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CHAPTER I

INTRODUCTION

Lie group analysis is a well developed method for studying properties of or-

dinary and partial differential equations, and obtaining exact solutions of them. A

general survey of this method can be found in Ovsiannikov (1982) and Ibragimov

(1994, 1995, 1996). It involves the study of symmetries of equations, by which

one means local groups of transformations mapping solutions of a given system of

equations to solutions of the same system. Symmetries make it possible to reduce

the number of dependent and independent variables, and also to construct new so-

lutions from known solutions. Point transformations are the most commonly used

types, involving both, the independent and dependent variables in the transforma-

tions. Other types of transformations have also been applied with success, one may

for example choose to include derivatives of various orders in the transformations.

The requirement that an infinitesimal transformation maps every solution

of a system of equations to a solution of the same system gives rise to the con-

cept of an admitted Lie group for a given system. The handbooks by Ibragimov

(1994, 1995, 1996) provide excellent references on the vast collection of differen-

tial equations for which admitted Lie groups are known and solutions have been

obtained. Hydrodynamics equations were the first object of application of group

analysis in Ovsiannikov (1958). The recent PODMODELI (SUBMODELS) pro-

gram in Ovsiannikov (1994) was aimed at an exhaustive use of the group analysis

method for studying the gas dynamics equations. Results of this study are sum-

merized in Ovsiannikov (1999). The first application of the group analysis method
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to the Navier-Stokes equations was done in Pukhnachov (1960). A review of exact

solutions of the Navier-Stokes equations can be found in Pukhnachov (2006).

In contrast to deterministic equations, there have been few attempts to ap-

ply symmetry techniques to stochastic ordinary and partial differential equations.

In general, the change of variables in stochastic differential equations differs from

the change of variables in ordinary differential equations, as the Itô formula takes

the place of the chain rule of differentiation. Exploiting the Itô formula and the

requirement that the solution of a stochastic differential equation is mapped into a

solution of the same equation, the determining equations of an admitted Lie group

can be obtained.

In the first attempts, the transformation of time t was only a function of

time and the group parameter. This approach has been applied to stochastic

dynamical system in Misawa (1994), Albeverio and Fei (1995), Alexandrova (2005,

2006), to the Fokker-Plank equation in Gaeta and Quinter (1999), Gaeta (2004),

Unal (2003), Unal and Sun (2004) and Ibragimov (2004), to scalar second-order

stochastic ordinary differential equations in Mahomed and Wafo Soh (2001), and to

the Hamiltonian-Stratonovich dynamical control system in Unal and Sun (2004). It

has also been applied to stochastic partial differential equations in Melnick (2003).

The latter is the only known result on the application of group analysis to partial

stochastic differential equations.

Another approach in Srihirun, Meleshko, and Schulz (2006, 2007) includes

the dependent variables in the transformation of time as well,

x̄ = φ(t, x, a), t̄ = H(t, x, a).

In particular, the transformation of Brownian motion is defined through the trans-

formation of the dependent and independent variables. Generalizing the change

of the time formula in Oksendal (1998), it was proven in Srihirun, Meleshko, and
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Schulz (2006) that the transformed Brownian motion

B(t) =

∫ t

0

η2(s,X(s), a)dB(s)

(where η(t, x, a) ̸= 0) satisfies again the properties of Brownian motion. This

transformation of Brownian motion is a logical generalization of the time change

in the Itô integral to the case where the stochastic process is included in the

change. Exploiting the Itô formula, this transformation of Brownian motion, and

the requirement that a solution of the stochastic differential equation is mapped

into a solution of the same equation, and finally equating the Riemann and Itô

integrands, the determining equations of an admitted Lie group were obtained. The

definition of an admitted Lie group for stochastic ordinary differential equations

was given using these determining equations.

We first extend this discussion to systems of second order stochastic partial

differential equations of the form

dvi(t, y) = Ai(t, y, v, vyk , vykyl)dt+
m∑
j=1

Bij(t, y, v)dwj(t), (i = 1, n, k, l = 1, N).

We construct determining equations for admitted Lie groups of transformations

which involve both the independent and the dependent variables, and transform

the Wiener processes wj as well. This should serve as a model for the correct gen-

eralization of the group analysis method to stochastic partial differential equations.

We then apply our result to some of the fundamental equations of fluid dynamics

with stochastic parts, namely the Kardar-Parisi-Zhang equation, the gas dynamics

equations and the Navier-Stokes equations, to obtain invariant solutions and more

generally, systems of stochastic differential equations of reduced complexity.

This thesis is organized as follows. Chapter II introduces some necessary

knowledge from stochastic processes. Chapter III introduces notations of group

analysis. Applications of the group analysis method to the deterministic gas and
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hydro dynamics equations are considered in Chapter IV. Chapters V and VI present

the results of our investigations. Transformations for stochastic partial differen-

tial equations and the application of group analysis to constructing determining

equations for admitted Lie groups of transformations for stochastic differential

equations are studied in Chapter V. Chapter VI is devoted to developing a new

knowlege of application of group analysis to stochastic fluid dynamic differential

equations. The last Chapter is the conclusion.



CHAPTER II

STOCHASTIC PROCESSES

This chapter is devoted to introducing the tools from the theory of stochastic

processes which are used throughout this thesis. In particular, it discusses stochas-

tic integrals with respect to Wiener processes, Wiener processes as time change

and Itô’s formula. We assume that the reader is familiar with the fundamental

measure theoretic concepts of probability, as described in standard textbooks.

2.1 Stochastic Processes and Wiener Processes

Let Ω be a given set of elementary events ω ; F a σ-algebra of

subsets of Ω and P a probability measure on F . The triple (Ω,F ,P) is called a

probability space. It is assumed that the σ-algebra F is generated by a family of

σ-algebras Ft (t ≥ 0) such that

Fs ⊂ Ft ⊂ F ∀s ≤ t.

The nondecreasing family of σ-algebras Ft is also called a filtration and

the σ-algebra F is denoted by F = (Ft)t≥0. The triple (Ω,F = (Ft)t≥0,P) is called

a filtered probability space.

A stochastic process X on (Ω,F ,P) is a collection of random variables

{X(t)}t≥0. The process {X(t)}t≥0 is said to be adapted to (Ft)t≥0 if X(t) is Ft-

measurable for each t. Denoting the Borel σ-algebra on an interval I by B(I), the

process X is called measurable if (t, ω) 7−→ X(t, ω) is a B([0,∞))⊗F -measurable

mapping. The process X is said to be continuous if the trajectories t 7−→ X(t, ω)
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are continuous for almost all ω ∈ Ω. It is called progressively measurable if

X : [0, t] × Ω 7−→ R is a B([0, t]) ⊗ Ft-measurable mapping for each 0 ≤ t < ∞.

Note that a progressively measurable process is measurable and adapted.

Proposition 2.1. An adapted process that is left-continuous or right-continuous

is progressively measurable.

Proof. See Albin (2001), p.58, Theorem 8.8.

Recall that a Wiener processes, also called Brownion motion, is a real-valued

stochastic processes {W (t)} t≥0 satisfying the properties

(1) continuity: the map s→ W (s, ω) is continuous almost surely.

(2) independent increments: if s ≤ t, then W (t)−W (s) is

independent of (the past) Fs = σ(W (u) : u ≤ s).

(3) stationary increments: if s ≤ t, then W (t)−W (s) and

W (t− s)−W (0) have the same distribution functions. Increments

W (t)−W (s) are normally distributed with mean zero and

variance t− s.

A Wiener processes is said to be standard if it satisfies W (0, ω) = 0 almost surely.

2.1.1 The Itô Integral for Simple Processes

From now on, unless stated otherwise, we let {W (t)}t≥0 be a standard

Wiener process applied to a filtration {Ft}t≥0. Fix T ∈ (0,∞]. A process {Xt}t≥0

is said to be simple on [0, T ] (denoted X ∈ ST ) if it can be written as follows:

There exist a partition 0 = t0 < t1 < ... < tn = T of [0, T ] and random variables
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Y0, Y1, ..., Yn−1 which are adapted to F0, Ft1 ,..., Ftn−1 respectively and satisfy the

conditions E{Y 2
0 }, ... , E{Y 2

n−1} <∞, such that

X(t) = Y0I{0}(t) +
n∑

i=1

Yi−1I(ti−1,ti](t)

for t ∈ [0, T ]. Here, IS denotes the characteristic function of a set S. In the case

T = ∞, there is one more requirement for a simple process: Yn−1 = 0.

Definition 2.1. Let X ∈ ST , say

X(t) = X0I{0}(t) +
n∑

i=1

Xi−1I(ti−1,ti](t),

where {t0, t1, ..., tn} is partition of [0, T ]. The Itô integral of {X(t)}t∈[0,T ] is the

process defined by∫ t

0

X(s)dW (s) = Xm

(
W (t)−W (tm)

)
+

m∑
i=1

Xi

(
W (ti)−W (ti−1)

)
, (2.1)

where (tm, tm+1] is the partition interval containing t.

2.1.2 The Itô Integral for Square Integrable Processes

A stochastic process {X(t)}t≥0 is said to belong to the class ET if it is

measurable and adapted to (Ft)t≥0 with

∥X∥22 = E{
∫ T

0

X2(r)dr} <∞.

It turns out that ST is dense in ET in this mean square norm, and that

the Itô integral (2.1) is a linear isometry of St into L
2(Ω,Ft), for each 0 < t ≤ T .

Thus, it can be extended to class ET as follows.

Definition 2.2. For a process X ∈ ET , the Itô integral of {X(t)}t∈[0,T ] is defined

in the sense of convergence in the mean square (and hence in the mean).∫ t

0

X(s)dW (s) = lim
n→∞

∫ t

0

Xn(s)dW (s), t ∈ [0, T ],
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where {Xn}∞n=1 is a sequence of simple processes on [0, T ] such that

lim
n→∞

∥Xn −X∥22 = lim
n→∞

∫ T

0

E[
(
Xn(s)−X(s)

)2
]ds = 0.

2.1.3 The Itô Integral for Predictable Processes

A stochastic process {X(t)}t≥0 is said to belong to the class PT of predictable

processes on [0, T ] if it is measurable and adapted to (Ft)t≥0 with

P{
∫ T

0

X2(r)dr <∞} = 1.

Note that ST ⊂ ET ⊂ PT . Every process X in PT is the limit of a sequence

{Xn}∞n=1 ⊆ ET in the sense of convergence in probability.

Definition 2.3. For a process X ∈ PT , the Itô integral of {X(t)}t∈[0,T ] can be

defined in the sense of convergence in probability,∫ t

0

X(s)dW (s) = lim
n→∞

∫ t

0

Xn(s)dW (s), t ∈ [0, T ],

where {Xn}∞n=1 is a sequence of processes which belong to the class ET such that

lim
n→∞

∫ T

0

(
Xn(s)−X(s)

)
ds = 0,

with limit in the sense of convergence in probability.

Remark 2.1. In Albin (2001) it is proven that processes X, Y ∈ PT satisfy the

following:

1. The Itô integral

∫ t

0

X(τ)dW (τ) is well-defined for 0 ≤ t ≤ T ,

2. E
(( ∫ t

0

X(τ)dW (τ)
)2)

=

∫ t

0

E
(
X2(τ)

)
dτ for 0 ≤ t ≤ T (Itô isometry

property), provided that X ∈ ET ,
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3. E
(∫ t

0

X(τ)dW (τ)

∫ t

0

Y (τ)dW (τ)
)
=

∫ t

0

E
(
X(τ)Y (τ)

)
dτ for 0 ≤ t ≤ T ,

provided that X ∈ ET ,

4.

∫ t

0

(
aX(τ) + bY (τ)

)
dW (τ) = a

∫ t

0

X(τ)dW (τ) + b

∫ t

0

Y (τ)dW (τ) a.s. for

all a, b ∈ R and 0 ≤ t ≤ T ,

5.

∫ t

0

X(τ)dW (τ) is Ft-measurable for 0 ≤ t ≤ T ,

6.
{∫ t

0

X(τ)dW (τ)
}

t≥0
is continuous with probability one and progressively

measurable.

2.2 Stochastic Integrals as Time Change of Wiener Pro-

cesses

In this section, we prepare the mathematical tools required for defining

transformation of Wiener processes.

The constructions below are similar to (Oksendal (1998), Section 8.5) and

described in (Srihirun (2005), Section 3). Let η(t, x, a) be a sufficiently many

times continuously differentiable function and {X(t)}t≥0 a continuous and adapted

stochastic process. Since η2(t, x, a) is continuous, η2(t,X(t, ω), a) is also an adapted

process. Define

β(t, ω, a) =

∫ t

0

η2(s,X(s, ω), a)ds, t ≥ 0. (2.2)

For brevity we write β(t) instead of β(t, ω, a). The function β(t) is called a random

time change with time change rate η2(t,X(t, ω), a) and β(t) is an adapted process.
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Suppose now that η(t, x, a) ̸= 0 for all (t, x, a). Then for each ω, the map t 7−→ β(t)

is strictly increasing. Next define

α(t, ω, a) = inf
s≥0

{s : β(s, ω, a) > t}, (2.3)

and for brevity, write α(t) instead of α(t, ω, a). For all ω, the map t 7−→ α(t) is

nondecreasing and continuous. One easily shows that for all ω, and for all t ≥ 0,

β(α(t)) = t = α(β(t)). (2.4)

Since β(t) is an Ft-adapted process, one has

{ω : α(t) ≤ s} = {ω : t ≤ β(s)} ∈ Fs, for all t ≥ 0 and s ≥ 0.

Hence t 7−→ α(t) is an Fs-stopping time for each t.

Definition 2.4.(Stopping time) A nonnegative random variable τ , which is

allowed to take the value ∞, is called stopping time with respect to the filtration

Ft = (Fs)s≤t if for each t, the event {ω : τ(ω) ≤ t} ∈ Ft.

The following theorem will be crucial for defining the transformation of a

Wiener process.

Theorem 2.1. Let η(t, x, a) and {X(t)}t≥0 be as above and {W (t)}t≥0 a standard

Wiener processes. Define

W (t) =

∫ t

0

η(s,X(s, ω), a)dW (s), t ≥ 0. (2.5)

Then (Wα(t),Fα(t)) is a standard Wiener processes, where

Fα(t) = {A ∈ F : A ∩ {ω : α(t) ≤ s} ∈ Fs, for all s ≥ 0}.

Proof. See Srihirun (2011), p.17, Theorem 3.1.



11

2.3 Itô’s Formula

Let X(t) be a stochastic process. We say that X(t) has stochastic differen-

tial

dX(t) = f(t)dt+G(t)dW (t), (2.6)

if

X(t) = X(t0) +

∫ t

t0

f(s)ds+

∫ t

t0

G(s)dW (s),

for some Wiener ProcessW (t). Similarly, let X(t) = (X1(t), ..., Xn(t))
T be a vector

valued process,W (t) = (W1(t), ...,Wm(t))
T anm-dimensional Wiener Process with

independent components, f(t) = (f1(t), ..., fn(t))
T a measurable vector function,

and G(t) = {gij(t)} a measurable n×m matrix function with components gij. We

say that X(t) has stochastic differential

dX(t) = f(t)dt+G(t)dW (t),

if for each i = 1, ..., n

dXi(t) = fi(t)dt+
m∑
j=1

gij(t)dWj(t).

that is

Xi(t) = Xi(t0) +

∫ t

t0

fi(s)ds+
m∑
j=1

∫ t

t0

gij(s)dWj(s).

Itô’s formula is a stochastic version of the chain rule and allows us to express

F (t,X1(t), ..., Xn(t)) as a stochastic differential:

dF =

(
∂F

∂t
+

n∑
i=1

∂F

∂xi
fi +

n∑
i,j=1

m∑
k=1

1

2

∂2F

∂xi∂xj
gikgjk

)
dt

+
n∑

i=1

∂F

∂xi

m∑
j=1

gijdWj.

(2.7)

Hence, F is assumed to be continuously, differentiable in t, and twice continuously,

differentiable in x = (x1, ..., xn).



CHAPTER III

GROUP ANALYSIS

In this Chapter, the group analysis method is discussed. A general introduc-

tion to this method can be found in common textbooks (cf. Ovsiannikov (1978),

Ibragimov (1899), Handbook of Lie Group Analysis (1994), (1995), (1996)).

3.1 Local Lie Group

We consider invertible point transformations

z̄i = gi(z; a), (3.1)

where i = 1, 2, ..., N, z ∈ V ⊂ RN and a ∈ ∆ is a parameter. The set V is an open

set in RN , and ∆ is an interval in R1 symmetric w.r.t. zero.

For differential equations the variable z is separated into two parts, z =

(x, u) ∈ V ⊂ Rn ×Rm, N = n+m. Here x = (x1, x2, ..., xn) ∈ Rn is considered as

the independent variable, u = (u1, u2, ..., um) ∈ Rm is considered as the dependent

variable. For the transformations we use

x̄i = φi(x, u; a), ūj = ψj(x, u; a), (3.2)

where i = 1, 2, ..., n, j = 1, 2, ...,m, (x, u) ∈ V .

3.1.1 One-Parameter Lie Group of Transformations

Definition 1. A set of transformations (3.1) is called a local one-parameter Lie

group if it has the following properties:
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1. g(z; 0) = z for all z ∈ V .

2. g(g(z; a), b) = g(z; a+ b) for all a, b, a+ b ∈ ∆, z ∈ V .

3. If for a ∈ ∆ we have g(z; a) = z for all z ∈ V , then a = 0.

4. g ∈ C∞(V,∆).

Let us define the functions

ξxi(x, u) =
∂φi(x, u; a)

∂a

∣∣∣∣
a= 0

, ηu
j

(x, u) =
∂ψj(x, u; a)

∂a

∣∣∣∣
a= 0

,

and set

X = ξxi(x, u)∂xi
+ ηu

j

(x, u)∂uj . (3.3)

The operator X is called an infinitesimal generator or the generator of the Lie

group of transformations (3.2). The coefficients ξxi , ηu
j
are called the coefficients

of the generator.

A local Lie group of transformations (3.2) can be completely determined

by the solution of a Cauchy problem of ordinary differential equations, which are

called the Lie equations:

dx̄i
da

= ξxi(x̄, ū),
dūj

da
= ηu

j

(x̄, ū) (3.4)

with the initial data

x̄i|a= 0 = xi, ū
j
∣∣
a= 0

= uj. (3.5)

Theorem 1 (Lie). Given a vector field ζ = (ξ, η) : V → RN of class C∞(V ) with

ζ(z0) ̸= 0 for some z0 ∈ V , then the solution of the Cauchy problem (3.4), (3.5)

generates a local Lie group with the infinitesimal generator X = ξxi(x, u)∂xi
+

ηu
j
(x, u)∂uj . Conversely, let functions φi(x, u; a), i = 1, ..., n and ψj(x, u; a), j =

1, ...,m satisfy the properties of a Lie group and have the expansion

x̄i = φi(x, u; a) ≈ xi + ξxi(x, u)a,

ūj = ψj(x, u; a) ≈ uj + ηu
j

(x, u)a
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where

ξxi(x, u) =
∂φi(x, u; a)

∂a

∣∣∣∣
a= 0

, ηu
j

(x, u) =
∂ψj(x, u; a)

∂a

∣∣∣∣
a= 0

.

Then the functions φi(x, u; a), ψj(x, u; a) solve the Cauchy problem (3.4), (3.5).

Thus, Lie’s theorem establishes a one-to-one correspondence between Lie groups

of transformations and infinitesimal generators.

3.1.2 Prolongation of a Lie Group

Let Z = Rn(x) × Rm(u) denote the space of independent and dependent

variables. We want to ”prolong” the group of transformations by including some

derivatives in the transformations. Let α = (α1, α2, ..., αn) be a multi-index, and

set |α| ≡ α1 + α2 + ... + αn and α, i ≡ (α1, α2, ..., αi−1, αi + 1, αi+1, ..., αn). The

variable pkα will denote the derivative ∂|α|uk

∂xα defined as

pkα =
∂|α|uk

∂xα
=

∂|α|uk

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

,

The space J l of the variables

x = (xi), u = (uk), p = (pkα)

(i = 1, 2, ..., n; k = 1, 2, ...,m; |α| ≤ l)

is called the l-th prolongation of the space Z. This space can be provided with a

manifold structure. For convenience we agree that J0 ≡ Z.

Definition 2. The generator

X l = X +
∑
j,α

ηjα∂pjα

with the coefficients

ηjα,k = Dkη
j
α −

∑
i

pjα,iDkξ
i (3.6)
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is called the l-th prolongation of the generator X.

Here the operators

Dk =
∂

∂xk
+
∑
j,α

pjα,k
∂

∂pjα

are operators of the total derivatives with respect to xk, where

k = 1, 2, ..., n; j = 1, 2, ...,m; |α| ≤ l, ξi = ξxi , ηj0 = ηu
j

,

and ξxi , ηu
j
are defined as in (3.3).

For a simple illustration of using the prolongation formulae (3.6), let us

study the first prolongation of the generator X with n = m = 1. In this case, the

generator X1 induces a local Lie group of transformations in the space J1:

x̄ = φ(x, u; a), ū = ψ(x, u; a), p̄ = f(x, u, p; a), (3.7)

with the generator

X1 = ξx(x, u)∂x + ηu(x, u)∂u + ζp(x, u, p)∂p , (3.8)

where

ζp = Dx(η
u)− pDx(ξ

x), p =
du

dx
, p̄ =

dū

dx̄
.

Notice that the coefficients ξx, ηu are defined as in (3.3). Let us show in the

following why the coefficient ζp must be of this form. Let a function u0(x) be

given. Substituting it into the first equation of (3.7), one obtains

x̄ = φ(x, u0(x); a).

Since φ(x, u0(x); 0) = x, the Jacobian at a = 0 is

∂x̄

∂x

∣∣∣∣
a= 0

=

(
∂φ

∂x
+
∂φ

∂u

∂u0
∂x

)∣∣∣∣
a= 0

= 1.
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Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

one can express x as a function of x̄ and a,

x = ϕ(x̄, a). (3.9)

Note that after substituting (3.9) into the first equation (3.7), one has the identities

x̄ = φ(ϕ(x̄, a), u0(ϕ(x̄, a)); a).

x = ϕ(φ(x, u0(x); a), a)
(3.10)

Substituting (3.9) into the second equation of (3.7), one obtains the transformed

function

ua(x̄) = ψ(ϕ(x̄, a), u0(ϕ(x̄, a)); a). (3.11)

Differentiating the function ua(x̄) with respect to x̄, one gets

ūx̄ =
∂ua(x̄)

∂x̄
=
∂ψ

∂x

∂ϕ

∂x̄
+
∂ψ

∂u

∂u0
∂x

∂ϕ

∂x̄
=

(
∂ψ

∂x
+
∂ψ

∂u
u′0

)
∂ϕ

∂x̄
,

where the derivative ∂ϕ
∂x̄

can be found by differentiating equation (3.10) with respect

to x̄,

1 =
∂φ

∂x

∂ϕ

∂x̄
+
∂φ

∂u

∂u0
∂x

∂ϕ

∂x̄
=

(
∂φ

∂x
+
∂φ

∂u
u′0

)
∂ϕ

∂x̄
.

Since

∂φ

∂x
(ϕ(x̄, 0), u0(ϕ(x̄, 0)); 0) = 1,

∂φ

∂u
(ϕ(x̄, 0), u0(ϕ(x̄, 0)); 0) = 0, (3.12)

one has ∂φ
∂x

+ ∂φ
∂u
u′0 ̸= 0 in some neighborhood of a = 0. Thus,

∂ϕ

∂x̄
=

(
∂φ

∂x
+
∂φ

∂u
u′0

)−1

,

and

ūx̄ =

(
∂ψ

∂x
+
∂ψ

∂u
u′0

)(
∂φ

∂x
+
∂φ

∂u
u′0

)−1

=: g(x, u0, u
′
0; a). (3.13)

Transformation (3.7) together with

ūx̄ = g(x, u, ux; a)
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is called the prolongation of (3.7). Now, we define the coefficient ζp as follows:

ζp(x, u, p) =
∂g(x, u, p; a)

∂a

∣∣∣∣
a=0

, g|a=0 = p. (3.14)

Equation (3.13) can be rewritten

g(x, u, p; a)

(
∂φ(x, u; a)

∂x
+ p

∂φ(x, u; a)

∂u

)
=

(
∂ψ(x, u; a)

∂x
+ p

∂ψ(x, u; a)

∂u

)
.

Differentiating this equation with respect to the group parameter a and substitut-

ing a = 0, one finds(
∂g

∂a

(
∂φ

∂x
+ p

∂φ

∂u

)
+ g

(
∂2φ

∂x∂a
+ p

∂2φ

∂u∂a

))∣∣∣∣
a=0

=

(
∂2ψ

∂x∂a
+ p

∂2ψ

∂u∂a

)∣∣∣∣
a=0

or

ζp(x, u, p) =
∂g

∂a

∣∣∣∣
a=0

(
∂φ

∂x
+ p

∂φ

∂u

)∣∣∣∣
a=0

.

Since by (3.12) (
∂φ

∂x
+ p

∂φ

∂u

)∣∣∣∣
a=0

= 1,

then

ζp(x, u, p) =

(
∂2ψ

∂x∂a
+ p

∂2ψ

∂u∂a

)∣∣∣∣
a=0

− g|a=0

(
∂2φ

∂x∂a
+ p

∂2φ

∂u∂a

)∣∣∣∣
a=0

=

(
∂ηu

∂x
+ p

∂ηu

∂u

)
− p

(
∂ξx

∂x
+ p

∂ξx

∂u

)
= Dx(η

u)− pDx(ξ
x)

where

Dx =
∂

∂x
+ p

∂

∂u
+ px

∂

∂p
+ ... , ξx =

∂φ

∂a

∣∣∣∣
a=0

, ηu =
∂ψ

∂a

∣∣∣∣
a=0

, ζp =
∂g

∂a

∣∣∣∣
a=0

.

Thus, the first prolongation of the generator (3.3) is given by

X(1) = X + ζp(x, u, p)∂p.

Similarly one can obtain prolongation formulae for any order prolongation of an

infinitesimal generator.
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3.1.3 Lie Groups Admitted by Differential Equations

Admitted Lie groups of transformations are related with differential equa-

tions by the following.

Consider a manifold M which is defined by a system of partial differential

equations

F k(x, u, p) = 0, (k = 1, 2, ..., s). (3.15)

Hence

M = {(x, u, p) | F k(x, u, p) = 0, (k = 1, ..., s)}.

Here x is the independent variable, u is the dependent variable and p are arbitrary

partial derivatives of u with respect x. The manifold M is assumed to be regular,

i.e.

rank

(
∂(F )

∂ (u, p)

)
= s.

Definition 3. A manifold M is said to be invariant with respect to the group of

transformations (3.2), if these transformations carry every point of the manifold

M along this manifold, i.e.

F k(x̄, ū, p̄) = 0, (k = 1, 2, ..., s).

Accordingly, equations (3.15) are not changed under the Lie group of transfor-

mations and we say that the Lie group of transformations (3.2) is admitted by

equations (3.15).

In order to find an infinitesimal generator of a Lie group admitted by dif-

ferential equations (3.15) one can use the following theorem.

Theorem 2. A system of equations (3.15) is not changed with respect to the Lie

group of transformations (3.2) with the infinitesimal generator

X = ξi∂xi
+ ηj∂uj
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if and only if

X(p)F k |M=0 = 0, (k = 1, ..., s). (3.16)

Equations (3.16) are called determining equations.

The determining equations (3.16) can be computed. These equations are

linear homogeneous differential for the unknown coefficients ξi(x, u), ηj(x, u).

Since the coefficients of a generator X do not depend on the derivatives pkα the

determining equations can be split with respect to the parametric derivatives. The

split system of equations is an overdetermined system. The general solution of the

determining equations generates a principal Lie algebra of the system (3.15). The

set of transformations, which is finitely generated by one-parameter Lie groups

corresponding to the generators X is called the principal Lie group admitted by

the system (3.15). Later this approach will be applied for stochastic differential

equations for obtaining their determining equations.

Definition 4. A function J(x, u) is called an invariant of a Lie group if

J(x̄, ū) = J(x, u).

Theorem 3. A function J(x, u) is an invariant of the Lie group with the generator

X if and only if,

XJ(x, u) = 0. (3.17)

Definition 5. A vector function J⃗(x, u) defines a relative invariant if the manifold

defined by the equation J⃗(x, u) = 0 is an invariant manifold.

Using theorem 2, one obtains the following theorem.

Theorem 4. The functions Jk(x, u) are relative invariant of Lie group with the

generator X if and only if,

XJk |J⃗=0 = 0,
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where Jk denotes the components of J⃗ .

LetH be a Lie group of transformations, admitted by a system of differential

equations (3.15).

Definition 6. A solution u = φ(x) of the system (3.15) is called an H-invariant

solution if the manifold u = φ(x) is an invariant manifold with respect to any

transformation of the group H.

Invariant solutions are constructed as follows. First, one finds all the in-

dependent invariants Jk = Jk(x, u), (k = 1, ...,m + σ). Here σ = n − r∗ is the

number of independent variables, which is called the rank of the invariant solution.

The rank of the Jacobi matrix
∂(J1, ..., Jm+σ)

∂(u1, ..., um)
has to be equal to m. Without loss

of generality one can choose the first invariants J1, ..., Jm such that the rank of

the Jacobi matrix
∂(J1, ..., Jm)

∂(u1, ..., um)
is equal to m. At the next step one supposes

that the first m invariants Jk, (k = 1, ...m) depend on the remaining invariants

Jk, (k = m+ 1, ...m+ σ),

Jk = φk(Jm+1, ..., Jm+σ), (k = 1, ...m) (3.18)

Equations (3.18) should be such that they can be solved with respect to all de-

pendent variables ui, (i = 1, ...,m). After substituting the representation of the

functions ui into the initial system of partial differential equations, one obtains the

system of equations for the unknown functions φk, (k = 1, ...,m). This system

involves a smaller number of independent variables.



CHAPTER IV

APPLICATION OF GROUP ANALYSIS TO

THE DETERMINISTIC GAS AND HYDRO

DYNAMICS EQUATIONS

This chapter deals with the deterministic gas and hydrodynamics equations.

Hydrodynamics equations were the first object of application of group analysis

in Ovsiannikov (1958). Recently the PODMODELI (SUBMODELS) program in

Ovsiannikov (1994) aimed for an exhaustive use of the group analysis method

for studying solutions of the gas dynamics equations. Results of this study are

summarized in Ovsiannikov (1999). Group analysis was first applied to the Navier-

Stokes equations in Pukhnachov (1960). A review of exact solutions of the Navier-

Stokes equations can be found in Andreev, Kaptsov, Pukhnachov and Rodionov

(1998), and in Pukhnachov (2006).

4.1 One-Dimensional Gas Dynamics Equations

The one-dimensional gas dynamics equations have the form

ρt + uρx + ρux = 0,

ρ(ut + uux) + px = 0,

pt + upx + A(p, ρ)ux = 0,

(4.1)

where ρ is the density, p is the pressure, and u is the velocity of the gas in the

direction x. The function A(p, ρ) is related with the state equation of the gas. For

exanple, for a polytropic gas A = γp, where γ is constant.
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4.1.1 Admitted Lie Group

For arbitrary A(p, ρ), the symmetry Lie algebra is four-dimensional and

thus denoted L4, and is spanned by the generators (Ovsiannikov(1962))

X1 =
∂

∂t
, X2 =

∂

∂x
,

X3 = t
∂

∂t
+ x

∂

∂x
, X4 = t

∂

∂x
+

∂

∂u
.

For a polytropic gas A = γp this algebra extends to a six-dimensional Lie algebra

L6 by the additional generators

X5 = t
∂

∂t
− u

∂

∂u
+ 2ρ

∂

∂ρ
, X6 = p

∂

∂p
+ ρ

∂

∂ρ
.

If γ = 3 which corresponds to mono-atomic gas, then there is one more extension

to the Lie algebra L7 by the generator

X7 = t2
∂

∂t
+ tx

∂

∂x
+ (x− tu)

∂

∂u
− 3tp

∂

∂p
− tρ

∂

∂ρ
.

In this thesis we compare our results with the class of solutions which are called

self-similar solutions. The class of self-similar solutions is used for the explanation

of many physical phenomena in continuum mechanics (Sedov (1993)).

4.1.2 Invariant Solutions

A self-similar solution is an invariant solution of an admitted Lie group,

which is related with scaling of the variables. In this section, representations of self-

similar solutions are shown. Later, similar representations of invariant solutions of

the stochastic gas dynamics equations are shown.

1. Invariants of the subalgebra spanned by the operator

X = (2 + β)X6 −X5 = −t ∂
∂t

+ u
∂

∂u
+ (2 + β)p

∂

∂p
+ β

∂

∂ρ

are

ut, pt(β+2), ρtβ, x.
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The representation of the corresponding invariant solution has the form

u = t−1ϕ1(x), p = t−(β+2)ϕ2(x), ρ = t−βϕ3(x).

The reduced system of equations is obtained by substituting the representation of

the invariant solution into the original system of the gas dynamics equations

ϕ3(ϕ1
x − β) + ϕ3

xϕ
1 = 0,

ϕ1ϕ2
x + ϕ2(γϕ1

x − (β + 2)) = 0,

ϕ1 −
(
ϕ1ϕ1

x +
ϕ2
x

ϕ3

)
= 0.

2. Invariants of the subalgebra spanned by the operator

X = (2(α̃ + 1) + β)X6 + α̃X3 − (1 + α̃)X5

= −t ∂
∂t

+ α̃x
∂

∂x
+ (2(α̃+ 1) + β)p

∂

∂p
+ βρ

∂

∂ρ
− (1 + α̃)u

∂

∂u

are

ut, pxt(β+2), ρtβ, xαt,

where α̃ ̸= 0 and α = 1/α̃.

The representation of the corresponding invariant solution has the form

u = xt−1ϕ1(xαt), p = x−2t(−β−2)ϕ2(xαt), ρ = t−βϕ3(xαt).

The reduced system of equations is obtained by substituting the representation of

the invariant solution into the original system of the gas dynamics equations

αϕ1
zϕ

3z + ϕ3
zz(αϕ

1 + 1) + ϕ3(ϕ1 − β) = 0,

αϕ1
zϕ

2γz + ϕ2
zz(αϕ

1 + 1) + ϕ2(−β + ϕ1γ + 2ϕ1 − 2) = 0,

ϕ1
z +

(
αz2
(
ϕ1ϕ1

z +
ϕ2
z

ϕ3

)
− (ϕ1)2 + 2

ϕ2

ϕ3

)
= 0.

3. Invariants of the subalgebra spanned by the operator

X = X3 −X5 + βX6 = x
∂

∂x
+ u

∂

∂u
+ βp

∂

∂p
+ (β − 2)ρ

∂

∂ρ
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are

ux−1, px−β, ρx(2−β), t.

The representation of the corresponding invariant solution has the form

u = xϕ1(t), p = xβϕ2(t), ρ = x(β−2)ϕ3(t).

The reduced system of equations is

ϕ3
t + (β − 1)ϕ1ϕ3 = 0,

ϕ2
t + (β + 3)ϕ1ϕ2 = 0,

ϕ1
t + (ϕ1)2 + βϕ2/ϕ3 = 0.

4.2 The Two-Dimensional Navier-Stokes Equations

The two-dimensional Navier-Stokes equations have the form

ρ(ut + uux + vuy) = −px + µ(uxx + uyy),

ρ(vt + uvx + vvy) = −py + µ(vxx + vyy),

ux + vy = 0,

where t is time, ρ is the density, p is the pressure, µ is the coefficient of viscosity,

and u, v are the velocities in the direction x and y respectively.

It is useful to write the Navier-Stokes equations in a dimensionless form.

Let ū, p̄, x̄, ȳ, t̄ be the dimensionless variables, which are related by the formulae

u = V ū, p = Qp̄, x = Lx̄, y = Lȳ, t = T t̄,

where V,Q, L and T are velocity, pressure, length and time units, respectively.

After dropping the symbol ·̄, and choosing appropriate units L, V, T,Q, one obtains
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the equations

ut + uux + vuy = −px + uxx + uyy,

vt + uvx + vvy = −py + vxx + vyy,

ux + vy = 0.

(4.2)

In the cylindrical coordinate system

r =
√
x2 + y2, θ = arctan

x

y
,

U = u cos θ + v sin θ, V = v cos θ − u sin θ

these equations have the form

Ut + UUr +
V

r
Uθ −

V 2

r
= −pr + (Urr +

1

r
Ur −

U

r2
+

1

r2
Uθθ −

2

r2
Vθ),

Vt + UVr +
V

r
Vθ +

UV

r
= −1

r
pθ + (Vrr +

1

r
Vr −

V

r2
+

1

r2
Vθθ +

2

r2
Uθ),

Ur +
U

r
+

1

r
Vθ = 0.

4.2.1 Admitted Lie Group

The symmetry Lie algebra of (4.2) is infinite dimensional and is generated by

the generators (Pukhnachev (1960) in the two-dimensional case, Buchnev (1971))

X1 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
− v

∂

∂v
− 2p

∂

∂p
,

X2 = −y ∂
∂x

+ x
∂

∂y
− v

∂

∂u
− u

∂

∂v
, X3 =

∂

∂t
,

X4 = ψ1(t)
∂

∂x
+ ψ′

1(t)
∂

∂u
− xψ′′

1(t)
∂

∂p
, X5 =

∂

∂x
,

X6 = ψ2(t)
∂

∂y
+ ψ′

2(t)
∂

∂v
− yψ′′

2(t)
∂

∂p
, X7 =

∂

∂t
, X8 = φ(t)

∂

∂p
,

where ψ1(t), ψ2(t) and φ(t) are arbitrary functions, and ψ′
i(t), ψ

′′
i (t) are the first

and the second-order derivatives of ψi(t).

4.2.2 Invariant Solutions

The group classification of the Navier-Stokes equations in the two-

dimensional case has been done in (Pukhnachev (1960)). Many invariant
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solutions of the Navier-Stokes equations are collected in the Handbook of Lie

Group Analysis of Differential Equations Vol.2 (Ibragimov (1995)). We use the

following solutions.

1. Invariants of the subalgebra spanned by the operators X1, and X3 are

Ur, V r, pr2, θ.

The representation of the corresponding invariant solution has the form

U =
ϕ1(θ)

r
, V =

ϕ2(θ)

r
, p =

ϕ3(θ)

r2
.

The reduced system of equations is

ϕ1
θθ − ϕ2ϕ1

θ + (ϕ1)2 + (ϕ2)2 + 2ϕ3 = 0,

2ϕ1
θ − ϕ3

θ = 0, ϕ2
θ = 0.

2. Invariants under the subalgebra spanned by the generators X1, and X2

are

Ur, V r, pr2, tr−2.

The representation of the corresponding invariant solution has the form

U =
ϕ1(tr−2)

r
, V =

ϕ2(tr−2)

r
, p =

ϕ3(tr−2)

r2
.

The reduced system of equations is

2zϕ3
z + (ϕ1)2 + (ϕ2)2 + 2ϕ3 = 0,

2z(2zϕ2
zz + (ϕ1 + 4)ϕ2

z)− ϕ2
z = 0, ϕ1

z = 0.



CHAPTER V

GROUP ANALYSIS APPLIED TO

STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS

In this chapter, the transformation and group analysis method is discussed

as it applies to stochastic partial differential equations. In Melnick (2003), a cri-

terion of invariance of a scalar stochastic partial differential equation with respect

to a one-parameter group of transformations was given. We will generalize this

to systems of equations. A general of the group analysis method can be found

in textbooks (cf. Ovsiannikov (1978), Ibragimov (1899), Handbook of Lie Group

Analysis of Differential Equations (1994), (1995), (1996)).

5.1 Transformations of Stochastic Partial Differential

Equations

On a complete probability space (Ω,F , P ) consider the stochastic Cauchy

problem

v(r, y) = v(r0, y) +

∫ r

r0

A(τ, y) dτ +

∫ r

r0

B(τ, y) dw(τ) (5.1)

where

A(r, y) = A(r, y, v(r, y), vyk(r, y), vykyl(r, y))

is an n-random vector,

B(r, y) = B(r, y, v(r, y))
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an n × m random matrix, w(r) a vector of m independent standard Wiener

processes, v(r0, y) = v0(y) a vector of random functions, r ∈ [r0, T ] and y =

(y1, . . . , yN)
T ∈ RN . In component form,

vi(r, y) = vi(r0, y) +

∫ r

r0

Ai(τ, y) dτ +
m∑
j=1

∫ r

r0

Bij(τ, y) dwj(τ), (i = 1, n) (5.2)

where by convention, superscripts denote the vector components of a dependent

variable or the entries of a matrix, numeric subscripts the vector components of

an independent variable, and alphabetic subscripts the partial derivatives with

respect to the given variables.

Consider a change of the dependent and independent variables

r = α(t), y = h(t, x), v = g(t, x, u), (5.3)

where the functions α(t), h(t, x) and g(t, x, u) are sufficiently smooth and locally

invertible with respect to r, y and v. This means that there exist functions t = α̂(r),

x = ĥ(r, y) and u = ĝ(r, y, v) such that

r = α(α̂(r))

y = h(α̂(r), ĥ(r, y)),

v = g(α̂(r), ĥ(r, y), ĝ(r, y, v)),

and

t = α̂(α(t))

x = ĥ(α(t), h(t, x)),

u = ĝ(α(t), h(t, x)g(t, x, u)).

To be precise, we are in fact considering local groups of transformations depending

on some parameter a which, as it is not required at this stage, is omitted.

The change of variables (5.3) will map a function v(r, y) to a new function

u(t, x) = ĝ
(
α(t), h(t, x), v(α(t), h(t, x)

)
. (5.4)
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Assuming that v(r, y) is a solution of the Cauchy problem (5.1), let us derive

the stochastic differential equation for the random function u(t, x). This will be

achieved in two steps: First a stochastic differential equation for the function

v
(
α(t), h(t, x)

)
will be derived, followed by an application of Itô’s formula.

Begin by changing the time variable, using r = α(t). Introducing the nota-

tion ṽ(t, y) = v(α(t), y) and ṽ(t0, y) = v(α(t0), y), then (5.2) becomes

ṽi(t, y) = ṽi(t0, y) +

∫ t

t0

Āi(τ, y) dτ +
m∑
j=1

∫ t

t0

B̄ij(τ, y) dW j(τ) (5.5)

where

Āi(t, y) = Ai(α(t), y, ṽ(t, y), ṽyk(t, y), ṽykyl(t, y)) · α′(t)

B̄ij(t, y) = Bij(α(t), y, ṽ(t, y)) ·
√
α′(t).

Here each W j(t) is a new Wiener process such that (see Melnick, 2003)

wj(α(t2))− wj(α(t1)) =

∫ t2

t1

√
α′(s) dW j(s).

Differentiating equation (5.5) with respect to each component yk of the independent

variable y, one obtains

ṽiyk(t, y) = ṽiyk(t0, y) +

∫ t

t0

Āi
yk
(τ, y) dτ +

m∑
j=1

∫ t

t0

B̄ij
yk
(τ, y) dW j(τ) (k = 1, N).

(5.6)

Here we have used the property

∂

∂yk

(∫ t

t0

Āi(τ, y) dτ

)
=

∫ t

t0

Āi
yk
(τ, y) dτ (k = 1, N),

and have assumed the property

∂

∂yk

(∫ t

t0

B̄ij(τ, y) dW j(τ)

)
=

∫ t

t0

B̄ij
yk
(τ, y) dW j(τ) (k = 1, N).
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Substituting y = h(t, x) into equations (5.6), multiplying each by hkt (t, x), and

integrating with respect to t, they become∫ t

t0

hkt (τ, x)ṽ
i
yk
(τ, h(τ, x)) dτ =

∫ t

t0

hkt (τ, x)ṽ
i
yk
(t0, h(τ, x)) dτ

+

∫ t

t0

hkt (τ, x)

(∫ τ

t0

Āi
yk
(s, h(τ, x))ds

)
dτ

+
m∑
j=1

∫ t

t0

hkt (τ, x)

(∫ τ

t0

B̄ij
yk
(s, h(τ, x)) dW j(s)

)
dτ (k = 1, N).

(5.7)

Summing the first terms on the right-hand side of equations (5.7) over k, we obtain

l∑
k=1

∫ t

t0

hkt (τ, x)ṽ
i
yk
(t0, h(τ, x)) dτ =

∫ t

t0

dṽi(t0, h(τ, x))

= ṽi(t0, h(t, x))− ṽi(t0, h(t0, x)).

Summing the second terms on the right-hand side of equations (5.7) over k and

using Fubini’s theorem gives

l∑
k=1

∫ t

t0

hkt (τ, x)

(∫ τ

t0

Āi
yk
(s, h(τ, x))ds

)
dτ

=
l∑

k=1

∫ t

t0

(∫ t

s

hkt (τ, x)Ā
i
yk
(s, h(τ, x))dτ

)
ds

=

∫ t

t0

(∫ t

s

dτ Ā
i(s, h(τ, x))

)
ds

=

∫ t

t0

(
Āi(s, h(t, x))− Āi(s, h(s, x))

)
ds.

Summing the third terms on the right-hand side of equations (5.7) over k and using

Fubini’s theorem for the Itô integral, (Medvedyev (2007), p. 328, Corollary 5.28)
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we obtain

l∑
k=1

∫ t

t0

hkt (τ, x)

(∫ τ

t0

B̄ij
yk
(s, h(τ, x)) dW j(s)

)
dτ

=
l∑

k=1

∫ t

t0

(∫ t

s

hkt (τ, x)B̄
ij
yk
(s, h(τ, x)) dτ

)
dW j(s)

=

∫ t

t0

(∫ t

s

dτ B̄
ij(s, h(τ, x))

)
dW j(s)

=

∫ t

t0

(
B̄ij(s, h(t, x))− B̄ij(s, h(s, x))

)
dW j(s).

Thus, from (5.7) we obtain

l∑
k=1

∫ t

t0

hkt (τ, x)ṽ
i
yk
(τ, h(τ, x)) dτ = ṽi(t0, h(t, x))− ṽi(t0, h(t0, x))

+

(∫ t

t0

Āi(s, h(t, x)) ds+
m∑
j=1

∫ t

t0

B̄ij(s, h(t, x)) dW j(s)

)

−

(∫ t

t0

Āi(s, h(s, x)) ds+
m∑
j=1

∫ t

t0

B̄ij(s, h(s, x)) dW j(s)

)
.

Hence, the substitution of y = h(t, x) into equation (5.5) yields

ṽi(t, h(t, x)) = ṽi(t0, h(t0, x)) +

∫ t

t0

Āi(τ, h(τ, x)) dτ

+
l∑

k=1

∫ t

t0

hkt (τ, x)ṽ
i
yk
(τ, h(τ, x)) dτ +

m∑
j=1

∫ t

t0

B̄ij(τ, h(τ, x)) dW j(τ)

(5.8)

and shows that ṽi is an Itô process. This equation can be rewritten in differential

form as

dv̂i = Âi dt+
m∑
j=1

B̂ij dW j(t),
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where

v̂i(t, x) = ṽi(t, h(t, x)) = vi(α(t), h(t, x)),

Âi(t, x) = Āi(t, h(t, x)) +
l∑

k=1

ṽiyk(t, h(t, x))h
k
t (t, x)

= Ai(α(t), h(t, x)) · α′(t) +
l∑

k=1

viyk(α(t), h(t, x))h
k
t (t, x),

B̂ij(t, x) = B̄ij(t, h(t, x)) = Bij(α(t), h(t, x)) ·
√
α′(t).

In this notation, the components of (5.4) my be written as

ui(t, x) = g̃i
(
t, x, v̂(t, x)

)
where we have set

g̃
(
t, x, v̂(t, x)

)
= g̃
(
t, x, ṽ(t, h(t, x))

)
= ĝ
(
α(t), h(t, x), v(α(t), h(t, x))

)
.

Applying Itô’s formula one obtains

dui =

[
g̃it +

n∑
j=1

Âj g̃iv̂j +
1

2

n∑
k=1

n∑
σ=1

( m∑
j=1

B̂kjB̂σj
)
g̃iv̂k v̂σ

]
dt+

n∑
k=1

g̃iv̂k

m∑
j=1

B̂kj dW j(t)

or equivalently,

dui =
[
α′ĝir +

l∑
k=1

hkt ĝ
i
yk
+

n∑
j=1

(
α′Aj +

l∑
k=1

vjykh
k
t

)
ĝivj

+
α′

2

n∑
k=1

n∑
σ=1

(
m∑
j=1

BkjBσj

)
ĝivkvσ

]
dt+

√
α′

n∑
k=1

ĝivk

m∑
j=1

Bkj dW j(t).

(5.9)

One needs to express ĝr, ĝyk , ĝvk , ĝvkvσ , A and B in equation (5.9) in terms of the

functions α, h, g, u and their derivatives.

For this purpose, consider the identity

ui = ĝi(α(t), h(t, x), g(t, x, u)) (i = 1, n). (5.10)

Differentiating equations (5.10) with respect to each uj



33

∂

∂u1
: ĝiv1g

1
u1 + ĝiv2g

2
u1 + ĝiv3g

3
u1 + ...+ ĝivng

n
u1 = 0

∂

∂u2
: ĝiv1g

1
u2 + ĝiv2g

2
u2 + ĝiv3g

3
u2 + ...+ ĝivng

n
u2 = 0

...

∂

∂ui
: ĝiv1g

1
ui + ĝiv2g

2
ui + ĝiv3g

3
ui + ...+ ĝivng

n
ui = 1

...

∂

∂un
: ĝiv1g

1
un + ĝiv2g

2
un + ĝiv3g

3
un + ...+ ĝivng

n
un = 0

one obtains

ĝivj = det (M)−1 det (M i,j) (j = 1, n), (5.11)

where M and M ij have different j-th columns,

M =



g1u1 . . . gnu1

. . . . .

. . . . .

g1un . . . gnun


, M i,j =



g1u1 . 0 . gnu1

. . 0 . .

. . 1i,j . .

g1un . 0 . gnun


.

On the other hand, differentiating equations (5.10) with respect to t and xk one

has
∂

∂t
: ĝirα

′ + ĝiy1h
1
t + ĝiy2h

2
t + ...+ ĝiyNh

N
t = −

n∑
j=1

ĝivjg
j
t

∂

∂x1
: 0 + ĝiy1h

1
x1

+ ĝiy2h
2
x1

+ ...+ ĝiyNh
N
x1

= −
n∑

j=1

ĝivjg
j
x1

...

∂

∂xN
: 0 + ĝiy1h

1
xN

+ ĝiy2h
2
xN

+ ...+ ĝiyNh
N
xN

= −
n∑

j=1

ĝivjg
j
xN

ĝir = det (∆)−1 det (∆0),

ĝiyk = det (∆)−1 det (∆k+1) (k = 1, N),
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where the (k + 1)-th columns of ∆ and ∆k+1 differ,

∆ =



α′ h1t . . hNt

0 h1x1
. . hNx1

. . . . .

. . . . .

0 h1xN . . hNxN


, ∆k+1 =



α′ h1t . λ0 . hNt

0 h1x1
. λ1 . hNx1

. . . . . .

. . . . . .

0 h1xN
. λN . hNxN


and where

λ0 = −
n∑

j=1

ĝivjg
j
t , λk = −

n∑
j=1

ĝivjg
j
xk
.

Differentiating the j-th equation in (5.11) with respect to uj

∂

∂u1
: ĝivjv1g

1
u1 + ĝivjv2g

2
u1 + ĝivjv3g

3
u1 + ...+ ĝivjvng

n
u1 =

∂

∂u1
ĝivj

∂

∂u2
: ĝivjv1g

1
u2 + ĝivjv2g

2
u2 + ĝivjv3g

3
u2 + ...+ ĝivjvng

n
u2 =

∂

∂u2
ĝivj

...

∂

∂un
: ĝivjv1g

1
un + ĝivjv2g

2
un + ĝivjv3g

3
un + ...+ ĝivjvng

n
un =

∂

∂un
ĝivj

one obtains

ĝivjvk = det (M)−1 det (M̄ i,k), (i, k = 1, n)

where

M̄ i,k =



g1u1 . Λi,1 . gnu1

. . . . .

. . . . .

g1un . Λi,n . gnun


,

and the entries in the k-th column are given by

Λi,σ =
∂

∂uσ
ĝivj .
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The derivatives viyk(α(t), h(t, x)) are obtained from the relations

vi(α(t), h(t, x)) = gi(t, x, u(t, x)). (5.12)

Differentiating equation (5.12) with respect to t and each xk, respectively,

∂

∂t
: virα

′ + viy1h
1
t + viy2h

2
t + ...+ viyNh

N
t = git +

n∑
j=1

giuju
j
t

∂

∂x1
: 0 + viy1h

1
x1

+ viy2h
2
x1

+ ...+ viyNh
N
x1

= gix1
+

n∑
j=1

giujujx1

...

∂

∂xN
: 0 + viy1h

1
xN

+ viy2h
2
xN

+ ...+ viyNh
N
xN

= gixN
+

n∑
j=1

giujujxN

one obtains

viyk = det (∆)−1 det (Θi,k), (5.13)

where

Θi,k =



α′ h1t . θ0 . hNt

0 h1x1
. θ1 . hNx1

. . . . . .

. . . . .

0 h1xN
. θN . hNxN


,

and the entries in the (k + 1)-th column are

θ0 = git +
n∑

j=1

giuju
j
t , θσ = gixσ

+
n∑

j=1

giujujxσ
.

For simplicity, equations (5.9) are now rewritten as

dui = F i(t, x, u, uxk
, uxkxl

) dt+
m∑
j=1

Gij(t, x, u) dW j(t) (i = 1, n).
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5.2 Determining Equations

According to the definition, invariance of equation (5.1) with respect to a

given group of transformations is equivalent to the equalities

F i(t, x, u, uxk
, uxkxl

, a) = Ai(t, x, u, uxk
, uxkxl

)

Gij(t, x, u, a) = Bij(t, x, u)

for all t, x, u, uxk
, uxkxl

, a, and i = 1, n, j = 1,m, k, l = 1, N .

Differentiating F and G with respect to the parameter a one has

∂F i

∂a

∣∣∣
a=0

= X̃(Ai − uit)

∂Gij

∂a

∣∣∣
a=0

= X̃Bij +
Bij

2
ψt −

n∑
k=1

Bkjζu
i

uk

where

X = ψ(t)∂t + ξxk(t, x)∂xk
+ ζu

i

(t, x, u)∂ui ,

X̃ is the prolonged generator of X and

ζu
i
t =

n∑
j=1

(
Ajψt + Ajζ iuj +

1

2

n∑
k=1

(
m∑

σ=1

BjσBkσ

)
ζ iujuk

)

is substituted into X̃uit. We can find determining equations of the stochastic partial

differential equations by

X̃(Ai − uit) = 0

X̃Bij +
Bij

2
ψt −

n∑
k=1

Bkjζu
i

uk = 0
(5.14)

5.3 Example : The Kardar-Parisi-Zhang Equation

The Kardar-Parisi-Zhang (KPZ) equation is

du =
(
uxx +

1

2
(ux)

2
)
dt+B(t, x, u) dW (t). (5.15)
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Infinitesimal generators of the admitted Lie group are sought in the form

X = ψ(t)∂t + ξ(t, x)∂x + ζu(t, x, u, p, ρ)∂u

with prolongation

X̃ = X + ζut∂ut + ζux∂ux + ζuxx∂uxx .

Applying the operator X̃ to equations (5.15), one obtains the determining equa-

tions

X̃
[
uxx +

1

2
(ux)

2
]
= 0,

X̃B +
B

2
ψt −Bζuu = 0.

Solving this system of equations, one obtains

ψ = c4 + c5t, ξ = c3 + c2t+
1

2
c5x, ζu = c1 − c2x+ φ(t, x)e−u/2,

where

8(φxx(t, x)− φt(t, x)) = B2(t, x, u)φ(t, x).

The generator corresponding to these coefficients is

X = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 +X∞

with

X1 = ∂u, X2 = t∂x − x∂u, X3 = ∂x, X4 = ∂t, X5 = 2t∂t + x∂x,

X∞ = e−u/2φ(t, x)∂u.

We first construct the solutions which are invariant under the operator X3.

The Lie group of transformations corresponding to this basis generator is

X3 : t̄ = t, x̄ = x+ a, ū = u

X3J = Jx = 0.
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Invariants of this subalgebra are

u, t.

The representation of the corresponding invariant solution has the form

u = ϕ(t). (5.16)

To find the function B, as

X3B +
B

2
ψt −Bζuu = Bx = 0

then B = µ(t, u). Substituting this function B and (5.16) into the original equation

(5.15), one arrives at a simple stochastic ordinary differential equation.

ϕ(t)− ϕ(t0) =

∫ t

t0

µ(t, ϕ)dW (τ)

for the solutions which are invariant under X3.

Next we construct the solutions which are invariant under the operator

X = αX1 + X4. The Lie group of transformations corresponding to this basis

generator is

X : t̄ = t+ a, x̄ = x, ū = u+ αa

XJ = αJu + Jt = 0.

Invariants of this subalgebra are

u− αt, x.

The representation of the corresponding invariant solution has the form

u = ϕ(x) + αt,

To find the function B, as

XB +
B

2
ψt −Bζuu = αBu +Bt = 0
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then B = µ(x, u− αt). Substituting into (5.15) gives

ϕxx +
(ϕx)

2

2
− α =

−1

t− t0

∫ t

t0

µ(x, ϕ)dW (τ)

that is, the deterministic second order ordinary differential equation

ϕxx +
(ϕx)

2

2
− α =

−µ(x, ϕ)
t− t0

(W (t)−W (t0)).

Since the left-hand side is independent of t, the µ(x, ϕ) = 0 and ϕxx+
(ϕx)

2

2
= α.



CHAPTER VI

GROUP ANALYSIS OF STOCHASTIC FLUID

DYNAMICS EQUATIONS

We now apply the above techniques to the group analysis of some stochastic

fluid dynamics equations. Most of the substantial computations were performed

with the help of the REDUCE symbolic software.

6.1 One-Dimensional Gas Dynamics Stochastic Equations

Consider the gas dynamic partial differential equations with stochastic part,

ρt + uρx + ρux = 0,

pt + upx + γpux = 0,

du = −(uux +
1

ρ
px) dt+B(t, x, u, p, ρ) dW (t),

(6.1)

where γ is constant. Infinitesimal generators are sought in the form

X = ψ(t)∂t + ξ(t, x)∂x + ζu(t, x, u, p, ρ)∂u + ζp(t, x, u, p, ρ)∂p + ζρ(t, x, u, p, ρ)∂ρ.

The prolonged generator is

X̃ = X + ζut∂ut + ζux∂ux + ζpt∂pt + ζpx∂px + ζρt∂ρt + ζρx∂ρx ,

where

ζut = Aζuu +
1

2
(B)2ζuuu,

and ζux , ζpt , ζρt are the usual prolonged forms. Applying the operator X̃ to

equations (6.1) and substituting ρt = −(uρx + ρux), pt = −(upx + γpux), one
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obtains the determining equations of the stochastic gas dynamics equations.

X̃(ρt + uρx + ρux) = 0,

X̃(pt + upx + γpux) = 0,

X̃(ut + uux +
1

ρ
px) = 0,

X̃B +
B

2
ψt −Bζuu = 0.

(6.2)

We distinguish two cases.

In case γ = 3 one obtains

ψ = c7t
2 + (c5 + c3)t+ c1,

ξ = c7tx+ c4t+ c3x+ c2,

ζu = −c7tu− c5u+ c7x+ c4,

ζp = p(c6 − 3c7t),

ζρ = ρ(c6 + 2c5 − c7t).

The generator corresponding to these coefficients is

X = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + c6X6 + c7X7

with

X1 = ∂t, X2 = ∂x, X3 = t∂t + x∂x, X4 = t∂x + ∂u, X5 = t∂t − u∂u + 2ρ∂ρ,

X6 = p∂p + ρ∂ρ, X7 = t2∂t + tx∂x + (x− tu)∂u − 3pt∂p − ρt∂ρ.

Let us consider the class of solutions invariant under the operator X = X3 −X5 +

βX6 (Ibragimov (1994), p.258). The Lie group of transformations corresponding

to this basis generator is

X : t̄ = t, x̄ = xea, ū = uea, p̄ = peβa, ρ̄ = ρe(β−2)a

(X3 −X5 + βX6)J = xJx + uJu + βpJp + (β − 2)ρJρ = 0.
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Invariants of this subalgebra are

ux−1, px−β, ρx(2−β), t.

The representation of the corresponding invariant solution has the form

u = xϕ1(t), p = xβϕ2(t), ρ = x(β−2)ϕ3(t). (6.3)

To find the function B in the Itô part, as

(X3 −X5 + βX6)B −Bζuu = xBx + uBu + βpBp + (β − 2)ρBρ −B = 0

then B must be of the form

B = xµ
(
t, ux−1, px−β, ρx(2−β)

)
. (6.4)

Substituting (6.3) and (6.4) into (6.1), one arrives at the system of stochastic

differential equations

ϕ3
t + (β − 1)ϕ1ϕ3 = 0,

ϕ2
t + (β + 3)ϕ1ϕ2 = 0,

dϕ1(t) = −
(
(ϕ1)2 + βϕ2/ϕ3

)
dt+ µ(t, ϕ1, ϕ2, ϕ3) dW (t).

On the other hand,when γ ̸= 3 one obtains

ψ = (c5 + c3)t+ c1,

ξ = c4t+ c3x+ c2,

ζu = −c5u+ c4,

ζp = pc6,

ζρ = ρ(c6 + 2c5).

The generator corresponding to these coefficients is

X = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + c6X6
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with

X1 = ∂t, X2 = ∂x, X3 = t∂t + x∂x, X4 = t∂x + ∂u,

X5 = t∂t − u∂u + 2ρ∂ρ, X6 = p∂p + ρ∂ρ.

We consider the class of solutions invariant under the subalgebra spanned by X =

(2(α̃ + 1) + β)X6 + α̃X3 − (α̃ + 1)X5 and calculated by

XJ = −tJt + α̃xJx + (α̃ + 1)uJu + (2(α̃ + 1) + β)pJp + βρJρ = 0.

If α̃ = 0, then the Lie group of transformations corresponding to this basis gener-

ator is

X : t̄ = te−a, x̄ = x ū = uea, p̄ = pe(2+β)a, ρ̄ = ρeβa

XJ = −tJt + uJu + (2 + β)pJp + βρJρ = 0.

Invariants of this subalgebra are

ut, pt(β+2), ρtβ, x.

The representation of the corresponding invariant solution has the form

u = t−1ϕ1(x), p = t−(β+2)ϕ2(x), ρ = t−βϕ3(x). (6.5)

To find the necessary form of the function B in the Itô part, as

XB +
B

2
ψt −Bζuu = −tBt + uBu + (2 + β)pBp + βρBρ −

3

2
B = 0

then

B = t−
3
2µ(x, tu, pt(β+2), ptβ). (6.6)

Substituting (6.5) and (6.6) into (6.1), one arrives at the reduced system of stochas-
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tic partial differential equations

ϕ3(ϕ1
x − β) + ϕ3

xϕ
1 = 0

ϕ1ϕ2
x + ϕ2(γϕ1

x − (β + 2)) = 0(
ϕ1 −

(
ϕ1ϕ1

x +
ϕ2
x

ϕ3

))
= µ(x, ϕ1, ϕ2, ϕ3)

[ tt0
t0 − t

∫ t

t0

s−
3
2dW (s)

]
.

Since the left-hand side of the third equation is independent of t, then

µ(x, ϕ1, ϕ2, ϕ3) = 0, ϕ1ϕ1
x +

ϕ2
x

ϕ3
= ϕ1.

If α̃ ̸= 0, then let α̃ = 1
α
, and the Lie group of transformations corresponding

to the above basis generator is

X : t̄ = te−a, x̄ = xe
a
α , ū = ue(

1
α
+1)a, p̄ = pe(2(

1
α
+1)+β)a, ρ̄ = ρeβa

XJ = −tJt +
1

α
xJx + (

1

α
+ 1)uJu + (2(

1

α
+ 1) + β)pJp + βρJρ = 0,

Invariants of this subalgebra are

utx−1, ptβ+2, ρtβ, xαt.

The representation of the corresponding invariant solution has the form

u = xt−1ϕ1(xαt), p = x−2t(−β−2)ϕ2(xαt), ρ = t−βϕ3(xαt). (6.7)

To find the required form of the function B in the Itô part, as

XB +
B

2
ψt −Bζuu

= −tBt +
1

α
xBx + (

1

α
+ 1)uBu + (2(

1

α
+ 1) + β)pBp + βρBρ − (

1

α
+

3

2
)B = 0

then

B = xt−3/2µ(xαt, utx−1, ptβ+2, ρtβ). (6.8)
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Substituting (6.7) and (6.8) into (6.1), one arrives at the reduced system

αϕ1
zϕ

3z + ϕ3
zz(αϕ

1 + 1) + ϕ3(ϕ1 − β) = 0

αϕ1
zϕ

2γz + ϕ2
zz(αϕ

1 + 1) + ϕ2(−β + ϕ1γ + 2ϕ1 − 2) = 0

z−1ϕ1(z) = z−1
0 ϕ1(z0)−

∫ z

z0

s−2
(
αs
(
ϕ1ϕ1

z +
ϕ2
z

ϕ3

)
− (ϕ1)2 + 2

ϕ2

ϕ3

)
ds

+

∫ z

z0

s−3/2µ(s, ϕ1, ϕ2, ϕ3) dω(s),

where

v(z) =
z

xα
= t, z = xαt

ω(z) =

∫ t

0

1√
v′(τ)

dW (τ) =

∫ t

0

x
α
2 dW (τ) = xα/2W (z/xα)

is scaled Brownian motion W .

6.2 The Two-Dimensional Navier-Stokes Stochastic Differ-

ential Equations

We next discuss the two-dimensional Navier Stokes stochastic partial dif-

ferential equations,

du1 =
[
u1x1x1

+ u1x2x2
− (u1u1x1

+ u2u1x2
+ px1)

]
dt+B11dW1(t) +B12dW 2(t),

du2 =
[
u2x1x1

+ u2x2x2
− (u1u2x1

+ u2u2x2
+ px2)

]
dt+B21dW 1(t) +B22dW 2(t),

u1x1
+ u2x2

= 0.

(6.9)

where Bij = Bij(t, x, u, p), 1 ≤ i, j ≤ 2. The infinitesimal generator is

X = ψ(t)∂t + ξx1(t, x)∂x1 + ξx2(t, x)∂x2 + ζu
1

(t, x, u, p)∂u1

+ζu
2

(t, x, u, p)∂u2 + ζp(t, x, u, p)∂p
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and the prolonged generator is

X̃ = X + ζu
1
t∂u1

t
+ ζu

2
t∂u2

t
+ ζpt∂pt + ζu

1
x1∂u1

x1
+ ζu

2
x1∂u2

x1
+ ζpx1∂px1 + ζu

1
x2∂u1

x2

+ ζu
2
x2∂u2

x2
+ ζpx2∂px2 + ζu

1
tt∂u1

tt
+ ζu

1
tx1∂u1

tx1
+ ζu

1
tx2∂u1

tx2
+ ζu

1
tp∂u1

tp

+ ζu
1
x1x1∂u1

x1x1
+ ζu

1
x1x2∂u1

x1x2
+ ζu

1
x1p∂u1

x1p
+ ζu

1
x2x2∂u1

x2x2
+ ζu

1
x2p∂u1

x2p

+ ζu
1
pp∂u1

pp
+ ζu

2
tt∂u2

tt
+ ζu

2
tx1∂u2

tx1
+ ζu

2
tx2∂u2

tx2
+ ζu

2
tp∂u2

tp
+ ζu

2
x1x1∂u2

x1x1

+ ζu
2
x1x2∂u2

x1x2
+ ζu

2
x1p∂u2

x1p
+ ζu

2
x2x2∂u2

x2x2
+ ζu

2
x2p∂u2

x2p
+ ζu

2
pp∂u2

pp
.

where

ζu
1
t = A1ζ

u1

u1
+ A2ζ

u1

u2
+ 1

2
((B11)

2 + (B12)
2)ζu

1

u1u1
+ (B11B21 +B12B22)ζ

u1

u1u2

+1
2
((B21)

2 + (B22)
2)ζu

1

u2u2

ζu
2
t = A1ζ

u2

u1
+ A2ζ

u2

u2
+ 1

2
((B11)

2 + (B12)
2)ζu

2

u1u1
+ (B11B21 +B12B22)ζ

u2

u1u2

+1
2
((B21)

2 + (B22)
2)ζu

2

u2u2

and ζu
1
x1 , ζu

1
x2 , ζu

2
x1 , ζu

2
x2 , ζpt are the usual prolonged forms. Applying the

operator X̃ to equation (6.9) and substituting u2x2
= −u1x1

, u2x1x2
= −u1x1x1

, u2x2x2
=

−u1x1x2
, the determining equations of Navier Stokes stochastic differential equations

are

X̃
(
u1x1x1

+ u1x2x2
− (u1u1x1

+ u2u1x2
+ px1)

)
= 0,

X̃
(
u2x1x1

+ u2x2x2
− (u1u2x1

+ u2u2x2
+ px2)

)
= 0,

X̃
(
u1x1

+ u2x2

)
= 0,

X̃B11 +
B11

2
ψt −B11ζu

1

u1 −B21ζu
1

u2 = 0, X̃B12 +
B12

2
ψt −B12ζu

1

u1 −B22ζu
1

u2 = 0,

X̃B21 +
B21

2
ψt −B11ζu

2

u1 −B21ζu
2

u2 = 0, X̃B22 +
B22

2
ψt −B12ζu

2

u1 −B22ζu
2

u2 = 0.

One obtains

ψ = 2c1t+ c3, ξx1 = c1x1 − c2x2 + c4φ1(t), ξx2 = c1x2 + c2x1 + c5φ2(t),

ζu
1

= −c1u1 − c2u
2 + c4φ

′
1(t), ζu

2

= −c1u2 − c2u
1 + c5φ

′
2(t),

ζp = −2c1p− c4x1φ
1
tt(t)− c5x2φ

2
tt(t) + c6µ(t).



47

The generator corresponding to these coefficients is

X = c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + c6X6

with

X1 = 2t∂t + x1∂x1 + x2∂x2 − u1∂u1 − u2∂u2 − 2p∂p,

X2 = −x2∂x1 + x1∂x2 − u2∂u1 + u1∂u2 , X3 = ∂t,

X4 = φ1(t)∂x1 + φ′
1(t)∂u1 − x1φ

1
tt(t)∂p,

X5 = φ2(t)∂x2 + φ′
2(t)∂u2 − x2φ

2
tt(t)∂p, X6 = µ(t)∂p.

Let us continue with the form of the operators X4, X5, X6 as given in Pukha-

chov (1960) (see also Ibragimov (1995)), that is φ1(t) = φ2(t) = t and µ(t) = 1.

Along with the Cartesian coordinates x1, x2, u
1, u2, one uses here the cylindrical

coordinates

r =
√
(x1)2 + (x2)2, θ = arctan

x2
x1
,

U = u1 cos θ + u2 sin θ, V = u2 cos θ − u1 sin θ.

This change of coordinates transforms equations (6.9) to

dU =

[(
Urr +

1

r
Ur −

U

r2
+

1

r2
Uθθ −

2

r2
Vθ
)
−
(
UUr

V

r
Uθ −

V 2

r
+ pr

)]
dt

+ b11(t, r, θ, U, V, p) dW 1(t) + b12(t, r, θ, U, V, p) dW 2(t),

dV =

[(
Vrr +

1

r
Vr −

V

r2
+

1

r2
Vθθ +

2

r2
Uθ

)
−
(
UVr +

V

r
Vθ +

UV

r
+

1

r
pθ
)]
dt

+ b21(t, r, θ, U, V, p) dW 1(t) + b22(t, r, θ, U, V, p) dW 2(t),

Ur +
U

r
+

1

r
Vθ = 0.

(6.10)
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The operators with respect to (6.10) are

X1 = 2t∂t + r∂r − U∂U − V ∂V − 2p∂p, X2 = −∂θ, X3 = ∂t,

X4 = φ1(t) cos θ∂r + (φ′
1(t) cos θ −

φ1(t)

r
V sin θ)∂U

+(
φ1(t)

r
U sin θ − ϕ′

1(t) sin θ)∂V − φ1(t)

r
sin θ∂θ,

X5 = φ2(t) sin θ∂r + (φ′
2(t) sin θ +

φ2(t)

r
V cos θ)∂U

+(−φ2(t)

r
U cos θ + φ′

2(t) cos θ)∂V +
φ2(t)

r
cos θ∂θ,

X6 = µ(t)∂p.

Since

X = ψt∂t + ξθ∂θ + ξr∂r + ζU∂U + ζV ∂V + ζp∂p

then

ψt = 2c1t+ c3,

ξθ = −c3 − c4
φ1(t)

r
sin θ + c5

φ2(t)

r
cos θ,

ξr = c1r + c4φ1(t) cos θ + c5φ2(t) sin θ,

ζU = −c1U + c4(φ
′
1(t) cos θ −

φ1(t)

r
V sin θ) + c5(φ

′
2(t) sin θ +

φ2(t)

r
V cos θ),

ζV = −c1V + c4(
φ1(t)

r
U sin θ − φ′

1(t) sin θ) + c5(φ
′
2(t) cos θ +

φ2(t)

r
U cos θ),

ζp = −2c1p+ c6µ(t).

We first consider the class of solutions invariant under the subalgebra

spanned by the operators X1 and X3. The Lie group of transformations corre-

sponding to these basis generators is

X : t̄ = t, r̄ = rea, θ̄ = θ, Ū = Ue−a, V̄ = V e−a, p̄ = pe−2a

X3J = Jt = 0,
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so that J = J(r, θ, U, V, p), and

X1J = rJr − UJU − V JV − 2pJp = 0.

Invariants of this subalgebra are

Ur, V r, pr2, θ.

The representation of the corresponding invariant solution has the form

U =
ϕ1(θ)

r
, V =

ϕ2(θ)

r
, p =

ϕ3(θ)

r2
. (6.11)

To find the necessary form of the functions bij in the Itô part, since

X3b
ij = bijt = 0

then bij = bij(r, θ, U, V, p), and

X1b
ij + 2bij = rbijr − UbijU − V bijV − 2pbijp + 2bij = 0

so that

bij =
ψij(θ, Ur, V r, pr2)

r2
. (6.12)

Substituting (6.11) and(6.12) into (6.10), one arrives at

ϕ1

r
=
ϕ1

r
+

∫ z

z0

1

r

(
ϕ1
θθ − ϕ2ϕ1

θ − 2ϕ2
θ + (ϕ1)2 + (ϕ2)2 + 2ϕ3

)
ds

+

∫ z

z0

ψ11

r
dω1(s) +

∫ z

z0

ψ12

r
dω2(s)

ϕ2

r
=
ϕ2

r
+

∫ z

z0

1

r

(
ϕ2
θθ − ϕ2ϕ2

θ + 2ϕ1
θ − ϕ3

θ

)
ds

+

∫ z

z0

ψ21

r
dω1(s) +

∫ z

z0

ψ22

r
dω2(s)

ϕ2
θ = 0
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that is,

−
(
ϕ1
θθ − ϕ2ϕ1

θ + (ϕ1)2 + (ϕ2)2 + 2ϕ3
)
(z − z0)

= ψ11
(
ω1(z)− ω1(z0)

)
+ ψ12

(
ω2(z)− ω2(z0)

)
(
−2ϕ1

θ + ϕ3
θ

)
(z − z0) = ψ21

(
ω1(z)− ω1(z0)

)
+ ψ22

(
ω2(z)− ω2(z0)

)
ϕ2
θ = 0

where

v(z) = zr2 = t, z =
t

r2

ω(z) =

∫ t

0

1√
v′
dW (τ) =

∫ t

0

1

r
dW (τ) =

1

r
W (r2z)

(6.13)

is scaled Brownian motion W . Then

ϕ1
θθ − ϕ2ϕ1

θ + (ϕ1)2 + (ϕ2)2 + 2ϕ3 = 0, 2ϕ1
θ − ϕ3

θ = 0.

It is possible to show that in the case of independent Brownian motion W 1 and

W 2 the equation

h1dW 1(z) + h2dW 2(z) = 0

leads to h1 = h2 = 0. (Communicated by Bruno Bouchard in private discussion)

Next we consider the class of solutions invariant under the subalgebra

spanned by the operators X1 and X2. The Lie group of transformations corre-

sponding to these basis generators is

X : t̄ = te2a, r̄ = rea, θ̄ = θ, Ū = Ue−a, V̄ = V e−a, p̄ = pe−2a

X2J = Jθ = 0

so that J = J(t, r, U, V, p) and

X1J = 2tJt + rJr − UJU − V JV − 2pJp = 0.

Invariants of this subalgebra are

Ur, V r, pr2, tr−2.
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Set z =
t

r2
. The representation of the corresponding invariant solution has the

form

U =
ϕ1(z)

r
, V =

ϕ2(z)

r
, p =

ϕ3(z)

r2
. (6.14)

To find the required form of the functions bij in the Itô part, since

X2b
ij = bijθ = 0

then bij = bij(t, r, U, V, p), and thus

X1b
ij + 2bij = 2tJt + rbijr − UbijU − V bijV − 2pbijp + 2bij = 0,

yields

bij =
ψij(z, Ur, V r, pr2)

r2
. (6.15)

Substituting (6.14) and (6.15) into (6.10), one arrives at the reduced system

ϕ1(z)

r
=
ϕ1(z0)

r
+

∫ z

z0

1

r

(
2sϕ3

z + (ϕ1)2 + (ϕ2)2 + 2ϕ3
)
ds

+

∫ z

z0

ψ11

r
dω1(s) +

∫ z

z0

ψ12

r
dω2(s)

ϕ2(z)

r
=
ϕ2(z0)

r
+

∫ z

z0

2s

r
(2sϕ2

zz + (ϕ1 + 4)ϕ2
z)ds

+

∫ z

z0

ψ21

r
dω1(s) +

∫ z

z0

ψ22

r
dω2(s)

ϕ1
z = 0,

that is,

(
2zϕ3

z + (ϕ1)2 + (ϕ2)2 + 2ϕ3
)
dz = ψ11dω1(z) + ψ12dω2(z)

dϕ2 = 2z(2zϕ2
zz + (ϕ1 + 4)ϕ2

z)dz + ψ21dω1(z) + ψ22dω2(z)

ϕ1
z = 0,

and where the vector ω(z) of Wiener processes is determined as in (6.13).



CHAPTER VII

CONCLUSION

This thesis constitutes a study by group analysis of systems of stochastic

partial differential equations

dvi(r, y) = Ai(r, y, v, vyk , vykyl) dt+
∑m

j=1B
ij(r, y, v) dwj(t),

(i = 1, n, k, l = 1, N),
(7.1)

by employing invertible transformations of the independent and dependent vari-

ables of the form

r = α(t), y = h(t, x), v = g(t, x, u). (7.2)

The main goals of the thesis were to construct determining equations for

such stochastic differential equations, and to apply the developed theory to stochas-

tic fluid dynamics equations.

For solving the problem of the thesis the following steps were used.

1. Transform a system of stochastic partial differential equations (7.1) using a

local one-parameter group of transformations of type (7.2).

2. Differentiating with respect to the group parameter, construct determining

equations for admitted Lie groups of transformations for the stochastic dif-

ferential equations (7.1).

3. Apply the developed theory for constructing determining equations of ad-

mitted Lie groups for stochastic fluid dynamics equations.

The found admitted Lie groups of the stochastic fluid dynamics equations

were applied for constructing their invariant solutions. This present thesis demon-
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strates a first experience in the application of the group analysis method for con-

structing invariant solutions of stochastic differential equations of gas and hydro-

dynamics. Our results show that the stochastic part of the reduced system depends

on how the variable t is included in the collection of invariant independent vari-

ables, as summarized in Table 7.1.

Table 7.1 The stochastic part in the reduced system, depending on t

Invariant Solution Reduced system

Has no t Deterministic

Include t Deterministic + Itô part

Has t only Deterministic + Itô part

Another feature of obtaining the reduced system is that the integrand in

the Itô integral has to have a particular form which is related with the admitted

Lie group.
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