 3,

from which

O hi—10;3 hi
2= o
2(hi—1 + hi) hi—1
Thus, on the interval [z;, ;1] the smooth quadratic Lagrange spline takes the
form

Cic11 = ( )20i,2-

hi10it13 hi_16;
Sia(@) = Lip(r) - = (g — ;)% — 2108 (g —2)2 (146
:2("17) 72("17) 2h,(h}z n hi~|—1) (’T T ) 2(hi—1 + h/z) ("17 +1 J;) ( )

Let us estimate the error of approximation by formula (1.46). Using (1.14) one
has

h%+19i+1,3 ( —$~)2
7

F(@) = 85,2(2) =flwi, Biv1, Tiva, 2w 2(2) + 20y (hy + higa)

hi—10;3 2
T Sl + iy )
h?, (w13 — x;) i1 (Tigs — Tiy)
— [ apt\it3 7 Li) o e Ric1 @it 7 T
= |:wz,2($) + th(hz +hi+1) («T «Tz) + 2(hi—1 +hz)

X (Tjy1 — $)2]f[$i,$i+1,$i+2,§]a € €[zi1, Tigs).

From here, for x € [z;,z;+1] we have the estimate

|f(z) = Sia(z)] < [t(l —t)(2—-1t)+ Z] h  max |flzi, is1, Tigo, €|

zi—1<E<Tiq3

9+ 8v3-
<y h,, maxflEn i, e €]l



where h; = max; hj, i —1<j<i+2andt=(x—x;)/h.
Using equality (1.15) one can rewrite this estimate in the form

h3 _
@) = Sia(o) < [0 -2 -1+ 2] 2ar < 22535y

where M = ||f(3)||0[a,b]'

12. The Case of Discrete Cubic Spline

Let us consider the case where the functions ®; and ¥; are chosen by formula
(10.4) and where we use the coefficients from (10.29) in the representation (10.24)
(or (10.25))

bj—2 = bj—1fj—1+bjofj +bj1fin (10.30)
with
o, () U, (z))
by =ty = IV — by, (10.31

On the interval [z;,x;y1], this spline S depends on only 6 values f;_s,...,
fi+s of the function f. Let us construct a cubic Lagrange polynomial L; 3 interpo-
lating f in the points x;_1,...,2;4+2. Then

with
R;3(x) = Qi a(®) flmiz1, ..., Tig2, 7],
Qu,i(r) = (x — zi—1)(® — 23) (7 — 2i1) (T — Tiy2).

By means of detailed calculation it is possible to verify that the discrete cubic spline
St is exact for cubic polynomials. When T]-L = TJR" =71,7=1,1+ 1 for all ¢ such a

property was proved in Lyche [12]. This permits us to write down
Sy (@) = Liz(z) + S, 4 (2),
where Spg, , is a discrete cubic spline constructed by the values of the remainder

R; 5.
According to the formula (10.24) one can write

SR, () = bi—1,—1R; 3(wi—2)Bi—3(x) + bit2,1Ri 3(7i43)Bi()

i+2
+ Z pi(@)Ri3(z;), = € [T, miq1],
j=i—1
where p;, j =i —1,...,7+ 2, are some cubic polynomials. However R; 3(x;) = 0,
j=1i—1,...,i+ 2. Therefore on the interval [z;, z; 1],

S¢(x) = Lig(x) + bi—1,—1Ri 3(xi—2)Bi_s(z) + bit21R; 3(i43)Bi(x).



Using formulae (10.15), (10.30), and (10.31), this representation can be rewritten
as

(I)i_ Ti— (I)l' T
Sf(iv) = Lz’,s(iU) - Q¢,4($¢—2)f[$i—2, sy $¢+2] 1( 1) ( )
hi—2ci—22Ci—1,2Ci—2 3

Ui(2)Wis1(wiv2)
hiyac;i2Cit1,2Ci 3

— Qi,4($i~|—3)f[a7i—17 e ,.I'1;_|_3] . (1033)

L; R, L; _R; .
It 7,7 = hj_1, 7;7 = hj = 7,1, 7;31 = hjy1 for all j, then ¢;_q ) = (1 —

zj+k—3)/(4—k), k = 2,3; and by formula (10.6) one obtains ®;(z;) = ¥;(z,4+1) = 0.
Formula (10.29) (or (10.30)) gives bj_» = f;, and from (10.33) Sf(z) = L; 3(x). If

TiLj = TiRj =0,4=j,j+1 for all j, then Sy is a conventional cubic spline. In this

case, ¢j 1k = (Tjyn-1 — Tj—1)/k, k = 2,3; ®j(x;) = V;(xj41) = h3, and formula
(10.33) turns into

h2_h?
S7(w) = Lia(@) = @iz = vi-) flwizs -, Biral gy (1= )
h2h2
o . ] il 43
(Tits = wim1) flwio1, ..., Tigs] 3(hi 4+ hiz1)

This result was obtained in chapter 1.
Let us now estimate the error of approximation. From (10.32) and (10.33)

ei(z) = f(z) - Sf(fl?) = Qia(m)flric1, ..., Tit2, 7]
Qi_1(zi—1)Pi(x)
i—2C;—2,2C;—1,2C;—23
Ui(2)Vit1(Tiv2)
hiy2c;i2Cit1,2¢i 3

+ Qia(Ti—2) flTiz2, ..., Tit2] A

+ Qia(iys) flTiz1, ..., Tig3] . (10.34)

Let us denote h; = maxhj, |i — j| < 2. Then from (10.34) one obtains the estimate
j

les(x)| < Ch; ., pax |flziz1, - Tiga, (]

or, if f € C*xi_o,miy3],

les(2)] < CLRENIfPlo, C1r = C/24; |lgllei = max  g(z)].  (10.35)

T, 2<z<T; 3

Here C; = 9/384 if Sy coincides on [z;, z;41] with an interpolating cubic Lagrange
polynomial L; 3, and Cy = 35/1152 if S; is a cubic spline. The last one is usually
called a quasi-interpolant because it gives the same order of approximation as a
conventional cubic interpolational spline of chapter 2.



13. Piecewise Cubic Lagrange Polynomial

R; _

If T].LJ' = hj_1, T hj = Tijl, Tﬁfl = hj41 for all j then using (10.4) and

(10.17) one can rewrite the representation (10.15) in the form

Qa,4(7) 7
Bi(z) = (# — Tity2)Qy j(Tiy2)

if x € [z, zj11),

J=1,...,1+ 3,
0, otherwise.

(10.36)

The basis spline (10.36) is also a fundamental discrete cubic spline with the property
Bi(x;) = 0iy2,;. Any piecewise cubic Lagrange polynomial S¢(z) = Lg;(x) if
T € [T, Tit1), i =0,...,N — 1, where the cubic polynomial L3 ;(z;) = f; = f(z;),
j=1—1,...,1+ 2, can be uniquely written in the form

S5 = 3 fyBye), @ lad]

This formula is exact for cubic polynomials because using (10.36), we obtain in any
interval [x;, x;41],i=0,...,N — 1,

i 1+2 T
27Q4,i(7)
zh, ,Bj(x) = I 7 =z", r=0,1,2,3.
2 Taa; 2 (z — 7;)Q (%)

j=i—3 j=i—1

This proves the identity
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