CHAPTER III

SOFTWARE DEVELOPMENT

3.1 Introduction

This chapter describes the concept used in the software development for optimizing artificial lift system and design support at Phitsanilok oil field under various geological conditions and petroleum engineering requirements. The software hereafter is called ALOP. The proposed system is based on the known analytical solutions and theories, but is not based on the heuristic knowledge, inference procedure and experience of artificial lift expert backed by the rationale and logic. The concepts include problem analysis, flowchart, programeming, testing, conclusion and discussion.

3.2 Problem analysis

Problem analysis is a primary step for software development which identifies statement of problem, solution, procedure and result. The problem analysis can be divided into 5 sub topics, which includes requirement, output, input, variable declaration and procedure.

3.2.1 Requirement

The primary requirement is software development using Microsoft visual basic version 6 for application of artificial lift system at Phitsanulok oil field, including electrical submersible pump, intermittent flow gas lift and sucker rod pump.

The software displays detail, step of design, basic facilities and necessary information that can be saved and print in terms of file and ducements.

3.2.2 Output

This topic describes display and characterictics of the software on monitor. The characteristics of the software include a main page and three modules which include module of electrical submersible pump, intermittent flow gas lift and sucker rod pump. The detail, step of design, basic facilities and necessary information for application of each artificial lift system at Phitsanulok oil field is output of the software to display on the moitor as follow as in Table 3.1–3.3. The main page includes 2 parts that are a help label (green color) and three modules (including, electrical submersible pump, gas lift and sucker rod pump) as follow as in Figure 3.1. Each module includes picture, form of software common button and hot keys as follow as in Table 3.4. Each module is developed and composed with four functions; each function is showed and displayed by different color as follow as in Table 3.5 and Figure 3.2.

Output	Range	Unit
Pump displacement	1 - 1,500	bbl
Static live oil gradient	-	psi/ft
Bottom hole pressure drawdown for oil production	-	psi
Average flowing bottom hole pressure	-	psi
Static fluid head	-	ft
Static fluid level	-	ft
Dynamic fluid level	-	ft
Discharge head	-	ft
Friction losses	-	ft/1,000 ft
Friction head	-	ft
Total dynamic head	-	ft
Head/Stages	-	ft
Number of stage	-	-
Horsepower/Stage	-	-
Total horsepower	-	hp
Cable losses	-	v/1,000 ft
Voltage drop	-	volts
Surface current: Type 1/2	-	amps
Surface voltage: Type 1/2	-	volts
Cable size: Type 1 Cu/Al : Type 2 Cu/Al	-	-

 Table 3.1 Output of electrical submersible pump software.

Output	Range	Unit
Static gradient	-	psi/ft
Bottom hole pressure drawdown	-	psi
Average flowing bottom hole pressure	-	psi
Static fluid head with tubing pressure	-	ft
Static fluid level with tubing pressure	-	ft
Hydrostatic head	-	ft
Working fluid level	-	ft
Number of cycle	-	cycles/day
Number of oil 's cycle	-	bbl/cycle
Volume of stating slug	-	bbl/cycle
Capacity of tubing	-	bbl/ft
Slug length	-	ft
Operating valve should be located below working fluid	-	ft
level		
Depth to operating valve	-	Ft
Pressure in tubing opposite valve with tubing pressure	-	psi
neglecting weight of gas column		
Valve opening pressure	-	psi
Surface operating pressure	-	psi

Table 3.2 Output of intermittent flow gas lift software.

Output	Range	Unit
Volume of oil tubing	-	bbl
Space occupied by gas just as starting slug	-	bbl
reaches surface		
Pressure under slug	-	psi
Average pressure	-	psi
Compressibility factor of gas injection	-	-
Minimum gas required	-	SCF/cycle
Minimum injection gas oil ratio	-	SCF/STB

 Table 3.2 Output of intermittent flow gas lift software (cont.).

Output	Range	Unit
Pump displacement (bbl/day)	1 - 1,500	bbl
Pump data		
API size	-	Unit
Stroke	-	in
Pump plunger data		
Diameter	-	in
Area	-	sq in
Pump constant	-	bbl/day/in/spm
Tubing data		
Nominal size	-	in
Outside diameter	-	in
Weight	-	lb/ft
Wall area	-	sq in
Sucker rod data		
Rod size	-	in
Area	-	sq in
Weight	-	lb/ft
Pumping speed	-	strokes/min
Section of rod string		
R1/L1	-	-/ft
R2/L2	-	-/ft
R3/L3	-	-/ft

Table 3.3 Output of sucker rod pump software.

Output	Range	Unit
Acceleration factor	-	_
Effective plunger stroke length	-	in
Probable production rate	-	bbl/day
Dead weight of rod string	-	lb
Fluid load	-	lb
Peak polished rod load/Allowable limit	-	lb/lb
Maximum stress at top of rod string	-	lb
Ideal Counterbalance Effect	-	lb
Peak torque on gear reducer	-	in-lb
Prime mover		
Hydraulic horsepower	-	hp
Friction horsepower	-	hp
Brake horsepower	-	hp
Synchronous Pumping Speed	-	-

 Table 3.3 Output of sucker rod pump software (cont.).

Table 3.4 The hot key of module.

Hot key	Function
Alt + E	Electrical submersible pump
Alt + I	Intermittent Flow Gas lift
Alt + S	Sucker rod pump

Table 3.5 The color is related with function.

Color	Function
Orange	Input data: User must carefully input the parameters to white text box that
	is set in orange frame.
Green	Out put: The step of design, basic facilities and necessary information of
	each artificial lift is set to show in green frame.
Gray	Command button: This function is operating command button that
	compose check input, design, save&print, clear and back.
Pink	Help: User is suggested and guided by text in pink label. This text shows
	using step of the artificial lift's design software which is changed to next
	text within 4 seconds.

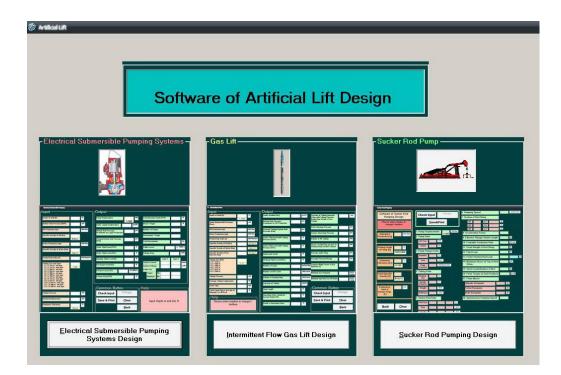


Figure 3.1 The main page of ALOP.

Electrical Submersible Pumping		
Electrical Submersible Pumping	Output	
Depth of Well (D) [1000 - 6000	Pump Displacement bbl Total Dynamic Head (TDH)	Output
Bottom Hole Pressure (BHP)	Static Live Oil Gradient (Gs) psi/ft Head / Stages ft	Out put
Dil Production (qo) bbl/day	Bottom Hole Pressure Drawdown for Dil Production	
80 · 1500 Specific Gravity of Oil (Go)	Horsepower / Stage	
	Pressure (Pwi) Total Horsepower hp	mput
	Static Fluid Head (SFH) ft Cable Losses v/ 1000 ft	
Specific Gravity of Water (Gw)	Static Fluid Level (SFL) ft Voltage Drop volts	
Productivity Index (J) bbl/day/psi	Dynamic Fluid Level (H) ft Type 1 Type 2	
Tubing Size and Type (.1.) 1.315 in. old pipe (.2.) 1.315 in. new pipe 1.12	Discharge Head (HS) It Surface Current amps	
(.3.) 1.660 in. old pipe [.4.] 1.660 in. new pipe [.4.] 1.900 in. old pipe	Surface Voltage Volta Volta	
(.6.) 1.300 in. new pipe (.6.) 1.300 in. new pipe (.7.) 2.375 in. old pipe (.8.) 2.375 in. new pipe	Friction Head (FH)	
(.9.) 2.875 in. low pipe (.9.) 2.875 in. old pipe (.10.) 2.875 in. new pipe (.11.) 3.500 in. old pipe		
(.12.) 3.500 in. old pipe (.12.) 3.500 in. new pipe	Common Button	
Tubing Pressure psi		TTala
Volumetric Efficiency 🎗	check input	Help
75 - 125	Save & Print Clear Input Volumetric Efficiency (Ev) between 75 - 125%	
	Back	Common
		Button

Figure 3.2 Module of ALOP.

3.2.3 Input

In software development, equation, data base and step of design are studied and analyzed for preparation minimum requirement information of each artificial lift system as follow as in Table 3.6.

		Artificial lift types		
Conditions	Parameters	Eletrical	Intermittent	Sucker
		submersible	flow	rod
		pump	gas lift	pump
Production	Oil production (b/d)	/	/	/
	Productivity index	/	/	
	Water production (b/d)	/	/	/
Reservoir	Bottom hole pressure (psi)	/	/	
	Gas oil ratio (SCF/STB)	/	/	/
	Specific gravity of oil	/	/	/
	Specific gravity of water	/	/	/
Well	Depth of well (ft)	/	/	/
	Size, temperature, type and			
	pressure of tubing	/	/	
Other	Cycle time (min)		/	
	Endurance limit (psi)			/
	Liquid slug (%)		/	
	Specific gravity of gas			
	injection		/	
	System Backpressure	/		
	Volumetric efficiency (%)	/		/

Table 3.6 Minimum requirement information of each artificial lift system.

3.2.4 Variable declaration

This topic explains variables in this programs that are set for software development. These variables are the input, output, calculation, process and compile. The variables and variable's meaning of software are shown in Appendix B.

3.3.5 Process

- User must carefully input the parameters to white text box that is set in orange frame.
- Press check input button, if the software shows massage box
 "clear and go to design" and then the design button is appeared.
- Press design button and then the software will compile result of step of design, basic facilities and necessary information of artificial lift system.
- 4) Press save and print when user want to save and print information of input and output in terms of file or ducements.
- 5) Press clear button when user want to clear screen.

3.3 Flowchart

The topic shows and explains flowchart that is a step for software development which identifies, step, procedure and compile of software in terms of pictures and symbols as follow as in Appendix B. This process includes input, checking input, calculation, linking data base, checking input and output. These components sometimes work concurrently. The system uses forward chaining strategy. The data are compiled and subjected to rules and conditions to obtain specific answers. This approach is appropriate here because there are numerous different design recommendations at the end while a relative narrow path of input data is derived.

3.4 Programming

The topic shows and explains code of software that includes code of main menu and desings of electrical submersible pump, intermittent flow gas lift and sucker rod pump. In addition, each module includes sub codes that are command of checking input, design, save and print documents, clear screen and back to main menu. Finally, codes of help text in each module are presented in this topic. All codes of ALOP are shown in Appendix B.

3.5 Testing

This topic explains and compares between result of ALOP and manual design. The testing can be divided into 3 sub topic, which testing of electrical submersible pump, intermittent flow gas lift and sucker rod pump.

3.5.1 Testing of electrical submersible pump software

The Table 3.7 and 3.8 show input data and Result of design by using ALOP and manual design respectively.

Parameters	Number	Unit
Depth of well	3,715	ft
Bottom hole pressure	750	psi
Oil production	200	bbl/day
Specific gravity of oil	0.828	
Water production	0	bbl/day
Specific gravity of water	1	
Productivity index	2.07	bbl/day/psi
Tubing size & type	2.875	inch, old pipe
Tubing pressure	50	psi
Backpressure	400	psi
Volumetric efficiency	80	%

 Table 3.7 Input data of electrical submersible pump software.

Table 3.8 Result of design by using ALOP and manual design for case of electrical

submersible pump.

Output	ALOP	Manual
Pump displacement	250	250
Static live oil gradient	0.36	0.36
Bottom hole pressure drawdown for oil production	121	121
Average flowing bottom hole pressure	629	629
Static fluid head	1,944	1.944
Static fluid level	1,771	1.771
Dynamic fluid level	2,107	2,107
Discharge head	1,111	1,111
Friction losses	1.09	1.10
Friction head	4	4
Total dynamic head	3,221	3,221
Head/Stages	53	53
Number of stage	61	61
Horsepower/Stage	1.83	1.80
Total horsepower	111	110
Cable losses	28	28
Voltage drop	104	104
Surface current: Type 1/2	46/-	46/-
Surface voltage: Type 1/2	1,404/-	1,404/-
Cable size: Type 1 Cu/Al : Type 2 Cu/Al	6/4, -/-	6/4, -/-

The Table 3.9 and 3.10 show input data and result of design by using ALOP and manual design respectively.

Table 3.9 Input data of Intermittent flow gas lift software.

Parameters	Number	Unit
Depth of well	3,715	ft
Static bottom hole pressure	750	psi
Oil production	200	bbl/day
Water production	0	bbl/day
Productivity index	2.07	bbl/day/psi
Specific gravity of oil	0.828	-
Specific gravity of water	1	-
Specific gravity of gas injection	0.6	-
Tubing size	2.875	in
Tubing pressure	50	psi
Average tubing temperature	587	°R
Cycle time	15	min
Total liquid slug is lost due to slippage or fall back.	60	%

Table 3.10 Result of design by using ALOP and manual design for case of intermittent

Output	ALOP	manual design
Static gradient (psi/ft)	0.36	0.36
Bottom hole pressure drawdown (psi)	97	97
Average flowing bottom hole pressure (psi)	653	653
Static fluid head with tubing pressure (ft)	1,944	1,944
Static fluid level with tubing pressure (ft)	1,771	1,771
Hydrostatic head (ft)	268	268
Working fluid level (ft)	2,039	2,039
Number of cycle (cycles/day)	96	96
Number of oil 's cycle (bbl/cycle)	2.08	2.08
Volume of stating slug (bbl/cycle)	3.47	3.47
Capacity of tubing (bbl/ft)	0.00579	0.00579
Slug length (ft)	599	599
Operating valve should be located	300	300
below Working fluid level (ft)		
Depth to operating valve (ft)	2,339	2,339
Pressure in tubing opposite valve with tubing	266	266
pressure neglecting weight of gas column (psi)		
Valve opening pressure (psi)	466	466
Surface operating pressure (psi)	442	440
Volume of oil tubing (bbl)	13.54	13.54

flow gas lift.

Table 3.10 Result of design by using ALOP and manual design for case of intermittent

Output	ALOP	manual
		design
Space occupied by gas just as starting slug	10.07	10.07
reaches surface (bbl)		
Pressure under slug (psi)	179	179
Average pressure (psi)	323	323
Compressibility factor of gas injection	0.97	0.97
Minimum gas required (SCF/cycle)	202.79	202.79
Minimum injection gas oil ratio (SCF/STB)	97.50	97.50

flow gas lift (cont.).

3.5.3 Testing of sucker rod pump software

The Table 3.11 and 3.12 show input data and result of design by using ALOP and manual design respectively.

 Table 3.11 Input data of suker rod pump software.

Parameters	Number	Unit
Anticipated production	500	bbl/day
Setting depth of pump	3,715	ft
Specific gravity of oil	0.828	-
Volumetic efficiency	80	%
Endurance limit of sucker rods	30000	psi

Output	ALOP	Manual design
Pump displacement (bbl/day)	250	250
Pump data		
API size (unit)	114	114
Stoke (in)	54	54
Pump plunger data		
Diameter (in)	1 3⁄4	1 3⁄4
Area (sq in)	2.405	2.405
Pump constant (bbl/day/in/spm)	0.357	0.357
Tubing data		
Nominal size (in)	2 1/2	2 1⁄2
Outside diameter (in)	2.875	2.875
Weight (lb/ft)	6.50	6.50
Wall area (sq in)	1.812	1.812
Sucker rod data		
Rod size (in)	3⁄4	3⁄4
Area (sq in)	0.442	0.442
Weight (lb/ft)	1.63	1.63
Pumping speed (strokes/min)	18.54	18.54

Table 3.12 Result of design by using ALOP and manual design for case of sucker rod

pump.

Output	ALOP	Manual design
Section of rod string		
R1/L1	1.00/3,715	1.00/3,715
R2/L2	-	-
R3/L3	-	-
Acceleration factor	0.26	0.26
Effective plunger stroke length (in)	45.47	45.47
Probable production rate (bbl/day)	241	241
Dead weight of rod string (lb)	6,055	6,055
Fluid load (lb)	2,565	2,565
Peak polished rod load/Allowable limit (lb/lb)	10,195/13,300	10,195/13,300
Maximum stress at top of rod string (lb)	23,065	23,065
Ideal Counterbalance Effect (lb)	7,020	7,020
Peak terque on gear reducer (in-lb)	95,209	95,209
Prime mover		
Hydraulic horsepower (hp)	5.45	5.45
Friction horsepower (hp)	3.83	3.83
Brake horsepower (hp)	13.92	13.92
Synchronous Pumping Speed	3.44	3.44

 Table 3.12 Result of design by using ALOP and manual design for case of sucker rod

pump (cont.).

3.6 Conclusions

This topic explains how the program is developed. The program can be divided to into three phases, including (1) system shell, (2) system control and (3) data base system. The system shell is used as the program structure. The system control directs the paths and flows of the program. The data base stores the rules and conditions of the artificial lift.

3.6.1 System shell

The ALOP is developed on Microsoft Visual Basic version 6 software. The advantages of Microsoft Visual Basic version 6 are (1) equipped with GUI-Graphical User Interface, (2) ease of application, (3) quick construction, (4) supporting the management data base system and (5) compile of complex calculation.

3.6.2 System control

The main processes for control functions are the decision making, iteration, array and procedure. The main structures of program developments are as follows.

- (1) Decision structures
 - (i) Two-way decision making; "if...Then...Else"
 - (ii) More than two-way decision making; "Select...Case"
- (2) Iteration structures
 - (i) Known number of interation; "For...Next"
 - (ii) Unknown number of interation; "While...When"
 - (iii) Unknown number of interation and go out from itration;"Do/While...Unit/Loop"

(3) Array and Dynamic. Array structures are parts of permanent and non-permanent storage data that are used for calculation.

- (4) Procedure structure; include
 - (i) Sub program (sub routine)
 - (ii) Function (sub function)

3.6.3 Data base system

The data have been compiled and stored in form of Microsoft Access. They can be searched by Data Query Language (SQL) and data control constained Microsoft Visual Basic version 6 software.

3.7 Discussions

The researcher should know about Microsoft visual basic V.6 program because it is easy and convenient to use for software development. Reliability of software development depends on the accuracy of equation and data base of each artificial lift system. The digitized calculation by computer will provide more accurate values and less time of calculation than using the manual calculation. The repeating calculation manually often gives error. The ALOP is the method of compiling program to design the electrical submersible pump, intermittent flow gas lift and sucker rod pump that is similar to the actual by input the data in the software. The ALOP accuracy depends on the quantity and quality of input data. The complete data of Phitsanulok oil field should be collected and used in software so that the results are proximity of the actual performance. Finally, the results of testing between ALOP and manual dsign are satisfactory.

CHAPTER IV

TECHNICAL AND ECONOMIC ANALYSIS

4.1 Introduction

This chapter describes for technical consideration and economic consideration. The technical considerations include the probable applications of artificial lift for oil field in Phitsanulok basin. The economic considerations include basic assumptions, other assumptions, and cash flow table.

4.2 Technical considerations

4.2.1 The probable applications of artificial lift for oil field in

Phitsanulok basin

The input artificial lift parameters are production, reservoir and well conditions, petroleum engineering requirements as follow as in Table 4.1-4.2. The predictive capability of the proposed system has been verified by comparing with 7 actual wells under Lankrabue oil field as follow as in Table 4.2. There are divided into 21 case studies that comprise 7 cases of electrical submersible pump, 7 cases of Intermittent flow gas lift and 7 cases sucker rod pump for study and analysis result of ALOP as follow as in Table 4.3. The probable applications of artificial lift for oil field in Phitsanulok basin most suitable ranking for intermittent flow gas lift ($q_{o,avg} = 181$ STB/d), electrical submersible pump ($q_{o,avg} = 167$ STB/d) and sucker rod pump ($q_{o,avg} = 131$ STB/d) respectively. The detail, step of design, basic facilities and necessary information for application of each artificial lift system for oil field in Phitsanulok

basin are output of the software. The table 4.4-4.6 concludes output of electrical submersible pump, intermittent flow gas lift and suckker rod pump respectively.

Conditions	Parameters	ESP	IFGL	SRP
Production	Water production (b/d)	0		
Reservoir	Specific gravity of oil	0.828		
	Specific gravity of water		1.05	
Well	Depth (ft)		3,715	
	System backpressure (psi)		400	
	O.D of Tubing (in)		2.375	
	Tubing temperature (°R)	-	587	-
	Tubing type	New	-	-
	Tubing pressure (psi)	5	0	-
Other	Cycle Time (min)	-	15	-
	Endurance limit (psi)	-	-	30,000
	Liquid Slug (%)	-	60	-
	Specific gravity of gas	-	0.6	_
	injection			
	Volumetric Efficiency	80	-	80

Table 4.1 Minimum requirement information of Lankrabue oil field.

Well	Р	Rs	Bo	Bg	J
No.	(psi)	(SCF/STB)	(bbl/STB)	(cu ft/SCF)	(b/d/psi)
1	700	251	1.22	0.025	2.07
2	630	235	1.21	0.028	1.70
3	570	221	1.20	0.031	1.38
4	490	172	1.20	0.036	0.27
5	490	171	1.20	0.036	0.24
6	470	167	1.19	0.037	0.16
7	470	167	1.19	0.037	0.15

Table 4.2 Properties of Lankrabue oil field.

 Table 4.3 Relationship between the artificial lift and Lankrabue oil field.

Well No.	Oil production rate (STB/d)		
	Electrical	Intermittent flow gas	Sucker rod pump
	submersible pump	lift	
1	406	342	197
2	334	281	161
3	271	228	134
4	52	130	131
5	47	121	122
6	31	84	88
7	29	80	86
Average	167 (Medium)	181 (Good)	131 (Fair)

Image: Image of the second systemImage of the second systemTable 4.4 Manufacturers of electrical submersible pump ($q_o = 29-406 \text{ STB/d}$).

Output	Range	Unit
Pump displacement	101-507	bbl
Static live oil gradient	0.68	psi/ft
Bottom hole pressure drawdown for oil production	49-245	psi
Average flowing bottom hole pressure	455-651	psi
Static fluid head	956	ft
Static fluid level	2,759	ft
Dynamic fluid level	2,830-3,119	ft
Discharge head	588	ft
Friction losses	0.0001-0.21	ft/1,000 ft
Friction head	0.0004-0.78	ft
Total dynamic head	3,419-3,708	ft
Head/Stages	53.10-53.34	ft
Number of stage	64.09-69.84	-
Horsepower/Stage	1.81-1.86	-
Total horsepower	116-129.90	hp
Cable losses	28	v/1,000 ft
Voltage drop	104.02	volts
Surface current: Type 1/2	68/35	amps
Surface voltage: Type 1/2	1,229/2,374	volts
Cable size: Type 1 Cu/Al : Type 2 Cu/Al	4/2:6/4	-

Table 4.5 Manufacturers of intermittent flow gas lift ($q_o = 80-342 \text{ STB/d}$).

Output	Range	Unit
Static gradient	0.67-0.85	psi/ft
Bottom hole pressure drawdown	119-322	psi
Average flowing bottom hole pressure	181-378	psi
Static fluid head with tubing pressure	294-970	ft
Static fluid level with tubing pressure	2,744-3,421	ft
Hydrostatic head	140-480	ft
Working fluid level	3,225-3,561	ft
Number of cycle	96	cycles/day
Number of oil 's cycle	0.5-2.9	bbl/cycle
Volume of stating slug	0.83-4.8	bbl/cycle
Capacity of tubing	0.00579	bbl/ft
Slug length	143-834	ft
Operating valve should be located below working	72-417	ft
fluid level		
Depth to operating valve	3,632-3,642	Ft
Pressure in tubing opposite valve with tubing pressure	172-609	psi
neglecting weight of gas column		
Valve opening pressure	372-913	psi
Surface operating pressure	341-837	psi

Table 4.5 Manufacturers of intermittent flow gas lift ($q_0 = 80-342$ STB/d) (cont.).

Output	Range	Unit
Volume of oil tubing	21.03-21.09	bbl
Space occupied by gas just as starting slug	16.26-20.20	bbl
reaches surface		
Pressure under slug		psi
Average pressure	123-386	psi
Compressibility factor of gas injection	248-650	-
Minimum gas required	0.88-0.95	SCF/cycle
Minimum injection gas oil ratio	316-724	SCF/STB

Table 4.6 Manufacturers of sucker rod pump ($q_o = 86-197 \text{ STB/d}$).

Output	Range	Unit
Pump displacement (bbl/day)	149-1,049	bbl
Pump data		
API size	57-640	Unit
Stoke	42-144	in
Pump plunger data		
Diameter	1 1/4-2 1/2	in
Area	1.227-4.909	sq in
Pump constant	0.182-0.728	bbl/day/in/spm
Tubing data		
Nominal size	2.00-3.00	in

Table 4.6 Manufacturers of sucker rod pump ($q_o = 86-197 \text{ STB/d}$) (cont.).

Output	Range	Unit
Outside diameter	2.375-3.50	in
Weight	4.70-9.30	lb/ft
Wall area	1.304-2.59	sq in
Sucker rod data		
Rod size	5/8-1.00	in
Area	0.307-0.785	sq in
Weight	1.16-2.88	lb/ft
Pumping speed	15.285-20.03	strokes/min
Section of rod string		
R1/L1	0.63-0.65/2,350-2,425	
R2/L2	0.35-0.37/1,300-1,375	-/ft
R3/L3	-	-/ft
Acceleration factor	0.24-0.48	-/ft
Effective plunger stroke length	37.76-134.88	-
Dead weight of rod string	4,921-9,014	in
Fluid load	1,091-5,467	lb
Peak polished rod load/Allowable limit	7,192-18,808/10,900-25,600	lb/lb
Maximum stress at top of rod string	16,273-23,959	lb
Ideal Counterbalance Effect	5,213-11,284	lb
Peak torque on gear reducer	47,047-582,334	in-lb

Table 4.6 Manufacturers of sucker rod pump ($q_o = 86-197 \text{ STB/d}$) (cont.).

Output	Range	Unit
Prime mover		
Hydraulic horsepower	2.44-26.58	hp
Friction horsepower	2.61-12.52	hp
Brake horsepower	7.57-58.65	hp
Synchronous Pumping Speed	3.18-4.18	-

4.2.2 Relationship between artificial lift and controlling factor for oil field in Phitsanulok basin

This topic describes result of the ALOP under the controlling factor. These factors are bottom hole pressure and gas oil ratio, productivity index, size of tubing and variable rate. There are divided into 78 case studies that comprise a case of natural flow, 21 cases of bottom hole pressure and gas oil ratio, 21 cases of productivity index and 15 cases of size of tubing, and 21 cases of variable rate. The bottom hole pressure and gas liquid ratios, productivity index, size of tubing and variable rates are the controlling factors in the selection of the method of lift, which are divided into 2 cases (low and high) for study and analysis result of ALOP as follow as in Table 4.7. This topic includes 5 sub topics that are result of ALOP for case of natural flow, bottom hole pressure and gas oil ratio, productivity index, size of tubing, variable rate, and design of artificial lift system.

Table 4.7 Type of the controlling factors.

Controlling factors	Unit	Low/Small	High/Large
Gas liquid ratio	SCF/STB	< 150	> 150
Pressure	psi	< 250	> 250
Productivity index	b/d/psi	< 1	> 1
Out side diameter of	inch	1.315, 1.660, 1.900 and	2.875 and 3.500
tubing		2.375	
Variable rates	b/d	1–100	100–500

4.2.2.1 Technical consideration for case of natural flow

The exploration and production periods are divided into 4 years of exploration period and 21 years of production period. This study will be early production on the 5th year of investment as follow as in Table 4.8. The total production wells are 25. The original oil inplace of this study is 109 MMbbl.

Year.	Production rate (b/d/well)	Year.	Production rate (b/d/well)
5	400	15	38
6	400	16	34
7	401	17	31
8	400	18	28
9	387	19	25
10	208	20	23
11	100	21	21
12	68	22	20
13	54	23	18
14	44	24	17
		25	16

4.2.2.2 Technical consideration in term of bottom hole pressure and gas oil ratio

The bottom hole pressure and gas oil ratio influences the selection of artificial lift equipment and the design of the lifting mechanism. There are divided into a 21 case for technical consideration in term of the bottom hole pressure and gas oil ratio. Figure 4.1 describes relationship between bottom hole pressure and gas oil ratio. Table 4.9 and Figure 4.2-4.3 describes relationship between the artificial lift (electrical submersible pump, intermittent flow gas lift and sucker rod pump) and controlling factors (bottom hole pressure and gas oil ratio) in term of oil production rate. In case of high gas oil ratio (> 150 SCF/STB) and high pressure (> 250 psi), the intermittent flow gas lift is capable of producing the most fluid from the well more

than electrical submersible pump and sucker rod pump. In case of low gas oil ratio (< 150 SCF/STB) and low pressure (< 250 psi), the electrical submersible pump is capable of producing the most fluid from the well more than sucker rod pump and intermittent flow gas lift. Table 4.10 concludes selection of artificial lift's technique in term of bottom hole pressure and gas oil ratio.

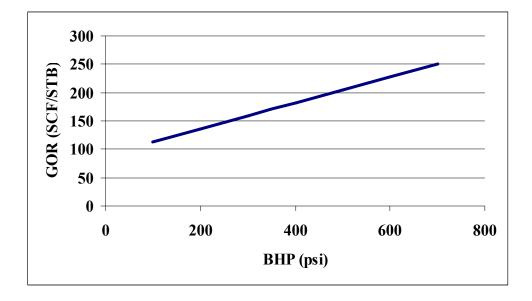


Figure 4.1 Relationship between bottom hole pressure and gas oil ratio.

Table 4.9 Relationship between the artificial lift and bottom hole pressure and gas oil ratio.

Bottom	Gas oil	Oil production rate (STB/d)		
hole	ratio	Electrical	Intermittent	Sucker rod
pressure	(SCF/STB)	submersible pump	flow gas lift	pump
(psi)				
700	251	246	300	56
600	228	191	219	49
500	205	139	146	42
400	182	93	85	34
300	159	53	39	26
200	136	24	10	18
100	113	1	-	10

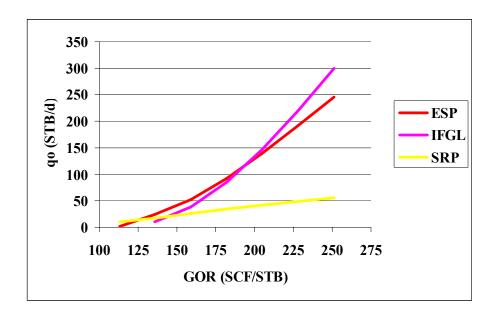


Figure 4.2 Relationship between gas oil ratio and artificial lift.

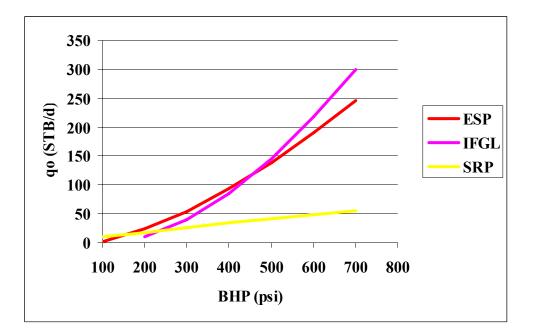


Figure 4.3 Relationship between bottom hole pressure and artificial lift.

 Table 4.10 Selection of artificial lift's technique in term of bottom hole pressure and gas oil ratio.

Туре	Low gas oil ratio and low bottom hole pressure (<150 SCF/STB and < 250 psi)	High gas oil ratio and High bottom hole pressure (>150 SCF/STB and > 250 psi)
Electrical submersible pump	Medium	Medium
Intermittent flow gas lift	Fair	Good
Sucker rod pump	Good	Fair

4.2.2.3 Technical consideration in term of productivity index

The productivity index influences the selection of artificial lift equipment and the design of the lifting mechanism. There are divided into a 21 case for technical consideration in term of the productivity index. The bottom hole pressure (100 psi), depth (3,715 ft), gas oil ratio (113 SCF/STB), and horsepower (159 hp) are controlling conditions under case of low productivity index (controlling factor). The bottom hole pressure (500 psi), depth (3,715 ft), gas oil ratio (205 SCF/STB), and horsepower (216 hp) are controlling conditions under case of high productivity index (controlling factor). Table 4.11 and Figure 4.4-4.5 describes relationship between the artificial lift (electrical submersible pump, intermittent flow gas lift and sucker rod pump) and controlling factors (productivity index) in term of oil production rate. In case of high productivity index (> 1 b/d/psi), the electrical submersible pump is capable of producing the most fluid from the well more than intermittent flow gas lift and sucker rod pump. In case of low productivity index (< 1 b/d/psi), the sucker rod pump is capable of producing the most fluid from the well more than intermittent flow gas lift and electrical submersible pump. Table 4.12 concludes selection of artificial lift's technique in term of productivity index.

Productivity	Oil production rate (STB/d)			
index	Electrical	Intermittent flow	Sucker rod pump	
(b/d/psi)	submersible pump	gas lift		
2.07	406	386	332	
1.70	334	323	300	
1.38	271	271	271	
0.27	52	103	133	
0.24	47	85	107	
0.16	31	37	39	
0.15	29	29	29	

Table 4.11 Relationship between the artificial lift and productivity index.

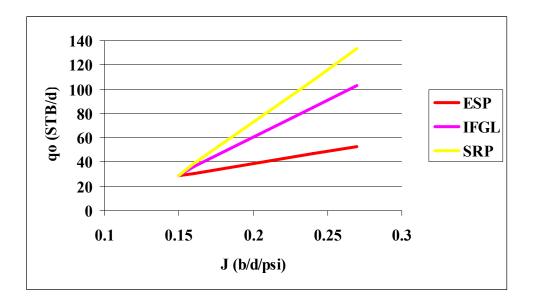


Figure 4.4 Relationship between low productivity index and artificial lift.

Figure 4.5 Relationship between high productivity index and artificial lift.

Туре	Producti	vity index
	Low (<1 b/d/psi)	High (>1 b/d/psi)
Electrical submersible pump	Fair	Good
Intermittent flow gas lift	Medium	Medium
Sucker rod pump	Good	Fair

Table 4.12 Selection of artificial lift's technique in term of productivity index.

4.2.2.4 Technical consideration in term of size of tubing

The size of tubing influences the selection of artificial lift equipment and the design of the lifting mechanism. There are divided into a 21 case for technical consideration in term of the size of tubing. Table 4.13 and Figure 4.6-4.7 describes relationship between the artificial lift (electrical submersible pump, intermittent flow gas lift and sucker rod pump) and controlling factors (size of tubing) in term of oil production rate. In case of large size of tubing (2.875–3.500 inch), the sucker rod pump is capable of producing the most fluid from the well more than intermittent flow gas lift and electrical submersible pump. In case of small size of tubing (1.315–2.375 inch), the electrical submersible pump is capable of producing the most fluid from the well more than intermittent flow gas lift and sucker rod pump Table 4.14 concludes selection of artificial lift's technique in term of size of tubing. The bottom hole pressure (100 psi), depth (3,715 ft), gas oil ratio (113 SCF/STB), and horsepower (159 hp) are controlling conditions under case of low productivity index (controlling factor). The bottom hole pressure (500 psi), depth (3,715 ft), gas oil ratio (205 SCF/STB), and horsepower (216 hp) are controlling conditions under case of high productivity index (controlling factor).

Size of	Oil	production rate (STB/	/d)
tubing	Electrical	Intermittent flow	Sucker rod pump
(inch)	submersible pump	gas lift	
1.315	17	5	-
1.660	23	12	-
1.900	26	16	-
2.375	28	23	17
2.875	29	29	29
3.500	29	44	51

Table 4.13 Relationship between the artificial lift and size of tubing.

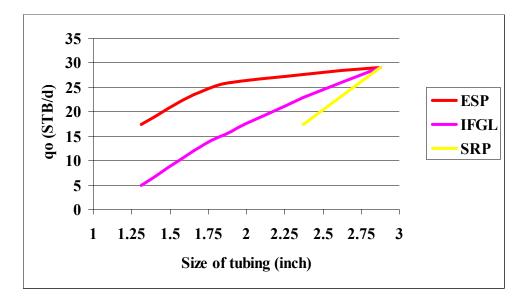


Figure 4.6 Relationship between small size of tubing and artificial lift.

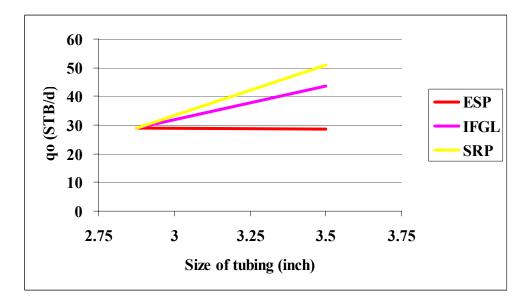


Figure 4.7 Relationship between large size of tubing and artificial lift.

	Size of	tubing
Туре	Small	Large
	(1.315 – 2.375 inch)	(2.875 – 3.500 inch)
Electrical submersible pump	Good	Fair
Intermittent flow gas lift	Medium	Medium
Sucker rod pump	Fair	Good

Table 4.14 Selection of artificial lift's technique in term of size of tubing.

4.2.5 Technical consideration in term of variable rate

The variable rate influences the selection of artificial lift equipment and the design of the lifting mechanism. There are divided into a 21 case for technical consideration in term of the variable rate. The horsepower $(100\pm20 \text{ hp})$ are controlling conditions Figure 4.8 describes relationship between the artificial lift (electrical submersible pump, intermittent flow gas lift and sucker rod pump) and controlling factors (variable rate) in term of oil production rate. The intermittent flow gas lift is capable of producing the most fluid from the well more than sucker rod pump and electrical submersible pump. Table 4.15 concludes selection of artificial lift's technique in term of variable rates.

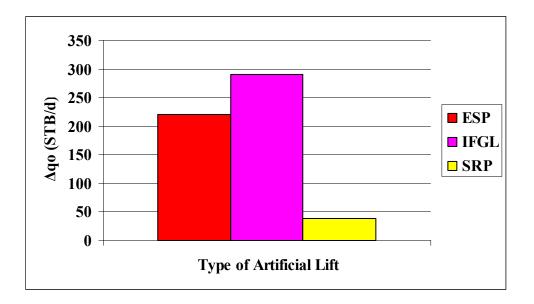


Figure 4.8 Relationship between variable rate and artificial lift.

Table 4.15 Selection of artificial lift's technique in term of variable rate.

Туре	Variable rate (b/d)
Electrical submersible pump	Medium
Intermittent flow gas lift	Good
Sucker rod pump	Fair

4.3 Economic considerations

The objective is to determine the pay back period, net present value, profit investment ratio and internal rate of return for analyzing and estimating in all cases study. The exploration period and production region under the Petroleum Acts "Thailand III" statute are divided into 3 years of exploration period and 20 years of production period. This study will be early production on the 4th year of investment. The total exploration and production period is 23 years that are divided in this study

into 3 years for exploration and 20 years for production. The work plan will be this following schedule.

1st year @ 2008: Petroleum concession
2nd year @ 2008: Geological and geophysical survey
3rd year @ 2008: Drill exploration, appraisal and production wells
4th year @ 2008: Production

The petroleum economic studies under the concession system and petroleum economics evaluation of Thailand III (Department of Mineral Resource, 1999) has assumptions and details that into basic assumptions add other assumption cost.

4.3.1 Basic assumptions

a.	Number of exploration, appraisal	
	and production wells	25
b.	Oil in place (MMbbl)	109
c.	Exchange rate (Baht to US\$)	33
d.	Income tax (%)	50
e.	Escalation factor (%)	2
f.	Discount rate (%)	10
g.	Tangible cost (%)	20
h.	Intangible cost (%)	80
i.	Depreciation of tangible cost (%)	20

j. Sliding scale royalty

Production level (b/d)	Rate (%)
0–2,000	5.00
2,000-5,000	6.25
5,000-10,000	10.00
10,000–20,000	12.50
>20,000	15.00

4.3.2 Other assumptions

a. The oil price is constant over the contact.

b. Increasing rate of capital expenditure comes from the price increasing of machinery and equipment used in oil industries, and given to two percent per year.

c. Discount rate of money is 10.00 percent (Siam Commercial Bank, January 2008).

- d. Operating cost is escalated 2 percent each year forward.
- e. The first production is conduct in the five years of work plan.
- f. The expense used in cash flow analysis is estimated as follow:

1) Capital cost (MMMBaht)17.18

- Geological and geophysical survey
- Well drilling and completion exploration wells
- Well drilling, completion appraisal well and well stimulation

- Well drilling, completion production well and well stimulation
- Pipeline
- Processing production facilities
- Special bonus
- 2) Operating cost (Baht/bbl) 840
- 3) Facilities and maintenances cost

(MMbaht/well and MMbaht/well/year)

- Electrical submersible pump 17.20 and 3.40
- Intermittent flow gas lift 12.25 and 2.94
 Sucker rod pump 6.30 and 2.66
- 4) Oil price (US\$ / bbl) 80

4.3.3 Cash flow table

The economic considerations are determined and analyzed by using Microsoft Excels 2003. The predictive capability of the proposed system has been verified by comparing with 7 actual wells under Lankrabue oil field. There are divided into 115 case studies that comprise a case of natural flow, 21 cases of bottom hole pressure and gas oil ratio, 21 cases of productivity index and 15 cases of size of tubing, and 57 cases of variable rate as follow as in Table 4.5, 4.7 and 4.9. There are presented into 4 cases in this topic as follow as in Table 4.16-4.19 that include a case of natural flow, electrical submersible pump, intermittent flow gas lift and sucker rod pump. The table 4.20 shows economic evaluation in all cases study.

								Investment cost	cost		
liO						Geological					Pipelines and
production	ction			2%		and	Exploration	No. of			processing
total	tal	ter da com	Royalty sliding	Escal	Concession	geophysical	and apprisal	production			production
(lbbl/	(bbl/year)	Income (Baht)	scale (Baht)	Factor	(Baht)	surveys (Baht)	wells (Baht)	wells	Production wells (Baht)	ells (Baht)	facilities (Baht)
									INTANG	TANG	
				1.0000	210,000,000						
				1.0200		280,000,000					
				1.0404			588,000,000	25	1,680,000,000	420,000,000	14,000,000,000
3,6	3,650,000	9,636,000,000	963,600,000	1.0612				0	0	0	0
3,6	3,650,000	9,636,000,000	963,600,000	1.0824				0	0	0	0
3,6	3,660,000	9,662,400,000	1,207,800,000	1.1041				0	0	0	0
3,6	3,650,000	9,636,000,000	963,600,000	1.1262				0	0	0	0
3,5	3,528,544	9,315,356,160	931,535,616	1.1487				0	0	0	0
1,9	1,900,990	5,018,613,600	501,861,360	1.1717				0	0	0	0
6	916,148	2,418,630,720	151,164,420	1.1951				0	0	0	0
Û	623,042		82,241,544	1.2190				0	0	0	0
7	490,992	1,296,218,880	64,810,944	1.2434				0	0	0	0
4	404,050	1,066,692,000	53,334,600	1.2682				0	0	0	0
	350,086	924,227,040	46,211,352	1.2936				0	0	0	0
e.	312,034	823,769,760	41,188,488	1.3195				0	0	0	0
	281,090	742,077,600	37,103,880	1.3459				0	0	0	0
C 4	253,770		33,497,640	1.3728				0	0	0	0
	230,668	608,963,520	30,448,176	1.4002				0	0	0	0
	210,088	554,632,320	27,731,616	1.4282				0	0	0	0
	193,104	509,794,560	25,489,728	1.4568				0	0	0	0
	178,236	470,543,040	23,527,152	1.4859				0	0	0	0
	165,608	437,205,120	21,860,256	1.5157				0	0	0	0
	153,684	405,725,760	20,286,288	1.5460				0	0	0	0
20,	20,039,534	52,904,369,760	5,531,996,976		210,000,000	280,000,000	588,000,000		0	0	0

Table 4.16 Economic analysis for natural flow.

Table 4.16 Economic analysis for natural flow (cont.).

	-					Investm	Investment cost				
No.	đ	Oil production									
of	•	total		Depreciation (2	(20%) Tangible	Operation cost	Total allow	Taxable income	Income tax	Annual cash flow	Discounted cash
Year Y	Year ((bbl/year)	Income (Baht)	Expense	se (Baht)	(840 Baht/bbl)	expense (Baht)	(Baht)	(Baht)	(Baht)	flow (Baht)
0	2006			2011	2015						
1	2007			5-3 			210,000,000	-210,000,000	0	-210,000,000	-210,000,000
5	2008						280,000,000	-280,000,000	0	-280,000,000	-280,000,000
3	2009			2,884,000,000			5,152,000,000	-5,152,000,000	0	-5,152,000,000	-5,152,000,000
4	2010	3,650,000	9,636,000,000			3,253,663,728	7,101,263,728	2,534,736,272	0	2,534,736,272	1,731,258,980
5 2	2011	3,650,000	9,636,000,000	2-0		3,318,737,003	7,166,337,003	2,469,662,997	0	2,469,662,997	1,533,466,416
6 2	2012	3,660,000	9,662,400,000			3,394,386,021	7,486,186,021	2,176,213,979	769,306,624	1,406,907,355	794,162,524
7 2	2013	3,650,000	9,636,000,000		2,884,000,000	3,452,813,977	7,300,413,977	2,335,586,023	1,167,793,011	1,167,793,011	599,262,464
8	2014	3,528,544	9,315,356,160			3,404,677,853	4,336,213,469		2,489,571,345	2,489,571,345	1,161,403,406
9 2	2015	1,900,990	5,018,613,600	29 - 4 -		1,870,942,724	2,372,804,084	2,645,809,516	1,322,904,758	1,322,904,758	561,040,757
10 2	2016	916,148	2,418,630,720			919,700,600	1,070,865,020	1,347,765,700	673,882,850	673,882,850	259,811,011
11 2	2017	623,042	1,644,830,880			637,967,166	720,208,710	924,622,170	462,311,085	462,311,085	162,037,215
12 2	2018	490,992	1,296,218,880			512,808,944	577,619,888	718,598,992	359,299,496	359,299,496	114,483,892
13 2	2019	404,050	1,066,692,000			430,443,802	483,778,402	582,913,598	291,456,799	291,456,799	84,424,653
14 2	2020	350,086	924,227,040			380,413,799	426,625,151	497,601,889	248,800,944	248,800,944	65,517,065
15 2	2021	312,034	823,769,760			345,846,679	387,035,167	436,734,593	218,367,297	218,367,297	52,275,395
16 2	2022	281,090	742,077,600			317,780,510	354,884,390	387,193,210	193,596,605	193,596,605	42,132,262
17 2	2023	253,770	669,952,800			292,632,336		343,822,824	171,911,412	171,911,412	34,011,756
18 2	2024	230,668	608,963,520			271,312,346	301,760,522	307,202,998	153,601,499	153,601,499	27,626,580
19 2	2025	210,088	554,632,320			252,048,214	279,779,830	274,852,490	137,426,245	137,426,245	22,470,289
20 2	2026	193,104	509,794,560			236,305,494	261,795,222	247,999,338	123,999,669	123,999,669	18,431,761
21 2	2027	178,236	470,543,040			222,473,429	246,000,581	224,542,459	112,271,230	112,271,230	15,171,275
22 2	2028	165,608	437,205,120			210,845,436	232,705,692	204,499,428	102,249,714	102,249,714	12,560,966
23 2	2029	153,684	405,725,760			199,577,565	219,863,853	185,861,907	92,930,953	92,930,953	10,378,358
		20,039,534	52,904,369,760			18,695,221,307	41,405,218,283	11,499,151,477	5,749,575,739	5,749,575,739	738,594,547

Table 4.17 Economic analysis for electrical submersible.

	aht)			TANG				420,000,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	420,000,000
	wells (B			Τ	77				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
cost	Production wells (Baht)			INTANG	CATTON			1,680,000,000))))))))))))))))))))	1,680,000,000
Investment cost			No. of	production wells	CITA M			25	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25
			Exploration	and apprisal wells (Baht)	(umr) survi			588,000,000																					0
		Geological	and · · ·	geophysical survays (Baht)	(mmm) channe		280,000,000																						0
			(Concession (Raht)	(mmr)	210,000,000																							0
			2% T 1	Escal Factor	TOTOT	1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728	1.4002	1.4282	1.4568	1.4859	1.5157	1.5460	
			: : :	Koyalty sliding scale (Raht)					963,600,000	963,600,000	1,207,800,000	963,600,000	931,535,616	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	652,839,000	14,169,881,616
				Incoma (Raht)					9,636,000,000	9,636,000,000	9,662,400,000	9,636,000,000	9,315,356,160	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	6,528,390,000	145,811,606,160
		Oil	production	total (hhl/rear)	(mn j ran)				3,650,000	3,650,000	3,660,000	3,650,000	3,528,544	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	2,472,875	55,231,669
				Vaar	-	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
		-00480742	No.	0I Vear	0	Г	7	m	4	5	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

	Depreciation (20%) Tangible)%) Tangible							
	Expense (Baht)	(Baht)		Investment cost					
Pipelines and processing				Maintanence cost of electrical submersible pump (3.40					
production facilities (Baht)	2009	2019	Operation cost (840 Baht/bbl)	MMBaht/well/yea r)	Total allow expense (Baht)	Taxable income (Baht)	Income tax (Baht)	Armual cash flow (Baht)	Discounted cash flow (Baht)
					210,000,000	-210,000,000	0	-210,000,000	-190,909,091
					280,000,000	-280,000,000	0	-280,000,000	-231,404,959
14,000,000,000	2,884,000,000				5,152,000,000	-5,152,000,000	0	-5,152,000,000	-3,870,773,854
0			4,067,079,660	0	7,914,679,660	1,721,320,340	0	1,721,320,340	1,175,684,953
0			4,148,421,253	0	7,996,021,253	1,639,978,747	0	1,639,978,747	1,018,297,773
0			4,242,982,527	0	8,334,782,527	1,327,617,473	0	1,327,617,473	749,405,453
0			4,316,017,472	0	8,163,617,472	1,472,382,528	259,649,544	1,212,732,984	622,323,776
0			4,255,847,316	0	5,187,382,932	4,127,973,228	2,063,986,614	2,063,986,614	962,864,988
0			3,042,235,551	740,195,991,047	3,880,665,599	2,647,724,401	1,323,862,201	1,323,862,201	561,446,806
0			3,103,080,262	101,582,868	3,943,502,131	2,584,887,869	1,292,443,935	1,292,443,935	498,293,086
0			3,165,141,868	103,614,526	4,007,595,393	2,520,794,607	1,260,397,303	1,260,397,303	441,761,566
0			3,228,444,705	105,686,816	4,072,970,521	2,455,419,479	1,227,709,739	1,227,709,739	391,186,158
0		86,000,000	3,293,013,599	107,800,553	4,139,653,152	2,388,736,848	1,194,368,424	1,194,368,424	345,965,989
0			3,358,873,871	109,956,564	4,121,669,435	2,406,720,565	1,203,360,283	1,203,360,283	316,882,373
0			3,426,051,349	112,155,695	4,191,046,043	2,337,343,957	1,168,671,978	1,168,671,978	279,770,780
0			3,494,572,375	5.0	4,261,810,184	2,266,579,816	1,133,289,908	1,133,289,908	246,636,903
0			3,564,463,823	116,686,785	4,333,989,608	2,194,400,392	1,097,200,196	1,097,200,196	217,075,210
0			3,635,753,099	119,020,521	4,407,612,620	2,120,777,380	1,060,388,690	1,060,388,690	190,720,227
0			3,708,468,161	121,400,931	4,482,708,092	2,045,681,908	1,022,840,954	1,022,840,954	167,242,669
0			3,782,637,525	123,828,950	4,559,305,474	1,969,084,526	984,542,263	984,542,263	146,345,934
0			3,858,290,275	126,305,529	4,637,434,804	1,890,955,196	945,477,598	945,477,598	127,762,928
0			3,935,456,081	128,831,639	4,717,126,720	1,811,263,280	905,631,640	905,631,640	111,253,201
0			4,014,165,202	131,408,272	4,798,412,474	1,729,977,526	864,988,763	864,988,763	96,600,352
14,000,000,000			73,640,995,976	1,722,269,504	102,151,986,095	38,017,620,065	19,008,810,032	19,008,810,032	4,374,433,219

Table 4.17 Economic analysis for electrical submersible pump (cont.).

Table 4.18 Economic analysis for electrical intermittent flow gas lift.

				Pipelines and	processing	production	facilities (Baht)				14,000,000,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14 000 000 000
	-	1	201	Pipel	pro							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	(Baht)	(IIIPC)					TANG				420,000,000																					42.0.000.000
Investment cost	Droduction malls (Babt)	SITEM HOTOTOTOT					INTANG				1,680,000,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 680 000 000
Ir				No. of	produc	tion	wells				25	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25
				100 100		apprisal wells	(Baht)				588,000,000																					0
					Geological and	geophysical	surveys (Baht)			280,000,000																						0
					100	Concession	(Baht)		210,000,000																							0
					2%	Escal	Factor		1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	1.2936	1.3195	1.3459	1.3728		1.4282	-	1.4859	1.5157	1.5460	
						Royalty sliding	scale (Baht)					963,600,000	963,600,000	1,207,800,000	963,600,000	931,535,616	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	549,252,000	12 719 663 616
							Income (Baht)					9,636,000,000	9,636,000,000	9,662,400,000	9,636,000,000	9,315,356,160	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	5,492,520,000	130 273 556 160
2			TEL SA	lio	production	total	(bbl/year)					3,650,000	3,650,000	3,660,000	3,650,000	3,528,544	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	2,080,500	49 346 044
							Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
					No.	of	Year	0	1	2	'n	4	5	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

Table 4.18 Economic analysis for electrical intermittent flow gas lift (cont.).

	Depreciation (20%) Tangible	(%) Tangible							
IFGL	Expense (Baht)	(Baht)		Investment cost					
Facilities				Maintanence cost of intermittent flow gas lift (2.66					
(12.25 MMD:httm:///	0000	0100	Operation cost	MMBaht/well/	Total allow	Taxable income	Income tax	Annual cash	Discounted
MIMBARIVWEIL	6007	6107	(840 Banvou)	yeary	expense (Banu)	(Dauly)	(Dauly)		Cash HOW (Dally
					210,000,000	-210,000,000	0	-210,000,000	-190,909,091
					280,000,000	-280,000,000	0	-280,000,000	-231,404,959
0	2,884,000,000				5,152,000,000	-5,152,000,000	0	-5,152,000,000	-3,870,773,854
0			4,067,079,660	0	7,914,679,660	1,721,320,340	0	1,721,320,340	1,175,684,953
0			4,148,421,253	0	7,996,021,253	1,639,978,747	0	1,639,978,747	1,018,297,773
0			4,242,982,527	0	8,334,782,527	1,327,617,473	0	1,327,617,473	749,405,453
0			4,316,017,472	0	8,163,617,472	1,472,382,528	259,649,544	1,212,732,984	622,323,776
0			4,255,847,316	0	5,187,382,932	4,127,973,228	2,063,986,614	2,063,986,614	962,864,988
306,250,000			2,559,519,209	77,915,349	3,247,936,558	2,244,583,442	1,122,291,721	1,122,291,721	475,961,246
0			2,610,709,593	79,473,656	3,300,685,249	2,191,834,751	1,095,917,375	1,095,917,375	422,523,590
0			2,662,923,785		3,354,488,914	2,138,031,086	1,069,015,543	1,069,015,543	374,683,426
0			2,716,182,261		3,409,368,653	2,083,151,347	1,041,575,674	1,041,575,674	331,878,109
0		61,250,000	2,770,505,906	84,338,079	3,465,345,986	2,027,174,014	1,013,587,007	1,013,587,007	293,600,052
0			2,825,916,024		3,461,192,865	2,031,327,135	1,015,663,567	1,015,663,567	267,455,961
0			2,882,434,345	87,745,338	3,519,431,683	1,973,088,317	986,544,159	986,544,159	236,170,828
0			2,940,083,032	89,500,244	3,578,835,276	1,913,684,724	956,842,362	956,842,362	208,236,776
0			2,998,884,692	91,290,249	3,639,426,942	1,853,093,058	926,546,529	926,546,529	183,312,291
0			3,058,862,386		3,701,230,441	1,791,289,559	895,644,780	895,644,780	161,089,586
0			3,120,039,634	94,978,375	3,764,270,009	1,728,249,991	864,124,995	864,124,995	141,291,342
0			3,182,440,427	96,877,943	3,828,570,370	1,663,949,630	831,974,815	831,974,815	123,667,755
0			3,246,089,235	98,815,502	3,894,156,737	1,598,363,263	799,181,631	799,181,631	107,993,870
0			3,311,011,020	100,791,812	3,961,054,832	1,531,465,168	765,732,584	765,732,584	94,067,165
0			3,377,231,240	102,807,648	4,029,290,888	1,463,229,112	731,614,556	731,614,556	81,705,366
306,250,000	- 3.0		65,293,181,019	1,347,422,612	91,751,769,247	32,879,786,913	16,439,893,456	16,439,893,456	3,739,126,402

Table 4.19 Economic analysis for sucker rod pump.

r I											0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-		Pipelines and	processing	production	facilities (Baht)				14,000,000,000	5										5		P	1				~			14,000,000,000
	(Baht)						TANG				420,000,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	420,000,000
Investment cost	Production wells (Baht)						INTANG				1,680,000,000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,680,000,000
П			No.	of	produ	ction	wells				25	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	25
					Exploration	and apprisal	wells (Baht)				588,000,000																					0
					Geological and	geophysical	surveys (Baht)			280,000,000																						0
						Concession	(Baht)		210,000,000																							0
					2%	Escal	Factor		1.0000	1.0200	1.0404	1.0612	1.0824	1.1041	1.1262	1.1487	1.1717	1.1951	1.2190	1.2434	1.2682	Г	1.3195	1.3459	1.3728	1.4002	1.4282	Г		1.5157	1.5460	
						Royalty sliding	scale (Baht)					963,600,000	963,600,000	1,207,800,000	963,600,000	931,535,616	501,861,360	197,236,875	197,236,875	197,236,875	197,236,875				197,236,875	197,236,875	197,236,875	197,236,875	197,236,875	197,236,875	197,236,875	8,096,076,351
							Income (Baht)					9,636,000,000	9,636,000,000	9,662,400,000	9,636,000,000	9,315,356,160	5,018,613,600	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	3,155,790,000	97,085,429,760
				Oil	production	total	(bbl/year)					3,650,000	3,650,000	3,660,000	3,650,000	3,528,544	1,900,990	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	1,195,375	36,774,784
							Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
					No.	of	Year	0	Γ	0	3	4	S	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

Table 4.19 Economic analysis for sucker rod pump (cont.).

	Depreciation (20%) Tangible	%) Tangible							
SRP	Expense (Baht)	(Baht)		Investment cost					
				Maintanence					
				cost of sucker					
				rod pump					
Facilities			Onaration cost	(2.94 MMBsht/mall/	Total allow	Tavahla incoma	Income tav	لاعفم امتنصط	Discounted
MMBaht/well)	2009	2020	(840 Baht/bbl)	year)	expense (Baht)	(Baht)	(Baht)	flow (Baht)	cash flow (Baht)
					210,000,000	-210,000,000	0	-210,000,000	-190,909,091
					280,000,000	-280,000,000	0	-280,000,000	-231,404,959
0	2,884,000,000				5,152,000,000	-5,152,000,000	0	-5,152,000,000	-3,870,773,854
0			4,067,079,660	0	7,914,679,660	1,721,320,340	0	1,721,320,340	1,175,684,953
0			4,148,421,253	0	7,996,021,253	1,639,978,747	0	1,639,978,747	1,018,297,773
0			4,242,982,527	0	8,334,782,527	1,327,617,473	0	1,327,617,473	749,405,453
0			4,316,017,472	0	8,163,617,472	1,472,382,528	259,649,544	1,212,732,984	622,323,776
0			4,255,847,316	0	5,187,382,932	4,127,973,228	2,063,986,614	2,063,986,614	962,864,988
0			2,338,678,405	0	2,840,539,765	2,178,073,835	1,089,036,917	1,089,036,917	461,857,963
157,500,000			1,500,012,968	87,839,304	1,816,589,147	1,339,200,853	669,600,427	669,600,427	258,159,951
0			1,530,013,228	89,596,090	1,848,346,192	1,307,443,808	653,721,904	653,721,904	229,125,539
0			1,560,613,492	91,388,012	1,880,738,379	1,275,051,621	637,525,811	637,525,811	203,135,370
0			1,591,825,762	93,215,772	1,913,778,409	1,242,011,591	621,005,796	621,005,796	179,883,259
0		31,500,000	1,623,662,277	95,080,087	1,947,479,240	1,208,310,760	604,155,380	604,155,380	159,092,994
0			1,656,135,523		1,950,354,087	1,205,435,913	602,717,957	602,717,957	144,285,887
0			1,689,258,233		1,985,416,431		585,186,784	585,186,784	127,353,694
0			1,723,043,398	12	2,021,180,022	1,134,609,978	567,304,989	567,304,989	112,238,268
0			1,757,504,266	102,917,744	2,057,658,885		549,065,557	549,065,557	98,754,267
0			1,792,654,351	104,976,099	2,094,867,325	1,060,922,675	530,461,337	530,461,337	86,734,667
0			1,828,507,438		2,132,819,934	1,022,970,066	511,485,033	511,485,033	76,028,991
0			1,865,077,587	109,217,134	2,171,531,595	984,258,405	492,129,202	492,129,202	66,501,700
0			1,902,379,139		2,211,017,490	944,772,510	472,386,255	472,386,255	58,030,749
0			1,940,426,721	113,629,506	2,251,293,102	904,496,898	452,248,449	452,248,449	50,506,274
157,500,000			47,330,141,016	1,403,139,606	68,720,093,848	22,723,335,912	11,361,667,956	11,361,667,956	2,547,178,613

 Table 4.20 Economic evaluations.

Type of	Oil	Recovery	Total allow	Discounted	IRR	PIR
production	Rate	Factor	expense and	cash flow		
			Income tax			
	(b/d)	(%)	(MMMBaht)	(MMMBaht)	(%)	
Natural	136	22.74	47.16	0.74	15.25	0.33
Flow						
Electrical	406	67.95	164.36	5.71	25.40	1.45
Submersible	334	58.56	139.80	5.40	26.69	1.31
Pump	271	50.65	121.16	4.37	24.97	1.08
	52	25.03	59.92	1.49	18.68	0.37
	47	24.57	58.86	1.44	18.55	0.35
	31	23.28	55.64	1.39	18.48	0.33
	29	23.17	55.39	1.38	18.46	0.32
Intermittent	342	59.56	141.91	5.60	27.00	1.37
Flow Gas	281	51.90	123.87	4.60	25.38	1.14
Lift	228	45.25	108.19	3.74	23.78	0.94
	130	34.08	80.90	2.58	21.26	0.65
	121	32.55	77.39	2.38	20.93	0.61
	84	28.35	67.63	1.87	19.66	0.48
	80	27.92	66.47	1.85	19.60	0.47

Type of	Oil	Recovery	Total allow	Discounted	IRR	PIR
production	Rate	Factor	expense and	cash flow,		
			Income tax	10%		
	(b/d)	(%)	(MMMBaht)	(MMMBaht)	(%)	
Sucker Rod	197	40.75	96.32	3.48	23.27	0.89
Pump	161	37.24	88.20	3.01	22.35	0.77
	134	34.08	80.89	2.59	21.44	0.67
	131	33.71	80.08	2.55	21.34	0.66
	122	32.67	77.64	2.41	21.01	0.62
	88	28.79	68.63	1.93	19.83	0.50
	86	28.57	68.13	1.90	19.76	0.49

Table 4.20 Economic evaluations (cont.).

4.4 Conclusions

The probable applications of artificial lift for Lan Kra Bu oil field are most suitable ranking for intermittent flow gas lift, electrical submersible pump and sucker rod pump respectively. The best return on investment of artificial lift for Lankrabue oil field intermittent flow gas lift (IRR 22.52% and PIR 0.81), electrical submersible pump (IRR 21.60% and PIR 0.74) and sucker rod pump (IRR 21.29% and PIR 0.66) respectively. The table 4.20 concludes optimizing artificial lift system selection for oil field in Phitsanulok basin. In technical analysis, the bottom hole pressure and gas liquid ratios, productivity index, size of tubing and variable rates are the controlling factors in the selection of the method of lift. The table 4.21 concludes selection of artificial lift's technique.

Type of	q _{o,avg}	RF _{avg}	Total	NPV _{avg}	IRR avg	PIR avg
production			expense _{avg}	@ 10%		
	(b/d)	(%)	(MMM	(MMM	(%)	
			Baht)	Baht)		
Natural Flow	136	22.74	47.16	0.74	15.25	0.33
Electrical	167	39.03	93.59	3.03	21.60	0.74
Submersible						
Pump						
Intermittent Flow	181	39.95	95.19	3.23	22.52	0.81
Gas Lift						
Sucker Rod Pump	131	33.69	79.98	2.55	21.29	0.66

Table 4.21 Summary of optimizing artificial lift system selection for oil field in

Phitsanulok basin.

 Table 4.22 Selection of artificial lift's technique.

Controlling Factor	Number	ESP	IFGL	SRP
Low GOR and BHP	<150 SCF/STB and < 250 psi	Medium	Fair	Good
High GOR and BHP	>150 SCF/STB and > 250 psi	Medium	Good	Fair
Low J	<1 b/d/psi	Fair	Medium	Good
High J	>1 b/d/psi	Good	Medium	Fair
Small tubing	1.315–2.375 inch	Good	Medium	Fair
Large tubing	2.875–3.500 inch	Fair	Medium	Good
Variable rate	1-500 b/d	Medium	Good	Fair

CHAPTER V

CONCLUSIONS AND DISCUSSIONS

5.1 Introduction

This chapter concludes software development, the probable application and economic evaluation of artificial lift for oil field in Phitsanulok basin, and discussion.

5.2 Software development

The software has been developed for optimizing artificial lift system selection for oil field in Phitsanulok basin and design support of artificial lift system under various petroleum engineering requirements, including electrical submersible pump, intermittent flow gas lift and sucker rod pump. The software hereafter is called ALOP. The proposed system is based on the known analytical solutions and theories, but is not based on the heuristic knowledge, inference procedure and experience of artificial lift expert backed by the rationale and logic. The input artificial lift parameters are hierarchically characterized into several groups using various criteria, e.g., production, reservoir and well conditions, engineering requirements, design constraints and project goals, etc. Manufacturer's motor and data base of electrical submersible pump, intermittent flow gas lift and sucker rod pump are Adam Person Associates Engineering Production Manual and Byron Jackson pump division, Kirkpatrick and Lufkin Pump Division respectively.

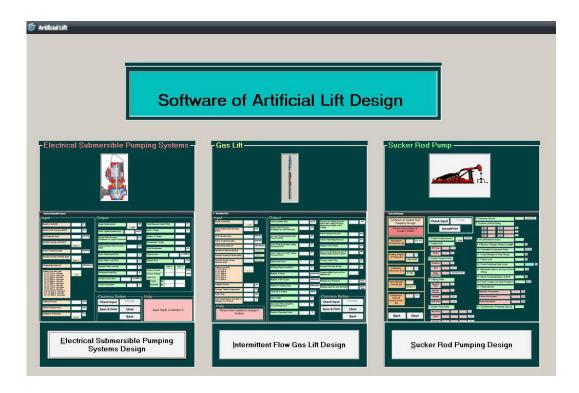


Figure 5.1 The main page of ALOP.

5.3 The probable applications and economic evaluation of artificial lift for oil field Phitsanulok basin.

The probable applications of artificial lift for Lankrabue oil field is most suitable ranking for intermittent flow gas lift, electrical submersible pump and sucker rod pump respectively. The best return on investment of artificial lift for Lankrabue oil field are intermittent flow gas lift (IRR 22.52% and PIR 0.81), electrical submersible pump (IRR 21.60% and PIR 0.74) and sucker rod pump (IRR 21.29% and PIR 0.66) respectively. The table 4.20 concludes optimizing artificial lift system selection for oil field in Phitsanulok basin. In technical analysis, the bottom hole pressure and gas liquid ratios, productivity index, size of tubing and variable rates are the controlling factors in the selection of the method of lift. The table 4.21 concludes selection of artificial lift's technique.

 Table 5.1 Summary of optimizing artificial lift system selection for oil field in

 Phitsanulok basin.

Type of	q _{o,avg}	RF _{avg}	Total	NPV _{avg}	IRR avg	PIR avg
production	(b/d)	(%)	expense _{avg} (MMM	@ 10% (MMM	(%)	
	((,,,,,	Baht)	Baht)	(,,,)	
Natural Flow	136	22.74	47.16	0.74	15.25	0.33
ESP	167	39.03	93.59	3.03	21.60	0.74
IFGL	181	39.95	95.19	3.23	22.52	0.81
SRP	131	33.69	79.98	2.55	21.29	0.66

 Table 5.2 Selection of artificial lift's technique.

Controlling Factor	Number	ESP	IFGL	SRP
Low GOR and BHP	<150 SCF/STB and < 250 psi	Medium	Fair	Good
High GOR and BHP	>150 SCF/STB and > 250 psi	Medium	Good	Fair
Low J	<1 b/d/psi	Fair	Medium	Good
High J	>1 b/d/psi	Good	Medium	Fair
Small tubing	1.315–2.375 inch	Good	Medium	Fair
Large tubing	2.875–3.500 inch	Fair	Medium	Good
Variable rate	1–500 b/d	Medium	Good	Fair

5.4 Discussions

- 5.4.1 The artificial lift can improve the petroleum production rates on the wells. They should be installed at Phitsanulok oil field because it is a big filed that has importance for exploration and production under high present of consumption rates.
- 5.4.2 The researcher should study and learn to understand equations, step and design of electrical submersible pump, intermittent flow gas lift and sucker rod pump.
- 5.4.3 The researcher should know about Microsoft visual basic V.6 program because it is easy and convenient to use for software development.
- 5.4.4 Manufacturer's motor and data base of electrical submersible pump, intermittent flow gas lift and sucker rod pump are studied and determined with the actual wells at Phitsanulok oil field.
- 5.4.5 Reliability of software development depends on the accuracy of equation and data base of each artificial lift system.
- 5.4.6 Simulation result is case study data of natural flow which can be used for decision making in the installation of artificial lift in the nearby petroleum potential area.
- 5.4.7 Reliability of simulation result depends on the accuracy of the input data and the simulation model.
- 5.4.8 The digitized calculation by computer will provide more accurate values and less time of calculation than using the manual calculation. The repeating calculation manually often gives error.

- 5.4.9 The design about electrical submersible pump, intermittent flow gas lift and sucker rod pump are very difficult and complex because limitation of some input data is not distinct and clearly explained. The complete data of Phitsanulok oil field should be collected and used in software so that the results are proximity of the actual performance.
- 5.4.10 The ALOP is advantage valuable data to use for decision-making in the investment of petroleum exploration and production in the other petroleum prospects at Phitsanulok oil field. The ALOP is the method of compiling program to design the electrical submersible pump, intermittent flow gas lift and sucker rod pump that is similar to the actual by input the data in the software. The ALOP accuracy depends on the quantity and quality of input data.
- 5.4.11 The thesis is useful in the prediction of the future petroleum business at Phitsanulok oil field.

REFERENCES

- API Standard 11A. (1944). API Specification for Oil Well Pumps (7th ed). (n. p.).
- API Standard 11B. (1957). API Specification for Sucker Rods (12th ed). (n. p.).
- API Standard 11D. (1952). API Specification for Miscellaneous Pumping Equipment (5th ed.). (n. p.).
- API Standard 11E. (1956). API Specification for Pumping Units (7th ed). (n. p.).
- Barber, Jr. A. H., Stile, L. H., and Thompson, B. B. (1983). Infill Drilling to Increase Reserves Actual Experience in Nine Fields in Texas, Oklahoma, and Illinois.
 Journal of Petroleum Technology. (1983, August): 1530-1538.
- Brown, K. E. and Beggs, H. D. (1978). **The Technology of Artificial Lift Methods** (Vol. 1). Oklahoma: PennWell Publ. Co., Ltd.
- Chrichlow, H. B. (1977). Modern Reservoir Engineering A Simulation Approach. New Jersey: Prentice-Hall, Eaglewood Cliffs.
- Craft, B. C., and Hawkins, M. F. (1990). **Applied Petroleum Reservoir Engineering.** (2nd ed.). New Jersey: Prentice-Hall, Eaglewood Cliffs.
- Crichlow, H. B. (1994). Advanced Reservoir Engineering. Oklahoma: PennWell Publ. Co., Ltd.
- Dandona, A. K., Alston, R. B., and Braun, R. W. (1992). Define Data Requirements for a Simulation Study. In SPE International Meeting on Petroleum Engineering (pp. 24-27). Beijing: (n. p.).

- DesBrisay, C. L. (1972). Supplemental Recovery Development of the Intisar A and D Reef Fields, Libyan Arab Republic. Journal of Petroleum Technology. (1972, July): 785-796.
- Eaton R. S. J. M. (1866). Petroleum: A History of the Oil Region of Venango County, Pennsylvania. Philadelphia: S.J. Skelly and Company.
- Example and problem data for wells. (1953). **Sucker Rod Handbook.** Bethlehem: Bethlehem Stell Company.
- Franchi, J. R. (1997). Principles of Applied Reservoir Simulation. Texas: (n. p.).
- Gilbert, W. E. (1954). Flowing and Gas-Lift Well Performance. (n. p.).
- Hallan N. Marsh. (1931). High Volumetric Efficiency in Oil Well Pumping and Pratical Results. In W. McCray (ed.). **Production Bulletin** (pp. 45-57). (n. p.).
- Hallan N. Marsh. (1943). Standardization Committee Report on Pumping Equipment and Engines (Exhibit A, Well-Load Formulas). In W. McCray (ed.).Production Bulletin (pp. 442-462). (n. p.).
- Harpole, K. J. (1980). Improved Reservoir Characterization A Key to Future Reservoir Management for the West Seminole San Andres Unit. Journal of Petroleum Technology. (1980, November): 2009-2019.
- Hawkes, M., Bromley, A., Kleungputsa, T. (2002). The Wichian Buri Oilfield,
 Petchabun. In Proceedings of Thailand Petroleum Conference 2002: 30
 years Experience: Opportunities and Challenges (pp. 11-12). Bangkok: (n. p.).
- Hugen, S. A., Lund, O., and Hoyland, L. A. (1988). Statfjord Field: Development Strategy and Reservoir Management. Journal of Petroleum Technology. (1988, July): 863-873.

- Irwin, R. A., Tucker, C. W., and Jr. H. E. S. (1972). A Case History of the Postle Area
 Computer Production Control and Reservoir Simulation. Journal of
 Petroleum Technology. (1972, July): 775-781.
- Kelley, H. L., and Willis, R. M. (1954). The Petroleum Engineer (Vol. 3). (n. p.).
- Knox, G. J. and Wakefield, L. L. (1983). An introduction to the Geology of the Phitsanulok Basin. In Conference on Geology and Mineral Resources (pp. 19-28). Bangkok: (n. p.).
- Knox, G. J. and Wakefield, L. L. (1993). Tertiary Sedimentary Basins of The Gulf Thailand and South China Sea. In The 5th Council on Petroleum Conference and Exhibition (p. 1). Bangkok: (n. p.).
- Mattax, C. C., and Dalton, R. L. (1990). Reservoir Simulation. Texas: Richardson.
- Mian, M. A. (1992). Petroleum Engineering Handbook for the Practicing Engineer (Vol. 1). Tulsa: Penn Well Book.
- Nind, T. E. W. (1964). Principles of Oil Well Production. (n. p.): McGraw-Hill.
- PTT Exploration and Production Public Company Limited. (2007). **PTTEP**Corporate Structure [On-line]. Available: http://www.pttep.com
- PTT Exploration and Production Public Company Limited. (2007). **S1 Artificial Lift** [On-line]. Available: http://www.pttep.com
- Simon, V. (2000). Petroleum Resources and Potential in Thailand: Central Plains.
 108th Anniversary of Department of Mineral resources. (2000, August):
 16.
- Stirling, R. (1920). The Air Lift System of Raising Oil. Journal of Petroleum Technology. 6: 379.

- Stiles, L. H., and Magruder, J. B. (1992). Reservoir Management in the Means San Andres Unit. Journal of Petroleum Technology. (1992, April): 469-475.
- Thakur, G. C. (2003). A 5-Phase Methodical Approach of Identifying Selecting, Developing, Implementing and Operating a Pressure Maintenance Scheme for and Offshore Field. In OTC conference (pp. 5-8). Houston: (n. p.).
- Triamwichanon, H. (1999). Reservoir Characterization Using Porosity Distribution in Suphan Buri Basin Thailand. In Symposium on Mineral, Energy, and Water Resources of Thailand: Towards to the year 2000 (pp. 545-556).
 Bangkok: (n. p.).
- Uttamo, W., Nichols, G. J., and Elders, C. F. (1999). The Tertiary Sedimentary Basins of Northern Thailand. **In Symposium on Mineral, Energy, and Water Resources of Thailand: Towards to the year 2000** (pp. 668-674). Bangkok: (n. p.).
- Wongsirasawad, L. (2002). 20 Successful Years of Sirikit Oilfield. In Thailand Petroleum Conference 2002 (pp. 28-29). Bangkok: (n. p.).
- Zaba, J. (1943). Oil Well Pumping Practices No.14-Counterbalancing, Purpose and Principles. **Oil and Gas Journal.** (1943, September): 51-53.
- Zaba, J and Doherty, W. T. (1956). **Practical Petroleum Engineers Handbook** (4th ed.). New Jersey: Prentice-Hall, Eaglewood Cliffs.

APPENDIX A

ARTIFICIA LIFT SYSTEMS FOR THESIS STUDY

A.1 Electrical submersible pump system

Electrical submersible pumps have their greatest application in moving large volumes of low GLR fluid. They are particularly attractive for water supply wells, high water cut producer and high deliverability undersaturated oils. Modified design procedure and improved gas oil separators/compressors are allowing effective operation at up to 1,000 SCF/bbl. High rate units are best suited to a total head of around 4,000–5,000 ft (Hallan N. Marsh, 1931). The other critical limitation indicated in Table A.1 is that the casing size will determine the available horsepower and capacity.

Casing size (inch)	Maximum HP (hp)	Maximum rate (b/d)
4 1/2	120	1,750
5 1/2	200-300	4,000
7	400-650	8,000
9 5/8	750	25,000

Table A.1 Approximate pump limitation by casing size.

Given below are the steps to be taken in designing an electrical submersible pump installation.

- A.1.1 Determine the production target.
- A.1.2 Review the casing size and weight in Table A.1 for implications available pump size.

A.1.3 Select a suitable pump from the manufacturers' design curves. Note the operating range 75–125 % of the peak pump efficiency, the Head/Stage and BHP/Stage at the design conditions in Figure A.1.

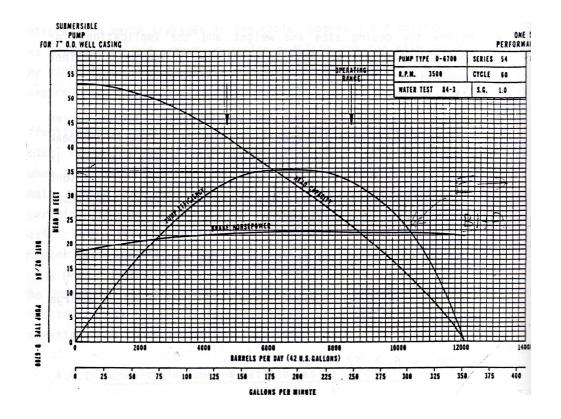
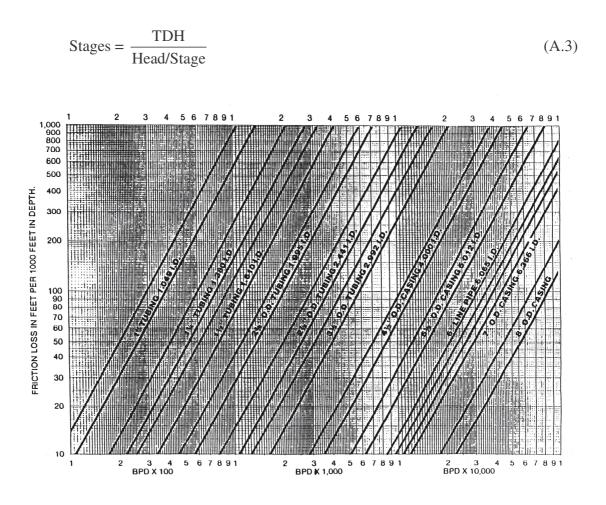



Figure A.1 Manufacturers' design curve (Hallan N. Marsh, 1931).

A.1.4 Estimate the Total Dynamic Head (TDH) or Pump Discharge Pressure.

$$TDH = H + FH (Figure A.2) + SH1$$
(A.1)

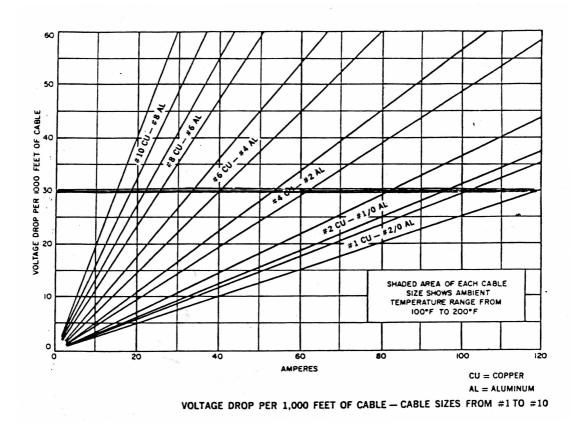
$$H = \frac{Drawdown}{Live Gradient} + Static Fluid Level)$$
(A.2)

A.1.5 Determine the number of stages required:

Figure A.2 Head due to friction in the tubing (Hallan N. Marsh, 1931)

A.1.6 Determine total brake horsepower required:

$$BHP = Stages \times \frac{BHP}{Stage} \times SG$$
(A.4)


A.1.7 Select the pump type and motor requirements from the manufacturers' specifications in Table A.2.

			Туре І							
HP	Cable	e Size	Surf	ace						
	Cu	Al	Current (amps)	Voltage (volts)						
≤ 24	8	6	28	440+vd						
25-35	6	4	40	440+vd						
36-45	4	2	60	440+vd						
46-55	2	1/0	72	430+vd						
56-72.5	6	4	34	1010+vd						
73.5-80	6	4	35	1350+vd						
81-97.5	6	4	42	1270+vd						
98.5-112.5	6	4	46	1300+vd						
113.5-137.5	4	2	68	1125+vd						
138.5-165	4	2	70	1300+vd						
166-190	2	1/0	92	1180+vd						
191-212.5	1	2/0	105	1130+vd						
213.5-237.5	1	2/0	110	1210+vd						
238.5-262.5	1	2/0	105	1405+vd						
263.5-287.5	1	2/0	105	1565+vd						
288.5-325	1	2/0	105	1675+vd						
326-362.5	1	2/0	105	1950+vd						
363.5-387.5	1	2/0	105	2150+vd						
≥ 388.5	1	2/0	105	2225+vd						

 Table A.2 The manufacturers' specifications of electrical submersible pump.

			Туре II					
HP	Cable	e Size	Surf	ace				
	Cu	Al	Current (amps)	Voltage (volts)				
≤ 24	10	8	17	760+vd				
25-35	8	6	23	760+vd				
36-45	6	4	35	740+vd				
46-55	6	4	42	745+vd				
56-72.5	0	0	0	0				
73.5-80	0	0	0	0				
81-97.5	0	0	0	0				
98.5-112.5	0	0	0	0				
113.5-137.5	6	4	35	2270+vd				
138.5-165	6	4	46	1950+vd				
166-190	4	2	53	2040+vd				
191-212.5	4	2	53	2270+vd				
213.5-237.5	4	2	63	2100+vd				
238.5-262.5	0	0	0	0				
263.5-287.5	0	0	0	0				
288.5-325	0	0	0	0				
326-362.5	0	0	0	0				
363.5-387.5	0	0	0	0				
≥ 388.5	0	0	0	0				

 Table A.2 The manufacturers' specifications of electrical submersible pump (cont.).

A.1.8 Select a cable that will give a voltage loss of less than 30v/1,000 ft and determine the corresponding wellhead voltage (Figure A.3).

Figure A.3 The corresponding wellhead voltage (Hallan N. Marsh, 1931).

A.2 Intermittent Flow Gas lift

Gas lift is mechanical process of lifting fluid from a well where gas relatively high pressure (≥ 250 psi) is used as the lifting medium. The gas lift is installed either during completion or in later workover operations. In addition, these installations may be applied to wells of any depth, any reservoir pressure and any rate of flow up to tens of thousands of barrels of fluid per day. The factors limits to impair the efficiency of gas lift are the presence of sour gas or crudes of high viscosity. In intermittent flow, as is injected at a pressure great than the pressure exerted by the column of fluid in the tubing above the operating valve, lifting the fluid by expansion and displacement (Gilbert, W.E., 1954).

Given below are the steps to be taken in designing intermittent flow.

A.2.1 The static gradient is calculated from (psi/ft).

$$G_s = 0.433\gamma_o \tag{A.5}$$

A.2.2 The bottom hole pressure drawdown is calculated from (psi).

$$\Delta p = \frac{q_o}{J} \tag{A.6}$$

A.2.3 The average flowing bottom hole pressure is calculated from (psi).

$$p_{wf} = p_{bh} - \Delta p \tag{A.7}$$

A.2.4 The depth to the static fluid level with surface tubing pressure is calculated from (ft).

$$D_s = D - \left(\frac{p_{bh} - p_t}{G_s}\right) \tag{A.8}$$

A.2.5 The hydrostatic head is calculated from (ft).

$$H = \frac{\Delta p}{G_s} \tag{A.9}$$

A.2.6 The working fluid level is calculated from (ft).

$$D_w = D_s + H \tag{A.10}$$

- A.2.7 The number of cycles required per day is calculated from $\frac{1440}{\text{cycle time}}$ (cycles per day). (A.11)
- A.2.8 The number of barrels per cycle is calculated from

$$\frac{q_o}{\text{cycles per day}} \text{ (bbl per cycle).}$$
(A.12)

A.2.9 The volume of the starting slug is calculated from

$$\frac{\text{bbl per cycle}}{0.60} \text{ (bbl)}.$$
(A.13)

A.2.10 The slug length is calculated from

$$\frac{\text{The volume of the starting slug}}{\text{The capacity of tubing}}$$
(ft). (A.14)

A.2.11 The operating valve should be located below the working fluid level is calculated from

$$\frac{\text{The slug length}}{2} \text{ (ft).} \tag{A.15}$$

A.2.12 The depth to the operating valve is calculated from the working fluid + the operating valve (ft) (A.16)

A.2.13 The pressure in the tubing opposite the valve with surface tubing pressure, neglecting the weight of the gas column is calculated from

$$p_t =$$
Surface tubing pressure + (Slug length × G_s) (A.17)

A.2.14 The valve opens the minimum casing pressure is calculated from (psig)

$$p_{v,\min} = p_t + \frac{p_t}{2}$$
 (A.18)

If
$$\frac{p_t}{2} \le 200$$
 then $p_{\nu,\min} = p_t + 200$ (A.19)

A.2.15 Surface operating pressure is taken from Table A.3.

 Table A.3 Surface operating pressure.

Depth (ft)	Surface operating pressure
1,000-1,499	$P_{so} = 0.957 P_{v,\min}$
1,500-1,999	$P_{so} = 0.953 P_{\nu,\min}$
2,000-2,499	$P_{so} = 0.948 P_{v,\min}$
2,500-2,999	$P_{so} = 0.93 P_{\nu,\min}$
3,000-3,499	$P_{so} = 0.923 P_{\nu,\min}$
3,500-3,999	$P_{so} = 0.916 P_{\nu,\min}$
4,000-4,499	$P_{so} = 0.913 P_{\nu,\min}$
4,500-4,999	$P_{so} = 0.901 P_{v,\min}$
5,000-5,499	$P_{so} = 0.874 P_{v,\min}$
5,500-6,000	$P_{so} = 0.847 P_{\nu,\min}$

A.3 Sucker rod pump

This parts are prime mover, the surface pumping equipment, the sucker rod string and the subsurface pump.

Given below are the steps to be taken in designing a pumping installation.

A.3.1 From maximum anticipated fluid production and estimated volumetric efficiency, calculate the pump displacement.

$$V = \frac{q}{E_v} \tag{A.20}$$

A.3.2 From Figure A.4 determine the stroke length and API rating of the pumping unit to be used. From manufacturers' literature, select a unit which has the desired stroke length and API rating.

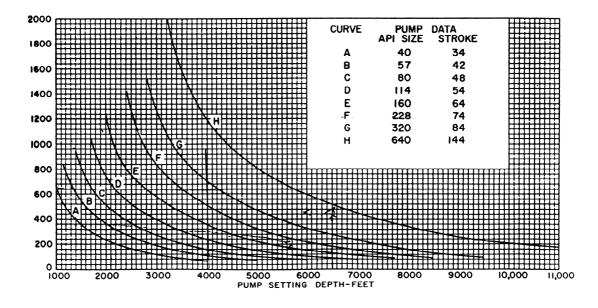


Figure A.4 Pump unit and stroke length selection chart (Howard L. Kelley and Roy M. Willis, 1954).

A.3.3 From the appropriate chart of Table A.5 through A.12, select tubing size, plunger size, rod size and pumping speed corresponding to the pump setting depth.

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
1,000 - 1,100	2 3/4	3	7/8	24-19
1,100 - 1,250	2 1/2	3	7/8	24-19
1,250 - 1,650	2 1/4	2 1/2	3/4	24-19
1,650 - 1,900	2	2 1/2	3/4	24-19
1,900 - 2,150	1 3/4	2 1/2	3/4	24-19
2,150 - 3,000	1 1/2	2	5/8-3/4	24-19
3,000 - 3,700	1 1/4	2	5/8-3/4	22-18
3,700 - 4,000	1	2	5/8-3/4	21-18

Table A.4 Design data for API size 40 unit with 34 inch.

Table A.5 Design data for API size 57 unit with 42 inch.

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
1,150 - 1,300	2 3/4	3	7/8	24-19
1,300 - 1,450	2 1/2	3	7/8	24-19
1,450 - 1,850	2 1/4	2 1/2	3/4	24-19
1,850 - 2,200	2	2 1/2	3/4	24-19
2,200 - 2,500	1 3/4	2 1/2	3/4	24-19
2,500 - 3,400	1 1/2	2	5/8-3/4	23-18
3,400 - 4,200	1 1/4	2	5/8-3/4	22-17
4,200 - 5,000	1	2	5/8-3/4	21-17

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
1,400 - 1,550	2 3/4	3	7/8	24-19
1,550 - 1,700	2 1/2	3	7/8	24-19
1,700 - 2,200	2 1/4	2 1/2	3/4	24-19
2,200 - 2,600	2	2 1/2	3/4	24-19
2,600 - 3,000	1 3/4	2 1/2	3/4	23-18
3,000 - 4,100	1 1/2	2	5/8-3/4	23-18
4,100 - 5,000	1 1/4	2	5/8-3/4	21-17
5,000 - 6,000	1	2	5/8-3/4	19-17

Table A.6 Design data for API size 80 unit with 48 inch.

 Table A.7 Design data for API size 114 unit with 54 inch.

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
1,700 - 1,900	2 3/4	3	7/8	24-19
1,900 - 2,100	2 1/2	3	7/8	24-19
2,100 - 2,700	2 1/4	2 1/2	3/4	24-19
2,700 - 3,300	2	2 1/2	3/4	23-18
3,300 - 3,900	1 3/4	2 1/2	3/4	22-17
3,900 - 5,100	1 1/2	2	5/8-3/4	21-17
5,100 - 6,300	1 1/4	2	5/8-3/4	19-16

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
2,000 - 2,200	2 3/4	3	7/8	24-19
2,200 - 2,400	2 1/2	3	7/8	23-19
2,400 - 3,000	2 1/4	2 1/2	3/4-7/8	23-19
3,000 - 3,600	2	2 1/2	3/4-7/8	23-18
3,600 - 4,200	1 3/4	2 1/2	3/4-7/8	22-17
4,200 - 5,400	1 1/2	2	5/8-3/4-7/8	21-17
5,400 - 6,700	1 1/4	2	5/8-3/4-7/8	19-15

 Table A.8 Design data for API size 160 unit with 64 inch.

 Table A.9 Design data for API size 228 unit with 74 inch.

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
2,400 - 2,600	2 3/4	3	7/8	24-20
2,600 - 3,000	2 1/2	3	7/8	23-18
3,000 - 3,700	2 1/4	2 1/2	3/4-7/8	22-17
3,700 - 4,500	2	2 1/2	3/4-7/8	21-16
4,500 - 5,200	1 3/4	2 1/2	3/4-7/8	19-15
5,200 - 6,800	1 1/2	2	5/8-3/4-7/8	18-14

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
2,800 - 3,200	2 3/4	3	7/8	23-18
3,200 - 3,600	2 1/2	3	7/8	21-17
3,600 - 4,100	2 1/4	2 1/2	3/4-7/8-1	21-17
4,100 - 4,800	2	2 1/2	3/4-7/8-1	20-16
4,800 - 5,600	1 3/4	2 1/2	3/4-7/8-1	19-16
5,600 - 6,700	1 1/2	2 1/2	3/4-7/8-1	18-15

 Table A.10 Design data for API size 320 unit with 84 inch.

Table A.11 Design data for API size 640 unit with 114 inch.

Pump depth	Plunger size	Tubing size	Rod size	Pumping speed
(ft)	(inch)	(inch)	(inch)	(strokes/min)
3,200 - 3,500	2 3/4	3	7/8	18-14
3,500 - 4,000	2 1/2	3	7/8	17-13
4,000 - 4,700	2 1/4	2 1/2	3/4-7/8-1	16-13
4,700 - 5,700	2	2 1/2	3/4-7/8-1	15-12
5,700 - 6,600	1 3/4	2 1/2	3/4-7/8- 1	14-12

A.3.4 Calculate the fractional length of each section of the rod string, using the data of Table A.13 and A.15.

Table A.12Pump plunger data.

Diameter (inch)	Area (sq in)	Pump constant (bbl/day/in/spm)
1	0.785	0.116
1 1/16	0.886	0.131
1 1/4	1.227	0.182
1 1/2	1.767	0.262
1 3/4	2.405	0.357
1 25/32	2.448	0.369
2	3.142	0.466
2 1/4	3.976	0.59
2 1/2	4.909	0.728
2 3/4	5.940	0.881
3 3/4	11.045	1.639
4 3/4	17.721	2.63

 Table A.13 Tubing data.

Nominal size (inch)	Outside diameter (inch)	Weight (lb/ft)	Well area (sq in)
1 1/2	1.900	2.90	0.800
2	2.375	4.70	1.304
2 1/2	2.875	6.50	1.812
3	3.500	9.30	2.590
3 1/2	4.000	11.00	3.077
4	4.500	12.75	3.601

Rod size in string (inch)	Valve of <i>R</i> _a
5/8 - 3/4	$R_I = 0.759 - 0.0896A_p$
	$R_2 = 0.241 - 0.0896A_p$
3/4 - 7/8	$R_I = 0.786 - 0.0566A_p$
	$R_2 = 0.214 - 0.0566A_p$
7/8 - 1	$R_I = 0.814 - 0.0375A_p$
	$R_2 = 0.186 - 0.0375A_p$
5/8 - 3/4 -7/8	$R_1 = 0.627 - 0.1393A_p$
	$R_2 = 0.199 - 0.0737 A_p$
	$R_3 = 0.175 - 0.0655A_p$
3/4 - 7/8 -1	$R_I = 0.664 - 0.0894A_p$
	$R_2 = 0.181 - 0.0478A_p$
	$R_3 = 0.155 - 0.0416A_p$

Table A.14 Data for design of tapered sucker rod string.

- A.3.5 Calculation the length of each section of the rod string to the nearest 25 ft.
 - $L_{\rm l} = LR_{\rm l} \tag{A.27}$
 - $L_2 = LR_2 \tag{A.28}$
 - $L_3 = LR_3 \tag{A.29}$

A.3.6 Calculate the acceleration factor.

$$\alpha = \frac{SN^2}{70,500} \tag{A.24}$$

A.3.7 Determine the effective plunger stroke length.

$$S_{p} = S + \frac{40.8L^{2}\alpha}{E} - \frac{5.2GDA_{p}}{E} \left[\frac{L}{A_{t}} + \frac{L}{A_{1}} + \frac{L}{A_{2}} + \frac{L}{A_{3}} \right]$$
(A.25)

A.3.8 Using the estimated volumetric efficiency, determine the probable production rate and check it against the desired production rate.

$$q = 0.466S_p NE_v \tag{A.26}$$

A.3.9 Calculate the dead weight of the rod string.

$$W_r = M_1 L_1 + M_2 L_2 + M_3 L_3 \tag{A.27}$$

A.3.10 Calculate the fluid load.

$$W_f = 0.433G(LA_p - 0.294W_r)$$
(A.28)

A.3.11 Determine peak polished rod load and check it against maximum beam load for the unit selected.

$$W_{\max} = W_f + W_r (1 + \alpha) \tag{A.29}$$

A.3.12 Calculate the maximum stress at the top of the rod string and check it against the maximum permissible working stress for the rods to be used.

$$\frac{W_p}{A_3} \tag{A.30}$$

A.3.13 Calculate the ideal counterbalance effect and check it against the counterbalance available for the unit selected.

$$C_i = 0.5W_f + W_r (1 - 0.127G) \tag{A.31}$$

A.3.14 On the assumption that the unit will be no more than five percent out of counterbalance, calculate the peak torque on the gear reducer and check it against the API rating of the unit selected.

$$T_{p} = \frac{(W_{nax} - 0.95C_{i})S}{2}$$
(A.32)

A.3.15 Calculate hydraulic horsepower, friction horsepower, and brake horsepower of the prime mover. Select the prime mover.

$$H_h = 7.36 \times 10^{-6} qGL_N \tag{A.33}$$

$$H_f = 6.31 \times 10^{-7} W_r SN \tag{A.34}$$

$$H_b = 1.5 \left(H_h + H_f \right) \tag{A.35}$$

A.3.16 Check synchronous.

$$n = \frac{237,000}{NL}$$
(A.42)

APPENDIX B

VARIABLE DECLARATION, FLOWCHART

AND PROGRAMMING

B.1 Variable declaration

b.

c.

This topic explains variables in this programs that are set for software development. This variable is agent of the input, output, calculation, process and compile. The variables and variable's meaning of each module as follow as in Table B.1.

B.1.1 Variables and variable's meaning of electrical submersible pump's input data.

Resievoir's input data				
bhp	=	Bottom hole pressure		
go	=	Specific gravity of oil		
gw	=	Specific gravity of water		
j	=	Productivity index		
bo	=	Oil formation volume factor		
bg	=	Gas formation volume factor		
bw	=	Water formation volume factor		
gori	=	Initial gas oil ratio		
gord	=	Dissolved gas oil ratio		
Production's input data				
qo	=	Oil Production		
qw	=	WaterProduction		
Well's	s input o	data		
d	=	Depth		
ts	=	Tubing Size		
tt	=	Tubing Type		

a.	Resrevoir's	input data

ptev = Average Tubing Pressure

d. Other's input data

ev = Volumetric Efficiency of Pump

B.1.2 Variables and variable's meaning of electrical submersible pump's output data

pd	=	Pump Displacement	
gs	=	Static Live oil Gradient	
dd	=	Bottom Hole Pressure Drawdown for liquid production	on
pwf	=	Average Flowing Bottom Hole Pressure for liquid	
		production	
sfh	=	Static Fluid Head	
sfl	=	Static Fluid Level	
h	=	Dynamic Fluid Level	
hs	=	Discharge Head	
fl	=	Friction Losses	
fh	=	Friction Head for	
tdh	=	Total Dynamic Head	
hes	=	Head/Stages	
ns	=	Number of Stage	123
hps	=	Horsepower/Stage	
thp	=	Total Horsepower	
cl	=	Cable Losses	
vd	=	Vottage Drop	
sc1	=	Surface current of Type1	

sc2 =	Surface	current	of T	ype 2
-------	---------	---------	------	-------

sv1	=	Surfave	voltage	of type 1
-----	---	---------	---------	-----------

- Surfave voltage of type 2 sv2 =
- Copper's cable size of Type1 cu1 =
- Copper's cable size of Type 2 cu2 =
- Aluminum's cable size of Type 1 al1 =
- Aluminum's cable size of Type 2 al2 =

a.

b.

B.2.1 Variables and variable's meaning of intermittent flow gas lift's input data

Resrevoir's input data				
bhp	=	Bottom hole pressure		
go	=	Specific gravity of oil		
gg	=	Specific Gravity of Gas		
gw	=	Specific gravity of water		
j	=	Productivity index		
bo	=	Oil formation volume factor		
bg	=	Gas formation volume factor		
bw	=	Water formation volume factor		
gori	=	Initial gas oil ratio		
gord	=	Dissolved gas oil ratio		
gord	=	Dissolved gas oil ratio		
Produ	ction's	input data		
qo	=	Oil Production		
qw	=	Water Production		

с.	Well's input data			
	d	=	Depth	
	ts	=	Tubing Size	
	pt	=	Tubing Pressure	
	tavg	=	Average Tubing Temperature	
d.	Other	's input	data	
	ev	=	Volumetric Efficiency of Pump	
	ct	=	Cycle Time	
	fb	=	Total Liquid Slug is lost due to Slippage or	
			Fall Back	

B.2.2 Variables and variable's meaning of intermittent flow gas lift's output data

gs	=	Static Gradient
dd	=	Bottom Hole Pressure Drawdown for oil Production
pwf	=	Flowing Bottom Hole Pressure for oil Production
sfh	=	Static Fluid Head with Tubing Pressure
sfl	=	Static Fluid Level with Tubing Pressure
hh	=	Hydrostatic Head
wfl	=	Working Fluid Level for oil Production
nc	=	Number of Cycle
noc	=	Number of Oil's Cycle
VSS	=	Volume of Starting Slug
ct	=	Capacity of Tubing
sl	=	Slug Length

	bwfl	=	Operating Valve should be located below Working Fluid		
			Level		
	dov	=	Depth	to Operating Valve	
	ptov	=	Pressu	re in Tubing Opposite Valve with Tubing	
			Pressure Neglecting Weight of Gas Column		
	vop	=	Valve Opening Pressure		
	SS	=	Surface	e Operating Pressure	
	vot	=	Volum	e of Oil Tubing	
	spa	=	Space	occupied by gas just as Starting Slug reaches	
			Surface		
	pus	=	Pressure under Slug of Gas Injection		
	pgi	=	Average Pressure of Gas Injection		
	Z	=	Compressibility Factor of Gas Injection		
	gr	=	Minimum Gas Required		
	gior	=	Minimum Injection Gas Oil Ratio		
B.2.3	Variat	oles and	variabl	le's meaning of intermittent flow gas lift's other	
	data				
	min_d	if	=	Minimum Differential of pressure	
	ppc		=	Critical Psedu Pressure	
	tpc		=	Critical Psedu Temperature	
	denpr		=	Reduce Psedu Density	
	ppr		=	Reduce Psedu Pressure	
	tpr		=	Reduce Psedu Temperature	

z1 = 1^{st} Compressibility Factor

z2	=	2 nd Compressibility Factor
z3	=	3 ^{rt} Compressibility Factor
z4	=	4 th Compressibility Factor
z5	=	5 th Compressibility Factor
z6	=	6 th Compressibility Factor
z7	=	7 th Compressibility Factor
z8	=	8 th Compressibility Factor
z9	=	9 th Compressibility Factor

B.3.1 Variables and variable's meaning of sucker rod pump's input data

Resievon's input dutu				
go	=	Specific gravity of oil		
gw	=	Specific gravity of water		
bo	=	Oil formation volume factor		
bg	=	Gas formation volume factor		
bw	=	Water formation volume factor		
gori	=	Initial gas oil ratio		
gord	=	Dissolved gas oil ratio		

a. Resrevoir's input data

b.	Production's input data				
	qo	=	Oil Production		
	qw	=	Water Production		
c.	Well's input data				
	d	=	Depth		
d.	Other	's input	data		
	e	=	Endurance Limit of Sucker Rods		
	ev	=	Volumetric Efficiency of Pump		

B.3.2	Variables and	d variable's	meaning	of sucker	rod pump	o's output data

pud	=	Pump Data
pai	=	API Size
str	=	Stroke
pg	=	Pump Plunger Data
dpg	=	Diameter of Plunger
apg	=	Area of Plunger
pc	=	Pump Constant
td	=	Tubing Data

nst	=	Nominal Size of Tubing
ot	=	Outside Diameter of Tubing
wt	=	Weight of Tubing
wat	=	Well Area of Tubing
srd	=	Sucker Rod Data
rs1	=	1 st Rod Size
rs2	=	2 nd Rod Size
rs3	=	3 ^{rt} Rod Size
ars1	=	1 st area of sucker rod
ars2	=	2 nd area of sucker rod
ars3	=	3 ^{rt} area of sucker rod
wrs1	=	1 st weight of sucker rod
wrs2	=	2 nd weight of sucker rod
wrs3	=	3 ^{r d} weight of sucker rod
ps	=	Pumping Speed for oil Production
srs	=	Section of Rod String
af	=	Acceleration Factor for pump
ep	=	Effective Plunger Stroke Length
pqo	=	Probable Production Rate
dwr	=	Dead Weight of Rod Load
fl	=	Fluid Load
ppr	=	Peak Polished Rod Load
ms	=	Maximum Stress at Top of Rod String
ice	=	Ideal Counterbalance Effect

pt	=	Peak Torque on Gear Reducer
pm	=	Prime Mover for pump
hh	=	Hydraulic Horsepower
fh	=	Friction Horsepower
bh	=	Brake Horsepower
sp	=	Synchronous Pumping speed for pump

B.4.1 Variables and variable's meaning of general commands

"" =	No display				
"massages"	=	Diplay massages			
&HFF&	=	Red color			
&H8000&	=	Green color			
&H80C0FF	=	Orange color			
Artificial_Lif	t.Show	= Back to main	page		
Electrical_Submersible_Pump.Show =			Back to electrical		
			submersible pump's page		

Gas_Lift.Show	=	Back	to gas lifr's	s page	2
Sucker_Rod_Pump.	Show	=	Back to s	ucke	r rod pump's page
Beep = Bell					
Printer.Print =	Printe	r			
IIf(xxx.Text = "", "]	No Data"	, xxx.T	'ext =		If no data then no
					display
					Else xxx.Text
vbCritical + vbOKC	Only	=	Critical's	Mas	sage
vbInformation + vb	OKOnly	=	Informati	ion's	Massage
Response =	Massa	ige box			
Again = Mass	sage box				
Timer = Cloc	k				
Private = Mai	n prograr	m			
Private Sub =	Modu	le			
Static number =	Zero				
Case = IfT	henElse	;			
End Select =	End ca	ase			
End Sub =	End M	Iodule			
Artifical_Lift_Click	x =	Main	page		
Electrical_Submers	ible_Pum	np _Cli	ck =		Electrical
					submersible
					pump's page
Gas_Lift_Click = Gas lift's page					

Sucker_Rod_Pump_Click = Sucker rod pump's page

Check_Input_	Click	=	Check Input	
Design_Click	=	Design artificial lift		
Save_Print_C	lick	=	Save or print files	
Clear_Click	=	Clear screen		
Back_Click	=	Main page		
lbl =	Label			
MsgBox =		Massage box		

B.2 Flowchart

The topic shows and explains flowchart that is developed for description compiling process of ALOP. This process includes input, checking input, calculation, linking data base, checking output and output. The flowchart includes many flowchart symbols that are used to present the compiling process of ALOP. This flowchart symbol is shown in Figure B.1.

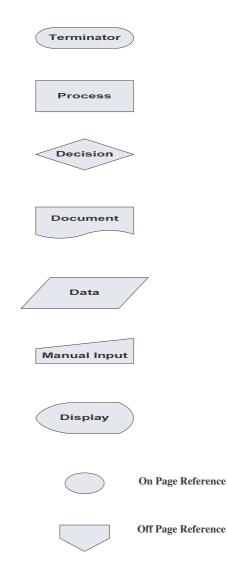


Figure B.1 Flowchart symbol

B.2.1 Flowchart of electrical submersible pump module

The flowchart of electrical submersible pump module includes parameters of input and output, equation and data base as follow as in Table B.2.

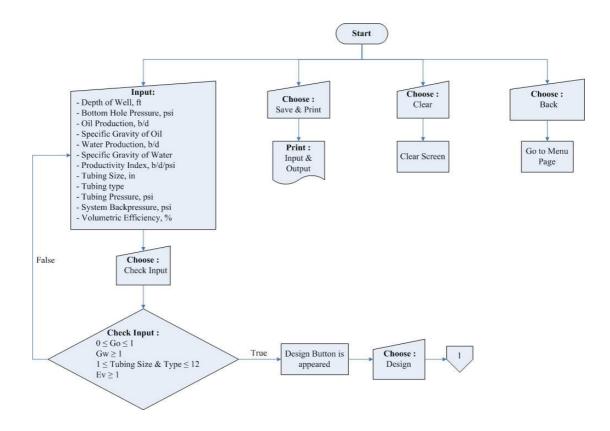


Figure B.2 Electrical submersible pump process

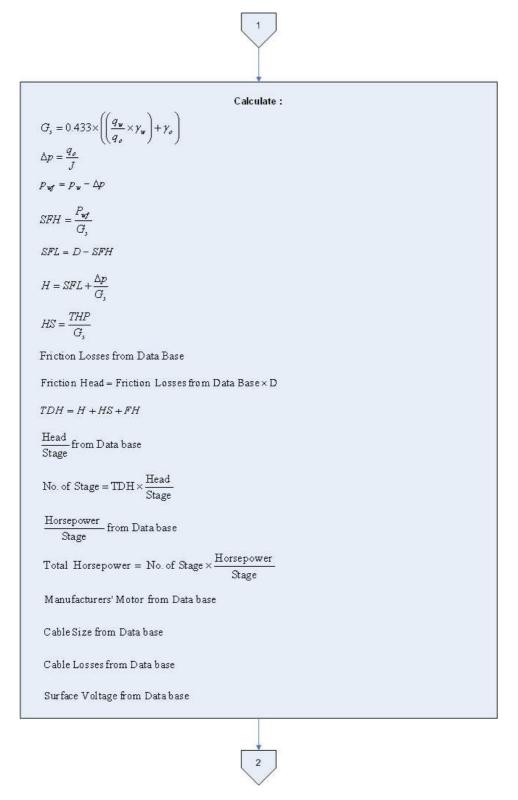


Figure B.2 Electrical submersible pump process (cont.)

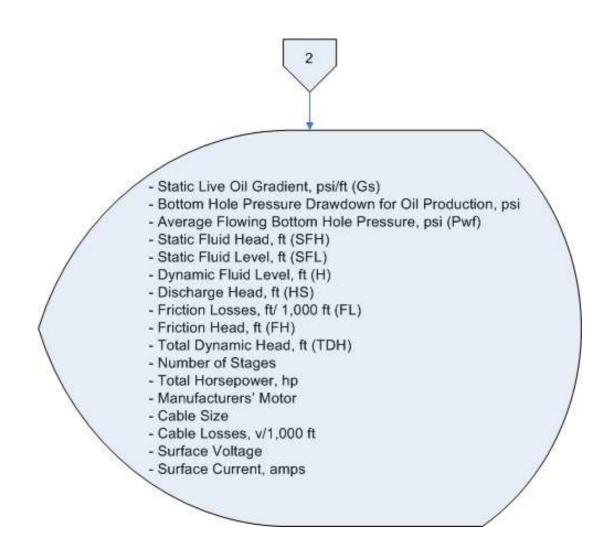


Figure B.2 Electrical submersible pump process (cont.)

B.2.2 Flowchart of intermittent flow gas lift module

The flowchart of intermittent flow gas lift module includes parameters

of input and output, equation and data base as follow as in Table B.3.

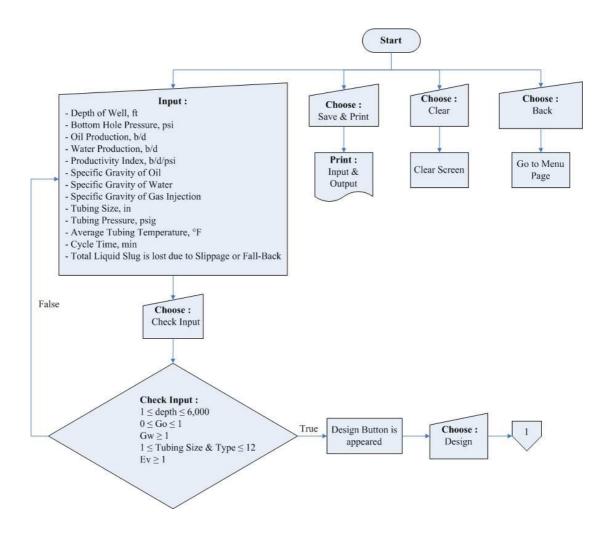


Figure B.3 Intermittent flow Gas lift process

Calculate: $G_{z} = \gamma_{o} \times 0.433$ $\Delta p = \frac{q_{z}}{J}$ $p_{wf} = p_{w} - \Delta p$ $D_{z} = D - \left(\frac{P_{w} - P_{t}}{G_{z}}\right)$ Hydrostatic Head = $\frac{\Delta p}{G_{z}}$ Working Fluid Level = D_{z} + Hydrodtati c Head $\frac{Cycle}{Dqy} = \frac{Cycle}{\min} \times \frac{1440\min}{Dqy}$ $\frac{bbl}{Cycle} = q_{o} \times \frac{Dqy}{Cycle}$ Volume of Starting Slug = $\frac{bbl}{Cycle}$ Volume of Starting Slug = $\frac{bbl}{Cycle}$ Slug Length = $\frac{Volume \text{ of Starting Slug}}{Capacity \text{ of Tubing}}\left(\frac{bbl}{ft}\right)$ Opearting Valve Should be located below Working Fluid Level = $\frac{Slug \text{ Length}}{2}$ $p_{t} = \text{Tubing Pressure} + (Slug \text{ Length} \times G_{s})$

Figure B.3 Intermittent flow Gas lift process (cont.)

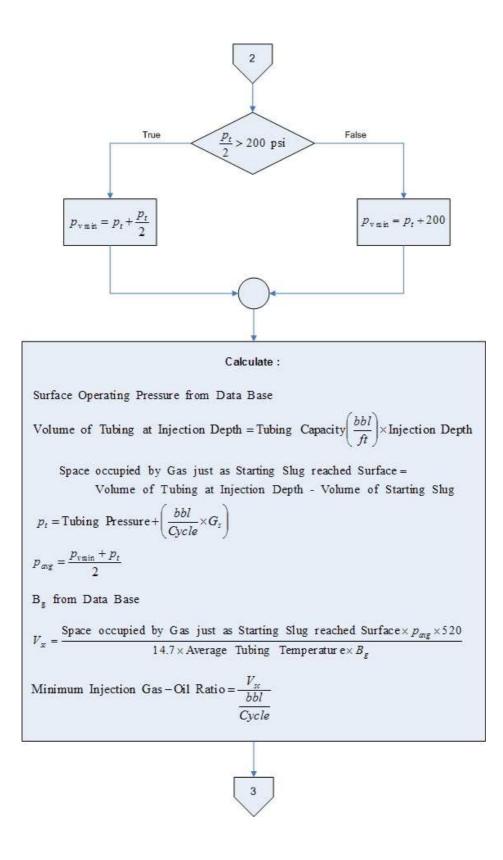


Figure B.3 Intermittent flow Gas lift process (cont.)

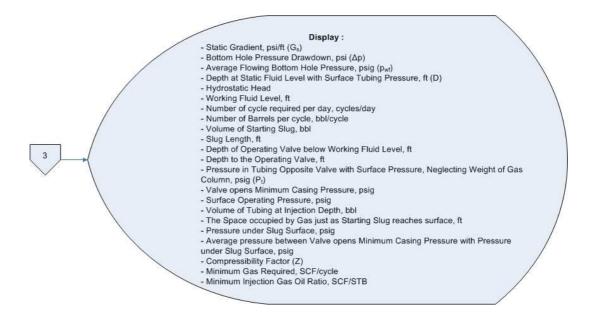


Figure B.3 Intermittent flow Gas lift process (cont.)

B.2.3 Sucker rod pump flowchart

The flowchart of sucker rod pump's design software includes parameters of input and output, equation and data base as follow as in Table B.4.

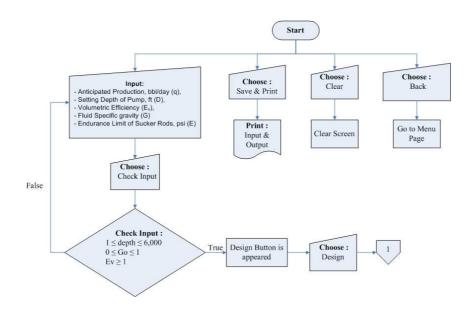


Figure B.4 Sucker rod pump process

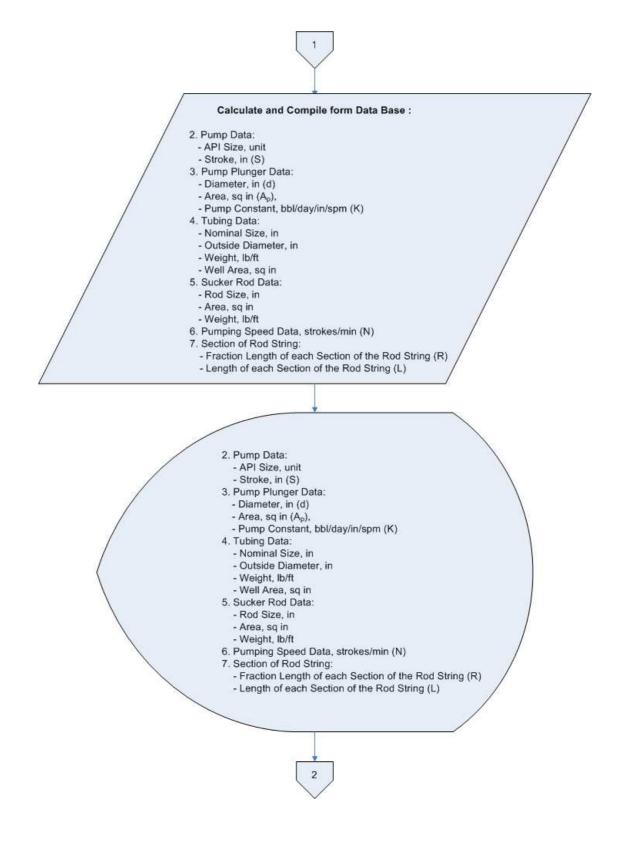


Figure B.4 Sucker rod pump process (cont.).

$$calculate :$$

$$8. \alpha = \frac{SN^2}{70,500}$$

$$9. S_r = S + \frac{40.8D^2 \alpha}{30 \times 10^5} - \frac{5.2GDA_r}{30 \times 10^5} \left[\frac{L}{4} + \frac{T_1}{A_1} + \frac{T_2}{A_2} + ... \right]$$

$$10. q = KA_r NE_r$$

$$11. W_r = M_1 L_1 + M_2 L_2 + ...$$

$$12. W_r = 0.433 G(LA_r - 0.294 W_r)$$

$$13. W_{max} = W_r + W_r (1 + \alpha)$$

$$14. \sigma_R = \frac{W_{max}}{A_{TopBad}}$$

$$15. C_1 = 0.5W_r + W_r (1 - 0.0635G)$$

$$16. d = \frac{S(C_1 - C_r)}{2W_r}$$

$$17. Position of Counter W eight = Crank Length - Center of gravity from outer edge of Counter W eight - d$$

$$18. T_r = \frac{(W_{max} - 0.95C_r)S}{2}$$

$$19. H_A = 7.36 \times 10^{-4} ggL_N$$

$$20. H_r = 6.31 \times 10^{-4} W_r SN$$

$$21. H_s = 1.5(H_A + H_r)$$

$$22. d_r = Zd_r \frac{N}{N_r}$$

Figure B.4 Sucker rod pump process (cont.).

.

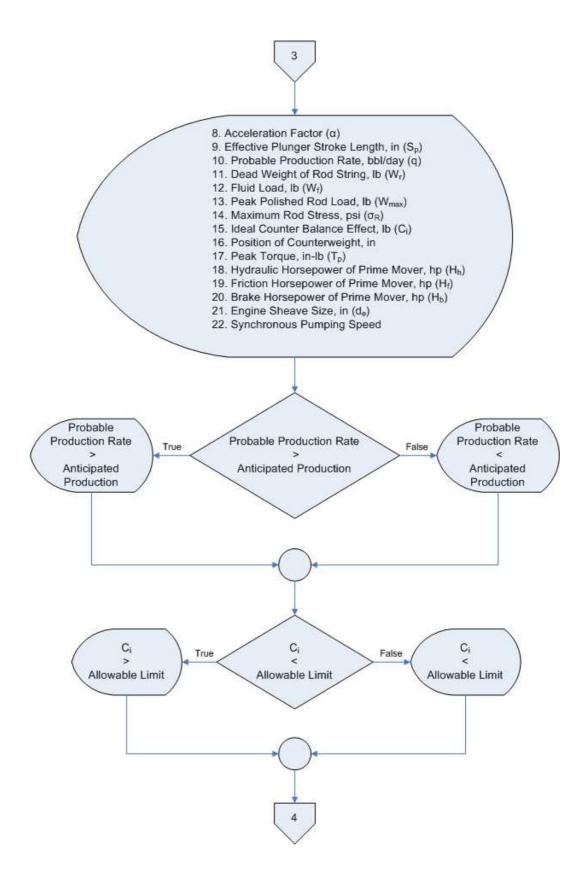


Figure B.4 Sucker rod pump process (cont.).

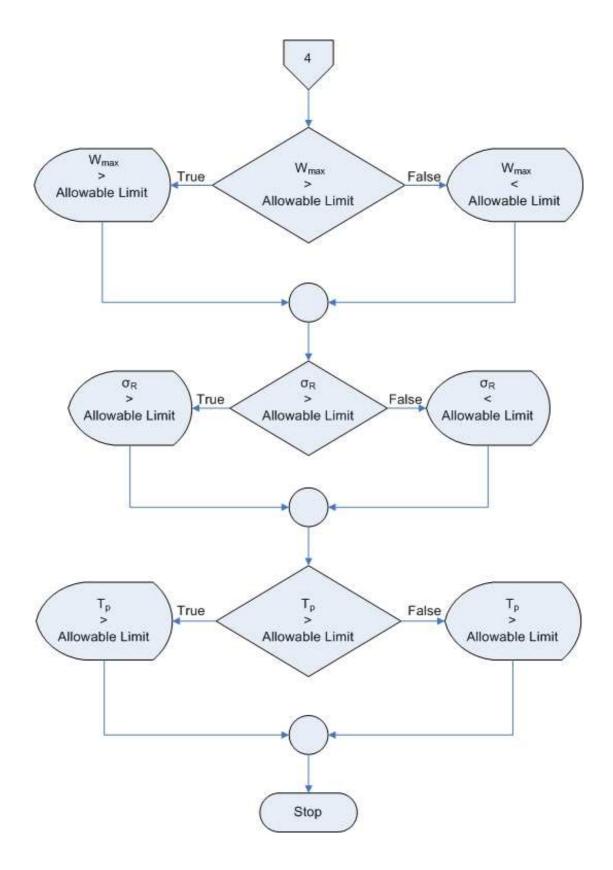


Figure B.4 Sucker rod pump process (cont.).

B.3 Programming

The topic shows and explains source codes of each module that includes source codes of main menu, electrical submersible pump, intermittent flow gas lift and sucker rod pump. Each module of artificial lift includes sub codes that are command of checking input, design, save and print documents, clear screen and back to main menu. Finally, source codes of text help in each module are presented in this topic B.

B.3.1 Main menu

The menu page of ALOP includes 2 functions that are a help label (green color) and three modules (electrical submersible pump, intermittent flow gas lift and sucker rod pump) as follow as in Figure B.5.

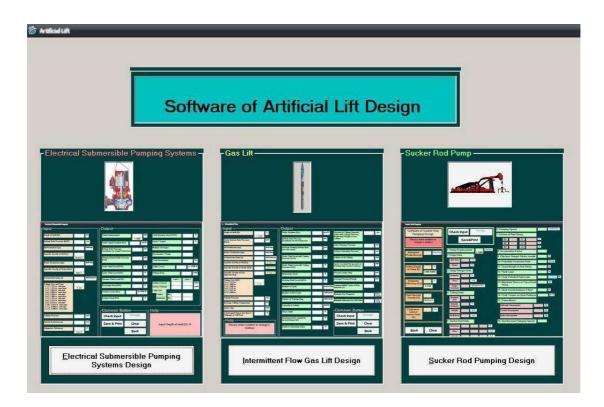


Figure B.5 The main page.

B.3.1.1 Source code of help label (green color)

Private Sub Timer1_Timer()

Static number

number = number + 1

Select Case number

Case 1

Label15.Caption = "User can choose type of artificial lift design"

Case 2

Label15.Caption = "Such as"

Case 3

Label15.Caption = "Electrical Submersible Pumping Design (Alt+E)"

Case 4

Label15.Caption = "Gas Lift Design (Alt+G)"

Case 5

Label15.Caption = "Sucker Rod Pumping Design (Alt+S)"

Case 6

Label15.Caption = "and All Programes use Orange Color that is agent of 'Input'"

Case 7

Label15.Caption = "and All Programes use Green Color that is agent 'Output'"

Case 8

Label15.Caption = "Software of Artificial Lift Design"

number = 0

End Select

End Sub

B.3.1.2 Source code of three modules (electrical submersible pump,

gas lift and sucker rod pump)

Private Sub Command1_Click()

Electrical_Submersible_Pumping.Show

End Sub

Private Sub Command2_Click()

Gas_Lift.Show

End Sub

Private Sub Command3_Click()

Sucker_Rod_Pumping.Show

End Sub

B.3.2 Electrical submersible pump module

The electrical submersible pump module includes 5 command buttons (gray color) that are checking input, design, save and print documents, clear screen and back to main menu as follow as in Figure B.6.

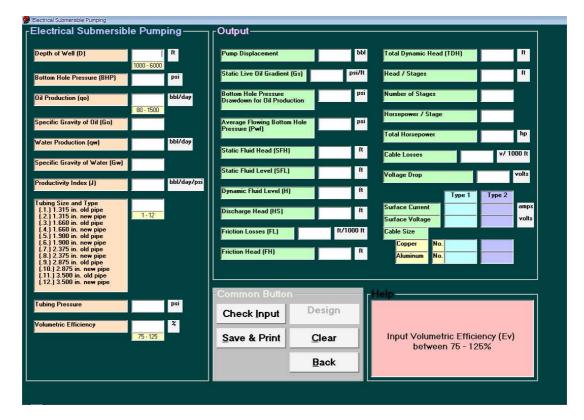


Figure B.6 Electrical submersible pump's design page.

B.3.2.1 Source code of checking input button of electrical

submersible pump module

Private Sub check_Click()

Dim Response As Variant

Dim Again As Variant

d.BackColor = &HC0E0FF

qo.BackColor = &HC0E0FF

tst.BackColor = &HC0E0FF

ev.BackColor = &HC0E0FF

tst.BackColor = &HC0E0FF

ev.BackColor = &HC0E0FF

pd.Text = ""

gs.Text = ""

dd.Text = ""

pwf.Text = ""

sfh.Text = ""

sfl.Text = ""

h.Text = ""

hs.Text = ""

fl.Text = ""

fh.Text = ""

tdh.Text = ""

hes.Text = ""

ns.Text = ""

hps.Text = ""

thp.Text = ""

cu1.Text = ""

cu2.Text = ""

al1.Text = ""

al2.Text = ""

cl.Text = ""

vd.Text = ""

sc1.Text = ""

sc2.Text = ""

sv1.Text = ""

sv2.Text = ""

If d.Text = "" Or bhp.Text = "" Or qo.Text = "" Or go.Text = "" Or qw.Text = "" Or gw.Text = "" Or j.Text = "" Or tst.Text =

"" Or pt.Text = "" Or ev.Text = "" Then

Response = MsgBox("Please enter number in orange's text box", vbCritical + vbOKOnly, "Error !!")

Exit Sub

End If

If d > 6000 Or d < 1000 Then

d.BackColor = &HFF&

Response = MsgBox("Depth of well should be between 1,000 to 6,000 ft", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new depth of well", vbInformation + vbOKOnly, "New number !!")

End If

If qo > 1500 Or qo < 80 Then

qo.BackColor = &HFF&

Response = MsgBox("Oil production should be between 80 to 1,500 bbl/day", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new oil production", vbInformation + vbOKOnly, "New number !!")

End If

If tst > 12 Or tst < 1 Then

tst.BackColor = &HFF&

Response = MsgBox("Choose tubing size and type with No.1 to 12", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please choose new tubing size and type", vbInformation + vbOKOnly, "New number !!")

End If

If ev > 125 Or ev < 75 Then

ev.BackColor = &HFF&

Response = MsgBox("Volumetric efficiency should be between 75 to 125%", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new volumetric efficiency", vbInformation + vbOKOnly, "New number !!")

End If

pd = Round((Val(qo) + Val(qw)) / Val(ev) * 100, 2)

If pd > 1500 Or pd < 80 Then

qo.BackColor = &HFF&

qw.BackColor = &HFF&

ev.BackColor = &HFF&

Response = MsgBox("Pump displacement should be between 80 to 1,500 bbl/day", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new oil production or water production or volumetric efficiency", vbInformation + vbOKOnly, "New number !!")

End If

If d <= 6000 And d >= 1000 And qo <= 1500 And qo >= 80 And tst <= 12 And tst >= 1 And ev <= 125 And ev >= 75 And $pu_d <= 1500$ And $pu_d >= 80$ Then

d.BackColor = &HC0E0FF

qo.BackColor = &HC0E0FF

gw.BackColor = &HC0E0FF

*

tst.BackColor = &HC0E0FF

ev.BackColor = &HC0E0FF

MsgBox "Clear and go to design of a pumping installation"

Timer2.Enabled = False

cmdcal.Visible = True

d.Enabled = False bhp.Enabled = False qo.Enabled = False go.Enabled = False qw.Enabled = False j.Enabled = False tst.Enabled = False pt.Enabled = False ev.Enabled = False

End Sub

B.3.2.2 Source code of design button of electrical submersible pump

module

Private Sub cmdcal_Click()

```
Dim Response As Variant
cmdcal.Visible = False
             gs = Round(0.433 * (go + (qw / qo * gw)), 2)
             dd = Round(pd / j, 2)
             pwf = Round(bhp - pd, 2)
             sfh = Round((bhp - pt) / gs, 2)
             sfl = Round(d - sfh, 2)
             h = Round(sfl + (pd / gs), 2)
             hs = Round(pt / gs, 2)
             If tst = 1 Then
               fl = Round(0.003 * (pd ^ 1.8205), 2)
             End If
             If tst = 2 Then
               fl = Round(0.002 * (pd ^ 1.808), 2)
             End If
             If tst = 3 Then
               fl = Round(0.001 * (pd ^ 1.797), 2)
             End If
             If tst = 4 Then
                fl = Round(0.00058 * (pd ^ 1.803), 2)
```

```
End If
If tst = 5 Then
  fl = Round(0.000475 * (pd ^ 1.792), 2)
End If
If tst = 6 Then
  fl = Round(0.000325 * (pd ^ 1.775), 2)
End If
If tst = 7 Then
  fl = Round(0.000205 * (pd ^ 1.763), 2)
End If
If tst = 8 Then
  fl = Round(0.000141 * (pd ^ 1.763), 2)
End If
If tst = 9 Then
  fl = Round(0.000031 * (pd ^ 1.895), 2)
End If
If tst = 10 Then
  fl = Round(2 * 10 ^ -14 * (pd ^ 4.814), 2)
End If
If tst = 11 Then
  fl = Round(7 * 10 ^ -7 * (pd ^ 2.31), 2)
End If
If tst = 12 Then
  fl = Round(0.0127 * (pd ^ 0.911), 2)
End If p
fh = Round(fl * d / 1000, 2)
tdh = Round(Val(h) + hs + fh, 2)
hes = Round((-3 * 10 ^ -7 * pd ^ 2) - (0.0004 * pd) + 53.383, 2)
ns = Round(tdh / hes, 2)
hps = Round((0.00012 * pd) + 1.799, 2)
thp = Round(hps * ns, 2)
cl = 28
vd = 28 * d / 1000
If thp <= 24 Then
  sc1 = 28
  sc2 = 17
```

```
sv1 = 440 + vd
  sv2 = 760 + vd
  cu1 = 8
  al1 = 6
  cu2 = 10
  al2 = 8
End If
If thp > 24 And thp \leq 35 Then
  sc1 = 40
  sc2 = 23
  sv1 = 440 + vd
  sv2 = 760 + vd
  cu1 = 6
  al1 = 4
  cu2 = 8
  al2 = 6
End If
If thp > 35 And thp <= 45 Then
  sc1 = 60
  sc2 = 35
  sv1 = 440 + vd
  sv2 = 740 + vd
  cu1 = 4
  al1 = 2
  cu2 = 6
  al2 = 4
End If
If thp > 45 And thp <= 55 Then
  sc1 = 72
  sc2 = 42
  sv1 = 430 + vd
  sv2 = 745 + vd
  cu1 = 2
  al1 = "1/0"
  cu2 = 6
  al2 = 4
```

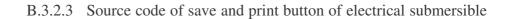
151

End If If thp > 55 And thp <= 72.5 Then sc1 = 34 sc2 = 0sv1 = 1010 + vdsv2 = 0cu1 = 6 al1 = 4 cu2 = 0al2 = 0 End If If thp > 72.5 And thp ≤ 80 Then sc1 = 35 sc2 = 0sv1 = 1350 + vdsv2 = 0cu1 = 6 al1 = 4 cu2 = 0al2 = 0 End If If thp > 80 And thp ≤ 97.5 Then sc1 = 42sc2 = 0sv1 = 1270 + vdsv2 = 0cu1 = 6 al1 = 4 cu2 = 0al2 = 0 End If If thp > 97.5 And thp <= 112.5 Then sc1 = 46sc2 = 0

sv1 = 1300 + vd

```
sv2 = 0
```

cu1 = 6 al1 = 4 cu2 = 0al2 = 0 End If If thp > 112.5 And thp <= 137.5 Then sc1 = 68 sc2 = 35sv1 = 1125 + vdsv2 = 2270 + vdcu1 = 4al1 = 2 cu2 = 6 al2 = 4 End If If thp > 137.5 And thp <= 165 Then sc1 = 70sc2 = 46sv1 = 1300 + vdsv2 = 1950 + vdcu1 = 4 al1 = 2 cu2 = 6 al2 = 4 End If If thp > 165 And thp \leq 190 Then sc1 = 92 sc2 = 53sv1 = 1180 + vdsv2 = 2040 + vdcu1 = 2 al1 = "1/0" cu2 = 4al2 = 2 End If


If thp > 190 And thp ≤ 212.5 Then

```
sc1 = 105
  sc2 = 53
  sv1 = 1130 + vd
  sv2 = 2270 + vd
  cu1 = 1
  al1 = "2/0"
  cu2 = 4
  al2 = 2
End If
If thp > 212.5 And thp <= 237.5 Then
  sc1 = 110
  sc2 = 63
  sv1 = 1210 + vd
  sv2 = 2100 + vd
  cu1 = 1
  al1 = "2/0"
  cu2 = 4
  al2 = 2
End If
If thp > 237.5 And thp <= 262.5 Then
  sc1 = 105
  sc2 = 0
  sv1 = 1405 + vd
  sv2 = 0
  cu1 = 1
  al1 = "2/0"
  cu2 = 0
  al2 = 0
End If
If thp > 262.5 And thp <= 287.5 Then
  sc1 = 105
  sc2 = 0
  sv1 = 1565 + vd
  sv2 = 0
  cu1 = 1
  al1 = "2/0"
```

```
cu2 = 0
  al2 = 0
End If
If thp > 287.5 And thp \leq 325 Then
  sc1 = 105
  sc2 = 82
  sv1 = 1675 + vd
  sv2 = 2265 + vd
  cu1 = 1
  al1 = "2/0"
  cu2 = 0
  al2 = 0
End If
If thp > 325 And thp <= 362.5 Then
  sc1 = 105
  sc2 = 0
  sv1 = 1950 + vd
  sv2 = 0
  cu1 = 1
  al1 = "2/0"
  cu2 = 0
  al2 = 0
End If
If thp > 362.5 And thp <= 387.5 Then
  sc1 = 105
  sc2 = 0
  sv1 = 2150 + vd
  sv2 = 0
  cu1 = 1
  al1 = "2/0"
  cu2 = 0
  al2 = 0
End If
If thp > 387.5 Then
  sc1 = 105
  sc2 = 0
```

sv1 = 2225 + vdsv2 = 0cu1 = 1 al1 = "2/0" cu2 = 0al2 = 0 End If d.Enabled = True bhp.Enabled = True qo.Enabled = True go.Enabled = True qw.Enabled = True gw.Enabled = True j.Enabled = True tst.Enabled = True pt.Enabled = True ev.Enabled = True Response = MsgBox("*****Succesfully Design*****", vbOKOnly, "Finished !!")

End Sub

pump module

Private Sub Command1_Click()
dlg.ShowPrinter
Printer.Print " Electrical Submersible Pumping"
Printer.Print "====================================
Printer.Print " Input"
Printer.Print "Depth of Well, ft (D) = "; IIf(d.Text = "", "No Data", d.Text)
Printer.Print "Static Bottom Hole Pressure, psi (BHP) = "; IIf(bhp.Text = "", "No Data", bhp.Text)
Printer.Print "Oil Production, bbl/day (qo) = "; IIf(qo.Text = "", "No Data", qo.Text)
Printer.Print "Water Production, bbl/day (qw) = "; IIf(qw.Text = "", "No Data", qw.Text)
Printer.Print "Productivity Index, bbl/day/psi (J) = "; IIf(j.Text = "", "No Data", j.Text)
Printer.Print "Specific Gravity of Oil (Go) = "; IIf(go.Text = "", "No Data", go.Text)
Printer.Print "Specific Gravity of Water (Gw) = "; IIf(gw.Text = "", "No Data", gw.Text)
Printer.Print "Productivity Index, bbl/day/psi (J) = "; IIf(j.Text = "", "No Data", j.Text)

Printer.Print "Tubing Size and Type = "; IIf(tst.Text = "", "No Data", IIf(tst.Text = "1", "1.315 in. old pipe", IIf(tst.Text = "2", "1.315 in. new pipe", IIf(tst.Text = "3", "1.660 in. old pipe", IIf(tst.Text = "4", "1.660 in. new pipe", IIf(tst.Text = "5", "1.900 in. old pipe", IIf(tst.Text = "4", "1.660 in. old pipe", IIf(tst.Text = "5", "1.900 in. old pipe", IIf(tst.Text = "4", "2.375 in. old pipe", IIf(tst.Text = "8", "2.375 in. new pipe", IIf(tst.Text = "9", "2.875 in. old pipe", IIf(tst.Text = "1", "3.500 in. old pipe", "3.500 in. new pipe"))))))))))

Printer.Print "Tubing Pressure, psi = "; IIf(pt.Text = "", "No Data", pt.Text) Printer.Print "Volemetric Efficiency, % = "; IIf(ev.Text = "", "No Data", ev.Text) Printer.Print " Output" Printer.Print "Static Live Oil Gradient, psi/ft (Gs) = "; IIf(gs.Text = "", "No Data", gs.Text) Printer.Print "Bottom Hole Pressure Drawdown for Oil Production ,psi = "; IIf(dd.Text = "", "No Data", dd.Text) Printer.Print "Average Flowing Bottom Hole Pressure, psi (Pwf) = "; IIf(pwf.Text = "", "No Data", pwf.Text) Printer.Print "Static Fluid Head, ft (SGH)= "; IIf(sfh.Text = "", "No Data", sfh.Text) Printer.Print "Static Fluid Level, ft (SFL) = "; IIf(sfl.Text = "", "No Data", sfl.Text) Printer.Print "Dynamic Fluid Level, ft (H) = "; IIf(h.Text = "", "No Data", h.Text) Printer.Print "Discharge Head, ft (HS) = "; IIf(hs.Text = "", "No Data", hs.Text) Printer.Print "Friction Losses, ft/1000 ft (FL) = "; IIf(fl.Text = "", "No Data", fl.Text) Printer.Print "Friction Head, ft (FH)) = "; IIf(fh.Text = "", "No Data", fh.Text) Printer.Print "Total Dynamic Head, ft (TDH) = "; IIf(tdh.Text = "", "No Data", tdh.Text) Printer.Print "Head / Stages = "; IIf(hes.Text = "", "No Data", hes.Text) Printer.Print "Number of Stages = "; IIf(ns.Text = "", "No Data", ns.Text) Printer.Print "Horsepower / Stages = "; IIf(hps.Text = "", "No Data", hps.Text) Printer.Print "Total Horsepower, hp = "; IIf(thp.Text = "", "No Data", thp.Text) Printer.Print "Cable Losses, v/1000 ft = "; IIf(cl.Text = "", "No Data", cl.Text) Printer.Print "Voltage Drop, volts = "; IIf(vd.Text = "", "No Data", vd.Text) Printer.Print "Type 1 of Cable Size : Copper No."; IIf(cu1.Text = "", "No Data", cu1.Text) Printer.Print "Type 1 of Cable Size : Aluminum No."; IIf(al1.Text = "", "No Data", al1.Text)

Printer.Print "Type 1 of Surface Current, amps = "; IIf(sc1.Text = "", "No Data", sc1.Text) Printer.Print "Type 1 of Surface Voltage, volts = "; IIf(sv1.Text = "", "No Data", sv1.Text) Printer.Print "Type 2 of Cable Size : Copper No."; IIf(cu2.Text = "", "No Data", cu2.Text) Printer.Print "Type 2 of Cable Size : Aluminum No."; IIf(al2.Text = "", "No Data", al2.Text) Printer.Print "Type 2 of Surface Current, amps = "; IIf(sc2.Text = "", "No Data", sc2.Text) Printer.Print "Type 2 of Surface Voltage, volts = "; IIf(sv2.Text = "", "No Data", sv2.Text)

Printer.EndDoc

End Sub

B.3.2.4 Source code of clear screen button of of electrical submersible

pump module

d.Text = ""

Private Sub Command2_Click()

bhp.Text = "" qo.Text = "" qw.Text = "" j.Text = "" go.Text = "" j.Text = "" tst.Text = ""

- pt.Text = ""
- ev.Text = ""
- pd.Text = ""
- gs.Text = ""
- dd.Text = ""

pwf.Text = ""

- sfh.Text = ""
- sfl.Text = ""
- h.Text = ""
- hs.Text = ""
- fl.Text = ""
- fh.Text = ""
- tdh.Text = ""
- hes.Text = ""
- ns.Text = ""
- hps.Text = ""
- thp.Text = ""
- cl.Text = ""
- vd.Text = ""
- sc1.Text = ""
- sc2.Text = ""
- sv1.Text = ""
- sv2.Text = ""

```
cu1.Text = ""
al1.Text = ""
cu2.Text = ""
al2.Text = ""
End Sub
```

B.3.2.5 Source code of back button of electrical submersible pump

module

```
Private Sub Command3_Click()
```

```
Artificial_Lift.Show
```

End Sub

B.3.3 Intermittent flow gas lift module

The intermittent flow gas lift module includes 5 command buttons (gray color) that are checking input, design, save and print documents, clear screen and back to main menu as follow as in Figure B.7.

termittent Flow —		Î	Cutput				
epth of Well (D)		ft	Static Gradient (Gs)	psi/ft	Pressure in Tubing Opposite Valve with Tubing Pressure		p
itatic Bottom Hole Pressure Pws)	1000 - 6000	psi	Bottom Hole Pressure Drawdown for Dil Production	psi	Neglecting Weight of Gas Column		
il Production (qo)		bbl/day	Average Flowing Bottom Hole	psi	Valve Opening Pressure		ps
ater Production (qw)		bbl/day	Pressure (Pwf)	* *	Surface Operating Pressure		ps
roductivity Index (J)		bbl/day/psi	Static Fluid Head with Tubing Pressure (SFH)	ft	Volume of Oil Tubing		bb
pecific Gravity of Oil (Go)			Static Fluid Level with Tubing	ft	Space occuiped by gas just		bt
pecific Gravity of Water (Gw)			Pressure (SFL)		Starting Slug reaches Surfac	:е	
pecific Gravity of Gas njection (Gg)			Hydrostatic Head	ft	Pressure under Slug		ps
ubing Size (OD) 1.) 1.315 in. 2.) 1.660 in. 3.) 1.900 in. 4.) 2.375 in. 5.) 2.875 in. 6.) 3.500 in.	1.6		Working Fluid Level (WFL) Number of Cycle Number of Oil's Cycle	ft cycles/day bbl/cycle	Injection [2]		ps Si
ubing Pressure		psi	Volume of Starting Slug	ьы	Minimum Gas Required Minimum Injection Gas Oil Re	atio	S
verage Tubing Temperature		' <mark>B</mark>	Capacity of Tubing	bbl/ft	Common Button		S
ycle Time otal Liquid Slug is lost due to		min %	Slug Length	ft	Check Input	Design	
lippage or Fall Back Help	J.		Operating Valve should be located below WFL	ft	Save & Print	<u>C</u> lear	_
Please enter number in orange's textbox		Depth to Operating Valve	ft		Back	-	

161

Figure B.7 Intermittent flow gas lift design.

B.3.3.1 Source code of checking input button of intermittent flow gas

lift module

Private Sub check_Click() Dim Response As Variant Dim Again As Variant Timer2.Enabled = False cmdcal.Visible = False d.BackColor = &HC0E0FF gs.Text = "" dd.Text = "" pwf.Text = "" sfh.Text = "" sfl.Text = "" hh.Text = "" wfl.Text = "" nB.Text = "" noB.Text = "" vss.Text = "" ct.Text = "" sl.Text = "" bwfl.Text = "" dov.Text = "" ptov.Text = "" vop.Text = "" sop.Text = "" vot.Text = "" s.Text = "" pus.Text = "" pavg.Text = "" z.Text = "" vsB.Text = "" migor.Text = ""

If d.Text = "" Or pws.Text = "" Or qo.Text = "" Or qw.Text = "" Or j.Text = "" Or go.Text = "" Or gw.Text = "" Or gg.Text =

```
"" Or ts.Text = "" Or pt.Text = "" Or ttavg.Text = "" Or ct.Text = "" Or fb.Text = "" Then
```

Response = MsgBox("Please enter number in orange's text box", vbCritical + vbOKOnly, "Error !!")

Exit Sub

End If

If d < 1000 Or d > 6000 Then

d.BackColor = &HFF&

Response = MsgBox("Depth of Well should be between 1,000 to 6,000 ft", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new Depth of Well", vbInformation + vbOKOnly, "New number !!")

End If

If ts > 6 Or ts < 1 Then

ts.BackColor = &HFF&

Response = MsgBox("Choose tubing size with No.1 to 6", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please choose new tubing size", vbInformation + vbOKOnly, "New number !!")

End If

If $d \ge 1000$ And $d \le 6000$ And ts < 6 And ts > 1 Then

d.BackColor = &HC0E0FF

ts.BackColor = &HC0E0FF

MsgBox "Clear and go to design Intermittent Flow"

Timer2.Enabled = False

cmdcal.Visible = True

d.Enabled = False

pws.Enabled = False

qo.Enabled = False

qw.Enabled = False

j.Enabled = False

go.Enabled = False

gw.Enabled = False

gg.Enabled = False

ts.Enabled = False

pt.Enabled = False

ttavg.Enabled = False

ct.Enabled = False

fb.Enabled = False

End If

End Sub

B.3.3.2 Source code of design button of intermittent flow gas lift

module

Private Sub cmdcal_Click() Dim min_dif As Currency Dim ppc As Currency Dim tpc As Currency Dim denpr As Currency Dim ppr As Currency Dim tpr As Currency Dim z1 As Currency Dim z2 As Currency Dim z3 As Currency Dim z4 As Currency Dim z5 As Currency Dim z6 As Currency Dim z7 As Currency Dim z8 As Currency Dim z9 As Currency Dim z10 As Currency gs = Round(0.433 * (go + (qw / qo * gw)), 2)pd = Round(qo / j, 2)pwf = Round(pws - pd, 2) sfh = Round((pws - pt) / gs, 2)sfl = Round(d - sfh, 2)hh = Round(pd / gs, 2)wfl = Round(Val(sfl) + Val(hh), 2)noc = Round(1440 / ct, 2)nooc = Round(qo / noc, 2)vss = Round(nooc / fb * 100, 2) If ts = 1 Then $\cot = 0.00107$ End If

164

```
If ts = 2 Then
    \cot = 0.00185
  End If
  If ts = 3 Then
    \cot = 0.00252
  End If
  If ts = 4 Then
    \cot = 0.00387
  End If
  If ts = 5 Then
    \cot = 0.00579
  End If
  If ts = 6 Then
    \cot = 0.0087
  End If
sl = Round(vss / cot, 2)
bwfl = Round(sl / 2, 2)
dov = Round(Val(wfl) + Val(bwfl), 2)
ptov = Round(pt + (sl * gs), 2)
min_dif = Round(ptov / 2, 2)
If min_dif > 200 Then
  vop = ptov + min_dif
Else
  vop = ptov + 200
End If
  If (dov >= 1000 And dov < 1500) Then
    sop = Round(0.957 * vop, 2)
  End If
  If (dov >= 1500 And dov < 2000) Then
    sop = Round(0.953 * vop, 2)
  End If
  If (dov >= 2000 And dov < 2500) Then
    sop = Round(0.948 * vop, 2)
  End If
  If (dov >= 2500 And dov < 3000) Then
    sop = Round(0.93 * vop, 2)
```

```
End If
  If (dov >= 3000 And dov < 3500) Then
    sop = Round(0.923 * vop, 2)
  End If
  If (dov >= 3500 And dov < 4000) Then
    sop = Round(0.916 * vop, 2)
  End If
  If (dov >= 4000 And dov < 4500) Then
    sop = Round(0.913 * vop, 2)
  End If
  If (dov >= 4500 And dov < 5000) Then
    sop = Round(0.901 * vop, 2)
  End If
  If (dov \geq 5000 And dov < 5500) Then
    sop = Round(0.874 * vop, 2)
  End If
  If (dov >= 5500 And dov < 6000) Then
    sop = Round(0.847 * vop, 2)
  End If
  If dov > 6000 Then
    sop = Round(0.873 * vop, 2)
  End If
vot = Round(cot * dov, 2)
s = Round(vot - vss, 2)
pus = Round(pt + (nooc / cot * gs), 2)
pavg = Round((Val(vop) + Val(pus)) / 2, 2)
ppc = 702.5 - (50 * gg)
tpc = 167 + (316.67 * gg)
denpr = (0.27 * pavg / (702.5 - (50 * gg)) / 0.99 * (167 + (316.67 * gg)) / ttavg)
ppr = pavg / ppc
tpr = ttavg / tpc
```

```
z1 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2))
```

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z1 * (167 + (316.67 * gg)) / ttavg)

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z10 * (167 + (316.67 * gg)) / ttavg)

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z9 * (167 + (316.67 * gg)) / ttavg)

denpr ^ 2))

 $z10 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) +$

denpr ^ 2))

denpr ^ 2))

 $z9 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr ^ 2)$

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z8 * (167 + (316.67 * gg)) / ttavg)

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z7 * (167 + (316.67 * gg)) / ttavg)

 $z8 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + ($

denpr ^ 2))

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z6 * (167 + (316.67 * gg)) / tavg) $z7 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr)))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2))$

denpr ^ 2))

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z5 * (167 + (316.67 * gg)) / tavg) $z6 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr)))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2))$

denpr ^ 2))

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z4 * (167 + (316.67 * gg)) / tavg) $z5 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2))$

denpr ^ 2))

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z3 * (167 + (316.67 * gg)) / tavg) $z4 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2))$

denpr ^ 2))

 $z_{3} = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr ^ 2))$

denpr = (0.27 * pavg / (702.5 - (50 * gg)) / z2 * (167 + (316.67 * gg)) / ttavg)

denpr ^ 2))

 $z2 = 1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr ^ 2)) + (0.68446549 * denpr ^ 2)) + (0.6846549 * denpr$

 $z = Round(1 + (denpr * (0.31506237 + (-1.0467099 / tpr) + (-0.57832729 / tpr ^ 3))) + (denpr ^ 2 * (0.53530771 + (-0.61232032 / tpr))) + (0.06422513 * denpr ^ 5 / tpr) + (0.68157001 * denpr ^ 2 / tpr ^ 3 * (1 + (0.68446549 * denpr ^ 2)) * 10 ^ (-0.68446549 * denpr ^ 2)), 4)$

vsc = Round(s * pavg / 14.7 * 520 / ttavg / z, 2)

migor = Round(vsc / nooc, 2)

cmdcal.Visible = False

d.Enabled = True

pws.Enabled = True

qo.Enabled = True

qw.Enabled = True

j.Enabled = True

go.Enabled = True

gw.Enabled = True

gg.Enabled = True

ts.Enabled = True

pt.Enabled = True

ttavg.Enabled = True

ct.Enabled = True

fb.Enabled = True

End Sub

B.3.3.3 Source code of save and print button of intermittent flow gas

lift module

"3", "1.900", IIf(ts.Text = "4", "2.375", IIf(ts.Text = "5", "2.875", "3.500")))))

Printer.Print "Tubing Pressure, psi = "; IIf(pt.Text = "", "No Data", pt.Text)

Printer.Print "Average Tubing Temperature, °R = "; IIf(ttavg.Text = "", "No Data", ttavg.Text)

Printer.Print "Cycle Time, min = "; IIf(ct.Text = "", "No Data", ct.Text)

Printer.Print "Total Liquid Slug is lost due to Slippage or Fall Back, % = "; IIf(fb.Text = "", "No Data", fb.Text)

Printer.Print " Output"

Printer.Print "Static Gradient, psi/ft (Gs) = "; IIf(gs.Text = "", "No Data", gs.Text)

Printer.Print "Bottom Hole Pressure Drawdown for Oil Production, psi = "; IIf(pd.Text = "", "No Data", pd.Text)

Printer.Print "Average Flowing Bottom Hole Pressure, psi (Pwf) = "; IIf(pwf.Text = "", "No Data", pwf.Text)

Printer.Print "Static Fluid Level with Tubing Pressure, ft (SFL) = "; IIf(sfl.Text = "", "No Data", sfl.Text)

Printer.Print "Hydrostatic Head, ft = "; IIf(hh.Text = "", "No Data", hh.Text)

Printer.Print "Working Fluid Level, ft (WFL) = "; IIf(wfl.Text = "", "No Data", wfl.Text)

Printer.Print "Number of Cycle, cycles/day = "; IIf(nB.Text = "", "No Data", noB.Text)

Printer.Print "Number of Oil's Cycle, bbl/cycle = "; IIf(noB.Text = "", "No Data", nooB.Text)

Printer.Print "Volume of Starting Slug, bbl = "; IIf(vss.Text = "", "No Data", vss.Text)

Printer.Print "Capacity of Tubing, bbl/ft = "; IIf(cot.Text = "", "No Data", cot.Text)

Printer.Print "Slug Length, ft = "; IIf(sl.Text = "", "No Data", sl.Text)

Printer.Print "Operating Valve should be located below WFL, ft = "; IIf(bwfl.Text = "", "No Data", bwfl.Text)

Printer.Print "Depth to Operating Valve, ft = "; IIf(dov.Text = "", "No Data", dov.Text)

Printer.Print "Pressure in Tubing Opposite Valve with Tubing Pressure Neglecting Weight of Gas Column, psi = ";

IIf(ptov.Text = "", "No Data", ptov.Text)

Printer.Print "Valve Opening Pressure, psi = "; IIf(vop.Text = "", "No Data", vop.Text)

Printer.Print "Surface Operating Pressure, psi = "; IIf(sop.Text = "", "No Data", sop.Text)

Printer.Print "Volume of Oil Tubing, bbl = "; IIf(vot.Text = "", "No Data", vot.Text)

Printer.Print "Space occuiped by gas just as Starting Slug reaches Surface, bbl = "; IIf(s.Text = "", "No Data", s.Text)

Printer.Print "Pressure under Slug, psi = "; IIf(pus.Text = "", "No Data", pus.Text)

Printer.Print "Average Pressure, psi (Pavg) = "; IIf(pavg.Text = "", "No Data", pavg.Text)

Printer.Print "Compressibility Factor of Gas Injection (z) = "; IIf(z.Text = "", "No Data", z.Text)

Printer.Print "Minimum Gas Required, SCF = "; IIf(vsB.Text = "", "No Data", vsB.Text)

Printer.Print "Minimum Injection Gas Oil Ratio, SCF/STB = "; IIf(migor.Text = "", "No Data", migor.Text)

Printer.EndDoc

End Sub

B.3.3.4 Source code of clear button of intermittent flow gas lift

module

Private Sub Command2_Click()

d.Text = "" pws.Text = "" qo.Text = ""

qw.Text = ""

j.Text = ""

go.Text = ""

gw.Text = ""

gg.Text = ""

ts.Text = ""

- pt.Text = ""
- ct.Text = ""
- fb.Text = ""

gs.Text = ""

pd.Text = ""

pwf.Text = ""

sfl.Text = ""

hh.Text = ""

wfl.Text = ""

nB.Text = ""

noB.Text = ""

vss.Text = ""

cot.Text = ""

sl.Text = ""

bwfl.Text = ""

dov.Text = ""

ptov.Text = ""

vop.Text = ""

sop.Text = ""

vot.Text = ""

s.Text = ""

pus.Text = ""

pavg.Text = ""

```
z.Text = ""
vsB.Text = ""
mgior.Text = ""
End Sub
```

B.3.3.5 Source code of back button of intermittent flow gas lift module

Private Sub Command3_Click()

Gas_Lift.Show

End Sub

B.3.4 Sucker rod pump module

The sucker rod pump module includes 5 command buttons (gray color) that are checking input, design, save and print documents, clear screen and back to main menu as follow as in Figure B.8.

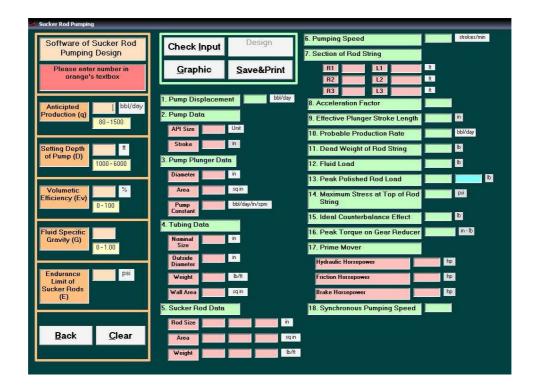


Figure B.8 sucker rod pump design.

B.3.4.1 Source code of checking input button of sucker rod pump

module

Private Sub Cmdcheck_Click()

Dim Response As Variant Dim Again As Variant Qo.Text = "" D.Text = "" Ev.Text = "" Go.Text = "" E.Text = "" Pd.Text = ""

Pud.Text = "" Api.Text = ""

Str.Text = ""

Pg.Text = ""

Dpg.Text = ""

Apg.Text = ""

Pc.Text = ""

Td.Text = ""

Go8.Text = ""

Nst.Text = ""

Ot.Text = ""

Wt.Text = ""

Wat.Text = ""

Srd.Text = ""

Rs1.Text = ""

Rs2.Text = ""

Rs3.Text = ""

Ars1.Text = ""

Ars2.Text = ""

Ars3.Text = ""

Wrs1.Text = ""

Wrs2.Text = ""

Wrs3.Text = ""

Ps.Text = ""

Srs.Text = ""

Af.Text = ""

Ep.Text = ""

Pqo.Text = ""

Dwr.Text = ""

Ppr.Text = ""

Ms.Text = ""

Ice.Text = ""

Pt.Text = ""

Pm.Text = ""

Hh.Text = ""

Fh.Text = ""

cmdcal.Visible = False

lbl10(4).BackColor = &HC0FFC0

lb110(6).BackColor = &HC0FFC0

lb110(7).BackColor = &HC0FFC0

lbl10(10).BackColor = &HC0FFC0

If Production.Text = "" Or D.Text = "" Or Ev.Text = "" Or Go.Text = "" Or Fl.Text = "" Then

Response = MsgBox("Please enter number in orange's text box", vbCritical + vbOKOnly, "Error !!")

Exit Sub

End If

Qo = Round(Production / Ev * 100, 2)

If Qo > 2000 Or Qo < 80 Then

lbl4.BackColor = &HFF&

lbl6.BackColor = &HFF&

Response = MsgBox("The pump displacement should be between 1000 to 1,400 bbl/day", vbCritical + vbOKOnly, "Error

!!")

Again = MsgBox("Please enter new anticipated production or volumetric efficiency", vbInformation + vbOKOnly, "New number !!")

End If

If D > 6000 Or D < 1000 Then

lbl5.BackColor = &HFF&

Response = MsgBox("The setting Depth of depth should be between 1000 to 6,000 ft", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new setting Depth of depth", vbInformation + vbOKOnly, "New number !!")

End If

If Ev > 100 Or Ev < 0 Then

lbl4.BackColor = &HFF&

lbl6.BackColor = &HFF&

Response = MsgBox("The volumetric Efficiency should be between 0 to 100 %", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new volumetric efficiency", vbInformation + vbOKOnly, "New number !!")

End If

If Go > 1 Or Go < 0 Then

Label1(0).BackColor = &HFF&

Response = MsgBox("The fluid specific gravity should be between 0 to 1", vbCritical + vbOKOnly, "Error !!")

Again = MsgBox("Please enter new fluid specific gravity", vbInformation + vbOKOnly, "New number !!")

End If

If Qo <= 2000 And Qo >= 80 And D <= 6000 And D >= 1000 And Ev <= 100 And Ev > 0 And Go < 1 And Go > 0 Then

lbl4.BackColor = &H80C0FF

lb15.BackColor = &H80C0FF

lbl6.BackColor = &H80C0FF

Label1(0).BackColor = &H80C0FF

MsgBox "Clear and go to design of a pumping installation"

cmdcal.Visible = True

Timer1.Enabled = False

Production.Enabled = False

Go.Enabled = False

D.Enabled = False

Ev.Enabled = False

Fl.Enabled = False

End If

If $(Qo \le 1520 \text{ And } Qo \ge 1480 \text{ And } D \le 6000 \text{ And } D > 3200)$ Or $(Qo < 1480 \text{ And } Qo \ge 1360 \text{ And } D \le 6000 \text{ And } D > 3300)$ Or $(Qo < 1360 \text{ And } Qo \ge 1280 \text{ And } D \le 6000 \text{ And } D > 3400)$ Or $(Qo < 1280 \text{ And } Qo \ge 1160 \text{ And } D \le 6000 \text{ And } D > 3500)$ Or $(Qo < 1160 \text{ And } Qo \ge 1120 \text{ And } D \le 6000 \text{ And } D > 3600)$ Or $(Qo < 1120 \text{ And } Qo \ge 1040 \text{ And } D \le 6000 \text{ And } D > 3500)$ Or $(Qo < 1140 \text{ And } Qo \ge 1040 \text{ And } D \le 6000 \text{ And } D > 3600)$ Or $(Qo < 1000 \text{ And } Qo \ge 1040 \text{ And } D \le 6000 \text{ And } D > 3700)$ Or $(Qo < 1040 \text{ And } Qo \ge 1000 \text{ And } D \le 6000 \text{ And } D > 3800)$ Or $(Qo < 1000 \text{ And } Qo \ge 960 \text{ And } D \le 6000 \text{ And } D > 3900)$ Or $(Qo < 960 \text{ And } Qo \ge 920 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 920 \text{ And } Qo \ge 880 \text{ And } D \le 6000 \text{ And } D > 4100)$ Or $(Qo < 880 \text{ And } Qo \ge 840 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4200)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 4000)$ Or $(Qo < 840 \text{ And } Qo \ge 800 \text{ And } D \le 6000 \text{ And } D > 400$

173

4300) Or (Qo < 800 And Qo >= 720 And D <= 6000 And D > 4500) Or (Qo < 720 And Qo >= 680 And D <= 6000 And D > 4700) Then

- D = "640"
- Ev = "144"
- End If

If $(Qo \le 1520 \text{ And } Qo \ge 720 \text{ And } D \le 1700 \text{ And } D > 1400)$ Or $(Qo < 720 \text{ And } Qo \ge 680 \text{ And } D \le 1800 \text{ And } D > 1400)$ Or $(Qo < 680 \text{ And } Qo \ge 600 \text{ And } D < 1900 \text{ And } D > 1500)$ Or $(Qo < 600 \text{ And } Qo \ge 560 \text{ And } D < 2000 \text{ And } D > 1600)$ Or $(Qo < 560 \text{ And } Qo \ge 520 \text{ And } D < 2100 \text{ And } D > 1700)$ Or $(Qo < 520 \text{ And } Qo \ge 480 \text{ And } D < 2200 \text{ And } D > 1800)$ Or $(Qo < 480 \text{ And } Qo \ge 440 \text{ And } D < 2200 \text{ And } D > 1800)$ Or $(Qo < 440 \text{ And } Qo \ge 440 \text{ And } D < 2200)$ Or $(Qo < 440 \text{ And } Qo \ge 440 \text{ And } D < 2200)$ Or $(Qo < 360 \text{ And } Qo \ge 320 \text{ And } D > 2100)$ Or $(Qo < 320 \text{ And } Qo \ge 280 \text{ And } D < 2700 \text{ And } D > 2100)$ Or $(Qo < 280 \text{ And } Qo \ge 240 \text{ And } D > 2600)$ Or $(Qo < 240 \text{ And } Qo \ge 200 \text{ And } D > 2600)$ Or $(Qo < 240 \text{ And } Qo \ge 200 \text{ And } D > 2600)$ Or $(Qo < 240 \text{ And } Qo \ge 200 \text{ And } D < 2600)$ Or $(Qo < 240 \text{ And } Qo \ge 200 \text{ And } D < 2600)$ Or $(Qo < 240 \text{ And } Qo \ge 200 \text{ And } D > 2900)$ Or $(Qo < 200 \text{ And } Qo \ge 160 \text{ And } D < 2100)$ And D > 2200) Then

D = "80"

Ev = "48"

End If

If (Qo < 160 And Qo >= 120 And D <= 4800 And D > 3900) Or (Qo < 120 And Qo >= 80 And D <= 5700 And D > 4700) Then

D = "80"

Ev = "48"

End If

If $(Qo \le 1520 \text{ And } Qo \ge 640 \text{ And } D \le 1400 \text{ And } D > 1150)$ Or $(Qo < 640 \text{ And } Qo \ge 600 \text{ And } D < 1500 \text{ And } D > 1200)$ Or $(Qo < 600 \text{ And } Qo \ge 560 \text{ And } D < 1600 \text{ And } D > 1200)$ Or $(Qo < 560 \text{ And } Qo \ge 520 \text{ And } D < 1700 \text{ And } D > 1300)$ Or $(Qo < 520 \text{ And } Qo \ge 480 \text{ And } D < 1800 \text{ And } D > 1400)$ Or $(Qo < 480 \text{ And } Qo \ge 440 \text{ And } D < 1900 \text{ And } D > 1400)$ Or $(Qo < 440 \text{ And } Qo \ge 440 \text{ And } D < 1900 \text{ And } D > 1400)$ Or $(Qo < 440 \text{ And } Qo \ge 440 \text{ And } D < 1900 \text{ And } D > 1400)$ Or $(Qo < 440 \text{ And } Qo \ge 360 \text{ And } D < 1600)$ And D > 1600) Or $(Qo < 320 \text{ And } Qo \ge 360 \text{ And } D < 1800)$ Or $(Qo < 280 \text{ And } Qo \ge 320 \text{ And } D < 2100 \text{ And } D > 1700)$ Or $(Qo < 240 \text{ And } Qo \ge 280 \text{ And } D < 2400 \text{ And } D > 1800)$ Or $(Qo < 280 \text{ And } Qo \ge 240 \text{ And } D < 2600 \text{ And } D > 2100)$ Or $(Qo < 160 \text{ And } Qo \ge 200 \text{ And } D > 2300)$ And D > 2300) Or $(Qo < 200 \text{ And } Qo \ge 160 \text{ And } D < 3200)$ Or $(Qo < 160 \text{ And } Qo \ge 120 \text{ And } D > 3200)$ Then

D = "57"

Ev = "42"

End If

If (Qo < 120 And Qo >= 80 And D <= 4700 And D > 3800) Then

D = "57"

Ev = "42"

End If

If (Qo <= 1520 And Qo >= 640 And D <= 1150 And D >= 1000) Or (Qo < 640 And Qo >= 600 And D <= 1200 And D >= 1000) Or (Qo < 600 And Qo >= 560 And D <= 1200 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D >= 1000) Or (Qo < 560 And Qo >= 520 And D <= 1300 And D <= 1300

1000) Or (Qo < 520 And Qo >= 480 And D <= 1400 And D >= 1000) Or (Qo < 480 And Qo >= 440 And D <= 1400 And D >= 1000) Or (Qo < 440 And Qo >= 440 And D <= 1600 And D >= 1000) Or (Qo < 440 And Qo >= 360 And D <= 1600 And D >= 1000) Or (Qo < 360 And Qo >= 320 And D <= 1700 And D >= 1000) Or (Qo < 320 And Qo >= 280 And D <= 1800 And D >= 1000) Or (Qo < 280 And Qo >= 240 And D <= 2100 And D >= 1000) Or (Qo < 240 And Qo >= 200 And D <= 2300 And D >= 1000) Or (Qo < 200 And Qo >= 160 And D <= 2500 And D >= 1000) Or (Qo < 160 And Qo >= 120 And D <= 3200 And D >= 1000) Or (Qo < 160 And Qo >= 120 And D <= 3200 And D >= 1000) Then

```
D = "40"
```

```
Ev = "34"
```

End If

If (Qo < 120 And Qo >= 80 And D <= 3800 And D >= 1000) Then

```
D = "40"
```

```
Ev = "34"
```

End If

```
End Sub
```

B.3.4.2 Source code of design button of sucker rod pump module

Private Sub cmdcal_Click()

Dim Response As Variant

```
Веер
```

```
If Production.Text = "" Or D.Text = "" Or Ev.Text = "" Or Go.Text = "" Or Fl.Text = "" Then
```

cmdcal.Visible = False

Response = MsgBox("Please enter number in orange's text box", vbCritical + vbOKOnly, "Error !!")

Exit Sub

End If

If Qo.Text = "" Or Production > 2000 Or Production < 80 Or D > 6000 Or D < 1000 Or Ev > 100 Or Ev < 0 Or Go > 1 Or Go

< 0 Then

cmdcal.Visible = False

Response = MsgBox("Please select input check before", vbInformation + vbOKOnly, "Please check input !!")

Exit Sub

End If

If Val(D) = 40 And Val(Ev) = 34 Then

```
If D >= 1000 And D <= 1100 Then
```

Go = "2 3/4"

Api = "5.94"

Str = "0.881"

 $\mathrm{E}="3.00"$

Pg = "3.50"

Dpg = "9.30"

Apg = "2.59"

Pd = "7/8"

Ppr = "0.00"

Ms = "0.00"

Pc = "0.601"

Ice = "0.00"

Pt = "0.00"

Td = "2.16"

Pm = "0.00"

Hh = "0.00"

Pud = Round(19 - (-5 / 100 * (1100 - Val(D))), 2)

Go8 = "1.00"

Nst = "0.00"

Ot = "0.00"

Wt = D

Wat = "0.00"

Srd = "0.00"

End If

If D > 1100 And D <= 1250 Then

Go = "2 1/2"

Api = "4.909"

Str = "0.728"

E = "3.00"

Pg = "3.50"

Dpg = "9.30"

Apg = "2.59"

Pd = "7/8"

Pc = "0.601"

Td = "2.16"

Pud = Round(19 - (-5 / 150 * (1250 - Val(D))), 2)

Go8 = "1.00"

Nst = "0.00"

Ot = "0.00"

Wt = D

Srd = "0.00"

Ppr = "0.00"

Ms = "0.00"

Ice = "0.00"

Pt = "0.785"

Td = "1.63"

Pm = "2.16"

Hh = "2.88"

Pud = Round(12 - (-3 / 1000 * (5700 - Val(D))), 2)

Go8 = "0.38"

Nst = "0.33"

Ot = "0.39"

Wt = D * 0.38

Wat = D * 0.33

Srd = D * 0.39

End If

If D > 5700 And D <= 6600 Then

Go = "1 3/4"

Api = "2.405"

Str = "0.357"

E = "2 1/2"

Pg = "2.875"

Dpg = "6.50"

Apg = "1.812"

Pd = "3/4"

Ppr = "7/8"

Ms = "1.00"

Pc = "0.442"

Ice = "0.601"

Pt = "0.785"

Td = "1.63"

Pm = "2.16"

Hh = "2.88"

Pud = Round(12 - (-2 / 900 * (6600 - Val(D))), 2)

Go8 = "0.45"

Nst = "0.30"

Ot = "0.25"

```
Wt = D * 0.45
```

Wat = D * 0.3

Srd = D * 0.25

End If

End If

```
'Command2.Visible = True
```

'MsgBox ("**** Successfully Design '1-7' ****")

'cmdcal.Visible = False

```
Rs1 = Round(Val(Ev) * Pud * Pud / 70500, 2)
```

If Val(Ppr) = 0 And Val(Ms) = 0 And Val(Ice) = 0 And Val(Pt) = 0 And Val(Pm) = 0 And Val(Hh) = 0 Then

Val(Pc)))), 2)

```
Rs3 = Round(Str * Rs2 * Pud * Ev / 100, 2)
```

Ars1 = Round(((Td * Wt) + (Pm * Wat) + (Hh * Srd)), 2)

Ars2 = Round(0.433 * Go * ((D * Val(Api)) - (0.294 * Ars1)), 2)

Ars3 = Round(Ars2 + (Ars1 * (1 + Rs1)), 2)

Wrs1 = Round(Ars3 / Pc, 2)

End If

```
If Val(Ppr) \iff 0 And Val(Ms) = 0 Then
```

```
Rs2 = Round(Val(Ev) + (40.8 * D * D * Rs1 / 30 / 10 ^ 6) - (5.2 * Go * D * Val(Api) / 30 / 10 ^ 6 * ((D / Val(Apg)) + (Wt /
```

Val(Pc)) + (Wat / Val(Ice)))), 2)

```
Rs3 = Round(Str * Rs2 * Pud * Ev / 100, 2)
```

```
Ars1 = Round(((Td * Wt) + (Pm * Wat) + (Hh * Srd)), 2)
```

Ars2 = Round(0.433 * Go * ((D * Val(Api)) - (0.294 * Ars1)), 2)

Ars3 = Round(Ars2 + (Ars1 * (1 + Rs1)), 2)

```
Wrs1 = Round(Ars3 / Ice, 2)
```

End If

If Val(Ms) <> 0 Then

```
Rs2 = Round(Val(Ev) + (40.8 * D * D * Rs1 / 30 / 10 ^ 6) - (5.2 * Go * D * Val(Api) / 30 / 10 ^ 6 * ((D / Val(Apg)) + (Wt / Val(Pc)) + (Wat / Val(Ice)) + (Srd / Val(Pt)))), 2)
```

```
Rs3 = Round(Str * Rs2 * Pud * Ev / 100, 2)
```

Ars1 = Round(((Td * Wt) + (Pm * Wat) + (Hh * Srd)), 2)

Ars2 = Round(0.433 * Go * ((D * Val(Api)) - (0.294 * Ars1)), 2)

Ars3 = Round(Ars2 + (Ars1 * (1 + Rs1)), 2)

178

Wrs1 = Round(Ars3 / Pt, 2)

End If

Wrs2 = Round((0.5 * Ars2) + (Ars1 * (1 - (0.0635 * Go))), 2)

Ps = Round((Ars3 - (0.95 * Wrs2)) * Val(Ev) / 2, 2)

Srs = Round(7.36 * 10 ^ -6 * Rs3 * Go * D, 2)

Af = Round(6.31 * 10 ^ -7 * Ars1 * Val(Ev) * Pud, 2)

Ep = Round(1.5 * (Val(Srs) + Val(Af)), 2)

Dwr = Round(237000 / Pud / D, 2)

'MsgBox ("**** Successfully Design '8-22' ****")

'Command2.Visible = False

MsgBox (" Successfully Design")

MsgBox ("Programe checking allowasble limit")

If Rs3 > Production Then

lb110(4).BackColor = &H8000&

Response = MsgBox("Probable Production Rate > Anticipted Production", vbOKOnly, "Clear")

Else

lbl10(4).BackColor = &HFF&

Response = MsgBox("Probable Production Rate < Anticipted Production", vbCritical + vbOKOnly, "Critical")

End If

MsgBox ("*********Complete*********")

cmdcal.Visible = False

Production.Enabled = True

Go.Enabled = True

D.Enabled = True

Ev.Enabled = True

Fl.Enabled = True

End Sub

B.3.4.3 Source code of save and print button of sucker rod pump

module

 178

```
Printer.Print "Setting Depth of Pump (ft)
                                            = "; IIf(D.Text = "", "No Data", D.Text)
Printer.Print "Volumetic Efficiency (%)
                                            = "; IIf(Ev.Text = "", "No Data", Ev.Text)
                                            = "; IIf(Go.Text = "", "No Data", Go.Text)
Printer.Print "Fluid Specific Gravity
Printer.Print "Endurance Limit of Sucker Rods (psi) = "; IIf(Fl.Text = "", "No Data", Fl.Text)
Printer.Print "=======
Printer.Print " Output"
Printer.Print "1. Pump Displacement = "; IIf(Qo.Text = "", "No Data", Qo.Text)
Printer.Print "2. Pump Data"
Printer.Print " API Size (unit) = "; IIf(D.Text = "", "No Data", D.Text)
Printer.Print " Stroke (in) = "; IIf(Ev.Text = "", "No Data", Ev.Text)
Printer.Print "3. Pump Plunger Data"
Printer.Print " Diameter (in) = "; IIf(Go.Text = "", "No Data", Go.Text)
Printer.Print " Area (sq in) = "; IIf(Api.Text = "", "No Data", Str.Text)
Printer.Print " Pump Constant (bbl/day/in/spm) = "; IIf(Str.Text = "", "No Data", Str.Text)
Printer.Print "4. Tubing Data"
Printer.Print " Nominal Size (in) = "; IIf(E.Text = "", "No Data", E.Text)
Printer.Print " Outside Diameter (in) = "; IIf(Pg.Text = "", "No Data", Pg.Text)
Printer.Print " Weight (lb/ft)
                                     = "; IIf(Dpg.Text = "", "No Data", Dpg.Text)
Printer.Print " Wall Area (sq in) = "; IIf(Apg.Text = "", "No Data", Apg.Text)
Printer.Print "5. Sucker Rod Data"
Printer.Print " Rod Size (in) = "; IIf(Pd.Text = "", "No Data", (Pd.Text + " - " + Ppr.Text + " - " + Ms.Text))
Printer.Print " Area (sq in) = "; IIf(Pc.Text = "", "No Data", (Pc.Text + " - " + Ice.Text + " - " + Pt.Text))
Printer.Print "Weight (lb/ft) = "; IIf(Td.Text = "", "No Data", (Td.Text + " - " + Pm.Text + " - " + Hh.Text))
Printer.Print "6. Pumping Speed (Strokes/min) = "; IIf(Pud.Text = "", "No Data", Pud.Text)
Printer.Print "7. Section of Rod String"
Printer.Print " R1 = "; IIf(Go8.Text = "", "No Data", Go8.Text); " L1 (ft) = "; IIf(Wt.Text = "", "No Data", Wt.Text)
Printer.Print "R2 = "; IIf(Nst.Text = "", "No Data", Nst.Text); L2 (ft) = "; IIf(Wat.Text = "", "No Data", Wat.Text)
Printer.Print "R3 = "; IIf(Ot.Text = "", "No Data", Ot.Text); "L1 (ft) = "; IIf(Srd.Text = "", "No Data", Srd.Text)
Printer.Print "8. Acceleration Factor
                                                  = "; IIf(Rs1.Text = "", "No Data", Rs1.Text)
Printer.Print "9. Effective Plunger Stroke Length (in) = "; IIf(Rs2.Text = "", "No Data", Rs2.Text)
Printer.Print "10. Probable Production Rate (bbl/day) = "; IIf(Rs3.Text = "", "No Data", Rs3.Text)
Printer.Print "11. Dead Weight of Rod String (lb) = "; IIf(Ars1.Text = "", "No Data", Ars1.Text)
Printer.Print "12. Fluid Load (lb)
                                              = "; IIf(Ars2.Text = "", "No Data", Ars2.Text)
Printer.Print "13. Peak Polished Rod Load(lb) = "; IIf(Ars3.Text = "", "No Data", Ars3.Text)
Printer.Print "14. Maximum Stress at Top of Rod String (psi) = "; IIf(Wrs1.Text = "", "No Data", Wrs1.Text)
Printer.Print "15. Ideal Counterbalance Effect (lb)
                                                         = "; IIf(Wrs2.Text = "", "No Data", Wrs2.Text)
```

Printer.Print "16. Position of Counter Weight to obtain Counter Balance Effect (in) = "; IIf(Wrs3.Text = "", "No Data"

, Wrs3.Text)

Printer.Print "17. Peak Torque on Gear Reducer (in-lb) = "; IIf(Ps.Text = "", "No Data", Ps.Text) Printer.Print "18. Prime Mover" Printer.Print " Hydraulic Horsepower (hp) = "; IIf(Srs.Text = "", "No Data", Srs.Text) Printer.Print " Friction Horsepower (hp) = "; IIf(Af.Text = "", "No Data", Af.Text) Printer.Print " Brake Horsepower(hp) = "; IIf(Ep.Text = "", "No Data", Ep.Text) Printer.Print "19. Engine Sheave Size to obtain the desired pumping speed (in) = "; IIf(Pqo.Text = "", "No Data", Pqo.Text) Printer.Print "20. Synchronous Pumping Speed = "; IIf(Dwr.Text = "", "No Data", Dwr.Text) Printer.EndDoc

End Sub

B.3.4.4 Source code of clear button of sucker rod pump module

Private Sub Command1_Click()

Production.Text = ""

Go.Text = ""

D.Text = ""

Ev.Text = ""

Oo.Text = ""

D.Text = ""

Ev.Text = ""

Go.Text = ""

E.Text = ""

Pd.Text = ""

Pud.Text = ""

Api.Text = ""

Str.Text = ""

Pg.Text = ""

Dpg.Text = ""

Apg.Text = ""

Pc.Text = ""

Td.Text = ""

Go8.Text = ""

Nst.Text = ""

Ot.Text = ""

Wt.Text = ""

Wat.Text = ""

Srd.Text = ""

Rs1.Text = "" Rs2.Text = ""

Rs3.Text = ""

Ars1.Text = ""

Ars2.Text = ""

Ars3.Text = ""

Wrs1.Text = ""

Wrs2.Text = ""

Wrs3.Text = ""

Ps.Text = ""

Srs.Text = ""

Af.Text = ""

Ep.Text = ""

Pqo.Text = ""

Dwr.Text = ""

Fl.Text = ""

Ppr.Text = ""

Ms.Text = ""

Ice.Text = ""

Pt.Text = ""

Pm.Text = "" Hh.Text = ""

Fh.Text = ""

End Sub

B.3.4.5 Source code of back button of sucker rod pump module

Private Sub cmdEx_Click()

Artificial_Lift.Show

End Sub

APPENDIX C

PUBLICATION

The 2nd International Workshop and Conference on Earth Resources Technology April 2008 Bangkok Thailand

Software Development for Optimizing Artificial Lift System at Phitsanulok Oil Fields

Nasonkrit VATCHARAKUP, Kriangkrai TRISARN, and Akkhapun WANNAKOMOL School of Geotechnology, Institute of Engineering, Suranaree University of Technology E-mail: n_vatcharakup@yahoo.com, kriangkr@g.sut.ac.th, akkhapun@g.sut.ac.th

Abstract

The software has been developed for optimizing artificial lift selection at Phitsanulok oil fields and support design of artificial lift system under various geological conditions and engineering requirements, including electrical submersible pump, intermittent flow gas lift and sucker rod pump. The software hereafter is called ARPOF. The proposed system is based on the known analytical solutions and theories, but is not based on the heuristic knowledge, inference procedure and experience of artificial lift expert backed by the rationale and logic. The program structure is developed on Microsoft Visual Basic version 6 software, and hence makes it interactive, user-friendly and revisable. The input artificial lift parameters are hierarchically characterized into several groups using various criteria, e.g., production, reservoir and well conditions, engineering requirements, design constraints and project goals, etc. The input analysis is first performed to check probable process of data base, e.g., fluid specific gravity, depth, tubing size, tubing type and volumetric efficiency. The predictive capability of the proposed system has been verified by comparing with 7 actual wells under Lan Kra Bur oil fields. There are divided into 106 case studies that comprise a case of natural flow, 42 cases of electrical submersible pump, 42 cases of intermittent flow gas lift and 21 cases of sucker rod pump. The results are satisfactory. For the support design, the system first identifies detail, step of design, basic facilities and necessary information. Based on production rates, the system selects the most suitable and available design solution for each artificial lift system. They comprise different combinations of the design components (e.g., pump data, minimum gas required, etc.). In term of technical consideration, gas liquid ratio, productivity index, side of tubing and variable rates are the controlling factors in the selection of the lift method. The probable application of artificial lift at Phitsanulok oil fields are 37.5% intermittent flow gas lift, 35% sucker rod pump and 27.5% electrical submersible pump respectively. In term of economic consideration, the IRR and PIR for natural flow are

43.62% and 0.52 respectively. The IRR and PIR for intermittent flow gas lift are 49.62 - 73.73% and 0.65 - 2.07 respectively. The IRR and PIR for sucker rod pump are 49.72 - 68.34% and 0.69 - 1.84 respectively. The IRR and PIR for electrical submersible pump are 49.56 - 57.46% and 0.6 - 1.47 respectively.

Literature Review

Application of artificial lift at Sirikit oil field have 2 systems that are gas lift and pump about 75% and 9% respectively. The gas lift system has 3 methods that are continuous, intermittent and modified chamber gas lift. In addition, the pump system has 3 methods that are progressive cavity, electrical submersible pump and sucker rod pump, each pump first introduced in 1998, 2001 and 2007 respectively. The commercial software for study, analysis and design electrical submersible pump, gas lift and sucker rod pump are csSubs Suite, WinGlue, and Echometer ORod respectively.

Scope and Limitations of the Study

- The ARPOF has been developed for optimizing artificial lift selection at Phitsanulok oil fields and support design under various geological conditions and engineering requirements, including electrical submersible pump, intermittent flow gas lift and sucker rod pump.
- The proposed system is based on the known analytical solutions and theories, but is not based on the heuristic knowledge and experience of artificial lift expert backed by the rationale and logic.
- The program structure is developed on Microsoft visual basic 6.0 that is enterprise edition with source code and utilities, service pack 5.
- The input artificial lift parameters are production, reservoir and well conditions and engineering requirements.

181

The 2nd International Workshop and Conference on Earth Resources Technology April 2008 Bangkok Thailand

- The input analysis is first performed to check probable process of data base, e.g., fluid specific gravity, depth, tubing size, tubing type and volumetric efficiency.
- The predictive capability of the proposed system has been verified by comparing with 7 actual wells under Lan Kra Bur oil fields. There are divided into 106 case studies that comprise a case of natural flow, 42 cases of electrical submersible pump, 42 cases of intermittent flow gas lift and 21 cases of sucker rod pump.
- For the support design, the system first identifies detail, step of design, basic facilities and necessary information.
- Based on production rates, the system selects the most suitable and available design solution for each artificial lift system.
- In term of technical consideration, this study determines the most suitable artificial lift method which can improve oil recovery.
- In term of economic consideration, cost of each artificial lift system will be studied and analyzed to determine the best Internal Rate of Return (IRR) and Profit to Investment Ratio (PIR).

Software Development

The ARPOF includes a main page and 3 modules. Interface of the main page includes 2 main parts that are a helpful label (green color) and three modules (including electrical submersible pump, intermittent flow gas lift and sucker rod pump) as follow as in Figure 1. Hot keys are developed for quick and comfortable usage as follow as in Table 1.

Hot key	Function
Alt + E	Electrical submersible pump
Alt+G	Intermittent Flow Gas lift
Alt+S	Sucker rod pump

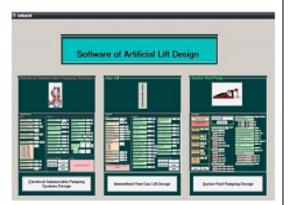


Figure 1. The main page of ARPOF

Interface of each module is developed and composed with four functions; each function is showed and displayed by different color as follow as in Table 2 and Figure 2 - 4.

Table 2. The color is related with function.

Color	Function
Orange	Input data
Green	Out put
Gray	Command button: Check Input, Design, Save& Print,
	Clear and Back.
Pink	Help: Texts show procedure of using software which is
	changed to next text within 4 seconds.

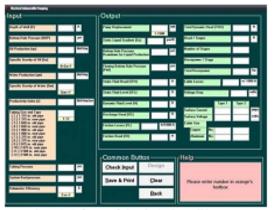
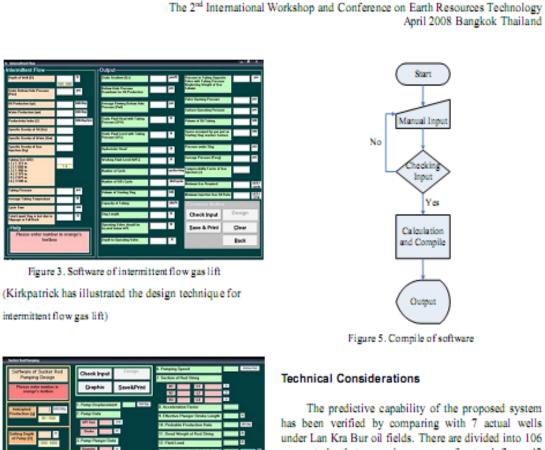



Figure 2. Software of electrical submersible pump (Manufacturer's motor refer Adam Person Associates Engineering Production Manual and data base of Byron Jackson pump division)

0

Figure 4. Software of sucker rod pump (Manufacturer's

Pump refer Data Base of Lufkin Pump Division)

Flowchart is a step for software development which identifies step, procedure and compile of software in terms of pictures or symbols. Compile of software includes manual input, checking input, calculation and compile, output as follow as in Figure 5.

Technical Considerations

The predictive capability of the proposed system has been verified by comparing with 7 actual wells under Lan Kra Bur oil fields. There are divided into 106 cases study that comprise a case of natural flow, 42 cases of electrical submersible pump, 42 cases of intermittent flow gas lift and 21 cases of sucker rod pump as follow as in Table 3. The input artificial lift parameters are production, reservoir, well conditions and engineering requirements under Lan Kra Bur oil fields as follow as in Table 4.

Table	3.	Study	cases	in	testing
-------	----	-------	-------	----	---------

Well	1	GLR
No.	(b/d/psl) 2.07	(SCF/STB)
i i	1.70	1229
ш	1.38	698
IV	0.27	2545
V	0.24	3799 7014
VI	0.15	4280

In term of technical consideration, gas liquid ratio, productivity index, side of tubing and variable rates are the controlling factors in the selection of the method of ift as follow as in Table 5 - 6.

- Where
- Gas liquid ratio
 - Low = 500 1,300 SCF/STB High = 2,000 - 8,000 SCF/STB
- Productivity Index

April 2008 Bangkok Thailand

Start

Manual Inp

edki hpu

Calculation

and Compile

Output

Figure 5. Compile of software

Yes

No

The 2nd International Workshop and Conference on Earth Resources Technology April 2008 Bangkok Thailand

Low = 0.15 - 0.27 b/d/psi High = 1.38 - 2.07 b/d/psi • O.D. of Tubing Small (S) = 1.315, 1.660, 1.900 and 2.375 in. Large (L) = 2.875 and 3.500 in. • Type of artificial lift "TDP = Electrical Submarrible Duran

ESP - Electrical Submersible Pump IFGL - Intermittent Flow Gas Lift SRP - Sucker Rod Pump

Other

- 1 Poor do Outside Diameter of Tubing (in)
- 2 Medium J Productivity Index (b/d/psi)
- 3 Good

			Artificial Lift System		
Conditions	Parameters	Units	Electrical	Intermittent Flow	Sucker Rod Pump
			Submerstble Pump	Gas Ltft	
Production	Water production	b/d	0	0	
Reservoir	Bottom hole temperature	°R	•	587	•
	Specific gravity of oil	•	0.828	0.828	0.828
	Specific gravity of water	•	1	1	
	Depth of well	ft	3,715	3,715	3,715
Nell	System backpressure	psi	400		
	Tubing size (O.D)	In	1.315, 1.660, 1.900,	1.315, 1.660, 1.900,	2.375, 2.875, 3.50
			2.375, 2.875, 3.500	2.375, 2.875, 3.500	
	Tubing temperature	°R		587	
	Tubing type		New		
	Tubing pressure	psi	50		
	Cycle Time	min		15	
Other	Endurance limit	psi	•	•	30,000
	Liquid Slug	%		60	
	Specific gravity of gas injection			0.6	
	Volumetric Efficiency	96	80	80	80

Table 4. Minimum requirement information

Table 5. Maximum production rates in all cases study

Well No.	Туре	q _e (b/d) at O.D. of Tubing (in)		
		Small	Large	
I	ESP	298 - 472	487 - 495	
	IFGL	77 - 278	417 - 626	
	SRP	167	711 - 1,196	
п	ESP	271 - 393	401 - 407	
	IFGL	77 - 278	417 - 626	
	SRP	167	711 - 1,120	
ш	ESP	241 - 323	326 - 331	
	IFGL	77 - 278	417 - 626	
	SRP	167	711 - 909	
IV	ESP	63 - 64	64	
	IFGL	77 - 155	164 - 172	
	SRP	167	172	
V	ESP	56 - 57	57	
	IFGL	77 - 140	148 - 149	
	SRP	149	149	
VI	ESP	38	38	
	IFGL	76 - 99	103 - 105	
	SRP	107	107	
VII	ESP	35	35	
	IFGL	72 - 93	97 - 99	
	SRP	105	105	

Table 6. Selection of artificial lift technique

	Productivity Index			table ites	(Gas L Ra	iquie tio	i	
Type	Low	$-H_{i}$	gh	Low	High	$-L_0$	WP -	H	gh
	de	G	6	J	J	6	l,	6	5
	All	- 8	L			\$	L	\$	L
ESP	1	- 3	1	1	1	3	1	1	1
IFGL	2	2	2	3	2	2	2	2	2
SRP	3	1	3	1	3	-	3	•	2

Economic Considerations

The exploration and production periods under the Petroleum Acts "Thailand III" is divided into 3 years of exploration period and 20 years of production period. This study will be early production on the 4th year of investment. The total production wells are 25. The artificial lift will be applied between 4th - 15th years, which are determined under case of natural flow as follow as in Table 7. The original oil inplace of this study is 109 MMbbl. The 2nd International Workshop and Conference on Earth Resources Technology April 2008 Bangkok Thailand

Year.	Production rate (b/d/well)	Year.	Production rate (b/d/well)
4	400	14	38
5	400	15	34
6	401	16	31
7	400	17	28
8	387	18	25
9	208	19	23
10	100	20	21
11	68	21	20
12	54	22	18
13	44	- 22	17

Table 7. Case of natural flow

The basic and other assumptions cost under the Petroleum Acts "Thailand III" as follow as in Table 8.

Table 8. The basic and other assumptions cost

Туре	Number	Unit
Exchange rate	35	Baht/US\$
Oil price	80	US\$/bbl
Discount rate	10	%
Capital cost	12,36	MMMBaht
Operation cost	600	Baht/bbl
Facilities cost		
 ESP 	8.75	MMBaht/well
 IFGL 	5.25	MMBaht/well
 SRP 	1.02	MMBaht/well
Maintenances cost		
 ESP 	2.4	MMBaht/well/yr
 IFGL 	1.9	MMBaht/well/yr
 SRP 	2.1	MMBaht/well/yr

In term of economic consideration, cost of each artificial lift system will be studied and analyzed to determine the best Internal Rate of Return (IRR) and Profit to Investment Ratio (PIR) as follow as in Table 9.

Table 9.1	The IRR	and PIR	in all	cases study	у.
-----------	---------	---------	--------	-------------	----

Туре	Recovery Factor (%)	IRR	PIR
Natural flow	22.74	43.62	0.52
ESP	23.56 - 84.50	49.56 - 57.46	0.60 - 1.47
IFGL	29.46 - 99.91	49.62 - 73.73	0.65 - 2.07
SRP	29.33 - 99.91	49.72 - 68.34	0.69 - 1.84

Conclusion

In term of technical consideration, gas liquid ratio, productivity index, side of tubing and variable rates are the controlling factors in the selection of the lift method. The probable application of artificial lift at Phitsanulok oil fields are 37.5% intermittent flow gas lift, 35% sucker rod pump and 27.5% electrical submersible pump respectively. In term of economic consideration, the IRR and PIR for natural flow are 43.62% and 0.52 respectively. The IRR and PIR for intermittent flow gas lift are 49.62 – 73.73% and 0.65 – 2.07 respectively. The IRR and PIR for sucker rod pump are 49.72 – 68.34% and 0.69 – 1.84 respectively. The IRR and PIR for electrical submersible pump are 49.56 – 57.46% and 0.6 – 1.47 respectively.

Discussion

The research studies the factors that affect production rate under application of artificial lift. In testing, all methods of lift have reduced efficiency with increasing gas liquid ratio and improved efficiency with increasing productivity index and side of tubing. Some artificial lift can produces high rate but it is poor for variable rate.

Acknowledgement

I am grateful to Suranaree University of Technology for granting the budget for this research, and to all SUT personnel who supported the study, especially Associate Professor Kriangkrai Trisam and Dr. Akkhapun Wannakomol.

References

- Ascope Technical Committee Paper. "Tertiary Sedimentary Basins of The Gulf Thailand and South China Sea," The 5th Council on Petroleum Conference and Exhibition," November 2-6, 1993, p.
- Baoxing, Y. Guohua, Z., and Zhongqiang L. "Porosity Evolution and Prediction of Tertiary Sandstone Reservoirs, Western Qiongdongnan Basin, South China Sea," International Conference on Geology, Geotechnology and Mineral Resources of Indochina (Geo-Indo'95), November 22-25, 1995, Khon Kaen, Thailand.
- Chapman, L.R., and Thompson, R.R. "Waterflood Surveillance In Kuparak River Unit with Computerized Pattern Analysis," Journal of Petroleum Technology (March 1989): 277-282.
- Chrichlow, H.B. "Modern Reservoir Engineering A Simulation Approach," Prentice-Hall, Eaglewood Cliffs, New Jersey, (1977).
- Craft, B.C., and Hawkins, M.F. "Applied Petroleum Reservoir Engineering," second edition, Pentice Hall, Eaglewood Cliffs, NJ, (1990).
- Crichlow, H.B. "Advanced Reservoir Engineering," Oklahoma, (1994).
- Dandona, A.K., Alston, R.B., and Braun, R.W. "Definebg Data Requirements for a Simulation Study," Paper SPE 22357 presented at the SPE International Meeting on Petroleum Engineering, Beijing, China, March 24-27, 1992.
- Franchi, J.R. "Integrated Flow Modeling," Elsevier, Netherlands, (2000).
- Franchi, J.R. "Principles of Applied Reservoir Simulation," Gulf, Houston, Texas, (1997).
- Ghauri, W.K. "Production Technology Experience in a Large Carbonate Waterflood, Denver Unit, Wasson San Andres Field," Journal of Petroleum Technology (September 1980): 1493-1502.

Graves, K.S., Valentine, A.V., Dolma, M.A., and Morton, E.K. "Design and Implementation of Horizontal Injector Program for the Benchamas Waterflood – Gulf of Thailand," The 6th Mining, Metallurgical, and Petroleum Engineeing Coference, Bangkok, October 24-26, 2001.

185

- Harpole, K.J. "Improved Reservoir Characterization A Key to Future Reservoir Management for the West Seminole San Andres Unit," Journal of Petroleum Technology (November 1980): 2009-2019.
- Irwin, R.A., Tucker, C.W., and Jr. H.E.S. "A Case History of the Postle Area – Computer Production Control and Reservoir Simulation," Journal of Petroleum Technology (July 1972): 775-781.
- Mian, M.A. "Petroleum Engineering Handbook for the Practicing Engineer," Volume 1, Penn Well Book, Tulsa, OK, (1992).

BIOGRAPHY

Mr. Nasornkrit Vatcharakup was born on the 4th of July 1983 in Nakhon Ratchasima province. He earned his high school diploma in science-math from Boonwattana School in 2001 and his bachelor's degree in Petroleum Engineering from School of Geotechnology, Suranaree University of Technology (SUT) in 2005. After graduation, he continued with his master's degree in the School of Geotechnology, Institute of Engineering at SUT with the major in Petroleum Engineering. During 2006-2008, he was a laboratory assistant, teaching assistant and research assistant at SUT. His strong background is in the areas of artificial lift.