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CHAPTER 1

INTRODUCTION

1.1 Background

Nonlinear partial differential equations, and in particular the equations of
fluid dynamics, are difficult to solve analytically. Instead, one relies on numerical
methods for their solution, such as the finite difference or finite element methods.

Very often, the solutions of these equations are irregular, such as the shock
waves which can form in compressible gas flow for example. The standard numer-
ical methods deal poorly with this type of behaviour. Low-order schemes tend
to smooth-out the steep gradients, while high-order schemes give solutions which
exhibit overshoots or oscillations. In oder to obtain accurate solutions, special fi-
nite difference techniques such as flux limiters had to be designed (Harten (1983);
LeVeque (1996); Roe (1985); Roe and Sidilkover (1992); Van Leer (1997) and Van
Leer (1997)).

The development of the theory of wavelets was initially motivated by ap-
plications in signal processing (Daubechies (1988); Grossman and Morlet (1984);
Mallat (1989); Mallat and Zhong (1992)). However, it was realized early on that
their particular features should make them a useful tool for the solution of par-
tial differential equations (Glowinski et al. (1990); Latto and Tenenbaum (1990)).
This is because wavelet methods provide for basis functions which are well local-
ized in space, and are of arbitrarily small scale, and they should thus represent

the irregular solutions of nonlinear equations with good accuracy.



As an example, consider the Burgers equation
Up + Uy = VUgy (v >0)

in the spatial domain z € [0, 1], with initial condition u(0, z) = u,(x) and boundary
conditions u(t,0) = u;, u(t,1) = u,. This relatively simple nonlinear equation is
frequently used to test the accuracy of numerical schemes, as its solutions may
develop shocks at low values of viscosity v, while many exact solutions are known.
Discretizing the Burgers equation in time, one obtains an ordinary differential

equation

uF —

At

u” k(o k+1 k41
+uf(u ), = v(uh)

It can be formulated in variational form as
a(w,v) = L(v) (1.1)
where «a is the bilinear form given by
1
a(w,v) = / (vAtw'Y + Atu*w'v + wo) da (1.2)
0
and L the linear form given by

1
L(v):/ ub v da.
0

The usual Galerkin method consists of finding an approximate solution to (1.1) in
some finite dimensional subspace V' of L?[0, 1], which after choosing a basis of V,
simply means solving a system of linear equations.

The particular feature of the wavelet techniques which is of importance here
is the construction of a compactly supported and differentiable function ¢, called
scaling function, so that for each "scale” j € Z, the collection {@;, }mez forms an
orthonormal family, where ; ,,(r) = 2/7/2¢(2/x —m). In addition, for sufficiently

large j, the space V; = span{;» }mez is a good approximation to the space L?(R).



Only finitely many of the basis functions of V; do not vanish on [0, 1], and in the
Wavelet-Galerkin method, these will be used as basis functions for the Galerkin
solution of (1.1). After expressing the functions w, u* and v in (1.2) as linear
combinations of these basis vectors ¢, ,, solving (1.1) then amounts to solving of

a linear system of equations whose coefficients are determined by integrals such as

/0 3(2)8 () 0n (1)

and which are called connection coefficients. Although the scaling functions ¢
can usually not be represented in explicit form, it is still possible to compute the

connection coefficients as outlined in Lin and Zhou (2001).

The Wavelet-Galerkin method for the solution of the Burgers equation has
already been studied by several authors beginning with Latto and Tenenbaum
(1991), and usually with periodic boundary conditions. Periodic conditions allow
one to use the connection coefficients of Latto et al. (1991) whose computation
is simpler and faster than the coefficients given above. Lin and Zhou (2001) are
the only authors known to us who have solved the Burgers equation for various
non-periodic initial conditions. Their numerical experiments have shown that the
Wavelet-Galerkin method can produce substantially better approximations to the
exact solution than the traditional Galerkin method for this equation. However,
their numerical experiments have involved only medium to high levels of viscosity,
and it is not clear how this method performs at low viscosity.

Kuma and Mehra (2005) have chosen a forward second order Taylor expan-
sion for discretization in time,

k+1 K
U —u At
Uf =7 _(Utt)ka

At 2

in order to obtain higher accuracy at each time step. Their solutions of some pe-

riodic boundary value problems using a Daubechies scaling function exhibits very



good correspondence with the exact shockwave solution, again at a medium-high
level of viscosity. These authors have applied the same method to the Kortweg-de
Vries equation (Kuma and Mehra, 2005b) as well. Thus, the partial differential
equations studied so far by employing the Wavelet-Galerkin method involve non-

linearity in the first derivative term, yet are still linear in the second derivative.

1.2 Objectives

In this thesis, we apply the Wavelet-Galerkin method to the study of an
equation with nonlinear diffusion term, that is, with nonlinearity in the second

derivative term, namely the equation

U
Uy — 796 = (u2u$)m

by using the Coiflet scaling functions of Daubechies (1993) as basis functions. We
impose a non-smooth initial condition and non-periodic boundary conditions, and,
by means of numerical experiments, compare the wavelet solution with both, the
exact solution and solutions by various flux limiter finite difference schemes. In
addition, we investigate how scale and time step size affect the accuracy of the
solution.

Along the way we revisit the Burgers equation, and verify by numerical
experiments that this method works well at lower viscosities. We further inves-
tigate how the choice of scale and scaling function influences the accuracy of the
solution of the Burgers equation, and compare the wavelet solutions of the Burgers

equation with solutions obtained by finite difference flux limiter schemes.

This thesis is organized as follows. In Chapter II we review the basic
background from wavelet theory and from the Galerkin method that are required

throughout. Connection coefficients and the techniques for their computation are



discussed in Chapter III. Chapter IV is used to obtain the solution of the Burgers
equation with initial discontinuity by the wavelet method. This solution is com-
pared with solutions obtained by traditional numerical methods, and by numerical
experiments it is investigated how choice of viscosity, of wavelet scale and scaling
function influence the accuracy of the solution. In Chapter V the same investiga-
tions are applied to a partial differential equation with nonlinear viscosity. The

final chapter then summarizes the results of this study.



CHAPTER 11

BASIC BACKGROUND

In this chapter, we review the mathematical background and tools required,
which consist mainly of the theory of compactly supported wavelets, and the
Galerkin method for the numerical solution of differential equations. Detailed
proofs can be found in standard references, such as Hernandez and Weiss (1996)

and Glowinski (1984) for example.

2.1 Discrete Wavelets

The basic idea of wavelet theory is to decompose the Hilbert space L*(R)
into an infinite direct sum {W;};cz of subspaces of special form: For each j, the
dilation operator D : f(z) + v/2f(2z) is a Hilbert space isomorphism of WW; onto
W41, and each W; has an orthonormal basis consisting of the integer translates

of a single function.

2.1.1 Wavelets from Multiresolution Analysis

Definition 2.1. (Wavelets)
Fix ¢ € L*(R), and consider the family of functions {1, };rez obtained

from ¢ by dilations and translations,
Vi) = 272p(2P 0 — k).

If {¢;1}jkez is an orthonormal basis of L*(R), then each ¢; is called a wavelet

and 1 the mother wavelet. In this case, by Parseval’s identity, every f € L*(R)



can be expressed as

f= Z d;j Yk (2.1)

5, kEZ

with convergence in the mean square norm, where

e =< L >= 2 [ f(a)0 @Ry da,
R

The sequence {d;;} € (*(Z x 7Z) is called the discrete wavelet transform of f,
and the d;;, are called the wavelet coefficients of f. The identity (2.1) thus shows
how f can be reconstructed form its wavelet transform, and is therefore called the

wverse wavelet transform.

Almost all wavelets, and in particular, all wavelets of compact support
(Hernandez, 1996) can be obtained by a process called multiresolution analysis as

introduced by Mallat (1989).

Definition 2.2. (Multiresolution analysis)

A multiresolution analysis (MRA) on L?(R) is a sequence of closed subspaces
{V;}jez of L*(R) satisfying the following properties:

(M1) : V; C Vi foralljeZ,

(M2) : [ JV; is dense in L*(R),
jez
(M3) = () V; = {0},
jez '
(M4) = f(z) € Vy if and only if f(27z) € V}, for all j,
(M5) : there exists a function ¢(z) € L*(R), called the scaling function, such that

the collection of integer translates {¢(z — k) }rez is an orthonormal basis of Vj.

Let us briefly outline how wavelets can be obtained from a multiresolution
analysis. By (M4), the dilation operator D is a linear isometry of V; onto V;;; for

all j. Applying the dilation operator j-times, it follows that the collection

(Do rez = {@intrez = {227%0(20 — k) }rez



is an orthonormal basis of V;, for all j. In particular, when j = 1 then

{1 tkez = {V20(2x — k) }rez

is an orthonormal basis of V. Now by (M1), ¢ € V} as well, and thus it can be

expressed in terms of this basis,

Y= ng%,k (2.2)

keZ

where
g =< @, 1 >= \/_/ ©(2x — k) dx. (2.3)

The sequence { g }rez is called the scaling filter and is an element of ¢%(Z), in fact

by Parseval’s identity,
{9k} 22y = llollze@) = 1. (2.4)

It follows that the sequence {hy}rez defined by
hy = (—1)k91—k

is also an element of /?(Z) of norm one, so that the function 1 defined by

Y= hepar (2.5)

kEZ

is an element of V;. The sequence {h;} is called the wavelet filter.

Now express the integer translates of ¢ and ¢ in terms of the basis vectors

1 of V1. By (2.2),

o(x —1) nggolk (x —1) ng\/ﬁgo@(x—l)—k)

kez keZ
—ng\/_@ (22 — (k + 20)) ng 211 k(T
kez keZ

and similarly by (2.5),

I—l th 21901k

keZ



It follows by Parseval’s equality that

<p(x —m),Y(x —1) ng omlk—21 = Z Ir—2m (—1)" 2 g1y

keZ kEZ

= Z(_1>k+milgk+(l—m)gl—k+(l—m)
keZ

(=" gy Gk mm) + (1) Gy D1k 1=m)

I
NE

k=1 k=0
- Z<_1)k+m719k+(l—m>91—k+(l—m) + Z(—1)17k+m*lgl—k+(z—m)gk+(z—m>
k=1 k=1

[
NE

[(_J)k'_ 0_1>7k](_Jjn%49k+0—nog1_k+u_ng =0.

e
Il
—

Similar computations give

<(x —m),Y(x —1) Z Ri—ombi—a

kEZ

= Z<_1)k_2mgl—k+2m (1) g1y = Zgl—k+2l91—k+2m
keZ keZ

= ng+2l9k+2m =< p(x +1),p(x +m) >= 0
keZ

by (M5). This shows that the collection {@g i, Vo } kez is orthonormal in V. Thus,

if we let W, denote the orthonormal complement of V4 in V7,
Vi=Vo® Wy

then {¢g x }rez will be an orthonormal set in Wj. One can show that this collection
is total in W, that is, is a basis of W),.

In general, for each j, let W, denote the orthogonal complement of V; in
Vjt1, that is,

Vier =V, & W,
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Applying induction, we have for each n > j,,

Vn — Vn—l > Wn—l
=Vno® an2 S anl

= Vn3®D Wn—3 S¥) Wn—2 ©® Wn—l (26)

:‘/}o@W‘o@Wjo—&-l@"'@Wn_l.

One can show that (M1)—(M3) imply that for each j, € Z,
PR =V, & & W,
J=Jo
and also

JEZ
Now since D7 maps Wy isomorphically onto W;, the collection {t)}trez =
{Dithok}kez 1s an orthonormal basis for W;, for each j. This shows that

{¢jr : j,k € Z} is a basis of L*(R), and hence 9 is a mother wavelet.

Remark. One can show that if the scaling function and the wavelet are also

elements of L!'(R) (Walnut, 2002), for example if ¢ has compact support, then

[

Since for all scalars |a| = 1, the function ap remains a scaling function for the

=1 and /OO Y(x)dx =0. (2.7)

given MRA, we may replace ¢ by a suitable agp and obtain

/_oo olz)dz = 1. (2.8)

oo

Then in addition (Walnut, 2002),

Z polr—k)=1 a.e. (2.9)

kEZ
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Remark. Written out, scaling relation (2.2) becomes
p(r) = V2 g2z — k).
keZ

Because the factor /2 is inconvenient, many authors prefer to modify the scaling
filter. Setting

o(x)p(2z — k) dx (2.10)

Clk—\@gk—2/

o0

the scaling relation is simplified to

p(r) = arp(2z — k). (2.11)

kEZ

Similarly, one sets

by, = V2hy = (—1) a1

so that (2.5) becomes

P(x) =Y bpp(2z — k).

kEZ

Furthermore, by (2.4) one has

Z lak|2 = ||{ak}’|?2(2) T |\\/§{9k}|’?2(2) =2

kEZ

and hence also

Dol =)l =2

keZ kEZ
2.1.2 The Pyramidal Algorithm

The coefficients of a function f with regards to the wavelet basis can be
computed efficiently by the pyramidal algorithm.

First consider the decomposition V; = V;_; & W;_1. Given f € L*(R), let
f; denote the projection of f along Vj. Since {@;m }mez is an orthonormal basis

of Vj, then

£ =Y CimPim (2.12)

meZL
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where the coefficients ¢;,, = (f, p;m) in this basis are called the scaling coeffi-
cients of f at scale j. On the other hand, since {¢;_1.m tmez and {¢;_1 m, }mez are
orthonormal bases of V;_; and W;_;, respectively, then

fi= Z Cj-1,mPj-1,m + Z dj—1,m¥j—1,m, (2.13)

meZ meZ
where now c¢;_ ,, =< f,@j—1,m > and d;_1,, =< f,¥j_1, > are the scaling coef-
ficients, respective wavelet coefficients, of f at scale j — 1.
One can compute the scaling coefficients ¢;_; ,,, and the wavelet coefficients

d;_1 ., at scale j — 1 from the collection of scaling coefficients c¢; ,,, at scale j by

Cj—1n =< fj, Pj—1n >= Z Cim < Pjms Pj—1n >

meZ
1 -
= Z Cim < D’ P1,m, D’ ©Po,n >
meZ
- Z Cim< Pon; PLm, > = Z 9m—2n Cjm,
meZ meZ (2 14)
ditn =< fi,%jcim >= D Cim < Pim>Yimin >
MeEZ
1 -
= Z Cjm < D’ $1,m; D’ 77Z)0,n >
meZ
- Z Cj7m< 1/}0,717 P1,m; > = Z hm—Zn Cim
meZ meZ

since

<@o,n; P1,m >= / V2p(x —n)e(2z —m) da

= / \/§<p(:c)g0(x —(m—2n))dr =< @, P1.m—2n >= Gm-2n,

and a similar identity holds for < g, Y1.m >.
In reverse, the scaling coefficients c;,,, at scale j can be obtained from the

collection ¢;_1,,, and d;_y ,, of scaling and wavelet coefficients at scale j — 1. In



fact,scaling relation (2.2) modifies to other scaling levels by

iim(@) = [0 gom] (x) = 2070 20(2 7w — m)

— oU-1)/2 Z InP1n (2j_1zv — m)

neL

= 20=1/2 Z gn\@go (2(2j_1x —m) — n)

neL

_2]/229@ 2];1;'— n—|—2m Zgn+2m¢]n

neEL nEL

and by a similar computation,

Yictm(®) = [0 Wom] (@) =) hugam@jn(z)

nel

Now by (2.13) and the above

fj = Z Ci—1,m Z In+2mPjn + Z dj—l,m Z hn+2m@j,n

meZ nez meZ neL
= E E Cj—1,mYGn+2m + djfl,mhn+2m Pjn-
neEZ LmeZ

Comparing with (2.12) we see that

Cin = E (Cj—l,mgn+2m Tt dj—l,mhn—l-Zm ) .
meEZL

13

(2.15)

The pyramidal algorithm consists of repeated application of the above de-

compositions and recompositions. In practice, one does not work in L?(R) but in

a space V,, which sufficiently approximates L*(R), and uses a decomposition of V},

of form (2.6) with sufficiently small j,:
V=V, oW, eW; 1@ ®W,_1.

Given f € L*(R), the projection of f along V;, will be

fn - Z Cnom®Pn,m,

meZ

(2.16)
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as {@nm}tmez is an orthonormal basis of V,,. Then using the algorithm (2.14),
one successively computes the scaling and wavelet coefficients of f first in V,,_q,
respectively W,,_1, then those of f in V,,_5, respectively W,,_5, and continues, until
one has obtained the coefficients of f in all of the component spaces.

The reconstruction of the coefficients {¢y, ;m }mez of f in V,, from the wavelet
coeflicients d;x, (jo < j < n) and the scaling coefficients ¢, , can be done by

successively applying (2.15).

2.1.3 Compactly Supported Wavelets

For the purpose of computations, it is useful to have scaling functions ¢ of
compact support: then by (2.3), the scaling filter, and hence the wavelet filter, will
be of finite length, that is have only finitely many nonzero terms. By (2.5), the
mother wavelet v will also have compact support. In addition, one wishes these
functions to be smooth. Daubechies (1992) has shown that there exist no wavelets
which are infinitely differentiable and have compact support. However, for each
positive integer r there exist a scaling function ¢ and associated wavelet v which
are both r-times differentiable and have compact support (Hernandez and Weiss,
1996).

There is a connection between the length of the scaling filter {a;} (or {gx})

of ¢, and the support of ¢:

Theorem 2.3. (Daubechies, 1992) Let N; < N, be two integers, and suppose

that a, = 0 for all k& ¢ [Ny, Ny]. Then supp(p) C [Ny, Nl

Throughout, we will choose N; and Ny so that [Ny, No] is the smallest

interval satisfying the assumption of the Theorem.
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2.1.3.1 Vanishing Moments

Another useful property of wavelets is that of vanishing moments. Recall

that given a function f defined on R, its p-th moment (p € Ny) is defined by

win)= [ atpwd

[e.9]

provided that this integral converges. We say that f has vanishing moments of
order p < L, if MP(f)=0forall0 <p< L.
Let ¢ be a compactly supported scaling function with corresponding wavelet

1. For each p € Ny and k € 7Z, set

M} —/ 2P p(z — k) du.

o0

It turns out that when ¢ has vanishing moments of order p < L, then any
polynomial of degree less or equal to L can be reconstructed from the translates

of the scaling function:

Theorem 2.4. Suppose,

/OO wPp(x) dr = 0

—00

for p=20,...,L. Then for each p, 0 < p < L,

=Y Mlp(zr—k) (2.17)

kEZ

with convergence in L*(I) for every bounded interval I, and with pointwise con-

vergence.
Proof. (Pro-forma proof) Let p be given, 0 < p < L. Then for each k € Z,

/°° xpmdx:/oo(aﬁtk)pmdx

—00 [e.e]

3 () [

[e.9]

;p—/‘: o
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Moving to dilation level 57 > 0,

/OO 2P () do =

—00

2120 h(2x — k) dx

o0

h 27227 )P ap(x — k) da

—

8

= 27 i(P+1/2) / 2P (x —k)dx = 0.

This shows that 27 L T, for all j. Now as L*(R) = Vo @ Wy @& Wi @ ... it follows

that «? € V. That is,

xP = chgo(:c —k

kEZ
where ¢, =< 27, ¢(x — k) >= M}. Now since ¢ has compact support, the sum

(2.17) is locally finite, and hence converges pointwise as well. O]

Since z? ¢ L?(R), the above argument is only formally correct. We can,
however, explain why the theorem is still is correct.

Let I = [My, Ms] be a given bounded interval, pick an integer M greater
than the length of the supports of ¢ and ¥, and set J = [M; — M, M5+ M]. Then
the restriction of z? to J, denoted 2?1, is an element of L?(R), and hence it can

be expressed as

2’1y = Z CokPor(T) + i Z dj k() (2.18)
k
where
cor =< a1y, 00 >= /Ja:pmdx
dip =< aP 1,9, >= /prmdx.

The important observation is that those ¢q and 1, whose supports intersect /

are supported inside J, so that

cojk:/a:pgo()k( )das—/ Ppo k(T )d:v—Mp
J —

e}

djx = /afpmdx =/ 2P dz = 0
J

—00
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for these ¢ and ;. Thus, if we restrict 2P further to I, then (2.18) becomes

Pl = Z crpor(T). (2.19)
k
which converges in L?(I). Since this is a finite sum, it also converges pointwise.

Remark. Let ¢ be a compactly supported scaling function. Then by (2.8),
MY =1 for all k. Now by (2.7), v has vanishing zero moment. Applying the
Theorem to the case p = 0, it follows that

Y e —k)=> M-k =1. (2.20)

kEZ kez

Applying this identity to x = 0 and = = 1/2, and using scaling relation (2.11) we

obtain
1= ng(n) = ZZakgo(Zn —k) = ZZakgo(Qn— k
nez neZ ker kEZ neZ
and
1= on+1/2) =" > arp@n+1-k) => Y apn+1-k)
nez ne€Z keZ kEZ neZ

Adding both equations and using (2.20) gives

Z—Zakz (2n — k —|—g0(2n+1—/€))):Zango(n—k):Zak

keZ neZ keZ neZ keZ

and we have shown that
D =2 (2.21)

A large number of vanishing moments ensures that the wavelet coefficients

of a smooth function f decrease rapidly. In fact, one has:

Theorem 2.5. (Walnut (2002)) Let g € L*(R) be compactly supported, with

llgll2 = 1, and suppose that

/ooxpg(:v)dx:(J 0<p<L-1).

o0
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If f(x) is C* on R, and f®)(z) is bounded, then there exists a constant C' (de-

pending on f and L only) so that

|< f, 96 >| < C2IL+1/2)

for all j and k, where g;x(z) = 279/2g(27z — k).

2.1.3.2 The Daubechies Wavelets

The Daubechies wavelets (Daubechies, 1988) are the most commonly used

wavelets. This is a family of wavelets with compact support, labelled D{2N},

N a positive integer. The scaling function of a D{2N }-wavelet is supported on

the interval [0, N —

1], and the scaling filter has length N. The corresponding

wavelets have vanishing p-th moments for 0 < p < N — 1. Table 2.1 shows the

scaling coefficients of the D2-D10 wavelets. There is no closed form known for

these wavelets, but their values at dyadic rationals can be computed by applying

the algorithm outlined in subsection 2.1.4. Figure 2.1 shows the graphs of various

Daubechies scaling functions. They become smoother with increasing N, in fact,

they are C'! functions for N > 3.

Table 2.1 The nonzero scaling coefficients for the D2 - D10 wavelets.(Source:

Daubechies (1992)).

D2 D4 D6 D8 D10
ap 1 0.6830127 0.4704672 0.3258034 0.2264190
al 1 1.1830127 1.1411169 1.0109457 0.8539435
az 0.3169873 0.6503650 0.8922014 1.0243269
a3 —0.1830127 —0.1909344 —0.0395750 0.1957670
a4 —0.1208322 —0.2645072 —0.3426567
as 0.0498175 0.0436163 —0.0456011
ag 0.0465036 0.1097027
ar —0.0149870 —0.0088268
ag —0.0177919

ag

0.0047174
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Daubechies D4 : scaling function ——— "Daubechies DB : scaling function ——

° \ //*ﬁ o
\ | .

0.4 L L L i L 04

Daubechies D12 : scaling function —— Daubechies D16 : scaling function ——

02

04l

06 L L L L L 06

Figure 2.1 The Daubechies scaling functions D4, D8, D12 and D16.

2.1.3.3 The Coiflets

The Coiflets (Daubechies, 1993) are another frequently used family of com-
pactly supported wavelets. The scaling function of the coiflet C{3N}, N an even
positive integer, is supported on the interval [-N,2N — 1], and the scaling filter
has length 3N. The special feature of the Coiflets is that the scaling functions
have vanishing p-th moments, for 1 < p < N. On the other hand, the wavelet has
vanishing p-th moments for 0 < p < N —1. Table 2.2 shows the scaling coefficients
of the C'6-C24 Coiflets, and Figure 2.2 shows the graphs of various Coiflet scaling

functions, computed by applying the algorithm outlined in subsection 2.1.4.
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Table 2.2 The nonzero scaling coefficients for the C6 - C24 Coiflets. (Source:

Daubechies (1992)).

C6 C12 C18 Cc24
a_g 0.00126192
a_7 —0.00230445
a_g —0.00536484  —0.01038905
a_s 0.01100625 0.02272492
a_g4 0.02317519 0.03316712 0.03773448
a_3 —0.05864028 —0.09301553 —0.11492848
a—2 —0.10285946 —0.09527918  —0.08644153 —0.07930531
a1 0.47785946 0.54604209 0.57300667 0.58733481
ap 1.20571891 1.14936479 1.12257051 1.10625291
ay 0.54428109 0.58973439 0.60596714 0.61431462

az  —0.102859466 —0.10817121 —0.10154028 —0.09422548
a3z —0.022140543 —0.08405296  —0.11639250 —0.13607623

a4 0.03348882 0.04886819 0.05562727
as 0.00793577 0.02245848 0.03547166
ag —0.002578416 —0.01273920 —0.02151263
ar —0.001019011  —0.00364093 —0.00800202
ag 0.00158041 0.00530533
ag 0.00065933 0.00179119
aio —0.00010039  —0.00083300
al —0.00004893  —0.00036766
a2 0.00008816
a3 0.00004417
a4 —0.00000461
ais —0.00000252

2.1.4 Computation of the Values of the Scaling Function

and the Mother Wavelet

Neither the scaling functions nor the wavelets of the Daubechies or Coiflet
families can be written in closed form. However, it is possible to compute their
values on the set of dyadic rationals.

More generally, let ¢ be a compactly supported scaling function with asso-
ciated compactly supported wavelet ). We present the algorithm for computing
the values of the scaling function ¢, in case of ¥ one simply replaces the scaling fil-
ter by the wavelet filter. As it turns out, the computations involve solving systems

of linear equations.
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Figure 2.2 The Coiflet scaling functions C'6, C'12, C'18 and C'24.

Suppose, the scaling coefficients a; are nonzero for Ny < k < N, only. The
starting point is the scaling relation (2.11) which reduces to
N2
o(z) = Z arp(2x — k). (2.22)
k=N,
The first step is to compute the values of ¢ at all integers inside the interval

[N1, N2|. Substituting these integers into (2.22) and making use of the fact that



22

supp(¢) C [IV1, N3] one obtains the following system of N = Ny — N; +1 equations,

@(N1) = an, p(N1)

O(N1 + 1) = an, (N1 + 2) + an, 419(N1 + 1) + an, 120(N1)

©(N1 + k) = an, (N1 + 2k) + any1p(Ny + 2k — 1) 4. ..

(N + 2k = §) + -+ anperp(NY)

©(Ny — 1) = an,—2p(N2) + any,—19(Ny — 1) + an, (N2 — 2)

©(N2) = an,p(Na).

Expressed in matrix form,

X =AX

where X = {gp(n)}ivi v, 18 the vector of unknown values of ¢, and A, = [ay] is

the N x N band-matrix whose entries are given by

AN, +2k—1—-1 fO0<2k—-1-1<N,— N,
g =

0 else.
Thus, X is an eigenvector of this equation belonging to the eigenvalue one. As
eigenvectors are not unique one augments this system by adding the coefficient

equation (2.21),
N2

Zak:2

k=N,
and solves the nonhomogeneous system

AX =8B

where A is an (N + 1) x N-matrix and B an N + 1-vector,

A, —In On
A: s B:

aN; ONy+41--- ANy 2
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Solving this system for the unknown vector X, one obtains the values
©(N1), ..., 0(Ns) of ¢ on on the set of integers inside [Ny, Ns].

Next one computes the values of ¢(z) at the dyadic points 7 inside [Ny, N]

inductively. Suppose one has already obtained the values ¢(52;) for 271N} <

271

m < 2971N,. Then the scaling relation (2.22) immediately gives

No Ny i
o(3)- 3ol 8) - 35 one(252).

=iVl =1Vl

for all 27N, < m < 27N,

2.2 The Galerkin Method

Many boundary value problems involving nonlinear partial differential equa-
tions have only weak solutions. The Galerkin method is one way to obtain approx-
imations to weak solutions, by expressing a given problem in variational form as a
linear equation in Hilbert space, which then is approximated by a linear equation
in a finite dimensional vector space. We first review the theory underlying this

method.

2.2.1 The Lax-Milgram Theorem

Definition 2.6. A bilinear form a(-,-) : V' x V' — R on a normed linear space V

is said to be

1. bounded (or continuous), if there exists C' > 0 such that |a(v,w)| <

Clv|||lw]  Yv,w € V, and
2. coercive, if there exists a > 0 such that a(v,v) > a||v||* Vv e V.

Note that it is not required that the form a(-,-) be symmetric. In fact, if it

is symmetric, then V' must be an inner product space:
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Proposition 2.7. Let V be a real normed linear space and suppose that a(-,-) is
a symmetric, bounded and coercive bilinear form on V. Then a(-,-) is an inner
product, and the norm determined by this inner product is equivalent to the given

norm on V.

Proof. Let ||v||o = v/a(v,v) denote the semi-norm determined by the symmetric

bilinear form a(,-). The assumptions give that for all v € V|
allvl* < vl = a(v,v) < Clof|?

which proves that a(-,-) is definite, i.e. an inner product, so that || - ||, is a norm.

In addition, this inequality shows that both norms are equivalent. O]

Theorem 2.8. (Lax-Milgram Theorem) Let H be a real Hilbert space, and a(-, -)

a (not necessarily symmetric) bilinear form having the property that
i) 3C > 0 such that |a(u,v)| < Cl|u|| ||v]] Yu,v € H (boundedness).
ii) Ja > 0 such that a(v,v) > a|jv||* Vv € H (coerciveness).

Then for each bounded linear functional /' on H, there exists a unique u € H such
that

a(u,v) = F(v) Vv e H. (2.23)

Proof. Because of the importance of this theorem, we give a brief sketch of its
proof. We note that when a(-,-) is symmetric, then (2.23) follows directly from
Proposition 2.7 and the Riesz Representation Theorem. In the general case, one
invokes the Contraction Principle.

By the Riesz Representation Theorem, there exists a unique element w € H
such that

Fv) =<w,v > (Vv e H),
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and ||w|| = ||F||. On the other hand, by bilinearity and boundedness of a(-,-),

every u € H defines a bounded linear functional f, on H by
fu(v) = a(u,v) (Vv e H)

of norm || f.|| < CJ|ul|. Applying the Riesz Representation Theorem again, there

exists a unique element S, € H so that
a(u,v) = fu(v) =< Sy, v > (Vv e H)

and [|Su|| = |Ifull < C|lu|l. As both, a(-,-) and < -, > are linear in the first
component, the map S : u — S, is linear. We thus need to show that there exists
a unique u € H so that S, = w.

Define a (nonlinear) mapping 7' : H — H by
Tu=u— p(S, —w)

where p > 0. We claim that 7" is a contraction provided that p is sufficiently small.
In fact, given uy,us € H, set u = uy; — ug. Then by coerciveness and linearity of

the map S,

ITw1 — Tuz||* = |lu— pSu|*
=< u,u>—2p < Sy,u>+p* < S, S, >
< Jull® = 2pa(u, u) + p*C?||ul|?
< [lull* = 2pallul® + p*C*|lul®
= (1 = 2ap + C?p?)|lus — usl|,
It follows that T is a contraction provided that p < 2a/C?, which proves the claim.
The Contraction Principle (also called the Banach Fixed Point Theorem)

immediately yields the existence of a unique fixed point of T, i.e. a unique element

u € H such that S, = w. O
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2.2.2 Application of the Lax-Milgram Theorem to Varia-

tional Problems

This theorem is often used to prove the existence and uniqueness of weak
solutions to partial differential equations. As an example, consider a second order

linear equation with Dirichlet boundary conditions
—u" + b(x)u' + c(z)u = f(x), u(0) =u(1) =0 (2.24)

where b,c € L*°[0,1] and f € H = L*[0, 1].

If u is a twice continuously differentiable solution of this problem, then
< —u" 4+ bu' + cu, v >p2p01=< f,v >0
for all v € L?[0,1]. That is
1 1
/ (—u"v + bu'v + cuv) doe = / fodz.
0 0
Applying integration by parts and using the fact that «(0) = u(1) =0,
1 1
/ (u'v" + bu'v + cuv) dx = / fvdx (2.25)
0 0

for all v € L?[0,1]. This is the variational form of problem (2.24). Note that be-
cause of the boundary conditions, one looks for a solution in the subspace H'(0, 1)

of L?[0,1]. Recall here the definition of the Sobolev spaces H'(0,1) and H}(0,1):
H'Y0,1) = { f € L*[0,1] : f is absolutely continuous and f’ € L?[0,1] }
with inner product
(f,9)m 01 =< [f,9 >r2001 + < g >120,1] -

Then H'(0,1) is a Hilbert space in the norm determined by this inner product,
and clearly || fll2 < || flla(0,1) for all f € H'(0,1). Obviously, C(0,1) C H'(0,1),

and H!(0,1) denotes its closure in H'(0,1).
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Thus, (2.25) gives a reformulation of the boundary value problem (2.24) as

a problem in H = H}(0,1),
a(u,v) = F(v) Vve H (2.26)
where a(-,-) is the bilinear form defined on H by
1
a(u,v) = / (u'v" + bu'v + cuv) dx (u,v € H), (2.27)
0

and F(v) =< f,v >201. By the Lax-Milgram theorem, this problem will have
a unique solution in H provided that the bilinear form a(-,-) is continuous and
coercive, and that F' is continuous on H.

Continuity of F' on H is obvious since [[v||z2j01) < [[v||g for all v € H.
Similarly, |[v'||z20,1) < ||v||#, and applying Hélder’s inequality, it follows that a(, -)
is continuous in the norm of H. Coerciveness of a(-,-) is the nontrivial part, and
at times can be established immediately, and sometimes by applying the following

theorem:

Proposition 2.9. (Poincaré-Friedrichs) Let v € H'(0,1). Then

JoliZap0 < 2 (0(0)* + 10130, -

Proof. Note that for almost all 0 < x <1,

Using the identity (a + b)? < 2(a? + b*) and Holder’s inequality one obtains

v(z)? <2 (U(O)2 - UO ' (t)] dtr)
<2 (U(O)2 + [/01 o' ()| dtD <2 <v(0)2 + ||v’||%2[071]> .

Integrating from 0 to 1, the assertion follows. O]
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2.2.3 The Galerkin Method

The idea of this method is to find an approximate solution of problem (2.26)
in some finite dimensional subspace of H.

Thus, let a(-,-) be a continuous and coercive bilinear form on a Hilbert
space H, and F' a continuous linear functional on H. Consider the problem of
finding u € H so that

a(u,v) = F(v) Vv € H. (2.28)
Choose a finite dimensional subspace V of H. When restricted to V' this problem

becomes one of finding @ € V' so that
a(u,v) = F(0) Vo e V. (2.29)

Since a(-,-) is bounded and coercive, so is its restriction to V. Hence by the

Lax-Milgram Theorem, equation (2.29) has a unique solution in V.

2.2.3.1 Error Estimate

One can give an estimate for the error of approximating the solution u of

(2.28) by the solution @ of (2.29): For each v € V/
a(u —a,v) = a(u,v) —a(a,v) = F(0) — F(v) =0, (2.30)

Then by bilinearity, coerciveness and boundedness of a(-,-) and by (2.30), for each
veV,

ollu—il]? < au — i, u — i) 2" a(u — i, u — 5) < Cllu— @ |lu— 9.

Dividing by ||u — @|| (which is nonzero unless @ is already the correct solution) we

obtain allu — a|| < Clju — a|| for all ¥ € V' and hence

C C C
—a| < inf —||jlu—v||=—||([ - P < — 2.31
Ju—all < inf lu =l = (I - Pyull < —|ul (231)

where P denotes the orthogonal projection of H onto V.
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2.2.3.2 Computing the Approximate Solution

The approximate solution u can be found by simply solving a linear system:
Choose a basis {e1,...,ex} of V. By linearity, (2.29) is equivalent to system of N
equations

a(u,ep) = F(ey) k=1,...,N.

. - . . . . - N
Expressing @ as a linear combination of the basis vectors, @ = Y _| apmen, we

then obtain
N
Zama(em,ek) = F(ex) kkm=1,...,N
m=1

or in matrix form,

AX =B

where A = [a(em, ek)} , X =[ay,...,ay]T and B = [F(ey),..., F(en)]?.

km

2.2.4 The Wavelet-Galerkin Method

Let a MRA {V}},cz with compactly supported scaling function ¢ and
wavelet ¢ be given. Since the sequence of spaces Vj is increasing and their union
is dense in L?*(R), it would be natural to use one of the spaces V; as the approx-
imation space in the Galerkin method, for sufficiently large j. Recall that the
collection {¢;}rez of scaling functions at level j is an orthonormal basis of V.
Thus, the spaces V; are not finite dimensional.

Next consider a boundary value problem over [0, 1] as in (2.24) for example,
and its variational formulation (2.26) in the Hilbert space H = H'(0,1). If ¢ is
sufficiently differentiable, then all functions ¢;; will be elements of H. (To be
precise, the restrictions ;) Will be in H.) Let us set V;[0,1] = {fjoq) : f €
V;}. Clearly, {V;]0,1]},ez is an increasing sequence of closed subspaces of L?[0, 1]

whose union is dense in L?[0,1]. In addition, the collection {@ik|o,1) kez spans
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all of V;[0, 1], for each j. Since ¢ is compactly supported, only finitely many of
the functions ¢;k,, ; Will be nonzero, forming a collection {<pj7k|[071}}£i 1, for some
integers Ly, Lo which depend on j. It is not difficult to verify that this remaining
collection is linearly independent, since the @, ; are linearly independent in L?*(R)
and are translates of another.

One can now apply the Galerkin method to the finite dimensional subspace
V310,1] of H'(0,1) by employing the basis {goj7k|[071]}£iLl, and obtain an approxi-

mate solution of problem (2.26) in H'(0,1).

Remark. Many authors apply the decomposition
V7:‘/JU®W70@W]0+1@.®W7—17 (j0<j) (232)
into wavelet spaces, and use the basis

{Pjok tkezs {Wjork therms {Wjorrk hezs - - {Wi=1k brez

of Vj consisting of scaling functions at lower level j,, together with the wavelets
at all intermediate scales. If one restricts each of the above spaces to [0, 1] one

obtains a decomposition
‘/j[ov 1] = ‘/jo [07 1] + Wjo [07 1] + M/jo-i-l[O’ 1] +oot V[/J'—1[07 1]

of spaces which are no longer mutually orthogonal. This can be overcome in two
ways:

1. Periodization. If j, is sufficiently large so that ¢; , and 9,5 have
supports of length less than 1/2, then the 1-periodic functions

Biok(®) =Y pinlx—m) and hp(z) =D (e —m)

meZ meZ

will be mutually orthonormal in L?[0,1]. Note that by compactness of supports,

these are locally finite sums, hence they are well defined, and only finitely many
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periodized functions will be distinct, so that the above is really a finite collection.

Correspondingly, (2.32) is modified to a sum of finite dimensional subspaces of

H'(0,1)

V=T, oW, 0 Wyt 0@ Wy

each consisting of 1-periodic functions. One can now apply the Galerkin Method to
problems with periodic boundary conditions. This approach was taken in Kumar
and Mehra (2005), Kumar and Mehra (2005b), and Nielsen (1998).

2. Orthogonalization. If j, is sufficiently large, then almost all of the
basis functions of V; whose restrictions to [0, 1] is nonzero will have support inside
0, 1], hence they are equal to their restrictions: Piokjo,1] = Piosk AN Wik 0 1) = Yk
and thus form an orthonormal family in L?[0, 1]. Those whose supports cross the
endpoints 0 or 1 can be rendered orthonormal on [0,1] by the Gram-Schmidt
process. This process leads to a modification of the spaces W;[0,1], and one

obtains a modified decomposition
‘/j[oa 1] = V}O[O, 1] S5 I/T/'o [07 1] @ V~Vjo+1[07 1] ST Wj—l[Ov 1]

into orthogonal subspaces. This approach was taken by Monasse and Perrier
(1998).

In chapters IV and V, by choosing to work with the basis of V; consisting
of the scaling functions {cpj7k|[071}}£i 1, we will avoid the complexities introduced

by this orthogonalization.



CHAPTER III

CONNECTION COEFFICIENTS

Consider again the variational boundary value problem (2.27),
a(u,v) = F(v) Vv e HY(0,1),
where
1
a(u,v) = / (u'v" + bu'v + cuv) dx (u,v € H),
0

and for simplicity, b and ¢ are constant. Suppose, we want to find a solution of
this problem by the Galerkin method in some finite-dimensional subspace V;[0, 1].

Expressing u and v in terms of the basis {¢;}r2,, of V;[0,1],

u= Z CLjk and v = Z bipiy
. l

the left-hand side becomes

1 1 1
Z akby [/ P do + b/ @i dr + C/ ‘Pj,k%f’jldx] :
o 0 0 0

Since the functions ¢ are not known in closed form, one can not evaluate the
derivatives and integrals directly. In this chapter, we will study how they can be

computed, based on the ideas of Lin and Zhou (2001).

3.1 Definition of the Connection Coefficients

In generality, let goﬁ) denote the n-th derivative of the function ¢;; and

consider integrals of the form

1
| d@e@wd (ke 3.1)
0
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and
1
d d d
| e @i @ b e (3.2
where j,d;,ds, ds are fixed non-negative integers, assuming that ¢ is sufficiently

many times differentiable. Now by the chain rule,

m n A/Q Jy —
oy Plo@)] _ d"[2Pe@e =D i i
o) (x) = = T = 217229\ (20 — ). (3.3)

Applying (3.3) and replacing 27z by z, the above integrals become
2jd/ e (z — 1)) (z — 1) dx (3.4)
0
where d = d; + dy and
97(d+1/2) / Oz — 1)) (2 — 1)) (z — I3) dx (3.5)
0

where d = dy+dy+ds, respectively. In order to simplify the formulas, one drops the
leading constants and defines the two-term and three-term connection coefficients

of ¢ on [0,1] at level j by

2J
F{ldzgfb / s0(d1)(x _ ll)go(dQ)(m L) de 56
0
and
27
et = [ e - e e - ) e - b e (37
0
respectively. Thus,
1
d1 da . dy.d

where d = dy + ds, while
1
d d d 1 j,d1,da,d
/0 P (@) P () () dar = 2/HYDT) A2 (3.9)

where d = d1 + dg + d3.
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Remark. Latto, Resnikoff and Tenenbaum (1991) gave a definition of connection

coefficients over unbounded intervals, such as

Ail:ll? — / QO(dl)(.T —_ l1>90(d2)(x — 12) dx

oo

for example. These are much easier to compute, as by shift invariance of the

integral,
di,dy __ pdi,do
Al1,l2 T 00—
and by integration by parts,
didy __ di+1,d2—1
Ao,l [ _AO,l :

Since we will be dealing with boundary value problems over the unit interval, we

have chosen the type of connection coefficients introduced by Lin and Zhou (2001).

3.2 Properties of the Connection Coefficients

Before explaining how these connection coefficients can be computed, we

list some of their properties.

1. Symmetry. Clearly,

J,di,d2 __ 1J,d2,d1
Plhlz - Flz,h

by definition. For three-term connection coefficients, several kinds of sym-

metry exist, for example,

J,di,d2,ds Fj7d27d17d3
l1,l2,l3 T Tl

2. Level-up The connection coefficients at level 7 + 1 can be computed from
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those at level j by a simple calculation. In fact by (3.6),

. 27
Fl(f:};l)dl’Cb _ / S0(d1)<x o l1)§0(d2)($ _ l2) dx
0
2J+1

+ / O (z — 1)) (z — 1) dz
2]
2J
- / P (@ = 1)\ (& — 1) da
0

+ /023 M (@ — (I — 27)) " (@ — (I, — 7)) dw

_ TJd1,d2 J,d1,d2
- Fll,lz + F11*2j712*2j'

Similar computations give that

, 2
P = [ e~ ) e - ) 1) da
0
2J+1
+ [ e~ 1) o~ b)) (o — 1) da
2

J

27
= / O (z — 1)) ") (z — 1) %) (z — I3) dx
0

[ =2 o= = 2N (= P o

_ 1J,d1,d2,d3 J»d1,dz2,ds3
=T T o gy—2r-

As will be evident from the discussion in the next section, the calculation
of the connection coefficients at level 5 = 0 is substantially simpler than at
higher levels of the dilation parameter j. This property allows us to reduce

the calculation of the connection coefficients to the simplest level j = 0.

. Finate collection. Since ¢ has compact support, then for each 7, only finitely

many connection coefficients are nonzero.

. Partial sums. One way to verify whether the computed connection coeffi-

cients are correct is by verifying partial sums. For example, by (2.8) and
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(2.9), for all 1,1, € Z,
/,1,0,0 z
S =Y [ e - et — el — ) da
13 70

:/0 o'z =)oz = b) [Z 90($—13)] dx

I3

27
= /0 O'(x— 1)z — 1) de = F{l’%l’g.

3.3 The Moment Equations

Before we can explain how to compute the connection coefficients, we need

to discuss the moment equations.

Let the wavelet 1) satisfy the assumption of Theorem 2.4. That is

=Y Mp(x—k)

kEZ

for all p=0,..., L, and this sum is locally finite. Differentiating n times (n < p),

provided that ¢ is sufficiently differentiable, we obtain

Pl oo "
(p—n)'ajp :ZM,fgp( Nz — k). (3.10)
’ kez

Now consider a two-term connection coefficient F{idl;’dg with d; < p; < L. Then by

(3.10),
p1! pl—d1:| [ p2! pz—d2:|
— = —
{(]h —dy)! (p2 — d2)!
- [Z M) o zo] [Z M) o m] ,
hWEZ I2€Z
that is,

pl!p2! p1+p2—d d d
> MPMPEO) (@ — 1)) (@ — 1)
(p1 — di)!(p2 — d2)!$ o Mo (@ = h)e ™ (@ — )

l1,l2
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Integrate from 0 to 27,

p1pg! 20 (Prp2—d+1)
(p1 —di)!(p2 —do)!(p1 +p2 —d+1

= MPMPTO®. (3.11)

l1,l2
l1,l2

These equations are called the moment equations. For the three-term connection
coefficients, we obtain similarly a family of moment equations,
2} lp2|p312j(p1+p2+p3—d+1)
(p1 — di)!(p2 — d2) (3 — d3)!(p1 +p2 + p3 —d + 1)
_ Z MP1 MP2MP3FJ di,dz,ds (3‘12)

l1,l2,l3

l1,l2,l3

In practical computations, it is advisable to use low orders p; to avoid a
rapid increase of the size of the moments M, as |k| increases. We also observe
that in the case of Coiflets C{3N}, the moments are easily obtained: Since in this
case the scaling function ¢ also has vanishing moments for p =1,... N then

MP — /Oo P — k) di = /oo (2 + k)o(x) de

oo (e.0]

_ z; C’) e [ : Poa)de =k [ Z o) dz = 7

for all p=1,..., N. Furthermore, (3.11) and (3.12) hold for 0 < d; < p; < N —1,

as ¢ has vanishing moments of order < N — 1.

3.4 Computation of the Connection Coefficients

We are now ready to discuss computation of the connection coefficients.
The starting point is again the scaling relation (2.22),

N3
= Z arp(2x — k

k=N1

Differentiating n times,

o™ (z Z app™ (22 — k).

k=N1
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Substitute this representation of the derivatives into (3.6),

2J No Na
Iyt = /0 [Z 21 ™ (21 — 21y — k’)] [ Z 2%, (20 — 21y — m) | du

k=N1 m=N1

Ny 27
= 2¢ Z akam/ o) (2:10 -2l — k) @(d2) (Qx — 2y — m) dr (2 — 1)
0

k,m=N1
No 27 +1
=270 ) wan / PP (@ = (k+2h)) ¢ (2 = (m+ 21p)) do
k,m=N; 0
No 27
<2 3% [ e ) )
k,m:Nl 0
2J+1
9
No
_ j,dy,d
— 2d-1 Z Ay |:Fg<:+12l12,m+2l2
k,m:Nl
27
+/ e (2 — (k + 20 — 27)) ') (2 — (m + 2y — 2j))] dx
0
N2
_ j,d1,d j,d1,d
= 2d ! Z A, |:Fg;;+12l12,m+2l2 + F?f+12l12—2j,m+2l2—2ji| )
k,m:Nl

(3.13)

where as usual, d = d; 4+ ds. In a similar way, one obtains

No
Jydi,d2.ds __ od—1 Jsd1,d2,d3 Jsd1,d2,d3
U =2 E : A | Ty oty vty + Uion 27 21,29 nats—2i
k,mn=N,

(3.14)

where d = dy + do + d3.

3.4.1 Computation of the Two-term Connection Coeffi-
cients Without Symmetry

Let us first consider the computation of the two-term coefficients. Most
computations which follow are valid for all choices of d; and ds, so we will fre-

quently simply write F{Mz or even I';, ;, instead of F{flg’dQ. Since ¢ is compactly
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supported, all but finitely many of the connection coefficients will be zero. Let us
determine which coefficients vanish with certainty.
In fact, for the integral (3.6) to be nonzero, two necessary conditions must

be satisfied: The supports of ¢(@)(x —I;) and (@) (x — I,) must
1. overlap on a set of positive measure, and
2. both intersect the interval (0,27).

Recall first that supp(¢) C [Ny, Na] where N7 and N, are as in Theorem 2.3. In

particular, ¢(z) vanishes at the endpoints of this interval, and hence
supp(p ) (z — 1)) C [Ny +l;, Ny + 1;] (3.15)

for all n and [;, and these functions vanish at the two endpoints Ny +1; and No+1;.

Hence, condition 1. is satisfied only when
(N1 + 11, No 4+ 1) N (Ny + 1y, No + 1) # 0,

that is,

(0, Ny — Ny) N (ly = lyy No— Ny + 1oy — 11) # 0

which is equivalent to
lp— 1| < Npg— N, —1=N —2. (3.16)
As for condition 2, note that by (3.15),
supp(¢'™ (2 = 1)) N (0,27) # 0

can only hold when —N, +1 <[ <2/ — N; — 1. For further reference, we observe

that

Ny +1 N2+l}

supp(i9j1) = supp(p(2'z — 1)) C { 57 5
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and hence

Ny +1 Ny+1

e DICBEY

supp(p;) N (0,1) # 0 < [

S [N+ 1, Ny +1N(0,27) £ 0

which by the above requires that —N, +1 <[ <2/ — N; — 1.
Condition 2. is thus satisfied only when Ny +1; > 0 and N; +[; < 27, that
is, when
“Ny+1<[; <2 —N; -1 (i=1,2). (3.17)
Combining (3.16) and (3.17) we see that a connection coefficient F{lh can

be nonzero only if the pair (I1,ls) lies in the set

AN ={(l,b)EZLXZL: —Ny+1<1l <2 -~ N, —1 and

min(—Np + 1, Ny = N +2) <ly <max(2/ — Ny — 1, N; + N — 2)}.
A simple computation shows that the set A’ has cardinality
K =K(j)=[2" — 2Ny + 1][2N — 3] + 3N* — 9N

provided that 2771 > Nj.

Observe that equations (3.13) can be written as

j7d17d2 _ d—1 . . j7d17d2
Iy =2 Y (k2 G2ty + Oty 12 Gty 2] T (3.18)

(k;m)eAd
for (I1,l3) € A7, where by Theorem 2.3, a; = 0 whenever ¢ ¢ [Ny, No]. In order
to replace the double index (I,l5) by a single index, fix a bijection v : A9 —
{1,2,...,K}. If we set p = (ly,l3) and r = v(k, m) then the system (3.18) of K
equations in K unknowns can be written as

K
Dydude = 981N 2, TP0% (p=1,...,K) (3.19)

r=1
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where we have set

Qpr = Qk—21y Am—21; T Q20,425 A —2154+23 -

In matrix form,

X =291 AX

where A = [a,,] is a K x K matrix, and X = (Tt ,FJ["{dl’dQ)T the vector of

connection coefficients. This vector is thus a solution of the linear system
[A—2"I]X =0, (3.20)

I denotes the identity matrix. As this system is homogeneous, there is no unique
solution. One must add one or several nonhomogeneous equations until one has
an augmented matrix of rank K. If ¢ has vanishing first moments, this can be
done by applying the moment equations.

1,0

Table B.2 in Appendix B shows the two-term connection coefficients I'Y:

of the coiflet C'12 for 7 = 0, computed without symmetry.

3.4.2 Computation of the Two-term Connection Coeffi-

cients Using Symmetry

I‘j?d17d1 _

When d; = dy, then symmetry of the connection coefficients, I'" "™ =

F{ffl’dl, allows one to reduce the number of equations by nearly one-half, and also
reduce the number of nonhomogeneous equations that need to be added. Here one
replaces A’ by

AT ={(l;,l) € N : [, <Iy}.
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Then K := card(AZ) = 2/(N — 1) + 3Ny — 3N — 2 — 2N N, + 3N?/2, and system

of equations (3.18) simplifies to the system

Jydi,d2 _ od—1 _ 1 1Jd1,d2
Iy =2 { E [k —a1, Ak 21, + Ah—o1, 425 Q21,425 ] Ty

(k.k)eA]

. 1 17hd1,d2
+2 E [k 21, 21, + 21, 425 21,425 T

(k,m)eA]
k<m

for (I1,1y) € AJ. Thus, after fixing a bijection v: A7 — {1,2,..., K,} and setting

p=7(ly,ls) and r = ~y(k,m), this system can be written as

K
J,di,d2 __ od—1 J,d1,d2 _
Iy =2 ap I (p=1,...,Ky)
r=1
where now
Ak—21, Ak —2l5 + Q21,497 Q21,42 it k=m

Apr =

2[%-211 Am—2l, + Ak—21; 42 am—2l2+2j] else.

System (3.20) is now of reduced form; in particular, the matrix A — 2'79J is of
lower rank deficiency so that fewer moment equations need to be added.
Table B.1 in Appendix B shows the connection coefficients I'"*9 and I»1!

of the coiflet C'12 for j = 0, computed using symmetry.

3.4.3 Computation of the Three-term Connection Coeffi-

cients

The three-term connection coefficients can be computed similarly. In order
for the integral (3.7) to be nonzero, the two necessary conditions required to be

satisfied become now the following: The supports of ¢ (%) (z —1;) (i = 1,2, 3) must
1. overlap on a set of positive measure, and

2. all three intersect the interval (0,27).
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By (3.15), condition 1. is satisfied only when
;=L <N -2 forall 1 <i<j<3. (3.21)
Condition 2 is satisfied only when
Ny +1<; <2 —-N -1 (i=1,2,3). (3.22)
As before, we let
A ={(l1,ls,13) € Z* : (I1,15,13) satisfy conditions (3.21) and (3.22)},

and we let K = K(j) = card(A7). Then equations (3.14) can be written as

J,di,d2,ds __ od—1
Fll,lz,la =2

_ _ 1 Thd1,d2,d3
X E [k 21y Q21 A 21, + Q01 125 21,423 W21 423 kam

(kym,n)EAI
(3.23)
for (I1,15,13) € AJ. After fixing a bijection v : A — {1,2,..., K}, then (3.23) can
be written as

K
idideds — gt 1N g, Todbds  (p =1, K). (3.24)

r=1

where now p = y(ly,l2,l3), r = v(k,m,n), and where we have set

Qpr = Q213 Am—21,An—215 T Q21,125 Q205423 205423 -
In matrix form,
X =271AX

where A = [a,,] is a K x K matrix, and X = (D39%2%  12dud0T goyiva-
lently,

[A—2"] X =0. (3.25)
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Again, this system is not homogeneous and one must, for example, add one or
several moment equations. In addition, under presence of symmetry, for example
if dy = d3, the complexity of this system can be reduced as explained in the case
of two-term coefficients.

Table B.3 in Appendix B shows the three-term connection coefficients I'/:1:0:0
and I'7901 of the coiflet C'12 for j = 0, computed using symmetry.

The computation of all connection coefficients was performed with mixed

C/C++ code and using the LAPACK numerical library.



CHAPTER 1V

BURGERS EQUATION

In this chapter we discuss the application of the Wavelet-Galerkin Method
to the Burgers equation. Our presentation essentially follows Lin and Zhou (2001).
The purpose is to verify validity of our code by comparing our results with those
of Lin and Zhou (2001), and in addition to evaluate by numerical experiments how

the choice of coiflets and scaling level influences accuracy of the solution.

4.1 Formulation of the Problem

Consider the homogeneous Burgers equation
Up + Uy = Vlgy. (4.1)

This equation was first discussed by Burgers (1948) in the modelling of one-
dimensional fluid flow. Here, u(x, t) denotes the velocity of a fluid and the constant
v is its viscosity. It is well known that solutions of this equation can be linearized
to the one-dimensional heat equation by means of the Hopf-Cole transformation
(Cole,1951; Hopf,1950), and hence some exact solutions are known. For this rea-
son, the Burgers equation is often used to verify the accuracy of numerical schemes,
a discussion of which can be found in Fletcher (1991).

We begin by imposing the following Dirichlet boundary conditions:

1, 0<z<1/2
u(z,0) = u’(z) = sw<l/

0, 1/2<z<1, (4.2)

u(0,t) =1, u(l,t) =0 (t>0).
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Next apply the semi-implicit scheme with regards to time ¢,
uFH k L Out 92 k1

— U
p— 1
A7 +u e v 52 0<z<l) 43

uF(0)=1  WF(1)=0

for k =0,1,2,... and where u* = u(x, kAt). Setting w = v*** and g = u*, then

at each time step k we have to solve a boundary value problem

—vAtW" + Atguw' +w =g (4.4)

The variational form of equation (4.4) is
a(u,v) = F(v) (ue H'(0,1), v e Hy(0,1))
where the bilinear form a(-,-) is given by
1
a(u,v) = / (—vAtu"v + Atgu'v + uv) dz
0
or after integrating the first term by parts
1
a(u,v) = / (vAtu'v" + Atgu'v + uv) dx, (4.6)
0

and
1
Fv) =< g,v>= / gudz. (4.7)
0
Clearly, a(-,-) and L(-) are continuous on H'(0,1). To verify that a(-, -) is coercive,

we note that

1
/ yAt —i—Atgvv—i—v)dx
0

/Ol(l/At— (Atg?] (v')? +[Atgv’+gr+2v2> dx
/;( [ — (Atg)?] (v )M%&)dx.

Vv
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Now since the solution g = u* is bounded, then v — (Atg)? > 3 > 0 provided that
At is sufficiently small (this can be verified at each time step in the computation)

and hence we obtain

¢ 1
a(v,v) > /0 (Atﬁ (') + 21}2) dr > /0 At ((U')2 - 222> dr = Atﬁ||v||fql(0’1)

provided that At is sufficiently small, which shows that this bilinear form is coer-
cive. Hence by the Lax-Milgram Theorem, the equation (4.7) has a unique solution
in H}(0,1). Observe however, that because of the given boundary conditions, the
solution u can only be an element of the larger space H'(0,1).

In order to obtain a solution satisfying the given boundary conditions, now

split the variational problem into 3 parts:

1. Find the solution ug to the problem

a(u,v) = F(v) Yv e HY(0,1) (4.8)

2. Find the solution u; to the problem

a(u,v) = v(0) Yove HY(0,1) (4.9)

3. Find the solution uy to the problem

a(u,v) =v(l)  Yve HY0,1). (4.10)

Note that v(0) and v(1) are well defined, as all elements of H'(0, 1) are continuous.
Next set

U = Ug + /\1U1 + )\QUQ (411)

and find A{, Ay so that

u(0) =1, wu(l)=0. (4.12)
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This can be easily done, since by (4.11), A\; and Ay are solutions to the system

u1(0)A1 + u2(0)Ag = 1 — up(0)
(4.13)
Ul(l))\l + Uz(l))\g = —Uo(l).

Now the function u of (4.11) satisfies the boundary value problem
a(u,v) = F(v) + A\v(0) + Av(1), u(@0)=1, u(l)=0 (ve H'(0,1))
so that in particular, for all v € H!(0, 1),

a(u,v) = F(v), u(0) =1, wu(l)=0.

4.2 Solution by the Wavelet Galerkin Method

We now discuss the solution of problem (4.8). We begin by choosing a
real valued compactly supported scaling function ¢ which has N nonzero scaling
filter coefficients and whose support is contained in an interval of length N — 1, as
outlined in Chapter II. In our experiments this is a coiflet scaling function, as it has
vanishing first moments, but this is no restriction for the algorithm below. Next
choose an approximation space Vj, so that {¢;x}rez is an orthonormal basis of V.
We also let V;[0, 1] denote the finite dimensional space obtained by restricting the
functions in Vj to [0, 1]. Then those basis functions of V; whose supports intersect
the unit interval, say the collection {¢;x}2;, will be a basis of V;[0,1] and its
dimension will be L = Ly — L; + 1.

Replacing g by its projection onto V;[0, 1], we thus have to solve the prob-

lems
a(u,v) = F(v), Vv e V;[0,1] (4.14)
a(u,v) = v(0), Vo e V;[0,1] (4.15)

a(u,v) = v(1), Vv e V;[0,1]. (4.16)
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Now we express u and g in the basis of V;[0, 1],
L2 L2
u = Z e and g = Z b @jm
k=L m=L1
Then (4.14) becomes

!/

1 Lo Lo Lo !
/ (VAt Z ckpik| i+ Al Z bmcpjm] [Z C/c%‘,k] il
0 k=L m=L1 k=L,
Lo 1 Lo
+ Z CkPjk | Pjl dI:/ Z bimpjm | P dx
k=L 0 Lm=L,
forall [ = Lq,..., Ly. That is,
Lo 1 L2 1 1
Z Ck (VAt/ @ 1 de + At Z bm/ O P31 Psm d:zc—l—/ L5 kP51 dx)
k=L1 0 m=1Ly 0 0
Lo 1
= Z bm/ ©imidx.
m=1L1 0

By (3.4) and (3.5) this becomes

Lo
> (ﬂmtr“’l + 232Nt Z bmlg i + J‘)O) Z A N

k=L1 m=1L1 m=L1
for all | = Ly,..., Ly. This can be expressed as a matrix equation
AU, = B, (4.17)

where A is the matrix of size L x L whose entries are
Lo
ag = 29VAT ! + 292 A8 Y b, T + T4
m=1L1
U, is the vector of unknowns, U, = {cl}le Ly and B, the column vector whose [-th

entry by is

Z 8w

m=L1

Here all vector and matrix indices range from L; to Ls. Observe that A is a band

matrix whose upper and lower bands have width N — 2 each, as I'y; = 0 whenever
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|k—1| > N —2. System (4.17) can be solved by LU decomposition for example. In
our experiments we have used the LAPACK routine DBGSV for band matrices. The

problems (4.15) and (4.16) can be solved in a similar way, by solving the systems
AUl = Bl and AUQ = BQ,

where By = {0;,(0)}/2,, and By = {¢;,(1)};?;,. Computing the values of \; and

Ay from (4.13), then the vector
U=Uy+ MU + \Us

will contain the coefficients of the solution w in Vj[0, 1] of problem (4.6) — (4.7).

4.3 Solution by Finite Difference Schemes

In order to compare the wavelet solution with traditional methods, numeri-
cal experiments using a finite difference scheme with and without flux limiter were
performed. Partitioning the interval [0, 1] into subintervals of length Az each with

grid points x; = ¢Ax, one naturally obtains the scheme

k+1 k k1 etiNg k k k
Uy — Uy i U; (ui+1 ui—l) _ ’/(ui+1 — 2ui +u; )
At 2Azx Ax? ’

where u¥ = u(w;,t;,) with ¢, = kAt. However, because we will also use schemes
with flux limiters, we modify the above.

Consider an equation without diffusion term,

0Q , AvQ)

5t =0 (4.18)

where v = v(z,t) is a velocity field and @ = Q(x,t) is a conserved quantity. For
example, in the inviscid Burgers equation (v = 0) we have v = u/2 and Q) = u.

The flux of quantity @ is defined by F' = v@. To maintain the conservative



ol

property of (4.18) the numerical flux F (x,t) is implicitly defined by

1 z+Azx/2 R

F(xz,t) = —/ F(z,t)dz,
Ax z—Az/2

hence the derivative 0F/0z is calculated exactly by the formula

OF P+ Ax/2,t) — F(x — Ax/2,t)
%(ZB’ )= Az '

Discretization of equation (4.18) is now obtained in conservative form and ex-

pressed explicitly in time as

Qf“ - Qf + Fz'lfl—l/Z - Fz'k—l/z _
At Ax

0 (4.19)

where QF = Q(z4,11), and ]/52’;1 Jo are the numerical ) fluxes through the right
and left boundaries of the i-th grid cell, respectively. Different numerical approxi-

mations of the Eil /2 give finite difference schemes with different properties. The

most straightforward approximation to J/iﬁl /o 18 certainly a linear approximation,

= Qi +Q;
Fz‘li1/2 — U§+1/2Q§+1/2 - Uf—&-l/QTHI (4.20)

with a similar approximation of ]?’f_ 1/2- This gives an approximation of the partial

derivative 0(vQ)/0x by central differences, and (4.19) becomes

Qf‘*‘l — Qf N Uf+1/2( f_,_l + Qf) = Uﬁ1/2(@i’f + Qf—l)
At 2Ax

=0 (4.21)

Applying this concept of numerical flux to the Burgers equation (4.1) (v =

u/2, @ = u) we obtain

k+1 k k k k
ui —up  Fip— Fioap v(ugy, — 2ui +ugy)

At Az Ax?

A A

The scheme (4.21) becomes

N

i uf n uf+1/2(uf+1 +uf) — 1’421/2(1’%C +uj ) B V(ufﬂ —2uf +uf )

At 4Azx a Ax?

. . . . k k
Using linear approximation for u;, /2 and u; /2 then we have a second order

approximation scheme

ui - uf” 4 (Ui‘cﬂ + Uf)Z - (Uf + Uf—1)2 _ V(Ufﬂ - 2“? + Uf—l)

7

At SAz Ax?
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4.4 Flux Limiters

The choice of second order numerical flux (4.20), however, leads to the
appearance of spurious oscillations in the numerical solution. One strategy to avoid
nonphysical oscillations and excessive numerical diffusion is a hybrid method which
uses the second order numerical flux in smooth regions and limits the solution in
vicinity of discontinuities by using the monotonic upwind method in these regions.
This procedure is carried out by introducing a flux-limiter based on the local
gradient of the solution. We write the interface value Qfﬂ /o @S the sum of the
diffusive first order upwind term and an “anti-diffusive” one. The higher order
antidiffusive part is multiplied by the flux limiter, which depends locally on the
nature of the solution by means of the non-linear function 6;,/,. This function is

expressed by the slope ratios at the neighborhood of the interfaces in the upwind

direction,
Qf LY ?—1 + : k
o —gF ez i 20
92’4—1/2 - ;:_ 2 (422)
i+2 ° Wi+l _ p— . k
’?—_Q’?_e”lﬂ if v}y <0.
i+1 0

Introduction of this new parameter ¢ and the limiter function ¥, leads to the flux
limiter version of the hybrid scheme as

Qf+ 5@k, — QM (06,,) i v 20,

Q?+1/2 = (4-23)

it~ 5(Qi — QN <0i_+1/2> if ”?ﬂ/z <0.
The interface value Q¥ | /o I8 obtained by using the same formula as for Qfﬂ /2 by
replacing the index i with ¢ — 1. From Eq. (4.23), one can see that if ¥ = 0 we

find the upwind scheme, and if ¥ = 1 the scheme is reduced to the central one.
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The following limiter functions are used in this study (LeVeque, 1996):

Minmod : ¥(#) = max(0, min(1,8)),
Superbee : ¥(f) = max(0, min(1,26), min(2,0)), (4.24)
Van Leer : W(0) = (6 +0])/(1+ |0)).

The Minmod and Superbee limiters were introduced by Roe (1985) and Roe and

Sidilkover (1992). The Van Leer limiter was introduced in Van Leer (1974).

4.5 Results of Numerical Experiments

In this section we present the results of the numerical experiments with the
boundary value problem (4.2), for Reynold numbers Re = 200 and Re = 2000,

respectively. (Here we have set Re = 1/v.)

4.5.1 The Case Re = 200

In case Re = 200 viscosity is sufficiently large so that the initial jump at
x = 0.5 smoothes out quickly.

Figures 4.1-4.8 show plots of the wavelet solutions by C12 Coiflets for scales
j=6toj =9 and time scales At = 1072 to 107>, as a set of four pairs. The first
plot in each pair shows the solution on the jump interval, while the second plot
gives a zoomed image into the center of the jump.

The graphs show that at time steps 10~ or smaller, the wavelet solution
approximates the exact solution very well; the wavelet and the exact solutions
are visually indistinguishable when j = 8 or j = 9 and At = 107°. This fact is
corroborated in Table 4.1 which shows the errors of approximation, in both the

supremum and the mean-square norms.
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Re=200 - j=6 - t=0.4

' ' ' ' exact solution
1 wavelet C12 ts=10e-2 ------- |
TEE——— wavelet C12 ts=10e-3 --------
Tl RN wavelet C12 ts=10e-4
Tl wavelet C12 ts=10e-5 ——~—
0.8 -
0.6 -
=}
04
0.2
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.1 Wavelet solution of the Burgers equation for scale j = 6 at various

time resolutions, for Re = 200 (¢ = 0.4).

Re=200 - j=6 - t=0.4

0.7 T T T -
exact solution
I wavelet C12 ts=10e-2 -------
TEREY wavelet C12 ts=10e-3 --------
06 F I wavelet C12 ts=10e-4 -]

wavelet C12 ts=10e-5 ———~—

Figure 4.2 Wavelet solution of the Burgers equation for scale j = 6 at various

time resolutions, for Re = 200, enlarged (¢ = 0.4).
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Re=200 - j=7 - t=0.4

' ' ' ' elxact solution
1 wavelet C12 ts=10e-2 ------- i
wavelet C12 ts=10e-3 --------
TS T wavelet C12 ts=10e-4
NN wavelet C12 ts=10e-5 — -~
0.8
06 |
=}
04
0.2
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.3 Wavelet solution of the Burgers equation for scale j = 7 at various

time resolutions, for Re = 200 (¢ = 0.4).

Re=200 - j=7 - t=0.4

0.7 . : . '
exact solution
wavelet C12 ts=10e-2 -------
wavelet C12 ts=10e-3 --------
wavelet C12 ts=10e-4 S—

0.6 I wavelet C12 ts=10e-5 ———-

Figure 4.4 Wavelet solutions of the Burgers equation for scale j = 7 at various

time resolutions, for Re = 200, enlarged (¢ = 0.4).
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Re=200 - j=8 - t=0.4

' ' ' ' exact solution
1 wavelet C12 ts=10e-2 ------- i
wavelet C12 ts=10e-3 --------
S wavelet C12 ts=10e-4
T N wavelet C12 ts=10e-5 ———-
0.8
0.6 [
=}
04
0.2
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.5 Wavelet solutions of the Burgers equation for scale j = 8 at various

time resolutions, for Re = 200 (¢ = 0.4).

Re=200 - j=8 - t=0.4

0.6 T T T N
exact solution
wavelet C12 ts=10e-2 -------
wavelet C12 ts=10e-3 --------
N wavelet C12 ts=10e-4 =
0.5 wavelet C12 ts=10e-5 ———~ -

04

01 F

Figure 4.6 Wavelet solutions of the Burgers equation for scale j = 8 at various

time resolutions, for Re = 200, enlarged (¢ = 0.4).
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Re=200 - j=9 - t=0.4

' ' ' ' elxact solution
1 wavelet C12 j=9 ts=10e-2 ------- |
~~~~~ wavelet C12 ts=10e-3 --------
~ wavelet C12 ts=10e-4
L NN wavelet C12 ts=10e-5 ——--
0.8
0.6 [
=] N
04 N
0.2
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.7 Wavelet solutions of the Burgers equation for scale j = 9 at various

time resolutions, for Re = 200 (¢ = 0.4).

Re=200 - j=9 - t=0.4

0.6 T T T N
exact solution
wavelet C12 ts=10e-2 -------
wavelet C12 ts=10e-3 --------
B wavelet C12 ts=10e-4 -
0.5 | wavelet C12 ts=10e-5 ————- -

Figure 4.8 Wavelet solutions of the Burgers equation for scale 7 = 9 at various

time resolutions, for Re = 200, enlarged (¢ = 0.4).
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Table 4.1 Errors computing the solution of the Burgers equation by the wavelet

method at various time steps and scales for Re = 200 using C'12 Coiflets. (¢ = 0.4).

Scale Norm At =103 At =107 At =107
§=6 Jlu—uclls  0.092354 0.011483 0.009464
lu—uells  0.014836 0.002194 0.001544
% 0.017661 0.002612 0.001838
J=7 |lu—tuell  0.091507 0.009812 0.001445
lu— el 0.015025 0.001569 0.000214
W 0.017986 0.001878 0.000256
J=8 [lu—tuclls  0.092935 0.009705 0.000989
lu —uells  0.015096 0.001576 0.000158
W 0.018122 0.001892 0.000190
7=9 |Jlu—uclls  0.092974 0.009794 0.000983
|u—wuells  0.015107 0.001580 0.000159
llu = ucllz 0.018161 0.001899 0.000191

HueHQ
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It can be noticed that when the time steps are relatively large, a change of
scale j has little effect on accuracy. On the other hand, at the smallest time step
At = 107°, increasing scale improves accuracy, at least until j = 8, so that the
error falls below 0.001.

The pair of Figures 4.9 and 4.10 represents a visual comparison of the
wavelet solution with solutions by various finite difference methods, at low scale
j = 6 and for time step At = 104, The first of the two plots again show the
graphs over the overall interval on which the solution decreases to zero, while the
second plot is a zoomed view into the center of this interval.

The scheme by central differences does not exhibit monotonicity, while the
first order monotone scheme gives a solution with smoothed-out gradient. On the
other hand, all three flux limiter schemes give good approximations. The wavelet
solution is closest to the exact solution.

Table 4.2 shows some of the data used for these two plots, together with the
errors of approximation in the supremum and mean-square norms. The error of the
wavelet solution is noticeably below that of any of the finite difference solutions.

Finally, the pair of Figures 4.11-4.12 as well as Table 4.3 are a comparison
of the wavelet solutions for various choices of Coiflet scaling functions C{3N},
namely for N = 4,6,8 and 10, at j = 6 and At = 10~%. The choice of N does
not affect the solution noticeably. Since increasing N leads to a larger number of
connection coefficients and hence to a larger computation time, the Coiflets C'12

are a reasonably good choice.
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Table 4.2 Comparison of the exact solution of the Burgers equation with solutions

by the wavelet method and by various finite difference schemes for Re = 200.

(t=04, At =10 Az =27°).

Exact CoifletC12 Central  First order Maxmod Super Bee van-Leer
solution j=6 difference  monotone limiter limiter limiter
T Ue U6 Ucd Ulm Umm, Ush Uyl

0.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.54688 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.56250 1.00000 1.00000 1.00000 0.99999 1.00000 1.00000 1.00000
0.57813 1.00000 1.00000 0.99997 0.99996 1.00000 1.00000 1.00000
0.59375 0.99999 0.99999 1.00002 0.99984 0.99998 1.00000 1.00000
0.60938 0.99995 0.99995 1.00028 0.99945 0.99991 0.99998 0.99997
0.62500 0.99975 0.99977 0.99957 0.99814 0.99959 0.99991 0.99984
0.64063 0.99881 0.99811 0.99729 0.99379 0.99816 0.99943 0.99911
0.65625 0.99432 0.99087 1.00671 0.97986 0.99190 0.99661 0.99513
0.67188 0.97336 0.97328 1.02369 0.93744 0.96532 0.98013 0.97417
0.68750 0.88424 0.88968 0.90299 0.82395 0.86532 0.89383 0.87760
0.70313 0.61518 0.60370 0.55394 0.59593 0.60323 0.59640 0.59809
0.71875 0.25073 0.24134 0.22445 0.31241 0.26474 0.24360 0.25431
0.73438 0.06543 0.05894 0.06888 0.11587 0.08378 0.06873 0.07696
0.75000 0.01441 0.01487 0.01877 0.03420 0.02308 0.01820 0.02074
0.76563 0.00304 0.00489 0.00492 0.00917 0.00607 0.00474 0.00542
0.78125 0.00063 0.00109 0.00127 0.00238 0.00157 0.00122 0.00140
0.79688 0.00013 0.00007 0.00033 0.00061 0.00040 0.00032 0.00036
0.81250 0.00003 0.00000 0.00008 0.00016 0.00010 0.00008 0.00009
0.82813 0.00001 0.00000 0.00002 0.00004 0.00003 0.00002 0.00002
0.84375 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001 0.00001
0.85938 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
max error 0.01148 0.06125 0.06168 0.01893 0.01878 0.01710
at x = 0.703125  0.703125 0.718750  0.687500 0.703125  0.703125
[[u — uell2 0.00219 0.01084 0.01387 0.00431 0.00300 0.00288
N = ueflz 0.00261 0.01290 0.01651 0.00513 0.00357 0.00343

lluell2
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' ' ' ' e'xact solution
1 wavelet C12 j=6 -------
" central difference ---
1st order monotone =
minmod limiter ———--—
superbee limiter -------
08 van-Leer limiter ---- - - |
0.6
=}
04
0.2
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.9 Comparison of the solutions of Burgers

method with solutions by various finite difference schemes for Re

0.64 <z <0.77. (t =04, At =101, Az = 27°).

Re=200 - t=0.4 - ts=10e-5
0.65 T T

equation by the wavelet

200 and

T T
exact solution

0.6 -

0.55 -

0.45

0.4 L

wavelet C12 j=6
central difference
1st order monotone
minmod limiter

superbee limiter -------
van-Leer limiter - - -- -

'0.702 0.703

Figure 4.10 Comparison

method with solutions by various finite difference schemes for Re

0.704 0.705 0.706

X

0.707 0.708

0.709

0.71

of the solutions of Burgers equation by the wavelet

0.702 <z < 0.71. (t =04, At = 1074, Az = 276).

200 and
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4.5.2 The Case Re = 2000

As the Reynold numbers increases, the initial jump smoothes out very
slowly with time, and thus fine spatial grids are required for a good solution.
Figure 4.13 shows that a grid spacing of Az = 27% still produces oscillations in
vicinity of the jump for all schemes. As all limiter schemes perform similarly, only
the solution by van-Leer limiter is shown. At the finer grid Az = 279 of Figure
4.14, only the basic difference scheme retains oscillations. The enlarged graphs
around the jump interval in Figure 4.15 show that the limiter schemes produce

the best results. Table 4.4 lists the approximation errors of the various schemes.

4.5.3 Summary

The results of the numerical simulation can be summarized as follows:

1. The Wavelet-Galerkin method can produce accurate solutions in the presence

of jumps.

2. In order to increase accuracy, the scaling level j should be increased, and

concurrently, the time step size At should be decreased.
3. The choice of Coiflet type does not affect accuracy of the solution.

4. The Wavelet-Galerkin method performs better than the various finite differ-

ence schemes without flux limiter.

5. The Wavelet-Galerkin method produces solutions of similar accuracy as the

finite flux limiter schemes.

6. At same required accuracy, time step sizes in the Wavelet-Galerkin method

may be up to two orders of magnitude larger than in the flux-limiter schemes.
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Table 4.3 Wavelet solutions of the Burgers equation by various Coiflets for Re =

200 and j = 6. (t = 0.4, At =1071).

Exact Coiflet Coiflet Coiflet Coiflet
solution C12 C18 Cc24 C30
€ Ue Uwl2 Uw18 Uw24 Uw30

0.000000 1.00000 1.00000 1.00000 1.00000 1.00000
0.562500 1.00000 1.00000 1.00000 0.99999 0.99999
0.578125 1.00000 1.00000 1.00000 1.00002 1.00001
0.593750 0.99999 0.99999 0.99998 0.99996 0.99999
0.609375 0.99995 0.99995 1.00000 0.99998 0.99990
0.625000 0.99975 0.99977 0.99967 0.99970 0.99991
0.640625 0.99881 0.99811 0.99921 0.99867 0.99819
0.656250 0.99432 0.99087 0.99379 0.99518 0.99565
0.671875 0.97336 0.97328 0.96907 0.96904 0.96944
0.687500 0.88424 0.88968 0.88535 0.88342 0.88248
0.703125 0.61518 0.60370 0.60470 0.60488 0.60494
0.718750 0.25073 0.24134 0.24232 0.24307 0.24347
0.734375 0.06543 0.05894 0.06292 0.06383 0.06407
0.750000 0.01441 0.01487 0.01558 0.01489 0.01441
0.765625 0.00304 0.00489 0.00303 0.00256 0.00258
0.781250 0.00063 0.00109 0.00037 0.00060 0.00076
0.796875 0.00013 0.00007 0.00012 0.00018 0.00013
0.812500 0.00003 0.00000 0.00003 0.00001 0.00001
0.828125 0.00001 0.00000 0.00000 0.00001 0.00001
1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Re=200 - t=0.4 - j=6 - ts=10e-4

' ' ' ' exact solu'tion
1 wavelet C12 -- |
wavelet C18 ---
= wavelet C24 --------
B wavelet C30 ——-~
0.8 |
0.6 |
=}
04 |
02 |
0 -
| | | | 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

Figure 4.11 Comparison of the wavelet solutions for various choices of Coiflets,

for Re = 200. (t = 0.4, At =107).

Re=200 - t=0.4 - j=6 - ts=10e-4

0.7 T T T T Al
exact solution
wavelet C12 --
\\ wavelet C18 --------
0.6 \ wavelet C24 -------- |
AN wavelet C30 ——-——
05
0.4
=}
03 |
0.2
0.1
0 1 1 1 1 1 1 1
0.7 0.705 0.71 0.715 0.72 0.725 0.73 0.735 0.74

Figure 4.12 Comparison of the wavelet solutions for various choices of Coiflets,

for Re = 200, enlarged. (¢t = 0.4, At = 107%).



Re=2000 - t=0.8 - ts=10e-5

65

12

04

T T
exact solution
wavelet C12 j=8 ------- 4
central difference --------
1st order monotone =
van-Leer limiter -- - -- -
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X
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Figure 4.13 Comparison of the solutions of Burgers equation by the wavelet

method with solutions by various finite difference schemes for Re = 2000 and

0.85 <z <0.93. (t=08, At =107, Az =278).

Re=2000 - t=0.8 - ts=10e-5
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T T
exact solution
wavelet C12 j=9 ------- |
central difference --------
1st order monotone
van-Leer limiter ————

0.85 0.86

0.87 0.88 0.89 0.9

0.91 0.92 0.93

Figure 4.14 Comparison of the solutions of Burgers equation by the wavelet

method with solutions by various finite difference schemes for Re = 2000 and

0.85 < 2 < 0.93. (t=0.8, At = 1075, Ax = 279).
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Re=2000 - t=0.8 - ts=10e-5

' ' ' ' exact solu'tion
1 wavelet C12 j=9 ------- |
3 central difference --------
1st order monotone =
van-Leer limiter —-——-
0.8 |
0.6 |
=}
0.4 |
02 |
0 -
| | 1 | 1 1
0.894 0.896 0.898 0.9 0.902 0.904 0.906 0.908

Figure 4.15 Comparison of the solutions of Burgers equation by the wavelet
method with solutions by various finite difference schemes for Re = 2000 and

0.894 < 2 < 0.908. (t=0.8, At =1075, Azx =277).

Re=2000 - t=0.8 - ts=10e-6

I ‘ I exact solu'tion
! wavelet C12 j=9 ------- |
" central difference --------
1st order monotone
van-Leer limiter ———-~
0.8
0.6
=1
04
0.2
0 -
1 1 N ) ) I
0.894 0.896 0.898 0.9 0.902 0.904 0.906 0.908

Figure 4.16 Comparison of the solutions of Burgers equation by the wavelet
method with solutions by various finite difference schemes for Re = 2000 and

0.894 < x < 0.908. (t = 0.8, At =1079).



67

Table 4.4 Comparison of the exact solution of the Burgers equation with solutions

by the wavelet method with solutions by various finite difference schemes for Re =

2000. (t=0.8, At =107%, Az =279).

Exact CoifletC12 Central First order Maxmod Super Bee van-Leer
solution ji=9 difference monotone limiter limiter limiter
x Ue Uw9 Ucd Ulm Umm Ush Uyl

0.000000000  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.878906250  1.00000 1.00000 0.99998 1.00000 1.00000 1.00000 1.00000
0.880859375  1.00000 1.00000 0.99999 1.00000 1.00000 1.00000 1.00000
0.882812500  1.00000 1.00000 1.00011 1.00000 1.00000 1.00000 1.00000
0.884765625  1.00000 1.00000 0.99993 1.00000 1.00000 1.00000 1.00000
0.886718750  1.00000 1.00002 0.99942 0.99998 1.00000 1.00000 1.00000
0.888671875  1.00000 0.99999 1.00105 0.99992 1.00000 1.00000 1.00000
0.890625000  0.99997 0.99990 1.00248 0.99961 0.99997 1.00000 1.00000
0.892578125  0.99977 1.00029 0.99110 0.99818 0.99975 0.99996 0.99994
0.894531250  0.99841 0.99379 0.99367 0.99167 0.99804 0.99952 0.99928
0.896484375  0.98893 0.98415 1.05900 0.96333 0.98520 0.99386 0.99152
0.898437500  0.92684 0.94241 0.97105 0.85923 0.90463 0.93323 0.91957
0.900390625  0.64243 0.62085 0.54810 0.60413 0.61509 0.61344 0.61111
0.902343750  0.20307 0.18829 0.18014 0.27825 0.22655 0.20447 0.21544
0.904296875  0.03488 0.02612 0.04265 0.08209 0.05578 0.04411 0.05001
0.906250000  0.00510 0.00783 0.00901 0.01870 0.01192 0.00908 0.01046
0.908203125  0.00073 0.00298 0.00185 0.00391 0.00246 0.00186 0.00214
0.910156250  0.00010 0.00010 0.00038 0.00080 0.00050 0.00038 0.00044
0.912109375  0.00001 —0.00016 0.00008 0.00016 0.00010 0.00008 0.00009
0.914062500  0.00000 0.00000 0.00002 0.00003 0.00002 0.00002 0.00002
0.916015625  0.00000 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000
1.000000000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

max error 0.02158 0.09433 0.07517 0.02735 0.02899 0.03132

at z =

U — Ue-2
llu — uell2

lluell2

0.900390625  0.900390625

0.00144 0.00567

0.00152 0.00598

0.902343750

0.00538

0.00567

0.900390625

0.00212

0.00223

0.900390625

0.00141

0.00148

0.900390625

0.00169

0.00178
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Re=2000 - j=9 - t=0.8

' ' ' exact solution
1 wavelet C12 ts=10e-3 ———~- |
- wavelet C12 ts=10e-4 --------
=35 wavelet C12 ts=10e-5 =
\ wavelet C12 ts=10e-6 -------
0.8 B
0.6 [ B
=}
0.4 B
0.2 B
0
| | 1
0.89 0.895 0.9 0.905 0.91

Figure 4.17 Solutions of Burgers equation by the wavelet method at various time

step sizes, Re = 2000 and 0.894 < = < 0.908. (7 =9, t =0.8).

Re=2000 - t=0.8 - ts=10e-6

1.2 T T T -
exact solution
wavelet C12 j=7 --------
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1 wavelet C12 j=9 ———- |
0.8 |
0.6 [
=}
0.4 |
02 |
0 -
1 1 1
0.89 0.895 0.9 0.905 0.91

Figure 4.18 Solutions of Burgers equation by the wavelet method at various scale

levels for Re = 2000 and 0.894 < = < 0.908. (¢t = 0.8, At = 1079).



CHAPTER V
AN EQUATION WITH NONLINEAR

DIFFUSION TERM

In this chapter we investigate suitability of the Wavelet-Galerkin method
for a partial differential equation with nonlinear viscosity. We compare the wavelet

solution with the exact solution and solutions by finite difference schemes.

5.1 Formulation of the Problem

Consider an equation

ue + [f(w)], = [c(w)ua], (5.1)

where f(z) and c(x) are continuously differentiable functions. We impose the
initial condition

u(z,0) = u’(z) 0<z<1)

while the boundary conditions at x = 0 and z = 1 remain to be specified. Note

that (5.1) can be rewritten as
ue+ f1(w)ue = [c(u)us],
In order to obtain a variational problem, we apply the semi-implicit scheme

— 4 (WM (uk“)x = [c(uk) (uk“)x} (5.2)

T

where u*(x) = u(x, kAt), k = 0,1,... . For ease of notation, at each time step At

k+1

we set w = u**! and g = u* and obtain the nonlinear ordinary boundary value
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problem
—At[e(g)w] + Atf'(g)w' +w =g 0<x<1).
The variational form of this problem is
a(u,v) = F(v) Vv € H'(0,1) (5.3)
where the bilinear form a(-,-) is given by
a(u,v) = /1( —At[e(g)u'] v+ Atf'(g)u'v + wv )dzx (5.4)
0
and
1
F(v) =< g,v >p2p01)= /0 gudz.
Applying integration by parts, the bilinear form (5.4) can be expressed as
a(u,v) = /01 (Ate(g)u'v' + Atf' (g)u'v +uv) dx (5.5)

provided that either v € H}(0,1), or ' € H}(0,1).

As for existence and uniqueness of solutions, we have:

Theorem 5.1. Suppose that m := ming<,<;1¢c(g)(z) > 0 and let M =

maxo<.<1 | f'(g)(x)|. Then for every At < 4m?/M,
a(u,v) = F(v) Yve H
has a unique solution u € H, where H = H'(0,1) or H = H}(0,1).

Proof. We verify the assumptions of the Lax-Milgram theorem. Clearly, the bilin-

ear form a(u,v) is continuous. To verify coerciveness, note that for each a > 0,
1
a(v,v) = / (Atc(g) (') + Atf'(g)v'v + v2> dx
0

_ /0 1 (At [clg) — a2f'(9)?] ()" + At | f/(g)av’ + ] 2

_|_
| — |
|
B
@w‘ >
—_
w4
(3]
N——
QL
IS

> /01 (At [e(g) — a2M?] (v')* + {1 - %‘;} v2> da.
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As m is positive, the first bracket will be greater than some positive constant when
a < m/v M. The second bracket will be greater than some positive constant when
At < 4a?; thus yielding coerciveness of a(-, ). The assertion thus follows from the

Lax-Milgram Theorem. O

% are usually known a-priori to be

Remark: In practice, the solutions u
bounded by some common constant M. On the other hand, the value of ¢(g) may
need to be evaluated at each iteration step, unless the function ¢(u) is bounded

below by some positive constant.

5.2 The Specific Equation

We now make a particular choice of f(u) and ¢(u), by letting f(u) = —u/2

and c(u) = u?. We thus obtain the equation

Uy — %uw = (u2ux)$ . (5.6)

This equation was discussed by Pinkuchov and Shu (2000). It is easy to check

that each function in the family

o (2, 1) = [max(0,z + t + a)]"/? (a const) (5.7)

is a solution of this equation on the domain —oco < z < oo.
In order to investigate suitability of the Wavelet-Galerkin method, we thus

impose boundary conditions corresponding to these solutions,
w(z,0) = u'(z) = [max(0,z + a)]"/? O0<z<1) (5.8)

w(0,8) = folt) 0<t<T) (5.9)

u(l,t) = fi() 0<t<T) (5.10)



72

for some T' > 0, where fo(t) = /max(0,t+ «), fi(t) = V1+t+a and a > —1.
By including the boundary conditions, scheme (5.2) becomes

k+1 k 1

5 @), = ) (),

utH0) = fo((k + 1)At)

T

uF (1) = fi((k + 1)At).

We thus obtain the nonlinear ordinary boundary value problem going from k to

k+1,
2.1\ At /
—At(gw)—7w+w:g 0<z<1) (5.11)
w(0) = fo((k+ 1)At) (5.12)
w(l) = fi((k+ 1)At), (5.13)
and the bilinear form (5.5) is
' 2,1,/ At /
a(u,v) = Atg u'v' — 5 Ut u dr. (5.14)
0

5.3 Solution by the Wavelet Galerkin Method

We now discuss the numerical solution of problem (5.11)—(5.13). Similar to

the Burgers equation, we let ug, u; and us denote the solutions of the problems,

a(u,v) = F(v) Vv € H'(0,1) (5.15)
a(u,v) = v(0) Yo € H'(0,1) (5.16)
a(u,v) = v(1) Yo € H(0,1) (5.17)

respectively. We then find \; and \s, so that u = ug + A\ju; + \us satisfies

w(0) = fo((k+ 1AL, u(l) = fi((k +1)AL)
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by solving the system

u1(0) A1 +u2(0) A2 = fo((k + 1)At) — ue(0)
(5.18)

Problems (5.15)—(5.17) are now solved using the Wavelet-Galerkin method. As
before, we choose an approximation space V;, and let {goj,k}ﬁi 1, be the basis of
V310, 1] obtained by restricting the functions ¢, to [0,1]. We replace g and ¢g* by
their projections onto V;[0, 1], which can be expressed as
LQ L2
g = Z bin@jm 92 = Z dmPjm
m=1L1 m=L1
and proceed at working in the finite dimensional space V;[0, 1] by looking for
solutions of the form u = > 1% 1, Ckjk- For example, (5.15) becomes
1 Lo !
/ (At Z Ck%’,k] P35
0

k=L,

L2 = . At
5 dmsoj,m] [z cmk] o - 2

m=L1 k=L,

_|_

L2 1 L2
Z %’,k] %,z) dr = / [Z bm@j,m] pj dx
0

k=L, m=L1

forall l = Lq,..., Ly. That is,

Lo Lo 1 At 1 1
Z Ck (At Z dm / Pjm P kP dT — 5 / @ kil dr + / ©j kP da?)
0 0 0

k=L1 m=1L1

By (3.4) and (3.5) this becomes

Lo

L2 L2
> o (QWAt > dmr;f;c{f] — 27 IAT +F§£’°> = > by
k=L m=L1 m=L1
for all l = L4, ..., Ly. This can be expressed as a matrix equation

AU, = B, (5.19)
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where A is the matrix of size L x L (L = Ly — Ly + 1) whose entries are

. = 25j/2At

Lo
4,0,1,1 j—1 J,1,0 7,0,0
E dem,kyl] -2 Aﬂ“kyl + Fk’l ,

m=L1
U, is the vector of unknowns, U, = {cl}lL:2 1,» and B, the column vector with entries

b = an?: L bmefio. Similarly, problems (5.16) and (5.17) become the systems
AU1 = Bl and AUQ = BQ,

where B; = {goj,l(O)}leL1 and By = {goj,l(l)}ijl. Computing the values of A\; and

Ao from (5.18), then the vector U = {uk}éih given by
U=Uy+ MU + \Us

will contain the coefficients of the solution u of problem (4.6) — (4.7) in V;[0, 1].
Since the values of the scaling function at the dyadic rationals are known, the
solution u can by computed by
Lo
u(@) = Y urpjn(z)
k=L

at the dyadic rationals in [0, 1].

5.4 Solution by Finite Difference with Flux Limiter

For the purpose of comparison, we again performed computations to solve

system (5.6), (5.8)—(5.10) with and without flux limiter, now by the scheme

2 2
. . k k k k k_ ok
ulftt ok N Fijipp—Ficyp (ui+1/2> (uiyr — ui) — (%‘—1/2) (u7 — ui_y)

7 ]

At Az Ax?

(5.20)
Fluxes on the boundary of the computational domain were computed according

to the exact solution.
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5.5 Results of Numerical Experiments

In this section we present the results of the numerical experiments with
equation (5.6) at time ¢t = 0.25. Choosing a« = —0.5, the boundary conditions

imposed were thus

u(z,0) = u’(z) = v/max(0, z — 0.5) 0<z<1)

u(0,t) = v/max(0,t — 0.5) (t >0)

u(l,t) =vE+ 05 (t>0).

Figures 5.1-5.3 show the solutions by finite difference method (At = 1074,
Az = 27%) and by the wavelet method for scaling level j = 6 and various choices of
At at t = 0.25. The graphs on the left depict the solutions over the whole interval
[0, 1], and the graphs on the right are magnifications around the point of singularity
x = 0.25. Table 5.1 lists the errors of approximation in each case. u, denotes the
exact solution, u,, the solution by the wavelet method, and uy4 the solution by finite
difference scheme. The last column lists the point at which the maximum uniform
error occurs. For At = 1073 the wavelet solution gives a good approximation of
the exact solution. Observe, however, that when At = 10~ the wavelet solution
shows a large error at the left-hand endpoint, while the approximation at the point
of singularity is still good.

Figure 5.4 shows how the choice of time step At influences accuracy of
approximation at the point of singularity. A value of At = 1072 is certainly not
sufficient: all plots show a smoothed-out and delayed ascent at this level. A value
of At = 1073 appears sufficient at all scales, except at scale j = 10, where a
delayed ascent can still be observed at this level. A value of At = 10~ gives best

results at all scales. We caution that each plot is drawn at a different scale.
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=025 1=0.25
T T 05 T T
wavelet method j=6 1s=0.01  + wavelet method =6 ts=0.01  +
1k finite difference 1s=0.0001 X | finite difference 15=0.0001 X
exact solution exact solution

Figure 5.1 Sketch of finite difference solution (At = 10™*, Az = 27°%) and wavelet

solution (j = 6, At =1072).

=0.25 1=0.25
. - 05 T T T T
wavelet method j=6 ts=0.001  + wavelet method j=6 ts=0.001  +
1L finite difference ts=0.0001 X | finite difference ts=0.0001 X
exact solution exact solution

Figure 5.2 Sketch of finite difference solution (At = 107*, Az = 27%) and wavelet

solution (j = 6, At = 1073).

1=0.25 1=0.25
. - 05 T T T T

wavelet method j=6 ts=0.0001  + wavelet method j=6 1s=0.0001  +

1 b finite difference ts=0.0001 X | finite difference ts=0.0001 X

exact solution exact solution

Figure 5.3 Sketch of finite difference solution (At = 107*, Az = 27°%) and wavelet

solution (j = 6, At =107%).
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Table 5.1 Approximation errors: solution by finite difference versus wavelet so-

lution (j = 6, various time steps At).

lu—uell max. error
I at ¥ =

Solution u llu — well2

ug, At =101 6.645¢ — 03 1.754e — 02 7.003e — 02  0.250000
Uy, At =1072 9.027¢ — 03 1.702¢ — 02 6.903¢ — 02  0.265625
Uy, At =1072 3.417¢ — 03 6.443¢ — 03 2.498¢ — 02  0.250000

Uy, At =107% 1.488e — 02 2.806e — 02 7.345e — 02  0.046875

Figure 5.5 compares the approximate solutions in the vicinity of the point

—3. respectively

of singularity for various scaling levels, at time steps At = 10
At = 10~*. Tables 5.2 and 5.3 show the respective errors of approximation over
[0,1]. For j < 8 there are substantial oscillations close to the left-hand endpoint.
These oscillations vanish as j increases.

Finally, Figure 5.6 shows the best approximation obtained, choosing 7 = 10
and At = 107°. The graphs of both, the exact and approximate solution, merge to
one single graph, and as table 5.4 shows, the mean square error of approximation
is of order 1073. However, a mild oscillation can be observed at the point of
singularity in all graphs.

Table 5.5 lists the results of computations by the wavelet method and by
several finite difference methods, including flux limiter schemes, at coarse spatial
resolution. Table 5.7 does the same at higher spatial resolutions, and Table 5.6
shows the error of approximation of each method. The accuracy of wavelet method

is comparable with that of the central difference method, while the flux limiter

schemes do not show improved accuracy.
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Figure 5.4 Influence of time step size on approximation error
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Figure 5.5 Influence of scale on approximation error (At = 1072 and At = 107).

Table 5.2 Approximation errors at various scaling levels j (At

.

Huw - ueHZ

luw —uell2

“uw - ueHoo

max. error
at x =

NoRENNo I TN

3.417e — 03
1.382e¢ — 03
1.046e — 03
1.827e — 03

10 4.025e — 03

6.443e — 03
2.607e — 03
1.973e — 03
3.444e — 03
7.590e — 03

2.498e — 02
1.209e — 02
1.388e — 02
0.251e — 02
6.590e — 02

0.2500000000
0.2500000000
0.2539062500
0.2519531250
0.2548828125

Table 5.3 Approximation errors at various scaling levels j (At

il =l Ll <, e error
6 1.488e —02 2.806e — 02 7.345¢ —02  0.0468750
7 5.238e—03 9.877e —03 3.50le —02  0.0234375
8 2.268¢ — 02 4.278¢ — 02 1.046e — 01  0.0312500
9 4.514e — 04 8.512¢ — 04 9.390e — 03  0.2500000
10 1.878¢ — 04 3.540e — 04 3.687¢ —03  0.2500000
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Figure 5.6 The best approximation is achieved at 7 = 10.

Table 5.4 Approximation errors for j = 10 at various time steps At.

_ llu—uell2 . max. error
At flu = uells el o= uelloo at =

1072 1.248¢ — 02 2.353¢ — 02 9.300e — 02 0.2646484375
1073 4.025¢ — 03 7.590e — 03 6.590e — 02 0.2548828125

107" 1.878¢ — 04 3.540e — 04 3.687¢ — 03 0.2500000000
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Table 5.5 Comparison of the exact solution with solutions by the wavelet method
with solutions by various finite difference schemes. (At = 1072 for the wavelet

solutions and At = 10~ for the finite-difference solutions; Az = 27°).

Exact  CoifletC12 CoifletC'12  Central  First order Maxmod Super Bee van-Leer
solution j=6 j=8 difference  monotone limiter limiter limiter

T Ue Uw6 Uw8 Ucd Ulm Umm Ush Uyl

0.000000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000

0.140625  0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000  0.00000
0.156250  0.00000 0.00001 0.00000 0.00000 0.00003 0.00000 0.00000  0.00000
0.171875  0.00000 0.00003 0.00000 0.00000 0.00013 0.00000 0.00000  0.00000
0.187500  0.00000 —0.00019 0.00000 0.00000 0.00049 0.00001 0.00000  0.00000
0.203125  0.00000 0.00016 0.00000 0.00004 0.00180 0.00005 0.00000  0.00000
0.218750  0.00000 0.00247 0.00000 0.00035 0.00662 0.00048 0.00000  0.00000
0.234375  0.00000 —0.00710 —0.00004 0.00308 0.02367 0.00424 0.00001 0.00090
0.250000  0.00000 0.02498 —0.00006 0.02606 0.07043 0.03491 0.01868  0.02906
0.265625  0.12500 0.12009 0.12202 0.11066 0.13104 0.11797 0.11263  0.11685
0.281250  0.17678 0.17240 0.17566 0.17315 0.17710 0.17247 0.17437  0.17314
0.296875  0.21651 0.21349 0.21598 0.21431 0.21488 0.21325 0.21529  0.21403
0.312500  0.25000 0.24780 0.24975 0.24837 0.24755 0.24732 0.24916  0.24806
0.328125  0.27951 0.27782 0.27941 0.27822 0.27670 0.27723 0.27887  0.27790
0.343750  0.30619 0.30483 0.30618 0.30513 0.30324 0.30421 0.30569  0.30482
0.359375  0.33072 0.32960 0.33077 0.32984 0.32776 0.32898 0.33031 0.32953
0.375000  0.35355 0.35261 0.35364 0.35280 0.35065 0.35202 0.35322  0.35251
0.390625  0.37500 0.37420 0.37511 0.37435 0.37218 0.37363 0.37472  0.37408
0.406250  0.39528 0.39460 0.39541 0.39472 0.39257 0.39405 0.39504  0.39446
0.421875  0.41458 0.41399 0.41471 0.41408 0.41198 0.41347 0.41437  0.41384
0.437500  0.43301 0.43250 0.43315 0.43257 0.43054 0.43200 0.43282  0.43235
0.453125  0.45069 0.45025 0.45083 0.45030 0.44834 0.44978 0.45053  0.45009
0.468750  0.46771 0.46732 0.46785 0.46735 0.46548 0.46687 0.46756  0.46716
0.484375  0.48412 0.48378 0.48426 0.48380 0.48201 0.48336 0.48399  0.48362
0.500000  0.50000 0.49970 0.50013 0.49971 0.49800 0.49930 0.49987  0.49954
0.562500  0.55902 0.55883 0.55913 0.55881 0.55743 0.55851 0.55892  0.55868
0.625000  0.61237 0.61226 0.61247 0.61222 0.61113 0.61200 0.61229  0.61212
0.687500  0.66144 0.66137 0.66151 0.66132 0.66047 0.66116 0.66137  0.66125
0.750000  0.70711 0.70707 0.70716 0.70701 0.70637 0.70690 0.70704  0.70696
0.812500  0.75000 0.74998 0.75004 0.74992 0.74946 0.74984 0.74994  0.74988
0.875000  0.79057 0.79056 0.79059 0.79050 0.79020 0.79045 0.79051 0.79048
0.937500  0.82916 0.82915 0.82917 0.82909 0.82893 0.82907 0.82910  0.82908
1.000000  0.86603 0.86603 0.86603 0.86601 0.86601 0.86601 0.86601 0.86601
max error 0.02498 0.00298 0.02606 0.07043 0.03491 0.01868  0.02906

at = 0.250000 0.265625  0.250000 0.250000  0.250000 0.250000  0.250000
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Table 5.6 L>= and L? errors for solutions by the wavelet method and by various

finite difference schemes using the data from Table 5.7 (At = 10~* for the wavelet

solutions and At = 107° for the finite-difference solutions; Az = 277).

Exact CoifletC12 Central First order =~ Maxmod Super Bee  van-Leer
solution 7=9 difference  monotone limiter limiter limiter
x Ue Uw9 Ued Ulm Umm Ush Uyl
0.000000000  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.218750000  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.234375000  0.000000 0.000000 0.000000 0.000003 0.000000 0.000000 0.000000
0.238281250  0.000000 0.000002 0.000000 0.000033 0.000000 0.000000 0.000000
0.240234375  0.000000 0.000010 0.000000 0.000116 0.000000 0.000000 0.000000
0.242187500  0.000000 —0.000068 0.000002 0.000409 0.000003 0.000000 0.000000
0.244140625  0.000000 0.000061 0.000015 0.001443 0.000023 0.000000 0.000000
0.246093750  0.000000 0.000895 0.000131 0.005045 0.000200 0.000000 0.000001
0.248046875  0.000000 —0.002631 0.001156 0.016290 0.001764 0.000004 0.000388
0.250000000  0.000000 0.009390 0.009685 0.036972 0.014057 0.006679 0.011294
0.251953125  0.044194 0.042681 0.039873 0.055031 0.043360 0.039920 0.042386
0.253906250  0.062500 0.061017 0.061521 0.069243 0.061919 0.061677 0.061763
0.255859375  0.076547 0.075472 0.075987 0.081323 0.076077 0.076128 0.076066
0.257812500  0.088388 0.087569 0.087974 0.091994 0.087974 0.088096 0.088008
0.259765625  0.098821 0.098165 0.098489 0.101649 0.098442 0.098595 0.098495
0.261718750  0.108253 0.107701 0.107975 0.110527 0.107901 0.108070 0.107964
0.263671875  0.116927 0.116450 0.116687 0.118785 0.116598 0.116774 0.116666
0.265625000  0.125000 0.124580 0.124788 0.126537 0.124690 0.124870 0.124760
0.267578125  0.132583 0.132209 0.132393 0.133864 0.132289 0.132469 0.132361
0.269531250  0.139754 0.139418 0.139582 0.140827 0.139476 0.139653 0.139547
0.273437500  0.153093 0.152814 0.152946 0.153851 0.152839 0.153010 0.152909
0.277343750  0.165359 0.165123 0.165230 0.165890 0.165125 0.165289 0.165192
0.281250000  0.176777 0.176573 0.176661 0.177139 0.176559 0.176715 0.176624
0.285156250  0.187500 0.187322 0.187395 0.187732 0.187296 0.187445 0.187358
0.289062500  0.197642 0.197486 0.197546 0.197773 0.197451 0.197593 0.197510
0.292968750  0.207289 0.207150 0.207200 0.207339 0.207108 0.207244 0.207165
0.296875000  0.216506 0.216381 0.216423 0.216492 0.216335 0.216464 0.216389
0.300781250  0.225347 0.225235 0.225269 0.225279 0.225184 0.225308 0.225236
0.304687500  0.233854 0.233752 0.233780 0.233742 0.233698 0.233817 0.233748
0.308593750  0.242061 0.241969 0.241992 0.241914 0.241913 0.242027 0.241961
0.312500000  0.250000 0.249916 0.249934 0.249822 0.249858 0.249968 0.249904
0.375000000 0.353553 0.353529 0.353516 0.353240 0.353470 0.353535 0.353498
0.437500000 0.433013 0.433006 0.432987 0.432730 0.432957 0.432999 0.432975
0.500000000  0.500000 0.500000 0.499981 0.499767 0.499960 0.499988 0.499972
0.562500000  0.559017 0.559019 0.559001 0.558830 0.558987 0.559007 0.558995
0.625000000 0.612372 0.612375 0.612359 0.612226 0.612349 0.612363 0.612355
0.687500000 0.661438 0.661441 0.661426 0.661325 0.661419 0.661429 0.661424
0.750000000 0.707107 0.707109 0.707097 0.707022 0.707092 0.707098 0.707095
0.812500000  0.750000 0.750002 0.749991 0.749939 0.749988 0.749992 0.749990
0.875000000  0.790569 0.790571 0.790561 0.790529 0.790559 0.790562 0.790560
0.937500000 0.829156 0.829157 0.829149 0.829133 0.829148 0.829149 0.829148
1.000000000  0.866025 0.866025 0.866019 0.866019 0.866019 0.866019 0.866019
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Table 5.7 Comparison of the exact solution with solutions by the wavelet method

and by various finite difference schemes (At = 10 for the wavelet solutions and

At =107° for the finite-difference solutions; Az = 279).

CoifletC12 Central First order Maxmod Super Bee van-Leer
j=9 difference monotone limiter limiter limiter
Uw9 Ucd Ulm Umm Ush Uyl
|lu — uelloo 0.009390 0.009685 0.036972 0.014057 0.006679 0.011294
max error at x = 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000
v — uelloo
(excluding = = 0.25) 0.002631 0.004322 0.016290 0.001764 0.004275 0.001809
max error at x = 0.248047 0.251953 0.248047 0.248047 0.251953 0.251953
lu — ue|2 0.000451 0.000476 0.001923 0.000632 0.000354 0.000510
M 0.000850 0.000896 0.003622 0.001190 0.000666 0.000960

l[uell2
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The results of the numerical simulation can be summerized as follows:

. The Wavelet-Galerkin method can produce accurate solutions for equations

with nonlinear viscocity and jumps in the dervative of the solution.

. The Wavelet-Galerkin method produces solutions of similar accurcay as the

finite difference schemes, but requires fewer time steps.

. The Wavelet-Galerkin solutions exhibit mild oscillations at the point of sin-

gularity which the flux limiter solutions do not.

. Increasing the scaling level j does not improve accuracy, unless time step
size At is decreased concurrently. Conversely, a decrease in time step size

needs to be accompanied by an increase in scale.



CHAPTER VI

CONCLUSION

In this thesis, the application of the Wavelet-Galerkin method to nonlinear
partial differential equations was studied by means of numerical experiments with
two examples, using Coiflet scaling functions as basis functions. The emphasis
was on obtaining solutions which either are discontinuous, or have discontinuous
derivatives.

The first equation studied is the Burgers equation, with non-periodic
boundary conditions and a discontinuity in the initial condition. The Wavelet-
Galerkin method produced approximate solutions of good accuracy not only in
case of high viscosity as previously shown in the literature, but also at low vis-
cosity. As viscosity decreases, the number of basis functions has to increase while
time step size has to decrease in order to preserve accuracy, which is in line with
expectations. The type of Coiflets chosen has no noticeable effect on the accu-
racy of the solution, however. The solutions by the Wavelet-Galerkin method
were then compared with solutions by finite difference schemes. It was found that
the Wavelet-Galerkin solutions are of better accuracy than solutions by basic fi-
nite difference schemes, and comparable in accuracy with solutions by flux limiter
schemes, at equal spatial grid sizes.

The second equation studied involves a nonlinearity in the diffusion term.
Initial and boundary conditions were chosen so that the solution has a point of non-
differentiability. The Wavelet-Galerkin method gives accurate solutions provided

the scaling level is sufficiently large. Again, it was found that the Wavelet-Galerkin
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solutions are of better accuracy than solutions by basic finite difference schemes,
and comparable in accuracy with solutions by flux limiter schemes, at equal spatial
grid sizes. However, the Wavelet-Galerkin method allows for significantly larger
time steps than the finite difference schemes.

Altogether, these experiments demonstrate that wavelets can be applied
successfully to simulate solutions with discontinuities. Future work can go in two
directions. To deal with singularities in the solution, wavelets instead of scaling
functions could be used as basis functions. At regions of smoothness in the solution
only few basis functions at low scaling level would be required, while at regions
of large gradients, wavelets at a finer scale would be employed. This should give
good approximate solutions, yet require fewer basis functions.

Secondly, the Wavelet-Galerkin Method lends itself to solving problems in
two or more space dimensions, where other more elaborate numerical techniques

such as finite difference schemes are much more difficult to implement.
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APPENDIX A

EXACT SOLUTION OF THE BURGERS

EQUATION

In this first appendix, we show how the exact solution of Burgers equation
can be obtained by means of the Cole-Hopf transformation, and compute the

solution for the Cauchy problem considered in chapter IV.

A.1 The General Solution of the Burgers Equation
Consider an initial value problem

Up + Uy — Vg, =0 (—oo < x < o0, t>0) (A.1)

u(z,0) = f(x) (—o0 <z < ). (A.2)

where v > 0. Cole and Hopf showed independently (Cole, 1951; Hopf, 1950)
that this problem can be transformed to an initial value problem involving the

one-dimensional heat equation. In fact us set

u(a,t) = —202%. (A.3)

w

Taking partial derivatives and assuming sufficient differentiability,

Wt ww
U = 20— + 2u 296
w w
2
w w
Uy = —20——= + QV( "TQ)
w w
3
w Wg W w
Upy = —2—= 4 Gy— ™ — 4V( )

w w? w3
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This substitution changes equation (A.1) to

2
—21/% + 2thwx] + [—2V%] —2u% + 21/(103;)
w w? w w w?

3
_ |:_2Vw:m:x + 6]/1U:Emwg: . 4l/<UJ:E) :| _ O,

which can be expressed, after multiplying by —w/2v, as

Wy

(W — VW], [wy — vwy,| = 0. (A.4)

w

Thus, if w(z,t) is a solution of the heat equation
Wy — VWgyy = 0

then obviously, w will solve (A.4) and hence, u will solve the Burgers equation
(A.1).
Next we transform the initial condition (A.2). Applying (A.3) we obtain

the ordinary differential equation

w,(z,0)
= -2
whose general solution is
w(z,0) = g(z) = Ce o [6)ds, (A.5)

For simplicity, we choose C' = 1. Now it is well known that the homogeneous heat

equation

Wy — VWgy = 0 (—oo <z <00, t>0)

w(z,0) = g(x) (—o0 <z < )

has general solution
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—(A.2) has solution
x

)
/ _ ye (14Vyt> e 3 Jo f(s)ds dy
o

00 (=
/ 6 4vyt e 21/ fO f(S dS dy

o0

Hence the initial value problem (A.1

(A.6)

B w(z,t),
u(z,t) = —2v o)

A.2 A Particular Solution Given an Initial Discontinuity
Next we solve problem (A.1)—(A.2) where

1 if x <0
0 if x> 0.

fx) =

Then
/yf(s)dSZ Y ifx <0
0 0 iftx >0
so that solution (A.6) becomes

0 o0 2
r — (z—y)* xr — (z—y)
/ t y e 41}; e 2V dy _'_ / t y 67 41}2 dy
uz,t) = ——— :

(z— 1/) > (ﬁ—y)2
/ e~ dwt e b dy + / e vt dy
—o0 0

We compute each of these integrals separately. The second integral in the denom-

(A7)

inator can easily computed by substitution,

/ ~legf dy = Vvt e du
0

—x//Avt
(A8)
w2 [T ey Vtr erf ( * )
VimT —— u = vimweric | —
VT apvan Vvt

where erfc denotes the complementary error function,

2 2
erfe(z) = — e " du.
7
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The first integral in the denominator can now be computed by completing the

square and using (A.8),

0 _(@—y)? o _G@tp? oy o _a? 4 2oyty® 2ty
6 4vt 6 2u dy — e vt @2v dy — (& 4vt dy
—00 0 0
o0 _ ([t—=]—y)?+2ta—t? o0 _ (t=z]-y)? -2
= (& 4vt dy = (& 4vt e 4v dy
0 0

t tZQx f <x_t)
vime 4v eric .
Vavt

The integrals in the numerator are computed by substitution,

o0 2 o0 2

rT—y @ 1 _ I _a?

(& 4vt dy = — e 4vt du = 2V€ 4ut] et —zye 4vt
0 t 2t x2 2

and

0 - x x 1
/ rt—y e ( 41}1) e~ o dy = / Tty 7( Z_uyt) e2yu dy
1 .t

o
T + _(t—al-9)? -2z
:/ ye 4duvt (& 4v dy
0

t

o0 = = t—x|— 2
_ etzzz / |:1 - t X y} 67([ 4lt y) dy
0 t
oo _ _ _zl— 2
= et4sz/ e_([t Zut dy—|- e 41/ / —[t x] y & 41]Jt z dy
0 0

t
t—2x % —
= e & Vyimeric (

t t—2x 7(t—1)2
+ 2ve w e At

\VAavt

Combining all four integrals, the solution (A.7) becomes

—2x (t—z)2

— 2T $2
e% v uvtmerfe (%) + 2V€t4u e~ @t — 2ue 4t
v/ vt e erfe ( > + v/vtm erfe ( )
t—2x x—t2 2_ x mz 12
et \/l/twerfc( ) + 2v [ He—t oAt e—m}
Vtme T erfe ( ) 4+ v/vtrerfe ( F)

u(z,t) =

(A.9)

e erfe (ﬁ)
t—2z r—t T
e a erfc <m> + erfc <— 4Vt)
x—t
erfc <\/47t>

erfc( 4y>—|—e T erfc( V%)

j



APPENDIX B

TABLES OF CONNECTION COEFFICIENTS

This appendix lists some of the connection coefficients which we have com-
puted. Only coefficients for the Coiflet C'12 at level j = 0 are shown. The co-
efficients at level 7 > 0 can easily be derived from these by using the ”level-up”
property. Coefficients which are not listed are all zero.

Table B.1 shows the two-term connection coefficients 799 and T'%11

com-
puted using symmetry. For the coefficients IV"*Y, one moment equation was re-
quired, while for the coefficients I'/""!, two moment equations were required.

L0 Two moment

Table B.2 shows the two-term connection coefficients IV
equations were required for their computation.
Table B.3 shows the three-term connection coefficients 7190 and 17011,

computed using symmetry. Three moment equations were required for the com-

putation of IV"%%9 and four moment equations for the computation of I0:11,



Table B.1 The connection coefficients I'%%% and I'%!! for the Coiflets C'12.

ho b i Ty

-6 —6 0.00000000000000 0.00000000000000
-6 =5 0.00000000000000  —0.00000000000002
-6 —4 —0.00000000000001 0.00000000000015
-6 -3 0.00000000000080 0.00000000000208
-6 —2 —0.00000000001362 —0.00000000023256
-6 -1 0.00000000005252 0.00000000030935
—6 0 —0.00000000035551  —0.00000000309039
—6 1 0.00000000002162 0.00000000357846
—6 2 —0.00000000000698 —0.00000000054555
—6 3 —0.00000000000008  —0.00000000002154
—6 4 0.00000000000000 0.00000000000002
-5 =5 0.00000000000118 0.00000000002741
-5 —4 0.00000000003053 0.00000000034329
-5 —3 —0.00000000150870 —0.00000000845307
-5 =2 0.00000002342231 0.00000027903730
-5 —1 —0.00000009849357 —0.00000068867968
-5 0 0.00000065099074 0.00000365418315
-5 1 0.00000001214765  —0.00000376428555
-5 2 0.00000000595667 0.00000050623617
-5 3 —0.00000000019226 0.00000002193387
-5 4 0.00000000000008  —0.00000000034288
-4 -4 0.00000000123911 0.00000006526979
-4 =3 —0.00000004341001 —0.00000086709471
-4 =2 0.00000066667700 0.00001136301153
-4 -1 —0.00000261442351 —0.00003626851589
—4 0 0.00001615321007 0.00006757457049
—4 1 —0.00000272521677 —0.00003981195446
—4 2 0.00000043706395 —0.00000747640347
—4 3 —0.00000000308766 0.00000544731941
-4 4 0.00000000019924  —0.00000002654616
-3 =3 0.00000246915018 0.00001697983048
-3 =2 —0.00003384435323 —0.00024955063059
-3 -1 0.00016313350162 0.00089973867461
-3 0  —0.00109451531379  —0.00397284543005

97



Table B.1 (Continued)

0,0,0 0,1,1
Fll,lz FllylZ

B W W N NN == =20 O o O O

[y

0

1
2
3
4
0
1
2
3
4
1
2
3
4
2
3
4
3
4
4

—0.00025664173611 0.00362316204067
0.00001830831802  —0.00032539583809
—0.00000027970416 0.00000703518643
—0.00000000289063 0.00000175171222
0.00049775750769 0.00505403577627
—0.00222197189913 —0.01392226364246
0.01465981373947 0.07154617537182
0.00083141674719  —0.07041326460790
0.00007156383649 0.00761942482804
—0.00001912685212 0.00036981246409
—0.00000016915193  —0.00001601137522
0.01113375815006 0.06879767816885
—0.07462935683210 —0.32960483070033
—0.01304635782232 0.30221802249227
0.00058905708129  —0.03609600599428
0.00017769505100 0.00750247926106
0.00000289270760 0.00024213862437
0.50739284923247 2.00795133850641
0.13600075787929  —1.95442390071702
—0.00978766328703 0.26107173247811
—0.00041754161142 —0.05146755916392
—0.00000867185426  —0.00117133600578
0.47350244515946 1.93960516578098
—0.05805785282816  —0.27051580994627
0.00802262977287 0.04896228617501
0.00009417409713 0.00098791144420
0.00726960244236 0.04728949690463
—0.00106027416485 —0.00892890220379
—0.00001222107290 —0.00010756951663
0.00020106653537 0.00348968856187
0.00000258557766 0.00005969048758
0.00000005058212 0.00000345151828
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Table B.2 The connection coefficients I'%*0 for the coiflets C'12.

" n W n B
-6 —6 0.00000000000000 -3 2 —0.00013390115445 1 -1 —0.10900778891562
-6 =5 0.00000000000000 -3 3 0.00000398172341 1 0 0.79771277229102
-6 —4 0.00000000000015 -3 4 0.00000014775379 1 1 0.74602903298581
-6 —3 —0.00000000000684 -2 -6 0.00000000001321 1 2 —0.08267859123512
-6 -2 0.00000000010788 -2 =5 —0.00000004236091 1 3 0.00839791233244
—6 —1 —0.00000000044784 -2 —4 —0.00000141131504 1 4 0.00008134843933
—6 0 0.00000000290264 -2 -3 0.00009104373006 2 -6 0.00000000005416
—6 1 —0.00000000001790 -2 -2 —0.00110534219209 2 =5 —0.00000010721929
—6 2 0.00000000003399 -2 -1 0.00613682765294 2 —4 —0.00000138170599
—6 3 —0.00000000000027 -2 0 —0.04134950865729 2 =3 0.00021682717156
—6 4 0.00000000000000 -2 1 —0.01461364126370 2 =2 —0.00243472426162
-5 -6 0.00000000000000 -2 2 0.00119228023391 2 -1 0.01520101723351
-5 =5 —0.00000000000320 -2 3 0.00003794649809 2 0 —0.11055235270305
-5 —4 —0.00000000012292 -2 4 —0.00000117725503 2 1 —0.09315723503447
-5 =3 0.00000000586104 -1 -6 0.00000000002885 2 2 0.01021930087433
-5 —2 —0.00000007677644 -1 -5 0.00000003119862 2 3 —0.00078586064876
-5 -1 0.00000038090674 -1 -4 0.00000101732481 2 4 0.00000143698505
-5 0 —0.00000246386908 -1 -3 —0.00018967316043 3 —6 0.00000000000220
-5 1 —0.00000040358077 -1 =2 0.00141503221938 3 =5 —0.00000000580050
-5 2 0.00000002086285 -1 -1 —-0.01216168362796 3 —4 —0.00000065192531
-5 3 0.00000000381359 -1 0 0.09278776288774 3 =3 —0.00000122226359
-5 4 —0.00000000002072 =1 1 0.14298743264767 3 —2 —0.00015990667935
-4 —6 —0.00000000000009 -1 2 —0.01653911445972 3 -1 0.00006088155866
-4 -5 0.00000000005920 -1 3 0.00167535291958 3 0 0.00343106351053
-4 —4 —0.00000000031377 =1 4 0.00002199350382 3 1 0.03388458936996
-4 -3 0.00000003880063 0 -6 0.00000000026151 3 2 —0.00427919720364
-4 =2 0.00000021937713 0 -5 —0.00000064884473 3 3 0.00058719496811
-4 -1 0.00000320368593 0 —4 —0.00001244571378 3 4 0.00000445529982
—4 0 —0.00001894379758 0 -3 0.00153417261609 4 -6 0.00000000000000
—4 1 —0.00000803076688 0 -2 —0.01616905811550 4 -5 0.00000000001879
—4 2 0.00000014665070 0 -1 0.09997468254022 4 —4 0.00000000336773
—4 3 0.00000071976634 0 0 —0.74356559108211 4 -3 —0.00000012886028
—4 4 —0.00000000146898 0 1 —0.81727091191582 4 -2 —0.00000071915120
-3 -6 0.00000000000034 0 2 0.09233081087159 4 -1 0.00001333905070
-3 -5 0.00000000053371 0 3 —0.00993851752323 4 0 —0.00001376251646
-3 —4 0.00000002489481 0 4 —0.00010848477729 4 1 0.00084186270945
-3 =3 —0.00000319314932 1 -6 —0.00000000036020 4 2 —0.00011175547450
-3 =2 0.00002788963419 1 -5 0.00000077241830 4 3 0.00002126615071
-3 —1 —0.00022085963722 1 —4 0.00001484550931 4 4 0.00000028154020
-3 0 0.00157102103325 1 -3 —0.00164787073891

-3 1 0.00130730486702 1 -2 0.01842668583761




100

Table B.3 The connection coefficients %100 and 19011 for the coiflets C12.

0,1,0,0 0,0,1,1
l1,l2,l3 l1,l2,l3

-6 -6 —6 —0.000000000000000010 0.000000000000000226
-6 -6 —5 —0.000000000000000005 —0.000000000000000001
-6 —6 —4 —0.000000000000000259 0.000000000000000248
-6 —6 =3 —0.000000000000000077 —0.000000000000000023
-6 -6 =2 0.000000000000000054 0.000000000000000644
1 —0.000000000000000012 0.000000000000000918
0 0.000000000000000252  —0.000000000000001506
1 —0.000000000000000331 0.000000000000001264
-6 —6 2 —0.000000000000000044 0.000000000000001720
3
4

I la I3

0.000000000000000110  —0.000000000000000373
—0.000000000000000141  —0.000000000000000186
-6 -5 —5 —0.000000000000000068 0.000000000000000051
-6 -5 —4 —0.000000000000000044 0.000000000000000552
-6 -5 -3 0.000000000000000265 0.000000000000000104
-6 -5 =2 0.000000000000000130  —0.000000000000000532

1 —0.000000000000001150 —0.000000000000000530
0 0.000000000000006833  —0.000000000000001508
1 —0.000000000000000188 0.000000000000000372
-6 =5 2 0.000000000000000064 0.000000000000000414
3 0.000000000000000136 0.000000000000000064
4 0.000000000000000292  —0.000000000000000379
-6 —4 —4 —0.000000000000000056 0.000000000000000466
-6 —4 —3 —0.000000000000000492 —0.000000000000000172
-6 -4 -2 0.000000000000006371 0.000000000000000205
-6 —4 =1 —0.000000000000026288 0.000000000000021331
0 0.000000000000169039 0.000000000000055225
1 —0.000000000000000753  —0.000000000000090300
-6 —4 2 0.000000000000002099 0.000000000000013333
3 0.000000000000000020  —0.000000000000000654
4 0.000000000000000203  —0.000000000000000805
-6 -3 -3 0.000000000000018320  —0.000000000000002105
-6 -3 —2 —0.000000000000287199 0.000000000000007243
-6 -3 -1 0.000000000001192390  —0.000000000000137631
-6 -3 0 —0.000000000007727504 —0.000000000000136690
-6 -3 1 0.000000000000051631 0.000000000000310948
-6 -3 2 —0.000000000000091038  —0.000000000000041990
-6 -3 3 0.000000000000001013  —0.000000000000002672
-6 -3 4 0.000000000000000069 0.000000000000000665
-6 -2 =2 0.000000000004570852  —0.000000000001213713
-6 -2 —1 —0.000000000018864373 0.000000000001639871
-6 -2 0 0.000000000122381367 —0.000000000015971684
-6 =2 1 —0.000000000001454262 0.000000000018522187
-6 =2 2 0.000000000001537373  —0.000000000002883660
-6 -2 3 —0.000000000000009120 —0.000000000000101458




Table B.3 (Continued)

ho b s s Ly Lty
-6 -2 4 —0.000000000000000235 0.000000000000000558
-6 —1 —6 —0.000000000000000012 0.000000000000000918
-6 —1 =5 —0.000000000000001150 —0.000000000000000530
—6 —1 —4 —0.000000000000026288 0.000000000000021331
-6 -1 =3 0.000000000001192390 —0.000000000000137631
-6 —1 —2 —0.000000000018864373 0.000000000001639871
-6 -1 -1 0.000000000078110414 —0.000000000016236204
-6 -1 0 —0.000000000506524640 —0.000000000004077858
-6 -1 1 0.000000000004347298 0.000000000021801802
-6 -1 2 —0.000000000006111843 —0.000000000002803700
-6 -1 3 0.000000000000042239  —0.000000000000206881
-6 -1 4 —0.000000000000000200 —0.000000000000000327
—6 0 0 0.000000003284436888  —0.000000000259686050
—6 0 1 —0.000000000029713901 0.000000000332445615
—6 0 2 0.000000000039887056  —0.000000000050720338
—6 0 3 —0.000000000000272670 —0.000000000001905412
—6 0 4 0.000000000000000435 0.000000000000000714
—6 1 —6 —0.000000000000000331 0.000000000000001264
—6 1 -5 —0.000000000000000188 0.000000000000000372
—6 1 —4 —0.000000000000000753 —0.000000000000090300
—6 1 -3 0.000000000000051631 0.000000000000310948
—6 1 —2 —0.000000000001454262 0.000000000018522187
—6 1 -1 0.000000000004347298 0.000000000021801802
—6 1 0 —0.000000000029713901 0.000000000332445615
—6 1 1 0.000000000010855908 —0.000000000442583475
—6 1 2 —0.000000000001957673 0.000000000066958980
—6 1 3 —0.000000000000028110 0.000000000002632903
—6 1 4 0.000000000000000137  —0.000000000000000723
—6 2 2 0.000000000000727180 —0.000000000010120128
—6 2 3 0.000000000000000796  —0.000000000000401034
—6 2 4 0.000000000000000040 0.000000000000000017
—6 3 3 0.000000000000000190 —0.000000000000016434
—6 3 4 0.000000000000000060 —0.000000000000000222
—6 4 4 0.000000000000000271  —0.000000000000000263
-5 —6 —6 —0.000000000000000022 —0.000000000000000078
-5 —6 —5 —0.000000000000000228 0.000000000000000069
-5 -6 —4 0.000000000000000007 0.000000000000000387
-5 —6 -3 —0.000000000000000050 —0.000000000000000718
-5 —6 —2 —0.000000000000000014 —0.000000000000000961
-5 —6 —1 —0.000000000000000138 0.000000000000000684
-5 —6 0 0.000000000000000705 —0.000000000000006984
-5 —6 1 —0.000000000000000154 0.000000000000007970
-5 —6 2 —0.000000000000000084 —0.000000000000001481
-5 -6 3 —0.000000000000000153 0.000000000000000159
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Table B.3 (Continued)

ho b s s Ly Lty
-5 —6 4 0.000000000000000057 0.000000000000000084
-5 -5 =5 0.000000000000000076 0.0000000000000004:32
-5 =5 —4 —0.000000000000000423 0.000000000000000147
-5 -5 =3 0.000000000000008357  —0.000000000000005331
-5 —=5 —2 —0.000000000000115317 0.000000000000329429
-5 -5 -1 0.000000000000527219  —0.000000000000714038
-5 =5 0 —0.000000000003344236 0.000000000004416502
-5 -5 1 —0.000000000000281222 —0.000000000004764549
-5 =5 2 0.000000000000002162 0.000000000000722543
-5 -5 3 0.000000000000001907 0.000000000000014986
-5 =5 4 —0.000000000000000044 0.000000000000000181
-5 —4 —4 —0.000000000000008157 0.000000000000051003
-5 -4 -3 0.000000000000325905 —0.000000000000450496
-5 —4 -2 —0.000000000004481967 0.000000000002196204
-5 -4 -1 0.000000000020395350  —0.000000000031145327
-5 —4 0 —0.000000000128923803 —0.000000000012990025
-5 —4 1 —0.000000000010483296 0.000000000053357227
-5 —4 2 0.000000000000235113  —0.000000000010994762
-5 —4 3 0.000000000000024668 —0.000000000000022466
-5 —4 4 0.000000000000000443  —0.000000000000000328
-5 -3 =3 —0.000000000014381452 0.000000000006498836
-5 -3 =2 0.000000000192730290 —0.000000000102087204
-5 —-3 —1 —0.000000000920497954 0.000000000378968029
-5 -3 0 0.000000005888667056  —0.000000001107407540
-5 -3 1 0.000000000752766264 0.000000000909058911
-5 -3 2 —0.000000000032796034 —0.000000000070787876
-5 -3 3 —0.000000000005794922  —0.000000000013838371
-5 -3 4 0.000000000000008549 0.000000000000051547
-5 =2 =2 —0.000000002621128972 0.000000004138480139
-5 -2 -1 0.000000012307204794 —0.000000008018817391
-5 =2 0 —0.000000078338889610 0.000000055433468115
-5 =2 1 —0.000000008675813946 —0.000000060097029876
-5 =2 2 0.000000000303843816 0.000000008231323131
-5 =2 3 0.000000000060227833 0.000000000412781587
-5 =2 4 —0.000000000000017001 —0.000000000000643273
-5 —1 —1 —0.000000059282444294 0.000000031420404660
-5 -1 0 0.000000380329476503 —0.000000079989754448
-5 -1 1 0.000000051144360078 0.000000064336316055
-5 -1 2 —0.000000002245101503 —0.000000007533918323
-5 -1 3 —0.000000000447682567 —0.000000000567029313
-5 -1 4 0.000000000000498566 0.000000000005689526
-5 0 0 —0.000002443460530426 0.000000781124875221
-5 0 1 —0.000000347373774612 —0.000000882821588589
-5 0 2 0.000000016108672465 0.000000120574582554
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Table B.3 (Continued)

ho s s Ly Lty
-5 0 3 0.000000003114673639 0.000000006824893983
-5 0 4 —0.000000000005111014 —0.000000000030487484
-5 1 1 —0.000000107960440929 0.000001028130757086
-5 1 2 0.000000007365872329 —0.000000142836061304
-5 1 3 0.000000001195069095 —0.000000007698966636
-5 1 4 —0.000000000018039522 0.000000000028913734
-5 2 2 —0.000000000560393885 0.000000020637673454
-5 2 3 —0.000000000079714482 0.000000001012425392
-5 2 4 0.000000000002229592  —0.000000000004963821
-5 3 3 —0.000000000022921066 0.000000000028342828
-5 3 4 —0.000000000000289466 0.000000000001398424
-5 4 4 —0.000000000000001957 0.000000000000041780
-4 -6 —6 0.000000000000000172 0.000000000000000148
—4 -6 =5 0.000000000000000077  —0.000000000000000174
-4 -6 —4 0.000000000000000116 0.000000000000000551
—4 -6 -3 0.000000000000000231  —0.000000000000000219
—4 -6 —2 —0.000000000000003916 —0.000000000000013057
-4 -6 -1 0.000000000000014652 0.000000000000017441
—4 -6 0 —0.000000000000102852 —0.000000000000180232
—4 -6 1 0.000000000000009218 0.000000000000208937
—4 -6 2 —0.000000000000002644  —0.000000000000031925
—4 -6 3 —0.000000000000000041 —0.000000000000001076
—4 -6 4 0.000000000000000209 —0.000000000000000171
-4 -5 =5 0.000000000000000362 0.000000000000001520
—4 -5 —4 0.000000000000003393 0.000000000000001156
—4 =5 =3 —0.000000000000185558 —0.000000000000195546
-4 -5 =2 0.000000000003737773 0.000000000012467530
—4 -5 —1 —0.000000000012133079 —0.000000000026707450
—4 =5 0 0.000000000085041156 0.000000000168666484
—4 -5 1 —0.000000000020975980 —0.000000000182600251
—4 =5 2 0.000000000003577473 0.000000000027759688
—4 =5 3 0.000000000000133682 0.000000000000605814
—4 =5 4 0.000000000000000040 0.000000000000000449
—4 —4 —4 —0.000000000000005460 0.000000000000656802
—4 -4 =3 —0.000000000000512069 —0.000000000009220688
-4 -4 =2 0.000000000033691457 0.000000000062270074
—4 -4 —1 —0.000000000049687400 —0.000000000580021302
—4 —4 0 0.000000000415738958 0.000000001351250658
—4 —4 1 —0.000000000828182714 —0.000000000904321979
—4 -4 2 0.000000000117591966 0.000000000128680939
—4 —4 3 —0.000000000002445521 —0.000000000049857364
—4 —4 4 0.000000000000034187 0.000000000000562336
-4 -3 -3 —0.000000000001000363 0.000000000174076329
—4 -3 =2 —0.000000001788163841 —0.000000003360242181
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Table B.3 (Continued)

ho b s s Ly Lty
—4 -3 —1 —0.000000000653019608 0.000000007397569638
-4 -3 0 0.000000000348737886  —0.000000035024901256
-4 -3 1 0.000000046774775013 0.000000034503611548
—4 -3 2 —0.000000005240558902 —0.000000002593813733
—4 -3 3 —0.000000000640631099 —0.000000001087816150
—4 -3 4 0.000000000001183787 0.000000000000931952
-4 -2 =2 0.000000051198275317 0.000000138652853520
—4 =2 —1 —0.000000113857949045 —0.000000251854066545
—4 -2 0 0.000000834211306741 0.000001818524674690
—4 =2 1 —0.000000641645527417 —0.000001989530372770
-4 =2 2 0.000000086185009355 0.000000268592864211
-4 =2 3 0.000000005041760450 0.000000018886409609
-4 =2 4 —0.000000000005008044 0.000000000013156242
—4 -1 —1 —0.000000100702855718 0.000000527299224122
—4 -1 0 0.000000466876582508 —0.000001650836088388
—4 -1 1 0.000003360314886409 0.000001571448971860
—4 -1 2 —0.000000361012786212 —0.000000097141914336
-4 -1 3 —0.000000047355149480 —0.000000106317886819
—4 -1 4 0.000000000138030103 0.000000000610903717
—4 0 0 —0.000001532256734078 0.000013443505446895
—4 0 1 —0.000021322318883261 —0.000015683109592897
—4 0 2 0.000002246396053631 0.000001186567309403
—4 0 3 0.000000363413770066 0.000000923766631291
—4 0 4 —0.000000000969087456  —0.000000004913220668
—4 1 1 0.000012167498315006 0.000018626494240747
—4 1 2 —0.000002084479558528 —0.000001581685373739
—4 1 3 0.000000444659181631 = —0.000000981894920270
—4 1 4 —0.000000000720917276 0.000000004860149493
—4 2 2 0.000000313112910464 0.000000044552244944
—4 2 3 —0.000000048504308903 0.000000182418499672
—4 2 4 0.000000000072771971  —0.000000000866224387
—4 3 3 0.000000003140901865 —0.000000036014334919
—4 3 4 0.000000000013125522 0.000000000292670723
—4 4 4 0.00000000000088304 1 0.000000000001071161
-3 -6 —6 0.000000000000000208 —0.000000000000000372
-3 —6 -5 —0.000000000000000134 0.000000000000000077
-3 —6 —4 —0.000000000000000007 —0.000000000000000373
-3 —6 -3 —0.000000000000000949 —0.000000000000005664
-3 -6 =2 0.000000000000016561 0.000000000000613259
-3 —6 —1 —0.000000000000058604 —0.000000000000800089
-3 -6 0 0.000000000000424141 0.000000000008188432
-3 —6 1 —0.000000000000048845 —0.000000000009500412
-3 -6 2 0.000000000000011584 0.000000000001447447
-3 -6 3 0.000000000000000131 0.000000000000057628
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Table B.3 (Continued)

ho b s s Ly Lty
-3 -6 4 —0.000000000000000032 —0.000000000000000011
-3 -5 =5 —0.000000000000000233 —0.000000000000068006
-3 -5 -4 0.000000000000020955 —0.000000000000474024
-3 =5 =3 —0.000000000000890019 0.000000000014979461
-3 -5 =2 0.000000000004088152 —0.000000000623220799
-3 =5 —1 —0.000000000058461628 0.000000001461771721
-3 =5 0 0.000000000346303104 —0.000000008293772397
-3 -5 1 0.000000000274134437 0.000000008723964282
-3 -5 2 —0.000000000029408508 —0.000000001244462570
-3 -5 3 —0.000000000002071933 —0.000000000038896337
-3 =5 4 0.000000000000000291 0.000000000000179515
-3 -4 -4 0.000000000002626402 —0.000000000101696747
-3 —4 =3 —0.000000000079905465 0.000000001349294175
-3 -4 =2 0.000000000930204630 —0.000000015696026371
-3 —4 —1 —0.000000004501134761 0.000000066837816115
-3 —4 0 0.000000026239307528 —0.000000133802027507
-3 —4 1 0.000000002632843643 0.000000080840314646
-3 —4 2 —0.000000000346738201 0.000000004692486579
-3 —4 3 0.000000000017637989  —0.000000004138576025
-3 —4 4 —0.000000000000054223 0.000000000018887639
-3 -3 =3 0.000000005380438629 —0.000000024635033040
-3 -3 —2 —0.000000050916801222 0.000000382616427875
-3 -3 -1 0.000000365688633018 —0.000001193173921248
-3 -3 0 —0.000002433330133454 0.000005015968980896
-3 -3 1 —0.000001197455712256 —0.000004625156774865
-3 -3 2 0.000000109807024088 0.000000392930254861
-3 -3 3 0.000000007776281044 0.000000050570400908
-3 -3 4 —0.000000000018255166 —0.000000000484596122
-3 -2 =2 0.000000446860053204 —0.000009420552811246
-3 -2 —1 —0.000003403585510458 0.000022342108878282
-3 -2 0 0.000021852218800074 —0.000126347368336117
-3 =2 1 0.000010078331241998 0.000129403274502665
-3 -2 2 —0.000000930921352979 —0.000015249069790413
-3 -2 3 —0.000000103061311376 —0.000001100312103727
-3 -2 4 —0.000000000225235476 0.000000005621859378
-3 -1 -1 0.000025801100434669 —0.000077986098433583
-3 -1 0 —0.000172871828154965 0.000316185781638067
-3 -1 1 —0.000078269222447457 —0.000292963352451845
-3 -1 2 0.000006588448372525 0.000033904235161251
-3 -1 3 0.000000931068398475 —0.000000306173221299
-3 -1 4 0.000000003252706330 —0.000000051626437344
-3 0 0 0.001171661693295060 —0.002078714454351630
-3 1 0.000612181544902940 0.002160720613671040
-3 0 2 —0.000053993832774121 —0.000281348869361149
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Table B.3 (Continued)

ho s s Ly Lty
-3 0 3  —0.000005398575157940 0.000004409596388837
-3 0 4 —0.000000003443565716 0.000000220819019935
-3 1 1 0.000850133676893315 —0.002294016138178510
-3 1 2 —0.000095406171552007 0.000305503505123219
-3 1 3 0.000009616016229169 —0.000003922242002757
-3 1 4 0.000000165240539010 —0.000000190058682215
-3 2 2 0.000011167812546226 —0.000045512724184986
-3 2 3 —0.000001414624116721 0.000002279615793253
-3 2 4 —0.000000021296457835 0.000000026927527469
-3 3 3 0.000000338937900220 —0.000001396423515863
-3 3 4 0.000000004169624600 —0.000000010454324468
-3 4 4 0.000000000074491260 —0.000000000763434859
-2 -6 —6 —0.000000000000000047 0.000000000000000234
-2 —6 =5 —0.000000000000000096 —0.000000000000000865
-2 -6 -4 0.000000000000000509 0.000000000000007005
-2 —6 -3 —0.000000000000035270 0.000000000000081713
-2 -6 =2 0.000000000000565408 —0.000000000009531041
-2 —6 —1 —0.000000000002330589 0.000000000011667174
-2 -6 0 0.000000000015041388  —0.000000000127464769
-2 —6 1 —0.000000000000222966 0.000000000148790106
-2 -6 2 0.000000000000197654  —0.000000000022616487
-2 —6 3 —0.000000000000001524 —0.000000000000933607
—2 —6 4 0.000000000000000002 0.000000000000000440
-2 =5 =5 —0.000000000000070971 0.000000000000917569
—2 =5 —4 —0.000000000002255554 0.000000000004513089
-2 -5 =3 0.000000000104286742 —0.000000000169923113
-2 =5 =2 —=0.000000001494434951 0.000000008095356330
-2 -5 -1 0.000000006800078541  —0.000000018565434545
-2 =5 0 —0.000000043923139324 0.000000107947062959
-2 =5 1 —0.000000003867991771 —0.000000114543997485
-2 =5 2 —0.000000000011184306 0.000000016788021633
—2 =5 3 0.000000000033803336 0.000000000444275001
-2 =5 4 —0.000000000000006974 —0.000000000000792140
—2 —4 —4 —0.000000000097248917 0.000000001261719954
-2 -4 =3 0.000000003853948048 —0.000000014677956805
-2 —4 —2 —0.000000053502171921 0.000000140035592720
-2 -4 -1 0.000000239073065217 —0.000000840625331920
-2 —4 0 —0.000001508201305598 0.000001022087230143
-2 —4 1 —0.000000092562478871 —0.000000215175034887
-2 —4 2 0.000000000154656701  —0.000000113850471305
-2 —4 3 —0.000000000034455270 0.000000021024347168
-2 —4 4 0.000000000003201673 —0.000000000084615002
—2 -3 =3 —0.000000198901745580 0.000000247566791648
-2 -3 =2 0.000002578183969730 —0.000003892021801881
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Table B.3 (Continued)

ho s s Ly Lty
—2 =3 —1 —0.000013086581513172 0.000012321397657017
-2 =3 0 0.000085716603760247 —0.000046476150716886
-2 =3 1 0.000017219208942577 0.000041861166894599
-2 =3 2 —0.000001051246234711 —0.000003390493766319
-2 -3 3 —0.000000137726408753 —0.000000656417349235
-2 =3 4 0.000000000231087410 —0.000000000199910733
-2 =2 =2 —0.000034802896199959 0.000112812434191689
-2 -2 -1 0.000168244733918278 —0.000246356727904345
-2 =2 0 —0.001092069112379360 0.001497773136867340
-2 =2 1 —0.000157457342020968 —0.001570410391286170
-2 =2 2 0.000006734775652709 0.000196505961052647
-2 =2 3 0.000001483324930889 0.000013429035780985
-2 =2 4 0.000000001136083752  —0.000000009548310752
-2 -1 —1 —0.000873175135073395 0.000835018895291719
-2 -1 0 0.005748126258568430 —0.002715137706596240
-2 -1 1 0.001188346173879300 0.002411128465208930
-2 -1 2 —0.000068979425509067 —0.000268226929491796
-2 -1 3 —0.000012882375363243 —0.000027724847915869
-2 -1 4 —0.000000011866776351 —0.000000163367290201
-2 0 0 —0.038015717020198400 0.020586232727045300
-2 0 1 —0.008700806064834610 —0.022420673429984900
—2 0 2 0.000543321556274217 0.002895203367839710
—2 0 3 0.000083527519079142 0.000200976578530336
-2 0 4 —0.000000056288165872 0.000000971569410275
—2 1 1 —0.007713813547486430 0.025046472434239300
-2 1 2 0.000793131925012661 —0.003299576672386310
-2 1 3 —0.000038925726112166  —0.000207713412466311
-2 1 4 —0.000001239460396473 —0.000000758589461073
—2 2 2 —0.000088494900516849 0.000459673144630726
-2 2 3 0.000007459183463718 0.000019886793293410
—2 2 4 0.000000158222102240 0.000000021913846863
—2 3 3 —0.000002548938215039 0.000001839778446754
-2 3 4 —0.000000028762633625 —0.000000058976013650
-2 4 4 —0.000000000469522393 —0.000000002716863470
-1 -6 -6 0.000000000000000117 0.000000000000000076
-1 -6 =5 0.000000000000000011 0.000000000000002876
-1 -6 -4 0.000000000000000820  —0.000000000000028389
-1 -6 -3 —0.000000000000074471 —0.000000000000348603
-1 -6 =2 0.000000000001467072 0.000000000039958766
-1 —6 —1 —0.000000000004926482 —0.000000000051031486
-1 -6 0 0.000000000036782728 0.000000000533570686
-1 -6 1 —0.000000000005628746 —0.000000000620375366
-1 -6 2 0.000000000001202414 0.000000000094469608
-1 -6 3 0.000000000000030035 0.000000000003782952
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-1 -6 4 0.000000000000000155 —0.000000000000002179
-1 -5 -6 0.000000000000000011 0.000000000000002876
-1 -5 =5 —0.000000000000011674 —0.000000000004321338
-1 -5 -4 0.000000000002116471  —0.000000000034414095
-1 -5 =3 —0.000000000062837991 0.000000001029475421
-1 -5 =2 0.000000000303029849 —0.000000040609646481
-1 -5 —1 —0.000000003940022149 0.000000095978242900
-1 -5 0 0.000000020612904049 —0.000000540033483917
-1 -5 1 0.000000016263547220 0.000000566109940923
-1 -5 2 —0.000000001876713264 —0.000000079781761868
-1 -5 3 —0.000000000103424712 —0.000000002664589116
-1 -5 4 0.000000000000035724 0.000000000010553903
-1 -4 -4 0.000000000202954934  —0.000000007350900251
-1 —4 -3 —0.000000005209239866 0.000000098559266699
-1 -4 =2 0.000000067623408911  —0.000001166735464208
-1 —4 —1 —0.000000280965998210 0.000004803843596430
-1 —4 0 0.000001524770636563 —0.000009941278567818
-1 —4 1 —0.000000322532489751 0.000006161375109706
-1 —4 2 0.000000032173875237 0.000000377975244941
-1 —4 3 0.000000001223715121  —0.000000328250328003
-1 —4 4 0.000000000035834491 0.000000001896485608
-1 -3 -3 0.000000309162875239 —0.000001778139882153
-1 -3 —2 —0.000002898911132449 0.000027360831310730
-1 -3 -1 0.000020664365139288 —0.000084273617275168
-1 -3 0 —0.000135685431282551 0.000349775004685515
-1 -3 1 —0.000080227990895895 —0.000322929676954189
-1 -3 2 0.000008099430537655 0.000027656860902447
-1 -3 3 0.000000073086937740 0.000004087269266910
-1 -3 4 —0.000000001600455111 0.000000001879543689
-1 -2 =2 0.000024999596837399 —0.000644198510326639
-1 -2 —1 —0.000191052681904289 0.001548968025358280
-1 =2 0 0.001159185804601130 —0.008576565444457280
-1 -2 1 0.000476065552575104 0.008737531555016220
-1 =2 2  —0.000044830240579942 —0.001012602235160520
-1 -2 3 —0.000006463080618977 —0.000079431982874564
-1 =2 4 —0.000000041748303690 0.000000145066334906
-1 -1 -1 0.001476052718464520 —0.005121151133342140
-1 -1 0 —0.009685799275106760 0.020555338341117100
-1 -1 1 —0.004198389269206190 —0.019324922564269600
-1 -1 2 0.000357208281944873 0.002359063303953720
-1 -1 3 0.000059242429548417 0.000059540142105916
-1 -1 4 0.000000674714108686 0.000002537731668624
—1 0 0 0.065086575301724000 —0.136384912933810000
—1 0 1 0.040465985679451700 0.143788077867533000
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—1 0 2 —0.003896518044209350 —0.019777036123467900
—1 0 3  —0.000205862458695466 0.000073468978975384
—1 0 4  —0.000001664109056910 —0.000017664907247763
—1 1 1 0.118735970152774000 —0.154110998050521000
—1 1 2  —0.014486222851725100 0.021382320503053000
—1 1 3 0.002048890453103610 —0.000170617968564981
—1 1 4 0.000025667196210718 0.000014811468207069
—1 2 2 0.001801055051123210 —0.003176586960752560
—1 2 3 —0.000274599398844840 0.000197731826592286
—1 2 4 —0.000003336986336438 —0.000000845463023037
—1 3 3 0.000053387504582875 —0.000085436974071312
—1 3 4 0.000000683263244880 0.000000989619709142
—1 4 4 0.000000012738541424 0.000000022697769757
0 -6 -6 0.000000000000000053 0.000000000000000281
0 -6 -5 0.000000000000000660  —0.000000000000017559
0 -6 -4 0.000000000000013824 0.000000000000182326
0 -6 -3 —0.000000000000693116 0.000000000002274431
0 -6 -2 0.000000000011564256  —0.000000000259608487
0 —6 —1 —0.000000000045738518 0.000000000332060525
0 —6 0 0.000000000304234492  —0.000000003459452913
0 -6 1 —0.000000000013102209 0.000000004021479445
0 —6 2 0.000000000005205095 —0.000000000612212099
0 —6 3 0.000000000000030507 —0.000000000024718979
0 -6 4 —0.000000000000000031 0.000000000000013686
0 -5 —5 —0.000000000001188978 0.000000000027700723
0 -5 —4 —0.000000000034500285 0.000000000250135483
0 -5 =3 0.000000001632668561 ~ —0.000000007016054559
0 -5 —2 —0.000000024323337762 0.000000265242908348
0 -5 -1 0.000000106245173799 —0.000000636181628813
0 -5 0 —0.000000693368716722 0.000003514657379473
0 -5 1 —0.000000036047306900 —0.000003666948597435
0 -5 2 —0.000000003288983525 0.000000512334752918
0 -5 3 0.000000000341614136 0.000000017728716594
0 -5 4 —0.000000000000156817 —0.000000000095294271
0 —4 —4 —0.000000001612477955 0.000000052528600673
0 —4 -3 0.000000051688551292  —0.000000691868301891
0 —4 -2 —0.000000783558038446 0.000008264770495056
0 —4 -1 0.000003035525508618 —0.000033626357854754
0 —4 0 —0.000018256181107325 0.000065427986272793
0 —4 1 0.000004086105961853 —0.000038413074834669
0 —4 2 —0.000000580109659525 —0.000003565554796078
0 —4 3 0.000000002723537990 0.000002565949178017
0 —4 4 —0.000000000261565539 —0.000000014629069309
0 -3 =3 —0.000002991373212933 0.000012495871980968
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0o -3 -2 0.000038845169549706 —0.000189917858250347
0 —3 —1 —0.000198178565296466 0.000606548222768433
0 -3 0 0.001327207597733390 —0.002504003898777890
0 -3 1 0.000402058492367463 0.002295831351710170
0 -3 2 —0.000033223521793579 —0.000197202087216332
0 -3 3 0.000000396488474721 —0.000023202319010714
0 -3 4 0.000000005007739151 0.000000149598849908
0 —2 —2 —0.000544595338540862 0.004338136206725930
0o -2 -1 0.002549633754527040 —0.010703348374863000
0o -2 0 —0.016661888089210300 0.058199292056752000
0o -2 1 —0.001575878431801170 —0.058893927825286000
0o -2 2 —0.000003072496624468 0.006739385415692850
0o -2 3 0.000028478850555920 0.000504199966204242
0o -2 4 0.000000226335859257 —0.000002349340050316
0 —1 -1 —0.013642653022761800 0.038438016660720100
0 -1 0 0.091379462623008200 —0.156485086285383000
0 -1 1 0.021491536209525800 0.145327483089982000
0 -1 2  —0.001353328886266740 —0.017615142377454900
0o -1 3  —0.000251111189846025 0.000459320278789596
0o -1 4 —0.000003820107622901 0.000006470987565661
0 0 0 —0.622204862458768000 1.025392693870120000
0 0 1 —0.215687591397413000 —1.064688806886120000
0 0 2 0.017691928953702200 0.146250829159046000
0 0 3 0.000598056082359742 —0.006237736910352090
0 0 4 0.000011044852059717 0.000003879702464999
0 1 1 —0.695325127031950000 1.126664279250840000
0 1 2 0.085106188241167300  —0.157297244850630000
0 1 3  —0.011556970215203400 0.006639706173073500
0 1 4 —0.000129177828348943 —0.000005244291833089
0 2 2  —0.010628464332917000 0.024359935110589500
0 2 3 0.001534537077199190 —0.002235366049964460
0 2 4 0.000016829230597190 —0.000002140488334893
0 3 3 —0.000288383540792243 0.000891425848770047
0 3 4 —0.000003524141167631 —0.000000930640639683
0 4 4 —0.000000067864686229 0.000000179196328236
1 -6 —6 —0.000000000000000114 0.000000000000000085
1 -6 -5 —0.000000000000000907 —0.000000000000000883
1 -6 —4 —0.000000000000018315 —0.000000000000012484
1 -6 -3 0.000000000000953008 0.000000000000062014
1 —6 —2 —0.000000000016125999 —0.000000000001386122
1 -6 -1 0.000000000062878189 0.000000000016230311
1 -6 0 —0.000000000422364157 —0.000000000009330509
1 -6 1 0.000000000022365125 —0.000000000006158982
1 -6 2 —0.000000000007816875 —0.000000000000051871
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1 -6 —0.000000000000069827 0.000000000000643261
1 -6 —0.000000000000000255 0.000000000000006039
1 -5 -5 0.000000000001504278 0.000000000003337715
1 -5 -4 0.000000000040817801 0.000000000136206403
1 -5 —=3 —0.000000001967117391 —0.000000002529183753
1 -5 =2 0.000000030067794506 0.000000050348301662
1 -5 —1 —0.000000128160568993 —0.000000141656731277
1 -5 0 0.000000841615311036 0.000000619430310915
1 -5 1 0.000000024688761418 —0.000000593332060332
1 -5 2 0.000000006428329405 0.000000060745389305
1 -5 3 —0.000000000296694415 0.000000007143370984
1 -5 4 0.000000000000162540 —0.000000000288941222
1 -4 -4 0.000000001757443418 0.000000020614980187
1 —4 -3 —0.000000058684084397 —0.000000284708801322
1 —4 =2 0.000000900633580235 0.000004568684813580
1 —4 —1 —0.000003494236067257 —0.000007052401378205
1 -4 0 0.000021283185862096 0.000011916401102779
1 —4 1 —0.000004440781284105 —0.000008079714742511
1 -4 2 0.000000659357234789 —0.000004645371749570
1 —4 3 —0.000000005983216765 0.000003571764235310
1 -4 4 0.000000000219037714 —0.000000015404655013
1 -3 -3 0.000003334669415234 0.000006651219403652
1 -3 —2 —0.000044870229022753 —0.000091879265258768
1 -3 -1 0.000220484777434063 0.000404387763410176
1 -3 0 —0.001476401228798630 —0.001970067661954120
1 -3 1 —0.000378699650660606 0.001789417647540150
1 -3 2 0.000028722273529119  —0.000170192004108606
1 -3 3 —0.000000377318282874 0.000030175517428942
1 -3 4 —0.000000003382271106 0.000001794021450849
1 -2 =2 0.000648716443752163 0.001368769260541370
1 —2 —1 —0.002938550145521220 —0.004993599451437050
1 -2 0 0.019299876525227600 0.022489569347420900
1 -2 1 0.001435356836152440 —0.020538374775093300
1 -2 2 0.000049564826908565 0.001855652948225720
1 -2 3  —0.000024166741453089 —0.000079283744898396
1 -2 4 —0.000000172363681952 —0.000015473351113573
1 -1 -1 0.015026327214997800 0.038517480170287800
1 -1 0 —0.100861882091266000 —0.213157445186717000
1 -1 1 —0.021971217823112900 0.194160649199176000
1 -1 2 0.001322037439149490 —0.023052661994965500
1 -1 3 0.000195701994787672 0.007866899956941040
1 -1 4 0.000002932051627075 0.000261483584092412
1 0 0 0.686561423454117000 1.225044721602250000
1 0 1 0.211068926480356000 —1.127188528919980000
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1 0 2 —0.016470108327300500 0.147129331787108000
1 0 3 —0.000422474596941267 —0.051061673747300300
1 0 4 —0.000008712302872626 —0.001298443030838730
1 1 1 0.621822783048911000 1.049244629039260000
1 1 2  —0.075741332758791900 —0.146480790047057000
1 1 3 0.009700304084902640 0.047923832519760400
1 1 4 0.000097328838187830 0.001097838380224580
1 2 2 0.009436962750623020 0.028598602234395400
1 2 3 —0.001292354908452150 —0.007757573870719450
1 2 4 —0.000012748308527165 —0.000117784430191791
1 3 3 0.000238613930858808 0.003007091453430960
1 3 4 0.000002672166999172 0.000066953007354530
1 4 4 0.000000051520671179 0.000003647512626322
2 —6 —6 0.000000000000000150 0.000000000000000166
2 —6 -5 0.000000000000000099  —0.000000000000000113
2 -6 —4 0.000000000000002443 0.000000000000003427
2 —6 -3 —0.000000000000143354 0.000000000000014722
2 -6 -2 0.000000000002415831  —0.000000000002632485
2 —6 —1 —0.000000000009452169 0.000000000001307350
2 —6 0 0.000000000063367620  —0.000000000036154113
2 —6 1 —0.000000000003185978 0.000000000044460421
2 —6 2 0.000000000001147336  —0.000000000006634687
2 —6 3 0.000000000000009567  —0.000000000000364433
2 —6 4 0.000000000000000232 —0.000000000000000423
2 —5 —5 —0.000000000000223682 —0.000000000000143332
2 —5 —4 —0.000000000005995404 —0.000000000011716514
2 -5 -3 0.000000000281412912 0.000000000196876407
2 —5 =2 —0.000000004377579012 —0.000000003056888740
2 -5 -1 0.000000018269746503 0.000000009225829089
2 -5 0 —0.000000119591968382 —0.000000034127644995
2 -5 1 —0.000000000577700822 0.000000030450274315
2 =5 2 —0.000000001234121626 —0.000000002061358458
2 -5 3 0.000000000017183421 —0.000000000651302134
2 -5 4 —0.000000000000040761 0.000000000036074137
2 —4 —4 —0.000000000257855489 —0.000000001572676464
2 -4 -3 0.000000007759072633 0.000000021104268848
2 —4 =2 —0.000000126037086966 —0.000000385611331534
2 -4 -1 0.000000451925020617 0.000000187284214085
2 —4 0 —0.000002667509317628 0.000000338566675319
2 —4 1 0.000001094325822973 —0.000000334327835557
2 —4 2  —0.000000144003147164 0.000000571301385005
2 —4 3 0.000000002109102081  —0.000000398332804613
2 —4 4 —0.000000000011604002 0.000000001599817595
2 -3 =3 —0.000000438635890906 —0.000000575555179711
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2 -3 -2 0.000006070452399564 0.000007725030451928
2 —3 —1 —0.000028974883631680 —0.000038743033037349
2 -3 0 0.000194399542202048 0.000198807145344274
2 -3 1 0.000049394154125883 —0.000180496494453374
2 -3 2  —0.000003827116258243 0.000017890079082343
2 -3 3 0.000000195668917342 —0.000004394839167807
2 -3 4 —0.000000000050641217 —0.000000233634197267
2 =2 =2 —0.000090404385775245 —0.000101164027768215
2 -2 -1 0.000394242536773058 0.000434093565112245
2 =2 0 —0.002586488460754370 —0.001882450484626370
2 =2 1 —0.000148301023789967 0.001661862665574580
2 =2 2  —0.000010725643268963 —0.000140843886383219
2 =2 3 0.000001015580687350 0.000019175037434147
2 =2 4 —0.000000002905642477 0.000001990771052912
2 —1 —1 —0.001950102603427280 —0.004227417313234310
2 -1 0 0.013247951815681100 0.024375066315650600
2 -1 1 0.003826565859334050 —0.022155627775967000
2 -1 2 —0.000295974722760960 0.002660958944479350
2 -1 3 0.000006788655946279 —0.001014040275574970
2 -1 4 0.000000050390288502  —0.000034486938630054
2 0 0 —0.091170725217452700 —0.139298499001726000
2 0 1 —0.032969315201099700 0.126463611440291000
2 0 2 0.002830894154548120 —0.016473114935154800
2 0 3  —0.000096197631030875 0.006443900964207050
2 0 4 —0.000000084667262118 0.000172374151181341
2 1 1 —0.071791372418013600 —0.115824824649865000
2 1 2 0.008663612249959720 0.016189433121281000
2 1 3 —0.000790476998519630 —0.006007408332548970
2 1 4 0.000001564598599773 —0.000146246137298849
2 2 2 —0.001072600644566900 —0.003213731393093160
2 2 3 0.000108195664937536 0.000942808538478769
2 2 4 —0.000000127832144936 0.000016030297995841
2 3 3  —0.000015420127729737 —0.000370691176993228
2 3 4 0.000000036411736533 —0.000008950931310045
2 4 4 0.000000001051765794 —0.000000479214685452
3 —6 —6 —0.000000000000000135 —0.000000000000000058
3 —6 =5 —0.000000000000000020 —0.000000000000000063
3 —6 —4 —0.000000000000000115 —0.000000000000000086
3 —6 —3 —0.000000000000005652 —0.000000000000000117
3 -6 =2 0.000000000000101491 0.000000000000036813
3 —6 —1 —0.000000000000386211 —0.000000000000103980
3 —6 0 0.000000000002616633 0.000000000000440641
3 —6 1 —0.000000000000185698 —0.000000000000449888
3 —6 2 0.000000000000055739 0.000000000000077485
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3 —6 0.000000000000000465 —0.000000000000000687
3 —6 0.000000000000000055 0.000000000000000098
3 —5 —5 —0.000000000000008787 —0.000000000000019156
3 —5 —4 —0.000000000000206589 —0.000000000000957229
3 -5 =3 0.000000000012663444 0.000000000021005668
3 —5 —2 —0.000000000183212412 —0.000000000372771123
3 -5 -1 0.000000000856285373 0.000000001090880490
3 -5 0 —0.000000005777979835 —0.000000005600530001
3 -5 1 —0.000000000727688681 0.000000005470450912
3 =5 2 0.000000000010406883  —0.000000000576389259
3 -5 3 0.000000000009237232  —0.000000000027030857
3 -5 4 0.000000000000006287  —0.000000000004638950
3 -4 —4 0.000000000004634622 —0.000000000110787279
3 -4 -3 0.000000000672925665 0.000000003159504678
3 —4 -2 —0.000000006116120113 —0.000000042525904509
3 —4 -1 0.000000053293385318 0.000000193759440213
3 —4 0 —0.000000403512383495 —0.000001058965767894
3 —4 1 —0.000000329187643319 0.000000991421096792
3 —4 2 0.000000032996262477 —0.000000106241389563
3 —4 3 —0.000000000091014132 0.000000019452828129
3 —4 4 0.000000000014845276 0.000000000051936646
3 —3 =3 —0.000000020323501680 —0.000000036972434452
3 -3 -2 0.000000327900356987 0.000000676048806595
3 —3 —1 —0.000001272465801470 0.000000642341232521
3 -3 0 0.000007194659002908 —0.000005649923786521
3 -3 1 —0.000008455672441132 0.000003900429030867
3 -3 2 0.000001157077181243 —0.000000542796580782
3 -3 3 —0.000000153965733234 0.000000967620748062
3 -3 4 —0.000000000158239367 0.000000040072472232
3 —2 —2 —0.000004411382348243 —0.000011066002917409
3 -2 -1 0.000021022636028492 0.000016222982218145
3 -2 0 —0.000141363781419171 —0.000058671367402833
3 -2 1 —0.000038292249218413 0.000064109857983711
3 -2 2 0.000003049724243215 —0.000003787123594462
3 -2 3 —0.000000223480469387 —0.000007124028659815
3 -2 4 —0.000000009747296867 —0.000000317467793033
3 —1 —1 —0.000062404598364344 0.000427004923651088
3 -1 0 0.000344437691086184 —0.002461042674065830
3 -1 1 —0.000276854267031471 0.002066528268096090
3 -1 2 0.000034719965893078 —0.000213364330676967
3 -1 3 0.000001013907697166 0.000157542840877920
3 -1 4 0.000000164539868335 0.000006270798375128
3 0 0 —0.001422209211621990 0.014523345382304300
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Table B.3 (Continued)

ho b s Lo Ly L s

3 0 1 0.005244801061164100 —0.012405556192984200
3 0 2  —0.000649014687505744 0.001326214083640570
3 0 3 0.000048138200474946 —0.000885310424893841
3 0 4 —0.000000511132901176 —0.000032264316509892
3 1 1 0.032468184989704000 0.010770687937131700
3 1 2 —0.004113350887497220 —0.001312302496833520
3 1 3 0.000603514779042885 0.000784269530559433
3 1 4 0.000005371531754377 0.000027365775442937
3 2 2 0.000523587519218677 0.000305363902049934
3 2 3  —0.000078667734315860 —0.000098616910758433
3 2 4 —0.000000711187580487 —0.000002857509612122
3 3 3 0.000013424710836408 0.000046573204263387
3 3 4 0.000000148632348840 0.000001678742058197
3 4 4 0.000000002807014848 0.000000083858268458
4 —6 —6 —0.000000000000000008 0.000000000000000227
4 —6 —5 —0.000000000000000134 —0.000000000000000114
4 -6 —4 0.000000000000000065 0.000000000000000218
4 -6 -3 0.000000000000000196 0.000000000000000159
4 -6 -2 0.000000000000000250 —0.000000000000000063
4 -6 -1 0.000000000000000176 0.000000000000000310
4 —6 0 —0.000000000000000546 —0.000000000000001030
4 —6 1 —0.000000000000000510 0.000000000000000695
4 —6 2 0.000000000000000037 0.000000000000000140
4 —6 3 —0.000000000000000345 0.000000000000000047
4 —6 4 —0.000000000000000195 0.000000000000000043
4 -5 =5 —0.000000000000000076 0.00000000000000004 1
4 -5 —4 —0.000000000000000371 —0.000000000000000206
4 -5 =3 —0.000000000000009052 —0.000000000000044405
4 -5 =2 0.000000000000028740 0.000000000000459630
4 -5 —1 —0.000000000000624969 —0.000000000005190090
4 -5 0 0.000000000005582205 0.000000000030749546
4 -5 1 0.000000000015503069 —0.000000000028158171
4 -5 2 —0.000000000001905014 0.000000000003496200
4 -5 3 0.000000000000217252 —0.000000000001290655
4 -5 4 —0.000000000000000232 —0.000000000000022033
4 —4 —4 —0.000000000000063544 —0.000000000000155079
4 —4 -3 —0.000000000001081618 —0.000000000002314663
4 —4 -2 —0.000000000002991837 0.000000000024892424
4 —4 —1 —0.000000000084460745 —0.000000000245246970
4 —4 0 0.000000000921323564 0.000000002237269594
4 —4 1 0.000000002837933615 —0.000000002447477751
4 —4 2 —0.000000000340312780 0.000000000528124025
4 —4 3 0.000000000037113785 —0.000000000099586517
4 —4 4 0.000000000000270953 0.000000000004494692
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Table B.3 (Continued)

ho b s s Ly L s
4 -3 -3 0.000000000036986364 0.000000000294264027
4 -3 =2 —0.000000000053600333 —0.000000002549970000
4 -3 —1 —0.000000000762635888 0.000000040997406945
4 -3 0 —0.000000004642160396 —0.000000209781511212
4 -3 1 —0.000000138613320777 0.000000167360792378
4 -3 2 0.000000018569460631  —0.000000005662020518
4 -3 3 —0.000000003363761079 0.000000008885773830
4 -3 4 —0.000000000030156882 0.000000000457624028
4 -2 =2 0.000000002520502348 0.000000024178700649
4 -2 —1 —0.000000035678699374 —0.000000325899202597
4 =2 0 0.000000138900329397 0.000001701555998387
4 =2 1 —0.000000921350343439 —0.000001409362186892
4 =2 2 0.000000123484633695 0.000000085996895871
4 =2 3 —0.000000026494300340 —0.000000070805878714
4 =2 4 —0.000000000476758302 —0.000000003139709050
4 -1 -1 0.000000314232911302 0.000006153363380819
4 -1 0 —0.000000271893328463 —0.000030978468929552
4 -1 1 0.000014870875467031 0.000024111362712364
4 -1 2 —0.000001907836824072 —0.000000432167736363
4 -1 3 0.000000363311622449 0.000001354224368949
4 -1 4 0.000000006887270948 0.000000076838434177
4 0 0 —0.000002174108415279 0.000152246996545518
4 0 1 —0.000012512380146030 —0.000116179653829710
4 0 2 0.000001227682650994 0.000000346923673145
4 0 3 —0.000000155068260106 —0.000006524790370101
4 0 4 —0.000000011934036711 —0.000000405049584434
4 1 1 0.000941181580556842 0.000089281824128280
4 1 2  —0.000124542630945891 —0.000001428564611848
4 1 3 0.000023601752338335 0.000005129500040787
4 1 4 0.000000320622410481 0.000000330008575344
4 2 2 0.000016474191246362 0.000001688413236393
4 2 3 —0.000003106675849826 —0.000000235577399882
4 2 4 —0.000000041916654129 —0.000000019893658262
4 3 3 0.000000584404578602 0.000000318837660106
4 3 4 0.000000008247011284 0.000000019826682577
4 4 4 0.000000000140842452 0.000000000947163263
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