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ตี ตี อ่อง : ผลกระทบของการใชเ้ช้ือแบคทีเรียท่ีส่งเสริมการเจริญเติบโตของพืช (PGPR) 
ร่วมกบั Bradyrhizobium japonicum ต่อการเขา้ปม การเจริญเติบโต และชุมชนจุลินทรีย์
บริเวณรอบรากถัว่เหลือง (CO-INOCULATION EFFECTS OF PLANT GROWTH 
PROMOTING RHIZOBACTERIA (PGPR) AND Bradyrhizobium japonicum ON 
SOYBEAN NODULATION, GROWTH AND RHIZOSPHERE SOIL MICROBIAL 
COMMUNITY STRUCTURES) อาจารยท่ี์ปรึกษา : รศ.ดร.หน่ึง  เตียอ ารุง, 159 หนา้ 

 
 การปลูกเช้ือร่วมกนัระหวา่งแบคทีเรียท่ีสร้างปมในถัว่เหลืองในสกุล Bradyrhizobium และ
เช้ือแบคทีเรียท่ีส่งเสริมการเจริญเติบโตของพืช (PGPR) เป็นท่ีไดรั้บความสนใจเป็นอยา่งมาก โดย
คาดหวงัวา่การใชเ้ช้ือทั้งสองชนิดร่วมกนันั้นจะสามารถเพิ่มจ านวนปม และส่งเสริมการ
เจริญเติบโตของถัว่เหลืองได ้ในการศึกษาน้ีไดท้  าการตรวจสอบหาเช้ือจุลินทรียใ์นดินท่ีสามารถใช้
ร่วมกบัเช้ือ B. japonicum เพื่อใชก้บัถัว่เหลือง  จากการคดัเลือกเช้ือกลุ่ม rhizobacteria จ านวน 200 
ไอโซเลต พบวา่สายพนัธ์ุท่ีมีประสิทธิภาพในการเพิ่มจ านวนปมในรากถัว่เหลือง ไดแ้ก่  
Azospirillum sp. และ Bacillus solisalsi จากการศึกษาถึงผลกระทบของการใชเ้ช้ือแบบเด่ียว และ
แบบใชร่้วมกนัของเช้ือ  B. japonicum  (CB 1809 และ USDA 110) กบั เช้ือ Azospirillum sp. หรือ 
B. solisalsi  ต่อการเพิ่มจ านวนปม การเจริญเติบโต และชุมชนจุลินทรียบ์ริเวณรอบรากถัว่เหลือง 
พบวา่ การใชเ้ช้ือร่วมกนัระหวา่ง Azospirillum sp. กบั  B. japonicum CB 1809 หรือ USDA 110 มี
ศกัยภาพในการเพิ่มการสร้างปม 32.23% และ 16.85% การเพิ่มน ้าหนกัปม 26.51% และ 18.83% 
และสามารถเพิ่มผลผลิตเมล็ดถัว่ได ้ 23.65% และ 34.92% ตามล าดบั เปรียบเทียบกบัเม่ือใชเ้ช้ือ      
B. japonicum CB 1809 หรือ USDA 110 เพียงชนิดเดียวในสภาพแปลงปลูกจริง  ดงันั้นจึงใชเ้ช้ือ  
Azospirillum sp. ร่วมกบัเช้ือ  B. japonicum CB 1809 หรือใชร่้วมกบั USDA 110 เพื่อศึกษาถึงการ
แข่งขนัเพื่อเขา้สร้างปมในถัว่เหลือง ผลการศึกษาการแข่งขนัเพื่อเขา้สร้างปมของเช้ือดงักล่าวกบั
จุลินทรียใ์นดินจากประเทศพม่า และจากประเทศไทย พบวา่ การ ใชเ้ช้ือแบบเด่ียว หรือการใชเ้ช้ือ
ร่วมกนัของ B. japonicum USDA 110 และ Azospirillum sp. ท่ีท าการติดฉลากดว้ย gus-marker 
ใหผ้ลการเขา้ปม 93.21-94.75% และ 74.21-100% ตามล าดบั  และสามารถเพิ่มปริมาณน ้าหนกัแหง้
รวม 23.50-41.95% และ 50.37-73.24% ตามล าดบั เม่ือเทียบกั บถัว่เหลืองท่ีไม่ใชเ้ช้ือจุลินทรีย์  ใน
การทดลองใชเ้ช้ือ Azospirillum sp.  ในแต่ละปริมาณเช้ือ 106, 107 และ 108 โคโลนีต่อมิลลิตร  
ร่วมกบั B. japonicum USDA 110 พบวา่สามารถเพิ่มการเขา้สร้างปมในถัว่เหลืองได้  73.8, 62.25 
และ 95.34% และ 51.52, 62.38 และ 79.46 % ในดินจากประเทศพม่า และประเทศไทยตามล าดบั 
เม่ือเทียบกบัการไม่ใส่เช้ือ  จากการทดสอบ Denaturing Gradient Gel Electrophoresis (DGGE) และ 



 

 

 

 

 

 

 

 

II 

 

Principle Component Analysis (PCA) เพื่อหาความสัมพนัธ์ระหวา่งการใชเ้ช้ือจุลินทรียท่ี์คดัเลือก
แลว้กบัชุมชนจุลินทรียบ์ริเวณรากพืช  ทั้งการทดสอบในระดบักระถาง และระดบัแปลง พบวา่ช่วง
การเจริญเติบโตของพืชมีผลต่อการเปล่ียนแปลงของจุลินทรียใ์นกลุ่มยแูบคทีเรียรอบรากพืช  แต่ไม่
เก่ียวขอ้งกบัอิทธิผลของเช้ือแบคทีเรียท่ีปลูกร่วม ในทางกลบักนั การใส่เช้ือและช่วงการ
เจริญเติบโตของพืช ต่างก็ไม่มีผลต่อก ารเปล่ียนแปลงของชุมชนเช้ือราบริเวณรอบรากพืช ดงันั้น 
เช้ือ Azospirillum sp. สามารถน ามาใชร่้วมกบั  B. japonicum ส าหรับการปลูกถัว่เหลืองไดเ้ป็นอยา่งดี 
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 Co-inoculation of nodulated bradyrhizobia and plant growth promoting 

rhizobacteria has received great attention because co-inoculation can be expected to 

enhance the nodulation and plant growth of soybean (Glycine max). In this study, 

screening of rhizobacteria for co-inoculation with Bradyrhizobium japonicum on 

soybean was conducted. Among the 200 isolates of rhizobacteria tested, Azospirillum 

sp. and Bacillus solisalsi were selected as nodulation enhancers. Single and               

co-inoculation effects of B. japonicum (CB 1809 and USDA 110) and either 

Azospirillum sp. or B. solisalsi were studied to access the co-inoculation potential on 

nodulation, plant growth and rhizosphere soil community structures of soybean. 

Azospirillum sp. co-inoculated with either B. japonicum CB 1809 or USDA 110 under 

field conditions gave 32.23% and 16.85% of nodulation, 26.51% and 18.83% of 

nodule dry weight, and 23.65% and 34.92% seed yield over single inoculation of CB 

1809 and USDA 110, respectively. Azospirillum sp. was selected for co-inoculation 

with either B. japonicum CB1809 or USDA 110 for competitive nodulation study.    
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The results from the competition study for nodulation under rhizobia-established 

Myanmar and Thailand soils revealed that single or co-inoculation of gus-marked       

B. japonicum USDA 110 and three different inoculum levels of Azospirillum sp. gave 

93.21-94.75% and 74.21-100% in nodule occupancy, and 23.50-41.95% and 50.37-

73.24% enhanced in biomass dry weight over non-inoculated control, respectively. 

Each of the tested inoculum levels, i.e., 10
6
, 10

7
 and 10

8
 cfu ml

-1
 of Azospirillum sp. 

enhanced nodulation in combination with USDA 110 with a corresponding increase 

of 73.8%, 62.25% and 95.34%; and 51.52%, 62.38% and 79.46% over non-inoculated 

control in Myanmar and Thailand soil, respectively. 

 Denaturing Gradient Gel Electrophoresis (DGGE) and Principle Component 

Analysis (PCA) results demonstrated that soybean rhizosphere eubacterial community 

structures in both pot and field experiments in this study were shifted by plant growth 

stages not by bacterial inoculation. In contrast, neither inoculation of tested bacteria 

nor plant growth stages shifted the rhizosphere soil fungal community structures. 

Therefore, Azospirillum sp. could be used in co-inoculant production with                   

B. japonicum for soybean.   
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CHAPTER I 

INTRODUCTION 

   

1.1  Significance of this study 

 Soybean (Glycine max L. Merrill) is considered one of the oldest crops in the 

world and a major source of plant protein, oil and fat. It is an important legume 

because of its nutritive and economic values and varieties of by-products which are 

used in many industries and animal husbandry across the world. This crop alone 

contributes to about 20% of the world's oil and fat supply (Singh et al., 1989). The 

increase in soybean productivity has contributed to a greater use of agrochemicals, 

which cause major problems, such as soil and water pollution and reduction of 

biodiversity and have a negative impact on non-target species (Correa et al., 2009). 

Increasing and extending the role of biofertilizers may reduce the need for chemical 

fertilizers and thereby decrease adverse environmental effects. Recent advancements 

in the field of biofertilizers (including inoculation with microorganisms) create           

a growing level of interest in environmental friendly sustainable agricultural practices 

(O' Connell, 1992).  

 In legumes, symbiotic nitrogen fixation (Biological Nitrogen Fixation-BNF) is 

a well-known process exclusively driven
 
by Rhizobium bacteria, which specifically 

reduces atmospheric N2 to ammonia in the
 
symbiotic root nodules,

 
a key input of N 

for plant productivity. In soybean, Bradyrhizobium japonicum forms a symbiotic 

relationship and inoculation with those bacteria has been successful in increasing 
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soybean nodulation with increases in plant fresh weight, seed protein and seed yield 

in soils with a low or absent native population (Cladwell and Vest, 1970).  

 Zhang et al. (2002) and Kazemi et al. (2005) reported that B. japonicum 

bacteria increased number of pods per plant, number of seeds per plant, hundred seed 

weight, grain protein, total protein and development of plant leaves in tested soybean 

cultivars. Maximum benefit of N2-fixation by soybean often requires the inclusion of 

selected strains of bradyrhizobia as seed inoculants especially in soils with low 

population of rhizobia. The inoculated strain must be effective in its ability to fix N2 

with the cultivar concerned and processes the ability to compete for nodulation of the 

plant with other strains of rhizobia that might be present in the soil. Therefore, the 

rhizobia used in inoculants should not only have high N2-fixation ability in that crop 

but also have the competitive ability for nodulation against the indigenous rhizobia. 

 In addition to rhizobia, heterogenous group of bacteria can be found in the 

rhizosphere, at root surfaces and association with roots. Some of these bacteria show 

beneficial effects on plant growth when used as seed or soil inoculants and hence they 

are called Plant Growth Promoting Rhizobacteria (PGPR) (Glick, 1995). Those 

bacteria identified as PGPR have diverse taxonomy and include strains of the genera 

Azospirillum, Azotobacter, Bacillus, Enterobacter, Gordonia, Klebsiella, 

Paenibacillus, Pseudomonas, Serratia, among others and they can improve the extent 

or quality of plant growth directly and/or indirectly (Glick, 1995; Hong et al., 2011). 

Several mechanisms have been suggested by which PGPR can promote plant growth 

including phytohormone production, stimulation of nutrients uptake, and biocontrol 

of deleterious soil bacteria and phytopathogenic fungi (Lifshitz et al., 1987). 

Therefore, PGPR play in important role in sustainable agriculture.  
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 There were several reports that combined use of two or three beneficial 

microorganisms as inoculation has been found to perform better than single 

inoculations (Alagawadi and Gaur, 1988; Jisha and Alagawadi, 1996; Prathibha et al., 

1995). Combined inoculations are said to work better than single inoculation based 

on the principle that greater the diversity and number of inhabitants, the higher the 

order of interaction and more stable the ecosystem (Higa, 1991). The use of mixed 

cultures of beneficial microorganisms as soil inoculants is based on the principles of 

natural ecosystems which are sustained by their constituents; i.e., by the quality and 

quantity of their inhabitants and specific ecological parameters, i.e., the greater the 

diversity and number of the inhabitants, the higher the order of their interaction and 

the more stable the ecosystem. The mixed culture approach is simply an effort to 

apply these principles to natural systems such as agricultural soils, and to shift the 

microbiological equilibrium in favor of increased plant growth, production and 

protection (Higa, 1994; Parr et al., 1994). 

 Some of the nodulation promoting rhizobacteria increase nodulation leading 

to increase plant growth (Zhang et al., 1997). Therefore, co-inoculation of legume 

with symbiotic rhizobia and free-living microbes like PGPR has received great 

attention in many studies. Co-inoculation studies with PGPR and Bradyrhizobium 

have shown the increasement of plant nodulation and N2-fixation under normal 

growth conditions (Verma et al., 1986; Li and Alexander, 1988). For instance, Dashti 

et al. (1998) reported that co-inoculation of soybean with B. japonicum and 

Azospirillum or PGPR increases nodulation, nitrogenase activity and plant growth. 

Co-inoculation with Pseudomonas spp. and Rhizobium spp. has been shown to 

increase the degree of colonization of the legume rhizosphere by rhizobia resulting in 
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enhanced plant nodulation (Cook and Baker, 1983). Field tests with some 

pseudomonad strains have demonstrated the yield increases (Bashan and Holguin, 

1997), delayed the leaf senescence at the later stages of growth (Sarig et al., 1990) 

and promotion of legume nodulation by nitrogen-fixing rhizobia (Zhang et al., 1996).  

 Although they are beneficial for agriculture, exploitation of PGPR as 

biocontrol or biofertilizer inoculants has been hampered by inconsistent results at the 

field scale (Mark et al., 2006; Morrissey et al., 2004). Soil is considered to be the 

richest environment, with a high diversity of microorganisms belonging to the three 

domains of life, Bacteria, Archaea and Eukarya (Fierer and Jackson, 2006). PGPR 

that have been added to soil or seeds to improve plant growth and/or health will also 

modify the composition of the resident bacterial community of the rhizosphere. 

Microbes residing in the rhizosphere can be beneficial or detrimental for the plant and 

therefore can influence crop yields significantly (Sturz and Christie, 2003).  

 Genetic fingerprinting techniques are able to provide a profile representing the 

genetic diversity of a microbial community from a specific environment. PCR-DGGE 

of ribosomal DNA was introduced into microbial ecology by Muyzer et al. (1993). It 

was originally developed to detect specific mutations within genomic genes due to 

one base mismatch and it is based on the separation of Polymerase Chain Reaction 

(PCR) amplicons of the same size but different sequences. This method enables to 

sequence data to be obtained on the DNA of dominant species from individual bands; 

therefore, it perhaps the most commonly used among the culture-independent 

fingerprinting techniques (Muyzer et al., 1993).  

 Currently, the biofertilizers are being produced including different 

microorganisms and widely available around the world. The presence of mix 
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microorganisms in biofertilizers gave low quality and less effectiveness in some 

cases.  As mention above, PGPR have potential for agriculture because under certain 

conditions, they can improve plant growth. Therefore, pure cultures of PGPR in 

inoculants such as Azotobacter and Azospirillum tend to be more science based 

products for many crops. Moreover, “Rhizobial Biofertilizer Inoculants” are also 

being produced for different leguminous crops. Although number of studies showed 

the potential of co-inoculants as well as beneficial effects of co-inoculation on 

leguminous plants, as far as we know, there has been no report about the co-inoculant 

production and usage of this biofertilizer in legume growing area in Myanmar and 

Thailand. Therefore, to develop this potential to co-inoculating of PGPR with            

B. japonicum and to evaluate whether it can be possible to select PGPR adapted to the 

conditions in Myanmar and Thailand soils.  Thus, this effort was focused on the 

selection of effective PGPR for co-inoculation purpose.  

 

1.2  Research questions 

 The overall aims of this study were to obtain the PGPR isolate which is 

nodule formation enhancer when co-inoculated with bradyrhizobia and to identify the 

microbial community structure of soybean rhizosphere shifted by this co-inoculation. 

The following research questions were addressed: 

1. Whether PGPR have antagonistic effect on B. japonicum when they were 

used as co-inoculant 

2. Whether the selected rhizobacteria can promote the bradyrhizobial ability 

in terms of nodulation and plant growth of soybean as the best one under 
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pot and field conditions with soybean nodulating-bradyrhizobia-non-

established soils 

3. Whether the selected PGPR can enhance the competition for nodulation 

(nodulation occupancy) of co-inoculated B. japonicum USDA 110 

inoculum against indigenous soil bradyrhizobia of Myanmar and Thailand 

soybean growing field   

4. Whether co-inoculation of B. japonicum and related PGPR affects         

co-inoculation shift the rhizosphere soil microbial community structure or 

not.  

 

1.3  Structure of dissertation 

This dissertation contains seven chapters. 

Chapter 1 provides a short introduction to bradyrhizobia and PGPR and their   

potential contributions on biological N2-fixation, and how to focus the effects of 

inoculation on rhizosphere soil microbial community structures. This chapter also 

highlights the research questions addressed in this study.  

Chapter 2 provides a literature review outlining the importance of soybean, 

bradyrhizobia, PGPR and the contributions to their co-inoculation effects attributed to 

agriculture. It also explains the soil microbial community structures, factors that 

affects those communities, and how to approach to detect those changes.  

Chapter 3 presents the results of screening study to select the effective rhizobacteria 

for combined inoculation with bradyrhizobia. Moreover, this selected rhizobacteria 

were continued to select under pot condition where I evaluated the co-inoculation 

effects on nodulation, plant growth of soybean and rhizosphere soil microbial 
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community structures. The resulted best rhizobacterium was selected as PGPR and 

further field study was undertaken to evaluate their co-inoculation effects on 

nodulation, plant  growth, N2-fixation, seed yield and rhizosphere soil bacterial 

community structures. Both pot and field studies were carried out under soybean-

nodulating bradyrhizobia-non-established soil conditions. 

Chapter 4 compares the competition for nodulation of inoculated bradyrhizobial 

strain and soil bradyrhizobia under soybean-nodulating bradyrhizobia-established soil 

conditions. Here, we insert gus-reporter gene into B. japonicum USDA 110 to detect 

its single and co-inoculation effects on nodule occupancy. 

Chapter 5 synthesizes the main results of Chapter 3 and 4, and presents the main 

conclusions along with the implications with respect to the general findings from the 

research.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1  Importance and situation of soybean production in the world  

 Soybean (Glycine max L. Merrill) is one of the most important grain legume 

crops and it has occupied third place in oil seed crop of the world. It is offering high-

quality protein (40-42%) and increasing the input of combined N2 into the soil. It can 

be grown in tropical, subtropical and temperate climates. World production of 

soybeans production was 251.5 million tones in 2011 (FAO, 2011) and predicted to 

increase by 2.2% annually to 371.3 million tones by 2030 using an exponential 

smoothing model with a damped trend (Masuda and Goldsmith, 2009). The top five 

countries including United States, Brazil, Argentina, China and India produce more 

than 92% of the world‟s soybeans, and USA, Brazil and Argentina produced soybean 

in a total of 80.70, 57 and 32 million tones by cultivation of 29, 23 and 14 million ha, 

respectively in 2011-2012 (FAO, 2011). 

 

2.2  Situations of soybean production in Myanmar and Thailand 

 Myanmar is one of the world‟s major pulses (food legume) producing 

countries (DAP, 2010) and soybean is one of the important cash crops to the 

increasing demand for domestic consumption and export. It covers about 153,000 ha, 

mainly grown about 42%, 21%, 13% and 7% in the Shan State, Mandalay, Sagaing 
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and Ayeyarwaddy Division, respectively with an average yield of 1.17 tones per ha 

(DAP, 2006).  

 In Thailand, soybean is grown in a variety of locations, cropping patterns, land 

types and seasons, and dominant production area is located in the Northern region 

which produces 74% of total production. Jierwiriyapant and Hadi (1992) reported that 

the total soybean cultivation areas in Thailand were approximately 2.67 million Rais 

and total production was 568,000 tons or 213 kg rai
-1

 in 1989-90. According to the 

Food and Agriculture Organization (FAO) data of 2011, increasing soybean 

production in Thailand is an important policy of the government because about 1.8 

million tons of soybeans were imported in 2010 as soybean production is not 

sufficient to meet human and animal needs in Thailand (Jaidee et al., 2013). 

 

2.3  Utilization of chemical nitrogen fertilizer in the world 

 Plants have ability to take up several chemical form of nitrogen. The most 

common are ammonium (NH4
+
), nitrate (NO3

-
) and Urea ((NH4)2 CO). Among them, 

Urea is increasingly farmers‟ high-analysis nitrogen fertilizer of preference. Between 

150 and 200 million tones of mineral N are required each year by plants in 

agricultural systems to produce the world‟s food, animal feed and industrial products 

(Unkovich et al., 2008). Global ammonia capacity is projected to increase from 150 

million tones N in 2008 to 173 million tones N in 2012. The forecast for world 

nitrogen fertilizer demand showed increasing at an annual rate of about 1.4% until 

2011-2012, which is an overall increase of 7.3 million tones (FAO, 2008).  
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2.4  Importance of biological nitrogen fixation in the world 

 In the current agriculture, nitrogen is a limited nutrient for growth and 

consequently to the yield of cultivars. The extensive uses of chemical fertilizers are 

costly and may create environmental problems (Esitken et al., 2005). Even though 

78.1% of the earth‟s atmosphere consists of the chemically inert nitrogen gas (N2), 

nitrogen availability is limited in many soils, and N2 is inaccessible for most of the 

living beings (Ferguson et al., 2010). Hence, nitrogen must be converted either 

chemically or biologically to a usable form that life on earth can profit from. Before 

its incorporation into a living system, N2 must first be combined with the element 

hydrogen. This process commonly referred to as “nitrogen fixation” (N2-fixation) and 

which may be accomplished by chemically or biologically (Hubbell and Kidder, 

1978). 

 Biological Nitrogen Fixation (BNF) is the process whereby a number of 

species of bacteria such as Rhizobium, Azotobacter, Azospirillum, etc., use the 

enzyme nitrogenase to convert atmospheric N2 into ammonia (NH3), a form of 

nitrogen (N) that can then be incorporated into organic components, e.g., protein and 

nucleic acids, of the bacteria and associated plants while the plant partner supplies the 

carbon (C) sources that provide the energy required for the N2 reduction reaction. In 

this way, unreactive N2 enters the biologically active part of the global N cycle 

(Unkovich et al., 2008). Globally, symbiotic N2-fixation has been estimated to 

amount to at least 70 million metric tones N year
-1

 (Brockwell et al., 1995). Since 

atmospheric N2 is an unlimited source of N, the process of N2-fixation is of great 

potential for sustainable agriculture, and in the special case of legumes.  
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2.5  Utilization of rhizobial inoculants for soybean cultivation in the 

world and its benefits 

Soybean plants can use nitrogen released from different sources, i.e. 

mineralized N, soil N, fertilizer N, or atmospheric N2 through a symbiotic relationship 

(Abaidoo et al., 2007). N2-fixing bacteria in legume nodules collectively designated 

as rhizobia have been known since 1888 (Quispel, 1988). Members of the genus - 

Bradyrhizobium are slow-growing, gram-negative soil bacteria which invade and 

form nitrogen fixing nodules on the root of specific leguminous plants.  The major 

soybean-nodulating rhizobia are Bradyrhizobium japonicum, B. elkanii, and 

Sinorhizobium/Ensifer fredii (Jordan, 1982; Scholla and Elkan, 1984; Kuykendall     

et al., 1992; Young, 2003). Generally, nodulation of soybean requires specific 

Bradyrhizobium species and B. japonicum is the best example of successful symbiotic 

fixation under very large scale field conditions (Penna et al., 2011). When inoculated 

with compatible rhizobia, the formation of effective (functional) nodules in soybean 

leads to fixation of atmospheric nitrogen (N2) making nitrogenous fertilization of the 

soybean unnecessary (Gwata et al., 2003). Therefore, B. japonicum has been 

successfully incorporated as the active principle of soybean inoculants in Argentina, 

Brazil, Paraguay, USA, Canada and other soybean producing countries worldwide in 

the last 30 years (Penna et al., 2011). However, in soils where the soybean crop has 

not been grown previously, compatible populations of bradyrhizobia are seldom 

available (Abaidoo et al., 2007).  

 Generally, nitrogen fertilizers are not usually required for soybeans. Studies of 

nodulated soybeans showed significant yield response to frequent N additions when 

the N2-fixation apparatus could not meet N demand (Thies et al., 1995). However, 
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when fertilizer N is applied, it can reduce the amount of N2-fixation. The 

contradictory results obtained in N fertilization studies do not provide clear evidence 

as to whether N fertilization is required to complement the N supply from BNF to 

achieve soybean yields that approach yield potential levels (Salvagiotti et al., 2008). 

Therefore, inoculation with symbiotic N2-fixing bradyrhizobia has become a simple 

and effective way to significantly improve soybean yield and productivity (Penna      

et al., 2011). 

  Among the legume growing areas, it is likely that only 10-15 million ha (i.e., 

14-21% of the total) are inoculated annually. However, virtually all of the 11 million 

tones of N currently fixed by soybean results from either past or current inoculation. 

This is because soybean, for the most part, is grown on land that initially did not 

contain the soybean rhizobia (Herridge, 2002). When in symbiotic association with  

B. japonicum, soybean plants can fix up to 200 kg N ha
-1

 year
-1

 (Smith and Hume, 

1987), reducing the need for expensive and environmentally damaging nitrogen 

fertilizer.  

 Estimated amount of nitrogen fixed by soybean-rhizobia symbiosis under field 

conditions varied from 60-115 kg ha
-1

 year
-1

 (Evens and Barbar, 1977). BNF can 

reduce the need for N fertilizers, resulting in an economy estimated in US$ 3 billion 

per crop season (Nicolás et al., 2006). Therefore, partial supplement of fixed-N to 

plants may reduce the use of chemical-N fertilizers, and subsequently reduce N-losses 

and environmental pollution (Herridge, 2002). 

Although soybeans have the ability to symbiotically fix nitrogen, not all of the 

soybean‟s nitrogen needs are met through fixation (Sawyer et al., 2006). Therefore, 

they recommend that it is appropriate to provide approximately 50% of a soybean 
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crop‟s total nitrogen need through manure nitrogen and the plant will fix the 

remaining nitrogen required. Using this approach, a manure application nitrogen rate 

of 112 -140 kg-N ha
-1

 (100-125 lbs-N acre
-1

) is suggested for a soybean crop with      

a 3,358 kg ha
-1

 yield and a total nitrogen requirement of 269-280 kg-N ha
-1

 (240-250 

lbs-N acre
-1

).  

 

2.6     Utilization   of   chemical   nitrogen   fertilizers   and   rhizobial   

          inoculants  for  soybean  production in Myanmar and Thailand 

BNF from legumes offers more flexible management than fertilizer nitrogen 

because the pool of organic nitrogen becomes slowly available to non-legume species 

(Peoples et al., 1995). They were the first biofertilizers produced and allow savings of 

millions of dollars in chemical fertilizers. Herridge et al. (2008) estimated that about 

21 million tones of nitrogen are fixed annually through the crop legume-rhizobia 

symbiosis.  

In Myanmar, Urea is the main source of nitrogen applied to all cultivated 

crops but it is very expensive and not readily available (Than and Han, 1988). 

Myanmar farmers use nitrogenous (N) fertilizers sparingly, particularly on legume 

crops. Thus, low-nodulation induced N deficiencies of the legumes are not remedied 

by inputs of fertilizer N and the value of lost production could exceed $100 million 

annually. Generally, it is necessary to inoculate the seeds or soils with highly 

effective rhizobial cultures before sowing. Myanmar farmers have used, and continue 

to use, rhizobial inoculants when sowing legumes, but the practice is currently not 

widespread (Herridge et al., 2008).  
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 In Myanmar, rhizobial research and inoculant production was initiated at the 

“Rhizobium Inoculant Production Unit”, Plant Pathology Section of Department of 

Agricultural Research (DAR). About 250,000 packets of peat-based rhizobial 

inoculants for seven legumes crops (groundnut, chickpea, blackgram, greengram, 

pigeonpea, soybean and cowpea) are annually produced and distributed through 

Extension Division of Myanmar Agricultural Service (MAS) (Than et al., 2006). 

Production by DAR peaked during the 1980s at 600-700,000 packets annually. 

Current production is less than 100,000 packets, due to limitations in the whole 

supply chain from production and quality assurance (QA) to distribution to demand. 

Currently, exotic bradyrhizobial strains of TAL 379 (CB 1809), TAL 377 and TAL 

102 (USDA 110) from NifTAL (Nitrogen fixation for Tropical Agricultural Legumes) 

are used in rhizobial inoculant production for soybean at DAR (DAR, 2004). 

 In Thailand, most rhizobial legume inoculant extension work has been 

conducted by Department of Agricultural Extension (DOAE) while Department of 

Agriculture (DOA) is responsible for inoculant production and multi-disciplinary 

research (Boonkerd, 2002). The Ministry of Agriculture and Cooperatives through the 

Department of Agriculture (DOA) and the Department of Agricultural Extension 

(DOAE) are responsible for introducing inoculation technology to farmers. The 

cooperation between DOA and DOAE is structured so that the DOA is responsible for 

inoculant production and multidisciplinary research, while the DOAE is responsible 

for the distribution and promotion of the inoculant through training and other 

activities. In 1990, DOA (Thailand) produced a total of 126.35 metric tons of 

inoculants for soybean, groundnut, mung bean, and other minor legumes including 

477,333 bags of soybean inoculant which were distributed through DOAE, private 
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sector (PS), and Marketing Farmer Organization (MFO) (Chanaseni and Kongngoen, 

1992). 

 

2.7  Limitation of using rhizobia as inoculants  

The establishment of an effective and efficient symbiosis between rhizobia 

and the host legume is essential to viable legume production. To enhance the 

performance of the Rhizobium-legume symbiosis, the practice of inoculating legume 

seeds with carrier-based inoculants of the desired rhizobia is widely practiced. 

However, establishment of effective N2-fixing symbioses between legumes and their 

N2-fixing bacteria (rhizobia) is dependent upon many environmental factors, and can 

be greatly influenced by farm management practices (Peoples et al., 1995). 

Generally, beneficial microorganisms introduced into rhizospheres are 

affected by a large number of abiotic and biotic factors, each potentially producing an 

unfavorable effect. Biotic factor includes leguminous plant host, rhizobial strain and 

other soil microorganisms (Sadowsky, 2000) as well as host-strain specificity. Abiotic 

factors are involved in several substances or environment conditions which affect the 

nodulation of competition. Several environment conditions such as salinity, 

unfavorable soil pH, soil type, soil temperature, nutrient deficiency, mineral toxicity, 

temperature extremes, insufficient or excessive soil moisture are severe factors 

affecting growth and competitive of N2-fixating bacteria (Triplett and Sadowsky, 

1992).  

In addition to the environmental constraints, the availability of good quality 

soybean seed, good quality inoculants, quality storage for the seed and the inoculants, 

lack of good application equipment and knowledge of proper application of 
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inoculants to the seed or soil and access to pertinent production information are major 

barriers. However, survival, persistence and competitive ability of the inoculated 

strains limit their success in the soil (Lakshminarayana and Sharma, 1994). Use of 

herbicides, fungicides, and other pesticides can be lethal if they come in contact with 

the inoculants and have a potential hazard to the establishment and performance of the 

N2-fixing root nodules because it can alter the morphology of root hairs and reduce 

nodule numbers and nitrogenase activity (Ljunggren and Martensson, 1980). 

Nodule occupancy by inoculated rhizobia is also dependent on host-bacteria 

interactions, bacteria-bacteria interactions and many other abiotic influences (Yuhashi 

et al., 2000). The inoculated strains have to compete for nutrients with a rhizosphere 

community which is well adapted to that environment. Therefore, it is considered that 

inoculation with rhizobia should be performed in two different situations:  

(1)  in soils which are depleted or contain a low indigenous rhizobial  

       population, and  

(2)  when there is an established but inefficient rhizobial population.  

Very often the use of rhizobial inocula to resolve the first problem has led to 

the latter due to the low effectiveness of the introduced strains. The established but 

inefficient rhizobial population will lead to competition for nodulation of inoculated 

strains. 

 

Competitiveness of indigenous rhizobial strains for nodulation: To achieve the 

N2-fixation state, the rhizobia need to infect and nodulate the legume roots (Patriarca 

et al., 2004). However, the availability of infection sites and the total number of 

nodules formed are limited. Boonkerd et al. (1978) reported that inoculum strains 
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superior in N2-fixation have been shown to fail to compete successfully with 

indigenous rhizobia due to the predominance of competitive, yet ineffective, 

indigenous soil rhizobia in nodules. Therefore, success of inoculation requires that the 

inoculum strain must be both highly effective in nitrogen fixation and highly 

competitive against the native strains in the soil (Segovia et al., 1991).  

 The term “competition”, when used for the Rhizobium spp., generally implies 

the competition for nodule formation between the various Rhizobium strains from the 

moment these strains are present in the same environment until the moment of their 

presence inside the nodules (Simon et al., 1996). Triplett and Sadowsky (1992) 

defined competitiveness in rhizobia as the ability of a given strain which can infect    

a legume host and form nodules in the presence of other strains. Highly competitive 

indigenous strains of Rhizobium spp. present in agricultural soils often nodulate the 

plants to the exclusion of inoculated strains that are superior in N2-fixation (Araujo   

et al., 1994).  

 In soybean, inoculation of soybean seed with highly effective B. japonicum 

strains does not always result in higher yields. Moawad et al. (1984) reported that      

a soybean rhizosphere is colonized by 10
5
-10

7
 soybean nodulating rhizobia; however, 

only 10
1
-10

2
 nodules are formed in a root, i.e., <0.01% of all the rhizobia that are 

close in contact with a single root can finally occupy the nodules. This situation leads 

to strong competition between the soil population and the inoculated rhizobia.  

 Triplett (1990) indicated that a high competitiveness of inoculated strains is as 

important as the effectiveness of symbiotic N2-fixation itself. Strains that dominate 

nodules are considered more competitive than other strains. Therefore, the inoculants 

strain must be effective in its ability to fix N2 with the cultivar concerned and possess 
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the ability to compete for nodulation of the plant with other strains of rhizobia that 

might be present in the soil (Triplett and Sadowsky, 1992). That strain 

competitiveness is influenced by the genetic diversity of both symbiotic partners 

(Triplett and Sadowsky, 1992) as well as the soil environment in which nodulation 

occurs (Streeter, 1994).  

 Root nodulation by an introduced rhizobial inoculant has to overcome intense 

competition not only from the native soil rhizobia but also other antagonistic 

microorganisms that colonize the rhizosphere (Boonkerd and Weaver, 1982). 

Moreover, a competitive and persistent rhizobial strain is not expected to express its 

full capacity for nitrogen fixation if limiting factors (e.g., salinity, unfavorable soil 

pH, nutrient deficiency, mineral toxicity, temperature extremes, insufficient or 

excessive soil moisture, inadequate photosynthesis, plant diseases, and grazing) 

impose limitations on the vigor of the host legume (Peoples et al., 1995; Thies et al., 

1995). 

In order for proper nodulation to occur, effective inoculation needs to happen 

to maintain high numbers of viable bacteria until such time as they can nodulate the 

roots of legume (Belachew, 2010) because they must survive long enough after 

sowing to nodulate the host, and to persist between cropping seasons (Boonkerd and 

Weaver, 1982). The survival of rhizobia on the seed surface is usually lower than on 

solid carriers (Bashan et al., 2002) due to the lack of protection against desiccation, 

high temperature, and/or toxic compounds on the seed coat. Vriezen et al. (2006) 

reported that the seed storage temperature after inoculation is empirically considered 

the most important parameter related to rhizobial survival after seed treatment. Even 

if an increase of provided B. japonicum cells improves the nodulation process, plant 
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nitrogen assimilation and grain yield in laboratory conditions, bacterial physiological 

state and its resistance to environmental stress may also be critical for its survival on 

seed and field conditions (Streeter, 2007).  

 

2.8  Plant growth promoting rhizobacteria (PGPR) and general roles 

of PGPR vs plants 

Numerous species of soil bacteria which flourish in the rhizosphere of plants, 

but which may grow in, on, or around plant tissues, stimulate plant growth by a 

plethora of mechanisms (Vessey, 2003) and those were termed as rhizobacteria. 

Those rhizobacteria positively influence plant growth and health and often referred as 

plant growth promoting rhizobacteria (PGPR) (Raaijmakers et al., 2009). They 

include a broad spectrum of bacteria such as Azotobacter, Azospirillum, 

Pseudomonas, Acetobacter, Burkholderia and Bacillus (Glick, 1995) and those have 

several reports of beneficial effects on the host plants owing to their biological control 

traits, plant-growth promotion, competition for nutrients and niches and induction of 

systematic resistance in the host plant. The beneficial effects of PGPR are attributed 

to improvement of plant growth and health and can be evidenced by an increase in 

seedling emergence, vigor, root system development and yield. Positive effects of 

PGPR on diverse hosts such as bean, soybean, peanut, maize, and sugarbeet are 

common in literatures (Vikram et al., 2007). 
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2.9  Mechanisms of PGPR 

There are various mechanisms which involved in plant growth promotion by 

PGPR in direct and indirect means (Glick, 1995; Kloepper, 1993). Different indirect 

mechanisms such as induced systemic resistance, production of antimicrobial 

compounds, and competition for nutrients and colonization sites with pathogens have 

been described (Kloepper et al., 2004) while direct
 

effects are dependent on 

production of plant growth regulators such as production of plant hormones like 

auxins, gibberellins and cytokinins, nitrogen fixation, phosphate solubilization and 

uptake of essential plant nutrients (Spaepen et al., 2009; Vessey, 2003)
 

or 

improvements in plant nutrient uptake (Kloepper, 1993; Glick, 1995).  

 

Phytohormone production: The synthesis of phytohormones such as indole-3-acetic 

acid (IAA) and gibberellins (GAs) is one of the several modes of action of 

phytostimulatory PGPR, such as α-proteobacterium Azospirillum (Bashan et al., 

2004). Another nitrogen fixing bacterium, Azotobacter produces growth regulators 

such as IAA, gibberellin, cytokinins and vitamins. These growth regulators influence 

plant root proliferation, respiration rate and metabolism, improving mineral and water 

uptake in inoculated plants (Okon and Itzigsohn, 1995).  

 

ACC deaminase activity: For many plants, a burst of ethylene is required to break 

seed dormancy; however, following germination, a sustained high level of ethylene 

would inhibit root elongation. A number of PGPR such as Agrobacterium 

genomovars, Azospirillum lipoferum, Burkholderia, Pseudomonas and Ralstonia 

solanacearum, Alcaligenes, Bacillus, and Variovorax paradoxus, Enterobacter, 
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Rhizobium, Rhodococcus and Sinorhizobium meliloti contain the enzyme (ACC) 

deaminase and this enzyme can cleave the plant ethylene precursor ACC, and thereby 

lower the level of ethylene in a developing or stressed plant (Saleem et al., 2007). 

Moreover, PGPR that contain the enzyme ACC deaminase, when bound to the seed 

coat of a developing seedling, act as a mechanism for ensuring that the ethylene level 

does not become elevated to the point where initial root growth is impaired. By 

facilitating the formation of longer roots, these bacteria may enhance the survival of 

some seedlings, especially during the first few days after the seeds are planted. In 

addition, plants that are treated with ACC deaminase-containing PGPR are 

dramatically more resistant to the deleterious effects of stress ethylene that is 

synthesized as a consequence of stressful conditions such as flooding, heavy metals, 

the presence of phytopathogens, and drought and high salt (Shaharoona et al., 2006).  

 

Phosphate solubilization:  Most of phosphorus in soil and a large portion of soluble 

inorganic phosphate applied to soil as chemical fertilizer are immobilized rapidly after 

application due to phosphate fixation by aluminum, calcium, iron, magnesium and 

soil colloids (Pradhan and Sukla, 2006). Several rhizobacteria including 

Pseudomonas, Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium, 

Azotobacter, Microccocus, Aereobacter, Flavobacterium and Erwinia are capable of 

increasing availability of phosphorus to plants either by mineralization of organic 

phosphate or by solubilization of inorganic phosphate by production of organic acids 

or phosphatases (Rodriguez and Fraga, 1999) or production of organic acids and 

chelating oxo acids from sugars (Peix et al., 2001). These bacteria are referred to as 

phosphate solubilizing bacteria (PSB). Nodule forming Rhizobium has been 
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recognized as a P-solubilizer (Halder et al., 1991).  Production of organic acids results 

in acidification of the microbial cell and its surroundings. Consequently,                     

Pi (phosphate) may be released from a mineral phosphate by proton substitution for 

Ca
2+ 

(Goldstein, 1994). Gluconic acid seems to be the most common acid of mineral 

phosphate solubilization (Maliha et al., 2004). That affects the transformation of soil 

P and thus an integral part of the soil P cycle (Chen et al., 2006). Fungi are also        

P-solubilizers and increase the yield of crops (Adesemoye and Kloepper, 2009).  

   
 

Phytopathogen control: The use of natural PGPR strains in plant frontline defense 

may offer a practical way to deliver immunisation. PGPR have been reported to 

increase plant resistance to fungal, bacterial and viral diseases, insects and nematodes. 

Mode of actions of PGPR for biological control includes:  

(1)   antibiotic synthesis (Hebbar et al., 1992);  

(2)   secretion of iron binding siderophores to obtain soluble iron from the soil        

and provide it to a plant, making it less available to certain members of 

the native pathogenic microflora (Subba Rao, 1993) and thereby deprive           

fungal pathogens in the vicinity of soluble iron (Loper and Buyer, 1991);  

(3)  production of low molecular weight secondary metabolites, such as 

hydrogen cyanide, with antifungal activity (Dowling and O‟Gara);  

(4)  production of enzymes including chitinase, β-1,3-glucanase, protease, or 

lipase, which can lyse some fungal cells (Chet and Inbar, 1994);  

(5)  production of extracellular lytic enzymes (Fridlender et al., 1993); 

(6)  out-competing phytopathogens for nutrients and niches on the root 

surface (Loper et al., 1997);  
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(7)  lowering the production of (pathogen) stress ethylene in plants with the 

enzyme ACC deaminase (Glick et al., 1998, Penrose et al., 2001);  

(8)  manipulation of the host plant‟s physical and biochemical properties 

(induced systemic resistance (ISR)) in which non-infected parts of 

previously pathogen-infected plants become more resistant to further 

infection (Pieterse et al., 2003).  

 PGPR as a component in integrated management systems in which reduced 

rates of agrochemicals and cultural control practices are used as biocontrol agents 

(Kloepper et al., 2004). Several species of Pseudomonas, namely P. fluorescens,      

P. putida, P. cepacia (Burkholderia cepacia) and P. aeruginosa have been reported as 

potential biocontrol agents of several phytopathogenic fungi (Thomashow et al., 

1990). Antifungal activity of Azotobacter strains is also common (Brown, 1974). 

Inoculant development has been most successful to deliver biological control agents 

of plant disease i.e. organisms capable of killing other organisms pathogenic or 

disease causing to crops. At present, there are fewer than 20 different biocontrol 

PGPR strains that are commercially available (Penrose and Glick, 2003). 

  

Root colonization: The colonization of plant roots by the introduced bacteria is an 

important step in establishing an effective plant-bacteria interaction (Schippers et al., 

1987). The presence of flagella (de Weger et al., 1987) and O-antigens of 

lipopolysaccharide (de Weger et al., 1989), and the ability to synthesize amino acids 

(Simons et al., 1997) are important bacterial traits for effective root colonization. 

Pseudomonas spp. and Azospirillum strains are also known as good colonizers of 

many crops. A two-steps attachment mechanism is proposed for plant root 

colonization by Azospirillum. In the first step, Azospirillum rapidly and weakly binds 
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to the root surface; this is mediated by the polar flagellum (Croes et al., 1993). The 

second step occurs in a high C/N ratio medium and is mediated by bacterial 

polysaccharide, which helps the bacteria to become firmly attached to the plant root 

(Michiels et al., 1991).  

 

2.10  PGPR and inoculation with PGPR as an alternative 

 PGPR can affect plant growth and yield in a number of ways, and thus, they 

are also referred as yield increasing bacteria (YIB). Enhancement of vegetative and 

reproductive growth by PGPR is documented in a range of crops like cereals, pulses, 

ornamentals, vegetables, plantation crops and some trees. However, very small 

portions (about 2-5%) of the total rhizobacterial community are PGPR (Antoun and 

Kloepper, 2001). Treatments with PGPR increase germination percentage, seedling 

vigor, emergence, plant stand, root and shoot growth, total biomass of the plants, seed 

weight, early flowering, grains, fodder and fruit yields etc., (Ramamoorthy et al., 

2001). Therefore, the application of PGPR in plant cultivation is one of the most 

promising methods for increasing agricultural productivity and the efficiency of soil 

pollutant biodegradation (Lugtenberg et al., 2002).  

 Several PGPR inoculants that currently commercialized seem to promote 

growth through at least one mechanism; suppression of plant disease (termed 

Bioprotectants), improved nutrient acquisition (Biofertilizers), or phytohormone 

production (Biostimulants) (Zhang et al., 1996). These products are mainly applied as 

seed treatment, soil amendment or soil drench at the time of seeding or immediately 

after transplanting, to promote plant growth and effectively suppress several diseases 

in a number of crops (Kloepper et al., 2004). 
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 Various species  of  bacteria  like  Pseudomonas,  Azospirillum,  Azotobacter,  

Klebsiella,  Enterobacter,  Alcaligenes,  Arthrobacter, Burkholderia,  Bacillus,  and 

Serratia  those  have been applied to various crops to enhance growth, seed 

emergence and crop yield, and reported  to enhance  the  plant  growth, and some 

have been commercialized (Herman et al., 2008). It is also crucial for the microbial 

inoculants used as biofertilizers, biocontrol agents, phytostimulators, and 

bioremediators (Lugtenberg et al., 2001).  

  

2.11  Co-inoculation of Rhizobium/Bradyrhizobium and PGPR 

 In recent years, several PGPR-based products became commercially available 

in many countries, and more are currently under development (Choudhary and Johri 

2009). Because of the effective properties of PGPR, those bacteria have potential to 

be use in combination with rhizobial isolates and obtained the  positive responses in 

several research on different leguminous crops (Table 1). 
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Table 1.  Co-inoculation effects of Rhizobium/Bradyrhizobium and PGPRs on leguminous plants 
 

Sr 
No. 

   Crop Co-inoculation             Positive effect         References 

1 Soybean 
Bradyrhizobium japonicum and 
Azospirillum or PGPR 

increases in nodulation, nitrogenase 
activity, and plant growth 

Li and Alexander, 1988 

2 
different forage 
and grain legumes 

Rhizobium with Azotobacter or 
Azospirillium strains 

favorable influence of the free-living 
diazotrophic bacteria on nodule 
weight and number, N2-fixation, plant 
dry-matter accumulation and N 
content 

Yahalom et al. 1987  

3 Chickpea 
Azospirillum brasilense and 
Rhizobium strains 

increase in grain yield, nodule dry 
matter, and nitrogenase activity 

Rai, 1983 

4 Chickpea 
Rhizobium and Bacillus strains 
or Rhizobium and Pseudomonas 
strains 

stimulate the plant growth, nodulation 
and nitrogen fixation 

Parmar and Dadarwal,1999 

4 Alfalfa 
 
Pseudomonas sp. with rhizobia 
 

 
enhance nodulation, N2-fixation, plant 
dry matter and grain yield 
 

 

5 Clover 
Derylo and 
Skorupska,1993 

6 Pea Dashti et al., 1997 
7 Soybean  

8 Common bean 
Rhizobium tropici and 
Paenibacillus polymyxa 

greater growth and nitrogen content Figueiredo et al., 2008 

9 Soybean 
Inoculated with crude or 
formulated metabolites, or with 
cells Bacillus subtilis 

increase the contribution of the 
biological nitrogen fixation processes 

Araújo and Hungria, 1999 

10 Faba bean 
Rhizobium leguminosarum bv. 
viceae with Azotobacter and 
Azospirillum strains 

changes on the concentration, 
content and/or distribution of several 
mineral nutrients in roots and/or 
shoots of plants 

Rodelas et al., 1999 
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2.12 Role of PGPR in co-inoculation with rhizobia on legume 

nodulation and plant growth promotion  

 Generally, PGPR improve nodulation and that enhanced nodulation allows 

higher nitrogenase activity resulting in superior dry matter yield. PGPR may increase 

the efficiency of Rhizobium inoculation in legumes through the production of 

antibiotics, siderophore, and certain enzymes. They also enhance the infection sites 

for Rhizobium by colonizing the root surface (Contesto et al., 2008) which may have 

contributed to increase the formation of nodule primordia and early nodule 

development. Plant root flavonoids are the inducers of nodulation gene (nod genes) 

expression in Rhizobium (de Rijke et al., 2006). Therefore, co-inoculation with PGPR 

promotes root hair growth and enhances root flavonoids secretion (Dardanelli et al., 

2008) which is needed for early events of nodule formation. In legume root nodules, 

IAA produced by most of PGPR activates the enzyme H
+
-ATPase, which is 

fundamental for energy production in the nodules (Rosendahl and Jochimsen, 1995).

 Compared to single Rhizobium inoculation, co-inoculation of Rhizobium spp. 

and Azospirillum spp. can enhance the number of root hairs, the amount of flavonoids 

exuded by the roots and the number of nodules formed (Remans et al., 2008). 

Moreover, the presence of azospirilla in the rhizosphere was reported to activate the 

hydrolysis of conjugated phytohormones and flavonoids in the root tissue, thus 

leading to the release of compounds in their active forms (Dobbelaere and Okon, 

2007).  

 In the case of increased nodulation, the significant increase in root hairs 

number and length in the presence of the Rhizobium-Azospirillum mixture suggested 

that Azospirillum can create additional infection sites, which can be occupied later by 



 

 

 

 

 

 

 

 

32 

 

 

rhizobia (Tchebotar et al., 1998). Bellone et al. (1997) also reported that the young 

and appropriate new roots are one of the key factors for sufficient infectivity by 

Bradyrhizobium in most of the legumes, because it becomes attached to new roots and 

root hairs, producing root hair curling followed by infection thread development for 

nodulation. This hypothesis is strengthened by a further study using a gus-reporter 

gene (Tchebotar et al., 1998), in which an equal mixture of Azospirillum lipoferum-  

R. leguminosarum bv. trifolii increased nodulation in clovers, and Azospirillum was 

observed colonizing tap root, root hairs and sites near or on the nodules.  

 In the case of Azotobacter, azobacterization with auxin biosynthesis might 

have provided improved colonization niches through root proliferation to introduced 

Rhizobium (Mesorhizobium) in the rhizosphere of chickpea and which reflecting-in 

better nodulation and yield as compared to their individual inoculations (Qureshi        

et al., 2009). Therefore, co-inoculation of legumes with symbiotic and free living 

microbes like Azotobacter, Azospirillum and Acetobacter has received great attention 

because free-living diazotrophs increase the lateral roots and root hair density 

resulting in more infection sites for rhizobia and thus enhancing the N2-fixing ability 

of legumes (Parmar and Dadarwal, 1999). The root length and mass enhancement 

owing to the changes in the root system architecture resulted in increased root density, 

root hairs and surface area due to interaction of microbes with plant roots. This 

increase in root surface area resulted in better acquisition of nutrients (Qureshi et al., 

2011).  

 Chebotar et al. (2001) suggested that Pseudomonas fluorescens strain 2137 

could enhance nodulation by the release of growth promoting substances that 

stimulate B. japonicum. In P. fluorescens, growth promotion mechanism 2,4-diacetyl- 
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phloroglucinol (DAPG) can act as a plant hormone-like substance, including 

morphological changes in the plant that can lead to enhanced infection and nodulation 

by Rhizobium in pea (de Leij et al., 2002). 

 Some rhizobacterial strains promote legume nodulation
 
and nitrogen fixation 

by producing flavonoid-like compounds
 

and/or stimulating the host legume to 

produce more flavonoid
 
signal molecules (Parmar and Daderwal, 1999). Lian et al. 

(2001) observed that a strain of Bacillus circulans produces a chemical compound 

analog to the nod factor of B. japonicum. This compound causes root hair 

deformation activity on soybean. Other reasons which increase in plant growth in 

combined inoculations of Rhizobium and Azospirillum may be ascribed for enhanced 

N and P nutrient uptake or it might be due to synthesis and oxidation of plant growth 

promoting substances like IAA and GA that are known to enhance the shoot 

elongation, root elongation and plant growth (Spaepen et al., 2007).    

 

2.13  Soil microbial community structures 

 Soils cover almost all of the terrestrial area on earth and have an indispensable 

ecological function in the global cycles of carbon, nitrogen and sulfur. Due to their 

physico-chemical complexity with many microniches, they teem with biodiversity, 

both phylogenetically and functionally. A single gram of soil has been estimated to 

contain thousands to millions of different bacterial, archaeal and eukaryotic species 

(Torsvik et al., 2002) interwoven in extremely complex food webs. Communities of 

soil microbes carry out a multitude of small-scale processes that underlie many 

environmentally important functions (Fierer et al., 2007). 
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 A higher density and a higher number of microbial species are always 

measured in the rhizosphere compared with the phyllosphere or in the endorhiza 

compared with the endosphere. Composition, abundance, and dynamics of the 

microbial community in the rhizosphere play an important role and may have a 

positive or negative influence on plant growth (Copenhagen, 1997). Both the bacterial 

and fungal communities in soil play important roles in soil functioning, for instance, 

in key steps of mineralization processes. Both groups of organisms are thus important 

for the growth and development of plants (crops and trees), and also for the 

maintenance of soil structure (Uroz et al., 2007). 

 

2.14  Active shift of rhizosphere soil microbial community structures   

by PGPR 

 PGPR must be rhizospheric competent, able to survive and colonize in the 

rhizospheric soil (Cattelan et al., 1999). Among the microorganisms, bacterial 

communities respond quickly to environmental changes because of their high growth 

rate and short life span (Øvrea°s, 2000). Changes in soil microbial biomass are 

associated with shifts in the microbial community structure, in particular the ratio of 

bacteria to fungi (Bardgett et al., 1999). Composition, abundance, and dynamics of 

the microbial community in the rhizosphere play an important role and may have       

a positive or negative influence on plant growth (Lynch, 1990). Microbial soil 

characteristics may indicate changes in resource availability, soil structure, or 

pollution and represent one important key to understanding impacts of environmental 

and anthropogenic factors (DeLong and Pace, 2001).  
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2.15  Factors  affecting  the  rhizosphere  soil  microbial  community 

structures 

 Soil microorganisms play a fundamental role in driving carbon turnover and 

nutrient cycling in all terrestrial ecosystems. Rhizosphere microbial communities 

perform fundamental processes that contribute to nutrient cycling, healthy root 

growth, and promotion of plant growth (Buchenauer, 1998). Changes in land use and 

cover, management and plant productivity may influence the biomass, structure, and 

functional processes of soil microorganisms through modification of the quantity and 

types of organic matter inputs (Steenwerth et al., 2003).  

 Modifications in the soil-plant-microorganisms partnership bring about 

intricate reaction mechanisms. However, effects on rhizosphere microorganisms when 

a PGPR is introduced at high levels in the rhizosphere may be depended on 

interactions within and between indigenous populations. Unfortunately, the 

interaction between associative PGPR and plants can be unstable. In relation to the 

soil-plant-environment background, certain groups may be enhanced, while others 

may be inhibited, or the introduced PGPR may not affect population structure 

(Dobbelaere et al., 2003). 

   

Plant Factors: Plant factors that have an influence upon microbial communities 

include plant age (Herschkovitz et al., 2005a, b), plant species or even plant genotype 

(Dalmastri et al., 1999) and root exudates (rhizodeposition) (de Weert et al., 2002). 

Plant roots release a wide variety of compounds into the rhizosphere that create 

unique microenvironments for soil microorganisms. The root surrounding rhizosphere 

contains compounds such as free amino acids, proteins, carbohydrates, alcohols, 
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vitamins, and hormones which are important sources of nutrients for the 

microorganisms present in the rhizosphere and attract a great diversity and population 

density of microorganisms (Han et al., 2005). Plant species are also importance 

because of differences in root exudation and rhizodeposition in different root zones 

(Brimecombe et al., 2001). Since bacteria respond differently to the compounds 

released by roots, different compositions of root exudates are believed to explain the 

plant-specific bacterial communities in the rhizosphere (Smalla et al., 2001).  

 

Soil type: Soil type is another important factor in the determination of rhizosphere 

bacterial communities (Kowalchuk et al., 2000), as different soils display different 

particle size distribution, pH, aeration, and physico-chemical characteristics that can 

affect bacterial communities either directly, by providing a specific habitat for 

selecting specific bacteria, or indirectly, by affecting plant root exudation (Garbeva    

et al., 2004). Disturbances through agricultural treatments such as soil tillage, 

fertilization, and plant protection may favor certain species, resulting in reduced 

complexities of these communities (Torsvik et al., 2002).  

 Agricultural treatments have been reported to influence soil microbial 

community structures (Widmer et al., 2006) and to decrease soil bacterial diversity 

(Torsvik et al., 2002).  Soil carbon inputs in a variety of forms can significantly impact 

soil microbial biomass, composition, and activities (Brant et al., 2006) and that shifts 

in soil microbial community structure may occur with changes in substrate types 

(Fontaine et al., 2004).  
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2.16  Approach for soil microbial community structure analysis 

 Only a small percentage of the indigenous soil bacteria are culturable from 

environmental sample. Evaluation of changes in the structure of bacterial 

communities using only culturing methods is inadequate because those can analyze 

only a minor fraction of the microbial community. Therefore, the use of the microbial 

diversity of soil to ensure environmental sustainability is a major challenge in 

agriculture. Recently, culture-independent methods have become commonly applied 

for studying the composition of bacteria in samples (Tringe and Hugenholtz, 2008) 

such as (1) Methods using nucleic acids (gene); DNA reassociation analysis, DNA 

(G+C%) density fraction analysis, cross DNA hybridization analysis, PCR-amplified 

DNA clone library method, and various genetic fingerprint analyses (denaturing 

gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis 

(TGGE), amplified ribosomal DNA restriction analysis (ARDRA), single strand 

conformation polymorphism (SSPC), ribosomal intergenic spacer analysis (RISA), 

and random amplified polymorphic DNA (RAPD)) (Ranjard et al., 2000a),               

(2) methods using cellular components (biomarkers): phospholipid fatty acid (PLFA) 

analysis (Arao et al., 1998), quinine profile analysis (Fujie et al., 1998), and              

(3) methods using carbon source- assimilating property: diversity analysis based on 

the carbon source utilization patterns of isolates (Yokoyama, 1996), and community-

level physiological profile (CLPP) analysis (Konopka et al., 1998). These techniques 

allow the analysis of only a minor fraction of the microbial community. 

 The determination of soil microbial biomass often is combined with                

a characterization of the physiological status of the microorganism community. 

Characterization of other biomass parameters such as the relation to respiration, 
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energetic state, and soil nutrients cannot be used to describe changes in the microbial 

communities, in the diversity of the community or in the activities of single species 

and physiological groups. In these cases, specific biochemical constituents, „signature 

chemicals‟ which are restricted to certain species or groups can be used. In the 

serological approach, polyclonal as well as monoclonal antibodies are used to 

investigate population dynamics of microbes in soil. As compared to polyclonal 

antisera, monoclonal antibodies offer the lowest level of cross-reaction to non-target 

organisms, which is very important in complex systems (Bohlool and Schmidt, 1980). 

 DNA fingerprinting analyzes part of the genetic information, mostly the 

ribosomal operon, contained in nucleic acids directly extracted from environmental 

samples. Simple and reliable methods to be rapidly investigated even when there are a 

large number of samples are rRNA intergenic spacer analysis (RISA), and automated 

RISA (ARISA) method. Due to the high resolution of the gels and the high sensitivity 

of fluorescence detection, the number of peaks detected is much higher on ARISA 

profiles than on RISA profiles. Similarly, differences in the intensity of the bands can 

be estimated precisely, which allows a finer comparison of the profiles. However, this 

level of sensitivity might have some drawbacks because it may introduce a variability 

within profiles that has no biological origin (Ranjard et al., 2001). 

 The diversity of target genes, such as the 16S rRNA or 18S rRNA genes, can 

be assessed by means of molecular fingerprinting techniques such as DGGE (Heuer 

and Smalla, 1997) in which DNA fragments obtained after PCR amplification of 

target genes from complex microbial communities are separated according to their 

sequence (G+C content). It was originally developed to detect specific mutations 

within genomic genes due to one base mismatch. The separation of the different 
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DGGE bands depends on the melting behavior of the PCR product and not on the size 

of the fragment. These methods are useful for simultaneous analysis of large numbers 

of samples and the comparison of microbial communities based on temporal and 

geographical differences an essential requirement for ecological studies (Myers et al., 

1985). 

 Furthermore, the method enables sequence data to be obtained on the DNA of 

dominant species from individual bands. The advantage of this technique is that 

DGGE bands of interest can be excised from the gel and further analyzed by cloning 

and sequencing (Nakatsu, 2007). Although this tool has many advantages, as 

mentioned above, a few biases derived from PCR and heterogeneity of copy number 

of 16S rDNA among bacterial species have been reported (Ranjard et al., 2000b).  

 Changes in microbial community structures may not necessarily lead to 

altered diversities, because changes of some taxonomic groups may be compensated 

by changes of others. It has been suggested that, for instance, species richness may 

exhibit less variability in response to environmental factors than species composition 

(Ernest and Brown, 2001). 
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CHAPTER III 

CO-INOCULATION EFFECTS OF  

Bradyrhizobium japonicum WITH PLANT GROWTH 

PROMOTING RHIZOBACTERIA UNDER SOYBEAN-

NODULATING BRADYRHIZOBIA-NON-ESTABLISHED 

SOIL CONDITIONS 

 

 

3.1  Abstract 

 Co-inoculation of rhizobia with PGPR plays an important role in cultivation of 

leguminous plants for both promotion of nodulation and plant growth. In this study, 

rhizobacteria were screened for their capacity to promote the nodule formation when 

co-inoculated with Bradyrhizobium japonicum on soybean under aseptic condition. 

The obtained rhizobacteria were further screened in soybean-nodulating 

bradyrhizobia-free soils to evaluate their co-inoculation effects on enhancement of 

soybean nodulation, plant growth and on rhizosphere soil microbial community 

structures. By co-inoculation either of B. japonicum strain CB 1809 or USDA 110 

under pot conditions, Azospirillum sp. gave more benefits in nodulation and plant 

growth than Bacillus solisalsi did. Moreover, Azospirillum sp. co-inoculated with 

either B. japonicum CB 1809 or USDA 110 under field conditions gave 32.23% and 

16.85% of nodulation, 26.51% and 18.83% of nodule dry weight, and 23.65% and 

34.92% seed yield increasing over single inoculation of CB 1809 and USDA 110, 
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respectively. Denaturing Gradient Gel Electrophoresis (DGGE) and Principle 

Component Analysis (PCA) in both pot and field experiments were shifted by plant 

growth stages but not by bacterial inoculation. In contrast, neither inoculation of 

tested bacteria nor plant growth stages shifted the rhizosphere soil fungal community 

structures.  

 

3.2  Introduction 

 Bradyrhizobium japonicum forms a symbiotic relationship with soybean 

(Glycine max) and gives an increase in nodulation which leads to increases in plant 

fresh weight, seed protein, and seed yield. However, not all the rhizobial inoculation 

gives positive response to nodulation because a variety of biotic or abiotic factors 

affects nodulation of plants. There were many approaches which tried to overcome 

this problem. Among them, co-inoculation of rhizobia with proper „Plant Growth 

Promoting Rhizobacteria‟ (PGPR) is one of the popular methods. For instance, 

inoculation with mixed culture of B. japonicum containing either Azotobacter 

vinelandii or Azospirillum brasilense gave increased yields in soybean (Crossman and 

Hill, 1987; Herschkovitz et al., 2005). Improvement in crop production of groundnut 

and mungbean due to Rhizobium and Azotobacter inoculation has been reported by 

Sethi and Adhikary (2009). Pseudomonas fluorescens showed the best compatible 

with B. japonicum among tested beneficial microorganisms (Belkar and Gate, 2012). 

Anandaraj and Leema Rose Delapierre (2010) reported that bacterization of green 

gram with the composite inoculants of Rhizobium sp., Pseudomonas fluorescens and 

Bacillus megaterium were highly beneficial for enhancing the plant growth and yield 

of green gram besides effecting a reduction in the cost of inorganic fertilizers. 
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Moreover, co-inoculation of Phosphate Solubilizing Bacteria (PSB) Pseudomonas sp. 

and B. japonicum (TAL 379) significantly increased nodulation, plant total N and P 

uptake, seed yield and yield components of soybean over negative control and 

chemical fertilizers (Argaw, 2012).  

 Although the inoculation of plants with PGPR may occur naturally, it is 

mainly an artificial agricultural procedure. To commercialize PGPR, „effective 

strategies‟ for initial selection and screening of rhizobacterial isolates are required 

(Nelson, 2004) because exploitation of PGPR as biocontrol or biofertilizer inoculants 

has been shown to be hampered by inconsistent results at the field scale (Mark et al., 

2006). Moreover, soil is considered to be the richest environment, with a high 

diversity of microorganisms (Fierer and Jackson, 2006), and PGPR that have been 

added to soil or seeds to improve plant growth and/or health will also modify the 

composition of the resident bacterial community of the rhizosphere.  

The interaction of N2-fixing bacteria with other bacteria can inhibit or promote 

their diazotrophic activity (Isopi et al., 1995). In this study, selection of native PGPR 

strains which suppose to be good strains in Thailand soil was conducted with the main 

purpose on co-inoculating the soybean with bradyrhizobia. In addition, the changes of 

microbial community structures of soybean rhizosphere by this co-inoculation under 

soybean-nodulating bradyrhizobia-free soil conditions were also investigated. 
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3.3  Materials and Methods 

        3.3.1  Bacterial strains, media, and growth conditions  

                  Two B. japonicum strains (CB 1809 and USDA 110) and a total of 200 

rhizobacterial isolates were used in this study. CB 1809 was supplied by Department 

of Agricultural Research (DAR), Myanmar. B. japonicum strain USDA 110 and 

rhizobacterial isolates were sourced from School of Biotechnology Laboratory, 

Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand (Piromyou 

et al., 2011). Bradyrhizobia and rhizobacterial isolates were maintained on Yeast 

Extract Mannitol agar (YEM) medium (Appendix 1) (Vincent, 1970) and LG (N-free) 

medium (Appendix 2) (Hirschi et al., 1991), respectively by periodically transferring 

and storing those isolates in the refrigerator for further studies.  

 

        3.3.2  Antagonistic test between B. japonicum and rhizobacteria   

B. japonicum and rhizobacteria were cultured in YEM and LG broth, and 

shaken at 180 rpm at room temperature (28±2°C) for 7 days and 2 days, respectively. 

To determine the antagonistic effects of rhizobacteria on bradyrhizobia, each of 

bradyrhizobial broth cultures (containing 1 x 10
8
 colony forming unit (cfu) ml

-1
) was 

separately swept on duplicate YEM agar plates by using cotton stick, and incubated 

for two days. Twelve rhizobacterial isolates were spotted onto a lawn of bacterial 

cells per plate and incubated to observe their antagonisms. Only the Bradyrhizobium 

non-inhibitors which did not give the clear zone were selected for co-inoculation with      

B. japonicum on soybean. 

Soybean seeds (Glycine max, Chiang Mai 60) obtained from Department 

of Agriculture (DOA), Thailand were pre-sterilized, pre-germinated, and grown into 
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the growth media (vermiculite) under aseptic conditions in sterilized Leonard‟s Jar 

(Leonard, 1943) at the rate of 3 seeds jar
-1

. Each seed was inoculated with 1 ml 

bacterial culture (10
8
 cfu ml

-1
) of B. japonicum alone (CB 1809 or USDA 110) or   

co-inoculated by mixing of selected rhizobacterial and bradyrhizobial cultures in        

a ratio of 1:1 (v/v). Non-inoculated treatment was also included as a control. The 

experiment was laid out in a Completely Randomized Design (CRD) with three 

replications. Plants were cultivated on a growth shelf at 27/20°C under 16/8 h 

light/dark photoperiod. The N-free nutrient solution (Appendix 3) (Broughton and 

Dilworth, 1971) in the lower part was supplemented whenever necessary. At 21 days 

after inoculation (DAI), two rhizobacterial isolates with better nodulation were 

selected for co-inoculation under pot conditions.  

 

        3.3.3  Characterization of selected bacteria  

   3.3.3.1  Acetylene reduction assay (ARA)   

         The selected bradyrhizobia and rhizobacteria were cultured in           

5 ml of LG (N-free) broth in 21 ml test tube and incubated for 7 and 2 days, 

respectively at 28±2°C. Ten percentage (v/v) of gas phase in the headspace was 

replaced with acetylene and further incubated at 28±2°C for 24 h, and the free-living 

N2-fixing activity was examined by acetylene reduction assay (ARA) following 

Hardy et al. (1968). Ethylene production was measured by gas chromatograph (GC) 

with a flame ionization detector equipped with PE-Alumina column (50 m x 0.32 mm 

x 0.25 μm) (Perkin Elmer, USA). Standard curve of ethylene was constructed by 

varied concentration of pure ethylene following Nuntagij et al. (1997).  
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 3.3.3.2   Indole-3-acetic acid (IAA) production  

                    IAA production of selected bacterial strains was colorimetrically 

determined as described by Fukuhara et al. (1994). Pure IAA at different 

concentrations of 0, 10, 20, 50, 100, 150, and 200 μM were used as a standard.  

 After completion of ARA and IAA assays, total protein 

concentrations of the concerned cell suspensions were determined using Lowry‟s 

method (Lowry et al., 1951).  

 

  3.3.3.3   Identification of selected bacteria 

                    The chromosomal DNA of the selected rhizobacterium (Isolate 3) 

was extracted following Prakamhang et al. (2009) and 16S rRNA gene was amplified 

by using the primer pair fD1 and rP2 (Weisburg et al., 1991). The resulted PCR 

product was purified by using the QIA quick PCR purification kit (Qiagen, Hilden, 

Germany) and ligated into the pGEM-T Easy Vector System (Promega, USA) for 

further transformation into Escherchia coli DH5α competent cells by following the 

manufacturer‟s instructions. DNA sequencing was performed by MACROGEN 

Company (Korea) and the most closely related sequences were obtained from the 

NCBI database. 

 

        3.3.4 Single and co-inoculation effects of selected rhizobacteria and               

 B. japonicum strains  

 The experimental soils used in both pot experiment and the field 

experimental sites were selected from non-soybean growing area of Muang District, 

Nakhon Ratchasima, Thailand (14° 52' 10" N and 102° 00' 42.24" E) which had no 

history of any leguminous crops cultivation.  
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 3.3.4.1  Quantification of indigenous soybean-nodulating bradyrhizobia  

 Soil samples were collected from 15 randomized sites of the 

experimental field. The amount of indigenous soybean-nodulating bradyrhizobia 

present in experimental soil samples was determined by a modification of the plant 

infection test using the most probable-number (MPN) technique (Vincent, 1970). 

Plants were grown on a growth shelf at 27/20°C under 16/8 h light/dark photoperiod. 

MPN estimations based on nodulation were determined at three weeks after 

inoculation.   

 

        3.3.5  Pot experiment  

 The soils were amended with eucalyptus compost, P2O5, K2O, CaSO4. 

2H2O, and CaCO3 at the rate of 37.50, 0.75, 0.75, 15.00, and 2.50 g Kg soil
-1

, 

respectively. The physicochemical analysis of amended soil showed loamy sand in 

texture, having a pH 5.25, 0.39% organic matter, 4.03 and 34.5 ppm of available P and 

exchangeable K, respectively. Nine kilograms of amended soils were filled into pots 

(20 cm diameter x 20 cm height), and ten pre-sterilized and pre-germinated soybean 

seeds (Chiang Mai 60) were sown in each pot.  

     B. japonicum strains (CB 1809 and USDA 110), Azospirillum sp., (AB 

114190), and Bacillus solisalsi  Isolate 3 were cultured as described before, and single 

or mixed bacterial broth culture was inoculated onto seed (10
8
 cfu ml

-1
seed

-1
). The 

treatments included  1- 4) single inoculation of each of Azospirillum sp., B. solisalsi  

Isolate 3, USDA 110, and CB 1809,  5-7) co-inoculation in 1:1 (v/v) of CB 1809 with 

each of USDA 110,  Azospirillum sp. and B. solisalsi  Isolate 3, 7-9) co-inoculation in 

1:1 (v/v) of USDA 110 with each of Azospirillum sp. and  B. solisalsi  Isolate 3,      
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10-12) co-inoculation in 1:1:1 (v/v/v/) of CB 1809, USDA 110, and either 

Azospirillum sp. or B. solisalsi  Isolate 3, 13) combined inoculation in 1:1:1:1 (v/v) of 

all tested bacterial cultures, and 14) bulk soil (no planted and non-inoculated control).  

  The pots were laid out in a CRD design with three replications. Plants were 

thinned down to uniformity (six plant pot
-1

) and watered by tap water whenever 

necessary. Regular agricultural practices were done except pesticide spraying. Plants 

were sampled and nodule number, nodule dry weight, and biomass dry weight (dried 

at 70ºC) were recorded at 30 and 45 DAI. Statistical significance was determined by 

analysis of variance (Steel et al., 1980) and means were compared by the Duncan‟s 

Multiple Range Test (DMRT) (p ≤0.05) (Duncan, 1955). Based on this experiment, 

the most effective rhizobacteria was selected to evaluate its potential under field 

conditions.  

 

        3.3.6  Field experiment  

 Before sowing, the field soil was fertilized with 50 kg ha
-1

 of each P2O5 

and K2O fertilizers. The soil was sandy soil in texture, having pH 6.41, 0.39% organic 

matter, and available P and exchangeable K was 4.78 and 70.64 ppm, respectively. 

Each subplot size was 2 and 3 m
2
 in size with four rows. The experiment was 

arranged in a Randomized Complete Block Design (RCBD) with three replications. 

The treatments consisted of non-inoculated control, single inoculation with USDA 

110, CB 1809, and Azospirillum sp. alone, and co-inoculated in 1:1 (v/v) ratio of 

Azospirillum sp. and each of CB 1809 and USDA 110. Soybean seeds (Chiang Mai 

60) were inoculated with bacterial broth cultures (approximately 10
6
 bacterial cells 

seed
-1

) just prior to sowing.  
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 During the experiment, regular agricultural practices were done as needed. 

At 30, 45, and 70 DAI, five soybean plants per each plot were randomly sampled for 

assessment of nodulation and plant growth parameters. At 70 DAI, the dried plant 

materials were analyzed for dry matter and total plant nitrogen percent. Soybean yield 

and yield components were determined from a random sample of 10 plants from two 

inner rows per plot at maturity (90 DAI). Statistical significance was determined as 

described in pot experiment. 

 

3.3.7  Denaturing gradient gel electrophoresis (DGGE) and principle           

component analysis (PCA) from pot and field experiments 

    Total genomic DNAs of selected bacteria which were used for 

inoculation in pot and field experiments were extracted following Prakamhang et al. 

(2009) and kept at -20
o
C before using as the marker. Both eubacterial and fungal 

community structures were evaluated from pot experiment and only eubacterial 

community structure was analyzed in field experiment at 0, 7, 14, 30, and 45 DAI. 

Soil microbial DNAs were directly extracted from 0.5 g rhizosphere soils by using the 

Ultra Clean Soil DNA kit (MoBio Laboratories, Solana Beach, Califonia, USA) 

following the manufacturer‟s instructions. Eubacterial 16S rRNA (V6-V8 variable 

regions, ~ 400 bp) and fungal 18S rRNA (~1,650 bp) gene fragments were amplified 

by using universal primers F984 and R1378 (Heuer et al., 1997) and fungus-specific 

primers NS1 and FR1 (Oros-Sichler et al., 2006), respectively. A GC-clamp (Costa   

et al., 2006) was added to the 5‟end of the forward primers F984 and NS1 to prevent 

the complete melting of PCR products during separation in the denaturing gradient 

gel.  



 

 

 

 

 

 

 

 

70 

 

 

  PCR products were subjected separately for DGGE analysis by using a 

Dcode Universal Mutation Detection System (Bio-Rad Laboratories, Hercules, CA). 

About 45 µl of PCR products were loaded onto 1 mm thick (20 x 20 cm) gel with 6% 

(w/v) polyacrylamide gel (37.5:1 of Acrylamide: Bis-acrylamide, Bio-Rad 

Laboratories, Inc.) prepared with a linear denaturing gradient ranging from 40-70% 

denaturant (100% denaturant consisted of 40% (v/v) formamide and 7M urea) and 

10% (w/v) polyacrylamide gel with 18-43% denaturant for 16S rRNA and 18S rRNA, 

respectively. PCR products from inoculated bacteria were loaded at the both left and 

right sides of the sample lanes as markers.  

  DGGE was performed in 1x TAE buffer at 60°C with constant voltage 

of 75V for 10 min and thereafter 110V for 18 h for eubacteria PCR and at 180 V for 

16 h for fungal PCR. The gels were stained with SYBR Green (3µl in 15µl 1x TAE 

buffer) for 30 min and rinsed for 3 min in running water before photographing. DNAs 

from excised bands of interest in DGGE gels were eluted by incubation in 30 µl 

ddH2O at 4°C overnight. Supernatant (~0.5 µl) was used as a template for PCR 

amplification as described above by using with the same primer pair without a GC-

clamp. The PCR products were purified by using the QIAquick PCR purification kit 

(Qiagen, Hilden, Germany) followed by sequencing and analyzing of DNA as 

described above. 

   Cluster analysis and principle components analysis (PCA) were 

performed according to the presence and absence of bands occurred in DGGE gels 

based on Unweighted Pair Group Method with Arithmetic Means (UPGMA) 

algorithms by the NTSYSpc (2.2, Exeter Software, USA) (Rohlf, 2000). Based on the 

DGGE results, the Shannon index (H‟) (Shannon and Weaver, 1963) was calculated 

according to the following equation: 
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 H‟ = -∑Pi log Pi 

   where Pi is the proportion represented by each DGGE band relative to 

the total number of bands. The indices obtained were statistically analyzed as 

described for other univariate data. 

 

3.4  Results  

3.4.1  Antagonistic test and screening of rhizobacterial isolates for                

 co-inoculation with B. japonicum strains   

  Totally 152 out of 195 tested rhizobacterial isolates were detected as 

„Bradyrhizobium non-inhibitors‟ and those were screened for co-inoculation with              

B. japonicum on soybean under controlled conditions. Among them, Isolates 1, 3, 13 

and 15 showed an increase in nodule numbers when each was co-inoculated with 

either CB 1809 or USDA 110; however, those numbers were not significantly higher 

than that of individual bradyrhizobial inoculation (data not shown). Therefore, five 

additional rhizobacterial strains which did not inhibit against tested bradyrhizobia in 

in vitro cultures; namely, Bacillus sp. SUT 1,  Pseudomonas sp. SUT 16 and SUT 19, 

which are prominent in most of the experimental research at Laboratory of School of 

Biotechnology, SUT (Piromyou et al., 2011), Azotobacter sp., and Azospirillum sp. 

which are being commercialized as PGPR inocula for various crops cultivation by 

Suranaree University of Technology  (Teaumroong et al., 2009), were selected to be 

added in screening test. Among the tested isolates, the Bacillus sp. SUT 1 gave the 

maximum nodule number when co-inoculation with CB 1809, whereas, it decreased 

to minimum nodule formation when co-inoculated with USDA 110. Out of the nine 

rhizobacterial isolates, co-inoculation of Azospirillum sp. or Isolate 3 with either CB 

1809 or USDA 110 gave significantly higher nodule numbers than bradyrhizobial 
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single inoculation, and thus those two isolates were selected for further experiments   

(Table 2).  

 

Table 2.  Single or co-inoculation effects of B. japonicum strain (CB 1809 or USDA 

 110) and promising rhizobacterial isolates on nodulation of soybean 

(Chiang Mai 60) under controlled environmental conditions at 21 DAI 

Values followed by the same letter within the same columns are not significantly 

different by Duncan's multiple range test (P ≤ 0.05). 

 

        3.4.2  Characterization of selected bacteria 

       Based on 16S rRNA sequence analysis, Isolate 3 was related to Bacillus 

solisalsi with 98 % homology (JX 290169). This B. solisalsi Isolate 3 gave the 

significantly highest IAA production, and Azospirillum sp. produced higher but not 

significantly different amount of IAA compared to B. japonicum CB 1809 and USDA 

110 (Table 3). ARA results revealed that CB 1809 gave the maximum N2-fixation in 

          Treatment 

(Bacterial isolate no.) 

 Nodule No. plant
-1 

CB 1809 

Nodule No. plant
-1 

USDA 110 

Isolate 1          14.3
cd  

± 2.9            14.8
ab 

±
 
2.3 

Isolate 3          24.0
ab  

±
 
2.7            20.1

a   
± 2.7 

Isolate  13          19.6
bc  

± 2.7            11.8
bc 

± 1.1 

Isolate  15          14.2
cd  

±
 
2.6            14.8

ab 
± 4.7 

SUT 1 (Bacillus sp.)          26.8
a   

 ±
 
3.3              6.2

c   
± 2.7 

SUT 16 (Pseudomonas sp.)          16.9
cd  

± 4.3              9.3
bc

 ± 0.9 

SUT 19 (Pseudomonas sp.)          14.4
cd 

 ±
 
1.7

             18.9
a   

± 2.8 

Azotobacter  sp.          17.4
cd  

± 2.7            18.8
a   

± 3.7 

Azospirillum sp.          19.2
bc  

± 2.7            19.2
a   

± 3.3 

None (B. japonicum inoculation alone)           12.4
d   

±
 
1.7            11.1

bc 
± 5.3 

F- test               **               ** 
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free-living bacterial stage followed by USDA 110. N2-fixation given by CB 1809 was 

significantly different from those by Azospirillum sp. and B. solisalsi Isolate 3. The   

B. solisalsi Isolate 3 has the lowest N2-fixation ability when compared with others.  

 

Table 3.  Characterization of selected bacteria for nitrogenase activity and IAA 

production 

Different letters in the same column indicate significantly differences among 

treatments (P≤ 0.05). 

 

        3.4.3   Pot experiment 

                   MPN plant infection counting from collected soil samples gave no nodule 

formation. In pot experiment, nodule formation was not observed in non-inoculated 

control and rhizobacterial inoculation alone as expected. The lowest shoot dry weight 

was noted in non-inoculated control. 

      Either single bradyrhizobial inoculation or co-inoculation with tested 

rhizobacteria gave the significantly highest biomass dry weight compared to PGPR 

Treatment 

Nitrogenase activity of  

free-living bacteria (nmole of 

ethylene mg protein
 -1

 hr
-1

) 

IAA  
     (µM mg protein

-1
) 

Azospirillum sp. 3.08
c
  ± 0.5 0.25

b
 ± 0.2 

Bacillus solisalsi Isolate 3                  1.19
d
  ± 0.1 0.78

a
 ± 0.1 

B. japonicum CB 1809 8.21
a
  ± 0.0 0.13

b
 ± 0.0 

B. japonicum USDA 110 4.12
b
  ± 0.0 0.10

b
 ± 0.0 

F- test ** ** 
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inoculation alone or non-inoculated control (Figure 1C). The nodule formation was 

significantly increased when B. solisalsi Isolate 3 was co-inoculated with CB 1809; 

however, a similar trend was not observed in co-inoculation with USDA 110 (Figure 

1A). Maximum nodulation, nodule dry weight, and biomass dry weight of soybean 

were accomplished by altogether combined inoculation of tested bradyrhizobia and 

rhizobacterial isolates (Figure 1A, B, and C). Positive responses on nodule number 

and shoot dry weight of soybean were observed by co-inoculation of either                

B. japonicum CB 1809 or USDA 110 with Azospirillum sp. at 45 DAI. 
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Figure 1.  Co-inoculation effects of B. japonicum (CB 1809 and USDA 110) and 

selected rhizobacteria (Azospirillum sp. and Bacillus solisalsi Isolate 3) 

on soybean nodulation and plant growth under soybean-nodulating 

bradyrhizobia-free pot condition at 30 and 45 DAI. (Ctrl) Control;           

(A) Azospirillum sp.; (B) Bacillus solisalsi Isolate 3; (U) Bradyrhizobium 

japonicum USDA 110; (C) B. japonicum CB 1809; and coupled-letters 

referred to co-inoculated with indicated labels. A. Nodule number plant
-1

, 

B. Nodule dry weight
 
plant

-1
 (mg), and C. Biomass dry weight

 
plant

-1
 (g). 

 

        3.4.4  DGGE and PCA analysis from pot experiment 

      DGGE profiles of eubacterial community structures were divided into two 

main clusters. The first cluster mainly included the samples from 0, 7, and 14 DAI 

samples with 78% similarity and the latter included those mainly from 30 and 45 DAI 

samples with 81% similarity (Figure 2). Eubacterial community structure in bulk soil 

samples did not form a separate branch from the clustering tree of bacterial   

inoculation treatments. A clear separation of the DGGE profiles was observed at 

different sampling times as well as different plant growth stages in 0, 7, 14, and 45 
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DAI except in 30 DAI (Figure 2). PCA result did not provide any clear separation 

among treatments (Figure 3).  

 Banding patterns of the bulk soil and rhizosphere soil samples from  7, 14, 

30  and 45 DAI also revealed that there were considerable differences among the 

sampling times varying from 7-23, 10-22, 13-25 and 16-27 bands, respectively. 

However, the Shannon diversity indices (H‟ values) calculated from DGGE profiles 

of each treatment were not different significantly from each other in each sampling 

time (data not shown). Highly recovery of the DGGE bands of the inoculated bacteria 

was observed at the same position of the reference markers in all plant growth stages 

(line 1, 2, and 3 in Figure 2). There was only one common band that appeared in all 

samples and that is 100% similar to Burkholderia sp. (JX 290164) (PB1). Other two 

bands which were homologous to Clostridium sp. (JX 290165) (98% homology) (PB 

2) and Parasegitibacter luojiensis (JX 290166) (95% homology) (PB 3) were 

observed in most of the samples.  

 The cluster analysis on DGGE banding profiles of 18S rRNA genes 

showed different but not clear effects of bacterial inoculation and sampling times on 

rhizosphere soil fungal community structures except that they shared some 2-3 

common bands (Figure 4). Some bands were widely distributed and found in more 

than half of the samples. The number of bands corresponded to the number of 

predominant members in the microbial communities. However, most of the excised 

bands failed to be amplified and could not be sequenced. Two dominant bands which 

could be sequenced successfully were uncultured ascomycetes (JX 290170) (95% 

homology) (PF1) and Fusarium oxysporum (JX 290168) (99% homology) (PF2) 

(Figure 4). PCA result did not showed any clear separation among treatments     

(Figure 5). 
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Figure 2.  Cluster analysis of eubacterial community structures of partial 16S rRNA 

PCR-DGGE fingerprints of different soybean rhizosphere samples after 

inoculation with different bacterial inocula i.e., (Bulk) Bulk soil; (Ctrl) 

Control; (Azo) Azospirillum sp.; (Baci) Bacillus solisalsi Isolate 3; (CB)                  

B. japonicum CB 1809; (U110) B. japonicum USDA 110 and (+)           

co-inoculation refer to indicated labels at different sampling times (0, 7, 

14, 30, and 45 DAI) under soybean-nodulating bradyrhizobia-free pot 

conditions. Labels on fingerprints were subjected to sequence. Line 1, 2 

and 3 refer to inoculated bacteria, Azospirillum sp., B. solisalsi Isolate 3 

and B. japonicum (CB 1809 or USDA 110) respectively. 



 

 

 

 

 

 

 

 

78 

 

 

 

 

Figure 3. Community analysis derived from PCA of partial 16S rRNA banding 

profiles of soybean rhizosphere soil under soybean-nodulating 

bradyrhizobia-free pot conditions. Letters adjacent to marks indicate the 

treatments: (Bulk) Bulk soil; (Ctrl) Control; (A) Azospirillum sp.;          

(B) Bacillus solisalsi Isolate 3 (C) B. japonicum CB 1809;                     

(U) B. japonicum USDA 110; and  coupled-letters refer to co-inoculation 

due to indicated labels) at different sampling times: ( ) 0DAI; ( ) 7DAI;   

( ) 14 DAI; (o)  30 DAI and ( ) 45 DAI. Different samples formed            

a cluster which is circled by (- - - - , 
 
……,

_ _ _ _ _
 , and

 ______
), which shows 

in a trend of 7, 14, 30 and 45 DAI, respectively. 
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Figure 4.  Cluster analysis of fungal community structures of partial 18S rRNA PCR-

DGGE fingerprints of different soybean rhizosphere samples after 

inoculation with different bacterial inocula i.e., (Ctrl) Control; (Azo) 

Azospirillum sp.; (Baci) Bacillus solisalsi Isolate 3; (CB) B. japonicum CB 

1809; (U110) B. japonicum USDA 110; and (+) co-inoculation refer to 

indicated labels at different sampling times (0, 7, 14, 30, and 45 DAI) 

under soybean-nodulating bradyrhizobia-free pot conditions. Labels on 

fingerprints were subjected to sequence. 
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Figure 5.  Community analysis derived from PCA of partial 18S rRNA banding 

profiles of soybean rhizosphere soil under soybean-nodulating 

bradyrhizobia-free pot conditions. Letters adjacent to marks indicate the 

treatments: (Bulk) Bulk soil; (Ctrl) Control; (A) Azospirillum sp.;                   

(B) Bacillus solisalsi Isolate 3 (C) B. japonicum CB 1809;                       

(U) B. japonicum USDA 110; and  coupled-letters refer to co-inoculation 

due to indicated labels) at different sampling times: ( ) 0DAI; ( ) 7DAI;    

( ) 14 DAI; (o)  30 DAI and ( ) 45 DAI. Different samples formed                     

a cluster which is circled by (- - - - , 
 
……,

_ _ _ _ _
 , and

 ______
), which 

shows in a trend of 7, 14, 30 and 45 DAI, respectively. 
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 3.4.5  Field experiment  

 Based on pot experiment results, Azospirillum sp. was selected for further 

study under field condition as it has nodulation and plant growth promoting ability on 

soybean when co-inoculated with bradyrhizobia. The soybean plants which were 

obtained by without bradyrhizobial inoculation in field experiment and those from 

MPN plant-infection count were free of nodules. Single inoculation of Azospirillum 

sp. has no prominent effects on soybean plant growth compared to non-inoculated 

control (Figure 6C). However, when it was co-inoculated with either CB 1809 or 

USDA 110, nodulation and plant growth were significantly increased when compared 

with non-inoculated control or Azospirillum sp. inoculation alone at 30, 45, and 70 

DAI (Figure 6A, B, and C). 

 Better in root development were observed in co-inoculation with 

Azospirillum sp. compared to single inoculation of B. japonicum (Figure 7). Based on 

all sampling times, co-inoculation of either CB 1809 or USDA 110 with Azospirillum 

sp. increased 32.23% and 16.85% of nodulation and 26.51% and 18.83% of nodule 

dry weights over single inoculation of CB 1809 and USDA 110, respectively.         

Co-inoculation of USDA 110 with Azospirillum sp. increased ~36.99% of soybean 

nodulation over USDA 110 single inoculation at 45 DAI, leading to significantly 

higher and evident response to biomass dry weight.  

 Percentages of total plant nitrogen of soybean given by CB 1809 or USDA 

110 inoculation and their co-inoculation with Azospirillum sp. were higher than those 

given by non-inoculated control and inoculation of Azospirillum sp. alone at 70 DAI 

(Table 4). Although the nodules obtained by inoculation with CB 1809 or                   

co-inoculation  with  Azospirillum sp.   gave  the  effective  nodules  and  significantly 
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Figure 6.  Co-inoculation effects of B. japonicum (CB 1809 and USDA 110) and 

Azospirillum sp. on soybean nodulation and plant growth (soybean-

nodulating bradyrhizobia-free field conditions) at 30, 45, and 70 DAI. 

(Ctrl) Control; (A) Azospirillum sp.; (U) B. japonicum USDA 110;        

(C) B. japonicum CB 1809; and coupled-letters referr to co-inoculation 

related with indicated labels. A. Nodule number plant
-1

, B. Nodule dry 

weight plant
-1

 (mg), and C. Biomass dry weight plant
-1

 (g). 
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Figure 7.  Root development of soybean obtained by inoculation with                          

(A) B. japonicum CB 1809; (B) B. japonicum CB 1809 and 

Azospirillum sp.; (C) B. japonicum USDA 110; (D) B. japonicum 

USDA 110 and Azospirillum sp at 45 DAI under field conditions.  

 

 

 

 

 

 

 

 

 

Figure 8.  Cross-section of soybean nodules obtained by inoculation with                 

(A) B. japonicum USDA 110 alone; (B) B. japonicum USDA 110 and 

Azospirillum sp.; (C) B. japonicum CB 1809 alone; (D) B. japonicum 

CB 1809 and Azospirillum sp at 70 DAI under field conditions. 
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Figure 9.  Soybean plant growth under field conditions by inoculation with: (A) None 

(non-inoculated control); (B) Azospirillum sp.; (C) B. japonicum CB 1809;             

(D) B. japonicum CB 1809 and Azospirillum sp.; (E) B. japonicum USDA 

110; (F) B. japonicum USDA 110 and Azospirillum sp. at 45 DAI. 

 

highest number with appearance of pink-red color inside the nodules (Figure 8), the 

plant growth were less than those in USDA 110 and its co-inoculation (Figure 9) . 

       Enhancement in root dry weight of soybean obtained by co-inoculation of      

B. japonicum USDA 110 and Azospirillum sp. were significantly different from those 

of single inoculation at 30 and 45 DAI (Table 4); however, similar trend was not 

observed in B. japonicum CB 1809 and its co-inoculation. Moreover, noticeably 

increasing in plant height was not observed in B. japonicum CB 1809 and its           

co-inoculation. Co-inoculation of USDA 110 with Azospirillum sp. gave the 

significantly highest in plant height at 45 and 70 DAI (Table 4), and also gave the 

significantly highest number of seeds per plant and higher number of pods, 100 seeds 

weight, and seed weight per plant at harvest; however, those were not significantly 

different from those of USDA 110 inoculation alone (Table 5). The lowest yield (304 
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kg ha
-1

) was obtained in non-inoculated control. Co-inoculation of Azospirillum sp. 

and either of CB 1809 or USDA 110 gave 23.65% and 34.92% higher seed yields 

over CB 1809 or USDA 110 single inoculation, respectively. Healthier and bigger 

seed size obtained by co-inoculation of USDA 110 and Azospirillum sp. gave the 

significantly highest yield with 1727.00 kg ha
-1 

and it was almost 5-6 times more 

yields with respect to the control plants. 

 

 

        3.4.6   DGGE and PCA analysis from field experiment 

                   DGGE profiles of soil eubacteria community structures in the field 

experiment revealed two main clusters with 76% similarity; one included the samples 

from four sampling times (0, 7, 30 and 45 DAI), and later from the sampling times at 

14 DAI (Figure 10). Except at 14 DAI, the DGGE patterns generated in the 

rhizosphere soil samples of Azospirillum sp. inoculated and its co-inoculation with 

bradyrhizobia were clearly separated into small cluster with 88-91% similarity at 

different sampling times. The detected band numbers were increased from 7-14 DAI 

and, generally, most of the treatments gave higher number of band detection at 14 

DAI and decreased at later stages. PCA analysis provided the grouping of the DGGE 

band profiles into four main groups and the changes were influenced by plant age 

(Figure 11).         

                   Sequencing of partial 16S rRNA genes from the commonly detected 

bands revealed that Streptococcus agalactiae (JQ. 990157. 1) (99% homology) (FB1) 

and Bacillus sp. (JX 290163) (99% homology) (FB2) (Figure 10) were detected in all 

samples at all sampling times except the band intensities appeared different. 

However, Propionibacterium freudenreichii (JX 290167) (95% homology) (FB3) was 

detected in late sampling (30 and 45 DAI) and that band seems to be propagated later 

season of soybean growing. 
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Table 4.  Co-inoculation effects of B. japonicum (CB 1809 and USDA 110) and Azospirillum sp. on soybean root dry weight and plant 

height under rhizobia-free field conditions (September-December, 2011)  

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05). 

 

Treatments 

Root dry weight per plant (g plant
-1

) 
Plant height (cm plant

-1
) 

30 DAI 45 DAI 70 DAI 30 DAI 
45 DAI 70 DAI 

Non-inoculated control 0.17
c
± 0.02 0.29

b  
± 0.04 0.99

c
 ± 0.20 17.07

c
  ± 1.07 

18.83
c
  ± 0.53 18.03

c
 ± 0.27 

Azospirillum sp. alone 0.23
b
± 0.02  0.27

b  
± 0.01 1.54

bc
± 0.20 19.31

c
  ± 1.50 

19.17
c
  ± 0.58 19.03

c
 ± 0.85 

USDA 110 alone 0.25
b
± 0.02  0.30

b  
± 0.01 2.03

ab
± 0.21 27.57

a
  ±  0.71 

30.78
a
  ± 2.62 36.87

a
 ± 0.42 

USDA 110 and  Azospirillum sp. 0.34
a
± 0.02  0.44

a  
± 0.01 2.53

a
 ± 0.31 28.43

a
  ± 0.52 

31.45
a
  ± 2.04  37.30

a
 ± 1.41 

CB 1809 alone 0.25
b
± 0.02  0.26

b  
± 0.02   1.20

c
 ± 0.07 25.76

ab 
± 1.09 

23.89
b
  ± 1.13 23.53

b
 ± 1.68 

CB 1809 and Azospirillum sp. 0.24
b
± 0.01  0.30

b  
± 0.02 1.20

c
 ± 0.03 23.20

b
  ± 0.80 

24.50
b
  ± 0.95 23.83

b
 ± 0.53 
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Table 5. Single and co-inoculation effects of B. japonicum CB 1809, USDA 110, and Azospirillum sp. on N2-fixation, plant growth, 

yield and yield components of soybean under soybean-nodulating bradyrhizobia-free field conditions. 

 

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05).

Treatments 
No. of pods 

plant
-1 

No. of seeds 
plant

-1 
100 seeds 

weight (g) 
 Seed weight 

(g plant
-1

) 
Yield 

(kg ha
-1

) 

ARA 
(nmole 
plant

-1
) 

Total N (% ) 

Non-inoculated control     4.7
e 
  ± 0.4   7.8

d
 ± 0.3 12.7

d  
± 1.0

   
     0.62

c
  ± 0.5      304

e

 ±   12.6 0.00
d

± 0.00      0.45
c
  ± 0.1  

Azospirillum sp. alone     5.7
de

 ± 0.5   9.2
d
 ± 1.4  13.7

cd 
± 0.7

  
     0.71

c   
± 0.6       353

e

 ±  47.0
 

 0.00
d

± 0.00      0.83
b
  ± 0.3 

USDA 110 alone   10.3
ab

 ± 0.5  19.9
b
 ± 2.1 15.4

ab 
± 0.7     2.56

ab
 ± 0.5 1280

b

 ±   62.5 0.95
b

± 0.08      1.03
ab

 ± 0.2 

USDA 110 + Azospirillum sp.   12.3
a
  ± 2.8  27.2

a 
± 2.9 16.5

a  
± 0.7     3.45

a
  ± 1.3    1727

a 

± 186.5  1.30
a

± 0.01      1.29
a 
 ± 0.2  

CB 1809 alone     7.2
cd

 ± 0.7  13.1
c 
± 1.2 14.1

bcd
± 0.9     1.56

bc
 ± 0.1    778

d  

±   54.6 0.58
c

± 0.07      1.25
a 
 ± 0.1  

CB 1809 + Azospirillum sp.     8.8
bc

 ± 0.9 15.0
c
 ± 0.9 15.4

ab 
± 0.7     1.93

bc 
± 0.2    962

c 

±  17.4   0.51
c

± 0.00      1.07
ab 

± 0.2 

F- test         ** ** ** ** **  ** 
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Figure 10.  Cluster analysis of eubacterial community structures of partial 16S rRNA 

PCR-DGGE fingerprints of different soybean rhizosphere samples after inoculation 

with different bacterial inocula: (BS) Bulk soil; (Ctrl) Control; (Azo) Azospirillum 

sp.; (CB 1809) B. japonicum CB 1809; (USDA110) B. japonicum USDA 110; and (+) 

refer to co-inoculation of indicated labels at different sampling times (0, 7, 14, 30, and 

45 DAI) under soybean-nodulating  bradyrhizobia-free field conditions. Line 1 and 2 

refer to inoculated bacteria Azospirillum sp. and B. japonicum, respectively. 
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Figure 11.   Community analysis derived from PCA of partial 16S rRNA banding 

profiles of soybean rhizosphere soil samples under soybean-nodulating 

bradyrhizobia-free field conditions. Letters adjacent to marks indicate 

the treatments: (BS) Bulk soil; (Ctrl) Control; (Azo) Azospirillum sp.; 

(CB) B. japonicum CB 1809; (U110) B. japonicum USDA 110; and 

(+) co-inoculation refer to co-inoculation of indicated labels at 

different sampling times: ( ) 0DAI; ( ) 7DAI; ( ) 14 DAI; (0) 30 DAI 

and ( ) 45 DAI. Different samples formed a cluster which is circled    

(- - - - , 
 
……,

 ______
 ,  and  

_ _ _ _ _
), which shows in a trend of 7, 14, 30 

and 45 DAI, respectively. 
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3.5  Discussion 

3.5.1  Screening of rhizobacteria for co-inoculation with B. japonicum on       

soybean  

                    The compatibility of the microorganisms needs to be evaluated before 

they are used as co-inoculants because of the possibility of antagonistic interactions 

among them, (Abd-Alla et al., 2001). In this study, totally 43 isolates out of 200 tested 

rhizobacterial strains showed inhibition on tested bradyrhizobia and 157 isolates 

which did not inhibit the two tested B. japonicum growth in in vitro cultures were 

selected as Bradyrhizobium non-inhibitors for further co-inoculation studies under 

controlled (aseptic) conditions.  

  The Azotobacter sp. and Azospirillum sp. used in this screening study are 

being commercialized as PGPR inocula for various crops cultivation by SUT 

(Piromyou et al., 2011; Teaumroong et al., 2009) and their positive responses on 

soybean nodulation were observed in this study. Rhizospheric microorganisms may 

not only influence the inoculated rhizobia adversely through saprophytic competition, 

but also help them in survival through synergism resulting in an increase in their 

nodulation ability and N2-fixing efficiency (Rautela et al., 2001; Gupta et al., 2003). 

Different responses on co-inoculation as such as interactions among different            

B. japonicum and PGPR strains were observed in this study. In the case of Bacillus 

sp. SUT 1, it gave different responses on nodulation (nodule number) of soybean 

when it was co-inoculated with B. japonicum CB 1809 and USDA 110. It can be 

possible that SUT 1 did not support nodulation sites on tested soybean roots for 

USDA 110 as in CB 1809, or it competed for nutrient absorption instead of sharing 

nutrients with USDA 110, or plant autoregulation system control the amount of 



 

 

 

 

 

 

 

 

91 

 

 

nodule in different combinations of two bacteria. In this study, two isolates out of 157 

Bradyrhizobium non-inhibitors; namely, Azospirillum sp. and Isolate 3 (sequenced as 

Bacillus solisalsi), were selected as soybean nodulation enhancers. It has been 

reported that co-inoculation of Azospirillum lipoferum with rhizobia  stimulates the 

formation of epidermal cells that become infected root hair cells, or create additional 

infection sites that are later occupied by rhizobia (Tchebotar et al., 1998). Araújo and 

Hungria (1999) demonstrated the viability of co-inoculating soybean seeds with crude 

or formulated metabolites, or with cells of Bacillus subtilis, to increase the 

contribution of the biological N2-fixation process.  

 When compared the characteristics of selected bacteria, Azospirillum sp. 

and B. solisalsi Isolate 3 produced high amount of IAA. However, the lowest level of 

ARA was detected in B. solisalsi Isolate 3. Adesemoye and Kloepper (2009) 

confirmed that PGPR such as Bacillus amyloliquefaciens and B. pumilis can fix 

nitrogen and can increase plant N uptake from fertilizer via other mechanisms but not 

with their own N2-fixing capability. In this study, free-living Azospirillum sp. gave 

higher acetylene reduction activity than B. solisalsi Isolate 3, and similar result was 

reported by Piromyou et al. (2011) that the Azospirillum sp. showed the highest N2-

fixation ability in free-living compared to Azotobacter sp. and other PGPR isolates 

including Bacillus sp. Moreover, Spaepen et al. (2009) also reported that effects of 

Azospirillum inoculation are mainly attributed to improved root development and 

enhanced water and mineral uptake and those effects were responsible by plant 

growth promoting substances, mainly IAA secreted by Azospirillum. As nodulation 

promoting rhizo-bacteria increase nodulation leading to increased plant growth 

(Zhang et al., 1997), effects on nodulation and plant growth of soybean by dual 

inoculation of selected PGPR and B. japonicum were evaluated under pot conditions.  
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3.5.2  Screening of rhizobacteria for co-inoculation with B. japonicum on      

soybean under pot conditions  

   No nodule formation in both MPN plant infection counting from tested 

soil samples, and non-inoculated control and rhizobacterial inoculation alone in pot 

experiment indicated that there has no specific indigenous soybean-nodulating 

bradyrhizobia present in tested soils because of the nodulation of soybean requires 

specific Bradyrhizobium species (Abaidoo et al., 2007). Bashan et al. (2004) reported 

that inoculation of plants with Azospirillum sp. alters the root morphology, increases 

numerous plant shoot growth parameters, and eventually increases the yield of many 

crops. However, no prominent enhancement in plant growth of soybean by 

inoculating the soybean with Azosprillum sp. alone was observed in this experiment. 

This may be due to very low organic matter content (~0.39%) in tested soil and could 

not accumulate the fixed-nitrogen in plants. However, co-inoculation of Azospirillum 

sp. and either CB 1809 or USDA 110 enhanced root growth (data not shown), gave 

higher nodule numbers and plant growth than single inoculation of B. japonicum.            

It may be due to Azospirillum ensuring the availability of appropriate type of roots for 

effective infection when co-inoculated with Bradyrhizobium in legumes. Similar 

findings were reported on co-inoculation of soybean with B. japonicum and 

Azospirillum sp. which increases nodulation, nitrogenase activity, and plant growth 

(Zhang et al., 1996; Dashti et al., 1998).  

   There were many possibilities that inoculated PGPR could enhance 

nodulation which led to enhancement in plant growth. For instance, Poi et al. (1989) 

reported that the presence of Azospirillum sp. in the rhizosphere makes the root hairs 

more susceptible to rhizobial infection that is reflected in better plant growth. In this 
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study, not only different in root and shoot development significantly but also in 

nodulation of soybean were observed in co-inoculation with B. japonicum and 

Azospirillum sp. Remans et al. (2008) pointed out the effects of co-inoculation of 

Rhizobium spp. and Azospirillum spp. on common bean which can increase the 

number of root hairs, the amount of flavonoids exuded by the roots and the number of 

nodules formed compared to single Rhizobium inoculation. In co-inoculation, 

Azospirillum promoted epidermal cell differentiation in root hairs that increased the 

number of potential sites for Bradyrhizobial infection (Yahalom et al., 1990) and as   

a result more nodules were developed (Andreeva et al., 1993). It may be due to 

Azospirillum ensuring the availability of appropriate type of roots for effective 

infection when co-inoculated with Bradyrhizobium in legumes.   

   While Azospirillum sp. did not vary its effectiveness when co-inoculated 

with any of both bradyrhizobia, B. solisalsi vary its effects on co-inoculation with 

different bradyrhizobia. The negative effect on nodule formation offered by             

co-inoculation of B. solisalsi with both bradyrhizobia was found to be recovered by 

Azospirillum sp. that showed clearly in the all together co-inoculation of all tested 

bacteria. Therefore, it could be concluded that co-inoculation with Azospirillum sp. 

enhanced nodulation and nodule dry weight better than B. solisalsi did. In spite of no 

emphasized on the detail mechanisms of nodule enhancement in this study, there were 

many reports stated that when co-inoculated with rhizobia, Azospirillum lipoferum 

stimulates the formation of epidermal cells that become infected root hair cells, or 

creates additional infection sites that are later occupied by rhizobia (Tchebotar et al., 

1998). Therefore, Azospirillum sp. was selected as a more effective PGPR for                 

co-inoculation with both tested B. japonicum CB 1809 and USDA 110.    
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DGGE and cluster analysis of rhizosphere soil microbial 

community structures from pot experiment 

 In field study, the whole rhizosphere soil samples were intended to be 

studied and cluster analysis did not allow a clear distinction of eubacterial community 

structures in bulk soil samples from the clustering tree of bacterial inoculation 

treatments. Costa et al. (2006) reported that no differences encountered between the 

microenvironments were due to the absence of clear characteristic patterns. Four main 

groups obtained by PCA analysis confirmed that the differences were mainly due to 

plant growth stages rather than bacterial inoculation. Similar result was reported by 

Herschkovitz et al. (2005) that Azospirillum brasilense inoculation had no effect on 

the size or on the structure of the bacterial communities. They also supposed that 

variation of microbial communities with the progression of growth stages may be 

related to two separate mechanisms, i.e., environmental changes such as soil 

temperature and soil moisture with the growth stages (Nazih et al., 2001) and the 

changes in the quality and quantity of root exudates of rhizodepositions with the 

growth stages (Garbeva et al., 2004). More abundant and numerous bands detected in 

later plant growth stages than early stages suggested that bacterial communities are 

more complex in later plant growth stages. Xu et al. (2009) also suggested that the 

growth stage is the second major factor in shaping bacterial communities in the 

soybean rhizosphere because compositions of the root exudates were shown to vary 

depending on the plant species and the stage of the plant development (Heulin et al., 

1987). 

   High recovery of the inoculated bacterial bands at the same position of 

the concerning markers confirmed that the introduced bacteria were able to establish 
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along with the plant growth stages. Burkholderia sp. (JX 290165) was found to be an 

indigenous in tested soil as it was detected in all samples. This β-proteobacterial         

(β-Rhizobia) Burkholderia form effective nodules on species of Mimosa (Parker       

et al., 2007), Acacia, and Prosopis (Talbi et al., 2010), Dalbergia (rose wood legume 

trees) (Lu et al., 2012), and some other leguminous plants such as common bean 

(Talbi et al., 2010). Moreover, Clostridium sp. (JX 290165) and Parasegitibacter 

luojiensis (JX 290166) were found to be as dominant bacteria as those that appeared 

in most of the samples. The composition of the exudates has been shown to exert 

selective effects towards certain bacterial groups, such as the Proteobacteria (Smit    

et al., 2001).  

  The fungi represent a dominant component of the soil microflora (Thorn, 

1997). However, there are relatively few studies on the effects of bacterial inoculation 

on the soil fungal community compared with the number of studies reporting the 

effects on specific target plant pathogens (Takehara et al., 2003; Browning et al., 

2006) and on the bacterial community (Dungan et al., 2003). The 18S rRNA gene of 

fungi contains a lower amount of variation than others such as 16S rRNA gene across 

bacteria (Anderson and Cairney, 2004). In this study, the detected density of fungal 

community was higher than that of eubacterial community. Soils used in this pot 

experiment were collected from the field with the history of cassava (Manihot 

esculenta) cultivation (Dahniya, 1994). Fusarium oxysporum (JX 290168) that was 

dominantly detected in this pot experiment, and Fusarium species are a significant 

component of the set of fungi associated with cassava root rot (Bandyopadhyay et al., 

2005). However, no wilt symptom was observed during the plant development. 

Burkholderia sp. was detected by DGGE analysis in this pot experiment as described 
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above. Burkholderia cepacia is recognized as a biological control agent for the 

control of plant pathogens (Nion and Toyota, 2008; Sijam and Dikin, 2005).             

In contrast to eubacterial communities, bacterial inoculation and sampling times did 

not clearly affect soil fungal communities.  

 

3.5.3  Screening of rhizobacteria for co-inoculation with B. japonicum on 

soybean under field conditions  

 The selected B. japonicum strains and Azospirillum sp. were continued to 

test their co-inoculation effects under field condition because determination of        

N2-fixation effectiveness in the process of strain selection is normally a multiple step 

procedure involving an initial selection under greenhouse conditions and a final 

testing in field trails (Navarro et al., 1999). There is an agreement that improved 

plant growth is attributed to Azospirillum through subsequent increase of lateral root 

number and root hair formation, alter the root morphology, water and mineral uptake 

and N2-fxation, and eventually increases the yield of many crops (Bashan, 1999) 

while no prominent enhancing in plant growth of soybean by inoculating with 

Azosprillum sp. alone was observed in this field experiment. It may be because of the 

tested soil has very low in organic matter content (~0.39%) and cannot accumulate 

the fixed nitrogen. However, detection of enhancement in root growth, nodule number 

and plant growth by co-inoculation of soybean with Azosprillum sp. and either of     

B. japonicum CB 1809 or USDA 110 support the fact pointed out by Poi et al. (1989) 

that the presence of Azospirillum sp. in the rhizosphere makes the root hairs more 

susceptible for rhizobial infection that is reflected in better plant growth.                  

 In field experiments, non-inoculated control plants provide the 
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information about the effects of single B. japonicum inoculation and its co-inoculaion 

on N2-fixation capacity of soybean because no chemical source of N was applied 

during the experiment. Increasing about 20.16% of total plant N in co-inoculating 

soybean with B. japonicum USDA 110 and Azospirillum sp. than USDA 110 single 

inoculation lead to give higher plant growth and seed yield in this study. Similar 

result was reported by Groppa et al. (1998) that nitrogen content of dual                        

(B. japonicum and Azospirillum brasilense) inoculated soybean plants in pot 

condition was significantly increased 23% over B. japonicum single inoculated plants; 

however, no significant difference in total dry matter production could be detected in 

their study. They suggested that co-inoculation leads to an increased number of the 

most active nodules, therefore, to a greater N2-fixation and assimilation. Similar 

finding was reported by Galal (1997) that the superior dual inoculation effects of          

B. japonicum and Azospirillum brasilense over single inoculation with B. japonicum 

with regards to nitrogen fixation and dry biomass of soybean, and Bashan et al. 

(1990) supposed that which may be attributed to a stimulating effect of hormones 

excreted by Azospirillum on both nodulation and nutrient uptake.  

     Higher nodulation with pink-red colored appearance in the cross-section 

of soybean nodules obtained by CB 1809 inoculation alone and its co-inoculation 

with Azospirillum sp. supposed to be processed N2-fixation properly; however, plant 

growth was not as high as USDA 110 and/or its co-inoculated soybean plants. Related 

to plant growth, the highest yield was observed by co-inoculation with USDA 110 

and Azospirillum sp. among the treatments because Azospirillum sp. are capable of 

increasing the yield of important crops growing in various soils and climatic regions 

and significant increases in yield in the order of 5-30% in 60-75% of the published 

reports (Fuentes-Ramirez and Coballero-Mellado, 2006). 
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 However, soybean yields in this research were much more less than those 

from commercial production because this study was mainly emphasized on effects of 

bradyrhizobial and its co-inoculation with PGPR, not much input of inorganic 

nitrogen fertilizers were applied before sowing. Soybean plant can assimilate the N 

from three sources; 1) N derived from symbiotic N2 fixation by root nodules,             

2) absorbed N from soil mineralized N, and 3) N derived from fertilizer when applied. 

For the maximum seed yield of soybean, it is necessary to use both N2-fixation and 

absorbed N from roots (Harper, 1987). Soybean plants assimilate a large amount of 

nitrogen during both vegetative and reproductive stages, and the total amount of N 

assimilated in plant is highly correlated with the soybean yield. Generally, soybean 

seed yield depends mostly on pod number per area and average seed weight is 

affected by growing conditions in late growth stages. 

        At the time of pod fill, nodules on legume lose their ability to fix N2 

because the plant feeds the developing seeds rather than nodules. To obtain high seed 

yield of soybean, good nodulation and high and long lasting nitrogen fixation activity 

are very important. When only N2-fixation is available to the plant, vigorous 

vegetative growth does not occur, which results in reduced seed yield. When 

compared the N2-fixation ability and seed yields obtained by USDA 110, CB 1809, 

and their related co-inoculations, there were prominent variations. B. japonicum 

USDA 110 and its co-inoculation gave more effective and functional nodules and 

which leading to increased in seed yield in contrast to CB 1809. Somasegaram and 

Bohlool (1990) reported the similar results that B. japonicum USDA 110 maintained 

its high effectiveness and superiority in colonization in a comparison with strains 

USDA 138 and CB 1809 under conditions of soil mineral N availability and 

immobilization. 
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 CB 1809 inoculated soybean plants become nitrogen deficient in the 

middle of the growing season because nitrogen demands are greatest and inefficient 

N2-fixation in that stage seems that CB 1809 could not fix enough N2 to support the 

plant at the pod filling stage. There are many possibilities such as drought stress, 

decrease in oxygen supply, a high or low pH, nutrient imbalance etc., which may 

depress nodule formation and nitrogen fixation activity. Molybdenum (Mo) is the 

least abundant of the trace elements in soil, however, very little is present in forms 

that are available to plants. In plants, Mo is an essential mineral nutrients involved in 

the reduction of nitrate. In rhizobia, it is a part of the enzyme nitrogenase that is 

essential for N2-fixation (Fox and Whitney, 1978). However, there will be limited 

amount of this nutrients in this experimental field sites may be one of the possibilities 

which did not gave effective N2-fixation by CB 1809.  

   Inoculation of soybean with PGPR in the presence of B. japonicum 

increased soybean grain yield, grain protein yield, and total plant protein production 

in short season areas (Dashti et al., 1997). Inoculation of soybean crops with effective           

B. japonicum strains singly (Galal-Gorchev, 1993) or in combination with 

Azospirillum brasilense  (El-Mokadem et al., 1986; Bashan et al., 1990) was found to 

be important for improving and maximizing the plant growth and N2-fixation 

potential of the crop either in soil which lacks indigenous B. japonicum (Singleton 

and Tavares, 1986) or in those soils high in indigenous Bradyrhizobium spp., but less 

effective than the introduced bacteria (Kucey et al., 1988). Therefore, more additional 

studies and efforts should be focused on co-inoculation effects of B. japonicum and 

Azospirillum sp. on the nodulation and plant growth of soybean in soil conditions with 

high indigenous bradyrhizobial population and different environmental conditions.  
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DGGE and cluster analysis of rhizosphere soil microbial community 

structures from field experiments  

 In the field conditions, the structural and functional diversity of 

rhizosphere populations is supposed to be affected by differences in root exudation 

and rhizodeposition in different root zones and in relation to soil types, plant species, 

growth stages, cultural practices such as tillage and crop rotation, and other 

environmental factors (Horwath et al., 1998). DGGE patterns of Azospirillum sp. 

inoculated treatments were clearly separated from non-inoculated and bradyrhizobial 

inoculation alone. Because of the inoculation with azospirilla also leads to an increase 

in plant root exudation (Landa et al., 2003), both changes in root structure and 

exudation are potential factors influencing the type of microorganisms colonizing the 

radicular environment. Streptococcus agalactiae and Bacillus sp. were detected in all 

samples in all sampling times. Such two strains supposed to be dominant strains in 

tested soil and Bacillus sp. is soil dwelling bacteria mostly can be found as 

rhizobacteria. Propionibacterium freudenreichii was detected in late sampling time, 

and it seemed to be propagated in later soybean growing season. In the soils, humic 

substances have important roles in soil fertility and they are considered to have primal 

relevance for the stabilization of soil aggregation, and also sources of carbon or 

micronutrients for growth of microorganisms. Propionibacterium freudenreichii 

bacteria are fermenting bacteria (Reid et al., 2004) and are capable of channeling 

electron from anaerobic conditions via humic acid towards iron-reduction (Benz       

et al., 1998). Gradual and continuous changes from first to last sampling times in 

PCA analysis were supposed to be dominated by changes of eubacterial community 

by plant ages and not by bacterial inoculation. 
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3.6  Conclusion 

Co-inoculation of B. japonicum and Azospirillum sp. gave positive responses 

in nodulation and plant growth, and did not shift the soil microbial community 

structures noticeably under soybean-nodulating bradyrhizobia-free soils. Therefore, 

Azospirillum sp. was selected as the most effective PGPR that has a potential to be 

used in co-inoculants with B. japonicum strains. However, on-farm competition trials 

in soybean-nodulating bradyrhizobia-established soil in soybean growing areas are 

also necessary to determine their potential for competitiveness against native strains.  
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CHAPTER IV 

CO-INOCULATION EFFECTS OF  

Bradyrhizobium japonicum AND Azospirillum sp. ON 

COMPETITIVE NODULATION AND RHIZOSPHERE 

EUBACTERIAL COMMUNITY STRUCTURES OF 

SOYBEAN UNDER RHIZOBIA-ESTABLISHED SOIL 

CONDITIONS 

 

4.1  Abstract 

 Bradyrhizobial inoculants used for soybean seed inoculation to maximize the 

benefit of N2-fixation should include bradyrhizobial strain with high N2-fixation rates 

and ability to compete with the indigenous rhizobial populations. In this study,          

co-inoculation of Plant Growth Promoting Rhizobacteria (PGPR) Azospirillum sp. 

with either of Bradyrhizobium japonicum CB 1809 or USDA 110 increased shoot and 

root dry weight of soybean over non-inoculated control under pot condition with no 

indigenous soybean- nodulating bradyrhizobia. Moreover, competition for nodulation 

and the effects on rhizosphere soil eubacterial community structures by using single 

or co-inoculation of B. japonicum and Azospirillum sp. under rhizobia-established 

Myanmar and Thailand soils were investigated. By inoculation of gus-marked USDA 

110 singly or its co-inoculation gave 93.21-94.75% and 74.21-100% in nodule 
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occupancy, and 23.50-41.95% and 50.37-73.24% promoting in biomass dry weight 

over non-inoculated control in Myanmar and Thailand soil samples, respectively. 

Each of all tested inoculum levels, i.e., 10
6
, 10

7
 and 10

8
 cfu ml

-1
 of Azospirillum sp., 

enhanced nodulation in combination with USDA 110 with a corresponding increase 

in 73.8%, 62.25% and 95.34%; and 51.52%, 62.38% and 79.46% over non-inoculated 

control, respectively in Myanmar and Thailand soil, respectively. In addition, soybean 

rhizosphere soil eubacterial community structures were not shifted by bacterial 

inoculation. Therefore, Azospirillum sp. could be used in co-inoculant production 

with B. japonicum for soybean.   

 

4.2  Introduction 

 Maximum benefit of N2-fixation by soybean often requires the inclusion of 

selected strains of Bradyrhizobium in seed inoculants. The main criterion used in 

selection of Bradyrhizobium strains for legume inoculation is the ability to form an 

effective symbiosis with the hosts for which the inoculants is recommended. 

However, inoculation may not always lead to improved nodulation or enhanced         

N2-fixation because of the presence of indigenous rhizobia which are more 

competitive than the inoculants strain (Roughley et al., 1976). Both competitiveness 

and symbiotic effectiveness were independent traits (Castro et al., 2000); therefore, 

the Rhizobium strain selected for inoculants should not only has high N2-fixation 

rates, but also be able to compete with the indigenous rhizobia populations (Vlassak 

and Venderleyden, 1997).  

 Nowadays, Plant Growth Promoting Rhizobacteria (PGPR) play an important 

role as they have several mechanisms to promote the plant growth (Glick, 1995). 
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Azospirillum is one of the PGPR and considered as a Rhizobium helper by stimulating 

nodulation, nodule function, and possibly plant metabolism (Andreeva et al., 1993). 

Effects of Azospirillum inoculation are mainly attributed to improved root 

development and enhanced water and mineral uptake. Secretion of plant growth 

promoting substances, mainly indole-3-acetic acid (IAA), is strongly associated with 

the positive response by the plant (Spaepen et al., 2009). Phytohormones produced by 

Azospirillum promoted epidermal-cell differentiation in root hairs that increased the 

number of potential sites for rhizobial infection (Yahalom et al., 1991) leading to 

forming more nodules (Andreeva et al., 1993). A. brasilense Az39 and B. japonicum  

E109 inoculated singly or in combination have the capacity to promote seed 

germination and early seedling growth in soybean and corn (Cassan et al., 2009). 

Moreover, dual inoculation of soybean with B. japonicum and A. brasilense gave        

a significantly higher proportion of nodules attached to the main root, and increased 

number of the most active nodules, and increased 23% of nitrogen content of soybean 

plants over B. japonicum single inoculated plant (Groppa et al., 1998).  

 Currently, B. japonicum strains CB 1809 and USDA 110 are being used in 

“Rhizobial Inoculant Production” for soybean in Myanmar and Thailand, 

respectively. However, in both countries, there were no reports on promotion effects 

on soybean through co-inoculation with B. japonicum and any PGPR, and no 

literature on studying of rhizosphere soil microbial community structures in any 

leguminous plants with respect to rhizobial inoculations. In this study, Azospirillum 

sp., one of the effective PGPR which was being commercially used in PGPR 

inoculants production by Suranaree University of Technology (SUT), Thailand 

(Teaumroong et al., 2009), was selected for co-inoculation with B. japonicum. 
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Moreover, it is needed to study the changes of microbial community caused by 

inoculation of rhizobial inoculants as their potential ecological risks on microbial 

diversity should not be neglected. Therefore, this study was aimed to evaluate the      

co-inoculation effect of B. japonicum and Azospirillum sp. on soybean nodulation and 

plant growth under no indigenous soybean nodulating bradyrhizobia soil conditions 

and to detect the competitive nodulation occupancy of co-inoculated B. japonicum 

strain USDA 110 and Azospirillum sp. on soybean as well as to observe the changes 

of rhizosphere soil bacterial community structures.  

 

4.3  Materials and Methods 

       4.3.1  Bacterial strains, media, and growth conditions 

  Two B. japonicum strains of CB 1809 and USDA 110 those were 

currently using in rhizobial inoculants production for soybean at Department of 

Agricultural Research (DAR), Myanmar and Thailand were cultured in Yeast Extract 

Manitol (YEM) media (Appendix 1) (Vincent, 1970) and Azospirillum sp. that was 

supported from School of Biotechnology Laboratory, Suranaree University of 

Technology (SUT), Thailand was cultured in Nutrient broth (Appendix 4). Those 

cultures were maintained by periodic transferred and stored in the refrigerator for 

further studies. 

 

        4.3.2  Soil samples collection and analysis  

  The soil samples for preliminary pot experiment with minimum or 

absence of indigenous soybean nodulating bradyrhizobia were collected from the field 

of Muang District, Nakhon Ratchasima, Thailand (14° 52' 10" N and 102° 00' 42.24" 
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E) which has no history of leguminous cultivation. The soil was loamy sand in 

texture, having a pH 5.25 with 0.42% organic matter content and 4.03 and 34.5 ppm 

of available P and exchangeable K, respectively. 

 For nodulation competition study, two soil samples from soybean 

nodulating bradyrhizobia-established soils were collected from Kyauk Me 

Agricultural Research Farm (22° 32' 20.93" N and 97° 01' 42.10" E), Department of 

Agricultural Research (DAR), Kyauk Me Township, Myanmar and Farmer‟s soybean 

field, Chiang Mai (18° 48' 01.28" N and 98° 39' 59.00" E), Thailand while soybean 

was grown as a standing crop to maximize the rhizobial and soil bacterial population. 

Soil samples were kept in clean polyethylene bags and stored at 4°C until used. Soil 

physicochemical characterization showed that Myanmar soil has pH 4.72 with 2.88% 

organic matter; and 21.43 and 164.38 ppm of available P and exchangeable K, 

respectively. In Thailand soil, soil pH was 4.96 with 2.46% organic matter content, 

and available P and exchangeable K contents were 27.27 and 73.47 ppm, respectively. 

 

 4.3.3  Quantification of the number of indigenous soybean nodulating    

rhizobia  

   The number of indigenous soybean nodulating rhizobia in experimental 

soil samples was determined by a modification of the plant infection test using a most 

probable-number (MPN) technique (Vincent, 1970). One milliliter aliquot of each 

dilution was inoculated onto pre-sterilized soybean seeds in sterilized growth pouch 

and grown axenically in light room condition. Two seeds per pouch were grown and 

four seeds (quadruplicate) were inoculated for each dilution. Non-inoculated control 

was also included. Plants were grown in growth chamber at 27/20°C light room under 
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16/8 h light/dark photoperiod, and MPN estimations based on nodulation were 

determined at 3 weeks after inoculation.  

 

4.3.4  Co-inoculation effects of B. japonicum and Azospirillum sp. on soybean      

           under indigenous soybean nodulating rhizobia non-established soil  

                  A preliminary pot experiment was conducted during June-July, 2011 to 

evaluate the co-inoculation effects of B. japonicum CB 1809 and USDA 110, and 

Azospirillum sp. on soybean. Nine kg of soils were put into the pot (20 cm diameter x 

20 cm height). Ten pre-sterilized and pre-germinated soybean seeds (Glycine max, 

Chiang Mai 60) were sown in each pot and one milliliter of the bacterial broth culture 

(10
8
 colony forming unit (cfu) ml

-1
) was inoculated onto each seed according to 

treatments. For single inoculation, the seeds were inoculated separately with 10
8
       

cfu ml
-1

 of Azospirillum sp., CB 1809, and USDA 110. For co-inoculation, seeds were 

inoculated by 1:1 ratio of either of CB 1809 or USDA 110 with Azospirillum sp. Non-

inoculated control was also included. The pots were laid out in a Completely 

Randomized Design (CRD) with three replications. The plants were watered by tap 

water whenever necessary and regular agricultural practices were done except 

pesticide spraying. Plants were sampled at 45 DAI and the nodule number, nodule dry 

weight, and shoot and root dry weights were recorded. Statistical significance was 

determined by analysis of variance (ANOVA) and means were compared by the 

Duncan‟s Multiple Range Test (DMRT) (p ≤0.05) (Duncan, 1955).   
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  4.3.4.1 Rep-PCR amplication 

    The bacterial DNA were extracted from B. japonicum CB 1809 

and USDA 110, and Azospirillum sp. Rep-PCR DNA fingerprint was used to 

investigate the genetic differences between B. japonicum strains USDA 110 and CB 

1809. Rep-PCR fingerprints were obtained by using BOX-AIR primer (5′-CTA CGG 

CAA GGC GAC GCT GAC G- 3′) (Sadowsky et al., 1996). The PCR reaction 

contained 50 ng of DNA template, 50 pmol of primer, 2.5 mM of dNTP, 1x PCR 

buffer, and 2.5 U Taq DNA polymerase (Promega, USA) in total volume of 50 µl. 

Each PCR was performed with GeneAmpPCR system 9600 (Perkin Elmer, USA). 

The PCR reaction condition was used as follows: 95°C for 2 min 1 cycle, 94°C for 30 

s, 53°C for 1 min, 56°C for 8 min 35 cycles and final 65°C for 16 min 1 cycle. 

Products from PCR were separated on 2% agarose gel, stained with ethidium bromide 

and viewed under UV light in gel documentation. 

 

  4.3.4.2 Construction of gus-marked B. japonicum strains 

  Two bacterial strains, Escherichia coli S17-1 donor strain 

(harboring plasmid pCAM120, Tn5 fusion with gus-gene) which is resistant to 20 µg 

ml
-1

 of both Streptomycin and Spectinomycin, and recipient B. japonicum strain 

USDA 110 which is resistant to Gentamycin (20 µg ml
-1

), were grown to stationary 

phase in Luria-Bertani broth (LB) (Sambrook et al., 1989) and YEM broth for 

overnight and 7 days, at 37°C and 28±2°C, respectively. The method for biparental 

mating was followed by method of Krause et al. (2002). Blue forming colonies on 

(HEPES-MES) HM solid media (Cole and Elkan, 1973) containing Streptomycin 

(200 µg ml
-1

), Gentamycin (30 µg ml
-1

) and X-gluc (5-Bromo-4-chloro-3-indolyl-
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beta-D-glucoside) (20 µg ml
-1

)
 
were selected as transconjugants and sub-cultured on 

YMA medium to check purity and gus-stability. Stable blue colonies were then 

picked up and inoculated into YEM broth with appropriate antibiotics and stored with 

50% sterilized glycerol at -70°C until needed. The nodule formation of gus-marked  

B. japonicum strains were checked on both siratro (Macroptilium atropurpureum) and 

soybean hosts by using growth pouch method (Vincent, 1970). 

 

  4.3.5  Competitive nodulation ability of B. japonicum strain by                              

 co-inoculation with PGPR in rhizobia-established soils 

   Pot experiment was conducted to determine the competitive ability of 

single and/or co-inoculation effects of B. japonicum strain USDA 110 with 

Azospirillum sp. on soybean nodulation and rhizosphere eubacterial community 

structure. The gus-marked B. japonicum USDA 110, wild type USDA 110, and 

Azospirillum sp. were cultured in YEM broth containing appropriate antibiotics, 

normal YEM broth and LG (N-free) broth (Hirschi et al., 1991), respectively and 

shaken on the rotary shaker (180 rpm) at 28±2°C for 7-10 days for bradyrhizobia, and 

2 days for Azospirillum sp. About 250 g of soil was put into the pre-sterilized 

modified Leonard‟s jar and four pre-sterilized and pre-germinated soybean seeds were 

grown in each jar. The cultures were centrifuged (4,000 x g for 5 mins) and washed 

with 0.85% (w/v) sterilized saline to remove the antibiotic and excess media from the 

culture media, and the cell pellet was resuspended in 0.85% (w/v) saline. One 

milliliter of the bacterial broth culture (10
8
 cfu ml

-1
) was inoculated onto each seed 

according to treatments. For the single inoculation, the seedlings were inoculated 

separately with 10
8
 cfu ml

-1
 of Azospirillum sp., USDA 110 wild type (wt) and gus-
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marked USDA 110 (tr). For the co-inoculation, 10
8
 cfu ml

-1
 of USDA 110 (tr) were 

mixed in a ratio of 1:1 with three different inoculum levels (10
6
, 10

7
, and 10

8
 cfu ml

-1
) 

of Azospirillum sp. Bulk soil (no planted and non-inoculated control) and non-

inoculated controls were also included.  

      The experiment was conducted as a CRD design with three replications. 

Plants were grown on a growth shelf at 27/20°C in light room condition under 16/8 h 

light/dark photoperiod. Additional experiment was set up as the same treatments; 

however, the vermiculite was used as growth media instead of soils under sterilized 

conditions. At 30 DAI, soybean plants were carefully uprooted from the jars from 

both sterilized and non-sterilized experiments, roots were gently washed with water 

not to remove the root hairs and nodules, and the nodulation competitiveness of 

inoculated bradyrhizobial strain was detected by gus-staining method. Nodule 

numbers per plant were counted and nodule dry weight per plant (mg) and biomass 

dry weight per plant (mg) were determined after oven dried at 70°C for 48 h.  Total 

root length (m) for each fresh root samples was measured by scanning for three times 

with “Comair Root Measurement Scanner” (Commonwealth Aircraft Crop Ltd., 

Melbourne, Australia). 

  

         4.3.5.1  Detection of gus-activity inside soybean root nodules 

    For the detection of inoculated gus-marked bradyrhizobia, root 

nodules from each treatment from non-sterilized soil experiments were cut in a half. 

The nodules were immersed in a microtiter plate containing the gus-assay solution (40 

μl X-Gluc 20 mg ml
-1

 in N, N-Dimethylformamide, SDS 20 mg, methanol 2 ml, 1M 

sodium phosphate buffer 0.2 ml and distilled water 7.76 ml), in vacuum for 2 h before 
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incubated for overnight at 28°C. Nodule formation by inoculated transconjugant           

B. japonicum USDA 110 was compared with those by normal B. japonicum USDA 

110 (wt) and competitiveness was compared by non-inoculated control. Nodulation 

occupancy was calculated by percent nodulation formed by gus-marked USDA 110. 

Results were statistically analyzed by analysis of variance (ANOVA) and least 

significant different (LSD) test was applied at 0.05 level of significant. Root nodules 

from sterilized conditions were also stained by gus-buffer to calibrate the gus-activity 

expression in the soybean nodules. 

 

 4.3.6  Total community DNA extraction and Denaturing Gradient Gel    

Electrophoresis (DGGE) analysis  

     For soil microbial (eubacterial) community structure analysis by DGGE 

method, the sampling was done without disturbing the root system and the 

rhizosphere soil samples were taken weekly interval for five times including at the 

day of sowing until one month after inoculation, i.e., at 0, 1
st
, 2

nd
, 3

rd
, and 4

th
 weeks 

after inoculation. Total genomic DNA of B. japonicum strain USDA 110 and 

Azospirillum sp. were extracted (Prakamhang et al., 2009) and kept at -20
o
C before 

using as markers for next experiments. Soil rhizosphere microbial DNA from plant 

samples was directly extracted from 0.5 g rhizosphere soil using with the Ultra Clean 

soil DNA kit (MO BIO Laboratories, Solana Beach, Califonia, USA), following the 

manufacturer's instructions. Group-specific PCR-amplification of eubacterial 16S 

rRNA gene fragments (V6-V8 variable regions of the 16S rRNA gene) which yielded 

the products of approximately 400 bp (Heuer et al., 1997) was done followed using 

universal primers F984 GC and R1378. A GC-clamp (Costa et al., 2005) was added to 
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the 5‟end of the forward primer. The reaction mixture and PCR conditions were 

conducted along with the protocol of Piromyou et al. (2011). Aliquots (3 µl) of the 

amplification products were analyzed first by electrophoresis in 1% agarose gels and 

quantified using a 1 kb ladder marker and PCR products were store at -20°C before 

DGGE analysis. 

    The PCR products of inoculated bacteria and those of soil bacterial 

community were subjected separately to DGGE analysis. DGGE was performed using 

a Dcode Universal Mutation Detection System (Bio-Rad Laboratories, Hercules, CA). 

About 45 µl of PCR products were loaded onto 6% (w/v) polyacrylamide 

(Acrylamide: Bisacrylamide ratio, 37.5:1 Bio-Rad Laboratories, Inc.), and 1 mm thick 

(20 x 20 cm) gel in TAE buffer. The polyacrylamide gel was prepared with a linear 

denaturing gradient ranging from 40% to 70% (Urea and Formamide). A 100% 

denaturant consisted of 40% (v/v) formamide and 7M urea. PCR products of the 

rhizosphere soil eubacterial community were loaded in the middle lanes and those of 

inoculated bacteria were loaded at the both left and right sides of the sample lanes as 

“Marker bacteria”. DGGE was conducted at a constant voltage of 75 V for 10 min 

and thereafter 110 V for 18 h maintained at 60°C. Subsequently, the gel was stained 

with SYBR Green (3µl in 15µl 1xTAE buffer) for 30 min and rinsed for 3 min in 

running water before photographing.  

 

    4.3.6.1  Sequencing of DGGE bands 

   The microbial community composition in DGGE gel was 

analyzed by cloning and partial sequencing of the 16S rRNA genes. Bands of interest 

in DGGE gels were carefully excised from the UV illuminated acrylamide gels by 
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sterilized pipette tip (10 µl) and DNA was eluted from the excised gel by incubation 

in 30 µl ddH2O at 4°C overnight. Eluted DNA (~0.5 µl supernatant) was used as a 

template DNA for PCR amplification as described above by using with the same 

primer pair without GC-clamp, F984 and 1378 R for bacterial 16S rRNA genes 

amplifications. The purified PCR products were ligated into the pGEM®-T Easy 

Vector System (Promega, USA) and then further transformed into E. coli DH5α 

competent cells, following the manufacturer's protocol. PCR amplification and DNA 

sequencing was performed by MACROGEN Company (Korea). Sequences were 

generated and the most closely related sequences were obtained from the NCBI 

database. 

  

        4.3.7  Statistical analyses  

 The experimental data of nodulation and plant growth parameters were 

statistically analyzed as described by Stell et al., 1980, and means were compared by 

DMRT (Duncan, 1955). The cluster analysis and dendrogram generation of DGGE 

fingerprint profiles, and Principle Component Analysis (PCA) were carried out by the 

NTSYSpc (2.2, Exeter Software, USA) (Rohlf, 2000). The Shannon index (H‟) 

(Shannon and Weaver, 1963) was calculated according to the following equation: 

  H‟ = -∑Pi log Pi 

               where Pi is the proportion represented by each DGGE band relative to the 

total number of bands. The indices obtained were statistically analyzed as described 

for other univariate data. 
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4.4 Results 

    4.4.1  Co-inoculation effects of B. japonicum and Azospirillum sp. on soybean     

              under indigenous soybean nodulating rhizobia non-established soil  

 The soils used in this study were collected from the field of Muang 

District, Nakhon Ratchasima, Thailand with no history of leguminous cultivation and 

thus  no nodule formation was observed in both MPN plant infection counting (data 

not shown) and preliminary pot experiment as expected. Increases in numbers of 

nodule and nodule dry weight were observed by both co-inoculations even those were 

not significantly different from bradyrhizobial single inoculation (Table 6). Positive 

responses on shoot and root dry weights of soybean were obtained by co-inoculation 

of Azospirillum sp. with either of USDA 110 or CB 1809 (Figure 12). Combined 

inoculation of USDA 110 and Azospirillum sp. gave the maximum shoot and root dry 

weight and that was significantly higher than USDA 110 inoculation alone. Shoot and 

root growth was increased from 4.77 to 6.51 and from 2.32 to 3.27 times upon non-

inoculated control, respectively. Although co-inoculation of CB 1809 with 

Azospirillum sp. promoted the nodulation and plant growth, it gave less benefit 

compared to those of USDA 110 and Azospirillum sp. co-inoculation.     
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Table 6.  Co-inoculation effects of B. japonicum (CB 1809 and USDA 110) and selected PGPR on soybean nodulation and plant growth 

under pot conditions at 45 DAI (June-July, 2011) 

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05).

Treatment Nodule No. per plant 
Nodule dry weight per 

plant  (mg) 

Biomass dry weight per 

plant (mg) 

Root dry weight per 

plant (mg) 

Non-inoculated control        0.00
b
±0.00            0.00

e
±0.00          812.20

c
±35.84       217.80

c
±8.43 

Azospirillum sp.         0.00
b
±0.00            0.00

e
±0.00     1054.35

c
±111.27       202.48

c
±6.43 

CB 1809       84.50
a
±4.21     237.37

b
±27.98    4598.30

ab
±387.70    611.60

ab
±53.98 

USDA 110     78.75
a
±19.20    248.03

ab
±29.38     3873.68

b
±327.09     506.30

b
±24.03 

CB 1809 + Azospirillum sp.  112.50
a
±10.90    264.25

ab
±30.54     4892.85

a
±305.24     640.63

a
±59.35 

USDA 110+ Azospirillum sp.      90.50
a
±7.82     346.90

a
±34.35     5289.80

a
±666.61     712.33

a
±46.97 
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Figure 12.  Co-inoculation effects of B. japonicum and Azospirillum sp. on soybean 

plant growth under indigenous soybean nodulating rhizobia non-

established soil: A. Non-inoculated control, B. Azospirillum sp. 

inoculation alone, C. B. japonicum USDA 110 inoculation alone,             

D. co-inoculation of B. japonicum USDA 110 and Azospirillum sp.,        

E. B. japonicum CB 1809 inoculation alone, F. co-inoculation of             

B. japonicum CB 1809 and Azospirillum sp. 

 

4.4.1.1  Rep-PCR amplification and genetic marking of B. japonicum 

strain 

 Results from preliminary screening tests showed the different 

responses of B. japonicum strains CB 1809 and USDA 110 on co-inoculation with 

different rhizobacteria. Therefore, Rep-PCR fingerprinting was used to investigate the 

genetic differences between B. japonicum strains CB 1809 and USDA 110. The 

resulted BOX-PCR fingerprints of two bradyrhizobia showed differences in banding 

patterns (Figure 13). The previous results from pot experiment revealed that 

Azospirillum sp. co-inoculated with B. japonicum strain USDA 110 gave higher shoot 

and root dry weight than with CB 1809. Therefore, only USDA 110 was selected for 

further studies.  
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Figure 13.    Comparison  of  Rep-PCR  products  of  B. japonicum  USDA 110  and  

   CB 1809 with 1 kb ladder marker.  

 

4.4.2  Competition for nodule occupancy analysis in rhizobia-established   

Myanmar and Thailand soils 

 Plant infection test used to assess the presence of indigenous soybean- 

nodulating bradyrhizobial populations in tested soil samples showed that both 

Myanmar and Thailand soils have indigenous soybean rhizobial population (3.1x 10
6
 

and 1.7 x 10
5
 cells per gram of dry soil,

 
respectively). Under sterilized conditions, 

USDA 110 (tr) gave 100% nodule occupancy on soybean. Moreover, soybean 

inoculated with USDA 110 (tr) produced similar nodule number and biomass 

compared to those of the unmarked USDA 110 (wt) strain in both sterilized growth 

media and un-sterilized soil conditions (Table 7, 8 and 9). 
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 Under sterilized growth media conditions, significant differences in 

nodulation were observed among the treatments. Co-inoculation of USDA 110 (tr) 

with Azospirillum sp. (10
7
 cfu ml

-1
) gave the significantly highest nodule number 

(Table 7). Maximum and significantly highest biomass dry weight was given by         

co-inoculation of USDA 110 (tr) and Azospirillum sp. (10
8
 cfu ml

-1
).  

 All of the inoculation treatments increased in nodule number and nodule 

dry weight in compared to non-inoculated control in both Myanmar and Thailand 

soils (Table 8 and 9). Although when soybean seeds were inoculated singly with 

PGPR strain Azospirillum sp., the plants showed different responses on growth, root 

development (Figure 14) and increased the number of nodules compared to non-

inoculated control in both tested soils. The root length measured by using “Comair 

Root Measurement Scanner” clearly showed the positive response to inoculation of 

Azospirillum sp. In rhizobia-established Myanmar soil, co-inoculation of                       

B. japonicum strain USDA 110 (tr) with Azospirillum sp. in 10
8
 cfu ml

-1
 gave 

maximum nodule formation and it was significantly different compared to non-

inoculated control. Combined inoculation of USDA 110 (tr) with Azospirillum sp. 

(10
8
) gave the maximum enhancement of soybean nodulation and plant growth 

followed by 10
6
 and/or 10

7
 cfu ml

-1
 of Azospirillum sp. In rhizobia-established 

Thailand soil, co-inoculation of USDA 110 (tr) with different tested inoculum levels 

of Azospirillum sp. (10
6
-10

8
 cfu ml

-1
) gave significantly higher nodule formation and 

biomass dry weight compared to those of non-inoculated control. 

 Each of all tested inoculum levels; i.e., 10
6
, 10

7
, and 10

8
 cfu ml

-1
 of 

Azospirillum sp. enhanced nodulation in combination with B. japonicum USDA 110 

with a corresponding increase in 73.80, 62.25 and 95.34%; and 51.52, 62.38 and 
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79.46% over non-inoculated control in Myanmar and Thailand soil, respectively. 

Overall, the results obtained in the present study clearly indicated that all of the tested 

inoculum levels of PGPR Azospirillum sp. influenced the biomass development and 

nodulation when co-inoculated with B. japonicum USDA 110 (10
8
 cfu ml

-1
). In term 

of nodulation occupancy in rhizobia-established Myanmar soil, 93.21-94.75% of the 

nodules were occupied by gus-marked B. japonicum USDA 110 when inoculated 

singly or combination with and percent occupancies were not significantly different 

among them. However, in rhizobia-established Thailand soil, significant differences 

in competitive abilities of gus-marked B. japonicum were observed in a range of 

74.21-100% nodule occupation when co-inoculated with different inoculum levels of 

Azospirillum sp. In addition, co-inoculations gave 23.50-41.95% and 50.37-73.24% 

biomass dry weight over non-inoculated control in rhizobia-established Myanmar and 

Thailand soil, respectively.  
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Table 7.  Single and co-inoculation of B. japonicum and Azospirillum sp. on soybean nodulation in sterilized growth media 

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05).

Treatments 

Nodule No. per 

plant 

Nodule dry weight 

per plant (mg) 

Biomass dry weight  

per plant (mg) 

Control       0.00
d
 ± 0.00        0.00

c
  ± 0.00       241.30

d
 ± 53.70 

Azospirillum sp. (10
8
)       0.00

d
 ± 0.00        0.00

c
  ± 0.00       249.52

d  
± 19.68 

USDA 110 wt (10
8
)     12.67

c 
 ± 2.09      30.75

ab
 ± 1.28       517.20

bc
±  34.64 

USDA 110 tr (10
8
)     18.33

c
 ± 1.45      27.65

b
  ± 0.80       449.15

c
  ± 18.14 

USDA 110 tr (10
8
) + Azospirillum sp. (10

6
)     32.00

b
 ± 2.08      27.03

b
  ± 3.68       494.13

bc 
± 91.38 

USDA 110 tr (10
8
) + Azospirillum sp. (10

7
)     44.83

a  
± 4.91      39.40

a
  ± 5.38       662.38

c 
 ± 87.50 

USDA 110 tr (10
8
) + Azospirillum sp. (10

8
)     32.50

b
 ± 1.32      42.08

a
  ± 1.52       873.92

a
  ± 49.84 
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Table 8.  Competitive ability, nodulation efficiency, and plant growth enhancement of gus-marked B. japonicum strain USDA 110 and  

        Azospirillum sp. inoculation on soybean in rhizobia-established Myanmar soil (30 DAI) 

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05). 

Treatments 

Nodule 

number per 

plant 

% nodule 

occupancy 

by gus-

marked 

USDA 110 

Nodule dry 

weight (mg) 

Plant height 

per plant 

(cm) 

Biomass dry 

weight per 

plant (mg) 

Root length 

per plant 

(m) 

Control   19.31
b
±3.60 -  28.90

b
±7.11  30.33

d
±0.75  568.20

c
±41.69   15.85

b
±1.74 

Azospirillum sp. (10
8
) 25.67

ab
±5.78 -  31.82

b
±7.73  29.75

d
±0.36 593.22

bc
±29.27  29.90

ab
±2.94 

USDA 110 wt (10
8
) 30.21

ab
±3.63 - 41.36

ab
±5.11 32.50

cd
±0.73 701.70

ab
±35.62  24.28

ab
±1.00 

USDA 110 tr (10
8
) 34.58

ab
±2.52 94.50

a
±3.67  33.71

b
±3.33  30.25

d
±0.70 705.12

ab
±39.26  29.58

ab
±7.70 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

6
) 29.11

ab
±3.36 96.31

a
±1.87 44.93

ab
±5.25 36.58

ab
±1.14  755.28

a
±61.45   38.67

a
±7.68 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

7
) 31.33

ab
±3.51 93.21

a
±3.92 39.80

ab
±4.68 34.25

bc
±0.76  748.16

a 
±40.18   32.38

a
±4.71 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

8
) 37.72

a
 ± 6.67 94.75

a
±2.24  58.00

a
±6.98  38.83

a
±2.34  806.58

a
±30.32   32.43

a
±2.12 
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Table 9.  Competitive ability, nodulation efficiency, and plant growth enhancement of gus- marked B. japonicum strain USDA 110 and  

Azospirillum sp. inoculation on soybean in rhizobia-established Thailand soil (30 DAI)       

Values followed by the same letter within the same columns are not significantly different by Duncan's multiple range test (P ≤ 0.05). 

 

Treatments 

Nodule 

number per 

plant 

% nodule 

occupancy  

by gus-

marked 

USDA 110 

Nodule dry 

weight (mg) 

Plant 

height per 

plant (cm) 

Biomass dry 

weight per 

plant (mg) 

Root length 

per plant 

(m) 

Control     20.79
c
±4.10 - 26.15

b
±5.68   29.30

c
±1.86 502.85

b
±24.55 14.25

c
±1.18 

Azospirillum sp. (10
8
)   25.28

bc
±2.67 - 32.05

ab
±2.82   35.25

b
±2.09 690.89

a
±39.60 17.18

bc
±3.41 

USDA 110 wt (10
8
)   31.87

ab
±3.41 - 33.02

ab
±2.35 37.75

ab
±2.22 761.82

a
±43.08 21.03

a
±1.90 

USDA 110 tr (10
8
) 28.71

abc
±3.69 86.77

ab
±3.46 37.68

a
±2.22  35.67

b
±2.36 756.14

a
±86.09 15.63

bc
±1.09 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

6
)   31.50

ab
±3.48   74.21

b
±4.60 34.68

ab
±3.14 43.08

a 
±1.91 805.92

a
±75.16 16.45

bc
±0.34 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

7
)   33.75

ab
±3.48 100.00

a
±0.00 33.02

ab
±4.24 43.08

a 
±1.65 836.03

a
±67.43 19.88

abc
±2.15 

USDA 110 tr (10
8
)+ Azospirillum sp. (10

8
)    37.31

a
±4.64 95.38

ab
±2.75  42.83

a
±2.56 40.17

ab
±1.66 871.13

a
±56.98 24.56

a
±0.61 
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Figure 14   Soybean root development in (A) Myanmar Soil and (B) Thailand Soil by 

inoculation with (i) None; (ii) Azospirillum sp.; (iii) B. japonicum USDA 

110 (wt); (iv) B. japonicum USDA 110 (tr); (v) B. japonicum USDA 110 

(tr) (10
8
 cfu ml

-1
) and Azospirillum sp. (10

6
 cfu ml

-1
);                                

(vi) B. japonicum USDA 110 (tr) (10
8
 cfu ml

-1
) and Azospirillum sp. (10

7
 

cfu ml
-1

); (vii) B. japonicum USDA 110 (tr) (10
8
 cfu ml

-1
) and 

Azospirillum sp. (10
8 
cfu ml

-1
).  

 

       4.4.3  DGGE analysis  

 There were 22-39 bands observed in 16S rRNA eubacterial community 

profiles of Myanmar soil generated by DGGE analysis and it was clearly classified  

into two main groups with 68% similarities (Figure 15) by cluster analysis. The first 

cluster included ~73% similarity of week zero bulk soil sample, 1
st
, and 3

rd
 week  

samples, and the second cluster included the 2
nd

 and 4
th

 week samples with ~75% 
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similarity. Except from the 4
th

 week samples, bulk soil samples from other sampling 

times were clearly separated from inoculated and non-inoculated samples. Prominent 

DGGE bands were excised for nucleotide sequence determination. Four bands 

presented in nearly all profiles in Myanmar soil samples were Bacillus cecembensis 

(JX 290163), Azotobacter nigricans (JX 290160), Bradyrhizobium elkanii (JX 

290163) and Burkhoderia sp. (JX 290164) with 99, 98, 100 and 95% similarity, 

respectively. 

 In the case of Thailand soil, 12-20 bands were observed in DGGE 

fingerprints of different sampling times which were 76-100% similarities and grouped 

into two main clusters with 76% similarity, i.e., first cluster included week 0,  1
st
, 2

nd
, 

and 3
rd

 week samples with 80% similarity and second included only 4
th

 week samples 

(Figure 17). The presence of 100% similarity among the DGGE patterns of different 

treatments indicated that the eubacterial community structures were not significantly 

shifted by bacterial inoculation. In Thailand soil samples, two prominent bands were 

sequenced to be Bradyrhizobium sp. (NR 0417851) and Nitrospira moscoviensis (JX 

290162) with 100 and 99 % similarity, respectively. 

 Principal component analysis (PCA) separated the DGGE profiles of both 

Myanmar and Thailand soil samples into four groups. It was gradually and 

continuously changed from first week to last week sampling in Myanmar soil samples 

(Figure 16). However, in the case of Thailand soil samples, there were two groups 

those were not clearly separated between 1
st
 week and 3

rd
 week samples (Figure 18).  
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Figure 15.  Cluster analysis of eubacterial community structures of partial 16S rRNA 

PCR- DGGE fingerprints of different soybean rhizosphere samples after 

inoculation with different bacterial inocula, i.e., (Bulk), Bulk Soil; (Ctrl), 

Control; (Azo), Azospirillum sp.; (Wt), USDA 110 wild type; (Tr), gus-

marked USDA 110; Tr + (10
6
-10

8
), co-inoculation of  gus-marked USDA 

110 (10
8
) with different inoculum levels of  Azospirillum sp. (10

6
-10

8
)  at 

different sampling times (0, 1
st
 , 2

nd
 , 3

rd
 , and 4

th
  weeks after 

inoculation) under in rhizobia-established Myanmar soil. Labels on 

fingerprints were subjected to sequence for analysis. Line 1 and 2 refer to 

inoculated bacteria Azospirillum sp. and B. japonicum, respectively. 
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Figure 16.  Community analysis derived from two-dimentional plot based on the first 

two principle coordinates from a principle coordinate analysis (PCA) of 

partial 16S rRNA banding profiles of soybean rhizosphere soil samples in 

rhizobia-established Myanmar soil. Letters adjacent to marks indicate the 

treatments: i.e., (Bulk), Bulk Soil; (Ctrl), Control; (Azo), Azospirillum 

sp.; (Wt), USDA 110 wild type; (Tr), gus-marked USDA 110; Tr + (10
6
-

10
8
), co-inoculation of  gus-marked USDA 110 (10

8
) with different 

inoculum levels of  Azospirillum sp. (10
6
-10

8
)  at different sampling 

times represented as (0 Wk) week zero; ( ) 1
st
 week; ( ) 2

nd
 week; (o)  3

rd
 

week and ( ) 4
th

 week, respectively. Different samples formed a cluster 

which is circled by (- - - - , 
 
……,

 _ _ _ _ 
 ,  and 

______
 
_
) shows          a trend 

of 1
st
 , 2

nd
, 3

rd
 and 4

th
 week, respectively.                              
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Figure 17.  Cluster analysis of eubacterial community structures of partial 16S rRNA 

PCR- DGGE fingerprints of different soybean rhizosphere samples after 

inoculation with different bacterial inocula, i.e., (Bulk), Bulk Soil; (Ctrl), 

Control; (Azo), Azospirillum sp.; (Wt), USDA 110 wild type; (Tr), gus-

marked USDA 110; Tr + (10
6
-10

8
), co-inoculation of  gus-marked USDA 

110 (10
8
) with different inoculum levels of  Azospirillum sp. (10

6
-10

8
)  at 

different sampling times (0, 1
st
 , 2

nd
 , 3

rd
 , and 4

th
  weeks after 

inoculation) under in rhizobia-established Thailand soil. Labels on 

fingerprints were subjected to sequence for analysis. Line 1 and 2 refer to 

inoculated bacteria Azospirillum sp. and B. japonicum, respectively. 
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Figure 18.  Community analysis derived from two-dimentional plot based on the first 

two principle coordinates from a principle coordinate analysis (PCA) of 

partial 16S rRNA banding profiles of soybean rhizosphere soil samples in 

rhizobia-established Thailand soil. Letters adjacent to marks indicate the 

treatments: i.e., (Bulk), Bulk Soil; (Ctrl), Control; (Azo), Azospirillum 

sp.; (Wt), USDA 110 wild type; (Tr), gus-marked USDA 110; Tr + (10
6
-

10
8
), co-inoculation of  gus-marked USDA 110 (10

8
) with different 

inoculum levels of  Azospirillum sp. (10
6
-10

8
)  at different sampling 

times represented as (0 Wk) week zero; ( ) 1
st
 week; ( ) 2

nd
 week; (o)  3

rd
 

week and ( ) 4
th

 week, respectively. Different samples formed a cluster 

which is circled by (- - - - , 
 
……,

 _ _ _ _ 
 ,  and 

______
 
_
) shows a trend of 1

st
 

, 2
nd

, 3
rd

 and 4
th

 week, respectively.    



 

 

 

 

 

 

 

 

140 

 

 

4.5  Discussion 

 Prior to study on competitive ability of B. japonicum against indigenous 

bradyrhizobia, each B. japonicum strain CB 1809 or USDA 110 was co-inoculated 

with Azospirillum sp. on soybean under indigenous soybean nodulating rhizobia non-

established soil conditions. Based on non-inoculated control in pot experiment and 

MPN plant infection count, the results provided the information about the absence of 

indigenous soybean nodulating-bradyrhizobia in the tested soils as no nodule 

formation was observed. In addition, it is indicated that although number of nodule 

formation was not different among single and co-inoculations, differences observed in 

nodule dry weight, and shoot and root dry weights revealed the efficient nodulation 

and N2-fixation obtained by co-inoculation of soybean with B. japonicum and 

Azospirillum sp. Increasing of nodule number, nodule dry weight, and root dry weight 

given by single or co-inoculation either of B. japonicum strain CB 1809 or USDA 110 

with Azospirillum sp. support plant growth of soybean. There have been several 

reports that described the beneficial effects of Azospirillum sp., a well documented 

member of PGPR, on the symbiosis between Rhizobium bacteria and legumes            

(e.g., Burdman et al., 1997; Tilak et al., 2006; Remans et al., 2007).  

 The B. japonicum strain CB 1809 and its co-inoculation with Azospirillum sp. 

could produce better nodulation but less plant growth compared to B. japonicum 

strain USDA 110 and its co-inoculation. Comparison between fingerprint patterns of 

CB 1809 and USDA 110 revealed that there will be some genetic differences between 

these two bradyrhizobia as the patterns of those were different from each other. 

Therefore, there will be some genes which differently response on co-inoculation of 

Azospirillum sp. As mentioned by Fages (1994) that more consistent results are 



 

 

 

 

 

 

 

 

141 

 

 

necessary for the commercial development of inoculants with Azospirillum, USDA 

110 was selected to be a promising strain for further co-inoculation studies with 

Azospirillum sp. on competition for nodulation against indigenous bradyrhizobia.  

 Generally, indigenous soybean nodulating-bradyrhizobia establish in most of 

the soybean growing fields either with effective or ineffective N2-fixation ability. 

Inoculation of soybean with rhizobial inoculants is a common practice in most of the 

soybean growing areas in Myanmar, but only a few percents of rhizobial inoculants 

for soybean are being produced by Department of Agricultural Research (DAR). 

However, since 10 years ago, there was not much information on competitive 

nodulation of inoculated B. japonicum strains against indigenous soybean rhizobia on 

field grown soybean in Myanmar. In Myanmar and Thailand, there has no literature 

on the bacterial and fungal community structures in soybean rhizosphere with respect 

to rhizobial inoculations. Plant infection tests revealed the presence of high 

populations of indigenous soybean-nodulating bradyrhizobia in soil samples of 

Myanmar and Thailand soybean growing fields. As mentioned by Shamseldin and 

Werner (2004), in major soybean crop regions, most of the ineffective indigenous 

rhizobial strains are prioritized over the inoculation strains because of their 

competitiveness for population and adaptation to the environment. The competition 

for nodulation is a complex phenomenon depending on soil parameters and genetic 

traits of both the Rhizobium symbiont and the host (Triplett and Sadowsky, 1992). 

 To evaluate the competition for nodulation of USDA 110, it was genetically 

marked by gus-marker gene. In this study, 10-100 times of B. japonicum was used in 

a full dose for single inoculation and in a half dose in combination with varied PGPR 

populations. The results indicated that the gus-marker is stably inherited and detected 
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in full percentage (100%) of soybean nodules under sterilized conditions. However, 

under non-sterilized conditions, nodulation occupancy is lower in Myanmar and 

Thailand soils compared to sterilized conditions which indicated the competition for 

nodulation by indigenous rhizobia. Based on data of Weaver and Frederick (1974),    

it can be predicted that an inoculation rate of at least 1000 times of the soil rhizobial 

population must be used in soils if the inoculum rhizobia to be formed 50% or more 

of the nodules. Dowdle and Bohlool, 1987 also illustrated high ratios of inoculum: 

indigenous numbers were required to displace indigenous rhizobia from nodules.  

 Strain USDA 110 was the predominant strain and the most competitive strain 

compared to USDA 138 and 136b in the nodules of all of the soybean varieties and at 

all of the sites (George et al., 1987). Similar result was observed with highly 

recoveries of USDA 110 (Kosslak and Bohlool, 1985). They found that USDA 110 to 

be highly competitive against USDA 123 in vermiculite and in Hawaiian soils devoid 

of B. japonicum. Payakapong et al. (2004) also reported that USDA 110 showed 

higher nodulation competitiveness than the other strains of bradyrhizobia, THA 5, 

THA 6, and SEMIA 5019 on three of the five cultivars. 

  In this study, the results demonstrate that there was a remarkable effect of 

PGPR Azospirillum sp. on enhancement of root development and nodulation by         

B. japonicum strain USDA 110. By single inoculation, although most of the 

parameters such as nodule number, nodule dry weight, plant height, and root length of 

soybean plants were not significantly different from those of non-inoculated control, 

highly significant differences were observed in biomass dry weight in both soils.        

It could suggest that increasing in nodule number was favored by increases in root 

growth that formed new root hairs. According to investigation on co-inoculation 
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effects, any tested level of Azospirillum sp. inoculum with B. japonicum can enhance 

on nodulation and plant growth over non-inoculated control in both soybean 

nodulating bradyrhizobia-established soils. Positive dual inoculation effects of 

Rhizobium and Azospirillum in various legume crops are recorded by several authors 

(Burdman et al., 1996; Iruthayathas et al., 1983). And this is attributed to early 

nodulation, increased number of total and upper nodules (probably due to an increase 

in the secretion of nod gene inducer signals by roots) and higher N2-fixation rates 

(Burdman et al., 1996).  

 It is needed to study the changes of microbial community caused by 

inoculation of rhizobial inoculants as their potential ecological ricks on microbial 

diversity should not be neglected. Therefore, in addition to competition for 

nodulation, the changes of microbial communities of soybean rhizosphere soil were 

studied before and after inoculation of  B. japonicum alone and its co-inoculation with 

Azospirillum sp. compared to both non-inoculation control and inoculation of PGPR 

in addition to bulk soil. High molecular weights of total community DNA extracts 

were recovered from soybean rhizosphere soil samples at four sampling times over 

the vegetation. From those total community DNAs, 16S rRNA fragments were 

amplified by PCR, and only eubacterial communities were analyzed by DGGE from 

pot experiment under control environment.  

 DGGE band patterns observed in bulk soil samples were even faint, noticeably 

affects were not occurred when applied the clustering methods, and it was evidence 

that inoculation has no affect on soil eubacterial community structures. The numbers 

of DGGE bands increased with the age of soybean roots for the 1
st
 week and 2

nd
 week 

rhizosphere samples, indicating the increase of the bacterial diversity along with the 



 

 

 

 

 

 

 

 

144 

 

 

root age at the early stage of soybean growth. Because of the root system releases      

a wide variety of organic materials and it differs during the development of the plant 

(time) (Swinnen et al., 1994) and for certain sites of the root system (space) (Lynch 

and Whipps, 1990), it can be expected that bacteria utilizing these materials as           

a substrate will vary in population composition and density during the development of 

plants (Bowen and Rovira, 1991).  

 Both soils used in this study were from the areas with a long history of 

soybean cultivation. Based on 16S rRNA genes, the closer related Bradyrhizobium 

spp. (B. elkanii in Myanmar soil and Bradyrhizobium sp. in Thailand soil) were 

detected and it was the predominant genus, representing in all samples in all sampling 

time and DGGE profiles. Highly distinct and high intensity bands were detected, and 

thus suggest that those bacteria colonized the soybean rhizosphere soils. This supports 

the reason of occurrence of nodulation on soybean in both non-inoculated control and 

Azospirillum sp. inoculation alone. An associative N2-fixing bacterium Azotobacter 

nigricans was detected among the DGGE bands in Myanmar soil, and it can be 

supposed that is presented as a PGPR because the sampling field areas have been 

cultivated rice, maize, and sunflower as alternative crops. In 1982, FAO reported that 

Azotobacter spp. are found in the soil and rhizosphere of many plants, and their 

population ranges from negligible to 10
4
 g

-1
 of soil depending upon the physico-

chemical and microbiological (microbial interactions) properties. Azotobacter spp. are 

free-living, aerobic, plant growth promoting  bacteria dominantly found in soils and 

shown to be antagonistic to pathogens. They are non-symbiotic heterotrophic bacteria 

capable of fixing an average 20 kg N ha
-1

per year
-1

. Furthermore, Burkholderia sp. 

was detected in Myanmar soil. Burkholderia can nodulate and form effective N2-

fixing symbioses with legumes most particularly those in the large mimosoid genus 
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Mimosa (Elliott et al., 2007). Shannon‟s index demonstrated that the species 

richnesses were not changed among the treatments (data not shown). Therefore, it can 

be supposed that changes in eubacterial communities in each sampling time were not 

affected by inoculation treatments.  

 In this study, soybean cultivar Chiang Mai 60 was used in both Myanmar and 

Thailand soil samples and DGGE profiles generated during the planting time were not 

clearly differences among the treatments. Thus, it can be assumed that the single 

bradyrhizobial inoculation or co-inoculation with any tested levels (10
6
-10

8
 cfu ml

-1
) 

of Azospirillum sp. do not shift the soil eubacterial communities, however, the 

shifting in eubacterial community observed week after week in all treatments can be 

resulted from plant growth development. The dynamics of rhizosphere microbial 

communities is important for plant health and productivity, and can be influenced by 

soil type, plant species or genotype, and plant growth stage (Jin et al., 2009).           

The results of principal component analyses (PCA) from both soil types supported 

that the bacterial community structure changed with the growth stage and it was 

similar to the findings of Jin et al. (2009) and Piromyou et al. (2011).  

 Moreover, this experiment was conducted under control environment at light 

room condition which supported to create equal environmental effects; therefore, 

bacterial community changes might be according to inoculation and different 

sampling times. Generally, the variation of microbial communities with the 

progression of the growth stages may be related to two separate mechanisms. The first 

mechanism may involve environmental changes such as soil temperature and soil 

moisture with the growth stages (Nazih et al., 2001). However, this mechanism may 

only play a minor contribution, since the temperature and water regime were 

relatively uniform throughout the growth stages in the pot experiment. The second 
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mechanism may be ascribed to the changes in the quality and quantity of root 

exudates or rhizodepositions with the growth stages. Although they were not 

measured in the present study, there are several pieces of evidence that root exudates 

are strongly affected by the growth stages, which in turn can affect rhizosphere 

microbial communities over time (Duineveld et al., 2001; Garbeva et al., 2004). Thus, 

in this study, the succession of bacterial communities in the soybean rhizosphere may 

be due to the variations in root exudates or rhizodepositions at different plant growth 

stages. 

  

4.6  Conclusions 

 Different inoculum levels of Azospirillum sp. and half ml of B. japonicum (10
8
 

cfu ml
-1

) can enhance and compete for nodulation against indigenous rhizobia better 

than single inoculation of USDA 110 alone. Therefore, the selected USDA 110 and 

Azospirillum sp. in this research is prominent bacteria that can be applied for             

co-inoculant formulation for soybean. In addition, prior to large scale production of 

co-inoculants including B. japonicum and Azospirillum sp. for soybean, on-farm 

competition trials are also needed to determine the competitive ability against native 

strains in soybean growing areas and their effects on soil microbial community 

structures in Myanmar. Moreover, new high-yielding soybean cultivars are released 

year by year. Therefore, the competitiveness of introduced B. japonicum strain against 

indigenous strains for nodulation should be tested because of their host-specific 

legume-rhizobium symbiosis.  
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CHAPTER V 

GENERAL DISCUSSION, CONCLUSIONS AND 

PERSPECTIVES 

 

 To answer the first question in Chapter I, 200 rhizobacteria obtained from 

School of Biotechnology, SUT were screened for their antagonisms on bradyrhizobia 

in vitro. Those rhizobacteria were originally isolated from rhizosphere soil of rice, 

maize and vegetables. The results from Chapter III did evaluate that some of the 

tested rhizobacteria inhibit the tested rhizobial growth in vitro. It can suggest that not 

all rhizobacteria are suitable to be used in co-inoculants. However, if we want to use 

the rhizobacteria together with bradyrhizobia as co-inoculant on specific crop, other 

factors should also have to consider such as their abilities on nodulation enhancement, 

N2-fixation, and plant growth promotion, etc.,. The selected Azospirillum sp. and 

Bacillus solisalsi Isolate 3 from tested rhizobacteria were effectively nodulated on 

soybean those were obtained from structural and sequential screening on the specific 

soybean host plant. 

The results in Chapter III revealed that co-inoculation of B. japonicum and 

Azospirillum sp. gave positive responses in nodulation and plant growth under 

soybean-nodulating bradyrhizobia-free soils in both pot and field experiments.              

Co-inoculation of B. japonicum and Azospirillum sp. considerably and stably 

increased nitrogen fixation, yield and yield components of soybean under field 

condition.  Because,  there were many factors which affect the success of   nodulation 
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under natural conditions, the results in this research fulfilled only some parts from 

those of several conditions. 

 Moreover, results from Chapter IV revealed that co-inoculation gave better 

competition for nodulation with tested different inoculums levels of Azospirillum sp. 

and half ml of B. japonicum (10
8
 cfu ml

-1
) against indigenous rhizobia than single 

inoculation of USDA 110 alone. The soil used in this study were already established 

with soybean-nodulating bradyrhizobia as shown in MPN plant-infection counting 

tests. The results from Chapter IV provided the information of the good in 

competitiveness of our B. japonicum USDA 110 and Azospirillum sp. in their 

combination. 

 The DGGE and PCA results from Chapter III and IV did illustrate that the 

selected rhizobacteria did not shift rhizosphere soil community structures as 

noticeably shifting of the rhizosphere soil microbial community structures by any            

co-inoculation was not detected. Plant age is the major factor that controls the 

community structures in all tested conditions.   

 In conclusion, prominent bacteria Azospirillum sp. was selected as the most 

effective PGPR that has a potential to be used in co-inoculants with B. japonicum 

strains that can be possible to apply for co-inoculant formulation for soybean. 

However, prior to large scale production of co-inoculants including B. japonicum and 

Azospirillum sp. for soybean, their survival and competition for nutrient in the 

inoculants and shelf-life of inoculants under different storage conditions should be 

evaluated. In addition, on-farm competition trial in soybean-nodulating 

bradyrhizobia-established soil in soybean growing areas is also necessary to 

determine their potential for competitiveness against native strains competitive ability 
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against native strains, effectiveness on new high-yielding soybean cultivars, and 

effects on soil microbial community structures in growing areas. Therefore, the 

competitiveness of introduced B. japonicum strain to indigenous strains for 

nodulation should be tested because of their host-specific legume-rhizobium 

symbiosis.  
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APPENDICES 

 

Appendix 1.  Yeast Manitol medium (YM) (Vincent, 1970) 

 D-manitol     10.0 g 

 Yeast extract     0.4 g 

 NaCl      1.0 g 

 MgSO4·7H2O     0.2 g 

 H2O      1000 ml 

 pH       6.8 

 

Appendix 2.  LG medium (Hirschi et al., 1991) 

 Glucose     10 g  

 KH2PO4     0.41 g 

 K2HPO4    0.52 g 

 CaCl2      0.2 g 

 Na2SO4     0.05 g 

 MgSO4.7H2O    0.1 g 

 FeSO4.7H2O    0.005 g 

Na2MoO4.2H2O   0.0025 g 

 H2O      1000 ml 
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Appendix 3.  Composition of N-free Nutrient Solution (Broughton and  Dilworth, 

1971) 

Stock 

Solution 

Element          Form    g liter
-1

 

1 Ca  CaCl2.2H2O    294.1 

2 P        KH2PO4    136.1 

3 Fe        Fe citrate       6.7 

 Mg        MgSO4.7H2O   123.3 

 K        K2SO4     87.0 

 Mn        MnSO4.H2O   0.338 

4 B        H3BO3   0.247 

 Zn        ZnSO4.7H2O   0.288 

 Cu        CuSO4.7H2O   0.100 

 Co        CoSO4.7H2O  0.056 

 Mo        NaMoO2.2H2O   0.048 

 

Appendix 4.  Nutrient Agar Medium (American Public Health Association, 1917) 

 Peptone   5.0 g 

   Beef Extract     3.0 g 

   Agar      15 g 
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Appendix 5.  HM medium (Cole and Elkan, 1973) 

 

   Sodium Glutamate    1.0 g 

    Na2HPO4     0.125 g 

    NaSO4     0.25 g 

    NH4Cl        0.32 g 

    MgSO4·7H2O     1.8 g 

    FeCl3      0.004 g 

    CaCl2·2H2O     0.013 g 

    HEPES     1.3 g 

   MES      1.1 g 

    Yeast extract     1.0 g 

    L-arabinose     1.0 g 

    H2O      1000 ml 

    pH      6.8 

 

   H2O      1000 ml 

 pH   6.8 
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