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CHAPTER I

INTRODUCTION

1.1 Literature Background

Almost all physical applications of differential equations are based on non-

linear equations, which in general are very difficult to solve explicitly. Ordinary

differential equations play a significant role in the theory of differential equations.

In the 19th century, one of the most important problems in analysis was the prob-

lem of classification of ordinary differential equations, see Lie (1883), Liouville

(1889), Tresse (1896) and Cartan (1924).

One type of the classification problem is the equivalence problem. Two sys-

tems of differential equations are said to be equivalent if there exists an invertible

transformation which transforms any solution of one system to a solution of the

other system and vice versa. The linearization problem is a particular case of the

equivalence problem, where one of the systems is a linear system. It is one of the

essential parts in the study of nonlinear equations.

1.1.1 A Single Ordinary Differential Equation

The analysis of the linearization problem for a single ordinary differential

equation was started by Lie (1883). He gave the linearization criterion∗ for a

second-order ordinary differential equation to be transformable into the simplest

linear equation† (ü = 0) by an invertible point transformation of the independent

∗See proof in Chapter II.
†See more detail in Appendix A.
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and dependent variables,

t = φ(x, y), u = ψ(x, y). (1.1)

He showed that a second-order ordinary differential equation is linearizable, if and

only if it has the form

y′′ = a(x, y)y′3 + b(x, y)y′2 + c(x, y)y′ + d(x, y), (1.2)

where y′ = dy
dx
, y′′ = d2y

dx2
, and the coefficients a(x, y), b(x, y), c(x, y) and d(x, y)

satisfy the conditions H = 0 and K = 0, where

H = 2bxy − 3axx − cyy − 3axc+ 3ayd+ 2bxb− 3cxa− cyb+ 6dya,

K = 2cxy − bxx − 3dyy − 6axd+ bxc+ 3byd− 2cyc− 3dxa+ 3dyb.

(1.3)

Liouville (1889) and Tresse (1896) treated the functions H and K as the rela-

tive invariants with respect to invertible‡ transformation (1.1). Another approach

was developed by Cartan (1924), who used differential geometry for solving the

linearization problem of a second-order ordinary differential equation.

Later, the linearization problem was also considered with respect to other

types of transformations, for example, contact§ and generalized Sundman¶ trans-

formations. Lie noted that under contact transformations, all second-order ordi-

nary differential equations are equivalent to another. In 1994, Duarter, Moreira

and Santos classified the second-order ordinary differential equations which are

equivalent to equation ü = 0 under generalized Sundman transformations. Trans-

formation methods have also been applied to third-order and fourth-order ordinary

differential equations as the following. Chern (1940) used Cartan’s approach to

obtain linearization criteria for a third-order ordinary differential equation via con-

‡The meaning shown in pp. 8.
§See definition on pp. 11.
¶See definition on pp. 16.
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tact transformations. Grebot (1997) studied the linearization problem of third-

order ordinary differential equations by fiber preserving point transformations.

Some equivalence problems for differential equations under contact transforma-

tions were studied in a list of papers Bocharov, Sokolov and Svinolupov (1993);

Doubrov (2001); Doubrov, Komrakov and Morimoto (1999); Gusyatnikova and

Yumaguzhin (1999). In 2002, Neut and Petitot obtain conditions for equivalence

with an arbitrary linear third-order ordinary differential equation. Ibragimov and

Meleshko (2004), obtained linearization criteria for third-order ordinary differen-

tial equations by point transformations. In 2005, Ibragimov and Meleshko ob-

tained linearization criteria for third-order ordinary differential equations by point

and contact transformations. Meleshko (2006), using the Lie linearization test

for linearization of a third-order ordinary differential equations. In 2003, Euler,

Wolf and Leach, obtained criteria for third-order ordinary differential equations to

be equivalent to the equation X ′′′ = 0 by generalized Sundman transformations.

Euler (2004), studied the symmetries of nonlinear second-order and third order or-

dinary differential equations by generalized Sundman transformations. Ibragimov,

Meleshko and Suksern (2008), obtained linearization criteria for fourth-order ordi-

nary differential equations by point transformations. In 2009, Suksern, Ibragimov

and Meleshko, obtained linearization criteria for fourth-order ordinary differential

equations by point and contact transformations. Nakpim and Meleshko (2010),

obtained linearization criteria for second-order and third-order of ordinary differ-

ential equations by generalized Sundman transformations.

It is worth to note that fiber preserving transformations, where the change

of the independent variable depends only on the independent variable itself, play

a special role: either only such transformations were studied Grebot (1997) or

they needed to be studied separately during compatibility analysis Ibragimov and
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Meleshko (2004); Ibragimov and Meleshko (2005); Meleshko (2005); Ibragimov,

Meleshko and Suksern (2008).

1.1.2 System of Ordinary Differential Equations

The linerization problem for systems of second-order ordinary differential

equations was studied in Wafo and Mahomed (2001); Sookmee (2005); Mahomed

and Qadir (2007); Aminova and Aminov (2006); Neut, Petitot and Dridi (2009)

and others∥. In Neut, Petitot and Dridi (2009), necessary and sufficient conditions

for a system of two second-order ordinary differential equations to be equivalent to

the simplest equations were obtained. In Aminova and Aminov (2006), necessary

and sufficient conditions for a system of n ≥ 2 second-order ordinary differential

equations to be equivalent to the free particle equations were given. Particular

classes of systems of two (n = 2) second-order ordinary differential equations were

considered in Mahomed and Qadir (2007). In Wafo and Mahomed (2001), crite-

ria for linearization of a system of two second-order ordinary differential equations

were related with the existence of an admitted four-dimensional Lie algebra. Some

first-order and second-order relative invariants with respect to point transforma-

tions for a system of two second-order ordinary differential equations were obtained

in Sookmee (2005).

1.2 Accomplishments of the Thesis

This thesis is devoted to the study of the linearization problem of a system

of two second-order ordinary differential equations. The method of the study is

separated into two parts as follows.

∥The references listed are not complete.
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1.2.1 Linearization of a Projectable System of Two

Second-order ODEs

A new method for linearizing a system of two ordinary differential equations

is introduced, through the definition of a projectable system of such equations.

This method consists of sequentially reducing the number of dependent variables,

and then applying the Lie criterion to the reduced equations. We call systems

linearizable by this procedure sequentially linearizable. This method is applied to

a system of two second-order ordinary differential equations. Moreover, it is shown

that for systems of two second-order quadratically semi-linear ordinary differential

equations this new method gives a larger class of linearizable systems than via point

transformations. Finally, an example of equations which are not linearizable by

point transformations, but do sequentially linearize by the new method, is given.

1.2.2 Linearization of a System of Two Second-order ODEs

via Fiber Preserving Point Transformations

The necessary form of a system of two second-order ordinary differential

equations which can be linearized via point transformations is obtained. Some

additional necessary conditions are also found. Necessary and sufficient conditions

for a system of two second-order ordinary differential equations to be transformed

to the general form of a linear system with constant coefficients via fiber preserving

point transformations∗∗ are obtained. A linear system with constant coefficients

is chosen because of simplicity of finding its general solution. On the way to

establishing the main theorems, we also give an explicit procedure for constructing

the linearizing transformation.

∗∗See definition of fiber preserving point transformations on pp. 8.
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Since the work in the thesis required a huge amount of analytical calcula-

tions, it was necessary to use a computer for these calculations. A brief review

of computer systems of symbolic manipulations can be found, for example, in

Davenport (1994). In our calculations the system REDUCE (Hearn, 1987) was

used.

This thesis is organized systematically as follows. In chapter II, we prepare

some information for solving the linearization problem and do a literature review.

In chapter III, a new method for linearizing a system of ordinary differential equa-

tions is introduced. The first main result of the thesis is also shown in this chapter:

conditions for linearization of a projectable system of two second-order ordinary

differential equations. The application to a system of second-order quadratically

semi-linear ordinary differential equations is demonstrated. Examples of systems of

equations which are not linearizable via point transformations, but linearizable by

the new method, are given in the subsequent sections. In chapter IV, the necessary

form of a linearizable system of two second-order ordinary differential equations is

presented. The second main result of the thesis is also exhibited: necessary and

sufficient criteria for a system of two second-order ordinary differential equations

to be equivalent to a linear system of two second-order ordinary differential with

constant coefficients, via fiber preserving point transformations. During this study,

we also obtained some necessary conditions for linearizability for a system of two

second-order ordinary differential equations, to be equivalent to a linear system

of two second-order ordinary differential under point transformations . Examples

demonstrating the procedure of using the linearization theorems are presented in

the subsequent sections. The thesis conclusions are in the last chapter. Additional

information concerning the thesis is shown in the Appendices.



CHAPTER II

FUNDAMENTAL KNOWLEDGE

The material in this chapter constitutes the basic background for solving

the linearization problem and constitutes a literature review.

Throughout this thesis, all functions are assumed to be sufficiently many

times continuously differentiable.

2.1 Linearization Problem

Definition 2.1. Two differential equations are said to be equivalent, if there exists

an invertible transformation which transforms any solution of one equation to a

solution of the other equation and vice versa.

Definition 2.2. Two systems of differential equations are said to be equivalent,

if there exists an invertible transformation which transforms any solution of one

system to a solution of the other system and vice versa.

Definition 2.3. The linearization problem is the problem of finding conditions

which guarantee the existence of an invertible transformation mapping a given

system of differential equations into a linear system of differential equations.

Remark 2.1. The problem of finding conditions for a differential equation to be

equivalent to a given differential equation is called the equivalence problem. Thus,

in the particular case where the given differential equation is linear differential

equations, then the equivalence problem is called the linearization problem.
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2.2 Point Transformation

Definition 2.4. A transformation of the form

t = φ (x, y) , u = ψ (x, y) , (2.1)

is called a point transformation. Here x is the independent variable and y is the

dependent variable; both variables may be vectors. Notice that t and u are the

new independent and dependent variables, respectively.

Remark 2.2. If t = φ(x), then the point transformation (2.1) is called a fiber

preserving point transformation.

If ∆ ̸= 0, where ∆ is the Jacobian of the transformation (2.1)

∆ =
∂ (φ, ψ)

∂ (x, y)
= φxψy − φyψx ̸= 0,

then by virtue of the Inverse Function Theorem∗, the transformation (2.1) is an

invertible point transformation. That is x and y can locally be written as follows

x = φ̃ (t, u) , y = ψ̃ (t, u) . (2.2)

For example†, in this thesis, a system of two second-order ordinary differ-

ential equations will be considered. The invertible point transformation is defined

as follows

t = φ(x, y1, y2), u1 = ψ1(x, y1, y2), u2 = ψ2(x, y1, y2). (2.3)

The Jacobian of the change of variables (2.3) is

∆ = (φxψ1y1ψ2y2−φxψ1y2ψ2y1−φy1ψ1xψ2y2+φy1ψ1y2ψ2x+φy2ψ1xψ2y1−φy2ψ1y1ψ2x).

If the function φ of (2.3) depends only on the independent variable x, then the

point transformation (2.3) is a fiber preserving point transformation.

∗The statement of the Inverse Function Theorem shown in Appendix B.
†See another example in Appendix C.
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2.2.1 Defining Derivatives in Point Transformations

Consider a single‡ ordinary differential equation of kth-order

f1
(
t, u, u̇, ü, ..., u(k)

)
= 0. (2.4)

Let us explain how an invertible point transformation (2.1) maps equation (2.4)

into another equation

g1
(
x, y, y′, y′′, ..., y(k)

)
= 0 (2.5)

and vice versa.

Assume that y(x) is a given function§. The first equation of (2.1) becomes

t = φ (x, y (x)) =: φ̄(x).

Suppose that φ̄
′
(x) = 0, then t = φ = constant. This contradicts that t is the

independent variable. That is φ̄
′
(x) = φx + y′φy ̸= 0, and then by virtue of the

Inverse Function Theorem, one finds

x = β (t) . (2.6)

Substituting x into the second equation of (2.1), one obtains

u (t) = ψ (β (t) , y (β (t))) . (2.7)

Thus, the first-order derivative of u with respect to t is defined by the formula

u̇ =
du

dt
=
∂ψ

∂x

dβ

dt
+
∂ψ

∂y

dy

dx

dβ

dt
= (ψx + y′ψy)

dβ

dt
. (2.8)

For finding dβ
dt

let us consider the identity

t = φ (β (t) , y (β (t))) . (2.9)

‡The case of a system of two-order ODEs is presented in in Appendix D.
§This function at this stage need not to be the solution of equation (2.5).
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Differentiating the equation (2.9) with respect to t, one obtains

1 = (φx + y′φy)
dβ

dt

or

dβ

dt
=

1

(φx + y′φy)
. (2.10)

Substituting dβ
dt

into equation (2.8), one obtains

u̇ =
ψx + y′ψy
φx + y′φy

=
Dψ

Dφ
= h1 (x, y, y

′) ,

where

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ y(k)

∂

∂y(k−1)

is the total derivative with respect to x.

The second-order derivative of u with respect to t is defined by the formula

ü =
d2u

dt2
=
du̇

dt
=
dh1 (β (t) , y (β (t)) , y

′ (β (t)))

dt

=
∂h1
∂x

dβ

dt
+
∂h1
∂y

dy

dx

dβ

dt
+
∂h1
∂y′

dy′

dx

dβ

dt

=
(
h1x + y′h1y + y′′h1y′

) dβ
dt

=
h1x + y′h1y + y′′h1y′

φx + y′φy

=
Dh1
Dφ

= h2(x, y, y
′, y′′).

Repeating by the same process, one obtains the higher order derivatives

u(n) =
du(n−1)

dt
=
Dhn−1

Dφ
= hn(x, y, y

′, y′′, ..., y(n)), (n = 1, 2, ..., k).

Here u(0) = u and h0 = ψ.

Assume that y0(x) is a given function. Using equation (2.7), one can convert

the function y0(x) into the function u0(t). Conversely, if one has the function u0(t),
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then by applying the Inverse Function Theorem to the first equation of (2.2), one

obtains

t = γ(x).

Substitution of this t into the second equation of (2.2), gives the function

y0(x) := ψ̃ (γ(x), u0(γ(x))) .

Observes that the order of the given ordinary differential equation (2.4) is preserved

under the invertible point transformation (2.1).

2.3 Contact Transformation

Definition 2.5. A transformation

t = φ1 (x, y, p) , u = φ2 (x, y, p) , w = φ3 (x, y, p) , (2.11)

where p = y′ = dy
dx

is called a contact transformation if it satisfies the contact

condition

du− wdt = 0.

Notice that the variables x, y and p can also be expressed as vectors.

2.3.1 Defining Derivatives in Contact Transformations

Let us consider how the given kth-order ordinary differential equation

f2
(
t, u, u̇, ü, ..., u(k)

)
= 0. (2.12)

is transformed into

g2
(
x, y, y′, y′′, ..., y(k)

)
= 0. (2.13)

by an invertible contact transformation.
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Assume that y(x) is a given function¶. The first equation of (2.11) becomes

t = φ1 (x, y (x), p(x)) =: φ̄(x).

Suppose that φ̄
′
(x) = 0, then t = φ1 = constant. This contradicts to t

being the independent variable. That is φ̄
′
(x) = φ1x + pφ1y + y′′φ1p ̸= 0. By

virtue of the Inverse Function Theorem, one finds

x = α(t). (2.14)

Substituting x into the second equation of (2.11), one gets

u (t) = φ2 (α (t) , y (α (t)) , p (α (t))) . (2.15)

Thus the first-order derivative of u with respect to t, is defined by the formula

u̇ =
du

dt

=
∂φ2

∂x

dα

dt
+
∂φ2

∂y

dy

dx

dα

dt
+
∂φ2

∂p

dp

dx

dα

dt

=
(
φ2x + pφ2y + y′′φ2p

) dα
dt
. (2.16)

For finding dα
dt
, let us consider the identity

t = φ1 (α (t) , y (α (t)) , p (α (t))) . (2.17)

Differentiating equation (2.17) with respect to t, one obtains

1 =
(
φ1x + pφ1y + y′′φ1p

) dα
dt

or

dα

dt
=

1(
φ1x + pφ1y + y′′φ1p

) . (2.18)

Substituting a dα
dt

into equation (2.16), one obtains

u̇ =
φ2x + pφ2y + y′′φ2p

φ1x + pφ1y + y′′φ1p

=
Dφ2

Dφ1

.

¶This function at this place need not to be a solution of equation (2.13).
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According to the contact condition, we have the relation

φ3 =
Dφ2

Dφ1

. (2.19)

Then equation (2.19) can be represented as follows,

φ3

(
φ1x + pφ1y + y′′φ1p

)
= φ2x + pφ2y + y′′φ2p. (2.20)

Since the contact condition (2.20) is satisfied for any y′′, one has

φ3

(
φ1x + pφ1y

)
= φ2x + pφ2y, φ3φ1p = φ2p. (2.21)

The second-order derivative of u with respect to t, is defined by the formula

ü =
d2u

dt2
=
du̇

dt

=
∂φ3

∂x

dα

dt
+
∂φ3

∂y

dy

dx

dα

dt
+
∂φ3

∂p

dp

dx

dα

dt

=
(
φ3x + pφ3y + y′′φ3p

) dα
dt

=
φ3x + pφ3y + y′′φ3p

φ1x + pφ1y + y′′φ3p

=
Dφ3

Dφ1

= φ4(x, y, p, y
′′).

Repeating, one obtains the higher order derivatives by the formulae

u(n) =
du(n−1)

dt
=
Dφn+1

Dφ
= φn+2(x, y, p, y

′′, y′′′, ..., y(n)), (n = 1, 2, ..., k).

Here u(0) = u.

Assume that y0(x) is a solution of (2.13) and u0(t) is a solution of (2.12).

Using equation (2.15), one can convert the function y0(x) to the function u0(t).

Conversely, if one has the function u0(t), since ∆ ̸= 0 where ∆ = ∂(φ1,φ2,φ3)
∂(x,y,p)

, the

Inverse Function Theorem gives

x = φ̃1 (t, u, w) , y = φ̃2 (t, u, w) , p = φ̃3 (t, u, w) , (2.22)
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and then the first equation of (2.2) becomes

x = φ̃1 (t, u0(t), u̇0(t)) . (2.23)

Thus applying the Inverse Function Theorem to (2.23), one obtains

t = Ω(x).

Substituting this t into the second equation of (2.22), one obtains the solution

y0(x) := φ̃2 (Ω(x), u0(Ω(x)), u̇0(Ω(x))) .

Observe that the order of the given ordinary differential equation (2.12) is con-

served by the invertible contact transformation (2.11). Notice also that according

to the contact condition (2.21), if φ1p = 0 then φ2p = 0. Hence, a contact trans-

formations is also a point transformation.

Remark 2.3. It is worth noting that the application of contact transformations

is more complicated than the application of point transformations, for example,

see in Ibragimov and Meleshko (2005); Suksern, Ibragimov and Meleshko (2009).

2.4 Tangent Transformation

A tangent transformation is a transformation of the independent, depen-

dent variables and their derivatives. Let x = (x1, x2, ..., xn) be the independent

variables, y = (y1, y2, ..., ym) be the dependent variables and p be the vector of

the partial derivatives:

pkα :=
∂|α|yk

∂xα
:=

∂|α|yk

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

,

where α = (α1, α2, ..., αn) is a multi-index and k ∈ {1, 2, ...,m}. Here |α| :=

α1 + α2 + ...+ αn and αi ∈ {0 ∪N}, (i = 1, 2, .., n).
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Definition 2.6. The transformation

tj = φj(x, y, p), uk = ψk(x, y, p), p̄kj = ϕkj (x, y, p),

is called a tangent transformation if it satisfies the tangent conditions

duk − p̄kjdtj = 0, dp̄kα − p̄kα,jdtj = 0, (2.24)

where j = 1, 2, 3, ..., n, k = 1, 2, 3, ...,m, α = (α1, α2, ..., αn), α, j :=

(α1, α2, ..., αj−1, αj + 1, αj+1, ..., αn) , p̄kα = ∂|α|uk

∂t
α1
1 ∂t

α2
2 ...∂tαn

n
and 0 ≤ |α| ≤ τ − 1.

Here τ is the maximum order of the partial derivatives appearing in the vector p.

For example, let us consider the case n = m = 1 and the functions ψ1, ψ2

and ψ3 of the variables x, y, y′ and y′′. Define the mapping

t = ψ1 (x, y, y
′) , u = ψ2 (x, y, y

′) , ξ = ψ3 (x, y, y
′, y′′) . (2.25)

Let y(x) be a given function. Substituting y(x) into the first equation of

(2.25), one yields

t = ψ1 (x, y(x), y
′(x)) .

By the virtue of the Inverse Function Theorem, one gets x = α(t). Substituting

this x into the second equation of (2.25), one obtains the transformed function

u(t) = ψ2 (α(t), y(α(t)), y
′(α(t))) .

The derivatives are changed by the formulae

u̇ =
ψ2x + pψ2y + y′′ψ2p

ψ1x + pψ1y + y′′ψ1p

=
Dxψ2

Dxψ1

.

where

Dx =
∂

∂x
+ p

∂

∂y
+ y′′

∂

∂p
+ y′′′

∂

∂y′′
+ · · ·

is the total derivative with respect to x. Here p = y′.
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According to the tangent condition, we have the relation

ψ3 =
Dxψ2

Dxψ1

. (2.26)

Thus the second-order derivative of u with respect to t is defined by the formula

ü = ψ4(x, y, p, y
′′, y′′′) :=

Dxψ3

Dxψ1

=
ψ3x + pψ3y + y′′ψ3p + y′′′ψ3y′′

ψ1x + pψ1y + y′′ψ1p

. (2.27)

Note that tangent condition (2.26) need not satisfy for any y′′ like the

contact condition. Equation (2.27) shows that a tangent transformations need not

to preserve the order of the given ordinary differential equation.

Remark 2.4. The contact transformation forms a particular case of tangent

transformations.

2.5 Generalized Sundman Transformation

The generalized Sundman transformation is a transformation defined by

the formulae

u(t) = P (x, y), dt = S(x, y)dx, (PyS ̸= 0). (2.28)

Let us explain how the generalized Sundman transformation maps one function

into another.

Assume that y (x) is a given function. Integrating the second equation of

(2.28)

dt

dx
= S(x, y(x)),

one obtains t = Q (x). Since the function S ̸= 0, thus Q′ ̸= 0. By virtue of

the Inverse Function Theorem, one finds x = β(t). Substituting this x into the

function P (x, y(x)), one gets the transformed function

u(t) = P (β(t), y(β(t)).
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Conversely, let u(t) be a given function. Since Py ̸= 0, applying the Inverse

Function Theorem to the equation

u(t) = P (x, y),

one gets y = ϕ (x, t). Integrating the ordinary differential equation

dt

dx
= S(x, ϕ(x, t)),

one finds t = H(x). Substituting t = H(x) into the function ϕ (x, t), the trans-

formed function y(x) = ϕ(x,H (x)) is obtained.

Observe that the formula (2.28) not only allows us to obtain the derivatives

of u(t) through the derivatives of the function y(x) and vice versa, but also relate

the solutions of the two differential equations y(n) = N1(x, y, y
′, y′′, . . . , y(n−1)) and

u(n) = N2(t, u, u̇, ü, . . . , u
(n−1)).

Remark 2.5. The generalized Sundman transformation conserves the order of

particular ordinary differential equations only, for example, see in Euler, Wolf and

Leach (2003); Nakpim and Meleshko (2010).

2.6 Canonical Form of a Single Linear Second-order ODE

Theorem 2.1. Every linear second-order ordinary differential equation

y′′ (x) + a (x) y′ (x) + b (x) y (x) = c (x) ,

can be transformed into the simplest equation

ü = 0.

Note that the proof of this theorem is shown in Appendix A.

Remark 2.6. A linear ordinary differential equation of order m ≥ 3 need not be

equivalent to the simplest equation. In fact, the generalization of Theorem 2.1 to

higher order equations is discussed in the next section.
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Remark 2.7. A linear system of n second-order ordinary differential equations

need not to be equivalent to the simplest system of equations.

2.7 Canonical Form of a Single Linear ith-order ODE

Laguerre showed that given any linear ordinary differential equation of form

y(i) + a1(x)y
(i−1) + a2(x)y

(i−2) + ...+ ai−1(x)y
′ + ai(x)y = c(x), i > 3, (2.29)

the two terms following the highest-order term can be eliminated by point trans-

formations. Therefore, the general linear ith-order ordinary differential equation

in Laguerre’s form is defined by the following theorem.

Theorem 2.2. (Laguerre Canonical Form).

A linear ith-order ordinary differential equation (2.29) can be reduced to the equa-

tion

u(i) + b3(t)u
(i−3) + b4(t)u

(i−4) + ...+ bi−1(t)u̇+ bi(t)u = 0, (2.30)

by point transformations.

2.8 Canonical Forms of a Linear System of n Second-order

ODEs

The general form of a linear system of n second-order ordinary differential

equations is

v̈ + Cv̇ +Dv + E = 0, (2.31)

where v = v(t) and E = E(t) are vectors, C = C(t) and D = D(t) are n × n

square matrices. It can be shown (Wafo and Mahomed, 2001) that there exists a

change u = Uv such that system (2.31) is reduced to one of the following forms∥

∥The proof of this statement is given in Appendix E.
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either

ü+K1u̇ = 0

or

ü+Ku = 0. (2.32)

Here U(t), K = K(t) and K1 = K1(t) are n× n square matrices.

Thus the linearization problem via point transformations consists of solv-

ing the problem of reducibility of a system of second-order ordinary differential

equations to one of these forms. In this thesis, the second canonical form (2.32) is

used.

One of the main motivations for studying the linearization problem is the

possibility of finding the general solution. Notice that even after finding the lin-

earizing transformation one has to solve a linear system of second-order ordinary

differential equations. The simplest case is where K = 0. More general and

also not complicated is the case where the matrix K is constant. For example,

for n = 2 this case leads to solving either a simple linear fourth-order ordinary

differential equation with constant coefficients or two simple linear second-order

ordinary differential equations. Indeed, for n = 2 system (2.32) is

ü1 + k1u1 + k3u2 = 0, ü2 + k4u1 + k2u2 = 0, (2.33)

where ki, (i = 1, 2, 3, 4) are constant. If k3 ̸= 0, then finding u2 from the first equa-

tion of (2.33) and substituting it into the second equation of (2.33), one obtains a

fourth-order ordinary differential equation

u
(4)
1 + (k1 + k2)ü1 + (k1k2 − k3k4)u1 = 0.

Here

K =

 k1 k3

k4 k2

 .



20

The general solution of the last equation depends on the roots λ of the character-

istic equation

λ4 + (k1 + k2)λ
2 + (k1k2 − k3k4) = 0.

The solution is similar for k4 ̸= 0. On the other hand, if k3 = 0 and k4 = 0, then

system (2.31) is decoupled:

ü1 + k1u1 = 0, ü2 + k2u2 = 0. (2.34)

Notice also that if in this case k1 = k2, then the last system of equations is

equivalent to the system of two trivial equations z′′ = 0.

2.9 Theory of Compatibility

This section gives some knowledge on compatibility theory used in the the-

sis. Compatibility theory analyzes the existence of a solution of an overdetermined

system of equations. An overdetermined system is a system with the number

of equations greater than the number of unknown functions. Since this theory

is a special subject of mathematical analysis, the statements are given without

proofs∗∗.

There are two approaches for studying compatibility. These approaches are

related to the works of E. Cartan and C. H. Riquier.

The Cartan approach is based on the calculus of exterior differential forms.

The problem of the compatibility of a system of partial differential equations is re-

duced to the problem of the compatibility of a system of exterior differential forms.

E. Cartan studied the formal algebraic properties of systems of exterior forms. For

their description he introduced special integer numbers, called characters. With

the help of the characters he formulated a criterion for a given system of partial

∗∗A review of the theory of compatibility can be found in Meleshko (2005).
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differential equations to be involutive. Detailed theory of involutive systems can be

found in Cartan (1946), Finikov (1948), Kuranashi (1967) and Pommaret (1978).

The Riquier approach has a different theory of establishing the involution.

This method can be found in Kuranashi (1967) and Pommaret (1978). The main

advantage of this approach is that there is no necessity to reduce the system

of partial differential equations under study to exterior differential forms. The

calculations in the Riquier approach are shorter than in the Cartan approach.

The main operations of the study of compatibility in the Riquier approach are

prolongations of a system of partial differential equations and the study of the

ranks of some matrices. The Riquier approach is used in this thesis.

2.9.1 Completely Integrable Systems

One class of overdetermined systems, for which the problem of compatibility

is solved, is the class of completely integrable systems.

Definition 2.7. A system

∂yi

∂xj
= ϕij(x, y), (i = 1, 2, ...,m; j = 1, 2, ..., n) (2.35)

is called completely integrable if it has a solution for any initial values x0, y0 in

some open domain D.

Theorem 2.3. A system of the type (2.35) is completely integrable if and only if

all of the mixed derivatives equalities

∂ϕij
∂xk

+
N∑
γ=1

ϕγk
∂ϕij
∂yγ

=
∂ϕik
∂xj

+
N∑
γ=1

ϕγj
∂ϕik
∂yγ

, (i = 1, 2, ..., n; k, j = 1, 2, ...,m) (2.36)

are identically satisfied with respect to the variables (x, y) ∈ D.

In this thesis, the following corollary of the above theorem is used.
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Corollary 2.4. If in an overdetermined system of partial differential equations all

derivatives of order n are defined and comparison of all mixed derivatives of order

n+ 1 does not produce new equations of order less or equal to n, then this system

is compatible.

To demonstrate the importance of Corollary 2.4, let us apply it for obtaining

Lie’s criterion.

2.10 Lie Criterion

Theorem 2.5. (Lie criterion).

A second-order ordinary differential equation is equivalent to the simplest equation

(ü = 0) if and only if it has the form

y′′ + a (x, y) y′3 + b (x, y) y′2 + c (x, y) y′ + d (x, y) = 0, (2.37)

with the coefficients satisfying the conditions:

3axx − 2bxy + cyy − 3axc+ 3ayd+ 2bxb− 3cxa− cyb+ 6dya = 0,

bxx − 2cxy + 3dyy − 6axd+ bxc+ 3byd− 2cyc− 3dxa+ 3dyb = 0.

Proof.

Notice that the canonical form of a second-order linear ordinary equation

with independent variable t and dependent variable u is

ü = 0. (2.38)

Assume that the equation y′′ = F (x, y, y′) is obtained from the linear ordinary

differential equation (2.38) by the change of the variables

t = φ (x, y) , u = ψ (x, y) . (2.39)
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The derivatives are changed by the formulae

u̇ = g(x, y, y′) =
Dxψ

Dxφ
=
ψx + y′ψy
φx + y′φy

,

ü = p(x, y, y′, y′′) =
Dxg

Dxφ
=
gx + y′gy + y′′gy′

φx + y′φy

= ∆(φx + y′φy)
−3[y′′ + a(x, y)y′3 + b(x, y)y′2 + c(x, y)y′ + d(x, y)],

where

a = ∆−1(φyψyy − φyyψy),

b = ∆−1(φxψyy − φyyψx + 2(φyψxy − φxyψy)),

c = ∆−1(φyψxx − φxxψy + 2(φxψxy − φxyψx)),

d = ∆−1(φxψxx − φxxψx),

(2.40)

and

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′

is the total derivative with respect to x. Here ∆ = φxψy−φyψx ̸= 0 is the Jacobian

of the change of variables (2.39).

Since ∆ ̸= 0 and φx + y′φy ̸= 0, substitution of ü into (2.38) gives the

equation (2.37).

Therefore, if a second-order ordinary differential equation is linearizable,

then it has the form (2.37). This is the necessary condition for all second-order

ordinary differential equations to be linearized. The mapping of this equation into

a linear equation is reconstituted by finding the functions φ(x, y) and ψ(x, y) that

satisfy the relations (2.40) with given coefficients a, b, c and d. Since for a given

differential equation there are only two unknown functions φ(x, y) and ψ(x, y),

equations (2.40) form an overdetermined system of partial differential equations.

Let us analyze the compatibility of system (2.40).
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2.10.1 case φy = 0

Since ∆ ̸= 0, assuming that φy = 0, it implies that φxψy ̸= 0. From

relations (2.40) one has

a = 0, ψyy = ψyb, ψxy = (φ−1
x ψyφxx+cψy)/2, ψxx = φ−1

x ψxφxx+ψyd. (2.41)

Comparing the mixed derivatives (ψxy)y = (ψyy)x and (ψxy)x = (ψxx)y, one gets

cy = 2bx, φ−2
x

(
2φxφxxx − 3φ2

xx

)
= 4 (dy + bd)−

(
2cx + c2

)
. (2.42)

From φy = 0 and the second equation of (2.42), one obtains

φxxy = 0, φxyy = 0, φyyy = 0,

φxxx =
(
φx

2
(
4 (dy + bd)− (2cx + c2)

)
+ 3φ2

xx

)
/2φx.

Comparing the mixed derivatives

(φxxy)y = (φxyy)x , (φxyy)y = (φyyy)x , (φxxx)y = (φxxy)x , (2.43)

one finds that the first and second equations of (2.43) are identically satisfied. The

third equation of (2.43) gives the condition

dyy − bxx − bxc+ byd+ dyb = 0.

In brief, a second-order ordinary differential equation of the form (2.37) is

equivalent to the simplest equation (2.38) under fiber preserving point transfor-

mation t = φ(x) and u = ψ(x, y), if and only if the coefficients of this equation

satisfy the conditions

a = 0, cy = 2bx, dyy − bxx − bxc+ byd+ dyb = 0. (2.44)

Note that conditions (2.44) guarantee the existence of functions φ(x) and ψ(x, y)

satisfying the overdetermined system of equations (2.40).
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2.10.2 case φy ̸= 0

Considering the relations (2.40), one has

ψyy = (φyyψy + a∆)/φy, (2.45)

ψxy = (2φxyφyψy − φyy∆− (aφx − bφy)∆)/2φ2
y, (2.46)

ψxx = (2φxyφyψx − φxφyyψx − φ2
xψxa+ φxφyψxb (2.47)

+φ2
y(ψyd− ψxc))/φ

2
y,

φxx = (2φxyφxφy − φ2
xφyy − φ3

xa+ φ2
xφyb− φxφ

2
yc+ φ3

yd)/φ
2
y. (2.48)

From the equations (2.45)-(2.47), one can compare the mixed derivatives (ψxy)y =

(ψyy)x and (ψxy)x = (ψxx)y. These conditions give

φyyy = (3(φ2
yy − 2φxyφya+ 2φxφyya+ φ2

xa
2)− 2φxφy(ay + ab) (2.49)

+φ2
y(2by − 4ax + 4ac− b2))/2φy,

φxyy = (3(4φxyφyyφy − φxφ
2
yy + 2φxφyyφyb− 2φxyφ

2
yb) + 3φ3

xa
2 (2.50)

+3φxφ
2
y(−2ax + 2ac− b2) + 2φ3

y(−bx + 2cy + 3ad))/6φ2
y.

Using the equation (2.48), one has

φxxx =
∂(φxx)

∂x
, φxxy =

∂(φxx)

∂y
. (2.51)

Considering the equations (2.49)-(2.51), one generates the conditions

(φxxy)x = (φxxx)y , (φxyy)y = (φyyy)x , (φxxy)y = (φxyy)x . (2.52)

The first equation of (2.52) is satisfied. The second and third equations of (2.52)

give the conditions

3axx − 2bxy + cyy − 3axc+ 3ayd+ 2bxb− 3cxa− cyb+ 6dya = 0,

bxx − 2cxy + 3dyy − 6axd+ bxc+ 3byd− 2cyc− 3dxa+ 3dyb = 0.

(2.53)
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The condition (2.53) obtained, guarantees the existence of the functions φ(x, y)

and ψ(x, y) satisfying the overdetermined system of equations (2.40). Observe that

the conditions (2.44) make the conditions (2.53) vanish. That is the conditions

(2.44) form a particular case of the conditions (2.53).



CHAPTER III

CONDITIONS FOR LINEARIZATION OF A

PROJECTABLE SYSTEM OF TWO

SECOND-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

3.1 Establishment of the First Main Problem

A system of two second-order ordinary differential equations with two de-

pendent variables x and y and one independent variable t:

ẍ = G(t, x, y, ẋ, ẏ), ÿ = F (t, x, y, ẋ, ẏ), (3.1)

is considered in this chapter. Here a dot denotes the derivative with respect to t

ẋ =
dx

dt
, ẏ =

dy

dt
, ẍ =

d2x

dt2
, ÿ =

d2y

dt2
.

A new method for linearization of two second-order ordinary differential

equations (3.1) with two dependent variables x and y and one independent variable

t is proposed here.

Assume that ẋ ̸= 0. By virtue of the Inverse Function Theorem one can

consider y = y(x). Substituting the derivatives

ẏ = y′ẋ, ÿ = y′′ẋ2 + y′ẍ

into the first equation of (3.1), and using the second equation of (3.1), one obtains

ẋ2y′′ + y′G̃− F̃ = 0,



28

where

G̃(t, x, y, ẋ, y′) = G(t, x, y, ẋ, ẋy′), F̃ (t, x, y, ẋ, y′) = F (t, x, y, ẋ, ẋy′),

y′ =
dy

dx
, y′′ =

d2y

dx2
.

Suppose that

F̃ (t, x, y, ẋ, y′)− y′G̃(t, x, y, ẋ, y′) = ẋ2λ(x, y, y′), (3.2)

where x, y, ẋ and y′ are considered as the independent variables of the functions

G̃, F̃ and λ. We call a system (3.1) satisfying the condition (3.2) a projectable sys-

tem. This definition of a projectable system of equations can be extended to any

normal system of ordinary differential equations. Another extension of the defi-

nition can be given as follows. A system of equations (3.1) is called projectable

if there exists an invertible change of the independent and dependent variables

x̄ = g1(t, x, y), ȳ = g2(t, x, y) and t̄ = g3(t, x, y) such that the equivalent sys-

tem possesses the property (3.2). In this thesis we consider the simple case of a

projectable system, where g1 = x, g2 = y and g3 = t.

Equation (3.2) requires that the function λ defined by the formula

λ(x, y, z) =
1

ẋ2
(F (t, x, y, ẋ, zẋ)− zG(t, x, y, ẋ, zẋ)), (3.3)

only depends on x, y and z = ẏ
ẋ
. The function y(x) thus satisfies the second-order

ordinary differential equation

y′′ = λ(x, y, y′) . (3.4)

A solution of a projectable system (3.1) can be found in two sequential steps: in

the first step one solves equation (3.4); in the second step one finds a solution x(t)

of the first equation of (3.1) with substituted y = y(x) and ẏ = y′(x)ẋ :

ẍ = G(t, x, y(x), ẋ, ẋy′(x)) . (3.5)
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If at each step one has a linearizable second-order ordinary differential equation,

then we call system (3.1) a sequentially linearizable system of equations. In this

thesis we give necessary and sufficient conditions for system (3.1) to be sequentially

linearizable.

3.2 Sequentially Linearizable System (3.1)

Since at each step the equations are second-order ordinary differential equa-

tions, one can consecutively apply the Lie criterion to equations (3.4) and (3.5).

Theorem 3.1. A projectable system (3.1) is sequentially linearizable if and only

if the functions λ(x, y, z) and G(t, x, y, ẋ, ẏ) have the representations

λ(x, y, z) = b1(x, y)z
3 + b2(x, y)z

2 + b3(x, y)z + b4(x, y), (3.6)

G(t, x, y, ẋ, ẏ) = a1(t, x, y, z)ẋ
3 + a2(t, x, y, z)ẋ

2

+a3(t, x, y, z)ẋ+ a4(t, x, y, z),

(3.7)

where the coefficients bi(x, y) and ai(t, x, y, z), (i = 1, 2, 3, 4) satisfy the equations

2b2xy − 3b1xx − b3yy − 3b1xb3 + 3b1yb4 + 2b2xb2

−3b3xb1 − b3yb2 + 6b4yb1 = 0,

(3.8)

2b3xy − b2xx − 3b4yy − 6b1xb4 + b2xb3 + 3b2yb4

−2b3yb3 − 3b4xb1 + 3b4yb2 = 0,

(3.9)

6∑
i=1

βi(z)
7−i + β7 = 0,

6∑
i=1

βi+7(z)
7−i + β14 = 0. (3.10)

Here

β1 = −a3zzb12, β2 = b1(−2a3zzb2 − 3a3zb1),

β3 = −2a3yzb1 − 2a3zzb1b3 − a3zzb2
2 − a3zb1y − 5a3zb1b2,

β4 = 3a1za4b1 + 2a2tzb1 − 2a3xzb1 − 2a3yzb2 − a3yb1 − 2a3zzb1b4 − 2a3zzb2b3
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−a3zb1x − a3zb2y − a3za2b1 − 4a3zb1b3 − 2a3zb2
2 + 6a4za1b1,

β5 = 3a1za4b2 + 2a2tzb2 − 2a3xzb2 − 2a3yzb3 − a3yy − a3yb2 − 2a3zzb2b4

−a3zzb32 − a3zb2x − a3zb3y − a3za2b2 − 3a3zb1b4 − 3a3zb2b3 + 6a4za1b2,

β6 = 3a1ya4 + 3a1za4b3 + 2a2ty + 2a2tzb3 − 2a3xy − 2a3xzb3 − 2a3yzb4 − a3ya2

−a3yb3 − 2a3zzb3b4 − a3zb3x − a3zb4y − a3za2b3 − 2a3zb2b4 − a3zb3
2

+6a4ya1 + 6a4za1b3,

β7 = 3a1xa4 − 3a1tt − 3a1ta3 + 3a1za4b4 + 2a2xt + 2a2tzb4 + 2a2ta2 − 2a3xzb4

−a3xx − a3xa2 − 3a3ta1 − a3yb4 − a3zzb4
2 − a3zb4x − a3za2b4 − a3zb3b4

+6a4xa1 + 6a4za1b4,

β8 = −3a4zzb1
2, β9 = 3b1(−2a4zzb2 − 3a4zb1),

β10 = 3(−2a4yzb1 − 2a4zzb1b3 − a4zzb2
2 − a4zb1y − 5a4zb1b2),

β11 = 3a2za4b1 + 2a3tzb1 − 2a3za3b1 − 6a4xzb1 − 6a4yzb2 − 3a4yb1 − 6a4zzb1b4

−6a4zzb2b3 − 3a4zb1x − 3a4zb2y + 3a4za2b1 − 12a4zb1b3 − 6a4zb2
2,

β12 = 3a2za4b2 + 2a3tzb2 − 2a3za3b2 − 6a4xzb2 − 6a4yzb3 − 3a4yy − 3a4yb2

−6a4zzb2b4 − 3a4zzb3
2 − 3a4zb2x − 3a4zb3y + 3a4za2b2 − 9a4zb1b4 − 9a4zb2b3,

β13 = 3a2ya4 + 3a2za4b3 + 2a3ty + 2a3tzb3 − 2a3ya3 − 2a3za3b3 − 6a4xy

−6a4xzb3 − 6a4yzb4 + 3a4ya2 − 3a4yb3 − 6a4zzb3b4 − 3a4zb3x − 3a4zb4y

+3a4za2b3 − 6a4zb2b4 − 3a4zb3
2,

β14 = −6a1ta4 + 3a2xa4 − a2tt + a2ta3 + 3a2za4b4 + 2a3xt − 2a3xa3 + 2a3tzb4

−2a3za3b4 − 6a4xzb4 − 3a4xx + 3a4xa2 − 3a4ta1 − 3a4yb4 − 3a4zzb4
2

−3a4zb4x + 3a4za2b4 − 3a4zb3b4.

3.2.1 Proof of the Theorem 3.1

The second-order ordinary differential equation y′′ = λ(x, y, y′) is lineariz-

able if and only if the function λ(x, y, y′) has the form (1.2)

λ(x, y, y′) = b1(x, y)y
′3 + b2(x, y)y

′2 + b3(x, y)y
′ + b4(x, y), (3.11)
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where the coefficients bi(x, y), (i = 1, 2, 3, 4) satisfy the conditions

2b2xy − 3b1xx − b3yy − 3b1xb3 + 3b1yb4 + 2b2xb2

−3b3xb1 − b3yb2 + 6b4yb1 = 0,

(3.12)

2b3xy − b2xx − 3b4yy − 6b1xb4 + b2xb3 + 3b2yb4

−2b3yb3 − 3b4xb1 + 3b4yb2 = 0.

(3.13)

Assuming that a solution y(x) of the equation y′′ = λ(x, y, y′) with the function λ

as in (3.11) is given, the first equation of (3.1) becomes

ẍ = G(t, x, y(x), ẋ, y′(x)ẋ) . (3.14)

According to the Lie criterion, equation (3.14) is linearizable if and only if

G(t, x, y(x), ẋ, y′(x)ẋ) = h1(t, x)ẋ
3 + h2(t, x)ẋ

2 + h3(t, x)ẋ+ h4(t, x), (3.15)

where the coefficients hi(t, x) = ai(t, x, y(x), y
′(x)), (i = 1, 2, 3, 4) satisfy the con-

dition (1.3), with a = h1, b = h2, c = h3, d = h4. These conditions become

2Dxa2t − 3a1tt −D2
xa3 − 3a1ta3 + 3(Dxa1)a4 + 2a2ta2

−3a3ta1 − (Dxa3)a2 + 6(Dxa4)a1 = 0,

(3.16)

2Dxa3t − a2tt − 3D2
xa4 − 6a1ta4 + a2ta3 + 3(Dxa2)a4

−2(Dxa3)a3 − 3a4ta1 + 3(Dxa4)a2 = 0.

(3.17)

Here the operator Dx is the operator of the total derivative with respect to x

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
.

Substituting y′′ = λ, y′′′ = Dxλ into equations (3.16) and (3.17), one obtains

equations (3.10).
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3.3 Other Sequentially Linearizable System

There are other systems of two second-order ordinary differential equations

which might neither be linearizable via point transformations nor projectable, but

in some sense they are sequentially linearizable.

Consider a system of two second-order ordinary differential equations, where

one of these equations can be considered independently

ÿ = f(t, x, y, ẋ, ẏ), ẍ = g(t, x, ẋ). (3.18)

The second equation of (3.18) is linearizable if it has the form

g(t, x, ẋ) = c1(t, x)ẋ
3 + c2(t, x)ẋ

2 + c3(t, x)ẋ+ c4(t, x), (3.19)

where the coefficients ci(t, x), (i = 1, 2, 3, 4) satisfy the conditions

2c2tx − 3c1tt − c3xx − 3c1tc3 + 3c1xc4 + 2c2tc2

−3c3tc1 − c3xc2 + 6c4xc1 = 0,

(3.20)

2c3tx − c2tt − 3c4xx − 6c1tc4 + c2tc3 + 3c2xc4

−2c3xc3 − 3c4tc1 + 3c4xc2 = 0.

(3.21)

Assuming that a solution x(t) of the equation (3.19) is given, the function f of

equation (3.18) becomes

ÿ = f(t, x(t), y, ẋ(t), ẏ). (3.22)

According to the Lie criterion, equation (3.22) is linearizable if and only if

f(t, x(t), y, ẋ(t), ẏ) = h1(t, x(t), y, ẋ(t))ẏ
3 + h2(t, x(t), y, ẋ(t))ẏ

2

+h3(t, x(t), y, ẋ(t))ẏ + h4(t, x(t), y, ẋ(t)),

(3.23)

where the coefficients hi(t, x(t), y, ẋ(t)), (i = 1, 2, 3, 4) satisfy the condition (1.3),

with a = h1, b = h2, c = h3, d = h4. These conditions become

2Dth2y − 3D2
th1 − h3yy − 3(Dth1)h3 + 3h1yh4 + 2(Dth2)h2

−3(Dth3)h1 − h3yh2 + 6h4yh1 = 0,

(3.24)
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2Dth3y −D2
th2 − 3h4yy − 6(Dth1)h4 + (Dth2)h3 + 3h2yh4

−2h3yh3 − 3(Dth4)h1 + 3h4yh2 = 0.

(3.25)

Here the operator Dt is the operator of the total derivative with respect to t

Dt =
∂

∂t
+ ẋ

∂

∂x
+ ẍ

∂

∂ẋ
+
...
x
∂

∂ẍ
.

Substituting ẍ = g(t, x(t), ẋ(t)),
...
x = Dt(g) where g is defined as (3.19) into

equations (3.24) and (3.25) one obtains the conditions

6∑
i=1

γi(ẋ)
7−i + γ7 = 0,

6∑
i=1

γi+7(ẋ)
7−i + γ14 = 0, (3.26)

with the coefficients

γ1 = −3h1ẋẋc1
2, γ2 = 3c1(−2h1ẋẋc2 − 3h1ẋc1),

γ3 = 3(−c1xh1ẋ − 2h1ẋxc1 − 2h1ẋẋc1c3 − h1ẋẋc2
2 − 5h1ẋc1c2),

γ4 = −3c1th1ẋ − 3c2xh1ẋ − 6h1tẋc1 − 6h1ẋxc2 − 6h1ẋẋc1c4 − 6h1ẋẋc2c3

−12h1ẋc1c3 − 3h1ẋc1h3 − 6h1ẋc2
2 − 3h1xc1 + 2h2ẋyc1 + 2h2ẋc1h2

−3h3ẋc1h1,

γ5 = −3c2th1ẋ − 3c3xh1ẋ − 6h1tẋc2 − 6h1ẋxc3 − 6h1ẋẋc2c4 − 3h1ẋẋc3
2

−9h1ẋc1c4 − 9h1ẋc2c3 − 3h1ẋc2h3 − 3h1xx − 3h1xc2 + 2h2ẋyc2

+2h2ẋc2h2 − 3h3ẋc2h1,

γ6 = −3c3th1ẋ − 3c4xh1ẋ − 6h1tẋc3 − 6h1tx − 6h1ẋxc4 − 6h1ẋẋc3c4 − 6h1ẋc2c4

−3h1ẋc3
2 − 3h1ẋc3h3 − 3h1xc3 − 3h1xh3 + 2h2ẋyc3 + 2h2ẋc3h2 + 2h2xy

+2h2xh2 − 3h3ẋc3h1 − 3h3xh1,

γ7 = −3c4th1ẋ − 6h1tẋc4 − 3h1tt − 3h1th3 − 3h1ẋẋc4
2 − 3h1ẋc3c4 − 3h1ẋc4h3

−3h1xc4 + 3h1yh4 + 2h2ty + 2h2th2 + 2h2ẋyc4 + 2h2ẋc4h2 − 3h3th1

−3h3ẋc4h1 − h3yy − h3yh2 + 6h4yh1,

γ8 = −h2ẋẋc12, γ9 = c1(−2h2ẋẋc2 − 3h2ẋc1),

γ10 = −c1xh2ẋ − 2h2ẋxc1 − 2h2ẋẋc1c3 − h2ẋẋc2
2 − 5h2ẋc1c2,
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γ11 = −c1th2ẋ − c2xh2ẋ − 6h1ẋc1h4 − 2h2tẋc1 − 2h2ẋxc2 − 2h2ẋẋc1c4

−2h2ẋẋc2c3 − 4h2ẋc1c3 + h2ẋc1h3 − 2h2ẋc2
2 − h2xc1 + 2h3ẋyc1

−3h4ẋc1h1,

γ12 = −c2th2ẋ − c3xh2ẋ − 6h1ẋc2h4 − 2h2tẋc2 − 2h2ẋxc3 − 2h2ẋẋc2c4

−h2ẋẋc32 − 3h2ẋc1c4 − 3h2ẋc2c3 + h2ẋc2h3 − h2xx − h2xc2 + 2h3ẋyc2

−3h4ẋc2h1,

γ13 = −c3th2ẋ − c4xh2ẋ − 6h1ẋc3h4 − 6h1xh4 − 2h2tẋc3 − 2h2tx − 2h2ẋxc4

−2h2ẋẋc3c4 − 2h2ẋc2c4 − h2ẋc3
2 + h2ẋc3h3 − h2xc3 + h2xh3 + 2h3ẋyc3

+2h3xy − 3h4ẋc3h1 − 3h4xh1,

γ14 = −c4th2ẋ − 6h1th4 − 6h1ẋc4h4 − 2h2tẋc4 − h2tt + h2th3 − h2ẋẋc4
2

−h2ẋc3c4 + h2ẋc4h3 − h2xc4 + 3h2yh4 + 2h3ty + 2h3ẋyc4 − 2h3yh3

−3h4th1 − 3h4ẋc4h1 − 3h4yy + 3h4yh2.

Theorem 3.2. System (3.18) is sequentially linearizable if and only if it satisfies

the conditions (3.19)-(3.21), (3.23) and (3.26).

In the next section we will demonstrate systems of two second-order ordi-

nary differential equations which are linearizable in this way, but are not lineariz-

able by point transformations.

3.4 Application to a System of Second-order Quadratically

Semi-linear Ordinary Differential Equations

In this section we show that a system of two second-order quadratically

semi-linear ordinary differential equations

ẍ = a(x, y)ẋ2 + 2b(x, y)ẋẏ + c(x, y)ẏ2,

ÿ = d(x, y)ẋ2 + 2e(x, y)ẋẏ + f(x, y)ẏ2,

(3.27)
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which is linearizable via point transformations, is also sequentially linearizable.

Notice that some types of Newtonian systems are of the form (3.27).

A linearization criterion for system (3.27) to be equivalent to the simplest

equations via point transformations was obtained in (Mahomed and Qadir, 2007).

These criteria are

Si = 0, (i = 1, 2, 3, 4), (3.28)

where

S1 = ay − bx + be− cd, S2 = by − cx + (ac− b2) + (bf − ce),

S3 = dy − ex − (ae− bd)− (df − e2), S4 = bx + fx − ay − ey.

Notice that system (3.27) is a projectable system with

λ(x, y, y′) = −cy′3 + (f − 2b)y′2 + (2e− a)y′ + d. (3.29)

Applying Theorem 3.1 proven above, one obtains the conditions for system (3.27)

to be sequentially linearizable:

3S1y − 3S2x + 2S4y + 3(f − b)S1 − 3eS2 − 3cS3 + (2f − b)S4 = 0,

3S1x + 3S3y + S4x − 3(e− a)S1 + 3dS2 + 3bS3 − (2e− a)S4 = 0.

(3.30)

Relations (3.28) make (3.30) vanish. Thus in general there are quadratically

semi-linear system (3.27) which are not linearizable via point transformations, but

are sequentially linearizable. Furthermore, equations (3.30) show that the set of

systems (3.27) which are linearizable via point transformations is a subset of the

set of equations which are sequentially linearizable.

3.5 Illustration of the Linearization Theorem

In this section we demonstrate examples of systems of two second-order

ordinary differential equations which are sequentially linearizable, but not lin-
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earizable via point transformations. Consider a system

ẍ = y, ÿ = ẏ
ẋ
y. (3.31)

Applying the linearization criteria obtained in either Aminova and Aminov (2006)

or Neut, Petitot and Dridi (2009) to system (3.31), one obtains that system (3.31)

is not equivalent to the simplest equations under point transformations. Let us

show that system (3.31) is sequentially linearizable.

For system (3.31), λ = 0 which implies that y′′ = 0. The first equation of

(3.31) becomes ẍ = c1x + c2, which is a linear second-order equation. Therefore,

system (3.31) is sequentially linearizable.

The presented example shows that a system of two second-order ordinary

differential equations which is not linearizable by point transformations might be

sequentially linearizable.

Let us make another observation. System (3.31) is equivalent to the fourth-

order ordinary differential equation

x(4) = x(3)

ẋ
ẍ. (3.32)

Applying the linearization criteria obtained in Ibragimov, Meleshko and Suksern

(2008) to equation (3.32), one notes that equation (3.32) is not linearizable by

point transformations either.

Remark 3.2. System (3.31) is a particular case of the system

ẍ = f(y − ẏ
ẋ
x, ẏ

ẋ
, t) + xg(y − ẏ

ẋ
x, ẏ

ẋ
, t),

ÿ = ẏ
ẋ
(f(y − ẏ

ẋ
x, ẏ

ẋ
, t) + xg(y − ẏ

ẋ
x, ẏ

ẋ
, t)),

(3.33)

which is also sequentially linearizable. Here the functions f and g are arbitrary.

For system (3.33), λ = 0 which implies y′′ = 0. Thus the first equation of (3.33)

becomes ẍ = f(c2, c1, t) + xg(c2, c1, t) which is linear equation. Therefore, this

system is sequentially linearizable.



37

3.6 Summary

In this chapter, a new method for linearizing a system of ordinary differ-

ential equations was introduced. This method consists of consecutively reducing

the number of the dependent variables and using the linearization criterion for

the reduced equations. The method was applied to a system of two second-order

ordinary differential equations. Moreover, it was shown that for systems of two

second-order quadratically semi-linear ordinary differential equations the class of

equations linearizable by the new method is lager than the class of equations

linearizable via point transformations. Finally, examples of applications of the

method are given.



CHAPTER IV

LINEARIZATION OF TWO SECOND-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

VIA FIBER PRESERVING POINT

TRANSFORMATIONS

4.1 Establishment of the Second Main Problem

The linearization problem of a system of second-order ordinary differential

equations

y′′1 = F1(x, y1, y2, y
′
1, y

′
2), y′′2 = F2(x, y1, y2, y

′
1, y

′
2). (4.1)

via a point transformation is to find an invertible transformation

t = φ(x, y1, y2), u1 = ψ1(x, y1, y2), u2 = ψ2(x, y1, y2), (4.2)

which transforms the system of equations (4.1) into a linear system of equations

ü+K(t)u = 0. (4.3)

Note that system (4.1) is the same as system (3.1), however we have changed the

variables x, y and t to y1, y2 and x, for ease of notation.

In the next section the form of a linearizable system (4.1) is obtained.

This form coincides with the form obtained in Aminova and Aminov (2006) for

a system (4.1) to be equivalent to the simplest equations. Some invariants of

this form with respect to the general set of point transformations related with

a linearizable systems (4.1) were obtained in Sookmee (2005). The necessary
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and sufficient conditions for system (4.1) to be equivalent with respect to a fiber

preserving point transformation

t = φ(x), u1 = ψ1(x, y1, y2), u2 = ψ2(x, y1, y2) (4.4)

to system

ü1 + k1u1 + k3u2 = 0, ü2 + k4u1 + k2u2 = 0, (4.5)

where ki, (i = 1, 2, 3, 4) are constant, are discussed in this chapter.

4.2 Necessary Form of a Linearizable System (4.1)

For obtaining necessary conditions for system (4.1) to be linearizable via

point transformations (4.2) one assumes that system (4.1) is obtained from the

linear system of differential equations (4.3) by an invertible transformation (4.2).

The derivatives are changed by the formulae∗,

u′1 = g1(x, y1, y2, y
′
1, y

′
2) =

Dxψ1

Dxφ
, u′′1 =

Dxg1
Dxφ

,

u′2 = g2(x, y1, y2, y
′
1, y

′
2) =

Dxψ2

Dxφ
, u′′2 =

Dxg2
Dxφ

,

where

Dx =
∂

∂x
+ y′1

∂

∂y1
+ y′2

∂

∂y2
+ y′′1

∂

∂y′1
+ y′′2

∂

∂y′2
.

Replacing u′1, u
′′
1, u

′
2 and u′′2 in system (4.3), it becomes

y′′1 = y′1(a11y
′
1
2 + a12y

′
1y

′
2 + a13y

′
2
2) + a14y

′
1
2 + a15y

′
1y

′
2

+a16y
′
2
2 + a17y

′
1 + a18y

′
2 + a19,

y′′2 = y′2(a11y
′
1
2 + a12y

′
1y

′
2 + a13y

′
2
2) + a24y

′
1
2 + a25y

′
1y

′
2

+a26y
′
2
2 + a27y

′
1 + a28y

′
2 + a29,

(4.6)

∗See more details in Appendix D.
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where the coefficients aij are expressed through the functions φ, ψ1, ψ2, their

partial derivatives and the entries of the matrix K = (kij(t)) as follows:

a11 = (h1ψ1y1y1 + h2ψ2y1y1 − vφy1y1 + f1φy1
3 − f2φy1

2φy2)/∆, (4.7)

a12 = 2(h1ψ1y1y2 + h2ψ2y1y2 − vφy1y2 + f1φy1
2φy2 − f2φy1φy2

2)/∆, (4.8)

a13 = (h1ψ1y2y2 + h2ψ2y2y2 − vφy2y2 + f1φy1φy2
2 − f2φy2

3)/∆, (4.9)

a14 = (2h1ψ1xy1 + 2h2ψ2xy1 + h3ψ1y1y1 + h4ψ2y1y1 + h5φy1y1 (4.10)

−2vφxy1 + 3f1φxφy1
2 − 2f2φxφy1φy2 − f3φy1

2φy2)/∆,

a15 = 2(h1ψ1xy2 + h2ψ2xy2 + h3ψ1y1y2 + h4ψ2y1y2 + h5φy1y2 (4.11)

−2vφxy2 + 2f1φxφy1φy2 − f2φxφy2
2 − f3φy1φy2

2)/∆,

a16 = (h3ψ1y2y2 + h4ψ2y2y2 + h5φy2y2 + f1φxφy2
2 − f3φy2

3)/∆, (4.12)

a17 = (h1ψ1xx + h2ψ2xx + 2h3ψ1xy1 + 2h4ψ2xy1 + 2h5φxy1 − vφxx (4.13)

+3f1φx
2φy1 − f2φx

2φy2 − 2f3φxφy1)/∆,

a18 = 2(h3ψ1xy2 + h4ψ2xy2 + 2h5φxy2 + f1φx
2φy2 − f3φxφy2

2)/∆, (4.14)

a19 = (h3ψ1xx + h4ψ2xx + h5φxx + f1φx
3 − f3φx

2φy2)/∆, (4.15)

a24 = (h6ψ1y1y1 + h7ψ2y1y1 + h8φy1y1 − f2φxφy1
2 + f3φy1

3)/∆, (4.16)

a25 = 2(h1ψ1xy1 + h2ψ2xy1 − vφxy1 − h6ψ1y1y2 + h7ψ2y1y2 (4.17)

+f1φxφxφy1
2 − 2f2φxφy1φy2 − f3φy1

2φy2)/∆,

a26 = (2h1ψ1xy2 + 2h2ψ2xy2 − 2vφxy2 + h6ψ1y2y2 + h7ψ2y2y2 (4.18)

+h8φy2y2 + 2f1φxφy1φy2 − 3f2φxφy2
2 − f3φy1φy2

2)/∆,

a27 = 2(h6ψ1xy1 + h7ψ2xy1 + h8φxy1 − f2φx
2φy1 + f3φxφy1

2)/∆, (4.19)

a28 = (h1ψ1xx + h2ψ2xx − vφxx + 2h6ψ1xy2 + 2h7ψ2xy2 + 2h8φxy2 (4.20)

+f1φx
2φy1 − 3f2φx

2φy2 + 2f3φxφy1φy2)/∆,

a29 = (h6ψ1xx + h7ψ2xx + h8φxx − f2φx
3 + f3φx

2φy1)/∆, (4.21)
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where ∆ ̸= 0 is the Jacobian of the change of variables (4.2),

∆ = (φxψ1y1ψ2y2−φxψ1y2ψ2y1−φy1ψ1xψ2y2+φy1ψ1y2ψ2x+φy2ψ1xψ2y1−φy2ψ1y1ψ2x),

f1 = ψ1y2(k22ψ2 + k21ψ1)− ψ2y2(k11ψ1 + k12ψ2),

f2 = ψ1y1(k22ψ2 + k21ψ1)− ψ2y1(k11ψ1 + k12ψ2),

f3 = ψ1x(k22ψ2 + k21ψ1)− ψ2x(k11ψ1 + k12ψ2),

v = ψ1y2ψ2y1 − ψ1y1ψ2y2 , h1 = φy2ψ2y1 − φy1ψ2y2 , h2 = φy1ψ1y2 − φy2ψ1y1 ,

h3 = φy2ψ2x − φxψ2y2 , h4 = φxψ1y2 − φy2ψ1x, h5 = ψ1xψ2y2 − ψ1y2ψ2x,

h6 = φxψ2y1 − φy1ψ2x, h7 = φy1ψ1x − φxψ1y1 , h8 = ψ1y1ψ2x − ψ1xψ2y1 .

Equation (4.6) presents the necessary form of a system of two second-order

ordinary differential equations which can be mapped via point transformations

into a system of linear equations (4.3) .

4.3 Sufficient Conditions for Equivalency to (4.5) via Fiber

Preserving Transformations

For obtaining sufficient conditions of linearizability of system (4.6), one

has to solve the compatibility problem of the system of equations (4.7)-(4.21),

considering it as an overdetermined system of partial differential equations for the

functions ψ1, ψ2 and φ with given coefficients aij of system (4.6).

The next part of the present thesis deals with a fiber preserving set of point

transformations (4.4):

t = φ(x), u1 = ψ1(x, y1, y2), u2 = ψ2(x, y1, y2),

and constant matrix

K =

 k1 k3

k4 k2

 .

The compatibility analysis depends on the value of ψ1y1 .
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4.3.1 Case ψ1y1 ̸= 0

Substitution of φy1 = 0 and φy2 = 0 into (4.7)-(4.21) gives

a11 = 0, a12 = 0, a13 = 0, (4.22)

vx = (2φxxv − φxv(a17 + a28))/(2φx),

vy1 = −v(2a14 + a25)/2,

vy2 = −v(a15 + 2a26)/2,

ψ1xx = (φxxψ1x − φx
3(k1ψ1 + k3ψ2)− φxψ1y1a19 − φxψ1y2a29)/φx, (4.23)

ψ1xy1 = (φxxψ1y1 − φxψ1y1a17 − φxψ1y2a27)/(2φx), (4.24)

ψ1xy2 = (φxxψ1y2 − φxψ1y1a18 − φxψ1y2a28)/(2φx), (4.25)

ψ1y1y1 = −(ψ1y1a14 + ψ1y2a24), (4.26)

ψ1y1y2 = −(ψ1y1a15 + ψ1y2a25)/2, (4.27)

ψ1y2y2 = −(ψ1y1a16 + ψ1y2a26), (4.28)

ψ2y2 = (ψ1y2ψ2y1 − v)/ψ1y1 , (4.29)

ψ2y1y1 = (a24v − ψ1y1ψ2y1a14 − ψ1y2ψ2y1a24)/ψ1y1 , (4.30)

ψ2xy1 = (φxxψ1y1ψ2y1 − φxψ1y1ψ2y1a17 − φxψ1y2ψ2y1a27 (4.31)

+φxa27v)/(2φxψ1y1),

ψ2xx = (φxxψ1y1ψ2x − φx
3ψ1y1(k2ψ2 + k4ψ1)− φxψ1y1ψ2y1a19 (4.32)

−φxψ1y2ψ2y1a29 + φxa29v)/(φxψ1y1),

where ∆ = −φxv ̸= 0. Comparing the mixed derivatives (vx)y1 = (vy1)x, (vx)y2 =

(vy2)x and (vy2)y1 = (vy1)y2 , one obtains the equations

2a14x − a17y1 + a25x − a28y1 = 0, a15x − a17y2 + 2a26x − a28y2 = 0,

a15y1 − 2a14y2 − a25y2 + 2a26y1 = 0.
(4.33)
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Considering the conditions (ψ1xx)y1 = (ψ1xy1)x, (ψ2xx)y1 = (ψ2xy1)x, (ψ1xx)y2 =

(ψ1xy2)x and (ψ2xx)y2 = (ψ2y2)xx, one has

φxxx = (3φxx
2ψ1y1 − 4φx

4ψ1y1k1 − 4φx
4ψ2y1k3 + φx

2ψ1y1(λ20 − λ16)(4.34)

+φx
2ψ1y2λ12)/(2φxψ1y1),

k4 = (4φx
2ψ1y1ψ2y1(k1 − k2) + 4φx

2ψ2y1
2k3 − vλ12)/(4φx

2ψ1y1
2), (4.35)

k3 = (ψ1y2
2λ12 − ψ1y1

2λ15 − ψ1y1ψ1y2λ16)/(4φx
2v), (4.36)

k2 = (4φx
2ψ1y1k1v − 2ψ1y1

2ψ2y1λ15 − 2ψ1y1ψ1y2ψ2y1λ16 (4.37)

+ψ1y1vλ16 + 2ψ1y2
2ψ2y1λ12 − 2ψ1y2vλ12)/(4φx

2ψ1y1v).

Here the functions λn(x, y1, y2) are defined through aij(x, y1, y2) and their deriva-

tives (presented in Appendix G).

Equating the mixed derivatives (ψ1xy1)y2 = (ψ1xy2)y1 , (ψ2xy1)y2 = (ψ2y2)xy1 ,

(ψ1xy1)y1 = (ψ1y1y1)x, (ψ2xy1)y1 = (ψ2y1y1)x, (ψ1xy2)y1 = (ψ1y1y2)x, (ψ1xy2)y2 =

(ψ1y2y2)x, (ψ1y1y1)y2 = (ψ1y1y2)y1 , (ψ2y1y1)y2 = (ψ2y2)y1y1 , (ψ1y1y2)y2 = (ψ1y2y2)y1

and using the conditions (k3)y2 = 0, (k2)y2 = 0, one obtains

λn = 0, (n = 1, 2, ..., 11). (4.38)

Note that the equation (ψ1xy2)y1 − (ψ1y1y2)x = 0 is also satisfied. Differentiating

equation (4.34) and (4.35) with respect to y1 and y2, one has

2λ15y1 − 2a14λ15 − a15λ16 + a25λ15 = 0, λ27+j = 0, (j = 0, 1, 2). (4.39)

The equation (k4)x = 0 is

4φxxλ12v + φxλ14v = 0. (4.40)
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Considering the equation (k3)x = 0, one gets

4φxxψ1y1
2λ15 + 4φxxψ1y1ψ1y2λ16 − 4φxxψ1y2

2λ12 (4.41)

+φxψ1y1
2(−2λ15x + a17λ15 + a18λ16 − a28λ15)

+2φxψ1y1ψ1y2(−λ16x − a18λ12 + a27λ15)− φxψ1y2
2λ14 = 0,

and the condition (k2)x = 0 gives

4φxxψ1y1
2ψ2y1λ15 + 4φxxψ1y1ψ1y2ψ2y1λ16 − 2φxxψ1y1λ16v (4.42)

−4φxxψ1y2
2ψ2y1λ12 + 4φxxψ1y2λ12v + φxψ1y1

2ψ2y1(−2λ15x + a17λ15

+a18λ16 − a28λ15) + 2φxψ1y1ψ1y2ψ2y1(−λ16x − a18λ12 + a27λ15)

+φxψ1y1v(λ16x + a18λ12 − a27λ15)− φxψ1y2
2ψ2y1λ14 + φxψ1y2λ14v = 0.

Adding j1 times (4.40) to (4.41), where j1 = ψ1y2
2/v, one has

4φxxψ1y1
2λ15 + 4φxxψ1y1ψ1y2λ16 + φxψ1y1

2(−2λ15x + a17λ15 (4.43)

+a18λ16 − a28λ15) + 2φxψ1y1ψ1y2(−λ16x − a18λ12 + a27λ15) = 0.

Subtracting equation j2(4.40) + j3(4.43) from (4.42), where j2 = (ψ1y2v −

ψ1y2
2ψ2y1)/v and j3 = ψ2y1 , one has

φxψ1y1v(λ16x + a18λ12 − a27λ15)− 2φxxψ1y1λ16v = 0. (4.44)

Subtracting equation j4(4.44) from (4.43), where j4 = (−2ψ1y2)/v, one has

4φxxψ1y1
2λ15 + φxψ1y1

2(a17λ15 − 2λ15x + a18λ16 − a28λ15) = 0. (4.45)

Next consider the equations (4.40)/v, (4.45)/j5 and (4.44)/j6, where j5 = ψ1y1
2

and j6 = ψ1y1v, one achieves

4φxxλ12 + φxλ14 = 0, (4.46)

2φxxλ16 − φx(λ16x + a18λ12 − a27λ15) = 0, (4.47)

4φxxλ15 + φx(a17λ15 − 2λ15x + a18λ16 − a28λ15) = 0. (4.48)
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Further analysis of the compatibility depends on the values of the coefficients λ12,

λ15 and λ16 of the last three equations (4.46)-(4.48).

Case λ12 ̸= 0.

Substituting φxx, found from equation (4.46), into (4.48) and (4.47), one

obtains

a17λ12λ15 − 2λ15xλ12 + a18λ12λ16 − a28λ12λ15 − λ14λ15 = 0,

2λ16xλ12 + 2a18λ12
2 − 2a27λ12λ15 + λ14λ16 = 0.

(4.49)

Differentiating equation (4.46) with respect to y1 and y2, one has

λ12y1λ14 − λ14y1λ12 = 0, λ12y2λ14 − λ14y2λ12 = 0. (4.50)

Equation (4.34) becomes

k1 = (16ψ1y1
2ψ2y1λ12

2λ15 + 16ψ1y1ψ1y2ψ2y1λ12
2λ16 (4.51)

+16ψ1y1λ12
2v(λ20 − λ16) + 4ψ1y1λ12v(2λ14x + a17λ14

−a28λ14) + ψ1y1λ14v(4a27λ16 + 5λ14)− 16ψ1y2
2ψ2y1λ12

3

+16ψ1y2λ12
3v)/(64φx

2ψ1y1λ12
2v).

Differentiating equation (4.51) with respect to x, one gets the condition

32λ12
3λ17+8λ12

2λ18+2λ12λ19+λ14(8a27
2λ16

2+18a27λ14λ16+15λ14
2) = 0. (4.52)

Notice that the equations (k1)y1 = 0 and (k1)y2 = 0 are satisfied. Hence, there

are no new conditions for the functions φ(x), ψ1(x, y1, y2) and ψ2(x, y1, y2). In

summary, the criteria for linearization are conditions (4.22), (4.33), (4.38), (4.39),

(4.49), (4.50) and (4.52). Note also that updating the ki, (i = 2, 3, 4), these become
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as follows:

k2 = (λ30/φx
2)− k1, (4.53)

k3 = (ψ1y2
2λ12 − ψ1y1

2λ15 − ψ1y1ψ1y2λ16)/(4φx
2v), (4.54)

k4 = (ψ1y1
2ψ2y1

2λ15 + ψ1y1ψ1y2ψ2y1
2λ16 − ψ1y1ψ2y1λ16v (4.55)

−ψ1y2
2ψ2y1

2λ12 + 2ψ1y2ψ2y1λ12v − λ12v
2)/(4φx

2ψ1y1
2v).

Case λ12 = 0 and λ16 ̸= 0.

Since λ12 = 0 and φx ̸= 0, equation (4.46) leads to the condition λ14 = 0,

and equation (4.47) becomes

φxx = φxλ16x/(2λ16).

Substituting φxx into (4.48) and (4.34), one gets

2(λ16xλ15 − λ15xλ16) + λ15λ16(a17 − a28) + a18λ16
2 = 0, (4.56)

k1 = (4ψ1y1ψ2y1λ16
2λ15 + 4ψ1y2ψ2y1λ16

3 − 4λ16
3v + 4λ16

2λ23v

−4λ16λ16xxv + 5λ16x
2v)/(16φx

2λ16
2v).

The equation (k1)x = 0, leads to the condition

8λ16
3λ21 + 4λ16

2λ22 + 18λ16λ16xxλ16x − 15λ16x
3 = 0. (4.57)

Note that the equations (φxx)yi = 0 and (k1)yi = 0, (i = 1, 2) are satisfied. Hence,

there are no other conditions for the functions φ(x), ψ1(x, y1, y2) and ψ2(x, y1, y2).

Summarizing, the linearization criteria in the case λ12 = 0 and λ16 ̸= 0 are condi-

tions (4.22), (4.33), (4.38), (4.39), (4.56) and (4.57). Note also that updating ki,

(i = 2, 3, 4), these become as follows:

k2 = (λ31/φx
2)− k1, (4.58)

k3 = (−ψ1y1
2λ15 − ψ1y1ψ1y2λ16)/(4φx

2v), (4.59)

k4 = (ψ1y1ψ2y1
2λ15 + ψ1y2ψ2y1

2λ16 − ψ2y1λ16v)/(4φx
2ψ1y1v). (4.60)
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Case λ12 = 0, λ16 = 0 and λ15 ̸= 0

Substituting φxx, found from (4.48), into (4.34), one has

k1 = (16ψ1y1ψ2y1λ15
3 + λ26v)/(64φx

2λ15
2v). (4.61)

Differentiating equation (4.61) with respect to x, one gets

λ15
3λ24 + 2λ15

2λ25 − 120λ15x
3 + 36λ15λ15x(4λ15xx (4.62)

+λ15xa17 − λ15xa28) = 0.

Note that the equations (φxx)yi = 0 and (k1)yi = 0, (i = 1, 2) are satisfied. Hence,

there are no more conditions for the compatibility, and the linearization criteria

in the studied case are (4.22), (4.33), (4.38), (4.39) and (4.62). Note also that

updating the ki, (i = 2, 3, 4), these become as follows:

k2 = (λ32/φx
2)− k1, (4.63)

k3 = (−ψ1y1
2λ15)/(4φx

2v), (4.64)

k4 = (ψ2y1
2λ15)/(4φx

2v). (4.65)

Remark 4.1. In the case λ12 = 0, λ16 = 0 and λ15 = 0, one has

k1 = k2 = (3φxx
2 − 2φxxxφx + φx

2λ33)/(4φx
4), k3 = k4 = 0.

This case corresponds to (2.34).

Combining all derived results in the case ψ1y1 ̸= 0, the following theorem

is proven.

Theorem 4.1. Necessary and sufficient conditions for system (4.6) to be equiva-

lent to a linear system (4.3) with constant matrix K via fiber preserving transfor-

mations are

(I.) The conditions are equations (4.22), (4.33), (4.38) and (4.39), together with

the additional conditions:
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(I.1.) If λ12 ̸= 0, then the additional conditions are equations (4.49), (4.50) and

(4.52).

(I.2.) If λ12 = 0 and λ16 ̸= 0, then the additional conditions are equations (4.56)

and (4.57).

(I.3.) If λ12 = 0, λ16 = 0 and λ15 ̸= 0, then the additional condition is equation

(4.62).

(I.4.) If λ12 = 0, λ16 = 0 and λ15 = 0, then there are no additional conditions.

4.3.2 Case ψ1y1 = 0

Without loss of generality, we can assume that ψ2y2 = 0 as well. Otherwise

the change of variables (which is indeed an equivalence transformation)

x̄ = x, ȳ1 = y2, ȳ2 = y1,

will bring us back to the case ψ1y1 ̸= 0. Thus, substituting φy1 = 0, φy2 = 0 and

ψ2y2 = 0 into (4.7)-(4.21), one obtains the equations as follows:

a11 = 0, a12 = 0, a13 = 0, a15 = 0, a16 = 0,

a18 = 0, a24 = 0, a25 = 0, a27 = 0,

(4.66)

ψ2y1y1 = −ψ2y1a14, (4.67)

ψ2xy1 = (φxxψ2y1 − φxψ2y1a17)/(2φx), (4.68)

ψ1y2y2 = −ψ1y2a26, (4.69)

ψ1xy2 = (φxxψ1y2 − φxψ1y2a28)/(2φx), (4.70)

ψ1xx = (φxxψ1x − φx
3(k1ψ1 + k3ψ2)− φxψ1y2a29)/φx, (4.71)

ψ2xx = (φxxψ2x − φx
3(k2ψ2 + k4ψ1)− φxψ2y1a19)/φx, (4.72)

where ∆ = −φxψ1y2ψ2y1 ̸= 0.
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From equations (4.67)-(4.72), one can compare the mixed derivatives

(ψ1y1)xy2 = (ψ1xy2)y1 , (ψ1xy2)y2 = (ψ1y2y2)x, (ψ1y1)y2y2 = (ψ1y2y2)y1 , (ψ2y2)xy1 =

(ψ2xy1)y2 , (ψ2xy1)y1 = (ψ2y1y1)x, (ψ2y2)y1y1 = (ψ2y1y1)y2 , (ψ1xx)y1 = (ψ1y1)xx,

(ψ2xx)y2 = (ψ2y2)xx, (ψ1xx)y2 = (ψ1xy2)x, (ψ2xx)y1 = (ψ2xy1)x, one obtains

a28y1 = 0, a28y2 = 2a26x, a26y1 = 0, a17y2 = 0,

a17y1 = 2a14x, a14y2 = 0,

(4.73)

k3 = (−a29y1ψ1y2)/(φx
2ψ2y1), (4.74)

k4 = (−a19y2ψ2y1)/(φx
2ψ1y2), (4.75)

k1 = (3φxx
2 − 2φxxxφx + φx

2µ1)/(4φx
4), (4.76)

k2 = (3φxx
2 − 2φxxxφx − φx

2µ2)/(4φx
4), (4.77)

where the coefficients µn are defined through aij and their derivatives, shown in

Appendix G.

Since ki, (i = 1, ..., 4) are constant, the equations (k2)x = 0, (k2)y2 = 0,

(k1)y1 = 0, (k3)y1 = 0, (k4)y2 = 0, (k1)y2 = 0 and (k2)y1 = 0 give

φxxxx = (12φxxxφxxφx − 12φxx
3 + 2φxxφx

2µ2 − φx
3µ2x)/(2φx

2), (4.78)

a19y2a14 − a19y1y2 = 0, a29y1a26 − a29y1y2 = 0,

a29y1y1 + a29y1a14 = 0, a19y2y2 + a19y2a26 = 0,

a26xx − a26xa28 + a26y2a29 − a29y2y2 + a29y2a26 = 0,

a14xx − a14xa17 + a14y1a19 − a19y1y1 + a19y1a14 = 0.

(4.79)

Notice that the equations (φxxxx)y1 = 0, (φxxxx)y2 = 0, (k3)y2 = 0 and (k4)y1 = 0

are satisfied. Considering the derivatives (k1)x = 0, (k3)x = 0 and (k4)x = 0, one
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achieves

2φxxµ5 − φxµ5x = 0, (4.80)

(φxx − φxµ3)a29y1 = 0, (4.81)

(φxx − φxµ4)a19y2 = 0. (4.82)

Further analysis of the compatibility depends on a29y1 , a19y2 and µ5.

Case a29y1 ̸= 0.

From equation (4.81), one obtains that

φxx = φxµ3.

Substituting φxx into (4.80) and (4.82), one has

2µ5µ3 − µ5x = 0,

a19y2(µ3 − µ4) = 0.

(4.83)

Substitution of φxx into (4.78) gives

2µ3xx + µ2x − 6µ3xµ3 − 2µ2µ3 + 2µ3
3 = 0. (4.84)

Note that the equations (φxx)y1 = 0 and (φxx)y2 = 0 are satisfied. Hence, there

are no new conditions. In summary, the linearization criteria are equations (4.66),

(4.73), (4.79), (4.83) and (4.84). Note also that updating the ki, (i = 1, 2, 3, 4),

these become as follows:

k1 = (µ3
2 − 2µ3x − µ5 − µ2)/(4φx

2),

k2 = k1 + µ5/(4φx
2),

k3 = (−a29y1ψ1y2)/(φx
2ψ2y1),

k4 = (−a19y2ψ2y1)/(φx
2ψ1y2).
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Case a29y1 = 0 and a19y2 ̸= 0.

From equation (4.82), one obtains that

φxx = φxµ4.

Substituting φxx into (4.80), one gets

µ5x − 2µ5µ4 = 0. (4.85)

Substitution of φxx into (4.78) gives

6µ4xµ4 − µ2x − 2µ4xx + 2µ2µ4 − 2µ4
3 = 0. (4.86)

Note that the equations (φxx)y1 = 0 and (φxx)y2 = 0 are satisfied. Hence, there

are no other conditions. Thus, the linearization criteria in this case are (4.66),

(4.73), (4.79), (4.85) and (4.86). Note also that updating the ki, (i = 1, 2, 3, 4),

these become as follows:

k1 = (µ4
2 − 2µ4x − µ5 − µ2)/(4φx

2),

k2 = k1 + µ5/(4φx
2),

k3 = 0,

k4 = (−a19y2ψ2y1)/(φx
2ψ1y2).

Case a29y1 = 0, a19y2 = 0 and µ5 ̸= 0.

From equation (4.80), one obtains that

φxx = (φxµ5x)/(2µ5).

Substitution of φxx into (4.78) leads to the condition

µ5
2(4µ5xµ2 − 4µ5xxx) + 18µ5xxµ5xµ5 − 15µ5x

3 − 4µ2xµ5
3 = 0. (4.87)
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Note that the equations (φxx)y1 = 0 and (φxx)y2 = 0 are satisfied. Hence, there

are no more conditions. In brief, the linearization criteria are conditions (4.66),

(4.73), (4.79) and (4.87). Notice also that

k2 = k1 + µ5/(4φx
2), k3 = 0, k4 = 0.

Remark 4.2. In the case a29y1 = 0, a19y2 = 0, µ5 = 0, one has

k1 = k2 = (3φxx
2 − 2φxxxφx + φx

2µ2)/(4φx
4), k3 = k4 = 0.

This case corresponds to (2.34).

Combining all obtained results in the case ψ1y1 = 0 and ψ2y2 = 0, the

following theorem is proven.

Theorem 4.2. Necessary and sufficient conditions for system (4.6) to be equiva-

lent to a linear system (4.3) with constant matrix K by fiber preserving transfor-

mations are

(II.) The conditions are equations (4.66), (4.73) and (4.79),

and the additional conditions:

(II.1.) If a29y1 ̸= 0, then the additional conditions are equations (4.83), (4.84).

(II.2.) If a29y1 = 0 and a19y2 ̸= 0, then the additional conditions are equations

(4.85), (4.86).

(II.3.) If a29y1 = 0, a19y2 = 0 and µ5 ̸= 0, then the additional condition is equation

(4.87).

(II.4.) If a29y1 = 0, a19y2 = 0 and µ5 = 0, then there are no additional conditions.

Remark 4.3. If one assumes that the conditions (II.) of Theorem 4.2 are valid,

then the conditions (I.) of Theorem 4.1 vanish. Moreover, these conditions also

imply that λ12 = −4a29y1 , λ15 = −4a19y2 , λ16 = −µ5, and the following is valid:

(a) the conditions (II.1.) become a particular case of the conditions (I.1.); (b) the

conditions (II.3.) are a particular case of the conditions (I.2.); (c) the conditions



53

(II.2.) with µ5 ̸= 0 and µ5 = 0 form particular cases of the conditions (I.2.) and

(I.3.), respectively. This allows to propose the conjecture that Theorem 4.1 is valid

independently of the values of ψ1y1 and ψ2y2 .

Notice that this conjecture is to be expected. For example, for a lineariz-

able single second-order ordinary differential equation via a point transformation

the criteria of linearization are combined to only two conditions, whereas dur-

ing compatibility analysis one has to study two separable cases, see in Meleshko

(2005).

4.4 Necessary Conditions of Linearization under Point

Transformations

During the study presented in the previous section several relations for

linearizability for the general case of point transformations (4.2) and for the general

case of the matrix K(t) were noted. These relations are the necessary conditions

for linearization and they were obtained as follows. For example, assuming that

ψ1y1 ̸= 0, from equations (4.7)-(4.21) one obtains the derivatives vx, vyj , φxx,

φxyj , φyjyk , ψ1xx, ψlxyj , ψlyjyk , (j, k, l = 1, 2). Comparing the mixed derivatives of

the functions v, φ, ψ1 and ψ2, one can find the expressions of the quantities ωn,

(n = 1, 2, ..., 15), where ωn are expressed through aij and their derivatives (shown

in Appendix G). Excluding the functions v, φ, ψ1 and ψ2 from these expressions,

one obtains the conditions

Ji = 0, (i = 1, 2, ..., 15), (4.88)
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where

J1 = ω1ω11 − 2ω1ω9 + 2ω10ω2 − ω3ω6, J2 = ω1ω5 + 2ω2ω6,

J3 = 6ω1ω8 − 2ω1ω12 + 10ω11ω2 − 20ω2ω9 − 5ω2
3,

J4 = 2ω10ω2 − ω1ω9, J5 = 10ω1ω7 + ω12ω2 − 3ω2ω8,

J6 = ω1ω8 + ω11ω2 − 3ω2ω9, J7 = 4ω1ω12 − 2ω1ω8 + 10ω2
3 + 5ω3ω5,

J8 = 10ω1ω13 + ω12ω3 − 3ω3ω8, J9 = ω1ω15 − ω10ω3,

J10 = ω1ω14 + ω11ω3 − 3ω3ω9, J11 = 2ω12ω2 − ω2ω8 + 5ω3ω4,

J12 = ω13ω2 − ω3ω7, J13 = 2ω15ω2 − ω3ω9,

J14 = ω14ω2 − ω3ω8, J15 = 2ω1ω4 − 2ω2ω3 − ω2ω5.

After obtaining these relations, one can directly check by substituting (4.7)-(4.21)

into (4.88), that they are satisfied for the general case of point transformations

(4.2) and for the general case of the matrix K(t).

Thus, the following theorem can be stated.

Theorem 4.3. The conditions (4.88) are necessary for system (4.6) to be lineariz-

able under point transformations.

Remark 4.4. Notice also that considering the conditions obtained in Aminova

and Aminov (2006); Neut, Petitot and Dridi (2009), one notes that they are not

satisfied unless the matrix K = 0.

4.5 Illustration of the Linearization Theorem

In this section, examples demonstrating the procedure of using the lin-

earization theorems are presented.

Example 4.4.1. Some types of Newtonian systems are of the form of a

system of two second-order quadratically semi-linear ordinary differential equa-
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tions

y′′1 = a(y1, y2)y
′
1
2 + 2b(y1, y2)y

′
1y

′
2 + c(y1, y2)y

′
2
2,

y′′2 = d(y1, y2)y
′
1
2 + 2e(y1, y2)y

′
1y

′
2 + f(y1, y2)y

′
2
2.

(4.89)

In Aminova and Aminov (2006); Mahomed and Qadir (2007) showed that sys-

tem (4.89) is equivalent via point transformations to the simplest equations

ü1 = 0, ü2 = 0 if and only if

Si = 0, (i = 1, 2, 3, 4), (4.90)

where

S1 = ay2 − by1 + be− cd, S2 = by2 − cy1 + (ac− b2) + (bf − ce),

S3 = dy2 − ey1 − (ae− bd)− (df − e2), S4 = by1 + fy1 − ay2 − ey2 .

Application of fiber preserving transformation to system (4.89) also leads to the

same conditions (4.90).

Example 4.4.2. Consider a nonlinear system

y′′1 = −y′1
2 − y′2

2 − q1, y′′2 = q2 − 2y′1y
′
2, (4.91)

where q1, q2 are constant. Applying the linearization criteria obtained in Aminova

and Aminov (2006); Neut, Petitot and Dridi (2009) to system (4.91), one obtains

that system (4.91) is equivalent to the free particle equations via point transfor-

mations if and only if q2 = 0. Let us consider the case q2 ̸= 0. Note that for

system (4.91):

λ12 = −4q2, λ14 = 0, λ15 = −4q2, λ16 = 0.

Since q2 ̸= 0, then λ12 ̸= 0 and equation (4.46) becomes φxx = 0. Taking the

simplest solution φ = x of this equation and solving the compatible system of

equations (4.23)-(4.28) and (4.29)-(4.32) for the functions ψ1 and ψ2, one gets the

solution ψ1 = 1
2
e(y1−y2) and ψ2 = 1

2
e(y1+y2). Notice that we assume k3 = k4 = 0
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for convenience, during solving the compatibility system of equations (4.23)-(4.32).

Substituting φ, ψ1 and ψ2 into equations (4.37) and (4.51), one obtains k1 = q1+q2

and k2 = q1 − q2. Thus, Theorem 4.1 guarantees that system (4.91) can be

transformed to the system of linear equations

ü1 + k1u1 = 0, ü2 + k2u2 = 0,

and the linearizing transformation is

t = x, u1 =
1

2
e(y1−y2), u2 =

1

2
e(y1+y2).

Example 4.4.3. A variety of applications in science and engineering such

as the well-known oscillator system, the vibration of springs and some types of the

conservative systems with two degrees of freedom, are of the form:

y′′1 = g1(x)y1 + g2(x)y2, y′′2 = g3(x)y2 + g4(x)y1. (4.92)

For system (4.92):

λ12 = −4g4, λ16 = 4(g1 − g3), λ15 = −4g2, λ21 = −2g3x, λ22 = 4g3λ16x − λ16xxx.

Then by virtue of Theorem 4.1, system (4.92) can be reduced via a fiber preserving

transformation to a linear system with constant coefficients if the functions gi(x),

(i = 1, 2, 3, 4) are as follows. If g4 ̸= 0, then the conditions are

g4xg2 − g2xg4 = 0, g4(g3x − g1x) + g4x(g1 − g3) = 0,

16g3xg4
3 + 4g4xxxg4

2 − 18g4xxg4xg4 + 15g4x
3 − 16g4xg3g4

2 = 0,

if g4 = 0 and g1 ̸= g3, then the conditions are

g2(g3x − g1x) + g2x(g1 − g3) = 0,

8λ16
3λ21 + 4λ16

2λ22 + 18λ16λ16xxλ16x − 15λ16x
3 = 0, (4.93)
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if g4 = 0, g1 = g3 and g2 ̸= 0, then the conditions are

15g2x
3 − 18g2xxg2xg2 + 16g2

3g3x + 4g2
2(g2xxx − 4g2xg3) = 0,

if g4 = 0, g1 = g3 and g2 = 0, then this case corresponds to (2.34).

For instance, considering the oscillator system (g2 = g4 = 0)

y′′1 = g1(x)y1, y′′2 = g3(x)y2,

the criteria of (Aminova and Aminov, 2006) and (Neut, Petitot and Dridi, 2009) are

only satisfied when g1 = g3. If g1 ̸= g3, then there is only the single condition (4.93)

for two functions g1 and g3 which guarantees that a fiber preserving transformation

can transform this system to the case

ü1 + k1u1 + k3u2 = 0, ü2 + k2u2 + k4u1 = 0.

Example 4.4.4. We consider a predator-prey population model, the non-

linear Lotka-Volterra system:

y′1 = g(y1, y2) = l1y1 − l2y1y2,

y′2 = h(y1, y2) = l3y1y2 − l4y2,

(4.94)

where li > 0, (i = 1, 2, 3, 4) are constant. System (4.94) is a particular case of the

system

y′′1 = f1(y2)y
′
1 − f2(y1)y

′
2,

y′′2 = f3(y1)y
′
2 + f4(y2)y

′
1.

(4.95)

with

f1 = l1 − l2y2, f2 = l2y1, f3 = l3y1 − l4, f4 = l3y2. (4.96)

System (4.95) is not only the differential form of (4.94), but also a type of system

(4.6). Thus applying conditions (I.) of Theorem 4.1 to system (4.95), one obtains

the needed linearizing conditions:

f ′
i = 0, (i = 1, 2, 3, 4). (4.97)
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The linearizing conditions (4.97) force (4.96) to give l2 = l3 = 0, these make λ12

and λ15 of Theorem 4.1 vanish. Therefore, the differential form of system (4.94) is

linearizable by a fiber preserving point transformation. Note that the transformed

linear system depends on the value of λ16 = l1
2 − l4

2.

Example 4.4.5. Consider the fourth-order ordinary differential equation

y′′′′1 − a(x, y1)(y
′′′
1 )

2 − b(x, y1) = 0. (4.98)

Applying the linearization criteria obtained in Ibragimov, Meleshko and Suksern

(2008) to equation (4.98), one obtains that equation (4.98) does not satisfy even

the necessary condition for linearization. On the other hand, equation (4.98) is

equivalent to the system

y′′1 = y2, y
′′
2 = a(x, y1)y

′
2
2
+ b(x, y1). (4.99)

Applying the linearization criteria obtained in Aminova and Aminov (2006); Neut,

Petitot and Dridi (2009) to system (4.99), one obtains that this system is not

linearizable. On the other hand, system (4.99) is a type of equation (4.6). Applying

Theorem 4.1, one obtains that linearization criteria are

bxy1 = 0, by1y1 = 0, a = 0.

These conditions require that equation (4.98) is already linear. Note that for

system (4.99), λ12 = −4by1 , λ16 = 0 and λ15 = −4.

4.6 Summary

In this chapter, the necessary form of a linearizable system of two

second-order ordinary differential equations y′′1 = f1(x, y1, y2, y
′
1, y

′
2), y′′2 =

f2(x, y1, y2, y
′
1, y

′
2) via point transformations was presented. Some other necessary

conditions were also found. Necessary and sufficient conditions for a system of
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two second-order ordinary differential equations to be transformed to the general

form of linear system with constant coefficients via fiber preserving transforma-

tions were obtained. On the way of establishing of main theorems, we also gave

an explicit procedure for constructing this linearizing transformation. Illustrative

examples of linearization theorems were given.



CHAPTER V

CONCLUSIONS

This thesis was devoted to the study of the linearization problem of a system

of two second-order ordinary differential equations

ẍ = G(t, x, y, ẋ, ẏ), ÿ = F (t, x, y, ẋ, ẏ). (5.1)

The method of the study was separated into two parts as follows.

5.1 Linearization of a Projectable System (5.1)

A new method for linearizing a system of ordinary differential equations

was introduced. This method consists of sequentially reducing number of the

dependent variables and using the Lie criteria for the reduced equations. The

method was applied to a system of two second-order ordinary differential equations.

Moreover, it was shown that for systems of two second-order quadratically semi-

linear ordinary differential equations the new method gives a more general set

of linearizable systems than is possible via point transformations. An example of

equations which are not linearizable by point transformations, but are sequentially

linearizable by the new method, was given.

5.2 Linearization of System (5.1) via Fiber Preserving

Point Transformations

The necessary form of a linearizable system of two second-order ordinary

differential equations (5.1) via point transformations was obtained. Some other
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necessary conditions were also found. Necessary and sufficient conditions for a

system of two second-order ordinary differential equations to be transformed to

the general form of linear system with constant coefficients via fiber preserving

transformations were obtained. A linear system with constant coefficients was

chosen because of its simplicity of finding the general solution. Along the way of

establishing of main theorems, we also gave an explicit procedure for constructing

this linearizing transformation.
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gen zwischen x, y, die eine gruppe von transformationen gestatten. III.

Archiv for Matematik og Naturvidenskab. 8(4): 371-427.

Liouville, R. (1889). Sur les invariantes de certaines équations. J. de l’École
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APPENDIX A

CANONICAL FORM OF A LINEAR

SECOND-ORDER ODE

This part shows that a linear second-order ordinary differential equation:

y′′ (x) + a (x) y′ (x) + b (x) y (x) = c (x) . (A.1)

can be reduced to the simplest equation

u′′ = 0,

under point transformations.

If c(x) ̸= 0, then equation (A.1) is nonhomogeneous. If c(x) = 0, then

equation (A.1) is homogeneous. Note that the general solution of equation (A.1)

is as follows

y = yh + yp,

where yh is the general solution of the homogeneous equation

y′′ + a(x)y′ + b(x)y = 0

and yp is a particular solution of the equation (A.1).

Next let us construct the point transformation

t = x, z = y − yp(x). (A.2)

Then the derivatives are changed by the formulae

y′ = z′ + y′p ,

y′′ = z′′ + y′′p .
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Substitution of these y′ and y′′ into equation (A.1), gives

(z′′ + a(x)z′ + b(x)z) +
(
y′′p + a(x)y′p + b(x)yp

)
= c(x). (A.3)

Since y′′p + a(x)y′p + b(x)yp = c(x). Thus equation (E.3) becomes

z′′ + a(x)z′ + b(x)z = 0. (A.4)

That is, we can eliminate the coefficient c(x) from equation (A.1).

Next will show the elimination of the coefficients a(x) and b(x) from the

equation (A.4). Let us construct the point transformation

t = x, w =
z

α(x)
, (A.5)

where α(x) ̸= 0. Then the derivatives are changed by the formulae

z′ = w′α(x) + wα′(x),

z′′ = w′′α(x) + 2w′α′(x) + wα′′(x).

Substitution of these z′ and z′′ into equation (A.4), gives

w′′α(x) + w′(2α′(x) + a(x)α(x)) + w(α′′(x) + a(x)α′(x) + b(x)α(x)) = 0. (A.6)

Next construct the Cauchy problem

α′′(x) + a(x)α′(x) + b(x)α(x) = 0, (A.7)

α(x0) = 1, α′(x0) = 1. (A.8)

Then there exists the unique solution of (A.7) satisfying the initial condition (A.8).

Therefore, the equation (A.6) is reduced to

w′′α(x) + w′(2α′(x) + a(x)α(x)) = 0. (A.9)

Since by equation (A.8), α(x) ̸= 0 in some neighborhood of x0, equation (A.9) can

be rewritten as follows

w′′ + w′ã(x) = 0, (A.10)
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where ã(x) = 2α′(x)
α(x)

+ a(x).

Next multiply the equation (A.10) by the nonzero term e

x∫
x0

ã(s)ds

, one gets

e

x∫
x0

ã(s)ds

(w′′ + w′ã(x)) = 0. (A.11)

Defining u′ = w′e

x∫
x0

ã(s)ds

, one obtains that the equation (A.11) is reducible to

simplest equation

u′′ = 0.

Remark A.1. The values of Jacobians of the point transformations (A.2) and

(A.5) are equal to 1 and 1
α(x)

, respectively.

Remark A.2. The composition of two point transformations is still a point

transformation.



APPENDIX B

THE INVERSE FUNCTION THEOREM

Theorem. (The Inverse Function Theorem)

Let V be open in Rn and f : V → Rn be C1 on V . If ∆f (a) ̸= 0 for some a ∈ V ,

then there exits an open set W ⊂ V containing a, such that

i) f is 1-1 on W ,

ii) f−1 is C1 on f(W ), and

iii) for each z := f(s) ∈ f(W ),

D(f−1)(z) := [Df(s)]−1,

where D is the Jacobian matrix and [ ]−1 represents matrix inversion.

Example. Let f(x, y) = (3x− y, x
y
). Prove that f−1 exists.

Defining

t := φ(x, y) = 3x− y, u := ψ(x, y) =
x

y
.

Then φx = 3, φy = −1, ψx = 1
y
, ψy = −x

y2
, these imply that f ∈ C1(E), where

E = { (x, y) | x ∈ R, y ∈ R \ {0} }.

Next consider

∆f (a) = det

 3 −1

1
y0

−x0
y02

 =
y0 − 3x0
y02

̸= 0,

for all a = (x0, y0) ∈ E with y0 ̸= 3x0.

Thus by the Inverse Function Theorem, the function f−1 exists at least

locally and direct computation shows that

x = φ̃(t, u) :=
ut

3u− 1
, y = ψ̃(t, u) :=

t

3u− 1
,
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for any (t, u) ∈ f(W ), where W is some open set containing a.



APPENDIX C

ANOTHER EXAMPLE TO EXPRESS THE

POINT TRANFORMATION

Consider the problem∗ of finding all partial differential equations of the

form

F (t, x, ut, ux, utt, utx, uxx) = 0, (C.1)

which are equivalent to a linear second-order parabolic partial equation

vτ + b1(τ, y)vyy + b2(τ, y)vy + b3(τ, y)v = 0. (C.2)

The essential part of this linearization problem under point transformations, is to

find an invertible change of the independent and dependent variables

τ = H(t, x, u), y = Y (t, x, u), v = V (t, x, u), (C.3)

which transforms the nonlinear equation (C.1) into a linear second-order parabolic

partial differential equation (C.2). Here the independent variables are t, x and

the dependent variable is u. Note that ∆ ̸= 0 is the Jacobian of the change of

variables (C.3)

∆ = (DtH)(DxY )− (DxH)(DtY ),

where

Dt = ∂t + ut∂u + utx∂ux + utt∂ut , Dx = ∂x + ux∂u + uxx∂ux + utx∂ut .

∗See more details in Thailert (2008).



APPENDIX D

DEFINING DERIVATIVES IN POINT

TRANSFORMATIONS IN CASE OF A

SYSTEM OF TWO SECOND-ORDER ODES

Consider the linearization problem of a system of second-order ordinary

differential equations

y′′1 = F1(x, y1, y2, y
′
1, y

′
2), y′′2 = F2(x, y1, y2, y

′
1, y

′
2). (D.1)

via a point transformation. The problem consists of finding an invertible transfor-

mation

t = φ(x, y1, y2), u1 = ψ1(x, y1, y2), u2 = ψ2(x, y1, y2), (D.2)

which transforms the system of equations (D.1) into a linear system of equations

ü1 + k11(t)u1 + k12(t)u2 = 0, ü2 + k21(t)u1 + k22(t)u2 = 0. (D.3)

Notice that in the equation (D.2), x is the independent variable and y1, y2 are

dependent variables, and ∆ ̸= 0 is the Jacobian of the change of variables (D.2),

∆ = (φxψ1y1ψ2y2−φxψ1y2ψ2y1−φy1ψ1xψ2y2+φy1ψ1y2ψ2x+φy2ψ1xψ2y1−φy2ψ1y1ψ2x).

In order to find the necessary condition for system (D.1) to be linearizable

to the form (D.3), one need to find the formulae of the derivatives ü1 and ü2.

Let us assume that y(x) is a given function∗. The first equation of (D.2)

becomes

t = φ (x, y1 (x) , y2 (x)) =: φ̃(x).

∗This function need not to be the solution of equation (D.1).



76

Suppose that φ̃
′
(x) = 0, then t = φ = constant. This contradicts the nonzero

value of the Jacobian of the change of variables (D.2). Thus, φ̃
′
(x) = φx+y

′
1φy1 +

y′2φy2 ̸= 0, then by virtue of the Inverse Function Theorem, one finds

x = ξ (t) . (D.4)

Substitution of x into the second and third equation of (D.2), one obtains

u1 (t) = ψ1 (ξ (t) , y1 (ξ (t)), y2 (ξ (t))) , (D.5)

u2 (t) = ψ2 (ξ (t) , y1 (ξ (t)), y2 (ξ (t))) . (D.6)

Thus the first-order derivatives of u1, u2 with respect to t, are defined by the

formula

u̇1 =
du1
dt

=
∂ψ1

∂x

dξ

dt
+
∂ψ1

∂y1

dy1
dx

dξ

dt
+
∂ψ1

∂y2

dy2
dx

dξ

dt
= (ψ1x+y

′
1ψ1y1+y

′
2ψ1y2)

dξ

dt
, (D.7)

u̇2 =
du1
dt

=
∂ψ2

∂x

dξ

dt
+
∂ψ2

∂y1

dy1
dx

dξ

dt
+
∂ψ2

∂y2

dy2
dx

dξ

dt
= (ψ2x+y

′
1ψ2y1+y

′
2ψ2y2)

dξ

dt
. (D.8)

To find dξ
dt
, let us consider the identity

t = φ (ξ (t) , y1 (ξ (t)) , y2 (ξ (t))) . (D.9)

Differentiating the equation (D.9) with respect to t, one obtains

dt

dt
=

∂φ

∂x

dξ

dt
+
∂φ

∂y1

dy1
dx

dξ

dt
+
∂φ

∂y2

dy2
dx

dξ

dt

1 = (φx + y′1φy1 + y′2φy2)
dξ

dt
dξ

dt
=

1

(φx + y′1φy1 + y′2φy2)
. (D.10)

Substitution of dξ
dt

into equations (D.7) and (D.8), one obtains

u̇1 =
ψ1x + y′1ψ1y1 + y′2ψ1y2

φx + y′1φy1 + y′2φy2
=
Dxψ1

Dxφ
= h11 (x, y1, y2, y

′
1, y

′
2) ,

u̇2 =
ψ2x + y′1ψ2y1 + y′2ψ2y2

φx + y′1φy1 + y′2φy2
=
Dxψ2

Dxφ
= h21 (x, y1, y2, y

′
1, y

′
2) ,
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where

Dx =
∂

∂x
+ y′1

∂

∂y1
+ y′2

∂

∂y2
+ y′′1

∂

∂y′1
+ y′′2

∂

∂y′2

is the total derivative with respect to x.

Next consider the second-order derivative of u1 with respect to t, is defined

by the formula

ü1 =
d2u1
dt2

=
du̇1
dt

=
dh11 (ξ (t) , y1 (ξ (t)) , y2 (ξ (t)) , y

′
1 (ξ (t)) , y

′
2 (ξ (t)))

dt

=
∂h11
∂x

dξ

dt
+
∂h11
∂y1

dy1
dx

dξ

dt
+
∂h11
∂y2

dy2
dx

dξ

dt
+
∂h11
∂y′1

dy′1
dx

dξ

dt
+
∂h11
∂y′2

dy′2
dx

dξ

dt

=
(
h11x + y′1h1y1 + y′2h2y2 + y′′1h11y′1 + y′′2h11y′2

) dξ
dt

=
h11x + y′1h1y1 + y′2h2y2 + y′′1h11y′1 + y′′2h11y′2

φx + y′1φy1 + y′2φy2

=
Dxh11
Dxφ

= h12(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2).

Note that the formula for the second-order derivative of u2 with respect to t, is

similar to ü1. That is, one obtains

ü2 = h22(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2).

Repeating the same process, one obtains the higher order derivatives by the

formulae

u1
(3) =

dü1
dt

=
Dh12
Dφ

= h13(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2 , y

′′′
1 , y

′′′
2 ),

u2
(3) =

dü2
dt

=
Dh22
Dφ

= h23(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2 , y

′′′
1 , y

′′′
2 ),

u1
(4) =

du1
(3)

dt
=
Dh13
Dφ

= h14(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2 , y

′′′
1 , y

′′′
2 , y

(4)
1 , y

(4)
2 ),

u2
(4) =

du2
(3)

dt
=
Dh23
Dφ

= h24(x, y1, y2, y
′
1, y

′
2, y

′′
1 , y

′′
2 , y

′′′
1 , y

′′′
2 , y

(4)
1 , y

(4)
2 ).

The recurrent formula is as follows

u
(n)
j =

du
(n−1)
j

dt
=
Dh(n−1)j

Dφ
= hnj(x, y, y

′, y′′, ..., y(n)), (n = 1, 2, ..., k), (j = 1, 2).
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Note that u
(0)
j = uj and h(0)j = ψj. Observe that the order of the given ordinary

differential equation is preserved under the invertible point transformation (D.2).

For the relation of the solutions ỹ1(x), ỹ2(x) and ũ1(t), ũ2(t), according to

(D.4), (D.5) and (D.6), one can convert the solution ỹ1(x), ỹ2(x) to the solution

ũ1(t), ũ2(t). Conversely, since the point transformation (D.2) is invertible, x, y1

and y2 can be written as follows

x = φ̂ (t, u1, u2) , y1 = ψ̂1 (t, u1, u2) , y2 = ψ̂2 (t, u1, u2) . (D.11)

If we have the solution ũ1(t), ũ2(t), by applying the Inverse Function Theorem to

the first equation of (D.11), one obtains

t = σ(x).

Substitution of this t into the second and third equation of (D.11), one obtains

the solution

ỹ1(x) := ψ̂1(σ(x), ũ1(σ(x)), ũ2(σ(x))) ,

ỹ2(x) := ψ̂2(σ(x), ũ1(σ(x)), ũ2(σ(x))) .



APPENDIX E

PROOF FOR CANONICAL FORMS OF A

SYSTEM OF N LINEAR SECOND-ORDER

ODES

Let us consider a linear system of n second-order ordinary differential equa-

tions

v̈ + Cv̇ +Dv + E = 0, (E.1)

where v = v(t) and E = E(t) are vectors, C = C(t) and D = D(t) are n × n

square matrices.

If E(t) ̸= 0, then system (E.1) is called nonhomogeneous. If E(t) = 0,

then system (E.1) is called homogeneous. Note that the general solution of system

(E.1) is of the form

v = vh + vp,

where vh is the general solution of the homogeneous system

v̈ + C(t)v̇ +D(t)v = 0,

and vp is any particular solution of the system (E.1).

Next defining the point transformation

x = t, z = v − vp(t). (E.2)

Then the derivatives are changed by the formulae

v̇ = ż + v̇p ,

v̈ = z̈ + v̈p.
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Substitution of these v̇ and v̈ into system (E.1), gives

(z̈ + C(t)ż +D(t)z) + (v̈p + C(t)v̇p +D(t)vp) = E(t). (E.3)

Since v̈p + C(t)v̇p +D(t)vp = E(t). Thus system (E.3) becomes

z̈ + C(t)ż +D(t)z = 0. (E.4)

That is, we can eliminate the vector E(t) from system (E.1).

E.1 First Candidate for the Canonical Form.

Since there exists G1(t), where G1(t) is nonsingular n × n square matrix

satisfying the Cauchy problem

2Ġ1(t) + C(t)G1(t) = 0, (E.5)

det G1(t0) ̸= 0, (E.6)

we can define u = (G1(t))
−1z. Hence the derivatives are changed by the formulae

ż = u̇G1(t) + uĠ1(t), z̈ = üG1(t) + 2u̇Ġ1(t) + uG̈1(t).

Substitution of these ż and z̈ into system (E.4), gives

ü+ (G1(t))
−1(2Ġ1(t) + C(t)G1(t))u̇ (E.7)

+(G1(t))
−1(G̈1(t) + C(t)Ġ1(t) +D(t)G1(t))u = 0.

The property (E.5) implies that the system (E.11) reduces to

ü+Ku = 0, (E.8)

where K = (G1(t))
−1(G̈1(t)+C(t)Ġ1(t)+D(t)G1(t)). Notice that system (E.8) is

called the first candidate of canonical forms.
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E.2 Second Candidate for the Canonical Form.

Since there exists G2(t), where G2(t) is nonsingular n × n square matrix

satisfying the Cauchy problem

G̈2(t) + C(t)Ġ2(t) +D(t)G2(t) = 0, (E.9)

det G2(t0) ̸= 0, (E.10)

we can define u = (G2(t))
−1z. Hence the derivatives are changed by the formulae

ż = u̇G2(t) + uĠ2(t), z̈ = üG2(t) + 2u̇Ġ2(t) + uG̈2(t).

Substitution of these ż and z̈ into system (E.4), gives

ü+ (G2(t))
−1(2Ġ2(t) + C(t)G2(t))u̇ (E.11)

+(G2(t))
−1(G̈2(t) + C(t)Ġ2(t) +D(t)G2(t))u = 0.

The property (E.9) implies that the system (E.11) reduces to

ü+K1u̇ = 0, (E.12)

where K1 = (G2(t))
−1(2Ġ2(t) + C(t)G2(t)). Notice that system (E.12) is called

the second candidate of canonical forms.

Remark C.1. The value of the Jacobian of the point transformation (E.2) is

equal to 1.

Remark C.2. The initial conditions (E.6) and (E.10) imply that the solutions

G1(t) and G2(t) are nonsingular in some neighborhoods of t0, respectively.

Remark C.3. The system (E.5) can be written as a linear system of n2 first-

order ordinary differential equations. Meanwhile, the system (E.9) can be written

as a linear system of 2n2 first-order ordinary differential equations. One may

thus apply the theorems∗ of existence and uniqueness to those linear systems to

guarantee existence of solutions.

∗The details are presented in Appendix F.



APPENDIX F

THE THEORY OF EXISTENCE AND

UNIQUENESS OF LINEAR SYSTEMS

Definition. Any system of m first-order ordinary differential equations of the

form

Ẋ = F (t,X), X ∈ Rm, (F.1)

is called a normal system of first order ordinary differential equations.

Definition. A normal system of pth order ordinary differential equations for the

unknown functions ξ1(t), ξ1(t), ..., ξn(t) is any system of the form

dpξk
dtp

= Fk(ξ1,
dξ1
dt
, ...,

dp−1ξ1
dtp−1

; ξ2,
dξ2
dt
, ...,

dp−1ξ2
dtp−1

; ...; ξn,
dξn
dt
, ...,

dp−1ξn
dtp−1

; t) (F.2)

where k = 1, 2, ..., n. In other words, the highest derivatives of each function ξk,

(k = 1, 2, ..., n) can be found only in the left side.

Theorem. A normal system (F.2) of ordinary differential equations is equivalent

to a normal system of the type (F.1).

Proof.

We introduce new unknown functions:

X1 = ξ1, X2 =
dξ1
dt
, X3 =

d2ξ1
dt2

, ..., Xp =
dp−1ξ1
dtp−1

,

Xp+1 = ξ2, Xp+2 =
dξ2
dt
, Xp+3 =

d2ξ2
dt2

, ..., X2p =
dp−1ξ2
dtp−1

,

............................................................. ,

Xp̃+1 = ξn, Xp̃+2 =
dξn
dt
, Xp̃+3 =

d2ξn
dt2

, ..., Xnp =
dp−1ξn
dtp−1

,
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where p̃ = (n− 1)p. Hence the normal systems of the type (F.2) is transformed to

a normal system of first order ordinary differential equations:

dXi

dt
= Hi(t,X1, X2, X3, ..., Xm), (i = 1, 2, ...,m), (F.3)

where m = np. Note that if i = jp, (j = 1, 2, ..., n), then Hi = Fi.

Thus, the study of a normal system of first-order ordinary differential equa-

tions provides insight into any kind normal systems (F.2).

Therefore, in the scope of this thesis, it is enough to study the existence

and uniqueness theorems for normal systems of first-order ordinary differential

equations as follows.

Theorem. (Local theorem)

Consider a Cauchy problem consisting of a normal system of n first-order ordinary

differential equations,

Ẋ = F (t,X), X(t0) = X0,

which satisfy the properties:

(a) F (t,X) ∈ C(D), where D is an open set in Rn+1,

(b) for the cylinder G = { (t,X) ∈ D | |t − t0| ≤ a, ∥ X − X0 ∥≤ b }, there are

constants m = max
(t,X)∈G

∥ F (t,X) ∥ and h = min(a, b
m
),

(c) F (t,X) satisfies a Lipschitz condition in G.

Then there exists one and only one solution of the Cauchy problem in the interval

J = [t0 − h, t0 + h].

Theorem. (Global theorem)

Let F (t,X) ∈ C(D) satisfy a Lipschitz condition in D with the Lipschitz constant

L(t), which can depend on t: there is a function L(t) ∈ C(J), J = (a, b) that

∥ F (t,X1)− F (t,X2) ∥≤ L(t) ∥ X1 −X2 ∥,
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where D = { (t,X) ∈ Rn+1| t ∈ J }. Then there exists one and only one solution

of the Cauchy problem:

Ẋ = F (t,X), X(t0) = X0, t0 ∈ J,

on the interval J , ∀(X0, t0) ∈ D.

F.1 Systems of linear equations

Let us consider a linear system of n first-order ordinary differential equa-

tions. In matrix form it can be written as

Ẋ(t) = A(t)X(t) +B(t),

where X(t) and B(t) are column vectors of the length n, A(t) is n × n square

matrix.

Theorem. If A(t) and B(t) ∈ C(J), then there exists one and only one solution

of the Cauchy problem:

Ẋ(t) = A(t)X(t) +B(t),

X(t0) = X0, t0 ∈ J,

defined on the whole interval J .

Proof.

For proving the theorem one needs to check conditions of the global theorem.

Here F (t,X) = A(t)X + B(t). Thus, F (t,X) ∈ C(D), where D = { (t,X) | t ∈

J, X ∈ Rn }. For checking the Lipschitz condition in D, one has to study

F (t,X1)− F (t,X2) = A(t)(X1 −X2).

Therefore F(t,X) satisfies a Lipschitz condition in D with the Lipschitz constant

L(t) =∥ A(t) ∥2.



APPENDIX G

DEFINITION OF λn, µn AND ωn

λ1 = 2a28y1 − 2a27y2 + a17a25 − 2a18a24 − a25a28 + 2a26a27,

λ2 = 2a18y1 − 2a17y2 − 2a14a18 + a15a17 − a15a28 + 2a16a27,

λ3 = 4a24x − 2a27y1 − 2a14a27 + 2a17a24 − 2a24a28 + a25a27,

λ4 = 2a28y1 − 2a25x + a15a27 − 2a18a24,

λ5 = 2a28y2 − 4a26x + 2a16a27 − a18a25,

λ6 = 2a25y1 − 4a24y2 + 2a14a25 − 2a15a24 + 4a24a26 − a25
2,

λ7 = 4a16x − 2a18y2 + a15a18 − 2a16a17 + 2a16a28 − 2a18a26,

λ8 = 4a16y1 − 2a15y2 − 4a14a16 + a15
2 − 2a15a26 + 2a16a25,

λ9 = 2a25y2 − 4a26y1 − a15a25 + 4a16a24,

λ10 = 2a18xa15 − 8a16y1a19 − 8a16y2a29 − 4a17xa16 − 4a18xy2

−4a18xa26 + 2a18y1a18 + 2a18y2a17 + 2a18y2a28 + 8a19y1a16

+8a19y2y2 − 8a19y2a15 + 8a19y2a26 + 4a26xa18 + 4a28xa16

−16a29y2a16 − 2a14a18
2 − 2a15a18a28 + 2a16a17

2 − 2a16a28
2

+2a17a18a26 + a18
2a25 + 2a18a26a28,

λ11 = 2a18y2a27 − 4a19y2a25 − 4a26xx + 4a26xa28 − 4a26y1a19 − 4a26y2a29

+4a29y1a16 + 4a29y2y2 − 4a29y2a26 − a15a18a27 + 2a16a17a27

−2a16a27a28 + 2a18a26a27,

λ12 = 2a27x − 4a29y1 − a17a27 + 4a19a24 + 2a25a29 − a27a28,
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λ14 = λ12(a28 − a17)− a27λ16 − 2λ12x,

λ15 = 2a18x − 4a19y2 + 2a15a19 + 4a16a29 − a17a18 − a18a28,

λ16 = 4a19y1 − 2a17x + 2a28x − 4a29y2 − 4a14a19 − 2a15a29 + a17
2

+2a19a25 + 4a26a29 − a28
2,

λ17 = 2a19xa25 − 2a19y2a27 + 2a25xa19 + 4a26xa29 + 2a28xx − 2a28xa28

−4a29xy2 + 4a29xa26 − 2a29y1a18 + a15a19a27 + 2a16a27a29 − a17a18a27

+2a18a19a24 + a18a25a29 − a18a27a28 − a27λ15,

λ18 = 2a19y1λ14 + 4a28xλ14 − 10a29y2λ14 + 2λ14xx + 2λ14xa17 − 2λ14xa28

−2a14a19λ14 − a15a29λ14 + a17
2λ14 − a17a28λ14 − 3a18a27λ14

+5a19a25λ14 + 10a26a29λ14 − 2a28
2λ14,

λ19 = 8a29y1λ14λ16 + 8λ14xa27λ16 + 18λ14xλ14 + 8a17a27λ14λ16 + 9a17λ14
2

−8a19a24λ14λ16 − 4a25a29λ14λ16 + 4a27
2λ14λ15 − 4a27a28λ14λ16

−9a28λ14
2,

λ20 = 2a28x − 4a29y2 − a18a27 + 2a19a25 + 4a26a29 − a28
2,

λ21 = 2a26xa29 + a28xx − a28xa28 − 2a29xy2 + 2a29xa26,

λ22 = 4a29y2λ16x − 2a28xλ16x − λ16xxx − 4λ16xa26a29 + λ16xa28
2,

λ23 = 2a28x − 4a29y2 + 4a26a29 − a28
2,

λ24 = 32(a19xy1 − a19xa14)− 16(a17y1a19 + a18y1a29 + a29xa15 − a14a18a29)

+56(a19y1a17 − a14a17a19)− 24(a19y1a28 + a14a19a28) + 21a28
3

+160(a26xa29 − a29xy2 + a29xa26) + 120(a17a26a29 − a29y2a17)

+64a28xx + 48a28xa17 − 112a28xa28 + 88(a29y2a28 − a26a28a29)

−36a15a17a29 + 20a15a28a29 + 15a17
3 − 9a17

2a28 − 27a17a28
2,

λ25 = 12(λ15xxa28 − λ15xxa17 + λ15xa15a29) + 24(λ15xa14a19 − a19y1λ15x)

−16λ15xxx − 32a28xλ15x − 9λ15xa17
2 + 6λ15xa17a28 + 19λ15xa28

2

+88(a29y2λ15x − λ15xa26a29),
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λ26 = (λ15
2(16a19y1 + 32a28x − 80a29y2 − 16a14a19 − 8a15a29 + 5a17

2

−2a17a28 + 80a26a29 − 19a28
2) + 4λ15(λ15xa28 − 4λ15xx − λ15xa17)

+20λ15x
2)/(32λ15

2),

λ27 = 8a14y1a19 + 4a15y1a29 + 4a17xy1 − 4a17y1a17 + 4a18xa24 − 2a18y1a27

−8a19y1y1 + 8a19y1a14 − 8a19y2a24 − 4a24xa18 − 2a27xa15 + 8a29y1a15

+2a14a18a27 + a15a17a27 − 2a15a25a29 + a15a27a28 + 8a16a24a29

−4a17a18a24 − a18a25a27,

λ28 = 2a17y1a27 − 8a19y1a24 − 4a24xx + 4a24xa28 − 4a24y1a19

−4a24y2a29 + 4a29y1y1 + 4a29y1a14 − 4a29y1a25 + 4a29y2a24

−a15a272 + 2a18a24a27,

λ29 = 2a18y1a27 − 2a19y1a25 − 4a19y2a24 − 4a24y2a19 − 2a25xx + 2a25xa28

−4a26y1a29 + 4a29y1y2 + 2a29y1a15 − 4a29y1a26 − 2a14a18a27

+2a14a19a25 + a15a17a27 − 2a15a19a24 − a15a25a29 − a15a27a28

+4a16a24a29 + a18a25a27 + 4a19a24a26 − a19a25
2,

λ30 = (8λ12
2(−λ16 + 2λ20) + 4λ12(2λ14x + a17λ14 − a28λ14) + λ14(4a27λ16

+5λ14))/(32λ12
2),

λ31 = (4λ16
2λ20 − 2λ16

3 − 4λ16λ16xx + 5λ16x
2)/(8λ16

2),

λ32 = (λ15
2(16a19y1 + 32a28x − 80a29y2 − 16a14a19 − 8a15a29 + 5a17

2

−2a17a28 + 80a26a29 − 19a28
2) + 4λ15(λ15xa28 − 4λ15xx − λ15xa17)

+20λ15x
2)/(32λ15

2),

λ33 = 2a28x − 4a29y2 − a18a27 + 2a19a25 + 4a26a29 − a28
2,

µ1 = 2a28x − 4a29y2 + 4a26a29 − a28
2,

µ2 = 4a19y1 − 2a17x − 4a14a19 + a17
2,

a29y1µ3 = (2a29xy1 + a29y1a17 − a29y1a28)/4,
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a19y2µ4 = (2a19xy2 − a19y2a17 + a19y2a28)/4,

µ5 = −(µ1 + µ2),

ω1 = 2a12y1 − 4a11y2 − 2a11a15 + 2a12a14 − a12a25 + 4a13a24,

ω2 = 2a12y2 − 4a13y1 + 4a11a16 − a12a15 + 2a12a26 − 2a13a25,

ω3 = a15y1 − 2a14y2 − a25y2 + 2a26y1 − 4a11a18 + 2a12a17

−2a12a28 + 4a13a27,

ω4 = 2a15y2 − 4a13x − 4a16y1 − 2a13a17 − 2a13a28 + 4a14a16

−a152 + 2a15a26 − 2a16a25,

ω5 = 4a12x + 4a25y2 − 8a26y1 + 8a11a18 − 2a12a17 + 6a12a28 − 8a13a27

−2a15a25 + 8a16a24 + ω3,

ω6 = 4a11x + 4a24y2 − 2a25y1 + 2a11a17 + 2a11a28 − 2a14a25 + 2a15a24

−4a24a26 + a25
2,

ω7 = 2a18y2 − 4a16x − 4a13a19 − a15a18 + 2a16a17 − 2a16a28 + 2a18a26,

ω8 = 5a15x − a17y2 − 4a18y1 − 6a26x + 3a28y2 + 4a12a19 − 8a13a29

+4a14a18 − 2a15a17 + 2a15a28 + 4a16a27 − 4a18a25,

ω9 = a17y1 − 2a14x + 3a25x − 3a28y1 + 4a12a29 − 2a15a27 + 4a18a24,

ω10 = 2a27y1 − 4a24x − 4a11a29 + 2a14a27 − 2a17a24 + 2a24a28 − a25a27,

ω11 = 4a25x + 4a27y2 − 8a28y1 + 8a11a19 + 8a12a29 − 2a15a27 − 2a17a25

+8a18a24 + 2a25a28 − 4a26a27,

ω12 = 12a17y2 − 12a18y1 − 8a26x + 4a28y2 − 8a12a19 − 24a13a29 + 12a14a18

−6a15a17 + 6a15a28 − 8a16a27 − 2a18a25,

ω13 = 2λ15, ω14 = 4λ16, ω15 = −2λ12.



APPENDIX H

THE COEFFICIENTS aij OF SYSTEM (4.6),

EXPRESSED THROUGH THE FUNCTIONS

φ, ψ1, ψ2, AND kij

a11 = (φy1y1ψ1y1ψ2y2 − φy1y1ψ1y2ψ2y1 + φy1
3ψ1y2k22ψ2 (H.1)

+φy1
3ψ1y2k21ψ1 − φy1

3ψ2y2k11ψ1 − φy1
3ψ2y2k12ψ2

−φy12φy2ψ1y1k22ψ2 − φy1
2φy2ψ1y1k21ψ1 + φy1

2φy2ψ2y1k11ψ1

+φy1
2φy2ψ2y1k12ψ2 − φy1ψ1y1y1ψ2y2 + φy1ψ1y2ψ2y1y1

+φy2ψ1y1y1ψ2y1 − φy2ψ1y1ψ2y1y1)/∆,

a12 = 2(φy1y2ψ1y1ψ2y2 − φy1y2ψ1y2ψ2y1 + φy1
2φy2ψ1y2k22ψ2 (H.2)

+φy1
2φy2ψ1y2k21ψ1 − φy1

2φy2ψ2y2k11ψ1 − φy1
2φy2ψ2y2k12ψ2

−φy1φy22ψ1y1k22ψ2 − φy1φy2
2ψ1y1k21ψ1 + φy1φy2

2ψ2y1k11ψ1

+φy1φy2
2ψ2y1k12ψ2 − φy1ψ1y1y2ψ2y2 + φy1ψ1y2ψ2y1y2

+φy2ψ1y1y2ψ2y1 − φy2ψ1y1ψ2y1y2)/∆,

a13 = (φy1φy2
2ψ1y2k22ψ2 + φy1φy2

2ψ1y2k21ψ1 − φy1φy2
2ψ2y2k11ψ1 (H.3)

−φy1φy22ψ2y2k12ψ2 − φy1ψ1y2y2ψ2y2 + φy1ψ1y2ψ2y2y2

+φy2y2ψ1y1ψ2y2 − φy2y2ψ1y2ψ2y1 − φy2
3ψ1y1k22ψ2

−φy23ψ1y1k21ψ1 + φy2
3ψ2y1k11ψ1 + φy2

3ψ2y1k12ψ2

−φy2ψ1y1ψ2y2y2 + φy2ψ1y2y2ψ2y1)/∆,
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a14 = (2φxy1ψ1y1ψ2y2 − 2φxy1ψ1y2ψ2y1 + 3φxφy1
2ψ1y2k22ψ2 (H.4)

+3φxφy1
2ψ1y2k21ψ1 − 3φxφy1

2ψ2y2k11ψ1 − 3φxφy1
2ψ2y2k12ψ2

−2φxφy1φy2ψ1y1k22ψ2 − 2φxφy1φy2ψ1y1k21ψ1

+2φxφy1φy2ψ2y1k11ψ1 + 2φxφy1φy2ψ2y1k12ψ2 − φxψ1y1y1ψ2y2

+φxψ1y2ψ2y1y1 + φy1y1ψ1xψ2y2 − φy1y1ψ1y2ψ2x

−φy12φy2ψ1xk22ψ2 − φy1
2φy2ψ1xk21ψ1 + φy1

2φy2ψ2xk11ψ1

+φy1
2φy2ψ2xk12ψ2 − 2φy1ψ1xy1ψ2y2 + 2φy1ψ1y2ψ2xy1

+2φy2ψ1xy1ψ2y1 − φy2ψ1xψ2y1y1 + φy2ψ1y1y1ψ2x

−2φy2ψ1y1ψ2xy1)/∆,

a15 = 2(φxy2ψ1y1ψ2y2 − φxy2ψ1y2ψ2y1 + 2φxφy1φy2ψ1y2k22ψ2 (H.5)

+2φxφy1φy2ψ1y2k21ψ1 − 2φxφy1φy2ψ2y2k11ψ1 − 2φxφy1φy2ψ2y2k12ψ2

−φxφy22ψ1y1k22ψ2 − φxφy2
2ψ1y1k21ψ1 + φxφy2

2ψ2y1k11ψ1

+φxφy2
2ψ2y1k12ψ2 − φxψ1y1y2ψ2y2 + φxψ1y2ψ2y1y2 + φy1y2ψ1xψ2y2

−φy1y2ψ1y2ψ2x − φy1φy2
2ψ1xk22ψ2 − φy1φy2

2ψ1xk21ψ1

+φy1φy2
2ψ2xk11ψ1 + φy1φy2

2ψ2xk12ψ2 − φy1ψ1xy2ψ2y2

+φy1ψ1y2ψ2xy2 + φy2ψ1xy2ψ2y1 − φy2ψ1xψ2y1y2 + φy2ψ1y1y2ψ2x

−φy2ψ1y1ψ2xy2)/∆,

a16 = (φxφy2
2ψ1y2k22ψ2 + φxφy2

2ψ1y2k21ψ1 − φxφy2
2ψ2y2k11ψ1 (H.6)

−φxφy22ψ2y2k12ψ2 − φxψ1y2y2ψ2y2 + φxψ1y2ψ2y2y2 + φy2y2ψ1xψ2y2

−φy2y2ψ1y2ψ2x − φy2
3ψ1xk22ψ2 − φy2

3ψ1xk21ψ1 + φy2
3ψ2xk11ψ1

+φy2
3ψ2xk12ψ2 − φy2ψ1xψ2y2y2 + φy2ψ1y2y2ψ2x)/∆,

a17 = (2φxy1ψ1xψ2y2 − 2φxy1ψ1y2ψ2x + φxxψ1y1ψ2y2 − φxxψ1y2ψ2y1 (H.7)

+3φx
2φy1ψ1y2k22ψ2 + 3φx

2φy1ψ1y2k21ψ1 − 3φx
2φy1ψ2y2k11ψ1

−3φx
2φy1ψ2y2k12ψ2 − φx

2φy2ψ1y1k22ψ2 − φx
2φy2ψ1y1k21ψ1

+φx
2φy2ψ2y1k11ψ1 + φx

2φy2ψ2y1k12ψ2 − 2φxφy1φy2ψ1xk22ψ2
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−2φxφy1φy2ψ1xk21ψ1 + 2φxφy1φy2ψ2xk11ψ1 + 2φxφy1φy2ψ2xk12ψ2

−2φxψ1xy1ψ2y2 + 2φxψ1y2ψ2xy1 − φy1ψ1xxψ2y2 + φy1ψ1y2ψ2xx

+2φy2ψ1xy1ψ2x + φy2ψ1xxψ2y1 − 2φy2ψ1xψ2xy1 − φy2ψ1y1ψ2xx)/∆,

a18 = 2(φxy2ψ1xψ2y2 − φxy2ψ1y2ψ2x + φx
2φy2ψ1y2k22ψ2 (H.8)

+φx
2φy2ψ1y2k21ψ1 − φx

2φy2ψ2y2k11ψ1 − φx
2φy2ψ2y2k12ψ2

−φxφy22ψ1xk22ψ2 − φxφy2
2ψ1xk21ψ1 + φxφy2

2ψ2xk11ψ1

+φxφy2
2ψ2xk12ψ2 − φxψ1xy2ψ2y2 + φxψ1y2ψ2xy2 + φy2ψ1xy2ψ2x

−φy2ψ1xψ2xy2)/∆,

a19 = (φxxψ1xψ2y2 − φxxψ1y2ψ2x + φx
3ψ1y2k22ψ2 + φx

3ψ1y2k21ψ1 (H.9)

−φx3ψ2y2k11ψ1 − φx
3ψ2y2k12ψ2 − φx

2φy2ψ1xk22ψ2 − φx
2φy2ψ1xk21ψ1

+φx
2φy2ψ2xk11ψ1 + φx

2φy2ψ2xk12ψ2 − φxψ1xxψ2y2 + φxψ1y2ψ2xx

+φy2ψ1xxψ2x − φy2ψ1xψ2xx)/∆,

a24 = (φxφy1
2ψ2y1k11ψ1 − φxφy1

2ψ1y1k22ψ2 − φxφy1
2ψ1y1k21ψ1 (H.10)

+φxφy1
2ψ2y1k12ψ2 + φxψ1y1y1ψ2y1 − φxψ1y1ψ2y1y1

−φy1y1ψ1xψ2y1 + φy1y1ψ1y1ψ2x + φy1
3ψ1xk22ψ2 + φy1

3ψ1xk21ψ1

−φy13ψ2xk11ψ1 − φy1
3ψ2xk12ψ2 + φy1ψ1xψ2y1y1 − φy1ψ1y1y1ψ2x)/∆,

a25 = 2(φxy1ψ1y1ψ2y2 − φxy1ψ1y2ψ2y1 + φxφy1
2ψ1y2k22ψ2 (H.11)

+φxφy1
2ψ1y2k21ψ1 − φxφy1

2ψ2y2k11ψ1 − φxφy1
2ψ2y2k12ψ2

−2φxφy1φy2ψ1y1k22ψ2 − 2φxφy1φy2ψ1y1k21ψ1 + 2φxφy1φy2ψ2y1k11ψ1

+2φxφy1φy2ψ2y1k12ψ2 + φxψ1y1y2ψ2y1 − φxψ1y1ψ2y1y2

−φy1y2ψ1xψ2y1 + φy1y2ψ1y1ψ2x + φy1
2φy2ψ1xk22ψ2 + φy1

2φy2ψ1xk21ψ1

−φy12φy2ψ2xk11ψ1 − φy1
2φy2ψ2xk12ψ2 − φy1ψ1xy1ψ2y2 + φy1ψ1xψ2y1y2

−φy1ψ1y1y2ψ2x + φy1ψ1y2ψ2xy1 + φy2ψ1xy1ψ2y1 − φy2ψ1y1ψ2xy1)/∆,

a26 = (2φxy2ψ1y1ψ2y2 − 2φxy2ψ1y2ψ2y1 + 2φxφy1φy2ψ1y2k22ψ2 (H.12)

+2φxφy1φy2ψ1y2k21ψ1 − 2φxφy1φy2ψ2y2k11ψ1 − 2φxφy1φy2ψ2y2k12ψ2
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−3φxφy2
2ψ1y1k22ψ2 − 3φxφy2

2ψ1y1k21ψ1 + 3φxφy2
2ψ2y1k11ψ1

+3φxφy2
2ψ2y1k12ψ2 − φxψ1y1ψ2y2y2 + φxψ1y2y2ψ2y1

+φy1φy2
2ψ1xk22ψ2 + φy1φy2

2ψ1xk21ψ1 − φy1φy2
2ψ2xk11ψ1

−φy1φy22ψ2xk12ψ2 − 2φy1ψ1xy2ψ2y2 + φy1ψ1xψ2y2y2 − φy1ψ1y2y2ψ2x

+2φy1ψ1y2ψ2xy2 − φy2y2ψ1xψ2y1 + φy2y2ψ1y1ψ2x + 2φy2ψ1xy2ψ2y1

−2φy2ψ1y1ψ2xy2)/∆,

a27 = 2(φxy1ψ1y1ψ2x − φxy1ψ1xψ2y1 − φx
2φy1ψ1y1k22ψ2 (H.13)

−φx2φy1ψ1y1k21ψ1 + φx
2φy1ψ2y1k11ψ1 + φx

2φy1ψ2y1k12ψ2

+φxφy1
2ψ1xk22ψ2 + φxφy1

2ψ1xk21ψ1 − φxφy1
2ψ2xk11ψ1

−φxφy12ψ2xk12ψ2 + φxψ1xy1ψ2y1 − φxψ1y1ψ2xy1 − φy1ψ1xy1ψ2x

+φy1ψ1xψ2xy1)/∆,

a28 = (2φxy2ψ1y1ψ2x − 2φxy2ψ1xψ2y1 + φxxψ1y1ψ2y2 (H.14)

−φxxψ1y2ψ2y1 + φx
2φy1ψ1y2k22ψ2 + φx

2φy1ψ1y2k21ψ1

−φx2φy1ψ2y2k11ψ1 − φx
2φy1ψ2y2k12ψ2 − 3φx

2φy2ψ1y1k22ψ2

−3φx
2φy2ψ1y1k21ψ1 + 3φx

2φy2ψ2y1k11ψ1 + 3φx
2φy2ψ2y1k12ψ2

+2φxφy1φy2ψ1xk22ψ2 + 2φxφy1φy2ψ1xk21ψ1 − 2φxφy1φy2ψ2xk11ψ1

−2φxφy1φy2ψ2xk12ψ2 + 2φxψ1xy2ψ2y1 − 2φxψ1y1ψ2xy2

−2φy1ψ1xy2ψ2x − φy1ψ1xxψ2y2 + 2φy1ψ1xψ2xy2 + φy1ψ1y2ψ2xx

+φy2ψ1xxψ2y1 − φy2ψ1y1ψ2xx)/∆,

a29 = (φxxψ1y1ψ2x − φxxψ1xψ2y1 − φx
3ψ1y1k22ψ2 (H.15)

−φx3ψ1y1k21ψ1 + φx
3ψ2y1k11ψ1 + φx

3ψ2y1k12ψ2

+φx
2φy1ψ1xk22ψ2 + φx

2φy1ψ1xk21ψ1 − φx
2φy1ψ2xk11ψ1

−φx2φy1ψ2xk12ψ2 + φxψ1xxψ2y1 − φxψ1y1ψ2xx − φy1ψ1xxψ2x

+φy1ψ1xψ2xx)/∆.
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