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CHAPTER I

PRELIMINARIES ON FRACTIONAL

STOCHASTIC VOLATILITY MODEL

1.1 Introduction to Option Pricing Problem

A derivative security (also known as a contingent claim) is a financial contract

whose value at expiration time T is precisely determined by the price of an under-

lying asset at time T . Options and futures are examples. However, options have

become one of the most important and frequently traded derivative in mathemat-

ical finance.

An option is derivative security that gives its holder the right, but not the obli-

gation, to buy or sell a certain amount of a financial asset, by a certain date, for

a certain strike price. For example, a stock option is a derivative security whose

value depends on the value of the underlying stock.

The writer of the option needs to specify:

• the type of option: the option to buy is called a call while the option to sell

is a put ;

• the underlying asset : typically, it can be a stock, a bond, a currency and so

on;

• the amount of an underlying asset to be purchased or sold;

• the expiration date: if the option can be exercised at any time before ma-

turity, it is called an American option but, if it can only be exercised at

maturity, it is called a European option;

• the exercise price, the price at which the transaction is done if the option is

exercised.
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The price of the option is the premium. When the option is traded on an

organized market, the premium is quoted by the market. Otherwise, the problem

is to price the option. Also, even if the option is traded on an organized market,

it can be interesting to detect some possible abnormalities in the market.

Note that there are two major categories of style: European-style and American-

style. Whichever type one chooses depends on the way one wants to exercise them,

and each has advantages one should know about to make wise investing decisions.

A European call (or put) option allows the holder to exercise the option (i.e.,

to buy (or sell)) only on the option expiration date. An American call (or put)

option allows exercise at any time during the life of the option.

Let us examine the case of a European call option on a stock, whose price at

time t is denoted by St. Let us call T the expiration date and K the exercise

price. Obviously, if K is greater that ST , the holder of the option has no interest

whatsoever in exercising the option. But, if ST > K, the holder makes a profit of

ST −K by exercising the option, i.e. buying the stock for K and selling it back

on the market at ST . Therefore, the value of the call at maturity is given by

(ST −K)+ = max(ST −K, 0).

If the option is exercised, the writer must be able to deliver a stock at price K.

It means that he or she must generate an amount (ST −K)+ at maturity. At the

time of writing the option, which will be considered as the origin of time, ST is

unknown and therefore two questions have to be asked:

1. How do we model the underling asset specific on a stock price?

2. How much should the buyer pay for the option? In other words, how should

we price at time t = 0 an asset worth (ST − K)+ at time T? That is the

problem of pricing the option.
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1.1.1 The Behavior of Asset Prices

The model suggested by Black and Scholes (1973) to describe the behaviour

of prices is a continuous-time model with one risky asset (a share with price St at

time t) and a riskless asset (with price S̃t at time t). We suppose the behaviour

of S̃t to be encapsulated by the following (ordinary) differential equation:

dS̃t = rS̃tdt

where r > 0 is an instantaneous interest rate. We set S̃0 = 1, so that S̃t = ert for

t ≥ 0.

We assume that the behavior of the stock price is determined by the following

stochastic differential equation:

dSt = St(µdt+ σdWt) (1.1)

where (Wt)t∈[0,T ] is a standard Brownian motion (Bm), T is the maturity of the

option, µ ∈ < is the instantaneous expected total return of the stock (possibly

adjusted by a dividend yield), and σ > 0 is the instantaneous standard deviation

of stock price returns, called the volatility in financial markets. This equation is

known as Black-Scholes model or diffusion model.

By using Itô’s lemma (for more details see Section 1.3), equation (1.1) implies

that

St = S0 exp

(
(µ− 1

2
σ2)t+ σWt

)
(1.2)

called the geometric Brownian motion (gBm). In particular,

logSt ∼ N
(

lnS0 + (µ− 1

2
σ2)t, σ2t

)
,

i.e., the process logSt is distributed normally with mean µ and variance σ2.

Note that the stock return µ could easily become time dependent without

changing any of our arguments.
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1.1.2 Pricing Option in the Black-Scholes Model

In 1973 Black and Scholes tackled the problem of pricing and hedging a

European option (call or put) on a non-dividend paying stock. In this section, we

briefly explain the main results. Firstly, we make the following assumptions.

Assumption A:

(i) We have frictionless markets with continuous trading.

(ii) There are no transaction costs or taxes and no dividends during the life of

the option.

(iii) No arbitrage opportunity.

(iv) The risk-free interest rate is deterministic and equal to r ≥ 0.

(vi) Under the real-world or physical probability measure P the stock price process

(St) follows the diffusion model of equation (1.1).

We note that an arbitrage opportunity is the opportunity to buy an asset at

a low price then immediately selling it on a different market for a higher price.

Less rigorously, an arbitrage opportunity is a “free lunch”, that allows investors

to make a gain for no risk.

Suppose that Assumption A holds. Standard derivative pricing theory offers

two ways for computing the fair value C(t, St) of a European call option at time

t ≤ T . Under the partial differential equation (PDE) approach the function C(t, s)

is computed by solving the PDE

∂C

∂t
+

1

2
σ2s2∂

2C

∂s2
+ rs

∂C

∂s
− rC = 0, for t ∈ [0, T ]. (1.3)

This equation is the famous Black-Scholes PDE of European call option.

In order to obtain a unique solution for the Black-Scholes PDE we must con-

sider final and boundary conditions. We will restrict our attention to a European

call option, C(t, s).
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At maturity, t = T , a call option is worth:

C(T, s) = (sT −K, 0)

where K is the exercise price. So this will be the final condition.

The asset price boundary conditions are applied at s = 0 and as s→∞.

If s = 0 then ds is also zero and therefore s can never change. This implies on

s = 0 we have:

C(t, 0) = 0.

Obviously, if the asset price increases without bound s→∞, then the option will

be exercised indifferently how big the exercise price is. Thus as s→∞ the value

of the option becomes that of the asset:

C(t, s) ≈ s, s→∞.

We have the following final-boundary value problem:

∂C
∂t

+ 1
2
σ2s2 ∂2C

∂s2
+ rs∂C

∂s
− rC = 0, for t ∈ [0, T ],

C(t, 0) = 0; C(t, s) ≈ s as s→∞,

C(T, s) = max(sT −K, 0).

(1.4)

Alternatively, the value C(t, St) can be computed as the expectation of the

discounted pay-off under the risk-neutral measure Q (the so-called risk-neutral

pricing approach). Under Q, the process (St) satisfies the stochastic differential

equation (SDE)

dSt = rStdt+ σStdW̃t

for a standard Q-Brownian motion W̃ ; in particular, the drift µ in equation (1.2)

has been replaced by risk-free interest rate r.
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The risk-neutral pricing rule now states that

C(t, St) = EQ

[
e−r(T−t)max(ST −K)|Ft

]
(1.5)

where EQ denotes expectation with respect to Q.

In order to take expectation of equation (1.5) under the risk neutral measure

Q, we need to change the physical probability P to the risk neutral measure

Q in the stochastic differential equation, using Girsanov’s Thorem. Girsanov’s

Theorem tells us how a stochastic differential equation (SDE) changes as the

physical probability P changes. Essentially, Girsanov’s Theorem tells us that

change in P corresponds to a change in drift µ and the rest of the SDE remains

unchanged.

The solution of the PDE (1.4), or the risk-neutral value of stock price obtained

from (1.5), is simply given by the Black-Scholes price CBS of a European call

option. This yields

CBS(t, St; r, σ, T,K) := StΦ(dt,1)−Ke−r(T−t)Φ(dt,2) (1.6)

where

dt,1 =
lnSt − lnK +

(
r + 1

2
σ2
)

(T − t)

σ
√
T − t

,

dt,2 = dt,1 − σ
√
T − t.

and Φ is the cumulative distribution function for the standard normal distribution.

This equation know as Black-Scholes formula for a European call option.

Similarly, the price for a European put option is:

P (t, St) = −StΦ(−dt,1) +Ke−r(T−t)Φ(−dt,2).
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1.1.3 Implied Volatility

It is possible to deduce the implied volatility of call (or put) options by

solving the reverse Black-Scholes equation, that is, find the volatility that would

equal the Black-Scholes price to the market price of the option. This is a good

way to see how derivatives markets perceive the underlying volatility.

More precisely, using Black-Scholes option pricing, call options C are a function

of C(t, S; r, σ, T,K) where t is the time at which C is being priced, T is the

expiration date, r is the risk free rate of return, and K is the strike price. Note

that all the independent variables are observable except σ. Since the quoted

option price Cobs is observable, using the Black-Scholes formula we can therefore

calculate or imply the volatility that is consistent with the quoted options prices

and observed variables. We can therefore define implied volatility I by:

CBS(t, S; r, I, T,K) = Cobs,

where CBS is the option price calculated by the Black-Scholes equation (equation

1.6).

Implied volatility surfaces are graphs plotting I for each call options strike K

and expiration T . Theoretically options whose underlying asset is governed by

gBm should have a flat implied volatility surface, since volatility is a constant;

however in practice the implied volatility surface is not flat and I varies with K

and T .

Implied volatility plotted against strike prices from empirical data tends to

vary in a “u-shaped” relationship, known as the volatility smile, with the lowest

value normally at S = K (called “at the money” options). The opposite graph

shape to a volatility smile is known as a volatility frown due to its shape. The

smile curve has become a prominent feature since the 1987 October crash (see for

instance Bates (2000)).
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1.1.4 An Extension of Black-Scholes Model

Since Black-Scholes formula models stock prices by using the geometric

Brownian motion, thus there are various shortcomings of this model, such as

(i) the asymmetric leptokurtic features (also called leptokurticity), that is, the

return distribution is skewed to the left, and has a higher peak and two

heavier tails than those of the normal distribution;

(ii) the volatility smile, that is, the implied volatility is not a constant as as-

sumed in the Black-Scholes model, and

(iii) the large random fluctuations such as crashes and rallies.

Therefore, many financial engineering studies have been undertaken to modify

and improve the Black-Scholes formula to explain some or all of the above three

empirical phenomena. The supporting details will be discussed in later of the

thesis.

We note that that “tail” of the distribution are where the extreme values occur.

Empirical distributions for stock prices and returns have found that the extreme

values are more likely than would be predicted by the normal distribution. This

means that, between periods where the market exhibits relatively modest changes

in prices and returns, there will be periods where there are changes that, are much

higher (i.e., crashes and booms) than predicted by the normal distribution. This

is not only of concern to financial theorists, but also to practitioners. However,

heavy or fat tails can help explain larger price fluctuations for stocks over short

time periods than can be explained by changes in fundamental economic variable.
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1.1.5 Jump-Diffusions

In addition to the volatility smile observable from the implied volatilities

of the options, there is evidence that the assumption of a pure normal distribution

(also called pure diffusion) for the stock return is not accurate. Indeed “fat tails”

have been observed away from the mean of the stock return.

Some authors try to explain the volatility smile and the leptokurticity by

changing the underlying stock distribution from a diffusion process to a jump-

diffusion process. For jump-diffusion models, the “normal” evolution of prices is

given by a diffusion process, punctuated by jumps at random intervals. Here the

jumps represent rare events – crashes and large drawdowns. Such an evolution

can be represented by modeling the (log-)price as a Lévy process with a nonzero

Gaussian component and a jump part, which is a compound Poisson process with

finitely many jumps in every time interval. Merton (1976) was first to actually

introduce jumps in the stock distribution. Recently, Kou (2002) proposed double

exponential jump-diffusion models by using the same idea to explain both the

existence of fat tails and the volatility smile. In subsection 1.2.5, we will see a

model combining compound Poisson jumps and stochastic volatility: the Bate

model (1996).

The Merton jump-diffusion model with Gaussian jumps (known as an expo-

nential Lévy model) introduced by Merton (1976) is given by

St = S0 exp

(
µt+ σWt +

Nt∑
n=1

Yn

)

where (Nt)t∈[0,T ] is a Poisson process with intensity λ, and independent jumps

Yn ∼ N (m, δ2). The Poisson process and the jumps are assumed to be indepen-

dent of the Brownian Motion. The use of the Poisson process is economically

motivated by two assumptions: the numbers of crashes in non overlapping time
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intervals should be independent and the occurrence of one crash should be roughly

proportional to the length of the time interval.

In analogy to the Black-Scholes model, the parameter µ stands in the Merton

model for the expected stock return and σ is the volatility of regular shocks to the

stock return. The jump component can be interpreted as a model for crashes. The

parameter λ is the expected number of crashes per year and m and δ2 determine

the distribution of a single jump.

The Merton model allows modelling of jumps and study of leptokurtic distri-

butions. However in 2007, Sattayatham at el., extended the Merton model by

introducing a fractional Black-Scholes model with jumps, in which the stock price

has long-memory property.

The rest of this chapter is organized as follows. The literature review of

stochastic volatility is presented in Section 1.2. Section 1.3 gives us a guide to

stochastic calculus. We review basic definitions of Brownian motion, Lévy process

and compound Poisson process. All mathematical tools such as Itô integration

and its extensions will also be reviewed. The study of Poisson processes which

naturally lead to the notion of Poisson random measure are introduced in this

section. The need to study fractional Brownian motion and some developments

for the stochastic integral with respect to fractional Brownian motion are detailed

in Section 1.4. An approximate approach to fractional Brownian motion and

fractional stochastic integration is also introduced in this section.
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1.2 A Stochastic Volatility Model

A concise literature review of a stochastic volatility model is presented in this

section. The most popular extension of stochastic volatility model is noted in the

sequel.

1.2.1 The Volatility Problem

Although the Black-Scholes formula is often quite successful in explaining

stock option prices (Black and Scholes (1973) and Merton (1976)). It does have

known biases (Rubinstein (1895)). Its performance also is substantially worse on

foreign currency options (Melino and Turnbull (1990; 1991) and Knoch (1992)).

This is not surprising, since the Black-Scholes model makes the strong assump-

tion that (continuously compounded) stock returns are normally distributed with

known mean and variance. Since the Black-Scholes formula does not depend on

the mean spot return, it cannot be generalized by allowing the mean to vary.

But the variance assumption is somewhat dubious. Motivated by this theoreti-

cal consideration, Scott (1987), Hull and White (1987), and Wiggins (1987) have

generalized the model to allow stochastic volatility. Melino and Turnbull (1990;

1991) report that this approach is successful in explaining the prices of currency

options.

In fact, there are several kinds of stochastic volatility models, but a very popu-

lar one used with option models is due to Heston (1993) and originally came from

interest rate models of Cox, Ingersoll and Ross (1985), called the CIR model.

More details will be discussed in subsection 1.2.3. For recently, however, the full

stochastic volatility, jump-diffusion (SVJD) model for the option pricing problem

is given in Yan-Hanson (2006; 2007) and in Hanson (2008) for the SVJD optimal

portfolio and consumption problem.
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A common approach to measure the volatility uses the standard deviation of

the returns of the last T trading days. This more heuristic approach is based on

the assumption that volatility changes only slightly over a certain period of time

and can be treated as (almost) constant. Using a statistical model for describing

the underlyings offers a wide range of more sophisticated techniques for measur-

ing the volatility including GARCH and stochastic volatility models which allow

the volatility to vary over time in a specific way. Thus, these models facilitate

approaches to measure the volatility more appropriately. Besides these techniques

the implied volatility obtained from option prices is often considered as a sensible

measure because it reflects the opinion of the market on future volatility.

To summalize: we have

• Historic volatility (also known as realised volatility) is a measure of volatility

using past empirical stock price data.

• Implied volatility is the volatility associated with empirical option prices.

The details of implied volatility have already discussed in Section 1.1.3. The

remaining terms are addressed as follows.

1.2.2 Historic Volatility

In theory volatility should not depend on the method of measurement.

However, in practice this is not the case. Volatility σ can be empirically measured

by two methods: historic volatility and implied volatility.

Historic volatility is calculated from empirical (and therefore discrete) stock

price data St0 , . . . , Stn where ∆t =: ti− ti−1 denotes the chosen sampling interval.

To estimate historic volatility σ̂ we calculate the standard deviation of an asset’s
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continuously compounded return per unit time:

σ̂ =

√
VR√
∆t
,

where the sample variance VR = 1
n−1

∑n
i=1(Ri − R), Ri = ln(Sti/Sti−1

), and the

sample mean R = 1
n

∑n
i=1 Ri.

Note that there are many way to calculate historic volatility. Another formula

of historic volatility will introduce in Chapter IV.

1.2.3 Stochastic Volatility Models

Stochastic volatility models are one approach to resolve the shortcomings

of the Black-Scholes model. In particular, the Black-Scholes model (1.1) assumes

that the volatility is constant over a given time interval and unaffected by the

changes in the stock price.

Several different stochastic processes have been suggested for the volatility. A

popular one is the Ornstein-Uhlenbeck (OU) process:

dσt = −ασtdt+ βdW t

where α, β are two parameters and W t is another standard Brownian motion,

remembering the stock equation follows equation (1.1).

Note that there is a (usually negative) correlation ρ between dWt and dW t,

which can in turn be time or level dependent.

Heston (1993) and Stein (1991) were among those who suggested the use of

this process. Using Itô’s lemma, we can see that the stock-return variance vt = σ2
t

satisfies a square-root or Cox-Ingersoll-Ross (CIR) process

dvt = (ω − θvt)dt+ ξ
√
vtW t (1.7)

with ω = β2, θ = 2α, and ξ = 2β.
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Note that the OU process has a closed-form solution

σt = σ0e
−αt + β

∫ t

0

e−α(t−s)dW s

which means that σt follows in law N
(
σ0e
−αt, β

2

2α
(1−e−2αt)

)
, with N is the normal

distribution.

Heston and Nandi (1997) show that this process corresponds to a special case of

the general auto regressive conditional heteroskedasticity (GARCH) model, which

we will discuss next subsection. Another popular process for estimating stochastic

volatility is the GARCH(1,1) process, where we would have

dvt = (ω − θvt)dt+ ξvtdW t. (1.8)

In general, the stochastic volatility models generalize to

dSt = µStdt+
√
vtStdWt,

dvt = α(St, t)dt+ β(St, t)dW t,

where α(St, t) and β(St, t) are some functions of vt while dW t is another standard

Brownian motion that is correlated with dWt with constant correlation fator ρ.

We note that a GARCH model of (1.8) assumes that the randomness of the

variance process varies with the variance, as opposed to the square root of the

variance as in the Heston model (1.7).
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1.2.4 GARCH and Diffusion Limits

The most elementary GARCH process, called GARCH(1,1), was developed

originally in the field of econometrics by Engle (2004) and Bollerslev (1986) in a

discrete framework.

Firstly, consider the discrete equivalent of gBm (1.2) is

lnSt+∆t = lnSt +

(
µ− 1

2
σ2

)
∆t+ σ

√
∆tWt (1.9)

where (Wt) is a sequence of independent normal random variable with zero mean

and variance of 1. The stock discrete equation (1.9) could be rewritten by taking

∆t = 1 and vn = σ2
n as

lnSn+1 = lnSn +

(
µ− 1

2
vn+1

)
+
√
vn+1Wn+1

calling the mean adjusted return

un = ln

(
Sn
Sn−1

)
−
(
µ− 1

2
vn

)
=
√
vnWn

the variance process in GARCH(1,1) is supposed to be

vn+1 = ω0 + βvn + αu2
n = ω0 + βvn + αvnW

2
n (1.10)

where α and β are weight parameters and ω0 is a parameter related to the long-

term variance.

Nelson (1990) shows that as the time interval length decreases and becomes in-

finitesimal, Equation (1.10) becomes precisely the previously cited equation (1.8).

To be more accurate, there is a weak convergence of the discrete GARCH process

to the continuous diffusion limit. For an explanation on weak convergence, see,

for example, Varadham (2000). For a GARCH(1,1) continuous diffusion, the cor-

relation between dWt and dW t is zero.
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Note that the discrete GARCH version of the square-root process (1.7) is

vn+1 = ω0 + βvn + α(Wn − c
√
vn)2 (1.11)

as Heston and Nandi show in (1997).

Also, note that having a diffusion process

dvt = b(vt)dt+ a(vt)dW t

we can apply an Euler approximation to discretize and obtain a Monte Carlo

process, such as

vn+1 − vn = b(vn)∆t+ a(vn)
√

∆tW n.

It is important to note that if we use a GARCH process and go to the continu-

ous diffusion limit, and then apply an Euler approximation, we will not necessarily

find the original GARCH process again. Indeed, there are many different ways to

discretize the continuous diffusion limit and the GARCH process corresponds to

one special way. In particular, if we use (1.11) and allow ∆t → 0 to get to the

continuous diffusion limit, we shall obtain equation (1.7).

In summary, the standard GARCH model has the following form for the vari-

ance differential:

dSt = µStdt+ vtStdWt,

dvt = θ(ω − vt)dt+ ξvtdW t

where ω is the mean long-term volatility, θ is the rate at which the volatility revert

toward its long-term mean, ξ is the volatility of the volatility process (Nelson,

(1990)).

The volatility exhibits long memory is well established in the recent empirical

literature. For example see Baillie et al. (1996), Robinson (2001), and Andersen

et al. (2003).
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Baillie et al. (1996) suggests the Fractionally Integrated GARCH (FIGARCH)

model in discrete time to capture the long memory present in volatility. For

recent works, Plienpanich et al. (2009) introduced a FIGARCH with long memory

properties in continuous time, that process of the form:

dvt = (ω − θvt)dt+ ξvtdW
H

t

where W
H

t is a fractional Brownian motion (fBm).

1.2.5 A Stochastic Volatility Model with Jumps

In 1996, Bates [?] introduced the jump-diffusion stochastic volatility model

by adding proportional log-normal jumps to Heston stochastic volatility model.

In the original formulation the model has the following form:

dSt
St

= µdt+
√
vtdWt + dZt,

dvt = θ(ω − vt)dt+ ξ
√
vtdW t,

where (Wt) and (W t) are Brownian motions with correlation ρ, driving price and

volatility, and Zt is a compound Poisson process with intensity λ and log-normal

distribution of jump size such that if k is its jump size then

ln(1 + k) ∼ N
(

ln(1 + k)− 1

2
δ2, δ2

)
.

The combination of Bates’s (gBm with compound Poisson process) and FI-

GARCH’s model still an open problem. Hence in this thesis, we extend the main

result of Sattayathem at el. (2007) by replacing a Poisson jump by a compound

Poisson jump and assuming that the variance of the stock return follows a frac-

tional stochastic volatility model (FIGARCH model). Using a fundamental result

on the L2(Ω) approximation of fractional Brownian motion by semimartingale, we

shell also prove that the solution of our approximate models converges to the solu-

tion of the gBm model with compound Poisson processes and fractional stochastic

volatility.
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1.2.6 Another Application of Stochastic Volatility Model

There are two main advantages to focusing on stochastic volatility models.

First, much asset pricing theory is built on continuous-time models. Within this

class, stochastic volatility models tend to fit more naturally with a wide array of

applications, including the pricing of currencies, options, and other derivatives, as

well as the modeling of the term structure of interest rates. Second, the increasing

use of high-frequency intraday data for construction of so-called realized volatility

measures is also starting to push the GARCH models out of the limelight as the

realized volatility approach is naturally linked to the continuous-time stochastic

volatility framework of financial economics (Andersen and Benzoni (2008)).

As we discuss above, an important application of the stochastic volatility model

is the pricing of options. However, the relationship of interest rate and stock re-

turns has been widely examined by researchers. Changes in interest rates influence

the value of a companys stocks and shares and thus the stock returns. With an

increase in interest rate, risk and required rate of return of a particular investment

goes up and profits of a firm tend to decrease (due to increased cost of capital)

which in turn causes the stock value to fall down.

Interest rates are determined by monetary policy of a country according to its

economic situation. High interest rates induce the investors to keep their money

deposited in saving bank accounts to get high interest rather to put it into risky

stock market. As the risk free returns come down, investors switch their money

from bank accounts to stock market investments. Consequently, demand of stocks

increases and the stock markets go up as a result of interest rate cut. Mishkin

(1977) also proved that lower interest rates increase stock prices which in turn

reduce the probability of financial distress.
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The literature on interest rate volatlity models is vast and rapidly growing, and

excellent surveys are available, e.g., Zafar, Urooj, and Durrani (2008) examined

the relationship of interest rate volatility and stock return and volatility. Trolle

and Schwartz (2008) states a general stochastic volatility model for the pricing

of interest rate derivatives. And an empirical application of stochastic volatility

models provided by Mahieu and Schotman (1998).

1.3 A Primer on Itô Stochastic Calculus

This section provides a brief exposition of all definitions and tools used. For

readers familiar with stochastic calculus, we recommend Section 1.4, which gives

an introduction to an approximate approach to fractional Brownian motion.

A stochastic process is a sequence of random variables X = (Xt)t≥0 on the

same probability space (Ω,F ,P). Note that, by abuse of the standard notation,

whenever we write t ≥ 0 that means t ∈ [0, T ]. A stochastic process X induces a

probability transition function of the form

P[Xt+1 = st+1|Xt = st, . . . , X0 = s0].

That is the probability that the state at future time t + 1 is st+1, given that the

states at past times t, . . . , 0 where st, . . . , s0, respectively.

A Markov process is a stochastic process such that for all t, for all s0, . . . , st, st+1,

P[Xt+1 = st+1|Xt = st, . . . , X0 = s0] = P[Xt+1 = st+1|Xt = st].

This equation is the Markov property, sometimes called the memoryless property ;

it implies that probability transitions to future states, such as st+1 depend only

on the present state st, but are independent of the remote past, st−1, . . . , s0.
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A martingale is a stochastic process X = (Xt)t≥0 such that Xt ∈ L1(Ω) for

each t and such that the conditional expectation satisfies the relation

E(Xt|Fs) = Xs, (s < t)

where Fs is a σ-algebra representing all observable events before time s. This

equation says that if Xt follows a martingale, the best forecast of Xt that could

be constructed based on current information Fs would just equation Xs.

A stochastic process is called Gaussian process if all its joint probability dis-

tributions are Gaussian. If Xt is a Gaussian process, Xt ∼ N (µt, σ
2
t ) for all t. A

Gaussian process is fully characterized by its mean and covariance function.

1.3.1 Standard Brownian motion

A standard Brownian motion process or a Wiener process (Wt)t∈[0,∞) is a

stochastic process on < (denote the set of real numbers) defined on a probability

space (Ω,F ,P) such that:

(i) It starts at zero i.e. W0 = 0.

(ii) It has stationary, independent increments, i.e. Wt+u − Wt, ∀u > 0 are

stationary and independent.

(iii) For very t > 0, Wt has a normal N (0, t) distribution.

(iv) It has continuous sample paths: “no jumps” i.e. There is Ω0 ∈ F with

P(Ω0) = 1, i.e. Xt(ω) is continuous in t for every ω ∈ Ω0.

Stationary increments of the condition (ii) mean that the distributions of incre-

ments Wt+u − Wt do not depend on the time t, but they depend on the time-

distance u of two observations (i.e. interval of time).
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For example, if one models a log stock price log(St) as a Brownian motion

(with drift) process (equation (1.2)), the distribution of increment in year 2004

for the next one year log
(
S2004+1

)
− log

(
S2004

)
is the same as in year 2050,

log
(
S2050+1

)
− log

(
S2050

)
:

log
(
S2004+1

)
− log

(
S2004

) d
= log

(
S2050+1

)
− log

(
S2050

)
.

Recall that the conditional probability of the event A given B is assuming

P(B) > 0:

P(A|B) =
P(A ∩B)

P(B)
.

If A and B are independent events:

P(A|B) = P(A).

Independent increments property mean that when modeling a log stock price logSt

as a Brownian motion (with drift) process, the probability distribution of a log

stock price in year 2005 is not affected by whatever happens in year 2004 in the

stock price (i.e. such as stock price crash):

P
(

logS2005+1 − logS2005| logS2004+1 − logS2004

)
= P

(
logS2005+1 − logS2005

)
.

The Brownian motion (or Wiener process) has three properties which make it

of fundamental importance to the theory of stochastic processes: it is Gaussian,

a Markov process, and a martingale. Let W = (Wt(ω))t≥0 denote a Brownian

motion, in which t is the time and each ω is a particle; then Wt(ω) represents

the position of that particle at time t. One can show that except on a set of

probability zero, every sample path (i.e., Wt(ω) as a function of t for fixed ω) is

continuous but is of unbounded variation on every compact time set.
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1.3.2 Itô Integral

Since the sample paths are of unbounded variation on every compact set,

they cannot be differentials in the Stieltjes integral sense. Although Stieltjes in-

tegration with respect to the paths of the Brownian motion is not possible, the

differential dW does have an intuitive interpretation. Engineers think of dW as

white nose, and using generalized functions, one can define the quantity dW rig-

orously (see Arnold (1974)). Wiener (1933) gave meaning to dW in his definition

of what is called the Wiener integral, but in such integrals the integrands are

functions of time only (certain functions). It was Itô (1944) who first defined an

integral for random integrands with respect to the Brownian motion. Itô used his

integral to represent a large class of diffusions as solution of stochastic differen-

tial equations (SDE). In 1953 Doob extended Itô’s work on integration by using

martingales instead of Brownian motion. The integral was so constructed that

integration with respect to a martingale yields a martingale.

The best known extension of the Itô integral is the semimartingale integral. If

all the paths of an adapted process are right continuous and of finite variation on

compact time sets, we call the process a VF process. If V is a VF process and H

is a bounded predictable process (H is Ft-measurable) then, for each fixed ω, we

denote by
∫ t

0
Hs(ω)dVs(ω) the Lebesgue-Stieltjes integral.

A stochastic process is a local martingale if certain integrability condition in

the definition of a martingale are relaxed. A stochastic process X is a semimartin-

gale if X can be written in the form

X = L+ V
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where L is a local martingale and V is a VF process. If H is bounded, predictable

process, one can then define
∫ t

0
HsdXs by

∫ t

0

HsdXs =

∫ t

0

HsdLs +

∫ t

0

HsdVs.

We will refer to this stochastic integral as the semimartingale integral. In fact

the semimartingale form the largest class of processes for which the Itô integral

can be defined.

1.3.3 Long Memory and Short Memory

A stochastic process, in general, is characterized by two quantities, namely,

the probability density and the correlation function. The probability density

describes the random nature of the fluctuations while the correlation function

describes how a fluctuation at a given time influences subsequent fluctuations. If

the correlation between two observations that are far apart decreases fairly slowly

and is summed up to infinity then this is interpreted as a long memory. In fact,

if X = (Xt)t≥0 is a stochastic process on (Ω,F ,P) and ρ(k) = E[X1(Xk+1 −Xk)]

and if
∞∑
k=0

ρ(k) =∞

then the process X is said to have long memory or long-range dependence or strong

aftereffect. This means that the process today may influence the process at some

time in the future. In other words, the process at long time before may influence

the process today.

On the other hand, if the correlation between two observations that are far

apart decreases fast enough so that they are summed up to a finite number then

it is interpreted as a short memory or short-range dependence. For example, since

the Brownian motion W = (Wt)t≥0 has independent increments so that for all
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k ≥ 1, we have E[W1(W(k+1) −Wk)] = 0 and hence,

∞∑
k=0

E[W1(W(k+1) −Wk)] <∞.

Therefore, Brownian motion, as well as the processes of martingale property and

Markov process, has short memory.

1.3.4 Lévy Processes

In this section, we shall review the notion of the Lévy process and some of

its properties. For more details see Kou (2008).

A stochastic process is called cadlag if it has almost surely right continuous

paths and the limits from the left exist. A cadlag stochastic process (Xt)t≥0

on (Ω,F ,P) with values in <d such that X0 = 0 is called Lévy process if it has

independent and stationary increments and has a stochastically continuous sample

path, i.e. for any ε > 0,

lim
h↓0

P(|Xt+h −Xt| > ε)→ 0.

Note that (i) this condition does not imply that the path of Lévy process are

continuous. It only requires that for a given time t, the probability of seeing a

jump at t is zero, i.e. jumps occur at random times and (ii) Lévy processes have

a version with cadlag paths, i.e. paths which are right continuous and have limits

from the left.

Therefore, Lévy processes provide a natural generalization of the sum of in-

dependent and identically distributed (i.i.d.) random variables. The simplest

possible Lévy processes are the standard Brownian motion Wt, Poisson processes

Nt, and compound Poisson processes
∑Nt

n=1 Yn,where Yn are i.i.d. random vari-

ables.
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Of course, one can combine the above processes to form other Lévy processes.

For example, an important class of Lévy processes is the jump-diffusion process

given by

µt+ σWt +
Nt∑
n=1

Yn

where µ and σ are constants. Interestingly the famous Lévy-Itô decomposition

says that the converse is also true. More precisely, any Lévy process can be writ-

ten as a drift term µt, a Brownian motion with variance and covariance matrix

A, and a possibly infinite sum of independent compound Poisson processes which

are related to a intensity measure ν(dx). This implies that a Lévy process can be

approximated by jump-diffusion processes. This has important numerical appli-

cations in finance, as jump-diffusion models are widely used in finance.

The triplet (µ,A, ν) is also linked to the Lévy-Khinchin representation which

states that the characteristic function of a Lévy process Xt can be written in terms

of (µ,A, ν) as

1

t
logE

[
eiz
′Xt
]

= −1

2
z′Az + iµz +

∫
<d

(
eiz
′x − 1− iz′xI|x|≤1

)
v(dx).

The representation suggests that it is easier to study Lévy processes via Laplace

transforms, and then numerically invert Laplace transforms.

There are two types of Lévy processes: jump-diffusion and infinite activity

Lévy processes. In jump-diffusion processes, jumps are considered rare events,

and in any given finite interval there are only finite many jumps. Examples of

jump-diffusion models in finance include Merton’s model (1976) in which the jump

size Y has a normal distribution, and the double exponential jump-diffusion model

in Kou (2002). For infinite activity Lévy processes, in any finite time interval there

are infinitely many jumps.
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1.3.5 Compound Poisson Processes

In this section, we shall review the notion of the compound Poisson process

and some of its properties which will be useful in the sequel; see Cont and Tankov

(2004) for the details.

Let (Ω,F ,P) be a probability space, with E ⊂ <d and µ as a (positive) Radon

measure on (E, E). A Poisson random measure on E with intensity measure on

µ is an integer-valued random measure M : Ω× E → N such that:

• For (almost all) ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E

and, for any bounded measurable set A ⊂ E, M(·, A) := M(A) < ∞ is an

integer-valued random variable.

• For each measurable set A ⊂ E, M(A) is a Poisson random variable with

parameter µ(A) such that

∀k ∈ N, P(M(A) = k) = e−µ(A) (µ(A))k

k!
.

• For disjoint measurable setsA1, . . . , An ∈ E , the random variablesM(A1), . . . ,

M(An) are independent.

One can prove that for any Radon measure µ on E ⊂ <d, there exists a

Poisson random measure M on E with intensity µ. Consequently, any Poisson

random measure on E can be represented as a counting measure associated with

a random sequence of points in E, i.e. there exists (Tn(ω))n≥1, such that

∀A ∈ E , M(ω,A) =
∑
n≥1

1A(Tn(ω)) = #{n ≥ 1, Tn(ω) ∈ A}. (1.12)

Define a random variable Tn =
∑n

i=1 τi where (τi)i≥1 is a sequence of indepen-

dent exponential random variables with parameter λ, that is P(τi > t) = eλt. The
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process (Nt)t≥0 defined by

Nt =
∑
n≥1

1t≥Tn

is called a Poisson process with intensity λ.

Moreover, by equation (1.12), the Poisson process may be expressed in terms

of the Poisson random measure M in the following way:

Nt(ω) = M(ω, [0, t]) =

∫
[0,t]

M(ω, ds)

where ds is the Lebesgue area element on [0, t].

A compound Poisson process on <d with intensity λ > 0 and jump size distri-

bution f is a stochastic process Xt defined as

Xt =
Nt∑
n=1

Yn

where jump size Yn are independent and identically distributed (i.i.d.) with dis-

tribution f and (Nt)t≥0 is a Poisson process with intensity λ, independent from

(Yn)n≥1. The Poisson process itself can be seen as a compound Poisson process

on < such that Yn := 1. This explains the origin of the term “compound Poisson”

in the definition.

For every compound Poisson process (Xt)t≥0 on <d with intensity λ and jump

size distribution f , its jump measure

JX(B) = #{(t,Xt −Xt−) ∈ B}

is a Poisson random measure on <d × [0,∞) with intensity measure

µ(dx× dt) = ν(dx)dt = λf(dx)dt

where B is a measurable subset of <d × [0,∞) and ν is Lévy measure of the

compound Poisson process. This fact implies that every compound Poisson process
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can be represented in the following form:

Xt =
∑
s∈[0,t]

∆Xs =

∫
<d×[0,t]

xJX(dx× ds)

where JX is a Poisson random measure with intensity measure ν(dx)dt.

Let E be a measurable subset on <d. For a measurable function f : [0, T ]×E →

<d, one can construct an integral with respect to the Poisson random measure M ,

given by the random variable∫
E×[0,T ]

f(y, t)M(·, dy dt) =
∑
n≥1

f(Yn(·), Tn(·)).

1.3.6 Itô formula and its Extensions

In this section we review Itô formula and its extensions for the further uses.

Lemma 1.1. (Itô’s formula or Itô’s lemma)

Assume that the process X has a stochastic differential given by

dXt = µtdt+ σtdWt

where µ and σ are adapted processes, and let f be a C1,2-function. Define the

process Y by Yt = f(t,Xt). Then Y has a stochastic differential given by

df(t,Xt) =

{
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

}
dt+ σ

∂f

∂x
dWt.

Note that the term µ∂f/∂x, for example, is shorthand notation for

µt
∂f

∂x
(t,Xt)

and correspondingly for the other terms.

In fact Itô’s lemma provides a derivative chain rule for stochastic functions.

Clarifying the relationship between a stochastic process and a function of that

stochastic process. Itô’s lemmas have many extension. The following Itô’s lemma
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is the key step in establishing the main theorem of our thesis (for the proof see

Cont and Tankov (2006)).

Lemma 1.2. (Itô formula for jump-diffusion processes)

Let X be a diffusion process with jumps, defined as the sum of a drift term, a

Brownian stochastic integral and a compound Poisson process:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +
Nt∑
n=1

∆Xn,

where bt and σt are continuous nonanticipating processes with

E
[ ∫ T

0

σ2
t dt
]
<∞.

Then, for any C1,2 function, f : [0, T ]× < → <, the process Yt = f(t,Xt) can be

represented as:

f(t,Xt)− f(0, X0) =

∫ t

0

[∂f
∂s

(s,Xs) +
∂f

∂x
(s,Xs)bs

]
ds

+
1

2

∫ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)σsdWs

+
∑

{n≥1,Tn≤t}

[f(XTn− + ∆Xn)− f(XTn−)].

In differential notation:

dYt =
∂f

∂t
(t,Xt)dt+ bt

∂f

∂x
(t,Xt)dt+

σ2
t

2

∂2f

∂x2
(t,Xt)dt

+
∂f

∂x
(t,Xt)σtdWt + [f(Xt− + ∆Xt)− f(Xt−)].

Note that a nonanticipating process is also called an adapted process : (Xt)t∈[0,T ]

is said to be Ft-adapted, that is the random variable Xt is Ft-measurable.

1.4 Fractional Brownian Motion

In this section, we shall review definitions of a fractional Brownian motion

(fBm) and its approximation by a semimartingale. Stochastic integrals with re-

spect to fractional Brownian motion is also discussion here.
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1.4.1 The Need to Study Fractional Brownian Motions

Almost all statistical analysis of economic and financial systems begins by

assuming that the dynamics are primarily random. Models considered earlier in

Mathematical finance assume that the price of an asset should follow a martingale

property in which each price change is unaffected by its predecessor.

Stochastic differential equations driven by Brownian motion are traditionally

used to model the dynamic of stock prices. It is well known that Brownian mo-

tion is a typical semimartingale with short-range dependence: where H = 1/2, the

autocorrelation ρ(n) of equation (1.14) is zero for all n, hence
∑∞

n=1 ρ(n) < ∞.

However, in recent years it has become increasingly obvious that long-range de-

pendence phenomena are widespread in financial data. The dependence structure

of the financial data have been studied using the so-called Hurst index (Hurst

parameter) H. In the uncorrelated case one should have H = 1/2. If H < 1/2 the

time series is antipersistent. This means that whenever the price has been up, it

is more likely that it will be down in the close future. Conversely, if H > 1/2 one

has persistence with positive correlations. This means that all price fluctuations

are correlated with all future price fluctuations. Persistence implies that if the

price has been up or down then the chances are that it will continue to be up or

down in the future, respectively.

Many studies indicated Hurst indices H > 1/2. For example, for the monthly

S&P500 index (from January, 1963 through December 1989) the estimated Hurst

index is H = 0.78 (see Shiryaev (1999)). In 2002, Alvarez-Ramirez et al., stud-

ied the daily records of international crude oil prices and found that the rescaled

range Hurst analysis provides evidence that the crude oil market is a persistent

process with long memory effect. In fact, they found that the Hurst indices are

all above 1/2 with different time scales.
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1.4.2 Fractional Brownian Motion (fBm) and Its Properties

A fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian process

BH = (BH
t )t≥0 with zero mean, and the covariance function is given by

R(t, s) := E
(
BH
t B

H
s

)
=

1

2

(
s2H + t2H − |t− s|2H

)
. (1.13)

This process was introduced by Kolmogorov (1968) and studied further by Man-

delbrot and Van Ness (1968).

Furthermore, fBm has a stationary increment, i.e. the increment of BH has a

normal distribution with zero mean and tis variance is given by

E
[
(BH

t −BH
s )2
]

= |t− s|2H ,

in an interval [s, t].

If H = 1/2, then R(t, s) = min(t, s) and BH
t is the usual standard Brownian

motion.

The following theorems show that the fractional Brownian motion X = (Xt)t≥0

with Hurst parameter H ∈ (0, 1) is neither a semimartingale (Theorem 1.4) nor a

Markov process (Theorem 1.5).

Further we need the following definition. Recall here that a stochastic process

X = (X)t≥0 is H-self-similar with parameter H > 0 if

(Xat)t≥0
d
= (aHXt)t≥0

for all a > 0, where
d
= means equality in distributions.

Suppose that Y = (Yt)t≥0 is self-similar process with parameter H. Then

Yt
d
= tHY1 for t > 0

and hence

V ar(Yt) = V ar(tHY1) = t2HV ar(Y1).
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In the following, we consider the values of H ∈ (0, 1), and in particular

Y0 = 0 with probability 1. Assume further that Yt has zero mean, is normal-

ized so that V ar(Y1) = 1, and stationary increments, i.e., the random n-vectors

(Yt1 , Yt2 , . . . , Ytn) and (Yt1+h, Yt2+h, . . . , Ytn+h), h > 0 are identically distributed.

Theorem 1.3. A fractional Brownian motion (WH
t )t≥0 is H-self-similar with sta-

tionary increments. When H ∈ (0, 1), it has a stochastic integral representation:

1

CH

∫
<

[(
(t− s)+

)h− 1
2 −

(
(−s)+

)h− 1
2

]
dWs, t ≥ 0

where H ∈ (0, 1), f+ = max{f, 0} and

CH =

(∫ ∞
0

[
(1 + s)H−

1
2 − sH−

1
2

]2

ds+
1

2H

) 1
2

.

If H = 1, W 1
t = tW 1

1 almost surely, Fractional Brownian motion is unique in the

sense that the class of all fractional Brownian motions coincides with that of all

Gaussian self-similar processes with stationary increments.

Proof. See Embrechts et al. (2005).

Another basic property of fractional Brownian motion, WH
t on (Ω,F ,P) is

long-range dependence. In fact, for n ≥ 1,

ρ(n) = E[WH
1 (WH

n+1 −WH
n )]

= EWH
1 W

H
n+1 − EWH

1 W
H
n

=
1

2

(
12H + (n+ 1)2H − n2H

)
− 1

2

(
12H + n2H − (n− 1)2H

)
=

1

2

(
(n+ 1)2H − 2n2H + (n− 1)2H)

=
1

2
n2Hg(n−1),

where g(x) = (1 + x)2H − 2 + (1 − x)2H . If 0 < H < 1 and H 6= 1/2, then the

Taylor expansion of g(x) about the origin gives

g(x) = 2H(2H − 1)x2 + o(x4).
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Therefore,

ρ(n) =
1

2
n2Hg(n−1) =

1

2
n2H

[
2H(2H − 1)n−2 + o(n−4)

]
and as n tends to infinity,

p(n) = H(2H − 1)n2H−2. (1.14)

Moreover, for 1/2 < H < 1 the correlation decay to zero so slowly that

∞∑
n=1

ρ(n) =∞.

Hence, for 1/2 < H < 1, fractional Brownian motion WH
t has long-range depen-

dence. For H = 1/2 it can easily be seen, by equation (1.13), that the observations

are uncorrelated. In fact, the fractional Brownian motion with Hurst index H is

semimartingale if and only if H = 1/2 (Roger (1997)). Finally, for 0 < H < 1/2,

we have 2− 2H > 1 and hence

∞∑
n=0

ρ(n) = H(2H − 1)
∞∑
n=0

1

n2−2H
<∞.

Therefore in this case, the process exhibits short-range dependence.

Theorem 1.4. (Rogers (1997)) The fBm is a semimartingale only if H = 1/2.

Proof. Let X = (Xt)t≥0 be a fractional Brownian motion with self-similar param-

eter H ∈ (0, 1). We know that when H = 1/2 fractional Brownian motion is in

fact a standard Brownian motion and hence a semimartingale.

Now fix the parameter H and consider for p > 0 fixed

Yn,p :=
2n∑
j=1

|Xj2−n −X(j−1)2−n|p(2n)pH−1. (1.15)

From self-similarity property we obtain that (1.15) has (for each n) the same law

as
2n∑
j=1

|2−nHXj − 2−2HXj−1|p(2n)pH−1 =
2n∑
j=1

|Xj −Xj−1|p2−npH(2n)pH−1

= 2−n
2n∑
j=1

|Xj −Xj−1|p.
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Noticing that the sequence (Xk −Xk−1)k∈Z is stationary and ergodic, the ergodic

theorem tells us that

Ỹn,p := 2−n
2n∑
j=1

|Xj −Xj−1|p → E|X1 −X0|p =: γp (n→∞)

almost surely and in L1. Hence

Yn,p
d→ γp (n→∞),

and therefore Yn,p
P→ γp. Hence,

Vn,p :=
2n∑
j=1

|Xj2−n −X(j−1)2−n|p
P→


0 if pH > 1,

∞ if pH < 1.

If H > 1/2, we can choose p ∈ (H−1, 2) such that Vn,p → 0 in probability, and

therefore almost surely down a fast subsequence. This implies that the quadratic

variation of X is zero, and so (if X were to be a semimartingale) X must be a

finite-variation process. But since for p ∈ (1, H−1), Vp := limn→ Vn,p is almost

surely in finite, and (by scaling) the p-variation on any interval is infinite almost

surely, X can not be finite variation. If H < 1/2, we can choose p > 2 such that

pH < 1, and the p-variation of X on [0, 1] (and hence on any fixed interval) must

be infinite. This contradicts the almost-sure finiteness of the quadratic variation

of X, assuming X is a semimartingale. In either way, if H 6= 1/2, X is not a

semimartingale.

The following lemma need to prove for the next theorem.

Lemma 1.5. Let R(s, t) be covariance function of a centered Gaussian process,

Yt is Markovian then for all t, s, t0 such that t > s > t0 we have

R(t, t0) =
R(t, s)R(s, t0)

R(s, s)

(see for example, Wong and Hajek (1985)).
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Theorem 1.6. Every fractional Brownian motion with Hurst index H 6= 1/2 is

not a Markov process.

Proof. (Huy (2003)) Let (WH
t )t≥0 be a fractional Brownian motion with H 6= 1/2.

Suppose that it is a Markov process. Put

fs(t) =
R(t, s)

sα
=

1

2

[(
t

s

)α
+ 1−

(
t

s
− 1

)α]
, t > s

where α = 2H. Consider the derivative of fs(t) with respect to t:

f ′s(t) =
1

2

α

s

[(
t

s

)α−1

−
(
t

s
− 1

)α−1]
, t > s. (1.16)

We see for s < t that

f ′s(t) < 0 if α < 1

f ′s(t) > 0 if α > 1

f ′s(t) = 0 if α = 1

So, if α 6= 1, fs(t) is either decreasing or increasing. On the other hand, for α < 1

we have

lim
t→∞

fs(t) =
1

2
lim
t→∞

1
tα

+ 1
sα
−
(

1
s
− 1

t

)α
1
tα

=
1

2
lim
t→∞

(
1 +

(
t

s
− 1

)α−1)
=

1

2
; t > s.

Hence for α < 1, fs(t) is decreasing from 1 to 1/2 when t varies from 0 to infinity.

Now for 0 < r < s < t it follows from Lemma 1.5 that

R(t, r)

rα
=
R(t, s)

sα
R(s, r)

rα

or

fr(t) = fs(t) · fr(s).

Taking the limit of both sides of the above equation when t→∞, we get

1

2
=

1

2
fr(s), r < s
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or

fr(s) = 1, r < s.

This is contrary to the property of the function fr(s) given by (1.16);

fr(s) =
1

2

[(
s

r

)α
+ 1−

(
s

r
− 1

)α]
Then WH

t should not be a Markov process.

1.4.3 Stochastic Integrals with Respect to Fractional Brownian Mo-

tion

In this subsection, we follow the approach outline in Saelim (2004). In

order to apply fractional Brownian motion to study the market situations we

need a stochastic calculus for fractional Brownian motion. Since for H 6= 1
2
, the

fractional Brownian motion BH
t is neither a semimartingale (Theorem 1.4) nor a

Markov process (Theorem 1.6), then the well developed stochastic calculus is not

applicable. In particular, for H > 1/2, it is a long memory process. In other

words, the behavior of a real process after a given time t does not only depend

on the situation at t but also of the whole history of the process up to time t.

This significant property makes fractional Brownian motion a natural candidate

as a model of noise in mathematical finance (see, e.g., Rogers (1997)) and in

communication networks (Leland et al. (1994)).

Many authors tried to understand what a stochastic integral of the form∫ T

0

f(t, ω)dWH
t

should mean. The most common constructions of such a stochastic integral are

the following.
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1.4.4 The Pathwise or Forward Integral

The integral is denoted by∫ T

0

φ(t, ω)d−WH
t .

If the integrand φ(t, ω) is caglad (left-continuous with right sided limits) then this

integral can be defined by Riemann sums, as follows:

Let 0 = t0 < t1 < . . . < tN = T be a partition of [0, T ]. Put ∆tk = tk+1 − tk

and define ∫ T

0

φ(t, ω)d−WH
t := lim

∆tk→0

N−1∑
k=0

φ(tk)

(
WH
tk+1
−WH

tk

)
, (1.17)

if the limit exists in probability.

Note that with this definition the integration takes place with respect to t

for each fixed “path” ω ∈ Ω. Therefore, this integral is often called pathwise

integral. Using a classical integration theory due to Young (i.e., the Riemann-

Stieltjes integral
∫
fdg exists if f(t) is a function of bounded p-variation and g(t)

function of bounded q-variation for p, q > 0 and 1/p + 1/q > 1) one can prove

that the pathwise integral (1.17) exists if the p-variation of t 7→ φ(t, ω) is finite

for all p > 1
1−H . Since t 7→ WH

t has finite q-variation if and only if q ≥ 1/H, we

see that if H < 1/2 then this theory does not even include integrals like∫ T

0

WH
s d
−WH

s .

For this reason one often assumes that H > 1/2 when dealing with forward

integrals with respect to WH
t . In general

E
∫ T

0

WH
s d
−WH

s 6= 0,

even if the forward integral belongs to L1(Ω,F ,P).
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For H > 1/2 the forward integral obeys Stratonovich type of integration rules.

For example, if f ∈ C1(<) and

Xt :=

∫ t

0

φ(s, ω)d−WH
s

exists for all t ≥ 0 then

f(Xt) = f(0) +

∫ t

0

f ′(Xs)d
−Xs, (1.18)

where

d−Xs = φ(s, ω)d−WH
s .

For this reason the forward integral is also sometimes called integral of Stratonovich

type with respect to fractional Brownian motion. In fact, this is the Newton-

Leibnitz’s rule of integration.

As special case of (1.18) we note that∫ T

0

WH
s d
−WH

s =
1

2

(
WH
T

)2

for H >
1

2
.

Moreover, a slight extension of (1.18) gives that the unique solution Xt of the

fractional forward stochastic differential equation

d−Xt = α(t, ω)Xtdt+ β(t, ω)Xtd
−WH

t , X0 = x > 0 (1.19)

is

Xt = x exp

(∫ t

0

α(s, ω)ds+

∫ t

0

β(s, ω)d−WH
s

)
for H > 1/2, provided that the integrals on the right hand side exist.
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1.4.5 The Skorohod (Wick-Itô integral)

Let

hn(x) := (−1)n exp

(
x2

2

)
dn

dxn

(
exp

(
− x2

2

))
, n = 0, 1, 2, . . .

and

ξn(x) := π−1/4
(
(n− 1)!

)−1/2
hn−1

(√
2x
)

exp

(
− x2

2

)
, n = 1, 2, . . . .

Further let J be the set of all multi-indies α = (α1, ..., αm) of finite length, with

αi ∈ N ∩ {0} for all i. For α = (α1, . . . , αm) ∈ J define

Hα(ω) = hα1(< ω, ξ1 >)hα2(< ω, ξ2 >) . . . hαm(< ω, ξm >).

Moreover, the space (S)∗ of Hida distribution is the set of all formal expansions

G(w) =
∑
α∈J

bαHα(ω)

such that ∑
α∈J

b2α!(2N)−qα < for some q ∈ N.

Definition 1.1. Let

F (ω) =
∑
α∈J

aαHα(ω) ∈ (S)∗

and

G(ω) =
∑
β∈J

bβHβ(ω) ∈ (S)∗.

The the Wick Product of F and G, F♦G, is defined by

(F♦G)(ω) =
∑
α,β∈J

aαbβHα+β(ω)

=
∑
γ∈J

( ∑
α+β=γ

aαbβ

)
H(ω).

(1.20)
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The Skorohod (Wick-Itô integral) integral is denoted by∫ T

0

φ(t, ω)δWH
t .

It is defined in terms of Riemann sums, as follows:∫ T

0

φ(t, ω)δWH
t = lim

tk→0

N−1∑
k=0

φ(tk)♦
(
WH
tk+1
−WH

tk

)
, (1.21)

where ♦ denotes the Wick product. The difference between this integral and the

forward integral is the use of the Wick product instead of the ordinary product in

the Riemann sums (1.21) and (1.17), respectively.

The Skorohod integral behaves in many ways like the Itô integral of classical

Brownian motion. For example, we have

E
∫ T

0

φ(t, ω)δWH
t = 0

if the integral belongs to L2(Ω,F ,P). Moreover, if f ∈ C2(<) then we have the

following Itô type formula

f(WH
t ) = f(0) +

∫ t

0

f ′(WH
s )δWH

t +H

∫ t

0

∫ t

0

f ′′(WH
s )s2Hds, (1.22)

valid for all H ∈ (0, 1), provided that the left hand side and the last term on the

right hand side both belong to L2(Ω,F ,P).

Note that as special case of (1.22) we get∫ T

0

WH
s δW

H
s =

1

2
(WH

T )2 − 1

2
T 2H for H ∈ (0, 1). (1.23)

The Wick-Skorohod-Itô analogue of (1.19) is the equation

δXt = α(t, ω)Xtdt+ β(t, ω)XtδW
H
t , X0 = x > 0. (1.24)

Assume that α(t, ω) = a and β(t, ω) = b are constant. Then by a slight extension

of the Itô formula (1.22) one obtains that the unique solution of (1.24) is

Xt = x exp

(
βWH

t + αt
1

2
β2t2H

)
, H ∈ (0, 1). (1.25)
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Note that if H = 1/2 then the formulas (1.23) and (1.25) reduce to the formulas

obtained by the Itô formula for the classical Brownian motion.

After the pathwise theory for fractional Brownian motion was developed (see,

e.g., Lin (1995), and Decreusefond et al. (1998; 1999) it was proved that the

market mathematical model driven by fractional Brownian motion could have ar-

bitrage Cheridito (2003), Rogers (1997), Sottinen (2001) Sottinen and Valkeila

(2001; 2003). However after the development of the Skorohod integral based on

the Wick product (e.g., Duncan et al. (2000) and Hu and Oksendal (2003)) it

was proved (Hu and Oksendal (2003)) that the corresponding Itô type fractional

Black-Scholes market has no arbitrage. Unfortunately, this integral does not al-

low an economics interpretation. Worse still, these two types of definition (the

pathwise and Skorohod integrals) are difficult to implement numerically.

In 2006, Thao tried to solve this problem. He proposed another definition of

fractional stochastic integral motivated by a formulae of integration by parts and

an approximate approach to fractional Brownian motion.

The next subsection, prepares mathematical tools for defining stochastic inte-

gral with respect to fractional Brownian motion via integration by parts. More-

over, in this thesis we choose to use the approximate approach, namely, using the

L2-convergence of a semimartingale to a fractional process. The Details of the

discussion can be found in Thao (2006).
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1.4.6 An Approximate Approach to Fractional Brownian Motion

We consider the fractional Brownian motion of Liouville form with param-

eter H ∈ (0, 1)

Bt =

∫ t

0

(t− s)H−
1
2dWs, H 6=

1

2
. (1.26)

For every ε > 0 we define

Bε
t =

∫ t

0

(t− s+ ε)H−
1
2dWs, H 6=

1

2
, 0 < H < 1. (1.27)

Theorem 1.7. The process (Bε
t )t≥0 is a semimartingale.

Proof. (Thao (2006)) Consider the stochastic process ϕεt defined as

ϕεt =

∫ t

0

(t− u+ ε)α−1dWu

where α = H − 1/2 (then −1/2 < α < 1/2, since 0 < H < 1).

An application of the stochastic theorem of Fubini gives us:∫ t

0

ϕεsds =

∫ t

0

∫ s

0

(s− u+ ε)α−1dWuds

=

∫ t

0

(∫ t

u

(s− u+ ε)α−1

)
dWu

=
1

α

∫ t

0

(
(t− u+ ε)α − εα

)
dWu

=
1

α

[ ∫ t

0

(t− u+ ε)αdWu −
∫ t

0

εαdWu

]
=

1

α
(Bε

t − εαWt).

Hence

Bε
t = α

∫ t

0

ϕεsds+ εαWt.

Since α
∫ t

0
ϕεsds is of bounded variation and Wt is a martingale so Bε

t is a semi-

martingale.
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Theorem 1.8. Bε
t converges to Bt in L2(Ω) when ε tends to 0. This convergence

is uniform with respect to t ∈ [0, T ].

Proof. The Mean Value Theorem applied to the function f(u) = uα yields:

|(t− s+ ε)α − (t− s)α| ≤ |α|ε sup
0≤θ≤1

|(t− s+ θε)α−1|

= |α|ε(t− s)α−1, α = H − 1

2
,

(0 < s < t).

(1.28)

By virtue of Itô integration isometry we see that

E|Bε
t −Bt|2 = E

∣∣∣∣ ∫ t

0

[
(t− s+ ε)α − (t− s)α

]
dWs

∣∣∣∣2
=

∫ t

0

∣∣(t− s+ ε)α − (t− s)α
∣∣2ds. (1.29)

(i) (Thao (2006)) If 1/2 < H < 1, that is, 0 < α < 1/2 we have from (1.28)∫ t

0

∣∣(t− s+ ε)α − (t− s)α
∣∣2ds ≤ α2ε2

∫ t

0

|t− s|2α−2ds

= α2ε2

(∫ t−ε

0

|t− s|2α−2ds+

∫ t

t−ε
|t− s|2α−2ds

)
≤ α2ε2 ε2ε−1

1− 2α
+ α2ε2 ε

2α−1

1− 2α

= C1(α)ε2α−1 → 0

(1.30)

as ε→ 0, where C1(α) = 2α2

1−2α
> 0.

(ii) (Thao et al. (2003)) If 0 < H < 1/2, that is, −1/2 < α < 0, we put α = −β,

so 0 < β < 1/2 and we have∣∣(t− s+ ε)−β − (t− s)−β
∣∣ ≤ βε sup

0≤θ≤1
|(t− s+ θε)−β−1|

= βε(t− s)−β−1.

(1.31)
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From equation (1.29), we note that

E|Bε
t −Bt|2 = E

∣∣∣∣ ∫ t

0

[
(t− s+ ε)−β − (t− s)−β

]
dWs

∣∣∣∣2
=

∫ t

0

∣∣(t− s+ ε)−β − (t− s)−β
∣∣2ds

=

∫ t−ε

0

∣∣(t− s+ ε)−β − (t− s)−β
∣∣2ds

+

∫ t

t−ε

∣∣(t− s+ ε)−β − (t− s)−β
∣∣2ds,

(1.32)

The evaluation of (1.31) applied to the first term of (1.32) gives us∫ t−ε

0

∣∣(t− s+ ε)−β − (t− s)−β
∣∣2ds ≤ β2ε2

∫ t−ε

0

(t− s)−2β−2ds. (1.33)

For the second term of the right hand side of (1.32) we have∫ t

t−ε

∣∣(t− s+ ε)−β − (t− s)−β
∣∣2ds ≤ ∫ t

t−ε
(t− s)−2βds. (1.34)

It follows from (1.32), (1.33) and (1.34) that

E|Bε
t −Bt|2 ≤ β2ε2

∫ t−ε

0

(t− s)−2β−2ds+

∫ t

t−ε
(t− s)−2βds.

After some calculation we get

E|Bε
t −Bt|2 ≤ C2(βε1−2)→ 0, as ε→ 0, (1.35)

where C2(β) is a positive constant depending only on β.

From (1.30) and (1.35) we see that in both cases (H > 1/2 and H < 1/2)

there is an estimation for ||Bε
t −Bt||2 = E|Bε

t −Bt|2 as follows:

||Bε
t −Bt||2 ≤ C3(α)ε1+2α, (1.36)

where 0 < α < 1/2 for 1/2 < H < 1 and −1/2 < α < 0, for 0 < H < 1/2, and

C3(α) = max{C1(α), C2(β)} depending only on α(= −β).

The relation (1.36) is valid for every t ≥ 0, so

sup
0≤t≤T

||Bε
t −Bt|| ≤ C(α)ε

1
2

+α → 0, as, ε→ 0,

where C(α) =
√
C3(α) which proves that Bε

t → Bt in L2(Ω) uniformly with

respect to t ∈ [0, T ].
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Since in the case 1/2 < H < 1 the fractional Brownian motion exhibits statis-

tical long range dependency in the sense that ρn := E[BH
1 (BH

n+1 − BH
n )] > 0 for

all n = 1, 2, 3, . . . and
∑∞

n=1 ρn = ∞ (see Oksendal (2003)). Hence, in financial

modeling, one usually assumes that H ∈ (1/2, 1). Put α = 1/2−H. It is known

that a fractional Brownian motion BH
t can be decomposed as follows:

BH
t =

1

Γ(1− α)

{
Zt +

∫ t

0

(t− s)−αdWs

}
,

where Γ is the gamma function,

Zt =

∫ 0

−∞
[(t− s)−α − s−α]dWs,

and W = (Wt)t≥0 is a standard Brownian motion. We suppose from now on that

0 < α < 1/2. Then Zt has absolutely continuous trajectories and it is the term

Bt =

∫ t

0

(t− s)−αdWs, (1.37)

that exhibits long range dependence. We will use Bt instead of BH
t in fractional

stochastic calculus.

Note that Bt can be approximated by

Bε
t =

∫ t

0

(t− s+ ε)−αdWs, (1.38)

in the sense that Bε
t converges to Bt in Lp(Ω) as ε → 0 for any p ≥ 2, uniformly

with respect to t ∈ [0, T ] (Theorem 1.8 in case p = 2, other case see Dung (2007)).

Since (Bε
t )t∈[0,T ] is a continuous semimartingale then the Itô calculus can be

applied to the following stochastic differential equation (SDE)

dSεt = Sεt (µdt+ σdBε
t ), 0 ≤ t ≤ T.
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Let Sεt be the solution of the above SDE. Because of the convergence of Bε
t to the

process Bt in L2(Ω) as ε→ 0, we shall define a solution of a fractional stochastic

differential equation of the form

dSt = St(µdt+ σdBt), 0 ≤ t ≤ T,

to be a process S∗t defined on the probability space (Ω,F ,P) such that the pro-

cess Sεt converges to S∗t in L2(Ω) as ε → 0 and the convergence is uniform with

respect to t ∈ [0, T ]. This definition will be applied to the other similar fractional

stochastic differential equations which will appear later. However, the following

subsection will be explain more detail of an approximation approach to stochastic

integration with respect to fractional Brownian motion.

1.4.7 An Approximation Approach to Fractional Stochastic Inte-

gration

The following definition and theorem can be found in Thao (2003). Let a

filtered probability space (Ω,F , (FWt )t≥0,P) be given where FWt is the σ-algebra

generated by standard Brownian motion (Wt)t≥0. Suppose that f(t) is a deter-

ministic function of bounded variation on [0, T ] and the fractional process Bt is

given as in (1.38):

Bt =

∫ t

0

(t− s)α Ws, α = H − 1

2
, 0 < H < 1.

Then the integral
∫ t

0
Bs df(s) is well defined in the sense of Riemann-Stieltjes for

almost all ω.

Definition 1.2. The fractional stochastic integral of f(t) is a stochastic process

It defined as

It :=

∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsdf(s).
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Now suppose (f(t, ω))t≥0 is a stochastic process on (Ω,F ,P) whose sample

paths are of bounded variation on [0, T ] for almost every ω ∈ Ω.

Definition 1.3. The fractional stochastic integral of f(t, ω) is a stochastic process

I(t) defined as

It =

∫ t

0

f(s, ω)dB(s) = f(t, ω)Bt −
∫ t

0

Bsdf(s, ω)− [f,B]t, (1.39)

where the notation [., .] stands for the quadratic variation of two processes given

by a limit in probability:

[f,B]t = P− lim
max |tk+1−tk|→0

n−1∑
k=0

[
f(tk+1)− f(tk)

][
Btk+1

−Btk

]
,

for all partitions {0 = t0 < t1 < . . . < tk < tk+1 < . . . < tn = T} of [0, T ].

Remark 1.4. (i) The pathwise integral on the right hand side of (1.39) exists in

the sense of Riemann-Stieltjes for almost all ω.

(ii) If the function f(t, ω) has absolutely continuous sample paths (for instance,

if it is Lipschitzian with respect to t) then it is of bounded variation and so its

integral I(t) =
∫ t

0
f(s, ω)dBs exists.

Theorem 1.9.

Suppose that the process f(t, ω) has continuous sample paths of bounded variation

on [0, T ] such that E
∫ T

0
f 2(s, ω)ds <∞. Then the stochastic integral

Iεt =

∫ t

0

f(s, ω) Bε
s ,

where Bε
t =

∫ t
0
(t − s + ε)αdWs, α = H − 1

2
, 0 < H < 1, converges in L2(Ω)

as ε→ 0 to It =
∫ t

0
f(s, ω)dBs defined as in (1.39). This convergence is uniform

with respect to t ∈ [0, T ].
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Proof. (Saelim (2004)). For a revised of this proof, see Dung (2010). Since

E(Bε
t )

2 = E
(∫ t

0

(t− s+ ε)αdWs

)2

= E
∫ t

0

(t− s+ ε)2αds

= −(t− s+ ε)2α+1

2α + 1

∣∣∣∣s=t
s=0

= −
(
ε2α+1

2α + 1
− (t+ ε)2α+1

2α + 1

)
<∞

it follows from Theorem 1.8 that Bε
t is a square integrable martingale. Therefore

the stochastic integral Iεt =
∫ t

0
f(s, ω)dBε

t exists. An application of the formula of

integration by parts to Iεt gives us

Iεt =

∫ t

0

f(s, ω)dBε
t = f(t, ω)Bε

t −
∫ t

0

Bε
sdf(s, ω)− [f,Bε]t.

Denote by || · || the norm in the space L2(Ω) and taking account of properties of

quadratic variations we have

||It − Iεt || =
∣∣∣∣∣∣∣∣ ∫ t

0

f(s, ω)dBs −
∫ t

0

f(s, ω)dBε
s

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ ∫ t

0

f(s, ω)d(Bs −Bε
s)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣f(s, ω)(Bs −Bε
s)−

∫ t

0

(Bs −Bε
s)df(s, ω)− [f,B −Bε]t

∣∣∣∣∣∣∣∣
≤ ||f(s, ·)|| ||Bt −Bε

t ||+
∣∣∣∣∣∣∣∣ ∫ t

0

(Bs −Bε
s)df(s, ω)

∣∣∣∣∣∣∣∣+ ||[f,B −Bε]t||.

An analogous argument as in the proof of Theorem 1.8 yields

sup
0≤t≤T

||Bt −Bε
t || ≤ Cε

1
2

+α

where α = H − 1
2
, H ∈ (0, 1) and C > 0 is some constant. Then

||f(t, ·)|| ||Bt −Bε
t || ≤MCε

1
2

+α (1.40)

where M = max0≤t≤T ||f(t, ·)|| (the maximum exists since E|f(t, ·)|2 is continuous

with respect to t ∈ [0, T ]). Moreover, we have

||[f,B −Bε]t|| ≤ ||f(t, ω)|| ||Bt −Bε
t || ≤MCε

1
2

+α. (1.41)
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On the other hand we see that∣∣∣∣∣∣∣∣ ∫ t

0

(Bs −Bε
s)df(s, ω)

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ ∫ t

0

||Bs −Bε
s ||df(s, ω)

∣∣∣∣∣∣∣∣
≤ Cε

1
2

+α

∣∣∣∣∣∣∣∣ ∫ t

0

df(s, ω)

∣∣∣∣∣∣∣∣
≤ Cε

1
2

+α
(
||f(t, ·)||+ ||f(0, ·)||

)
≤ 2CMε

1
2

+α.

(1.42)

It follows from (1.40), (1.41) and (1.42) that

||It − Iεt || ≤ 4CMε
1
2

+α.

Hence

sup
0≤t≤T

||It − Iεt || ≤ 4CMε
1
2

+α → 0, as ε→ 0.

Therefore, It → Iεt in L2(Ω) as ε→ 0 uniformly with respect to t ∈ [0, T ].

Remark 1.5. Theorem 1.9 is proved for the L2-convergence of Iεt → It in the

case that f is of bounded variation. This motivates us to define the fractional

stochastic integral for any stochastic process f(t, ω) as follows.

Definition 1.6. Let f(t, ω) be a stochastic process with continuous paths. Then

the fractional stochastic integral of f(t, ω) is defined by∫ t

0

f(s, ω)dBs := L2 − lim
ε→0

∫ t

0

f(s, ω)dBε
s ,

whenever the limit exists in L2(Ω,F ,P), where Bt =
∫ t

0
(t − s)H− 1

2dW and Bε
t =∫ t

0
(t− s+ ε)H−

1
2dWs for 0 < H < 1.



CHAPTER II

A FRACTIONAL STOCHASTIC VOLATILITY

WITH JUMPS

2.1 Introduction

Assume that under the real-world or physical probability measure P, a geo-

metric Brownian motion (know as Black-Scholes model or a diffusion model) is

the model of the form

dSt = St(µdt+ σdWt), t ∈ [0, T ] and T <∞,

where µ ∈ <, σ > 0, S = (St)t∈[0,T ] is a process representing the price of the

underling assets, and (Wt)t∈[0,T ] is standard Brownian motion.

Over the last decade, many academic researchers have tried to extend and

improve the classical geometric Brownian motion model in various directions.

Some researchers represent rare events by jumps and introduce a model of jump

diffusion (see Merton (1976) and Kou (2002)). Other authors try to provide a

more realistic stochastic process for the underlying process (e.g. stock price) by

introducing a stochastic process for the volatility, i.e. with the variance of the

stock return as random. See, for example, Hull and White (1987), Stein and Stein

(1991) and Heston (1993). Since there is an empirical study showing that the

behaviour of stock price exhibits a long-range dependence, Thao (2006) replaced

Browian motions (Bm) by fractional Brownian motions (fBm) in the diffusion

model. Moreover, Sattayatham et. al., (2007) extended Thao’s results by adding

a Poisson jump into the model. In this thesis, we shall extend our investigations
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by replacing a Poisson jump by a compound Poisson jump and assuming that the

variance of the stock return follows a fractional stochastic process.

In Section 2.2 an alternative stock price model is proposed in which the stock

prices follow geometric Brownian motion (gBm) with compound Poisson jumps

and fractional stochastic volatility. The convergence theorem of the approximate

solution to the limit process is established in Section 2.3.

2.2 Description of the Model

Suppose (Ω,F ,P) is a probability space on which are defined two standard

Brownian motions (Wt)t≥0 and (W t)t≥0 with correlation ρ and a compound Pois-

son process (Zt)t≥0 with intensity λ and Gaussian distribution of jump sizes.

We assume that the σ-algebras generated respectively by (Zt)t≥0, (Wt)t≥0, and

(W t)t≥0 are independent.

Suppose that a single stock price St and its volatility vt = σ2
t satisfy the

following stochastic differential equations:

dSt = St(µdt+
√
vtdWt) + St−dZt (2.1)

dvt = (ω − θvt)dt+ ξvtdW t (2.2)

with initial condition St(t=0) = S0 ∈ L2(Ω) and vt(t=0) = v0 ∈ L2(Ω), where µ is

the (deterministic) instantaneous drift of stock price returns, ω is the mean long-

term volatility, θ is the rate at which the volatility reverts toward its long-term

mean, and ξ is the volatility of the volatility process.

The notation St− means that whenever there is a jump, the value of the pro-

cess before the jump is used on the left-hand side of the formula.

The last term of equation (2.1) is just a symbol. More precisely, it can be de-

fined by a stochastic integral with respect to the Poisson random measure N(ω, ·)
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as the sum of jumps of a Poisson process Nt,∫ t

0

Ss−dZs =

∫ t

0

YsSs−dNs =
Nt∑
n=1

∆STn ,

where Yt is the random jump amplitude.

We now assume that the Tn’s correspond to the jump times of a Poisson process

Nt and the Yn is a sequence of identically distributed random variables with values

in (−1,∞). Let St be a predictable process. At time Tn the jump of the dynamics

of St is given by

∆STn := S(Tn)− S(Tn−) = YnS(Tn−)

which, by the assumption Yn > −1, leads always to positive values of the prices.

To solve equation (2.1), let us rewrite it into an integral form as follows:

St = S0 +

∫ t

0

µSsds+

∫ t

0

√
vsSsdWs +

Nt∑
n=1

∆STn . (2.3)

Assume E[
∫ T

0
vtS

2
t dt] < ∞. Then, by an application of Itô’s lemma for

the jump-diffusion process (see Lemma 1.2, Section 1.3) to equation (2.3) with

f(St, t) = log(St), one gets

logSt = logS0 + µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs,

or, equivalently,

St = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
.

Since in may problems related to network traffic analysis, mathematical fi-

nance, and many other fields, the processes under study seem empirically to

exhibit long-range dependent properties, their dynamics should be driven by a

fractional Brownian process. Hence, instead of (2.2), we consider the fractional

version of (2.2):

dSt = St(µdt+
√
vtdWt) + St−YtdNt (2.4)

dvt = (ω − θvt)dt+ ξvtdBt (2.5)
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where Bt is as given in equation (1.37).

The corresponding approximately fractional model can be defined, for each

ε > 0, by

dSεt = Sεt (µdt+
√
vεtdWt) + Sεt−YtdNt (2.6)

dvεt = (ω − θvεt )dt+ ξvεtdB
ε
t (2.7)

where Bε
t is as given in equation (1.38).

In the paper of Plienpanich at el. (2009) the solution of the approximate model

(2.7) with initial condition vt(t=0) = v0 ∈ L2(Ω) is given by

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
t )ds

)
exp(ξBε

t − χεt) (2.8)

where χε = θ + 1
2
ξ2ε2α, ε > 0, α ∈ (0, 1/2), and θ, ξ are real constants.

Assume E[
∫ T

0
vεt (S

ε
t )

2dt] < ∞. Using Itô’s lemma for the jump-diffusion pro-

cess again, the solution of the approximate model (2.6) is given by

logSεt = logS0 + µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs,

or, equivalently,

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
.

2.3 Convergence of a Solution of an Approximate Model

Before stating the main theorem concerning the convergence Sεt to a random

variable S∗t ∈ L2(Ω) as ε → 0, we first prove the convergence of the process

(vεt : ε > 0) in Lr(Ω) as ε → 0. Denoting the norm in Lr(Ω) by ‖ · ‖r where

r ∈ [1,∞).
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Lemma 2.1. Let p ∈ [1,∞) and suppose that v0(·) is a random variable such that

E|v0|p <∞. Then for every 1 ≤ r ≤ p, ‖vεt‖r ∈ Lr(Ω) for all t ∈ [0, T ].

Proof. Pick q satisfy 1/r = 1/q + 1/q. Then q > 1. Using the fact that

‖fg‖r ≤ ‖f‖p‖g‖q

where p, q, r ∈ [0,∞) and 1/r = 1/p+ 1/q (see Jones (1993)), we have

‖vεt‖r =

wwww
(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt)
wwww
r

≤ ‖v0 exp(ξBε
t − χεt)‖r + |ω|

wwww∫ t

0

exp(χεs− ξBε
s)ds exp(ξBε

t − χεt)
wwww
r

≤ ‖v0‖p‖exp(ξBε
t − χεt)‖q + |ω|

wwww∫ t

0

exp(χεs− ξBε
s)ds

wwww
p

‖exp(ξBε
t − χεt)‖q

≤ ‖v0‖p
(

exp ‖ξBε
t − χεt‖q

)
+ |ω|

∫ t

0

‖exp(χεs− ξBε
s)‖pds ‖exp(ξBε

t − χεt)‖q

≤ (E|v0|p)1/p exp(−χεt)eqξ
2γ2ε (t)/2 + |ω|t exp(χεt)e

pξ2γ2ε (t)/2 exp(−χεt)eqξ
2γ2ε (t)/2

<∞, for all t ∈ [0, T ].

Here, we have used the following computation of ‖exp(ξBε
t − χεt)‖q. Note that

Bε
t is a Gaussian process with zero mean and finite variance. Let γ2

ε (t) be the

variance of Bε
t ; we get γ2

ε (t) = E|Bε
t |2 = (t+ε)2α+1−ε2α+1

2α+1
(see Dung (2007)). Hence

‖exp(ξBε
t − χεt)‖q = exp(−χεt)

[
E
∣∣∣eξBεt ∣∣∣q]1/q

= exp(−χεt)
[
E(eqξB

ε
t )
]1/q

= exp(−χεt)

[
1√

2πγε(t)

∫ ∞
−∞

eqξze
−z2

2γ2ε (t)dz

]1/q

= exp(−χεt)

[
1√

2πγε(t)

∫ ∞
−∞

e
1
2
q2ξ2γ2ε (t)e

−(z2−2qξγ2ε (t)z+q
2ξ2γ4ε (t))

2γ2ε (t) dz

]1/q

= exp(−χεt)

[
eq

2ξ2γ2ε (t)/2 1√
2πγε(t)

∫ ∞
−∞

e
−(z−qξγ2ε (t))

2

2γ2ε (t) dz

]1/q

= exp(−χεt)eqξ
2γ2ε (t)/2 <∞, for all t ∈ [0, T ].

The other expressions can be computed similarly. This proves the lemma.
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Lemma 2.2. Let p ≥ 2. Suppose that v0(·) is a random variable such that

E|v0|p < ∞. Then the process (vεt : ε > 0) converges to vt in Lr(Ω) as ε → 0 for

each 1 ≤ r ≤ p. This convergence is uniform with respect to t ∈ [0, T ].

Proof. Pick q ≥ 2 satisfy 1/p+ 1/q = 1/r. Define a process (vt)t∈[0,T ] as follows:

vt =

(
v0 + ω

∫ t

0

exp(θs− ξBs)ds

)
exp(ξBt − θt),

where all the parameters are as in equation (2.8).

Using the fact that Bt is a Gaussian process with zero mean and finite variance

γ2
t := E|Bt|2 = t2α+1

2α+1
, as in the proof of Lemma 2.1 one shows that vt ∈ Lr(Ω).

Next we compute

vεt − vt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt)

−
(
v0 + ω

∫ t

0

exp(θs− ξBs)ds

)
exp(ξBt − θt)

= v0[exp(ξBε
t − χεt)− exp(ξBt − θt)]

+ ω

[ ∫ t

0

exp(χεs− ξBε
s)ds exp(ξBε

t − χεt)

−
∫ t

0

exp(θs− ξBs)ds exp(ξBt − θt)
]
.

The second expression of the last equation is equal to

ω

(∫ t

0

exp(χεs− ξBε
s)ds exp(ξBε

t − χεt)−
∫ t

0

exp(θs− ξBs)ds exp(ξBt − θt)
)

= ω

(∫ t

0

exp(χεs− ξBε
s)ds exp(ξBε

t − χεt)−
∫ t

0

exp(χεs− ξBε
s)ds exp(ξBt − θt)

)
+ ω

(∫ t

0

exp(χεs− ξBε
s)ds exp(ξBt − θt)−

∫ t

0

exp(θs− ξBs)ds exp(ξBt − θt)
)

= ω

[ ∫ t

0

exp(χεs− ξBε
s)ds

][(
exp(ξBt − θt)

)[
exp

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1
]]

+ ω

[ ∫ t

0

(
exp(θs− ξBs)

)[
exp

(
ξ(Bs −Bε

s) + s(χε − θ)
)
− 1
]
ds

]
exp(ξBt − θt).
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Consequently,

vεt − vt = v0

(
exp(ξBt − θt)

)[
exp

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1
]

+ ω

[ ∫ t

0

exp(χεs− ξBε
s)ds

][(
exp(ξBt − θt)

)[
exp

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1
]]

+ ω

[ ∫ t

0

(
exp(θs− ξBs)

)[
exp

(
ξ(Bs −Bε

s) + s(χε − θ)
)
− 1
]
ds

]
exp(ξBt − θt).

Hence,

‖vεt − vt‖r

≤
wwwv0

(
exp(ξBt − θt)

)[
exp

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1
]www

r

+

wwwwω[ ∫ t

0
exp(χεs− ξBε

s)ds

][(
exp(ξBt − θt)

)[
exp

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1
]]wwww

r

+

wwwwω[ ∫ t

0

(
exp(θs− ξBs)

)[
exp

(
ξ(Bs −Bε

s) + s(χε − θ)
)
− 1
]
ds

]
exp(ξBt − θt)

wwww
r

≤ ‖v0‖p
wwwexp(ξBt − θt)www

2q

wwwexp (ξ(Bε
t −Bt)− t(χε − θ)

)
− 1
www

2q

+ |ω|
wwww∫ t

0
exp(χεs− ξBε

s)ds

wwww
p

wwwexp(ξBt − θt)www
2q

wwexp(ξ(Bε
t −Bt)− t(χε − θ)

)
− 1
ww

2q

+ |ω|
wwww∫ t

0

(
exp(θs− ξBs)

)[
exp

(
ξ(Bs −Bε

s) + s(χε − θ)
)
− 1
]
ds

wwww
p

wwexp(ξBt − θt)wwq.
(2.9)

We aim to prove that ‖vεt − vt‖r → 0 in Lr(Ω) as ε → 0. To do this we note

that ‖v0‖p = (E|vp0|)1/2 <∞ and, recalling that Bt is the Gaussian process with

zero mean and finite variance γ2
t , then we have

‖exp(ξBt − θt)‖2q = exp(−θt)
[
E
∣∣∣eξBt∣∣∣2q]1/2q

= exp(−θt)
[
E
e2qξBt

1/2q]
= exp(−θt)

[
1√

2πγt

∫ ∞
−∞

e2qξze
−z2

2γ2t dz

]1/2q

= exp(−θt)
[

1√
2πγt

∫ ∞
−∞

e2q2ξ2γ2t e
−(z2−4qξγ2t z+4q2ξ2γ4t)

2γ2t dz

]1/2q

= exp(−θt)
[
e2q2ξ2γ2t

1√
2πγt

∫ ∞
−∞

e
−(z−2qξγ2t )

2

2γ2t dz

]1/2q

= exp(−θt)eqξ2γ2t ≤M <∞, for some M and for all t ∈ [0, T ].
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Next, it follows from the relation e‖A‖2q − 1 = ‖A‖2q + o(‖A‖2q) that

‖exp
(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1‖2q ≤ ‖

(
ξ(Bε

t −Bt)− t(χε − θ)
)
− 1‖2q +R1

≤ |ξ|‖(Bε
t −Bt)‖4q + |t|‖χε − θ‖4q +R1

≤ |ξ|‖(Bε
t −Bt)‖4q + t

(1
2
ξ2ε2α

)
+R1

(2.10)

where R1 = o
(
‖(ξ(Bε

t −Bt)− t(χε − θ))‖2q

)
.

Since ‖(Bε
t −Bt)‖4q → 0 as ε→ 0 uniformly in t ∈ [0, T ] then the right hand

side of equation (2.10) approaches zero as ε → 0, after which we seen that the

first expression of the equation (2.9) approaches zero as ε→ 0.

For the second expression of equation (2.9), we note thatwwww∫ t

0

exp(χεs− ξBε
s)ds

wwww
p

≤
∫ t

0

‖exp(χεs− ξBε
s)‖pds

= t exp
(
χεt+ pξ2γ2

ε (t)/2
)
≤M <∞,

for some M and for all t ∈ [0, T ]. Since (2.10) approaches zero as ε→ 0, the second

expression of equation (2.9) approaches zero as ε→ 0 uniformly in t ∈ [0, T ].

Finally, for the third expression of equation (2.9), we havewwww∫ t

0

(
exp(θs− ξBs)

)[
exp

(
ξ(Bs −Bε

s) + s(χε − θ)
)
− 1
]
ds

wwww
p

≤
∫ t

0

www( exp(θs− ξBs))[ exp (ξ(Bs −Bε
s) + s(χε − θ)

)
− 1
]www

p
ds

≤
∫ t

0

wwexp(θs− ξBs)ww2p

wwexp (ξ(Bs −Bε
s) + s(χε − θ)

)
− 1
ww

2p
ds

≤
[wwξ(Bt −Bε

t ) + t(χε − θ)
ww

2p
+R2

]
×
∫ t

0

wwexp(θs− ξBs)ww2p
ds

≤
[
|ξ|‖Bt −Bε

t ‖4p + |t|‖χε − θ‖4p +R2

]
×
∫ t

0

wwexp(θs− ξBs)ww2p
ds

≤ te(θt+pξ2γ2t )
[
|ξ|‖(Bt −Bε

t )‖4p + t
(1
2
ξ2ε2α

)
+R2

]
→ 0

as ε → 0 uniformly in t ∈ [0, T ] where R2 = o
(wwξ(Bt −Bε

t )− s(χε − θ)
ww

2p

)
.

Thus the third expression of equation (2.9) approaches zero as ε → 0, uniformly

in t ∈ [0, T ].
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Consequently, all expressions of the right hand side of equation (2.9) approach

zero as ε → 0. Therefore, vεt → vt in Lr(Ω) as ε → 0 and this convergence is

uniform with respect to t ∈ [0, T ].

Now we ready to state and prove our main results. The solution of the ap-

proximated model (2.6) is given by

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
. (2.11)

Define a stochastic process S∗t as follows:

S∗t = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
. (2.12)

The following theorem shows that the process S∗t is the limit process Sεt in

L2(Ω) as ε→ 0. Hence, by definition, S∗t will be the solution of equation (2.4)

Theorem 2.3. Suppose that S0(·) is a non-negative random variable such that

E|S0|4 is finite, and v0(·) 6= 0 a.s. The stochastic process Sεt of equation (2.11)

converges to the limit process S∗t in L2(Ω) as ε→ 0 and the convergence is uniform

with respect to t ∈ [0, T ] whenever 0 < α < 1/2.

Proof. It follows from equations (2.11) and (2.12) that

Sεt − S∗t = S0

(
S∗t
S0

)[
exp

(
− 1

2

∫ t

0

(vεs − vs)ds+

∫ t

0

(
√
vεs −

√
vs)dWs

)
− 1

]
Then

‖Sεt − S∗t ‖2 ≤ ‖S0‖4
wwww(S∗tS0

)[
exp

(
− 1

2

∫ t

0
(vεs − vs)ds+

∫ t

0
(
√
vεs −

√
vs)dWs

)
− 1

]wwww
4

≤ ‖S0‖4
wwwwS∗tS0

wwww
8

wwwwexp(− 1

2

∫ t

0
(vεs − vs)ds+

∫ t

0
(
√
vεs −

√
vs)dWs

)
− 1

wwww
8

.

(2.13)

The following three parts show an approximation of norm ‖Sεt − S∗t ‖2. in

equation (2.13).

(i) ‖S0‖4 = E|S0|4 <∞ by the assumptions of the theorem.
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(ii) We note thatwwwwS∗tS0

wwww
8

=

wwwwexp(µt− 1

2

∫ t

0
vsds+

∫ t

0

√
vsdWs +

∫ t

0
log(1 + Ys)dNs

)wwww
8

=

wwwwexp(µt+ ∫ t

0
log(1 + Ys)dNs

)
× exp

(
− 1

2

∫ t

0
vsds

)
× exp

(∫ t

0

√
vsdWs

)wwww
8

≤
wwwwexp(µt+ ∫ t

0
log(1 + Ys)dNs

)wwww
16

×
wwwwexp(− 1

2

∫ t

0
vsds

)wwww
32

×
wwwwexp(∫ t

0

√
vsdWs

)wwww
32

(2.14)

In order to get an approximation of equation (2.14), we firstly note thatwwwwexp

(
µt+

∫ t

0

log(1 + Ys)dNs

)wwww
16

=

wwwwexp(µt)× exp

(
Nt∑
n=1

log(1 + Yn)

)wwww
16

=

wwww Nt∑
n=1

(1 + Yn)

wwww
16

exp(µt)

≤ K exp(|µ|T )

where K is a constant. The last inequality follows from the fact that there are a

finite number of jumps in the finite interval [0, T ]. Moreover,wwwwexp
(
− 1

2

∫ t

0

vsds
)wwww

32

≤ exp

wwww−1

2

∫ t

0

vsds

wwww
32

≤ exp

(
1

2
M1T

)
<∞

where M1 := sup0≤t≤T ‖vt‖32. The maximum exists since vt ∈ L32(Ω) (by Lemma

2.1) and

‖vt‖32
32 = E

( exp(ξBt − θt)
)(

v0 + ω

∫ t

0

exp(θs− ξBs)ds

)32

is continuous with respect to t ∈ [0, T ].

For the remaining term, we note thatwwwwexp
(∫ t

0

√
vsdWs

)wwww
32

≤ exp

(wwww∫ t

0

√
vsdWs

wwww
32

)
≤ exp

(
M2

wwwWt −W0

www
32

)
= exp(M2M3) <∞

where M2 := sup0≤t≤T ‖
√
vt‖32 and M3 := sup0≤t≤T ‖Wt‖32.
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The maximum exists since

‖Wt‖32
32 = E|Wt|32 =

32!

216 · 16!
t16 <∞,

and this expression is continuous with respect to t ∈ [0, T ].

Consequently, we see that

wwwwS∗t
S0

wwww
8

is finite.

(iii) The third factor on the right hand side of equation (2.13) is calculated

by using the relation exp(A)− 1 = A+ o(A). So we havewwww exp

(
− 1

2

∫ t

0

(vεs − vs)ds+

∫ t

0

(
√
vεs −

√
vs)dWs

)
− 1

wwww
8

≤
wwww−1

2

∫ t

0

(vεs − vs)ds+

∫ t

0

(
√
vεs −

√
vs)dWs

wwww
8

+R3

≤ 1

2

∫ t

0

‖vεs − vs‖8ds+

∫ t

0

‖vεs − vs‖8

‖√vεs +
√
vs‖8

dWs +R3

≤ 1

2
t‖vεs − vs‖8 +

‖vεs − vs‖8

‖√vεs +
√
vs‖8

‖Wt −W0‖8 +R3

where R3 =

wwwwo(− 1
2

∫ t
0
(vεs − vs)ds+

∫ t
0
(
√
vεs −

√
vs)dWs

)wwww
8

.

Hence,wwwwexp

(
− 1

2

∫ t

0

(vεs − vs)ds+

∫ t

0

(
√
vεs −

√
vs)dWs

)
− 1

wwww
8

≤ 1

2
t‖vεs − vs‖8 +

‖vεs − vs‖8

‖√vεs +
√
vs‖8

M̂ +R3

(2.15)

where M̂ := max0≤t≤T ‖Wt‖8. Note that 0 < c ≤ ‖√vεs +
√
vs‖8 for all s ∈ [0, t]

since we assume that v0 6= 0. Hence, by Lemma 2.2, the right hand side of equation

(2.15) approaches zero as ε→ 0.

Therefore Sεt → S∗t in L2(Ω) as ε → 0. This convergence does not depend on t

and is hence uniform with respect to t ∈ [0, T ].



CHAPTER III

OPTION PRICING MODEL FOR A

FRACTIONAL STOCHASTIC VOLATILITY

WITH JUMPS

3.1 Introduction

The aim of this chapter is to compute a European call option of the approxi-

mate model given in Chapter II. In this thesis, however it is quite straightforward

to get options by inverting the characteristic function of a given approximate

model if it is known in an explicit form. The chapter is structured as follows.

A risk-neutral for geometric Brownian motion (gBm) model with a compound

Poisson process and stochastic volatility model is described in Section 3.2. A risk-

neutral for a gBm model with compound Poisson process and fractional stochastic

volatility model is also introduced in this section. The relationship between the

stochastic differential equation and partial integro-differential equation (PIDE) for

the jump diffusion process with stochastic volatility is presented in Section 3.3.

This relationship will play the role of the main theorem. Section 3.4 discusses

the problem and method to evaluate the European call option, based on the ex-

plicit knowledge of the characteristic function. Finally, a closed-form solution for

a European call option in terms of characteristic function is formulated in Section

3.5.
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3.2 Risk-Neutral for a Fractional Stochastic Volatility Model

with Jumps

In this section, a risk-neutral for a fractional stochastic volatility model is in-

troduced. Its solution will also be discussed in this section.

It is assumed that a risk-neutral probability measureM exists; the asset pro-

cess St, under this risk-neutral measure, follows a jump-diffusion process, with

zero-mean at risk-free rate r, and stochastic variance vt,

dSt = St

(
(r − λEM(Yt))dt+

√
vtdWt

)
+ St−YtdNt. (3.1)

It is only necessary to know that the risk-neutral measure exists (see, Cont and

Tankov (2004)). Hence, all processes to be discussed after this chapter will be

processes under the risk-neutral probability measure M.

Let us rewrite equation (3.1) into integral form as follows:

St = S0 +

∫ t

0

(r − λEM(Ys))Ssds+

∫ t

0

√
vsSsdWs +

∫ t

0

Ss−YsdNs. (3.2)

Note that the last term on the right hand side of equation (3.2) is defined by∫ t

0

Ss−YsdNs =
Nt∑
n=1

∆Sn,

where

∆Sn := STn − STn− = Sn−Yn.

The assumption Yn > 0 always leads to positive values of the stock prices. The

process (Yn)n∈N is assumed to be independently and identically distributed (i.i.d.)

with density φY (y) and (Tn)n∈N is a sequence of jump times.
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Using an initial condition St(t=0) = S0 ∈ L2(Ω), its solution is given by

St = S0 exp

(∫ t

0

(
(r − λEM(Ys))−

1

2
vs

)
ds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
,

where vt satisfies the following fractional SDE

dvt = (ω − θvt)dt+ ξvtdBt, (3.3)

with an initial condition vt(t=0) = v0 ∈ Lp(Ω), where p > 2.

For each ε < 0, consider an approximation model of equation (3.3);

dvεt = (ω − θvεt )dt+ ξvεtdB
ε
t . (3.4)

Using lemma 2.2, it follows that solution vεt of equation (3.4) converges in L2(Ω)

to the process

vt =

(
v0 + ω

∫ t

0

exp(θs− ξBs)ds

)
exp(ξBt − θt),

that is the solution of equation (3.3).

Now we consider an approximate model of equation (3.1);

dSεt = Sεt
(
(r − λEM(Yt)

)
dt+

√
vεtdWt) + Sεt−YtdNt, (3.5)

and by using the same initial condition as in equation (3.2), we have

Sεt = S0 exp

(∫ t

0

(
(r− λEM(Ys))−

1

2
vεs

)
ds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
.

(3.6)

By theorem 2.3 the process Sεt converges to St in L2(Ω) as ε → 0 and uniformly

on t ∈ [0, T ], under approximate assumptions on S0 and v0.
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3.3 Partial Integro-Differential Equations for Jump Diffu-

sion Model with Stochastic Volatility

This section provides a link between the partial differential equation of a jump

diffusion process and its expectation.

Consider the process
−→
X t = (X1

t , X
2
t ) where X1

t and X2
t are processes in < and

satisfiy the following equations:

dX1
t = f1(t)dt+ g1(t)dWt +X1

t−YtdNt, (3.7)

dX2
t = f2(t)dt+ g2(t)dW t, (3.8)

where f1, g1, f2, and g2 are all continuous functions from [0, T ] into <.

Since every compound Poisson process can be represented as an integral form

of Poisson random measure (Cont and Tankov (2004)) then the last term on the

right hand side of equation (3.7) can be written as follows∫ t

0

X1
s−YsdNs =

Nt∑
n=1

X1
n−Yn =

Nt∑
n=1

[X1
Tn −X

1
Tn−] =

∫ t

0

∫
<
X1
s−zJz(ds dz)

where Yn are i.i.d. random variables with density φY (y) and JZ is a Poisson ran-

dom measure of the process Zt =
∑Nt

n=1 Yn with intensity measure λφY (dz)dt.

Let U(−→x ) be a bounded real function on <2 and twice continuously differen-

tiable in −→x = (x1, x2) ∈ <2 and

u(t,−→x ) = E[U(
−→
X T )|

−→
X t = −→x ]. (3.9)

By the two dimensional Dynkin’s formula (Hanson (2007), Theorem 7.7), u is a

solution of the partial integro-differetial equation (PIDE)

0 =
∂u(t,−→x )

∂t
+Au(t,−→x ) + λ

∫
<

[u(t,−→x + y)− u(t,−→x )]φY (y)dy,

subject to the final condition u(T,−→x ) = U(−→x ).



65

The notation A is defined by

A(t,−→x ) =f1(t)
∂u(t,−→x )

∂x1

+ f2(t)
∂u(t,−→x )

∂x2

+
1

2
g2

1(t)
∂2u(t,−→x )

∂x2
1

+ ρg1(t)g2(t)
∂2u(t,−→x )

∂x1∂x2

+
1

2
g2

2(t)
∂2u(t,−→x )

∂x2
2

,

and the correlation ρ is defined by ρ = Corr[dWt, dW t].

3.4 Pricing European Call Option

Let C denote the price at time t of a European style call option on the current

price of the underlying asset St with strike price K and expiration time T .

The terminal payoff of a European call option on the underline stock St with

strike price K is

max(St −K, 0).

This means that the holder will exercise his right only if ST > K and then his

gain is ST − K. Otherwise, if ST ≤ K, then the holder will buy the underlying

asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the option,

the price of the European call at time t is equal to the discounted conditional

expected payoff

C(t, St, vt;T,K)

= e−r(T−t) EM[max(ST −K, 0)|St, vt]

= e−r(T−t)
(∫ ∞

K
ST PM(ST |St, vt)dST −K

∫ ∞
K

PM(ST |St, vt)dST
)

= St

(
1

er(T−t)St

∫ ∞
K

ST PM(ST |St, vt)dST
)
−Ke−r(T−t)

∫ ∞
K

PM(ST |St, vt)dST

= St

(
1

EM[ST |St, vt]

∫ ∞
K

ST PM(ST |St, vt)dST
)

−Ke−r(T−t)
∫ ∞
K

PM(ST |St, vt)dST

= St P1(t, St, vt;T,K)−Ke−r(T−t) P2(t, St, vt;T,K)

(3.10)
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where EM is the expectation with respect to the risk-neural probability measure,

PM(ST |St, vt) is the corresponding conditional density given (St, vt), and

P1(t, St, vt;T,K) =
(∫ ∞

K

STPM(ST |St, vt)dST
)
/E[ST |St, vt].

Note that as P1 is the risk-neutral probability then ST > K (since the integrand

is nonnegative and the integral over [0,∞) is one), and finally, that

P2(t, St, vt;T,K) =

∫ ∞
K

STPM(ST |St, vt)dST = Prob(ST > K|St, vt)

is the risk-neutral in-the-money probability. Moreover, EM[ST |St, vt] = er(T−t)St

for t ≥ 0.

Note that we do not have a closed form solution for these probabilities. How-

ever, these probabilities are related to characteristic functions which have closed

form solutions as will be seen in Lemma 3.1.

We would like to compute the price of a European call option with strike price

K and maturity T of the model (3.1) for which its fractional stochastic volatility

satisfies equation (3.3).

To do this, consider the logarithm of Sεt , namely, Lεt , i.e. Lεt = log(Sεt ) where

Sεt satisfies equation (3.6) and its inverse Sεt = exp(Lεt). Denote by κ = log(K)

the logarithm of the strike price.

We now refer to equation (3.4), since this approximate model is driven by a

semimartingale Bε
t and hence there is no opportunity of arbitrage. This is the

advantage of our approximate approach and we will use this model for pricing the

European call option instead of equation (3.3).
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Note that we can write

dBε
t = αϕεtdt+ εαdW t (3.11)

where ϕεt =
∫ t

0
(t − u + ε)1−αdWu, α = 1/2 −H and 0 < α < 1/2 (Thao (2006),

Lemma 2.1).

Substituting equation (3.11) into equation (3.3), we obtain

dvεt =
(
ω + (αξϕεt − θ)vεt

)
dt+ ξεαvεtdW t. (3.12)

Consider the SDE (3.1) and (3.12). Define a function U on <2 as follows:

U(x1, x2) = e−r(T−t) max(ex1 − κ, 0).

By virtue of equation (3.9),

u(t, St) = EM[U(
−→
X T )|

−→
X t = −→x ]

= e−r(T−t) EM[max
(

exp(Lεt)− κ, 0
)
|Lεt = `ε, vεt = vε]

:= C(t, `ε, vε;T, κ)

satisfies the following PIDE:

0 =
∂C

∂t
+ f1

∂C

∂`ε
+ f2

∂C

∂vε
+

1

2
g2

1

∂2C

∂(`ε)2
+ ρg1g2

∂2C

∂`ε∂vε
+

1

2
g2

2

∂2C

∂(vε)2

− rC + λ

∫
<

[
C(t, `ε + y, vε;T, κ)− C(t, `ε, vε;T, κ)

]
φY (y)dy.

(3.13)

In the current state variables, the last line of the equation (3.10) becomes

C(t, `ε, vε;T, κ) = e`
εP1(t, `ε, vε;T, κ)− eκ−r(T−t)P2(t, `ε, vε;T, κ). (3.14)

The following lemma shows the relationship between P1 and P2 in the option value

of equation (3.14).
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Lemma 3.1. The functions P1 and P2 in the option value of the equation (3.14)

satisfy the PIDEs:

0 =
∂P1

∂t
+ A[P1](t, `ε, vε;T, κ) + vε

∂P1

∂`ε
+ ρξεα(vε)3/2∂P1

∂vε

+
(
r − λEM(Yt)

)
P1 + λ

∫
<

[
(ey − 1)P1(t, `ε + y, vε;T, κ)

]
φY (y)dy,

subject to the boundary condition at expiration time t = T ;

P1(T, `ε, vε;T, κ) = 1`ε>κ. (3.15)

Moreover, P2 satisfies the equaion

0 =
∂P2

∂t
+ A[P2](t, `ε, vε;T, κ) + rP2,

subject to the boundary condition at expiration time t = T ;

P2(T, `ε, vε;T, κ) = 1`ε>κ, (3.16)

where

A[f ](t, `ε, vε;T, κ) :=

(
r − λEM(Yt)−

1

2
vε
)
∂f

∂`ε
+
(
ω + (αξϕεt − θ)vε

) ∂f
∂vε

+
1

2
vε

∂2f

∂(`ε)2
+ ρξεα(vε)3/2 ∂2f

∂`ε∂vε
+

1

2
ξε2α(vε)2 ∂2f

∂(vε)2

− rf + λ

∫
<

[
f(t, `ε + y, vε;T, κ)− f(t, `ε, vε;T, κ)

]
φY (y)dy.

(3.17)

Note that 1`ε>κ = 1 if `ε > κ and otherwise 1`ε>κ = 0.

Proof. We plan to substitute equation (3.14) into equation (3.13). Firstly we

compute

∂C

∂t
= e`

ε ∂P1

∂t
− eκ−r(T−t)∂P2

∂t
− reκ−r(T−t)P2

∂C

∂`ε
= e`

ε ∂P1

∂`ε
+ e`

εP1 − eκ−r(T−t)
∂P2

∂`ε

∂C

∂vε
= e`

ε ∂P1

∂vε
− eκ−r(T−t)∂P2

∂vε
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∂2C

∂(`ε)2
= e`

ε ∂2P1

∂(`ε)2
+ 2e`

ε ∂2P1

∂2`ε
+ P1e

`ε − eκ−r(T−t) ∂
2P2

∂(`ε)2

∂2C

∂`ε∂vε
= e`

ε ∂2P1

∂`ε∂vε
+ e`

ε ∂P1

∂vε
− eκ−r(T−t) ∂

2P2

∂`ε∂vε

∂2C

∂(vε)2
= e`

ε ∂2P2

∂(vε)2
− eκ−r(T−t) ∂

2P2

∂(vε)2

and

C(t,`ε + y, vε;T, κ)− C(t, `ε, vε;T, κ)

=
[
e(`ε+y) P1(t, `ε + y, vε;T, κ)− eκ−r(T−t) P2(t, `ε + y, vε;T, κ)

]
−
[
e`
ε P1(t, `ε, vε;T, κ)− eκ−r(T−t) P2(t, `ε, vε;T, κ)

]
=

{
e`
ε
[
ey P1(t, `ε + y, vε;T, κ)− P1(t, `ε + y, vε;T, κ)

]
+
[
e`
ε P1(t, `ε + y, vε;T, κ)− e`εP1(t, `ε, vε;T, κ)

]}
− eκ−r(T−t)

[
P2(t, `ε + y, vε;T, κ)− P2(t, `ε, vε;T, κ)

]
= e`

ε
(
ey − 1

)
P1(t, `ε + y, vε;T, κ)

+ e`
ε
[
P1(t, `ε + y, vε;T, κ)− P1(t, `ε, vε;T, κ)

]
− eκ−r(T−t)

[
P2(t, `ε + y, vε;T, κ)− P2(t, `ε, vε;T, κ)

]
.

We substitute all terms above into equation (3.13) and separate it by assumed

independent terms of P1 and P2. This gives two PIDEs for the risk-neutralized

probability for Pj(t, `ε, vε;T, κ), j = 1, 2:

0 =
∂P1

∂t
+

(
r − λEM(Yt)−

1

2
vε
)(

∂P1

∂`ε
+ P1

)
+
(
ω + (αξϕεt − θ)vε

)∂P1

∂vε

+
1

2
vε
(
∂2P1

∂(`ε)2
+ 2

∂P1

∂`ε
+ P1

)
+ ρξεα(vε)3/2

(
∂2P1

∂`ε∂vε
+
∂P1

∂vε

)
+

1

2
ξ2ε2α(vε)2 ∂

2P1

∂(vε)2

− rP1 +

∫
<

[
(ey − 1) P1(t, `ε + y, vε;T, κ)

+(P1(t, `ε + y, vε;T, κ)− P1(t, `ε, vε;T, κ
)]
φY (y)dy

(3.18)

subject to the boundary condition at the expiration time t = T according to

equation (3.15).
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By using the notation (3.17), PIDE of (3.18) becomes

0 =
∂P1

∂t
+

(
A[P1](t, `ε, vε;T, κ) + vε

∂P1

∂`ε
+ ρξεα(vε)3/2∂P1

∂vε
+
(
r − λEM(Yt)

)
P1

+ λ

∫
<

[
(ey − 1) P1(t, `ε + y, vε;T, κ)

]
φY (y)dy

)
:=
∂P1

∂t
+ A1[P1](t, `εt , v

ε;T, κ).

For P2(t, `εt , v
ε;T, κ):

0 =
∂P2

∂t
+ r P2 +

(
r − λEM(Yt)−

1

2
vε
)(

∂P2

∂`ε

)
+
(
ω + (αξϕεt − θ)vε

)∂P2

∂vε

+
1

2
vε
∂2P2

∂(`ε)2
+ ρξεα(vε)3/2 ∂2P2

∂`ε∂vε
+

1

2
ξ2ε2α(vε)2 ∂

2P2

∂(vε)2

− rP2 +

∫
<

[
P2(t, `ε + y, vε;T, κ)− P2(t, `ε, vε;T, κ)

]
φY (y)dy

(3.19)

subject to the boundary condition at expiration time t = T according to equation

(3.16). Again, by using the notation (3.17), PIDE of (3.19) becomes

0 =
∂P2

∂t
+
(
A[P2](t, `εt , v

ε;T, κ) + rP2

)
,

:=
∂P2

∂t
+ A2[P2](t, `εt , v

ε;T, κ)

The proof is now completed.

3.5 The Closed-Form Solution for European Call Options

For j = 1, 2, the characteristic functions for Pj(t, `ε, vε;κ, T ), with respect to

the variable κ are defined by

fj(t, `
ε, vε;T, x) := −

∫ ∞
−∞

eixκdPj(t, `ε, vε;T, κ),

with a minus sign to account for the negativity of the measure dPj. Note that fj

also satisfies similar PIDEs

∂fj
∂t

+ Aj[fj](t, `
ε, vε;κ, T ) = 0, (3.20)
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with the respective boundary conditions

fj(T, `
ε, vε;x, T ) = −

∫ ∞
−∞

eixκdPj(T, `ε, vε;T, κ) = −
∫ ∞
−∞

eixκ(−δ(`ε−κ)dκ) = eix`
ε

,

since

dPj(t, `ε, vε;T, κ) = d1`ε>κ = dH(`ε − κ) = −δ(`ε − κ)dκ.

The following lemma shows how to calculate the functions P1 and P2 as they

appear in Lemma 3.1.

Lemma 3.2. The functions P1 and P2 can be calculated by the inverse Fourier

transforms of the characteristic function, i.e.

Pj(t, `ε, t; vε;T, κ) =
1

2
+

1

π

∫ +∞

0+
Re
[e−ixκfj(t, `ε, vε;T, x)

ix

]
dx,

for j = 1, 2, with Re[·] denoting the real component of a complex number.

By letting τ = T − t. (i) The characteristic function f1 is given by

f1(t, `ε, vε; t+ τ, x) = exp
(
g1(τ) + vεh1(τ) + ix`ε

)
,

where

g1(τ) =
[
(r − λEM(Yt))ix− λEM(Yt)

]
τ + λτ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy

− 2ω

ξ2ε2αvε

[
log

(
1− (∆1 + η1)(1− e−∆1τ )

2∆1

)
+ (∆1 + η1)τ

]
,

h1(τ) =
(η2

1 −∆2
1)(e∆1τ − 1)

ξ2ε2αvε(η1 + ∆1 − (η1 −∆1)e∆1τ )
,

η1 = ρξεα
√
vε(1 + ix) + (αξϕεt − θ),

and

∆1 =
√
η2

1 − ξ2ε2αvεix(ix+ 1).

(ii) The characteristic function f2 is given by

f2(t, `ε, vε, x, t+ τ) = exp
(
g2(τ) + vεh2(τ) + ix`ε + rτ

)
,
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where

g2(τ) =
[
(r − λEM(Yt))ix− r

]
τ + λτ

∫
<

(
eixy − 1

)
φY (y)dy

− 2ω

ξ2ε2αvε

[
log

(
1− (∆2 + η2)(1− e−∆2τ )

2∆2

)
+ (∆2 + η2)τ

]
,

h2(τ) =
(η2

2 −∆2
2)(e∆2τ − 1)

ξ2ε2αvε(η2 + ∆2 − (η2 −∆2)e∆2τ )
,

η2 = ρξεα
√
vε − (αξϕεt − θ),

and

∆2 =
√
η2

2 − ξ2ε2αvεix(ix− 1).

Proof. Proof of (i). To solve for the characteristic explicitly, letting τ = T − t be

the time-to-go, we conjecture that the function f1 is given by

f1(t, `ε, vε; t+ τ, x) = exp
(
g1(τ) + vεh1(τ) + ix`ε

)
, (3.21)

and the boundary condition;

g1(0) = 0 = h1(0).

This conjecture exploits the linearity of the coefficient in PIDE (3.20). Note that

the characteristic function of f1 always exists.

In order to substitute equation (3.21) into equation (3.20), firstly, we compute

∂f1

∂t
=
(
− g′1(τ)− vεh′1(τ)

)
f1,

∂f1

∂`ε
= ixf1,

∂f1

∂vε
= h1(τ)f1,

∂2f1

∂(`ε)2
= −x2f1,

∂2f1

∂`ε∂vε
= ixh1(τ)f1,

∂2f1

∂(vε)2
= h2

1(τ)f1,

f1(t, `ε + y, vε; t+ τ, x)− f1(t, `ε, vε; t+ τ, x) = (eixy − 1)f1(t, `ε, vε; t+ τ, x),

and

(ey − 1)f1(t, `ε, vε; t+ τ, x) =(ey − 1)eg1(τ)+vεh1(τ)+ix(`ε+x)

=(ey − 1)eixyf1(t, `ε, vε; t+ τ, x).
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Substituting all the above terms into equation (3.20), after canceling the common

factor of f1, we get a simplified form as follows:

0 =− g′1(τ)− vεh′1(τ) +
(
r − λEM(Yt)−

1

2
vε
)
ix

+
((
ω + (αξϕεt − θ)vε

)
+ ρξεα(vε)3/2

)
h1(τ)

− 1

2
vεx2 + ρξεα(vε)3/2ixh1(τ) +

1

2
ξ2ε2α(vε)2h2

1(τ)

− λEM(Yt) + λ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy.

By separating the order vε and ordering the remaining terms, we can reduce it to

two ordinary differential equations (ODEs),

h′1(τ) =
1

2
ξ2ε2αvεh2

1(τ) +
(
ρξ
√
vε(1 + ix) + (αξϕεt − θ)

)
h1(τ)− 1

2
ix− 1

2
x2,

(3.22)

g′1(τ) = ωh1(τ) +
(
r − λEM(Yt)

)
ix− λEM(Yt) + λ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy.

(3.23)

Let η1 =
(
ρξ
√
vε(1 + ix) + (αξϕεt − θ

)
and substitute it into equation (3.22). We

get

h′1(τ) =
1

2
ξ2ε2αvε

(
h2

1(τ) +
2η

ξ2ε2αvε
h1(τ) +

1

ξ2ε2αvε
ix(ix+ 1)

)
=

1

2
ξ2ε2α

(
h1(τ) +

2η1 +
√

4η2
1 − 4ξ2ε2αvεix(ix+ 1)

2ξvε

)
×
(
h1(τ) +

2η1 −
√

4η2
1 − 4ξ2ε2αix(ix+ 1)

2ξ2ε2α

)
=

1

2
ξ2ε2αvε

(
h1(τ) +

η1 + ∆1

ξ2ε2αvε

)(
h1(τ) +

η1 −∆1

ξ2ε2αvε

)
where ∆1 =

√
η2

1 − ξ2ε2αvεix(ix+ 1).

By the method of variable separation, we have

2dh1(τ)(
h1 + η1+∆1

ξ2ε2αvε

)(
h1 + η1−∆1

ξ2ε2αvε

) = ξ2ε2αvεdτ.

Using partial fractions, we get

1

∆1

(
1

h1 + η1−∆1

ξ2ε2αvε

− 1

h1 + η1+∆1

ξ2ε2αvε

)
dh1(τ) = dτ.
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Integrating both sides, we obtain

log

(
h1(τ) + η1−∆1

ξ2ε2αvε

h1(τ) + η1+∆1

ξ2ε2αvε

)
= ∆1τ + C.

Using the boundary condition h1(τ = 0) = 0 we get C = log
(
η1−∆1

η1+∆1

)
.

Solving for h1, we obtain

h1 =
(η2

1 −∆2
1)(e∆1τ − 1)

ξ2ε2αvε
(
η1 + ∆1 − (η1 −∆1)e∆1τ

) .
In order to solve g1(τ) explicitly, substituting h1 in to equation (3.23) and integrate

with respect to τ on the both sides. Then we get

g1(τ) =[(r − λEM(Yt))ix− λE(Yt)]τ + λτ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy

− 2ω

vεξ2ε2α

[
log

(
1− (∆1 + η1)(1− e−∆1τ )

2∆1

)
+ (∆1 + η1)τ

]
.

Proof of (ii). The details of the proof are similar to case (i). Hence, we have

f2(t, `ε, vε; t+ τ, x) = exp
(
g2(τ) + vεh2(τ) + iy`ε + rτ

)
,

where g2(τ), h2(τ), η2 and ∆2 are as given in the Lemma.

We can thus evaluate the characteristic functions in closed form. However, we

are interested in the risk-neutral probabilities Pj. These can be inverted from the

characteristic functions by performing the following integration

P̂j(Sεt , vεt , t;T,K) = Pj(`ε, vε, t;κ, T )

=
1

2
+

1

π

∫ +∞

0+
Re

[
e−ixκfj(t, `

ε, vε;T, x)

ix

]
dx

(3.24)

for j = 1, 2, where `ε = log(Sεt ), v
ε = log(vεt ), and κ = log(K).

To verify equation (3.24), firstly we note that

EM
[
eix(log(Sεt )−log(K)) | log(Sεt ) = Lεt , v

ε
t = vε

]
= EM

[
eix(`ε−κ) | Lεt = `ε, vεt = vε

]
=

∫ +∞

−∞
eix(`ε−κ)dPj(t, `ε, vε;T, κ)
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= e−ixκ
∫ +∞

−∞
eix`

ε

dPj(t, `ε, vε;T, κ)

= e−ixκ
∫ +∞

−∞
eixκ
(
− δ(`ε − κ)dκ

)
= e−ixκfj(t, `

ε
t , v

ε
t ;T, x).

Then

1

2
+

1

π

∫ +∞

0+
Re

[
e−ixκfj(t, `

ε, vε;T, x)

ix

]
dx

=
1

2
+

1

π

∫ +∞

0+
Re

[
EM[eix(log(Sεt )−log(K)) | log(St) = Lεt , v

ε
t = vε]

ix

]
dx

= EM
[
1

2
+

1

π

∫ +∞

0+
Re

[
eix(`ε−κ)

ix

]
dx | Lεt = `ε, vεt = vε

]
= EM

[
1

2
+

1

π

∫ +∞

0+

sin(x(`ε − κ))
x

dx | Lεt = `ε, vεt = vε
]

= EM
[
1

2
+ sgn(`ε − κ) 1

π

∫ +∞

0+

sin(x)

x
dx | Lεt = `ε, vεt = vε

]
= EM

[
1

2
+

1

2
sgn(`ε − κ) | Lεt = `ε, vεt = vε

]
= EM

[
1`ε≥κ | Lεt = `ε, vεt = vε

]
where we have used the Dirichlet formula

∫ +∞
−∞

sin(x)
x
dx = 1, and the sgn function

is defined as sgn(x) = 1 if x > 0, 0 if x = 0 and −1 if x < 0.

In summary, we have just proved the following main theorem.

Theorem 3.3. For each ε > 0, the value of a European call option of SDE (3.4)

is

Ĉ(t, Sεt , v
ε
t ;T,K) = Sεt P̂1(t, Sεt , v

ε
t ;T,K)−Ke−r(T−t) P̂2(t, Sεt , v

ε
t ;T,K),

where P1, P2 are as given in Lemma 3.2, and

Ĉ(t, Sεt , v
ε
t ;T,K) := C(t, log(Sεt ), v

ε;T, log(K)),

P̂1(t, Sεt , v
ε
t ;T,K) := P1(t, log(Sεt ), v

ε;T, log(K)),

P̂2(t, Sεt , v
ε
t ;T,K) := P2(t, log(Sεt ), v

ε;T, log(K)).
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Remark 3.4. In numerical computation, we first choose a real number ε > 0

and then compute the value of Ĉ(t, Sεt , v
ε
t ;T,K) according to the formula as given

in Theorem 3.3. The solution that we get is the value of a call option of the

approximation model (3.4) and this value can be used as an approximating value

of a call option of the fraction model (3.1) as ε approaches zero.



CHAPTER IV

SIMULATION EXAMPLE

Let us consider the Petroleum Authority of Thailand (PTT) stock market.

Figure 4.1 shows the daily prices of the data set consisting of close-prices (Baht)

of the PTT between October 10, 2009 and March 19, 2010. The empirical data

set for these stock prices were obtained from http://www.set.or.th/. Figure

4.2 shows that log returns of the stock prices in the period.

Figure 4.1 Stock prices trading daily of PTT between October 10, 2009 and

March 19, 2010.
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Figure 4.2 Log returns on the stock prices of PTT between October 10, 2009 and

March 19, 2010.

The statistic of stock prices and log returns are given in Table 4.1.

Table 4.1 Statistic of PPT data set.

Stock prices Log returns

Data Amount 115 114

Mean 235.17391 -0.000483617

Standard Deviation 14.57052 0.00025190

Skewness 0.48403 -0.424870

Kurtosis 2.43137 3.40700
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Figure 4.3 shows the historical volatility, that is the annualized standard de-

viation of the returns, namely

σhist =

√√√√ 252

N − 1

N−1∑
n=0

(Rn −R)2,

whereRn be the stock price return between two days computed byRn = ln(Sn+1/Sn)

with the sequence of known historic daily stock close prices S1, . . . , Sn and R the

mean return. The factor 252 supposes that there are approximately 252 business

days in a year, because we work with annualized quantities, and we use daily stock

closing prices.

Figure 4.3 The historical volatility of PTT between October 10, 2009 and March

19, 2010, simulated by

σhist =

√√√√ 252

N − 1

N−1∑
n=0

(Rn −R)2.

As can be seen, the volatility is clearly non-constant.

It is easily seen that the historic volatility of PTT is not constant over time

(Figure 4.3).
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Figure 4.4 shows the empirical data of PTT closed-price as compared to the

price simulated by the classical geometric Brownian motion with compound Pois-

son process and a stochastic volatility. The simulated model is

St = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
with stochastic volatility model

dvt = (ω − θvt)dt+ ξvtdW t.

The model parameters µ = −0.00048361605, v0 = 0.0002518958471. The

mean of jumps = 0.001250, the standard deviation of jumps = 0.0375, and the

intensity λ = 17. The model parameters for stochastic volatility are ω = 0.001500,

ξ = 0.775000, and θ = 0.000125. For comparative purpose, we compute the

Average Relative Percentage Error (ARPE). By definition,

ARPE =
1

N

N∑
k=1

|Xk − Yk|
Xk

× 100,

where N is the number of prices, X = (Xk)k≥1 is the market price and Y = (Yk)k≥1

is the model price. After working 250 trails we compute ARPE for Figure 4.4

which will be denotedy by ARPE(4).
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Figure 4.4 Price behavior of PTT, between October 10, 2009 and March 19,

2010, as compared with a scenario simulated from geometric Brow-

nian motion adding jumps and a stochastic volatility model. (solid

line:=empirical data, dash line:=simulated by

St = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
with stochastic volatility model

dvt = (ω − θvt)dt+ ξvtdW t,

N = 250, ARPE(4) = 4.62363494).

where ARPE(4) is the ARPE for Figure 4.4).
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Figure 4.5 shows the volatility of PTT simulated by the stochastic volatility

model,

dvt = (ω − θvt)dt+ ξvtdW t

in Figure 4.4.

Figure 4.5 The PTT volatility simulated by stochastic volatility model

dvt = (ω − θvt)dt+ ξvtdW t

in Figure 4.4.

Figure 4.6 shows the empirical data of PTT closed-price as compared to the

price simulated by geometric Brownian motion with compound Poisson process

and an approximation of fractional stochastic volatility model. The simulated

model is

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
with fractional stochastic volatility model

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt).
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The value of µ, v0 and the parameter for volatility and jumps are the same as

Figure 4.3. For the remaining data, we choose ε = 0.00001 and α = 0.00125.

Figure 4.6 Price behavior of PPT, between October 10, 2009 and March 19,

2010, as compared with a scenario simulated from geometric Brow-

nian motion adding jumps and an approximate fractional stochastic

volatility model. (solid line:=empirical data, dash line:=simulated by

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
with fractional stochastic volatility model

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt),

N = 250, ARPE(6) = 3.719528807

where ARPE(6) is the ARPE for Figure 4.6).
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Figure 4.7 shows the volatility of PTT simulated by an approximation frac-

tional stochastic volatility model,

vεt =
(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt)

in Figure 4.6

Figure 4.7 The PTT volatility simulated by an approximation fractional stochas-

tic volatility model

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt)

in Figure 4.6.
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The Figure 4.8 shows the tendency of ARPE(4) and ARPE(6), working out

for 25, 45, 55, 100, 150, 350, 550 and 750.

Figure 4.8 Tendency of ARPE(4) and ARPE(6) with N=25, 45, 55, 95, 100,

150, 350, 550 and 750.

Remark 4.1. However, in any case, the results depend on what data one uses.

For some sets of data the theoretical price of classical gBm with jumps and the

stochastic volatility model is better and for some data the gBm with jumps and the

fractional stochastic volatility is better.
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The Figure 4.9 shows the forecasts of PTT one week after March 20, 2009

simulated by

St = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
with stochastic volatility model

dvt = (ω − θvt)dt+ ξvtdW t.

Figure 4.9 Stock Price forecasts of PPT, between March 22, 2010 and April 16,

2010, simulated by

St = S0 exp

(
µt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs +

∫ t

0

log(1 + Ys)dNs

)
with stochastic volatility model

dvt = (ω − θvt)dt+ ξvtdW t.
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The figure 4.10 shows the forecasts of PTT one week after March 20, 2009

simulated by

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
with fractional stochastic volatility model

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt).

Figure 4.10 Stock price forecasts of PPT, between March 22, 2010 and April 16,

2010, simulated by

Sεt = S0 exp

(
µt− 1

2

∫ t

0

vεsds+

∫ t

0

√
vεsdWs +

∫ t

0

log(1 + Ys)dNs

)
with fractional stochastic volatility model

vεt =

(
v0 + ω

∫ t

0

exp(χεs− ξBε
s)ds

)
exp(ξBε

t − χεt).



CHAPTER V

CONCLUSION AND RESEARCH

POSSIBILITY

5.1 Conclusion

The aim of this thesis is to introduce an alternative model of stochastic volatil-

ity of jump diffusion in which the stock prices follow a geometric Brownian mo-

tion, with the addition of the compound Poisson process and stochastic volatility

perturbed by a fractional noise. This model exhibits a long term dependence

of stochastic volatility that is not expressed in the classical stochastic volatility

model. The following procedure are investigated:

(i) We investigated the solution of this model by studying its corresponding

approximate model. By using Itô’s lemma for the jump-diffusion process, the

approximate model was solved.

(ii) By using a fundamental result on the L2-approximation of a fractional

noise, we proved a convergence theorem concerning an approximation solution.

Based on the approximate approach, we found that the solution of the approximate

model converges to the solution of the original model.

(iii) The mathematical formula of the European options is formulated by in-

verting the characteristic function of the approximate model. In order to solve

the characteristic function explicitly, we proved the lemma that established a re-

lationship between stochastic volatility and partial differential equations in the

general case. Then we got the explicit formula of characteristic function. And

the formula of the European option can be expressed in terms of the probability

function.
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(iv) A simulation example shows the sample paths simulated by geometric

Brownian motion adding compound Poisson process with the fractional stochastic

volatility and a geometric Brownian motion adding compound Poisson process

with the stochastic volatility against the empirical data.

5.2 Research Possibility

In this section, we provide possible extension of the geometric Brownian motion

adding compound Poisson process with the fractional stochastic volatility. It is

hoped that the following aspects can be explored:

(i) Schoutens (2003) showed that Lévy models give a much better fit to the

data and lead to a significant improvement with respect to the Black-Scholes

model. Thus the stock price model can be extended to Lévy model. For example,

the Gamma process and the VG process.

(ii) In this thesis, after the stock price has jumped, the volatility will stay

unchanged because the jump process is uncorrelated with the volatility process.

Thus, it is possible to add jumps effect into the fractional stochastic volatility

model.

(iii) In practice, interest rates are determined by monetary policy of a country

according to its economic situation. In this thesis, the interest rates are calculated

by assuming that volatility remains constant over the period of analysis. Thus,

we may extend this analysis to the case where we have a stochastic volatility for

interest rate.

(iv) In order to study a numerical solution of European option, we can apply

the Discrete Fourier transform (DFT) or the fast Fourier transform (FFT) for

more higher accuracy.
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