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 การศึกษาระบบ Downflow hanging sponge (DHS) เพื่อเปนระบบบําบัดขั้นหลังใหกับระบบ 

UASB ในการบําบัดน้ําเสียอุตสาหกรรมที่มีความเขมขนของสารอินทรียและไนโตรเจนสูง แตโดยทั่วไป

ระบบกรองชีวภาพจําเปนตองควบคุมคาภาระบรรทุกสารอินทรียใหตํ่าและคงที่ เนื่องจากในภาวะบรรทุก

สารอินทรียสูงจะสนับสนุนการเจริญเติบโตของจุลชีพกลุมเฮทเทอโรทรอฟทําใหมวลชีวภาพในระบบสูง

จึงเกิดการอุดตันชั้นกรองได อีกทั้งการลางยอนไมสามารถทําไดในระบบ  DHS ดังน้ันการศึกษาน้ีจึงมี

วัตถุประสงคเพื่อพัฒนาระบบ DHS โดยใชเชื้อรา (FDHS) และแบคทีเรีย (BDHS) เปนจุลชีพในการเปน

บําบัดน้ําทิ้งจากระบบ  UASB ในอุตสาหกรรมแปงมันสําปะหลัง การศึกษาทําการเปรียบเทียบ

ประสิทธิภาพระบบ FDHS และ BDHS ดวยการประเมินการกําจัดสารอินทรียและไนโตรเจน คาคงที่ทาง

จลศาสตร และลักษณะของตะกอน อีกทั้งทําการประเมินผลกระทบขององคประกอบของฟลมตรึงตอการ

ทํางานของจุลชีพ และความเขมขนของสารอินทรียในระบบ DHS โดยแบงการทดลองออกเปน 3 

ชวงเวลาซึ่งมีระยะเวลาในการกักเก็บใน RUN I เทากับ 4 ชัว่โมง และใน RUN II และ RUN III เทากับ 1 

ชั่วโมง จากผลการศึกษาพบวาประสิทธิภาพการกําจัดสารอินทรียของระบบ FDHS สูงกวาระบบ BDHS 

ในทุกชวงของการศึกษา โดยมีประสิทธิภาพการกําจัดคาบีโอดีทั้งหมด (TBOD) ในชวง 83-95 % สวน

ประสิทธิภาพการกําจัดไนโตรเจนของระบบ BDHS พบสูงสุดใน RUN I โดยสามารถกาํจัดไนโตรเจน

ทั้งหมดไดประมาณ 68% แตระบบ FDHS ไมสามารถกาํจัดไนโตรเจนดวยกระบวนการไนตริฟเคชัน่และ

ดีไนตรฟเคชั่นได อีกทั้งจากการศึกษาคาคงที่ทางจลศาสตรพบอัตราการเจริญเติบโตของจุลชีพ (µmax

 

) 

สูงสุดในระบบ FDHS สวนที่ 1 ซึ่งเปนสวนที่สามารถกําจัดคา TBOD ไดสูงสุดเชนกัน สวนการศึกษา

องคประกอบของตะกอนพบวาคาของแข็งระเหยงาย (VSS) ในตะกอนที่อยูในตัวกลางฟองน้ําของระบบ 

FDHS มีคาคอนขางคงที่แสดงถึงความสามารถในการยอยสลายตะกอนเกิดไดคอนขางดีจึงทําใหเกิด

สมดุลของตะกอนขึ้นในระบบ และการเกิดเสนใยของเชื้อราทําใหโครงสรางของระบบฟลมตรึงหลวม

และการถายเทมวลของอาหารและออกซิเจนเขาสูภายในฟลมตรึงเกิดไดดี อีกทั้งการศึกษายังพบวาระบบ  

DHS ทั้งสองระบบมีเสถียรภาพเมื่อมีการเปลี่ยนแปลงคา HLR ทําใหระบบ DHS เปนระบบที่มี

ประสิทธิภาพในการเปนระบบบําบัดน้ําเสียขั้นหลังระบบ UASB 
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Investigations were carried out to evaluate the performance of downflow hanging 

sponge (DHS) system as a post treatment for industrial wastewater effluents containing 

high organic and nitrogen concentration.  In general, it is important to keep the organic 

waste load for biofilter constant and as low as possible because a high heterotroph bacteria 

combined with biofilm detachment may clog a biofilter, backwashing is not possible in 

DHS system.  Thus, the objective of this research was to develop two DHS systems using 

mixed fungal culture (FDHS) and mixed bacterial culture (BDHS) systems, and to examine 

their potential for improving the quality of UASB effluents form a of tapioca starch 

wastewater treatment process.  This study attempted to compare the performance of the 

FDHS and BDHS systems by systematically evaluating organic and nitrogen removal, the 

biokinetic coefficients and sludge characteristics.  Effect of biofilm compositions on the 

microbial activity and effluent organic matter concentrations were also investigated.  The 

whole experimental period was divided into three runs (RUN I, RUN II and RUN III) with 

the hydraulic retention time (HRT) at 4 h, 1 h and 1 h, respectively and the organic loading 

rates (OLR) fluctuating in the range of 1.0-3.6 kgTBOD/m3-d.  The organic removal 

efficiency of FDHS system was higher than BDHS system during three runs, ranging 

83%-95%.  The highest total nitrogen removal efficiency was found during RUN I about 
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CHAPTER I 

INTRODUCTION 

 
1.1   Statement of the Problem 

High rate anaerobic reactors are becoming increasingly popular for the treatment of 

tapioca starch processing wastewater because of their low operation costs, smaller space 

requirements, high organic removal efficiency and low sludge production, combined with a 

net energy benefit through the production of biogas.  These reactors’ operations are based 

on the immobilization of high concentrations of biogas.  Among the various anaerobic 

reactors developed so far, the UASB reactor (Lettinga and Hulshoff, 1991) has been found 

to be relatively superior because it neither requires added substratum as in anaerobic filters, 

nor effluent recirculation as in fluidized bed reactors.  However, the effluents of UASB 

reactor still contained a relatively high residual COD, and the nitrogen nutrient contents 

based on the COD:N ratio that seems to be very high for heterotroph microorganism 

utilization.  Thereby, the organic and nitrogen nutrient removal process would be required 

before effluents discharged to receiving waters.  Further, for the UASB effluent 

characteristics, treatment efficiency of nitrification-denitrification is considered poor at 

BOD/TKN < 2.5 or BOD/NH3 < 4 and COD/TKN < 5 (Grady, et al., 1999).  In order to 

ensure successful removal of ammonia in the nitrification-denitrification process, an 

external carbon source would be necessary, with could further increase the operational 

costs.  
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Accordingly, it is strongly recommended to use DHS system for post-treatment of 

anaerobic pre-treated sewage (Tawfik et.al., 2006a).  Thus, Downflow Hanging Sponge 

(DHS) system offers an attractive method to treat UASB effluents from tapioca starch 

industry.  However, the UASB effluent in tapioca starch industry is too fluctuated and 

higher concentration than domestic wastewater.  When high amounts organic matter are 

present in a biofilter, the fast growing heterotrophic bacteria will ‘out-space’ the slow 

growing nitrifiers from the aerobic zone in the biofilm as they compete for oxygen and 

space.   And in general, higher contents of organic in the system resulted in higher 

heterotroph organism population.  It is important to keep the organic waste load for 

biofilter constant and as low as possible because a high heterotroph bacteria combined with 

biofilm detachment (“sloughing”) may clog a biofilter, backwashing is not possible in 

DHS system.          

Several researches recommended that fungi have a wide range of enzymes, and are 

capable of metabolizing complex mixtures of organic compounds such as particulate 

matters and dead cells (Tripathi et al., 2007; Thanh and Simard, 1973; Mannan et al., 2005; 

Tung et al., 2004; Guest and Smith, 2002).  Recently, emphasis has been made on 

treatment of wastewater with fungi because they are capable of rapid growth on a variety 

of substances (Karim and Sistrunk, 1984).  Fungi based on organic and nitrogen reduction 

system have the potential to overcome issues associated with the Downflow Hanging 

Sponge (DHS) treatment system, while maintaining or improving performances.  However, 

several questions need to be addressed by a systematic research plan.  Comprehensive 

investigations concerning reactor configurations, biokinetics coefficient, structure and 

mass transport of fungal and bacterial biofilms through the DHS reactor performance have 

been carried out. 
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1.2 Background Information 

1.2.1 Combinations of UASB and Downflow Hanging Sponge (DHS) System 

All industries are increasingly required to reduce their impact on the 

environment.  Adequate treatment of food processing effluents is assuming increasing 

importance.  Many local authorities are now insisting that industries undertake some form 

of effluent treatment so as to protect the environment.  One research group has been 

developing a wastewater treatment system as a cost-effective and easy maintenance 

method at the Nagaoka University in Japan, by combining an anaerobic UASB reactor as 

pre-treatment unit and an aerobic Downflow Hanging Sponge (DHS) reactor as a post 

treatment unit.  The combinations of UASB and various configuration of DHS have been 

developed and evaluated over two decades period already for various type of wastewater, 

including domestic wastewater or sewage (Agrawal et al., 1997; Machdar et al., 1997; 

Araki et al., 1999; Mechdar et al., 2000; Uemura et al., 2002; Tandukar et al., 2005; 

Tandukar et al., 2006a; Tandukar et al., 2006b; Tawfik et al., 2006a; Tawfik et al., 2006b; 

Chuang et al., 2007), actual dye wastewater (Ohashi et al., 2006) as well as in wastewater 

reuse in small communities (Vigneswaran et al., 2003).  These results of all these 

researchers suggested DHS system to be an excellent system for post-treatment of 

anaerobically pre-treated sewage.  The main advantages of using DHS systems include: a 

rapid and dense colonization of biomass, a high specific surface area of the packing 

material which can reach up to 2,400 m2/m3 and 97% porosity, a sufficiently long biomass 

retention time allowing the application of a higher loading rate, a high process stability and 

no oxygen requirement and a low production of waste sludge (Tawfik et al., 2006a).  Also, 

the high entrapment capacity of the DHS system and the retain of a high biomass 

concentration of 34 g VSS/L are the main reasons for the higher COD removal, 

nitrification process and F. coliform removal as compared to a series of RBC’s treating 

UASB reactor effluent.  Furthermore, the DHS system is not only superior to the 



 
 

4 
 

conventional trickling filter, but also to other post-treatment systems, such as, activated 

sludge process, sequencing batch reactor (SBR), and aerobic filter with regard to COD 

removal, nitrification efficiency and F. coliform removal for domestic wastewater 

treatment processes.  Accordingly, it is strongly recommended to use DHS system for post-

treatment of anaerobic pre-treated sewage (Tawfik et al., 2006a).  Thus, Downflow 

Hanging Sponge (DHS) system offers an attractive method to treat UASB effluents from 

tapioca starch industry.   

1.2.2 The Unifies Multi-Component Cellular Automaton (UMCCA) Model  

Biofilm diffusion is the main parameter must concern in biofilm system.  

Mass transport in biofilms is influenced by the biofilm structure which in turn is influenced 

by the local availability of substrate.  A quantitative understanding of how biofilm 

structure is linked to mass transport is essential for our understanding of biofilms. Two 

main approaches can be used to relate biofilm structure to mass transport.  One approach is 

can be obtained from direct imaging of biofilms or from mathematical modeling (Horn and 

Morgenroth, 2006).  The unified multi-component cellular automaton (UMCCA) was 

developed which purpose to quantify composite density that relationships among three 

solid species─active cells, EPS, and residual inert biomass, three soluble species─original 

substrate, utilization associated products (UAP), and biomass associated products (BAP), 

and electron acceptor, such as oxygen.  The suitability of this combination for representing 

the structure of a heterogeneous biofilm has been demonstrated.  An advantage of this 

approach is that it can provide a fast and accurate model solution with readily available 

computing resources, such as a high-capacity personal computer.    

 

1.3 Objectives of the Study 

The overall aim of this study was to evaluate the performances of fungal and 

bacterial downflow hanging sponge system for residual organics removal during post 
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treatment of starch wastewater effluents from an UASB reactor.  Therefore, the specific 

objectives of proposed research were as follow: 

1.3.1 To investigate and evaluate the performances of the Downflow Hanging 

Sponge using mixed fungal (FDHS) and mixed bacterial (BDHS) cultures as a post 

treatment for treating UASB effluent from tapioca starch industry. 

1.3.2 To obtain the biokinetic coefficients and identify the dominant genus of 

mixed fungal and mixed bacterial cultures on Downflow Hanging Sponge (DHS) system.  

1.3.3 To evaluate the factors influencing the biofilm density through sludge 

characteristics and its components. 

1.3.4 To investigate the biofilm mass transport through its density under 

simulated conditions using Unified Multiple Component Cellular Automaton (UMCCA) 

model.  

 

1.4 Scopes of the Study 

In order to achieve the above mentioned objectives, the scopes of this study to be 

carried out were included: 

1.4.1 The pilot scale experiment of DHS systems were conducted at a site near F4 

laboratory building of Suranaree University of Technology.  Investigation was carried out 

with tapioca starch industrial wastewater effluent from a full-scale UASB reactor at the 

General Starch Co., Ltd. In Khon-Buri destrict of Nakhon Ratchasima province in the 

northeastern part of Thailand, fed to two DHS reactors. 

1.4.2 Performances of both FDHS and BDHS reactors were optimized varying the 

organic (OLR) and hydraulic (HLR) loading rates.  All operational conditions were 

evaluated in terms of organic and nitrogen removal efficiencies. 

1.4.3 Biokinetic coefficients were investigated through oxygen uptake rate by 

respirometric technique that was used for calculating biokinetic parameters of biomass.   
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1.4.4 The sludge characteristics and biofilm components were analyzed to 

understand their relationship with biofilm density in the DHS reactor.  The biofilm 

components including the three solid species (active bacteria, inert or dead biomass 

produced by death and decay, and extracellular polymeric substances (EPS)) and three 

soluble components (soluble substrate, substrate utilization association product (UAP) and 

biomass association product (BAP)) were investigated in the sludge. 

1.4.5 The Unified Multiple Component Cellular Automotan (UMCCA) model 

was used to predict density and quantitatively the heterogeneity of biofilms including with 

three solid species and three soluble components that occur over time and deeper in the 

biofilms. 

 



CHAPTER II 

LITERATURE REVIEWS 
 

2.1 Tapioca Starch Industry 

There are about 60 large and medium starch factories in Thailand (Loha et al., 2003).  

Tapioca is grown throughout the tropical parts and is one of the important starchy root 

crops in the tropic.  The main products of tapioca roots are pellets, chips and starch (flour).  

Tapioca starch production was found to produce the wastewater in large quantity 

producing.  The tapioca starch industry causes water pollution from its wet processing 

operation.  Figure 2.1 shows the flow diagram of starch production from tapioca.  The 

combined wastewater chiefly comprises the streams from root washer and separators in the 

manufacturing processes.  After rasping the hydrogen cyanide in roots is set free and 

dissolved in water used for washing.  

 

2.2 Tapioca Starch Wastewater Characteristics 

Tapioca starch is an important agro-based product found in many parts of the world.  

The starch extraction process involves preprocessing of tapioca roots, starch extraction, 

separation, and drying.  It also generates large volumes of wastewater up to 20-60 m3/ton 

starch produced.  Water pollution problems related the tapioca starch industries are serious.  

The wastewater is highly organic and acidic by nature with chemical oxygen demand 

(COD) up to 25,000 mg/L and pH between 3.8 and 5.2 as the results from several 

researches are shown in Table 2.1.  It also contains biodegradable starch suspended solids 

up to 4,000 mg/L (Annachhatre, A. P. and Amornkeaw, A., 2001; Annachhatre A. P. and 

Amatya, P. L., 2000).              
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Figure 2.1 Flow diagram of tapioca starch manufacturing (Chavalparit, O. et al., 2009). 

 

2.3     Conventional Methods of Tapioca Starch Industry Wastewater  

Treatment 

The tapioca starch industry causes water pollution problems from cassava roots’ wet 

processing operation.  In general, tapioca starch wastewater is highly organic and contains 

minute suspended solids and dissolved solids.  The volume of combined wastewater 

generated per 1 ton of starch production is 30-50 m3

 

 and is highly concentrated.  The 

tapioca starch wastewater is acidic in nature due to the release of some prussic acids by the 

tapioca roots and the use of sulfuric acid in extraction processes (Amatya, 1996). 

 

4.21 tons of cassava roots (60%)

Roots rinsing

Chopping/
Grinding

Fiber and Pulp
Separation (Extractor)

Starch Separator 
(Two-stage separator)

Starch Separator 
(Dehydration Horizontal 

Centrifuge)

Drying/
Packing

1 ton of Tapioca Starch (12%)

18 m3 of water

5.4 m3

1.3 m3

Dewatering
(Fiber Extractor)

Screw Press

1.4 tons of Fibrous Residues 
(30-40%)

7.3 m3

0.7 kg of sulfur

4.0 m3

19.2 m3 of Wastewater
3.0 kgs of starch loss in wastewater 

0.28 ton of Water Vapor

0.05 ton of starch loss in 
drying oven

0.38 ton of sand and peel (70%)

3.93 tons

5.3 m3

5.23 tons

7.23 tons

4.63 tons

1.33 tons of starch
(32-38%)

3.9 m3

Fibrous residues 

6.6 m3

3.3 m3
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Table 2.1  Tapioca starch wastewater characteristics   
 

Manufacturing 
processes 

wastewater 

Washing 
step 

Extraction 
step 

Extraction 
step 

Combined 
wastewater 

Combined 
wastewater 

Combined 
wastewater 

pH 5-6 4-6 3-4 4-5 4-5 - 

TSS (g/L) 10-13 4-8 1-2 2-4 6-9 3-8 

CODt 4-8  (g/L) 12-19 13-16 14-25 22-25 4-27 

CODf -  (g/L) - - 10-25 - - 

BOD5 -  (g/L) - 10-13 - 13-16 2-14 

TKN (mg/L) - - 259-462 85-250 85-180 60-298 

Org-N (mg/L) - - 196-392 - - - 

NH3 67-85 -N (mg/L) 161-187 63-77 - - - 

Total P (mg/L) - - 39-73 - 50-85 41-235 

Ortho-PO4 - - - - 25-48 - - 

CN- -  (mg/L) 4-7 30-36 10 - - 

BOD:COD - - 0.8 - 0.6 0.5 

References Hein et al. (1999) Mai et.al. 
(2004) 

Annachhatre 
and 

Amornkeaw 
(2001) 

Polprasert, C. 
and 

Chatsanguthai, 
S. (1988) 

Reampim, J. 
(2002) 

 
  

In the past, most of tapioca starch factories in Thailand treated their wastewater 

using series of anaerobic and facultative ponds.  The major environmental problem caused 

by the practice was obnoxious odor of sulfide generated from the pond system.  In fact, this 

odor had not been a serious in the past due to the remoteness of the factory-locations.  With 

growing population, the areas around the factories have transformed into residential areas 

and thus the odor has turned out to be an objectionable problem.  Beside this, more 

stringent environmental pollution control on the effluent discharges demands the 

improvement in the efficiencies of the wastewater treatment plants (Amatya, 1996).     

Anaerobic wastewater treatment technology has become exceeding popular 

worldwide in tapioca starch industry, which can be operating at high operating at organic 

loading rate (OLR).  Variations of anaerobic wastewater treatments are applicable to 

tapioca wastewater as summarized in Table 2.2.  A deep discussion on the evolution and 
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applicability of anaerobic technology for the treatment of tapioca starch is presented 

elsewhere, where several favorable characteristics of anaerobic processes are highlighted, 

such as high organic removal efficiency, low cost, operational simplicity, no energy 

consumption, and low sludge production, combined with a net energy benefit through the 

production of biogas.  These advantages, associated with the favorable environmental 

conditions in warm-climate regions, where high temperatures prevail practically throughout 

the year, have contributed to establish the anaerobic systems, particularly the UASB 

reactors, in an outstanding position (Annachhatre and Amornkeaw, 2001; Annachhatre and 

Amatya, 2000; Chernicharo, 2006).        

 

Table 2.2  Previous studies on anaerobic wastewater treatment of tapioca wastewater 
 

Treatments OLR 
(kgCOD/m3

HRT 
-d) (d) 

COD removal 
(%) References 

UASB 33-40 0.5 94-98 Hein et al. (1999) 

UASB 10-16 0.2 >95 Annachhtre and 
Amatya (2000) 

UASB 28-43 0.3 84-90 Mai et al. (2004) 

AFF 2-10 2-4 70-80 Chaiprasert, C. et al. 
(2003) 

AFF 2-3 3 89 Barana and Cereda 
(2000) 

Anaerobic contactor - 1-10 32-80 Reampim, J. (2002) 

Anaerobic pond 2-3 10 57 
Polprasert, C. and 
Chatsanguthai, S. 
(1989) 

Anaerobic attached 
growth waste 
stabilization pond 

- 8 60-70 Rukvichitkul, T. 
(2002) 

 
 
Among the various anaerobic reactors developed so far, the UASB reactor has been 

found to be relatively superior because it neither requires added substratum as in anaerobic 

filters nor effluent recirculation as fluidized bed reactors.   
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Evidences from literature indicate the UASB system achieved COD conversion efficiency 

more than 95% at OLR 10-16 kgCOD/m3-d and gas productivity of 5-8 m3/m3

 

-d were 

obtained.  Also, experiments showed tapioca wastewater contained up to 10 mg/L of 

cyanide yielded satisfactory cyanide removal of approximately 93 to 98% (Annachhatre 

and Amatya, 2000; Annachhatre and Amornkaew, 2001; Hein et al., 1999 and Mai et al., 

2004) as COD removal efficiency and operating conditions are shown in Table 2.2.  

Although, high rate treatment processes offer an attractive treatment alternative, process 

start-up is one hurdle that must be overcome before steady process operation can be 

achieved.  They are also sensitive to suspended solids (SS).  SS inhibits sludge granulation 

in UASB reactor or may even lead to sudden wash out of the sludge bed.  A separate 

settling pretreatment system for SS removal has been recommended.  Other researchers 

have suggested restricting the SS level below 1,000 mg/L or pre-acidification of SS 

(Annachhatre and Amatya, 2000).     

2.4 Main Limitations of Anaerobic Systems 

In spite of their great advantages, anaerobic reactors hardly produce effluents that 

comply with usual discharge standards established by environmental agencies.  Therefore, 

the effluents from anaerobic reactors usually require a post-treatment step as a means to 

adapt the treated effluent to the requirements of the environmental legislation and protect 

the receiving water bodies.  The main role of the post-treatment is to complete the removal 

of organic matter, as well as to remove constituents little affected by the anaerobic 

treatment, such as nutrients (N and P) and pathogenic organisms (viruses, bacteria, 

protozoans and helminths) (Chernicharo, 2006). 
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2.4.1 Limitation Regarding Organic Matter  

Limitations imposed by environmental agencies for BOD are usually 

expressed in terms of effluent discharge standards and minimum removal efficiencies. 

These constraints are probably the cause that has mostly limited the use of anaerobic 

systems (without post-treatment) for tapioca starch wastewater treatment (typical values in 

Table 2.3).  In view of the limitations imposed by the environmental legislation for the 

effluent BOD concentration, or also when the receiving body has limited capacity for 

assimilating the effluent from the treatment plant (which is frequently the case), it is usually 

necessary to use aerobic treatment to supplement the anaerobic stage.  However, there are 

situations in which the combination of different anaerobic processes can meet less 

restrictive requirements regarding efficiency and concentration of the final effluent.  

Obviously, the application of these combined anaerobic systems is conditioned to an 

appropriate dilution capacity of the receiving body. 

 

Table 2.3  Tapioca starch wastewater from extraction step and effluent UASB      

                  characteristics   
   

Parameters/References Mai et.al. (2004) Sima-Inter Products 
Co.,Ltd.

General Starch 
Co.,Ltd.(a) (b) 

pH 7-8 7-8 7-8 
TSS (mg/L) 120-320 500-1,000 300-500 
TCOD (mg/L) 1,005-2,650 734-1,600 400-1,500 
TBOD5 -  (mg/L) - 320-600 
TKN (mg/L) 57-95 200-250 141-250 
Org-N (mg/L) 15-31 5-7 5-11 
NH3 36-68 -N (mg/L) 195-243 130-245 
Total P (mg/L) 12-60 5-8 4-6 
COD/TKN 25 4 2 
COD:N:P 100:4:2 100:25:1 100:49:1 

 
Remark:  a,bfield surveys of tapioca starch wastewater treatment in two factories of in 

Nakhon Ratchasima Province, Thailand 
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In this sense, in situations in which the receiving body presents a good dilution 

capacity, the adoption of less restrictive discharge standards could enable the construction 

of simpler and more economical treatment plants in several small cities by means of a more 

intensive use of anaerobic reactors, particularly UASB reactors.  At a later stage, if it 

becomes necessary to produce a better quality effluent, a complementary treatment unit can 

be built after some years.  The high costs of sophisticated treatment systems, designed 

exclusively to meet BOD discharges standards, make their construction at a single stage 

unfeasible for most cities located in developing countries.  On the other hand, the 

construction in stages could be decisive and that systems consisting of UASB reactor and a 

post-treatment unit become the most feasible ones regarding technical and economical 

criteria. 

2.4.2 Limitation Regarding Nitrogen and Phosphorus 

The discharge of nutrients into surface water bodies may cause increased 

algal biomass as a result of the eutrophication process (abnormal algae growth due to the 

nutrients discharged).  The problem can be even worsened due to the decreased oxygen 

levels, by means of the nitrification processes, when at least 4.0 kg of dissolved oxygen are 

consumed for each kg of ammonia discharged into the receiving body (Grady et al., 1999). 

In cases in which nutrient removal is required to meet the quality standards 

of the receiving water body, the use of anaerobic processes preceding a complementary 

aerobic treatment for biological nutrient removal should be analyzed very carefully, once 

anaerobic systems present good biodegradable organic matter removal, but practically no N 

and P removal efficiency.  This certainly causes a negative effect on biological treatment 

systems aiming at good nutrient removal, because the effluent from the anaerobic reactor 

will have N/COD and P/COD ratios much higher than the values desired for the good 

performance of biological nutrient removal processes.  When the purpose of the treatment 

plant is also a good nitrogen removal, the anaerobic reactor should be used to treat initially 
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only a part of the influent raw sewage (possibly no more than 50–70%), and the remaining 

part (30–50%) should be directed to the complementary biological treatment, aiming at 

nitrification and denitrification, so that there is enough organic matter for the denitrification 

step. In this case, the great advantage of the use of the anaerobic reactor is to receive and 

stabilize the sludge generated in the complementary treatment, eliminating the need for an 

anaerobic sludge digester (Chernicharo, 2006). 

2.4.3 Limitation Regarding Microbiological Indicators 

Regarding the microbiological indicators, low faecal coliform removal 

efficiencies have been reported in anaerobic reactors, usually amounting to around only 1 

log-unit.  Regarding other types of microorganisms, such as viruses and protozoans (mainly 

Giardia and Cryptosporidium), there are few references covering their reduction or 

elimination in anaerobic reactors.  The removal of helminth eggs in anaerobic reactors, 

particularly in UASB reactors, has been reported as amounting to 60–90%, being therefore 

insufficient to produce effluents that may be used in irrigation.  However, it should be 

mentioned that these limitations are not exclusive of anaerobic reactors, but are a 

characteristic of most compact wastewater treatment systems.  As the risk of human 

contamination by ingestion or contact with water containing pathogenic organisms is high, 

many times it may be necessary to disinfect the effluents.  This fact becomes even more 

serious due to the poor sanitary conditions in developing countries.  On the other hand, the 

low investments in health and sanitation make the population of these countries bearers of 

several diseases that can be transmitted by faeces and, consequently, by the sewage 

generated by this population. 

 

2.5 Advantages of the Combined (Anaerobic/Aerobic) System 

In comparison with a conventional wastewater treatment plant consisting of primary 

sedimentation tank followed by aerobic biological treatment (activated sludge, trickling 
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filter, submerged aerated biofilter or biodisc), with the primary and secondary sludge 

passing through sludge thickeners and anaerobic digesters prior to dewatering, a treatment 

consisting of a UASB reactor followed by aerobic biological treatment (with the secondary 

sludge directed to thickening and digestion in the UASB reactor itself and then straight to 

dewatering), can present the following advantages (Chernicharo, 2006): 

• the primary sedimentation tanks, sludge thickeners and anaerobic digesters, 

as well as all their equipment, can be replaced with UASB reactors, which do not require 

the use of equipment.  In this configuration, besides their main sewage treatment function, 

the UASB reactors also accomplish the aerobic sludge thickening and digestion functions, 

requiring no additional volume; 

• power consumption for aeration in activated sludge systems preceded by 

UASB reactors will be substantially lower compared to conventional activated sludge 

systems, and especially extended aeration systems; 

• thanks to the lower sludge production in anaerobic systems and to their 

better dewaterability, sludge volumes to be disposed of from anaerobic/aerobic systems will 

be much lower than those from aerobic systems alone.  According to studies carried out by 

Pontes (2003), a 30% VSS destruction can be reached when secondary sludge produced in 

a trickling filter is returned to a UASB reactor.  When the mass balance is performed, the 

total sludge production in a combined UASB/Trickling Filter system can be 30–50% lower 

than in a conventional trickling filter system. 

• the construction cost of a treatment plant with UASB reactor followed by 

aerobic biological treatment usually amounts 50–80% of the cost of a conventional 

treatment plant (20–50% investment savings).  In addition, due to the simplicity, smaller 

sludge production and lower power consumption of the combined anaerobic/ aerobic 

system, the operational costs also represent an even greater advantage.  Savings on 
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operation and maintenance costs are usually in the range of 40–50% in relation to a 

conventional treatment plant. 

 

2.6 Post Treatment Options for Effluent Quality Enhancement 

Nowadays, there exist a lot of studies related to the treatments of tapioca wastewater 

by anaerobic and aerobic processes, such as anaerobic fixed bed reactor, methanogenic 

reactor, acidification reactor, UASB reactor, attached growth reactor, oxidation pond 

system and others.  But there seems little be done on the study for whole system, from 

original wastewater to the effluent of system, which can meet the local effluent standard.  

Hein et al. (1999) reported the treatment system from a large scale factory in a laboratory 

scale treatment system including primary sedimentation, UASB reactor and aeration tank 

using attached growth reactor give high treatment efficiencies, with influent COD reduced 

from 11,077-19,083 mg/L to less than 87 mg/L in the effluent of aeration tank.  The full 

scale oxidation pond system is used as a post treatment, with HRT of 12-20 days.  This 

final effluent COD of pond system is lower than 10 mg/L, so the effluent can be used for 

agriculture or reused for the factory, as flow diagram in Figure 2.2(a) and operating 

condition in Table 2.4.  Mai et al. (2004) were investigated treatment technology as follow 

in Figure 2.2(b) and Table 2.4, the upflow anaerobic process (UAF) is responsible for the 

reduction of SS, and hydrolysis a portion of organic matter.  The UASB reactor (as the 

treatment system) is responsible for the reduction of organic matter.  The aeration tank is 

responsible for the reminder of organic matter.  And aquatic plant pond is responsible for 

the remainder of organic matter, nitrogen and phosphorus removal. Moreover, Figure 2.2(c) 

illustrates flow diagram from field surveys of tapioca starch wastewater treatment in two 

factories of in Nakhon Ratchasima Province, Thailand.  The UASB effluents were treated 

by stabilization pond system.  That is not the effective process and still high area using.   
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(a) The treatment technology investigated by Hein et al. (1999). 

 

 

 

 

 

 

 

(b) The treatment technology investigated by Mai et al. (2004). 

 

 

 

 

 

 

 
 

 

(c) Two tapioca starch factories of the researchers survey  
 
 

Figure 2.2 Tapioca starch wastewater treatment technology 
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Table 2.4  The previous aerobic processes options for a post treatment  

                  in tapioca starch industry  
 

Treatments OLR 
(kgCOD/m3

HRT 
-d) (d) 

COD removal 
(%) References 

RBC 0.3-1.6 0.3-1.1 69-97 Radwan and 
Ramanujam (1996) 

Activated sludge 0.5-1.4 1.4-4.2 >90 Oliverira et al. (2001) 

Attached growth 
reactor 1-1.4 0.5 83-87 Hein et al. (1999) 

Aerated pond 2.1 0.5 93-97 Mai et al. (2004) 

 
 

2.7 Downflow Hanging Sponge (DHS) Processes   

  A downflow hanging sponge (DHS) reactor was proposed and developed as a novel 

and low cost post treatment for UASB treating sewage (Tandukar et al., 2005).  The 

principle of this system is the use of polyurethane sponge as a medium to retain biomass.  

The concept is somewhat similar to that of tricking filter, except that the that the packing 

material is sponge, which has a void space of more than 90%, resulting in a significant 

increase in entrapped biomass and thus longer SRT.  As the sponge in a DHS is not 

submerged and freely hung/placed in air, oxygen is dissolved into the wastewater when it 

flows down the reactor and therefore there is no need for external aeration or any other 

energy inputs.  Moreover, production of excess sludge from DHS is negligible as longer 

SRT provides ample time for autolysis of sludge in the system itself.   

2.7.1 Types of DHS Reactor 

 Since the emergence of the first DHS proto-type a decade ago, it has been 

modified to newer configurations, making it simple, more cost effective and suitable for 

real-scale application.  Cube type DHS, called the “first generation DHS” (Figure 2.3a), 

was the first of its type, and was like a rosary of cube shaped sponges that hung freely in 

the air (Agrawal et al., 1997; Mechdar et al., 1997).  The system exhibited good efficiency 
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in removing organics and nitrogenous compounds, when applied as a post treatment unit for 

UASB treating sewage.  However, the configuration was not compatible for real-scale 

application.  To overcome this drawback, a better arrangement of sponges was worked out, 

which was called “curtain-type DHS” or the second generation DHS” (Figure 2.3b).  Based 

on these findings, a demonstration-scale “second generation DHS” has been constructed 

and is under continuous monitoring in Karnal, India, since the year 2002.  The project was 

undertaken by the government of India under the Yamuna Action Plan Tandukar et al. 

(2006a).  Yet other designs of DHS were conceptualized bringing forth the “third 

generation” and the “fourth generation” DHS reactors.  These newer generations were 

modified to make them simpler in construction and maintenance, lowering the cost at same 

time.  The third generation DHS was more like a tricking filter, packing medium being 

replaced by small sponge units put inside a net-like plastic cover.  The construction was 

simple as sponge units were randomly packed inside a reactor container (Figure 2.3c).  

Tandukar et al. (2005) and Tandukar et al. (2006a) describe the “forth generation DHS” in 

terms of performance and material balance along with sludge characteristics (Figure 2.3d).  

Construction of this reactor is discussed in a later section.  The design is peculiar in 

enhancing dissolution of air into the wastewater and in avoiding possible clogging of the 

reactor due to sudden washout from UASB.  Additionally, it is simple and easy to 

construct. 
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Figure 2.3 Application types of DHS rectors 
 

 
 

2.7.2 DHS Sludge Characteristics 

Development of biomass and its quantification has been illustrated by 

Tandukar et al. (2005).  The DHS was started up without any inoculums.  Biomass growth 

and accumulation in the DHS attained a steady state after around eight mounts of operation.  

Afterwards, the biomass concentration in the sponge remained almost stable with around 34 

gSS/L or 26 gVSS/L of sponge volume, which is 5-20 times higher than that a conventional 

activated sludge system.  More than 90% of void space and reticulated structure of sponge 

forms an appropriate colonization matrix and attachment site for microorganisms.   
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Dens accumulation of biomass prolongs the SRT of the system, which then provides 

enough time for self-degradation of sludge in the reactor itself, minimizing the production 

of excess sludge.  Excess sludge from the DHS was that accumulated in the clarifier, which 

was withdraw periodically.  Mass balance of the curtain type DHS system showed that only 

6% of the total influent COD was eluted as excess sludge (Tandukar et al., 2006b).  Also, 

the excess sludge production DHS system was negligible.  Endogenous respiration of DHS 

sludge was high compared to other aeration systems.  The specific oxygen utilization rate 

for endogenous respiration was 6.5 gDO/kgVSS-h for the sludge harvested from the upper 

part of DHS curtain (near inlet) and 4.8 gDO/kgVSS-h for the sludge harvested from the 

lower part (near outlet).  The values were higher than that of activated sludge system or 

submerged membranes treating domestic sewage.  The value of endogenous respiration for 

sludge harvested from the membrane was in the range of 1.92-2.16 gO2/kgVSS-h.  For the 

returned sludge from activated sludge system it was in the range of 3-8 gO2/kgVSS-h.  

High endogenous respiration of DHS sludge suggests that the sludge accumulation was 

near balance with the degradation of sludge in the reactor itself, thus minimizing excess 

sludge production.  Further, sludge was also being utilized as a carbon source during 

denitrification.  Observed sludge yield for DHS was calculated to be 0.27-0.40 

mgVSS/mgBODutilized, which is less compared to other aerobic systems treating domestic 

sewage.  The observed sludge yield for other aerobic system like activated sludge system 

varies from 0.6 to 1.2 mgVSS/mgBODutilized

 

 that depending upon the substrate loading.  

The value for aerated biofilter also average around 0.37 mgVSS/mgBOD due to long SRT 

and higher degradation of old sludge in the system (Tandukar et al., 2006a).  However, 

several questions need to be addressed by a systematic research plan, the most important 

being the optimized operating conditions, biokinetic coefficients, sludge composition, mass 

transport and dominant microorganism in DHS biomass.   



 
 

22 
 

2.7.3 Factors Affecting on DHS System Performancy 

The DHS system was more like a trickling, packing medium being replaced 

by small sponge units put inside a net-like plastic cover.  Overlong history of use, a large 

data base has been assembled describing the factors affecting the performance of the 

trickling filter process by Grady et al. (1999) and Eding et al. (2006) could be summarized 

drown (Table 2.8): 

(a) Process Loading: The performance of any biochemical operation is 

affected by the process loading, i.e. the amount of substrate applied per unit time per unit 

mass of biomass.  In suspended growth systems the process loading is expressed as the 

solids retention time (SRT) or process loading factor, i.e. F/M ratio.  When high amounts of 

easily degradable organic matter are present in a biofilter, the fast growing heterotrophic 

bacteria will ‘out-space’ the slow growing nitrifiers from the aerobic zone in the biofilm as 

they compete for oxygen and space.  When high amounts of easily degradable organic 

matter are present in a biofilter, the fast growing heterotrophic bacteria will ‘out-space’ the 

slow growing nitrifiers from the aerobic zone in the biofilm as they compete for oxygen 

and space.  In literature, minimum and maximum hydraulic surface loading rates (HSL; 

m3/m2 filter cross-section/day) are reported for trickling filters.  The upper and lower limits 

for HSL vary with specific surface area and media type. Head loss or removal of bacteria 

from the plastic media limits the increase of hydraulic surface loading.  A minimum HSL is 

necessary to keep the complete filter surface area wet and may be needed to control the 

concentration of grazing organisms in a trickling filter.  Minimum hydraulic loading rates 

reported for trickling filters are 32–55 m3/m2/day and maximum hydraulic loading rates 

reported are 72–188 m3/m2

(b) Recirculation: The term recirculation refers to the return of trickling 

filter effluent, either prior to or following secondary clarification, back to trickling filter 

influent.  The primary purpose of recirculation is to uncouple the hydraulic and organic 

/day.  
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loading rates.  Another purpose for recirculation applies when a high-strength wastewater is 

being treated.  As literature suggested that oxygen limitations may be expected in trickling 

filters whenever the concentration of biodegradable organic exceeds about 250 mg/L as 

COD.            

(c) Media Depth: Trickling filters have been constructed with a wide 

range of media depths.  Depths are generally around 2 m for rocking media, with a typical 

range of 1 to 2.5m.  Depths up to 12 m have been used for high-rate media, but a maximum 

depth of about 6.7 m is often used because of media structural consideration.        

(d) Temperature: Temperature is another factor whose impact on trickling 

filter performance has historically been poorly understood.  Ample full-scale evidence 

exists demonstrating that the performance of trickling filter can decline significantly during 

periods of cold weather.      

(e) Ventilation: Resistance to air flow through a properly designed 

trickling filter is quite low, and thus only a small motive force is required to induce it.  

Natural draft ventilation operates very effectively as long as the temperature and humidity 

differences between the air inside and outside the trickling filter are sufficiently large to 

generate the air inside and outside the trickling filter are sufficiently large to generate the 

needed force.      

(f) Distributor Configuration: Several wastewater distribution systems 

have been used, including fixed nozzles with or without periodic dosing and rotary 

distributors with or without speed control.  Experience indicates that the distributor type 

significantly affects the hydraulic flow pattern and the biofilm thickness within the trickling 

filter.  Both of these factors significantly affect trickling filter performance.        

(g) Wastewater Characteristics: As with all biochemical operations, the 

characteristics of wastewater being treated affect the performance of a trickling filter.  The 

more easily biodegradable the wastewater, the higher the organic loading that can be 
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applied while still achieving acceptable effluent quality.  There are limits of course, because 

ultimately, the rate of oxygen transfer will control the rate at which organic matter can be 

removed and oxidixed.  Just as in the activated sludge process, various wastewater 

components are removed by a variety of mechanisms.  Readily biodegradable substrate is 

removed by diffusion through the biofilm to microorganisms which biodegrade it.  Slowly 

biodegradable substrates are initially removed by flocculation and entrapment mechanisms, 

just like in the activated sludge process.  They are then hydrolyzed by extracellular 

enzymes before they are biodegraded.         

(h) Total Suspended Solids: Particulate matter may also be problematic for 

biofilters in negatively affecting nitrification through clogging, occupation of the surface 

area by bacteria biomass as well as the through the addition of organic.  Particles can easily 

attach onto the biofilm surface leading to thicker biofilms; however, these biofilms do not 

necessarily result in higher nitrification rates. Degradation of organic solids in the biofilm 

may compete with nitrification thus lowering the overall nitrification capacity of the 

trickling filter. 

 

2.8 Past Studies of DHS System 

 The first research team of aerobic post treatment process named DHS reactor (Cube 

type DHS) is Machdar et al. (1997) with the aim of the study was to investigated the 

feasibility of the proposed system.  Over six months experiment by feeding sewage their 

proposed system achieved 94% of CODt removal, 81% of CODs removal and nearly 

perfect SS and total BOD removal at overall HRT 8.3 h (7 h in UASB and 1.3 h in DHS).  

The reactor was capable of performing high (73-78% of NH3-N removal) nitrification.  

That found to be the system was capable of organic removal also nitrification.  With 

evidence from literature who applied Fluorescence In-Situ Hybridization (FISH) to 

investigate the presence ratio of Nitrosomonas and Nitrobacter cells to total cells that was 



 
 

25 
 

found to be 1.4% and 0.18%, respectively.  Cells concentrations of both nitrifying bacteria 

were in good agreement with the magnitudes of ammonia-oxidizing and nitrite-oxidizing 

activities evaluated from batch tests (Araki et al., 1999).   

Machadar et al. (2000) is original the second generation of DHS reactor proposed 

sewage treatment system.  They described a long term experiment to assess the process 

performance of the whole combined system receiving actual sewage, with am emphasis on 

nitrification behavior of DHS post treatment unit.  After successful performance in the 

COD and nitrogen removal by DHS, Uemura et al. (2002)  were study about the suitability 

of the UASB-DHS combined system for pathogenic removal with curtain type DHS.  The 

results were superior to the conventional activated sludge process in the reduction of fecal 

coliforms, but in the reductions of total RNA coliphages, the system showed somewhat less 

removal efficiency.  Moreover, Turdukar et al. (2006a) evaluated for 3.5 years of the 

system regarding the applicability of curtain type DHS process to further treat the effluent 

of UASB treating domestic sewage.  Behavior of DHS system in response to hydraulic and 

organic shock loads was also investigated.  The observation suggested that DHS has a 

capability to cope with higher organic shock loads, with rapid recovery.  However, the 

performance of the reactor especially in terms of nitrogen removal deteriorated during the 

organic shock load.   

The third generation of DHS system (random type) investigated by Tawfik et al. 

(2006a).  Performances of the combined system for sewage treatment at an average 

wastewater temperature of 15 ºC have been investigated for 6 months.  The results showed 

that a combined system operated at a total HRT of 10.7 h and total SRT of 88 days 

represents a cost effective sewage treatment process.  The average total COD and total 

BOD5 concentrations measured in the final effluent of the total system (UASB+DHS) 

amounted to 43 and 3.0 mg/L, respectively, corresponding to the overall removal efficiency 

of 90% for total COD and 98% for total BOD5.  The total process provided a final effluent 
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containing a low concentration of 12 mg/L for TSS.   Eighty-six percent of ammonia was 

eliminated at space loading rate of 1.6 kg COD/m3-d and HRT of 2.7 h.  The removal of F. 

coliform in the UASB reactor only amounted to 0.86 log10.  On the other hand, the F. 

coliform concentration dropped substantially, i.e. by 2.6 log10 in the DHS system resulting 

only 2.7×103

And, the forth generation (tricking filter type DHS) was developed to overcome a 

few shortcomings of its predecessors (Tandukar et al., 2005).  This reactor was designed to 

further enhance the treatment efficiency and simplify the construction process in real scale, 

especially for the application in developing countries.  Configuration of the reactor was 

modified to enhance the dissolution of air into the wastewater and to avert the possible 

clogging of the reactor especially during sudden washout from the UASB reactor.  The 

whole system was operated at a total HRT of 8 h (UASB 6 h + DHS 2 h) for a period of 

over 600 days.  The combined system was able to remove 96% of unfiltered BOD.  

Likewise, F.coli were removed by 3.45 log with the final count of 10

/100 mL in the final effluent.  The calculated average sludge production was 

indeed very low only 6.0 g TSS/d corresponding to sludge yield coefficient of 0.09 g TSS/g 

total COD removed, for DHS system.   

3 to 104

Several literatures suggest DHS system is not only superior to the conventional 

trickling filter (Chernicharo and Nachimento, 2001), but also to other post-treatment 

systems, such as, activated sludge process, sequencing batch reactor (SBR) (Torres and 

Foresti, 2001), and submerge aerated filter (Gonçalves et al., 1999) with regard to COD 

removal, nitrification efficiency and F. coliform removal as summarized results in Table 2.5 

 MPN/100ml.  

Nutrient removal by the system was also satisfactory.  The summarized performances of 

DHS processes were showed in Table 2.5.  The high entrapment capacity of the DHS 

system and the retain of a high biomass concentration of 34 g VSS/L are the main reasons 

for the higher COD removal, nitrification process and F. coliform removal as compared to a 

series of RBC’s treating UASB reactor effluent (Tawfik et al., 2005).   
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and 2.6.  Accordingly, it is strongly recommended to use DHS system for post-treatment of 

anerobically pre-treated sewage.  So far most of the research work on the DHS system has 

been with sewage wastewater treatment (Agrawal et al., 1997; Machdar et al., 1997; Araki 

et al., 1999; Mechdar et al., 2000; Uemura et al., 2002; Tandukar et al., 2005; Tawfik et al., 

2006a; Tawfik et al., 2006b; Chuang et al., 2007).  Only one has been reported on actual 

dye wastewater treatment using DHS system (Ohashi et al., 2006).     

2.8.1 Performance Comparison of DHS System and Other Post Treatment 

Systems    

This part of the study focuses on post-treatment options for the anaerobic 

treatment of tapioca starch industry.  Initially, the main limitations of anaerobic systems 

regarding carbon and nutrient removal are presented.  In sequence, the advantage of 

combined anaerobic/aerobic treatment and the main post treatment options currently in use 

are discussed, including its economy apart from the level of social and educational 

conditions.  Tables 2.6 and 2.7 (Chernicharo 2006; Tawfik et al., 2006a) and Tandukar et 

al., 2007) present a comparative analysis between the main systems applied to the post-

treatment of effluents from UASB reactors, as follows: 

• Quantitative comparison (Table 2.6): average effluent concentrations 

and typical removal efficiencies of the main pollutants of interest in domestic sewage 

• Quantitative comparison (Table 2.7): typical characteristics of the main 

sewage treatment systems, expressed in per-capita values. 

 

 

 

 

 

 

 

 

 



Table 2.5 Typical removal efficiencies and operating condition of UASB+DHS system treatment for domestic wastewater  

Type of DHS 
reactors 

UASB DHS 
Overall Efficiencies  

References 
HRT 
(h) 

Influent Effluent 
HRT 
(h) 

Effluent 

TSS 
(mg/L) 

TCOD 
(mg/L) 

TSS 
(mg/L) 

TCOD 
(mg/L) 

TSS 
(mg/L) 

TCOD 
(mg/L) 

SRT 
(d) 

TSS 
(%) 

TCOD 
(%) 

1. Cube type 7 235 672 75 144 1.3 ND 70 >170 100 94 Machdar et al. (1997) 

2. Cube type 7 235 672 75 144 1.3 ND 40 - 100 94 Araki et al. (1999) 

3. Curtain type 6 138 393 56 161 2 51 59 - 79 84 Machdar et al. (2000) 

4. Trickling  
    filter type 6 262 240 66 78 2 17 46 88 93 91 Turdukar et al. (2005) 

5. Random type 8 255 492 47 178 2.7 12 72 178 94 90 Tawfik et al. (2006a) 

6. Curtain type 6 134 373 75 167 1.3 40 69 167 70 94 Turdukar et al. 
(2006a) 

 
Remark: ND is not detection 

 

 

 

 

 



Table 2.6 Average effluent concentrations and typical removal efficiencies of the main pollutants of interest in domestic sewage 

Systems 

Average quality of  effluent Average removal efficiency 

BOD
(mg/L) 

5 COD 
(mg) 

TSS 
(mg/L) 

NH4
(mg/L) 

-N Total N 
(mg/L) 

Total P 
(mg/L) 

FC 
(log units) 

BOD
(%) 

5 COD 
(%) 

TSS 
(%) 

NH4
 (%) 

-N Total N 
(%) 

Total P 
(%) 

FC 
(log units) 

1. UASB reactor 70-100 180-270 60-100 >15 >20 >4 106-10 60-75 7 55-70 65-80 <50 <60 <35 1-2 

2. UASB + Activated Sludge 20-50 60-150 20-40 5-15 >20 >4 106-10 83-93 7 75-88 87-93 50-85 <60 <35 1-2 

3. UASB + Submerge aerated 
biofilter 20-50 60-150 20-40 5-15 >20 >4 106-10 83-93 7 75-88 87-93 50-85 <60 <35 1-2 

4. UASB + high rate trickling 
filter 20-60 70-180 20-40 >15 >20 >4 106-10 83-93 7 73-88 87-93 <50 <60 <35 1-2 

5. UASB + anaerobic filter 40-80 100-200 30-60 >15 >20 >4 106-10 75-87 7 70-80 80-90 <50 <60 <35 1-2 

6. UASB + dissolved air 
floatation  20-50 60-100 10-30 >20 >30 1-2 106-10 83-93 7 83-90 90-97 <30 <30 75-88 1-2 

7. UASB + polishing ponds 40-70 100-180 50-80 10-15 15-20 <4 102-10 77-87 4 70-83 73-83 50-65 50-65 >50 3-5 

8. UASB + overland flow 30-70 90-180 20-60 10-20 >15 >4 104-10 77-90 6 70-85 80-93 35-65 <65 <35 2-3 

9. UASB + DHS system 4-30 32-92 4-32 3-15 12-24 - <10 94.3 4 89.7 94.8 59.9 55.9 - 4 

 
Source: Adapted from Chernicharo (2006); Tawfik et al. (2006a) and Tandukar et al. (2007)   

 

 



Table 2.7 Typical characteristics of UASB reactor and various post treatment systems, expressed as per capita values 

Systems 
Land 

requirements 
(m2

Power for aeration 

/inhab) 

Sludge volume Cost 

Install power 
(W/inhab.year) 

Consumed power 
(kWh/inhab.year) 

Liquid sludge to 
be treated 

(l/inhab.year) 

Dewatered sludge 
to be disposed of 

(l/inhab.year) 

Construction 
(US$/inhab) 

Operation and 
maintenance 

(US$/inhab.year)  

1. UASB reactor 0.03-0.10 0 0 70-220 10-35 12-20 1.0-1.5 

2. UASB + Activated Sludge 0.08-0.2 1.8-3.5 14-20 180-400 15-60 30-45 2.5-5.0 

3. UASB + Submerge aerated 
biofilter 0.05-0.15 1.8-3.5 14-20 180-400 15-55 25-40 2.5-5.0 

4. UASB + high rate trickling 
filter 0.1-0.2 0 0 180-400 15-55 25-35 2.0-3.0 

5. UASB + anaerobic filter 0.05-0.15 0 0 150-300 10-50 20-30 1.5-2.2 

6. UASB + dissolved air 
floatation  0.05-0.15 1.0-1.5 8-12 300-470 25-75 25-35 2.5-3.5 

7. UASB + polishing ponds 1.5-2.5 0 0 150-250 10-35 15-30 1.8-3.0 

8. UASB + overland flow 1.5-3.0 0 0 70-220 10-35 20-35 2.0-3.0 

9. UASB + DHS system 0.1-0.2 0 0 12-27 1-4 25-35 2.0-3.0(a) (b) 

Remark:   Construction, operation and maintenance costs based Brazilian experience (basis: year 2002) 
                 a, b were taken from the cost as same as UASB + high rate tricking filter combined wastewater treatment system    

 
Source: Adapted from Chernicharo (2006); Tawfik et al. (2006a) and Tandukar et al. (2007) 
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2.9 Application of Fungi in Wastewater Treatment 

Fungi usually are saprophytic organisms and are classified by their mode of 

reproduction.  As saprophytes they obtain their nourishment from the degradation of dead 

organic matter.  Most fungi are free-living and include yeast, molds, and mushrooms.  Most 

fungi are strict aerobes and can tolerate a low pH and a low nitrogen environment.  

Although fungi grow over a wide range of pH values (2-9), the optimum pH for most 

species of fungi is 5.6, and their nitrogen nutrient requirement for growth is approximately 

one-half as much as that for bacteria.  In the activated sludge process filamentous fungi 

may proliferate and contribute to settle ability problems in secondary clarifiers.  The 

proliferation of filamentous fungi is associated with low pH (<6.5) and low nutrients.  

Although filamentous fungi contribute to settle ability problems in the activated sludge 

process, the presence of a large and diverse population of fungi is desired for the treatment 

of some industrial wastewaters and composting of organic wastes.  Fungi have the ability to 

degrade cellulose, tolerate low nutrient levels, and grow in the presence of low pH 

conditions (Gerardi, 2006). 

Fungi are recognized for their superior aptitudes to produce a large variety of 

extracellular proteins, organic acids and other metabolites, and for their capacities to adapt 

to severe environmental constraints.  For example, Aspergillus niger is the prototypical 

fungus for the production of citric acid, homologous proteins (esp. enzymes) and 

heterologous proteins.  Moreover, Phanerochaete chrysosporium is the model of white-rot 

fungi for the production of peroxidases.  Beyond the production of such relevant 

metabolites, fungi have been attracting a growing interest for the biotreatment (removal or 

destruction) of wastewater ingredients such as metals, inorganic nutrients and organic 

compounds.  The focus of this review therefore concerns the use of fungi to remove or 

degrade various wastewater constituents.  Some instances of synthetic wastewaters are 

reported, but only the contributions of fungal biomass in the biological treatment.  
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Moreover, researchers recognized the potential use of fungi in wastewater treatment during 

the late 1950s to early mid 1960s (Geust and Smith, 2002).  Recently, emphasis has been 

made on treatment of wastewater with fungi because they are capable of rapid growth on a 

variety of substances (Karim and Sistrunk, 1984).  Moreover, microscopic fungi can 

perform nitrification and denitrification under laboratory conditions.  Evidence from the 

literature indicates the fungi based on biological wastewater could be efficient as 

summarized in Table 2.8.  

2.9.1 Domestic Sewage 

Domestic sewage contains carbon and nutrient sources that can be removed 

by fungal biomass.  In an early investigation, Thanh and Simard (1973) demonstrated the 

capacities of seventeen fungal biomasses to remove phosphates (84.1%), ammonia (73.3%), 

total nitrogen (68.1%) and chemical oxygen demand (COD) (39.3%). They obtained fungal 

growth on this effluent with an accumulation of biomass (451.2 mg/L) that contained 

protein (47% g/g).  There was variability in fungal capacities as to the removal of 

pollutants.  In fact, Trichothecium roseum was the best in phosphate removal (97.5%), 

whilst Epicoccum nigrum, Geotrichum candidum and Trichoderma sp. were the best in the 

removal of ammonia (84%), total nitrogen (86.8%) and COD (72.3%), respectively.  

Concerning cell-protein production, Paecilomyces carneus had the highest ratio of protein 

to biomass (92.5%). However, this fungus did not grow very well on domestic sewage.  In 

our laboratory, domestic wastewater pretreatment by a strain of A. niger has been 

investigated under transient conditions.  This fungal biomass removed about 72% of COD 

and 65% of protein.  Despite the differences between the bioprocess investigated in these 

two studies, COD and protein removal rates are in the same order.  The overall feasibility 

of domestic wastewater treatment under sewer-simulating conditions has been explored 

recently both experimentally and by simulation.  The heat treatment liquor (HTL) of an 

activated sludge was decolourised by Coriolus hirsutus.   



Table 2.8  Example of fungi used in wastewater treatment systems, optimal conditions and the effect of fungal pretreatment.     

Effluents Fungi 
Treatments 

Reactor and medium handing Parameters 

D
om

es
tic

 se
w

ag
e 

Penicillium c., Steganosporium p., Arthrinium a., 
Fusarium o., Cladosporium h., Cladosporium c.,, 
Scopulariopsis b., Mucor h., Trichothecium r., 
Epicoccum n., Helminthosporium s., Ulocladium 
atrum, Geotricum c., Trichocladium 
a., Paecilomyces c., Trichoderma sp., 
Chrysosporium p. 

Shake-flask 

COD (72.3%);  
Phosphates (97.5%);  
Total N (86.8%); 
Dry matter  (684 mg/L); 
Protein content (205 mg/L) 

Aspergillus niger Stirred tanks reactor in series COD (72%); N-total (65.4%) 

Coriolus hirsutus 

Continuous immobilized 
bioreactor; addition (nutrient 
(NH4 (100 mg/L), NO3 (100 
mg/L); MnSO4
Co-substrate (glucose, 0.5%) 

);  

 
Decolorization (80%, 2 d);  
MnP (60 U/L); 
MIP (40 U/L) 

St
ar

ch
 

Pr
oc

es
si

ng
 

E
ffl

ue
nt

s A. oryzae; Rhizopus arrhizus; Trichoderma 
viride; T. reesei; G. candidum; A. terreus; 
R. oligosporus 

Shake-flask, air lift bioreactor 
(45 L); addition of nutriment 
(NH4)2SO4; Urea; NH4NO3
NaNO

; 
3; K2HPO4; KH2PO4

TOC (44-88%); SS (95%); starch 

) 

hydrolysis (53-100%); biomass (2-
5.6 g/L); protein (48.8% of biomass 
weight); COD (97.8%); 
glucoamylase (3.94 U/mL) 

 A. niger; A. oryzae Shake-flask COD (90%); biomass and amylase 
production 

 
Source: Adapted from (Coulibaly et al., 2003). 

 



Table 2.8  Example of fungi used in wastewater treatment systems, optimal conditions and the effect of fungal pretreatment (Continued).  

Effluents Fungi 
Treatments 

Reactor and medium handing Parameters 

St
ar

ch
 P

ro
ce

ss
in

g 
E

ffl
ue

nt
s 

 A. niger, P. simplicissimum, Geotrichum 
sp., Fusarium verticillioides, Rhizoctonia 
solani, Aquathanatephorus pendulus; 

Shake-flask, presence of co-ions, 
biomass (produced) A. niger (Cu (91%); Zn (70%)) 

A. niger, A. flavus, A. fumigatus; R. 
Arrhizus; A. terrus 

Shake-flask; presence of co-ions, 
biomass (industrial waste, produced) 

 
Metal removal (82-100%) 

 Mucor meihi Shake-flask; biomass (industrial 
waste), dilution (1-20) Sorption (0.7-1.15 mmol/g) 

A. niger Shake-flask; presence of co-ions, 
biomass (produced) Metal removal (75%) 

D
is

til
le

ry
 W

as
te

w
at

er
s  P. chrysosporium; G. candidum; 

C. versicolor; Mycelia sterilia Dilution (50%) 

Decolorization (53%, 10 d); growth 
rates inhibition below 50% of 
dilution; decoloration of melanoidins 
(80%) by P. chrysosporiumJAG-40 

A. niger; A. awamori 

Shake-flask; continuous bubble 
reactor; co-substrate (sucrose, fructose, 
glucose); MgSO4 (1 g/L); KH2PO4

OMW (decolorization (69%, 3-4 d); 
COD (78%)) 

 (0.5 
g/L); NH4NO3 (1.8 g/L); peptone (5%); 
rice (3%) 

Thin stillage (protease (200 U ml-1); 
biomass 
(30 g l-1)) 

C. hirsutus 
Shake-flask; continuous immobilized 
polyurethane-foam reactor; MnSO4; 
co-substrate (glucose, ethanol) 

Decolorization (76%, 2 d); TOC 
(45%); 

 
Source: Adapted from (Coulibaly et al., 2003). 

 



Table 2.8  Example of fungi used in wastewater treatment systems, optimal conditions and the effect of fungal pretreatment (Continued).  

Effluents Fungi 
Treatments 

Reactor and medium handing Parameters 

W
oo

d 
Pr

oc
es

si
ng

 W
as

te
w

at
er

 

P. chrysosporium; 
Phanerochaete flavido-alba 

Shake-flask; co-substrate (glucose); Mn (0.3 
mg l-1); culture age 

Decolorization (88%), LiP (450 nmol min-1 
ml-1); 
MnP (800 nmol min-1 ml-1) 

 P. chrysosporium; 
Ganoderma australe; 
Coriolopsis gallica ; 
Paecilomyces variotii 

Shake-flask 

P. chrysosporium (decolorization, 50%, 7 d; 
lignin pyrolisis compounds, 57% reduction;); 
G. australe (decolorization, 50%, 7 d; lignin 
derivated compounds 48% increased ); C. 
gallica (decolorization, 48%, 7 d; 
ligninderivated compounds 77% reduction); 
P. variotii (decolorization, 85%, 7 d; lignin 
derivated compounds 78% reduction) 

; T. versicolor 

Shake-flask; continuous feeding bioreactor; 
culture age; dilution 30%); SO4Mn (23 mg 
l-1); co-substrate (glucose, 0.3%; sucrose; 
starch; ethanol, carboxymethyl-cellulose; 
pulp and bagasse pith) 

Decolorization (90 %, 9 d) Lacc (700 U l-1, 
10 d); MnP (25 U l-1, 7 d); phenols (90%); 
COD (69%) 

 
Source: Adapted from (Coulibaly et al., 2003). 
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This fungal strain exhibited a strong ability to decolourise HTL (70%) with an 

accumulation of manganese independent peroxidase (MIP) and manganese peroxidase 

(MnP).  Optimising the culture medium by adding nitrogen and carbon sources and 

improving the biomass quality resulted in increased colour removal capacity by C. hirsutus.  

Although fungal applications have shown good capacities on sewage treatment, they are 

still underutilized in practice.  This could be explained, in part, by a widespread a priori 

assumption that fungal strains do not perform as well as bacteria. 

2.9.2 Sludge Treatment 

Among the various global environmental hazards, sewage sludge is one of 

the greatest contributors to waste generation, with a typical person generating over 15 liter 

of sewage sludge per week and 50 g of dry solids per day.  Proper management and safe 

disposal of wastewater sludge is a serious bottleneck at the wastewater treatment plant.  

Therefore, attention has been focused on non-hazardous, environmental friendly, and 

sustainable techniques through bioremediation, or biological-based treatment of wastewater 

sludge and disposal.  Therefore, bioconversion/biodegradation might be a potentially 

effective measure for proper waste management (Molla et al., 2002).  

Alam et al. (2003) selected the filamentous fungal strains such as Penicillium 

corylophilum (P), Aspergillus niger (A), Trichoderma harzianum (T ) and Phanerochaete 

chrysosporium (PC) isolated from its relevant sources (wastewater, sewage sludge and 

sludge cake) for compatible/incompatible mixed cultures.  The results of the present study 

showed that the combinations of P/A, P/PC and A/PC showed compatible growth and the 

rest of the combinations (P/T , A/T and T/PC) were incompatible cultures.  A maximum 

production of dry biomass and dry filter cake were recorded in the compatible mixed 

culture of P. corylophilum and A. niger (P/A).  A maximum reduction of COD (90%) and a 

decreased filtration time of treated sludge were observed in the case of P/A microbial mixed 

culture. 
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Mannan et al. (2005) presented the design to evaluate the potential of microbial 

adaptation and its affinity to biodegradation as well as bioconversion of soluble/insoluble 

(organic) substances of domestic wastewater treatment plant (DWTP) sludge (activated 

domestic sludge) under natural/non-sterilized conditions.  The two filamentous fungi, 

Penicillium corylophilum and Aspergillus niger were used to achieve the objectives.  It 

observed P. corylophilum was the better strain compared to A. niger for the bioconversion 

of domestic activated sludge through adaptation.  The visual observation in plate culture 

showed that about 95–98% of cultured microbes (P. corylophilum and A. niger) dominated 

in treated sludge after 2 days of treatment.  In this study, it was also found that the P. 

corylophilum was capable of removing 94% of COD and 99% of turbidity of filtrate with 

minimum dose of inoculums of 10% v/v in DWTP sludge (1% w/w).  The pH level was 

lower (acidic condition) in the fungal treatment and maximum reduction of COD and 

turbidity was observed (at lower pH).  The results for specific resistance to filtration (SRF) 

showed that the fungi played a great role in enhancing the dewaterability and filterability. 

Fakhru’l-Razi and Molla (2007) studied on a promising biological, sustainable, non-

hazardous, safe and environmental friendly management and disposal technique of 

domestic wastewater sludge is global expectation.  Fungal entrapped biosolids as a result of 

prior fungal treated raw wastewater sludge was recycled to evaluate its performance as 

inoculums for bioseparation/bioconversion of supplemented sludge in view of continuous 

as well as scale up wastewater sludge treatment.  Encouraging results were achieved in 

bioseparation of suspended solids and in dewaterability/filterability of treated domestic 

wastewater sludge.  Fungal entrapped biosolids offered 98% removal of total suspended 

solids (TSS) in supplemented sludge treatment at 6 day without nutrient (wheat flour, WF) 

supply.  Consequently, 99% removal of turbidity and 87% removal of COD were achieved 

in supernatant of treated sludge.  Furthermore, the present result is addressing a potential 
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avenue of probable solution for expected management and disposal of domestic wastewater 

sludge in future. 

2.9.3 Decolorization of Wastewater 

The effluents of pharmaceutical industries, dyeing, printing, photographs, 

textile and cosmetics contain dyes. For example, over 7×107

Nowadays other fungi have also shown some capacities to remove dyes from 

industrial effluents.  Dyes are removed by fungi by biosorption, biodegradation and 

enzymatic mineralisation (LiP, MnP, manganese independent peroxidase (MIP), Lacc). 

However, one or more of these mechanisms could be involved in colour removal, 

depending on the fungus used.  Other fungal biomasses applied to the decolourisation of 

raw textile effluents include Botrytis cinerea, Endothiella aggregata, Geotrichum fici, R. 

oryzae, Tremella fuciformis, Xeromyces bisporus, Hirschioporus larincinus, Inonotus 

hispidus, Phebia tremellosa and C. versicolor.   It is reported that raw effluents can only 

partially be decolourised upon fungal treatment (maximum of 49-80% but often much less).  

 tons dyes are produced 

annually worldwide, of which about 10% are lost in industrial effluent.  Wastewaters from 

textile industries are a complex mixture of many polluting substances such as 

organochlorine-based pesticides, heavy metals, pigments and dyes.  Their compositions 

have been discussed in detail by O’Neill et al. (1999).  The majority of these dyes are 

slowly removed by the WWTP, because of their toxicities to indigenous microorganisms. 

Dye removal from wastewaters by established WWTP processes are expensive and need 

careful application.  Furthermore, following anaerobic digestion, nitrogen-containing dyes 

are transformed into aromatic amines that are more toxic and mutagenic than the parent 

molecules. To overcome these difficulties, fungi are being investigated for their potential to 

decolourise effluents.  Among them, the most widely studied are the white-rot fungi P. 

chrysosporium (a model, primarily laboratory organism) and T. versicolor (a promising 

organism for industrial applications). 
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For example, a complex mixture of real textile effluents containing many reactive dyes 

could be decolourised upon partial dilution by using the agaric white-rot fungus Clitocybula 

dusenii.  The weak decolourisation of these effluents by complete cultures could be 

explained by the influences of temperature, pH, salts, inhibitory molecules (sulphur 

compounds, surfactants, heavy metals, bleaching chemicals), carbon and nutrients within 

these solutions.   Concerning enzymatic (Lacc, LiP, MnP) degradations, these reactions are 

quite complicated, involving numerous low molecular weight cofactors that serve as redox 

mediators. These cofactors, in addition to the enzymes themselves, influence fungal colour 

removal rates (Coulibaly et al., 2003). 

Furthermore, there has been an intensive research on fungal decolorization 

of dye wastewater.  It is becoming a promising alternative to replace or supplement present 

treatment processes.  Based on Fu and Viraraghvan (2001) reviews, there were many fungal 

strains capable of decolorizing dye wastewater.  Decolorization by living cells involves 

more complex mechanisms such as intracellular, extracellular oxidases and biosorption, 

than by dead cells.  Concurrent to application of fungi in large scale wastewater treatment, 

Hai et al., (2006) developed a novel submerged microfiltration membrane fungi reactor for 

treatment of textile wastewater that ensures permeate quality while avoiding membrane 

fouling.  Accomplishment of excellent stable pollutant removal (99% color and 97% TOC 

removal) along with the alleviation of the membrane fouling problem by employing a 

reasonable chemical cleaning dose presents the proposed novel system as attractive one. 

Blảnquez et al. (2007) also established the operational conditions for the 

continuous treatment process of the metal complex dye Grey Lanaset G (150 mg/L), in a 

fluidised bed bioreactor using air pulses with retained pellets of the white rot fungus 

Trametes versicolor has been carried out.  Although the bioreactor operated under non-

growth conditions, the fungus activity related to laccase production was maintained.  

Decolourization was highly efficient (>80%) for the different HRT ranging from 18 to 120 
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h, and the dye removal rates ranged from 6.73 to 1.16 mg/L-h.  No direct relationship 

between decolourization and extracellular enzyme activity was found, and high enzyme 

activities were not necessary to obtain high decolourization percentages.  The treated 

effluent fulfils the environmental quality standards in relation to colour, so it could be 

discharged into a municipal wastewater treatment plant if necessary. 

In another studies, Dhouib et al (2006); Ahmadi et al. (2006)  and  Eusẻbio 

et al. (2007) applied fungi reactor for treating olive mill wastewater (OMW).  Degradation 

of the phenolic compounds responsible for the organic load and black color of the OMW is 

the limiting step in the treatment of this wastewater, i.e., conventional biological processes 

for the purification of OMW are ineffective.  Stringent environmental regulations impose 

increasing efforts towards the development of new technologies and improved methods for 

reduction of the biorecalcitrant organics in wastewaters, such as OMW.  Use of white-rot 

fungi to degrade the phenolics in the OMW has been reported by several investigators.  In 

the case of Phanerochaete chrysosporium as the most studied fungus, the ability to degrade 

these types of compounds are known to be due to the expression and activation of the 

lignin-degrading enzymatic system. 

2.9.4 Agroindustrial and Food Processing Effluents 

Industries of olive oil, tapioca starch, distillery (molasses), cotton bleaching, 

pulp and paper processing produce several billion litres of coloured, often toxic and 

harmful wastewaters over the world annually.  Those effluents have strong concentrations 

of COD (10-200 g/L), phenol and its derivatives (0.5-8 g/L) and often contain proteins, 

cyanides, chlorinated lignin compounds and dyes.  The large amount of lignin derivatives 

of these effluents is responsible of their dark-brown color.  The phenolic compounds of 

such wastewaters exert some bactericidal effects on wastewater treatment plant (WWTP) 

microorganisms.  Fungal pretreatment (Table 2.8) of these effluents under aerobic 

conditions makes it possible to obtain phenol reduction (51-100%), good Decolorization 
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(31-100%), biochemical oxygen demand (BOD) reduction up to 85.4%, and enzyme 

production.  Amendment of olive mill wastewater (OMW) composition (addition of co-

substrate, nutrients, salts)  influences the removal of COD,  phenols and colors (Coulibaly 

et al., 2003).  

Food processing wastewater is very amenable to treatment by fungi because 

of their inherent ability to effectively degrade complex polymers such as cellulose, hemi-

cellulose, and lignin materials and produce high value fungal biomass.  The highly 

dewaterable fungal biomass can be used as a source of protein and biochemicals.  The 

ability of fungi to grow at low pH is a desirable property as it not only eliminates the need 

to increase the pH of many acidic food processing wastewater during treatment, but also 

minimizes the bacterial contamination (Jasti, et al., 2006). 

 Jasti et al. (2006) investigated the corn processing wastewater was treated 

by attached growth system of Rhizopus oligosporus fungi.  The effects of HRT and plant-

based components in the support media were evaluated in 1 L reactors under non-aseptic 

conditions.  Plastic composite support (PCS) tubes, composed of 50% (w/w) polypropylene 

(PP) and 50% (w/w) agricultural products were used as support media or, as a test, PP only.  

A maximum COD removal of 78% was achieved at a 5 h HRT with a biomass yield of 0.44 

gVSS/gCODremoved.  The biomass yield increased to 0.48 gVSS/gCODremoved

Specifically, starch is a polysaccharide widely occurring in nature as a 

reserve of stored energy in many plants and also occurs extensively in waste materials 

produced from food processing plants starch processing waste is produced in large 

quantities and causes pollution problems.  Biotechnological treatment of food processing 

can produce valuable products, such as microbial biomass protein, while also purifying the 

effluent (Jin et al., 1999).  In a previous work reported, the biotechnological treatment of 

food processing wastewater can convert pollutant into valuable products such as single cell 

 while COD 

removal reduced to 70% at a 2.5 h HRT.   
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protein, together with purifying the effluent.  In cassava starch processing wastewater, the 

major organic components such as starch residue, free sugars and the sugar formed by the 

amylolytic organisms present in effluent can be used as substrates for the generation of 

microbial biomass rich in protein.  Aspergillus oryzea,  a filamentous fungus which has 

apparently been an essential part of oriental food production for centuries, is known to have 

a wide range of enzymes, and is capable of metabolizating complex mixtures of organic 

compounds occurring in most wastes.  Processing a high amylolytic enzymes activity, A. 

oryzea has been determined to be suitable cultures for treatment of the starch processing 

wastewater.  Another advantage of A. oryzea is safe production of harmless products.  

Fungal biomass is abundant in protein and can be used as additive for animal feeding.  A. 

oryzea dose not produce aflatoxins or any other carcinogenic metabolites (Tung et al., 

2004).        

2.9.5 Metal Containing Effluents 

Metallurgical industries, mining, surfaces cleaning, waste incinerators 

produce large wastewater polluted by metals.  Dissolved metals escaping into the 

environment pose a serious health hazard.  Because they accumulate in living tissues 

throughout the food chain, which has human at its top.  There is a need to remove heavy 

metals before they enter the complex ecosystem.  Physicochemical treatments evolved in 

much diluted water-containing metals (precipitation, electrochemical, flocculation, 

coagulation, ion exchange) are expensive.  Utilization of biomasses in general and 

particularly that of fungi are considered to be best alternatives for those waters purification.  

Indeed, the purification of the water containing metals by fungal biomass is cheaper and it 

presents the following advantages: (i) production of residual small volume; (ii) possibility 

of valorisation of fungal waste biomasses from industrial fermentations; (iii) fast removal 

and (iv) easy installation of the process (Coulibaly et al., 2003). 
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Fungal biomasses walls are composed of macromolecules (chitin, chitosan, 

glucan, lipid, phospholipides), which contain carboxyl groups (RCOOH), amino groups 

(R2NH, R-NH2), phosphates, lipids, melanin, sulphates (R-OSO3-) and hydroxides (OH-).  

Those functional groups are metals sorption sites.  Fungi remove metals essentially by 

adsorption, chemisorptions (ion exchange), complexation, coordination, chelation, physical 

adsorption and micro-precipitation.  There are also possible oxydo-reduction taking place in 

the biosorbent.  When metals are removed by ionic exchange, they generally replace K+, 

Mg2+, Ca2+ and H+ contained in biomasses.  Table 2.8 gives a synthesis of some works on 

metals removal from wastewaters by some fungi. Biomasses used to remove metals from 

wastewaters are generally produced against few residual biomasses from fermentation.  

Metals sequestrations by fungi are influenced by the mineral and organic compositions 

content of the medium in which biomasses are produced.  Biomasses granulometries and 

physiological states (living or dead), co-ions, metals concentrations and physical 

parameters (temperature, pH, ionic force, presence of others metals) influence also metals 

removal from polluted waters.  Metals by fungi from various raw effluents (gold mining 

effluent, tanning effluent, swine water, polluted lake waters) are sometimes completely 

removed.  However, these outputs depend on the metal and fungus involved.  To increase 

fungal biomasses removal capacities, some of them undergo physicochemical treatments 

(soda or acidic treatments, insertion of functional groupings, heat treatment.  A simple 

detergent and alkaline solutions treatment of M. rouxii biomass was sufficient to obtain an 

increase in its adsorption capacity.  Fungal biomasses that have sequestered metals can be 

regenerated following their washing with HNO3 (0.05 N) and/or with Ca2+, Mg2+ and K+

 

 

(0.1 M) (Coulibaly et al., 2003). 
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2.9.6 Biological Nutrient Removal 

Nitrification and denitrification have long been considered solely a bacteria 

based process.  Consequently, biological wastewater treatment has focused on bacteria 

excluding the effect of other microorganisms.  More recently it has been recognized that 

other microorganisms are capable of fostering nitrification and denitrification.  Of 

significant interest are the filamentous fungi.  Literature suggests there may be potential 

advantages of fungi over bacteria in terms of rate reaction, stoichiometry, and resistance to 

inhibition (Guest and Smith, 2002). 

• Nitrification:  

Since the early 1930s it has been established that fungi have the ability 

to perform nitrification.  Early studies indicated the ability in a narrow range of species 

with limited ability to use urea or ammonia as an energy source in the nitrification process.  

More recently, a much broader range of fungi have been identified to carry out nitrification 

as well as use urea and ammonia as an oxidizable nitrogen energy and nutrient source.  One 

recent study notes fungal nitrification was 1 to 4 orders of magnitude greater than 

nitrification by autotrophic nitrifying bacteria.  Studies conducted to date are essentially 

limited to pure cultures in a defined medium.  Studies report production of nitrite and 

nitrate but not the overall removal or rate of removal from the medium. An assessment of 

the ability of fungi to replace or supplement bacterial nitrification in a biological nitrogen 

reduction (BNitR) system appears to be an important and potentially beneficial area for 

advanced research (Geust and Smith, 2002).  In recent years, more evidence has been 

forthcoming to support the suggestion that heterotrophic nitrification may be more common 

than has so far been realized. 

Hirsch et al. (1961) studied the formation of nitrite and nitrate by 

actinomycetes (Group of Gram positive, mainly soil bacteria) and fungi under various 

conditions. This study also found that fungi had the ability to nitrify; however, the main 
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product again was nitrate. Several findings from this study are worth noting. First, when the 

pH of the medium dropped below 5.0, nitrification was inhibited; however, growth of the 

fungi was not affected. Second, fungi carried out oxidation of ammonia.   

Falih and Wainwright (1995) recently tested the ability of a wide range 

of filamentous fungi and yeasts to oxidize urea or ammonium.  Their results showed that, 

with the exception of two species, all fungi oxidized ammonium or urea to nitrate.  Fungi 

studied included Phanerochaete chrysosporium, Hymenoscyphus ericae, Pythium 

oligandrum, Rhizomucor pusillus, Aspergillus oryzae, Mucor strictus, Fusarium solani, 

Aspergillus niger, Cladosporium herbarum, Penicillium chrysogenum, Penicillium 

notatum, Penicillium expansum, Geotrichum candidum,Williopsis californica, and two 

unidentified soil yeasts. 

Kurakov and Popov (1996) studied the nitrifying activity and 

phytotoxicity of 40 strains of 13 species of fungi. Forty-five percent of strains tested 

showed nitrifying activity.  The study found that fungi showed 1 to 4 orders of magnitude 

greater resistance to nitrification inhibitors and 1 to 4 orders of magnitude greater formation 

of nitrates and nitrites than autotrophic nitrifying bacteria. 

• Denitrification 

Up until 1990, denitrification was considered solely a bacterial 

process; however, several species of fungi have been shown to have the ability of 

denitrification. To date, research in this area has been confined to biochemical and 

molecular genetic studies by a research group at the University of Tsukuba, Tsukuba, 

Japan.  The current hypothesis for the origins of fungal denitrification is a horizontal gene 

transfer event from bacteria to fungi.  Fungal denitrifiers can be split into two groups 

depending on the type of denitrification system they employ: a group that produces nitrite 

oxide reductase cytochrome P-450 (P-450Nor) and codenitrification (Guest and Smith, 

2002).  



 
 

46 
 

Fungal denitrification shows a unique characteristic that has yet to be 

identified in bacteria, co-denitrification.  In co-denitrification, fungi can utilize nitrogen 

compounds other than nitrate/nitrite in the production of nitrous oxide or nitrogen gas.  In 

experiments with [15N]-azide and [14N]-nitrite, it was found that the nitrous oxide produced 

was a mixture of 14N14NO and 15N14NO and nitrogen gas was 15N15

    

N.  Both azide and 

nitrite nitrogen was converted to nitrogen gas.  Azide and other nitrogen nucleophiles 

normally inhibit the microbial denitrification processes.  However, fungi are only 

temporarily inhibited.  Addition of azide alone does not result in denitrification.  Nitrite 

must be present for co-denitrification to occur.  Co-denitrification also provides an 

explanation for the greater resistance of fungi to inhibitory compounds. What needs to be 

explored is the number and type of nitrogen containing compounds that fungi can co-

denitrify (Guest and Smith, 2002). 

2.10 The Advantages and Disadvantages of Fungi 

Literatures suggest there may be potential advantages of fungi in wastewater 

treatments as summarized below: 

(i) Literature suggests there may be potential advantages of fungi over bacteria 

in terms of rate reaction, stoichiometry, and resistance to inhibition. 

(ii) Successful waste control by use of fungi has been reported by previous 

workers.  They reported that many of these fungi grow rapidly on sugar cane and sugar beet 

molasses as well as on crude raw plant materials.  There are many reasons for using fungi 

in biological process (Thanh and Simard, 1973). 

(iii) Fungi inherent ability to effectively degrade complex polymers such as 

cellulose, hemi-cellulose, and lignin materials and produce high value fungal biomass (Jasti 

et al., 2006)  
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(iv) Some fungi are regarded as safe agents and can decompose starch and 

protein; Apergillus oryzea, Aspergillus niger, and Aspergillus flavus (Hwang et al., 2004). 

(v) The filaments of fungi are suitable for tangling around biofiltered materials 

(Hwang et al., 2004).  Specifically, the three-dimensional reticular structure of polyurethane 

foam (sponge) was benefit to filamentous fungi growth in spreading mycelia taking 

nutrients and oxygen effectively (Goa, et al., 2006). 

(vi) Fungi complete nitrification in a single step.  A simpler treatment system 

reduces the number of possibilities for failure. For large scale systems found in wastewater 

treatment, simplicity is always preferred as long as the performance criteria are achieved.  

But bacterial nitrification is a two-stage process requiring two groups of bacteria.  The 

bacterial system relies on diffusion of an intermediate compound to the second bacteria.  

The two groups of nitrifiers have different growth rates and also show different sensitivities 

to inhibitory compounds (Guest and Smith, 2002). 

(vii) Soil fungi nitrifiers have greater resistance (1 to 4 orders of magnitude) to 

inhibitory compounds than bacterial nitrifiers. Wastewater treatment plants receiving 

significant quantities of industrial effluents could be provided with a robust treatment 

option.  In addition to nitrification inhibitors, fungi also show greater resistance to heavy 

metals than many of the bacterial species.  Several explanations can be offered on the 

ability of fungi to resist inhibitory compounds.  First, mycelial growth may provide greater 

protection to sensitive organelles of fungi.  The larger surface area would act in the same 

manner as the extra polysaccharide matrix of a biofilm; a type of adsorption matrix. 

Second, fungi are eukaryotic cells, which contain significantly more genes than bacteria 

providing other methods for dealing with inhibitory compounds.  In either case, the net 

result is the potential for a BNitR system to operate with a greater stability even in the 

presence of inhibitory compounds (Guest and Smith, 2002).   
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(viii) The production of greater end products of nitrification (1 to 4 orders of 

magnitude), nitrates and nitrites (Kurakov and Popov 1996).  This should hold true for 

wastewater, the benefits in a nutrient removal system would be reduction in the size of the 

aeration (nitrification) compartment of a BNR system. 

(ix) The evidence has been come clear from literature reviews are that a species 

of fungi that perform nitrification also has been identified as being capable denitrification.  

             

2.11 Biokinetic Coefficients Determination 

2.11.1 Growth of Microorganism 

Jackson and Edwards (1975) estimated specific growth rates of 

microorganisms in a culture by the following expressions (Figure 2.4): 

 

dt
dX  = μX                                      (2.1) 

 

X  = )tμ(1
0

0eX −                                     (2.2) 

 

lnX  = 00 lnX)tμ(t +−                                    (2.3) 

 

µ  = 
0

0lnln
tt

XX
−
−                                     (2.4) 

 

where  X = Biomass concentration at the time t (mg/L) 

  X0 = Biomass concentration at the time t0

  µ = Specific growth rate (L/h) 
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Figure 2.4 Growth curve of microorganism in a culture 

 

Generally, Monod’s model is used to estimate different biokinetic reactions between 

microorganisms and the substrate in a continuous culture (Metcalf and Eddy, 1991).  

According to this model, specific growth can be related to substrate by the following 

relations (Figure 2.5): 
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Figure 2.5  The effects of a limiting substrate on the specific growth rate 

 

2.11.2  Respirometric Method 

The respirometry measurement technique is used to measure the biochemical 

oxygen uptake rate (OUR) under well-defined experimental conditions.  The respirometers 

are based on measuring the rate at which biomass takes up dissolved oxygen from the 

liquid phase.  Assessment of wastewater components is often referred to as wastewater 

characterization.  The procedures for characterization involve a combination of physic-

chemical and biodegradation tests.  Using this method, the biodegradable components in 

the wastewater can be quantified (Vanrolleghem et al., 1999). 

a. Respirometer 

In principle, the respirometer consists of an oxygen electrode, DO 

meter, recorder, respirometric reactor and water jacket vessel to maintain a constant 

temperature.  It is placed on a magnetic mixer in order to obtain a complete mixing of the 

reactor volume.  A ceiling of the respirometric cell is oblique, so that the air bubbles can 

easily escape from the cell.  The expansion funnel is used for adding the substrate solution 
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and for escaping air bubbles during periods of aeration.  A cross-sectional area of the funnel 

stalk is small enough to minimize oxygen absorption during the measurement (Figure 2.6). 

   

 

 

 

 

 

 

 

 

   

  
1. Respirometric cell   2. Water jacket   3. DO probe 
4. Air diffuser    5. Magnetic bar  6. Expansion funnel 
7. DO meter    8. Recorder 

 

 

Figure 2.6  Schematic diagram of respirometer (Witchitsatian, 2004) 

 

b. Experimental Procedure 

An expected concentration of endogenous activated sludge is 

transferred into the respirometry and aerated to increase the dissolved oxygen concentration 

to 6-8 mg/L.   When these concentrations are reached, the aeration is stopped.  A slow 

decrease in oxygen concentration is due to heterotrophic endogenous respiration.  A typical 

respirogram is shown in Figure 2.7, and can be interpreted as follows (Cech et al., 1984). 
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Figure 2.7. Recorder chart with a typical respirogram (Cech et. al., 1984). 

 

During the endogenous phase of respiration, heterotrophic microorganisms utilize 

oxygen at a constant rate over a relatively long period of time, as demonstrated by the line 

AB-C.  At time B, a small volume of concentrated substrate solution is injected into the cell 

by means of a hypodermic syringe. Addition of a limited amount of substrate to the 

respirometry reactor causes  a temporary increasing respiration rate, as shown by the lines 

B-D.  This line is a maximum-value tangent to the curve B-E.  It represents the constant 

total respiration rate at the substrate concentration S added. When the substrate 

concentration decreases with time, the respiration rate also decreases.  When the substrate 

has been removed (at point E) the respiration rate returns to a value (line D-E), which is 

equal to, or perhaps slightly different from, the original endogenous rate. 

When the measurement of one concentration is finished, a new dose of substrate can 

be injected into the cell and a next respirogram is recorded (Cech et al.,1984).  In order to 

evaluate a respirogram, the endogenous respiration rate (OURx,e), the total respiration rate 

(OURt) and net oxygen consumption (OC) are calculated. The line section CE is equal to 

net oxygen consumption (Figure 2.7).  If the OC value is higher than 4 mg/L O2, the 

determination of OC is conducted using Ekama et al. (1986) method (Figure 2.8).  The high 
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OC value occurs when a high substrate concentration is introduced.  This method is 

normally used for determination of COD fraction (i.e. biodegradable COD/total COD). 

In this test a preselected volume of wastewater of known total COD is mixed with a 

preselected volume of mixed liquor of known MLVSS concentration in a batch reactor.  

After mixing, the OUR is measured approximately every 5 to 10 minutes until OUR attains 

to a  constant value that is approximate or equal to OUR in the endogenous phase (Ekama 

et al., 1986).  The respirogram is obtained by plotting the curve of OUR and time (Figure 

2.8). 

 

 

 

 

 

 

 

 

 

Figure 2.8 OUR response in respirometer (Ekama, et al., 1986) 

 

where 

 Area A: This area gives the concentration of Readily Biodegradable COD (RBCOD) 

oxidized by the biomass.  This is useful for assessing the amount of volatile fatty acids 

(VFA) that needs to be added in a biological phosphorus removal plant. 

Area B: This area represents the amount of less readily biodegradable material being 
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Area C: This area shows the amount of oxygen being used to convert ammonia into 

oxidized nitrate (nitrification). 

Area D: The area under the whole curve shows the total oxygen demand of the 

liquor.  This is the total amount of oxygen which must be supplied to the sludge to achieve 

full treatment. 

OUR at line e: The respiration rate at the end of the curve, when at least 95% of the 

organic waste has been treated, is the endogenous respiration rate.  This rate is proportional 

to the activity of the biomass. 

OUR at line f: This rate is termed the Average Viability, and it is the average 

respiration rate for the period where nitrification and the breakdown of less readily 

biodegradable substrates are occurring. 

OUR at line g: This is the maximum respiration rate observed at the start-up of the 

respiration cycles.  At this point all oxidative reactions take place, including the oxidation 

of carbon and nitrogen compounds and the uptake of phosphates. 

Time T: The time for the sample to reach an endogenous respiration rate.  This is a 

direct method to determine the minimum HRT required to achieve at least 95% treatment 

efficiency. 

Specific OUR of substrate oxidation at a substrate concentration S (OURx,ox) is 

given by: 

 

eX,tX,oxX, OUROUROUR −=                                               (2.6) 

 

where: 

OURx,t =  Total respiration rate (mg O2

OUR

/mg VSS.h) 

x,e  =  Endogenous respiration rate (mg O2

 

/mg VSS .h) 
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Further specific substrate removal rate at a substrate concentration S (RX

 

) is given 

by: 

OC/S
OUR

R oxX,
X =                                      (2.7) 

 
where 

RX

OC = Net oxygen consumption (mg O2/L) 

  =  Substrate removal rate (mg COD removed/mg VSS.h) 

S =  Substrate concentration (mg COD/L) 

OC is then equal to the area between the OUR curve and the second plateau level 

where the OUR decreases rapidly and levels off (OC = Area A+area B) (Figure 2.8). 

Biomass yield coefficient (Y) is expressed as: 
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S
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f
1Y                                      (2.8)  

  

and the specific growth rate (µ) as: 

 

XY.Rμ =                                       (2.9) 

 

where 

µ = Specific growth rate (h-1) 

f  =  COD/VSS ratio of the sludge (mg COD/mg VSS) 

Y  =  Yield coefficient (mg VSS/mg COD removed) 
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2.12 Biofilm Compositions and Density 

2.12.1 Biofilm Compositions 

Biofilms are typically heterogeneous structures consisting of living cells, 

dead cells and cells debris in a matrix of extracellular polysaccharide (EPS) attached the 

surface (the substratum) (Laspidou and Rittmann, 2004a).   Many biofilms may essentially 

be considered to be layered, with an aerobic layer overlying an anoxic or anaerobic layer.  

Biofilm properties change with biofilm depth because transfer limitations on dissolved 

oxygen (DO) and nutrient and because of biological processes.  Zhang and Bishop (1994) 

found the biofilm density’s total solid changed from 15 mg/cm3 in the top layers to 105 

mg/cm3

 EPS are predominant components of biofilms.  In typical of biofilm, 95% 

mass is water and 5% is dry material; up to 90% of biofilm organic carbon is EPS material.  

Because EPS is key constituent of biofilm, biofilm properties such as density, porosity, 

strength, elasticity, frictional resistance, thermal conductivity, and metabolic activity may 

be greatly influenced by EPS composition and quantities.  EPS is believed to have many 

important functions in biofilm attachment and activated sludge floc formation.  In particular 

research, Zhang and Bishop (2001) have been conducted on the spatial distribution of EPS 

along the depth of biofilm, important information that one needs to evaluate the 

heterogeneity of biofilm structure.  Heterotrophic biofilms were grown in a rotating drum 

biofilm reactor fed with synthetic wastewater with a COD of 150 mg/L.  Biofilm was found 

to be heterogeneously structured, represented not only spatial distribution of EPS yields but 

 in the bottom layers and biofilm porosity changed from 84 to 93% porous in the 

top layers and from 58-67% in the bottom layers.  The biofilms they studied had a typical 

feed COD of 350-700 mg/L.  Biofilms grown under different operating conditions may be 

having different physical properties.   
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also by clearly defined aerobic/anoxic zones, increased density, decreased porosity, 

decreased soluble COD concentrations and decreased viable biomass concentrations along 

the biofilm depth.  Thicker biofilms exhibited greater soluble COD concentrations, EPS 

yields, and viable biomass than thinner biofilms.  The EPS yields in the biofilms are 

proportionally related to the amount of viable biomass present, and viable biomass loses its 

ability to produce EPS at deeper sections because of its lower microbial activity resulting 

from lower nutrient availability.  Also, it is possible that the naturally produced EPS was 

consumed as substrate in the deeper layer, where more readily degradable organics were 

absent.  The results of the spatial distribution of EPS yields gained in this paper provide 

helpful information to achieve a more complete description of heterogeneous biofilm 

structure.  New biofilm models need to be developed to incorporate the EPS information to 

accurately reflect the heterogeneity of biofilm.  

Also, Yun et al. (2006) research base on EPS visualization and 

quantification, it was also found that EPS, key membrane foulants were spread out more 

uniformly in the anoxic biofilm in spite of lower amount of EPS compared to that in the 

aerobic biofilm.  The difference in biofilm structure between the aerobic and anoxic MBR 

was investigated by comparing structural parameters.  The aerobic biofilm showed a large 

porosity (0.77>0.63) than the anoxic biofilm.  The porosity indicates that anoxic biofilm 

was less porous, which explains the much faster rate of fouling in the anoxic MBR 

compared to that in the aerobic MBR.  EPS were first extracted from the biofilm at there 

points (aerobic at 2 kPa, aerobic 30 kPa & anoxic 30 kPa) using heating methods.  The 

amount of polysaccharides, known as main components of EPS matrix in the biofilm was 

then determined.  When comparing the amount of EPS in each biofilm, it is also necessary 

to take into account the bio-volume of each biofilm.  Thus, EPS concentrations were 

expressed as the specific weight (mg-polysaccharide).  The total weight of polysaccharide 

extracted from each point was 5.12 (aerobic at 2 kPa), 16.5 (aerobic 30 kPa) and 2.5 mg-
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polysaccharide (anoxic 30 kPa), respectively.  The polysaccharide content per unit biomass, 

e.g., specific weight, was increased with operating time from 35 to 55 mg-

polysaccharide/g-MLVSS even under the same aerobic phase.  Moreover, more rapid 

membrane fouling rate was observed not at point 1 but at point 2.  This result shows that 

the more EPS in the biofilm, the greater is the membrane fouling in an aerobic MBR also 

observed this phenomenon.  To reveal this contradictory phenomenon, the spatial 

distribution of EPS inside the biofilm was identified by means of lectin-stained biofilm 

images.  A sequence of Confocal Laser Scanning Microscopy (CLMS) images of a biofilm 

with optical sections in step size of 1 μm from the bottom to the top.  The confocal images 

of anoxic biofilm showed that they were highly spread out and the distribution of 

polysaccharide was more uniform than in the aerobic biofilm, which might result in a 

greater hydraulic barrier.  This conclusion is also supported by porosity computed from 

biofilm images.  Although, this porosity represents only the polysaccharides excluding the 

effects of other types of EPS and cells on the porosity of the biofilm, it allowed us to 

confirm that a more uniformly spread out of polysaccharide having smaller porosity gives 

rise to a greater loss of filterability.  In summary, not only the amount of EPS but also the 

spatial distribution of EPS inside the biofilm may affect membrane filterability. 

2.12.2 Biofilm Compositions under the Unified Theory  

Most bacteria produce extracellar polymeric substrates (EPS) of biological 

origin that participate in the formation of microbial aggregates whether the bacteria grow in 

suspended cultures or in biofilms.  The microbial biofilm or floc consists of bacterial cells 

enveloped by matrix of large polymeric molecules, the EPS.  By definition, EPS are located 

at outside the cell surface.  Their composition may be controlled by different processes, 

such as active secretion, shedding of cell surface material, cell lysis, and adsorption from 

the environment.  Some of the functions of the EPS matrix are adhesion to surfaces, 

aggregation of bacterial cells in flocs and biofilms, stabilization of the biofilm structure, 
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formation of a protective barrier that provide resistance to biocides or other harmful effects, 

retention of water, sorption of exogenous organic compounds for the accumulation of 

nutrients from the environment, and accumulation of enzymatic activities, such as digestion 

of exogenous macromolecules for nutrient acquisition.  A modern concept is that EPS allow 

microorganisms to live continuously at high-cell densities in stable mixed population 

communities.  In other words, the EPS matrix is a medium allowing cooperation and 

communication among cell in microbial aggregates.  Stable close proximity of the bacteria 

requires that the cells be held together by EPS (Laspidou and Rittmann, 2002a). Other 

microbial products, the soluble microbial products (SMP), are defined as soluble cellular 

components that are released during cell lysis, diffuse through the cell membrane, are lost 

during synthesis, or are excreted for some purpose.  They have moderate formula weight 

and are biodegradable.  SMP are important because they are ubiquitously present and 

usually form the majority of the effluent COD and BOD from biological treatment 

processes.  SMP can be subdivided into two categories: substrate utilization-associated 

products (UAP), which are produced directly during substrate metabolism, and biomass, 

presumably as part of decay (Laspidou and Rittmann, 2002a).  A common theme of EPS 

and SMP is that they are microbial produced organic materials that contain electrons and 

carbon, but are not active cells.  This common theme is important, because diversion of 

electrons and carbon affects cell yield and growth rate.  The traditional view is that all 

electron-donor oxygen demand (OD) is either shunted to the electron acceptor to generate 

energy or is converted to biomass.  However, when a significant part of OD is shunted to 

EPS or SMP formation, the OD available for synthesizing active biomass is reduced, and 

active biomass yield and specific growth rate decline.  Therefore, ignoring EPS and/or SMP 

can lead to a general overestimation of cellular growth rates (Laspidou and Rittmann, 

2002a).  

2.12.3 Unified Theory for EPS, SMP, and Inert and Active Biomass 
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Laspidou and Rittmann (2002a) now develop a unified theory for how EPS, 

SMP, active and inert biomass are related.  This theory culminates with a schematic of 

electron flow that shows how substrate electrons are diverted to create all products that 

have been observed by the two different groups.  They organized the unified theory through 

six hypotheses for how SMP, EPS, active and inert biomass are related.  They state each 

hypothesis provide, supporting evidence and identify its effects on kinetic modeling when 

effects are direct. 

Hypothesis 1: SMP and soluble EPS are identical in system in which 

hypothesis of particulate organic substrates is not important. 

Hypothesis 2: Bound EPS are hydrolyzed to form BAP. 

Hypothesis 3: The growth associated part of soluble EPS is the same as 

UAP. 

Hypothesis 4: Soluble EPS polymerizes to bound EPS. 

Hypothesis 5:  The formation of bound EPS is growth associated and 

produced in direct proportion to substrate utilization. 

Hypothesis 6: The SMP school of thought includes part of the bound EPS in 

the newly formed active biomass and another part in the inert biomass.        

Figure 2.9 shows a schematic of electron flow that reflects our unified theory 

of how active biomass relate to each other.  All mechanisms described in the six hypotheses 

are reflected in the figure: 

• all soluble EPS are either UAP and BAP; in other words, soluble EPS 

and SMP are the same 

• bound EPS are hydrolyzed to form BAP 

• UAP are formed directly from and in proportion to substrate utilization 

• bound EPS are formed directly during and in proportion to substrate 

utilization 
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• active biomass, as defined by the SMP school, is composed of bound 

EPS is included with inert biomass 

• true dead cell residue is produced as part of endogenous decay of 

biomass and comprises part of inert biomass and 

• BAP and UAP cycle back to become electron-donor substrate cells, 

since they are biodegradable 

 

 

 

 

 

 

 

 

 

 

Figure 2.9.  Schematic representation of the unified model for active biomass, EPS, SMP  

                      and inert biomass (Laspidou and Rittmann, 2002a) 

   

2.12.3 Biofilm Density 

Biofilm reactors are extensively used for biotechnological applications such 

as wastewater treatment and enzyme production.  In these reactors, the substrates required 

for internal consumption in the biofilm are mainly transported via diffusion.  This 

diffusional mass transfer rate usually determines the propagation and substrate utilization 

rates of the microorganisms within the biofilm.  The performance of a biofilm reactor may 
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be estimated by developing an appropriate ‘diffusion-reaction’ model for the biofilm 

(Şeker et al., 1995).   

The evaluation of the performance of a biofilm reactor always requires the 

biofilm density and thickness, since reaction rate and total consumption are directly 

dependent on these parameters.  In the literature, it has generally been assumed that the 

density is constant and is independent of biofilm thickness.  However, past studies 

discovered that the biofilm density depended on its thickness and reached a maximum 

value at a biofilm thickness consistent with the active thickness.  The reductions in the 

biofilm density observed with increasing thickness, although they observed no region of 

increasing density possibly due to an overdeveloped biofilm thickness.  Moreover, the 

biofilm density approached a maximum value as the substrate loading rate increased at a 

constant shear stress.  It was also noted that the film thickness associated with a given shear 

stress was also a function of the substrate loading, i.e., of the net growth rate, which 

influenced the biofilm density (Şeker et al., 1995).  Several workers have measured the 

biofilm density and others have attempted to study the influence of factors on biofilm 

thickness and density, including microbial species as details illustrate in Table 2.9 

(Zhang and Bishop, 1994a).   

 

2.13 Mathematical Modeling of Biofilms 

Over 90% of bacterial biomass exists in the form of biofilms.  The ability of 

bacteria to attach to surfaces and to form biofilms often is an important competitive 

advantage for them over bacteria growing in suspension.  Some biofilms are "good" in 

natural and engineered systems; they are responsible for nutrient cycling in nature and are 

used to purify waters in engineering processes.  Other biofilms are "bad" when they cause 

fouling and infections of humans and plants.  Whether we want to promote good biofilms 
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or eliminate bad biofilms, we need to understand how they work and what works to control 

those (Eberi et al., 2006). 

 

Table 2.9 Comparison of whole and sectioned biofilms (Zhang and Bishop, 1994a) 

Sample No. 
& 

Layer No. 

Biofilm size 
(cm×cm×µm) 

Bacterial Counts 
(CFU of MPN/cm3

Density 
 biofilm) (mg/cm3 INT ) Activity 

(%) HPC FPC NH4 NO+ 2 TS - TVS 

F1.layer 1 1.2×0.9×550 1.7×10 5.9×1010 2.0×108 9.4×102 16.4 2 13 82 

F1.layer 2 1.2×0.9×250 9.3×10 3.7×1010 2.0×109 3.3×103 36.1 4 28.5 38 

F1.layer 3 1.2×0.9×250 5.6×10 2.2×1010 1.0×1010 5.5×104 58.9 4 45.6 16 

F1.layer 4 1.2×0.9×370 1.0×10 7.5×1010 2.3×109 5.5×103 93.7 4 77.0 8 

F1.  total 1.2×0.9×1420 3.5×10 6.8×1010 2.8×109 1.8×103 47.5 4 38.1 43.2 

Control 1 1.25×0.9×1510 2.2×10 9.4×109 2.2×108 9.7×103 48.3 3 38.4 35 

F2.layer 1 1.2×0.9×350 2.7×10 2.6×1010 5.5×108 9.3×101 18.1 2 12.5 80 

F2.layer 2 1.2×0.9×150 1.9×10 6.8×1010 6.5×109 3.6×102 55.2 4 35.7 40 

F2.layer 3 1.2×0.9×150 8.0×10 1.9×1010 1.2×1010 5.5×103 68.3 4 42.2 21 

F2.layer 4 1.2×0.9×50 1.9×10 1.5×1010 1.7×1010 1.5×102 87.7 2 68.2 7 

F2. total 1.2×0.9×700 3.6×10 6.7×1010 4.4×109 2.0×102 41.8 4 27.8 26.4 

Control 2 1.3×0.9×680 6.7×10 1.3×109 2.4×109 6.5×103 39.9 3 29.3 34.2 
 
Remark: HPC = heterotrophic plate count; FPC = facultative plate count;  
                NH4

+ = ammonium oxidizer; NO2
-

                INT = the tetrazolium dye reduction method.  
 = nitrite oxidizer;  

 

Biofilms consist of cells immobilized in an organic polymer matrix of microbial 

origin.  The structure of a biofilm has only recently received more attention.  Although it 

was known in the past that biofilms are not uniform in time or space, frequently it was 

assumed that biofilms where homogeneous.  With a more detailed analysis of biofilms it is 

however apparent that a wide variety of biofilm structures exist.  Biofilm studies are either 

performed at a macroscopic level (i.e. measuring general properties of biofilms formed in a 

reactor or system) or microscopically (i.e. using microscopy and micro-electrodes).  A 

microscopic study has the disadvantage that it is difficult to link it with the overall system 
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dynamics, whereas a macroscopic study is difficult to interpret unless a very well defined 

experimental system is available (Loosdrecht et al., 2002). 

 

2.13.1 Mathematical Modeling Conceptual 

A mathematical model is a systematic attempt to translate the conceptual 

understanding of a real-world system into mathematical terms.  A model is a valuable tool 

for testing our understanding of how a system works.  Creating and using a mathematical 

model require six steps (Eberi et al., 2006). 

1. The important variables and processes acting in the system are 

identified. 

2. The processes are represented by mathematical expressions 

3. The mathematical expressions are combined together appropriately in 

equations. 

4. The parameters involved in the mathematical expressions are given 

values appropriate for the system being modeled. 

5. The equations are solved by a technique that fits the complexity of the 

equations. 

6. The model solution outputs properties of the system that are 

represented by the model’s variables. 

Modeling is a powerful tool for studying biofilm processes, as well as for 

understanding how to encourage good biofilms or discourage bad biofilms.  A 

mathematical model is the perfect means to connect the different processes to each other 

and to weigh their relative contributions  

Mathematical models come in many forms that can range from very simple 

empirical correlations to sophisticated and computationally intensive algorithms that 

describe three dimensional (3D) biofilm morphology.  The best choice depends on the type 
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of biofilm system studied, the objectives of the model user, and the modeling capability of 

the user (Eberi et al., 2006). 

• Starting in the 1970s, several mathematical models were developed to 

link substrate flux into the biofilm to the fundamental mechanisms of substrate utilization 

and mass transport.  The major goal of these first-generation mechanistic models was to 

describe mass flux into the biofilm and concentration profiles within the biofilm of one 

rate-limiting substrate.  The models assumed the simplest possible geometry (a 

homogeneous “slab”) and biomass distribution (uniform), but they captured the important 

phenomenon that the substrate concentration can decline significantly inside the biofilm. 

• Beginning in the 1980s, mathematical models began to include 

different types of microorganisms and non-uniform distribution of the biomass types inside 

the biofilm. These second-generation models still maintained a simplified 1-dimensional 

(1D) geometry, but spatial patterns for several substrates and different types of biomass 

were added.  A main motivation for these models was to evaluate the overall flux of 

substrates and metabolic products through the biofilm surface. 

• Starting in the 1990s and carrying to today, new mathematical models 

are being developed to provide mechanistic representations for the factors controlling the 

formation of complex 2- and 3-d biofilm morphologies.  Features included in these third-

generation mathematical models usually are motivated by observations made with the 

powerful new tools for observing biofilms in experimental systems.  Today, all of the 

model types are available to someone interested in incorporating mathematical modeling 

into a program of biofilm research or application.  Which model type to choose is an 

important decision.  

• The third-generation models can produce highly detailed and complex 

descriptions of biofilm geometry and ecology; however, they are computationally intense 

and demand a high level of modeling expertise.  The first generation models, on the other 
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hand, can be implemented quickly and easily–often with a simple spreadsheet – but cannot 

capture all the details.  The “best” choice depends on the intersection of the user’s modeling 

capability, biofilm system, and modeling goal. 

2.13.2 Model Selection 

The first step in creating or choosing a biofilm model is to identify the 

essential features of the biofilm system. Features are organized into a logical hierarchy that 

is illustrated in Figure 2.10 (Eberi et al., 2006). 

• Compartments define the different sections of the biofilm system. For 

example, the biofilm itself is distinguished from the overlying water and the substratum to 

which it is attached.  A mass-transport boundary layer often separates the biofilm from the 

overlying water. 

 

 

 

Figure 2.10  Four compartments typically defined in biofilm system: bulk liquid, 

                             boundary layer, biofilm and substratum (Eberi et al., 2006).   

 

• Within each compartment are components, which can include the 

different types of biomass, substrates, products, and any other material that is important to 
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the model.  The biomass is often divided into one or more active microbial species, inert 

cells, and extracellular polymeric substances (EPS). 

• The components can undergo transformation, transport, and transfer 

processes. For example, substrate is consumed, and this leads to the synthesis of new active 

biomass.  Also, active biomass decays to produce inert. 

• All processes affecting each component in each compartment are 

mathematically linked together into a mass balance equation that contains rate terms and 

parameters for each process. 

Because most biofilms are complex systems, a biofilm model that attempts 

to capture all the complexity would need to include (i) mass balance equations for all 

processes occurring for all components in all compartments, (ii) continuity and momentum 

equations for the fluid in all compartments, and (iii) defined conditions for all variables at 

all system boundaries.  Implementing such a model is impractical, maybe impossible.  

Therefore, even the most complex biofilm models existing today contain many simplifying 

assumptions. Most biofilm models today capture only a small fraction of the total 

complexity of a biofilm system, but they are highly useful. Thus, simplifications are 

necessary and a natural part of modeling.  In fact, the “golden rule” of modeling is that a 

model should be as simple as possible, and only as complex as needed (Eberi et al., 2006). 

Good simplifying assumptions are identified by a careful analysis of the 

characteristics of a specific system.  These good assumptions become part of the model 

structure; in other words, they serve as guidance for the selection of the model. The models 

found in the literature can be differentiated by their assumptions, which depend on the 

objectives of the modeling effort and the desired type of modeling output. Thus, a user that 

is searching for a model to simulate specific features of a biofilm system should begin by 

evaluating the type of assumptions used in creating the models (Eberi et al., 2006). 
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One of the objectives of the IWA Task Group on Biofilm Modeling was a 

comparison of characteristic biofilm models using benchmark problems.  A main purpose 

was to analyze the significance of simplifying assumptions as a prelude for providing 

guidance on how to select a model (Eberi et al., 2006).   

The models used by the Task Group can be grouped into four distinct 

categories according to the level of simplifying assumptions used: namely, analytical (A), 

pseudoanalytical (PA), 1D numerical (N1), and 2D/3D numerical (N2/N3).  As a baseline, 

all model types normally can represent biofilms having the following features: (i) the 

biofilm compartment is homogeneous, with fixed thickness and attached to an impermeable 

flat surface, (ii) only one substrate limits the growth kinetics, (iii) only one microbial 

species is active, (iv) the bulk liquid compartment is completely mixed, and (v) the external 

resistance to mass transfer of dissolved components is represented with a boundary layer 

compartment with a fixed thickness (Eberi et al., 2006).   

Table 2.10 identifies other features that can be incorporated into certain 

models and that differentiate among the model types.  A plus sign (+) means that the 

feature can be simulated, a minus sign (-) indicates that the model cannot simulate that 

feature, and a zero (o) indicates that the model may be able to simulate the feature, but with 

restrictions.  In general, the flexibility and complexity of the models is lower on the left 

hand side of the table and increases towards the right hand side (Eberi et al., 2006).   

Biofilm models can be used to provide information at macro-scale or micro-

scale. Macroscale outputs include substrate removal rates, biomass accumulation in the 

biofilm and biomass loss from the system.  Typical micro-scale outputs are the spatial 

distributions of substrates and microbial species in the biofilm (Eberi et al., 2006).   

Selecting a model is intimately related to the modeling objectives and the 

modeling capability of the user of the model.  Common quantitative objectives are the 

calculation of substrate removal, biomass production and detachment rates, or the quantity 
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of biomass present in a given biofilm system.  In engineering applications, biofilm models 

also are employed to optimize the operation of existing biofilm reactors and to design new 

reactors.  In research, they serve as tools to fill gaps in our knowledge, as they help to 

identify unknown processes and to provide insight into the mechanisms of these processes.  

The capability of the user relates to the computing power available and, equally important, 

to the user’s capacity for understanding the model.  A model that cannot be formulated or 

solved by the user is of no value, whether or not it addresses the objectives well. 

Simplifying assumptions are related to making the modeling objective mesh 

with the user capability.  For instance, if the objective is to describe the performance of a 

biofilm system at the macroscale, then the various compartments and processes do not need 

to be described in too much of a microscale. A lot of microscale detail makes the model 

difficult to create and computing-intensive. For example, a 1d model with only one type of 

active biomass may be completely adequate to estimate the flux of one substrate averaged 

over square meters (Eberi et al., 2006). 

 

Table 2.10  Features by which various types of models of biofilm system differ.   

                    Model codes are: (A) analytical, (PA) pseudo-analytical, (N1)  

                    1-D numerical and (N2/N3) 2-D/3-D numerical.   
 

Feature A PA N1 N2/N3 

Development over time (i.e., dynamic) - - + + 
Heterogeneous biofilm structure - - 0 + 
Multiple substrate 0 0 + + 
Multiple microbial species 0 0 + + 
External mass transfer limitation predicted  0 0 + + 
Hydrodynamics computed - - - + 

 
Source: (Eberi et al., 2006) 
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If the objective is to model micro-scale processes (e.g., the interaction 

between microbial cells and EPS in the biofilm or 3d physical structures at the μm-scale), 

the number and type of processes occurring in each compartment of the biofilm need to be 

represented in microscale detail. For example, a 2d or 3d model is necessary if 

understanding the physical structure of the biofilm at the μm-scale is the modeling 

objective, while a multi-species model is necessary if the objective is to understand how 

ecological diversity develops.  When microscale detail is required, the size of the system 

being modeled will need to be small in order to make the model’s solution possible.  

Although many processes always take place in a biofilm, it is not necessary to include 

every one, depending on the objectives. For example, the spatial distribution of the 

particulate components can be specified by an a priori assumption, instead of predicted by 

the model, if the goal is to predict substrate flux for a known biofilm. Then, the model 

needs not include the processes of microbial growth and loss. On the other hand, when the 

objective is to predict the distribution of microbial species within the biofilm or to calculate 

the expected biofilm thickness at steady state, then microbial growth and detachment 

processes are essential (Eberi et al., 2006). 

 

2.14 The Unified Multiple Component Cellular Automotan  

(UMCCA) Model 

The morphological characterizations of biofilms (biofilm thickness, biofilm density, 

and biofilm surface shape) are very important for the stability and performance of a biofilm 

reactor.  Intensive research in the past has revealed a wide variety in biofilm structure, but 

the relationship between environmental conditions and biofilm structure has been not been 

considered theoretically.  For aerobic processes a small biofilm thickness (<150 µm) is 

favorable due to the smaller diffusion resistance and, moreover thicker biofilms are 

sensitive to sloughing phenomena.  The control and therefore understanding of biofilm 
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thickness and structure is then an important aspect for a stable operation of biofilm 

processes.  Biofilm surface shape is also an important parameter for the stability of the 

reactor.  These factors also affect considerably the biomass hold-up and mass transfer in a 

biofilm reactor.  Especially in particle biofilm processes fluffy biofilms and outgrowth lead 

to instabilities.  However, suspended organic particles in wastewater are filtrated easier by 

fluffy and porous biofilms.  The biofilm density has a direct effect on the achievable 

biomass concentration in the reactor; therefore, it will directly affect the conversion of 

substrate.  Hence, establishing and modeling the factors that control biofilm thickness, 

density, and surface shape is important for overall performance of the reactor.  In fact of 

biofilms are very heterogeneous system, containing cells distributed in a non-uniform 

manner, and polymers.  Moreover, a liquid phase exists in the pores and channels 

developed in the hydrogel matrix.  Therefore, to simulate the development of a structurally 

heterogeneous biofilm, discrete methods such as cellular automata are required 

(Picioreanu et al., 1998).   

CA models have been used for a long time in physics as theoretical models for 

studying physical phenomena when complex boundary conditions are encountered.  

Because the states of the variables of CA models are discrete, they can be implemented 

entirely using logical operations; thus, CA models have the potential to eliminate any 

numerical artifacts that can appear in the computation due to rounding or truncation of real 

numbers.  A classic example of the use of CA in physics is the microscopic modeling of 

diffusion.  Because diffusion is a macroscopic manifestation of Brownian motion, it is 

possible to simulate it as a random walk of particles in a lattice.  The characteristics of 

locality, uniformity, and spatial regularity of CA algorithms make them ideal for 

simulations on parallel computers or specially designed cellular automata machines 

(Pizarro et al., 2005).  An approach that has provided new insight into the factors that 

influence biofilm structure has been the use of cellular automata (CA) simulations.  CA 
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simulations of biofilms represent cells as discrete units that replicate stochastically in a 

two- or three-dimensional domain according to a set of rules, and they are effective at 

simulating the heterogeneity in biofilms.  A general feature of CA models of biofilms is 

their ability to dynamically generate a range of observed biofilm morphologies using a 

minimal set of assumptions about cell behavior; however, computational time constraints 

have limited most models to two dimensions.  An approach to improving computational 

efficiency has been to decouple solute transport from stochastic bacterial growth by the use 

of numerically solved, partial differential equations to describe substrate diffusion.  This 

method allows the CA model to extend to three dimensions more easily, but does so at the 

expense of losing heterogeneity in the solute concentration profile.  Another new trend in 

CA biofilm models is an individual-based modeling approach, which allows for variability 

in each of the cells in the simulation.  Overall, CA models have been employed 

(Chang et al., 2003). 

Consequently, Lospidou and Rittmann (2004a) presented a mechanistic, multi-

component model–the Unified Multiple Cellular Automotan (UMCCA) model–that 

predicts quantitatively the biofilm’s heterogeneity for many components of a biofilm 

system: three solid species (active bacteria, inert or dead biomass produced by death and 

decay, and extracellular polysaccharides (EPS)) and three soluble components (soluble 

substrate and two types of soluble microbial products (SMP)).  This model builds on our 

unified theory, which reconciles the apparently disparate findings about active and inert 

biomass, EPS, and SMP.  The model presented here is the biofilm adaptation of our 

multicomponent mathematical model that quantifies the unified theory.  Our biofilm model 

represents a growing biofilm using a CA approach in which the biofilm grows in a two–

dimensional domain of compartments.  One key feature is that the UMCCA model 

produces a ‘‘composite density’’ that changes in time and space in the biofilm. 
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2.14.1 Application of the Unified Multi-Component Cellular Automaton 

(UMCCA) Model    

One main goal of this model is to compute a ‘‘composite density,’’ or the 

density that includes active biomass, inert biomass, and EPS.  This composite density 

corresponds to what is measured experimentally by total solids, volatile solids, or dry 

weight.  To do this, the UMCCA model incorporates not only active biomass but also EPS 

and residual inert biomass formed as a result of cell decay and lysis.  The composite density 

can vary in time and in space, according to how its three components vary.  Because each 

of the components is represented separately, the UMCCA model also computes the 

distribution of the different components in time and space.  This makes it possible to 

compare the results of UMCCA model runs to experimental data on each component, such 

as those existing for viable biomass.  The second goal is to incorporate the consolidation 

phenomenon into the model in a realistic, yet simple manner that is based on the well-

established theory from the consolidation field.  Consolidation allows the UMCCA model 

to describe the increases in biomass density that occurs over time and deeper in the biofilm.  

Finally, a third goal of the UMCCA model is to find an improved system for distributing 

newly formed biomass. Specifically, excess biomass in a compartment must be distributed 

in a way that is optimum in terms of the distance the biomass has to move until it finds an 

empty compartment in which it can be placed.  Because biomass does not advert or diffuse, 

the CA algorithm has rules that allow the excess biomass to move out of a full compartment 

and into a nearby compartment that has room to accept it.  Although previous CA 

algorithms have such rules, the UMCCA model incorporates a more efficient and realistic 

set of rules. 
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2.14.2 Trends predicted by the UMCCA model for a biofilm including  

active biomass and EPS 

The UMCCA model by Laspidou and Rittmann (2004a) includes unique new 

features for modeling biofilms in multiple dimensions: (a) It distinguishes among active 

biomass, residual inert biomass, and EPS according to the unified model of Laspidou and 

Rittmann (2002a,b); (b) It includes two types of soluble microbial products, also according 

to Laspidou and Rittmann (2002a,b); (c) It includes for the first time the time dependent 

consolidation of the biomass; and (d) It uses a more efficient CA algorithm to distribute 

excess biomass to unoccupied compartments.  The five cases presented here illustrate 

general trends predicted by the UMCCA model, as well as effects particular to the 

conditions of each case.  They summarized the general trends and then the particular trends.  

It will be valuable to look for these trends in the results of existing and new research on 

biofilm structure.  They evaluated some of the trends by comparison to existing results in 

Laspidou and Rittmann (2004b). 

(a) General trends 

All outputs of the UMCCA model showed five general trends.  First, 

the concentration profiles for the two soluble microbial products are opposite the profile for 

original substrate, since they are produced in the biofilm and must diffuse out the top 

surface.  Second, the top of the biofilm is dominated by active biomass and EPS, while the 

bottom is dominated by residual inert biomass.  Within the top layers, active biomass has a 

much higher concentration than EPS.  Third, the top of all biofilms is quite “fluffy,” since 

the newly synthesized biomass has not had time to fill in the top compartments and 

consolidate.  Fourth, the peak of the composite density does not correspond to the peak of 

active biomass.  Finally, the biomass concentration has considerable local heterogeneity in 

the vertical and lateral directions, even when the soluble species have generally flat profiles 

that vary only in the vertical direction (Laspidou, 2003). 
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(b) Particular effects  

Having the substrate concentration is near and below Ks

 

 or having a 

low dissolved-oxygen concentration promotes the formation of the cluster-and-channel 

structure.  Then, a cluster that protrudes above other clusters (due to random effects) 

experiences a higher substrate (or oxygen) concentration and gains a growth rate advantage.  

Low substrate (or oxygen) concentration also slows the biofilm growth rate, giving the 

biofilm more time to consolidate to higher overall biomass density and become more inert.  

A high specific detachment rate also favors the cluster-and-channel structure and maintains 

relatively open channels near the substratum.  The high surface detachment rate accentuates 

the growth-rate benefit for a protruding cluster.  It also keeps the biofilm less dense overall, 

but with a lower proportion of residual inert biomass.  Consolidation shows two dramatic 

trends.  First, it makes the biofilm denser overall, and this slows its vertical expansion rate. 

Second, consolidation increases the local heterogeneity in all biomass types 

(Laspidou, 2003).  

2.15 Influence of Microbial Growth Rate/Substrate Transport Rate  

(G Number) on Biofilm Structure   

Growth of bacterial colonies in biofilms is the result of substrate conversion into 

biomass.  Because, in the present model, the limiting nutrient is transported from the bulk 

liquid to the cells only by diffusion, as a result of external and internal mass transfer 

resistance, a gradient of substrate will form.  Each microbial cell will ‘‘see’’ a different 

environment; i. e., bacteria situated on top biofilm layers get more substrate than those 

living in deeper layers.  The lower the substrate transport rate (or higher the consumption 

rate) the steeper the gradient.  Therefore, the biofilm structure was determined by 

dimensionless criteria defined (as in classical chemical reaction engineering) as ratios 

between the rates of relevant processes (external and internal transport, substrate 
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conversion, biomass growth, biofilm detachment, etc.).  The ratio of biomass growth rate to 

substrate transport (G) is one of the most important parameters in the biofilm system.  It is 

clear that the G (growth) group represents, in one parameter, the factors that many 

researchers have found to affect the biofilm structure as shown in Figure 5.10 (Laspidou 

2003; Picioreanu et al., 1998b).   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11  Spatial biomass distribution and equal line substrate concentration in 2D 

simulations at different G values (Picioreanu et al., 1998b) 
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The cluster effect for low S was predicted by the model of Picioreanu et al. (1998b), 

who defined the G group as the ratio of maximum biomass growth rate to the maximum 

substrate transport rate, as follows: 

                                             

 
maxS

maxa,s

Λ

S2
Z SD

xqY
L

ratetransportsubstratemaximuum
rategrowthbiomassmaximum

==G                                (2.21) 

 

where,   LZ  is the length of the grid along the z direction.  A high G is a “transport–

limited regime,” and a low G is a “growth-limited regime.” G increases as 

Smax decreases, as long as Smax

 

 is not in the saturation, or zero-order, region of 

the Monod relationship. 

2.16 Rationales of the Study and Proposed Treatment System 

2.16.1 Need of Downflow Hanging Sponge (DHS) System 

A downflow hanging sponge (DHS) reactor was proposed and developed as 

a novel and low cost post treatment for UASB treating sewage (Tandukar et al., 2005).  The 

principle of this system is the use of polyurethane sponge as a medium to retain biomass.  

As the sponge in a DHS is not submerged and freely hung/placed in air, oxygen is 

dissolved into the wastewater when it flows down the reactor and therefore there is no need 

for external aeration or any other energy inputs.  Several literatures suggest DHS system is 

not only superior to the conventional trickling filter (Chernicharo and Nachimento., 2001), 

but also to other post-treatment systems, such as, activated sludge process, sequencing 

batch reactor (SBR) (Torres and Foresti, 2001), and submerge aerated filter (Gonçalves et 

al., 1999) with regard to COD removal, nitrification efficiency and F. coliform removal as 

summarized results in Table 2.5 and 2.6.   
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Accordingly, it is strongly recommended to use DHS system for post-

treatment of anerobically pre-treated sewage.  So far most of the research work on the DHS 

system has been with sewage wastewater treatment (Agrawal et al., 1997; Machdar et al., 

1997; Araki et al., 1999; Mechdar et al., 2000; Uemura et al., 2002; Tandukar et al., 2005; 

Tawfik et al., 2006a; Tawfik et al., 2006b; Chuang et al., 2007) and one on actual dye 

wastewater treatment system (Ohashi et al., 2006).  However, the UASB effluent in tapioca 

starch industry is too fluctuated and higher concentration than domestic wastewater.  When 

high amounts organic matter are present in a biofilter, the fast growing heterotrophic 

bacteria will ‘out-space’ the slow growing nitrifiers from the aerobic zone in the biofilm as 

they compete for oxygen and space.   And in general, higher contents of organic in the 

system resulted in higher heterotroph organism population.  It is important to keep the 

organic waste load for biofilter constant and as low as possible because a high heterotroph 

bacteria combined with biofilm detachment (“sloughing”) may clog a biofilter, 

backwashing is not possible.        

2.16.2 Need of Fungal Culture for Organic Removal 

The UASB effluent contained high amount of biologically resistant organics.  

Readily biodegradable substrate is removed by diffusion through the biofilm to 

microorganisms which biodegrade it.  Slowly biodegradable substrates are initially 

removed by flocculation and entrapment mechanisms, just like in the activated sludge 

process.  Literatures suggested that the residual COD of anaerobic effluent may be 

comprised of residual non-degraded substrate, intermediate volatile fatty acids (VFA) and 

soluble microbial products (SMP).  In well operated systems only a small fraction of the 

effluent COD is usually due to VFAs, while SMP account for 85-100% of residual COD.  

These SMP may not be readily biodegradable, or may even be refractory, and comprise a 

wide variety of organic compounds distributed across a broad spectrum of molecular 

weight (MW).  They are then hydrolyzed by extracellular enzymes before they are 
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biodegraded.  Several researches recommended that fungi have a wide range of enzymes, 

and are capable of metabolizing complex mixtures of organic compounds such as 

particulate matters and dead cells (Tripathi et al., 2007; Thanh and Simard, 1973; Mannan 

et al., 2005; Tung et al., 2004; Guest and Smith, 2002).  Moreover, the efficient 

immobilization of fungal could also be due to the dispersed filaments (filamentous growth).  

Fungal culture also has potential application as immobilized cell systems which, because of 

their shape, may not require cross-linking or entrapment (Tung et al., 2004).  Fungi and 

filamentous microorganisms formed as loose filamentous granular and biofilm that 

presence the sufficient high in substrate and oxygen mass transport.         

2.16.3 Need of Bacterial Culture for Nitrogen Nutrient Removal 

Total effluent nitrogen comprises ammonia, nitrate, particulate organic 

nitrogen, and soluble organic nitrogen.  The biological processes that primarily remove 

nitrogen are nitrification and denitrification.  During nitrification ammonia is oxidized to 

nitrite by one group of autotrophic bacteria, most commonly Nitrosomonas. Nitrite is then 

oxidized to nitrate by another autotrophic bacteria group, the most common being 

Nitrobacter.  Denitrification involves the biological reduction of nitrate to nitric oxide, 

nitrous oxide, and nitrogen gas. Both heterotrophic and autotrophic bacteria are capable of 

denitrification. The most common and widely distributed denitrifying bacteria are 

Pseudomonas species, which can use hydrogen, methanol, carbohydrates, organic acids, 

alcohols, benzoates, and other aromatic compounds for denitrification (Metcalf and Eddy, 

2003).  Although, some literature suggested that fungi have capable in nitrogen nutrient 

removal but most experiences were study on laboratory scale.  That has several questions 

need to be addressed by a systematic research plan, reactor configuration and complete 

denitrification. 
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2.16.4 Needs of UMCCA Model   

Biofilm diffusion is the main parameter must concern in biofilm system.  

Mass transport in biofilms is influenced by the biofilm structure which in turn is influenced 

by the local availability of substrate.  A quantitative understanding of how biofilm structure 

is linked to mass transport is essential for our understanding of biofilms. Solute transport in 

biofilms is the result of diffusion in the denser aggregates and potentially convective 

transport within pores and water channels.  Diffusion has been shown to dominate mass 

transport in many biofilm systems.  Two main approaches can be used to relate biofilm 

structure to mass transport.  One approach is to explicitly describe the complex three-

dimensional structure of the different biofilm components where the three-dimensional 

structure can be obtained from direct imaging of biofilms or from mathematical modeling 

(Horn and Morgenroth, 2006).  The unified multi-component cellular automaton (UMCCA) 

was developed which purpose to quantify composite density that relationships among three 

solid species─active cells, EPS, and residual inert biomass, three soluble species─original 

substrate, utilization associated products (UAP), and biomass associated products (BAP), 

and electron acceptor, such as oxygen.  The suitability of this combination for representing 

the structure of a heterogeneous biofilm has been demonstrated.  An advantage of this 

approach is that it can provide a fast and accurate model solution with readily available 

computing resources, such as a high-capacity personal computer.           

 

 

 

 

 

 

 



CHAPTER III 

METHODOLOGY 

 
The overall studies were divided into 3 main parts; (1) preliminary study, (2) pilot 

scale of fungal and bacterial downflow hanging sponge (DHS) reactors study and (3) 

mathematical modeling of biofilm mass transport in two DHS systems.  The details of each 

stage are shown in Figure 3.1. 

 

3.1      The UASB Effluent Sampling Site 

The UASB effluent was obtained the full scale UASB plant that installed at the 

General Starch Co., Ltd. in Khon-Buri district of Nakhon Ratchasima province in north 

eastern part of Thailand as shown in Figure 3.2 (a).  The UASB reactor has 4,000 m3, 23 m 

diameter, 11 m high, working volume consisting of a 3,428 m3 column portion and a 52 m3

 

 

gas/solid separator (GSS).  The GSS portion is modified by equipping with inclined plates 

type settle to enhance separation of sludge from evolve biogas and effluent system.  The 

UASB effluent were collected from overflow weirs on the top of the UASB reactor as 

shown in Figure 3.1(b) and stored at 4ºC for maximum 1 month during used in 

experimental study.    
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Figure 3.1 Flow chart showing different stages of experimental study 
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(a) UASB reactor               (b) Sampling site 

   

Figure 3.2 UASB reactor and the sampling site 

 

3.2 Sponge Characteristic  

Characterization of packing materials was carried our according to Test  Methods 

for the Examination of Composition and Compost (TMECC, 2002).  The following 

properties were compared in each case: specific surface area, material 

density, void ratio and pore size.  Specific area and material density were determined by 

BET technique in a Micrometrics, model ASAP 2010, apparatus and a 

Micrometrics, model AccPyc 1330, apparatus, respectively.  Pore sizes and void ratio of 

sponge media were determined by scanning electron microscopy (SEM) in a JEOL, model 

JSM 6400, apparatus. 

 

3.3   Enrichment of Seed Mixed Fungal and Bacterial Sludge 

 The initial seed sludge was isolated from the bottom sediment of an equalization 

tank from a tapioca starch factory.  The enrichment process was carried out cultivate 

naturally mixed fungi and bacteria in the seed sludge.  The 5 L of seed sludge was added 

into each polyethylene tank that contained 31 L of the UASB effluent, so a total volume of 

36 L for wastewater and sludge mixture with 1,500 mg/L of initial MLSS.  Figure 3.3 and 
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Table 3.1 illustrate the procedure and operation control conditions for enrichment of mixed 

fungal and bacterial sludge.  The wastewater was thoroughly mixed by a diffused aeration 

system and pH was adjusted to 4.0±0.2, which is the optimum pH for mixed fungi growth 

that can prevent bacterial contamination (Dan et al., 2003; Tung et al., 2004 and 

Wichitsathian, B., 2004).  The pH was adjusted to 7.0±0.2 for bacterial culture enrichment.  

Mixed bacterial cells, normally, settle in the bottom, whereas the filamentous fungi and 

bacteria would remain in the suspension (Wichitsathian, B., 2004) that was removed from 

the system.  However,  many filamentous bacteria that cause sludge bulking have been 

classified (Jenkins et al., 1986; Lau et al., 1984a; Lau et al., 1984b and Richard, 1989), 

although newly isolated ones are occasionally reported.  Jenkins et al. (1986), Metcalf and 

Eddy (2003); Grady et al. (1999) and Juang (2005) have proposed that the presence of 

certain filaments indicates the specific environmental conditions leading to activated sludge 

bulking.  Examples include low DO, low F/M, low pH, increased concentration of sulfides, 

nutrient deficiency.  These are insufficient conditions in sludge enrichment of bacterial 

system and floating sludge seems to be very low concentration during the experiment.  

Then, after eight hours of aeration, the biomass suspension was settled for 3 h.  

Subsequently, about 24 L of supernatant was removed and analyzed for COD 

concentration.  A fresh UASB effluent of same volume (24 L) was added to the container 

for another batch.  The MLSS concentrations of the mixture were measured at 2-3 days 

intervals before settling during the enrichment period.     

   

Table 3.1 Operating conditions for fungal and bacterial culture enrichments 

Operating condition Fungal sludge Bacterial sludge 

COD (mg/L) 400±100 400±100 
pH 4.0±0.2 7.0±0.2 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4C5PVN3-3&_user=1750281&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1187948888&_rerunOrigin=google&_acct=C000054425&_version=1&_urlVersion=0&_userid=1750281&md5=b1e33ccbf9e9fcc910aa6560ad274cff#bib4�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4C5PVN3-3&_user=1750281&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1187948888&_rerunOrigin=google&_acct=C000054425&_version=1&_urlVersion=0&_userid=1750281&md5=b1e33ccbf9e9fcc910aa6560ad274cff#bib8�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4C5PVN3-3&_user=1750281&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1187948888&_rerunOrigin=google&_acct=C000054425&_version=1&_urlVersion=0&_userid=1750281&md5=b1e33ccbf9e9fcc910aa6560ad274cff#bib9�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4C5PVN3-3&_user=1750281&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1187948888&_rerunOrigin=google&_acct=C000054425&_version=1&_urlVersion=0&_userid=1750281&md5=b1e33ccbf9e9fcc910aa6560ad274cff#bib13�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4C5PVN3-3&_user=1750281&_coverDate=01%2F31%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1187948888&_rerunOrigin=google&_acct=C000054425&_version=1&_urlVersion=0&_userid=1750281&md5=b1e33ccbf9e9fcc910aa6560ad274cff#bib4�
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MLSS (mg/L) 3,000 3,000 
HRT (h) 12 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
  

Figure 3.3  Mixed fungal and bacterial sludge enrichment processes 

   

The enrichment process contained for 3 months until the fungal and bacterial biomass 

concentration reached to MLSS of above 3,000 mg/L and 70% COD removal was achieved.  
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The DHS experiments were started with pre-incubation by placing about 30 L volume of 

the sponge as the floating media into enriched seed sludge mixture for a week.  The steps of 

fill-and-draw process were also used for the enrichment of sponges, i.e. replacing the 

enriched sludge and wastewater mixture daily during the 30 days period.   

    
3.4      Experimental Setup of DHS System 

The first design parameters were started with the criteria of trickling filter by Grady 

et al. (1999) for the reactor height but increasing organic surface loading to sufficient 

values for treating UASB effluent in tapioca starch industry following aerated biofilter 

design criteria (Grady et al., 1999).  The schematic diagram of the experimental setup, 

consisting of a polyethylene tank of 100 L capacity with dimension: diameter (Ø)-410 mm 

and height (H)-800 mm for storage of the UASB effluent, and a DHS biofilter post-

treatment unit as shown in Figure 3.4.  The effluent from the UASB reactor was forwarded 

for polish-up to the aerobic DHS reactor used as a post treatment unit.  The two DHS 

systems were made of acrylic columns, with internal diameter of 14 cm.  The total height of 

the reactors was 430 cm.  The sponges used were supported by polyethylene plastic 

material with fins.   The DHS reactors consisted of four identical modules of column 

segments connected vertically, each segment being equipped with about 5.4 L of sponge 

randomly distributed.  The dimensions of the polyurethane foam (sponge) were 20×20×20 

mm for the first to third segments and 30×30×30 mm for the fourth segment as shown in 

Figure 3.5.  The UASB effluent was fed by a peristaltic pump to the distributor located on 

the top of DHS systems and rotating at a speed of 9 rpm.  The oxygen was naturally 

diffused through perforated plate windows located at different levels of the first, second and 

third segments of both BDHS and FDHS systems.  Treated wastewater samples were 

collected from each segment of the systems.  
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Figure 3.4  Schematic diagram of experimental setup 

   

3.5 Organic Loading Rate (OLR) Variation 

The whole experimental period of 522 days was divided into three runs (RUN I-320 

days, RUN II-95 days and RUN II-107 days).  The inflow rate in RUN II was decreased 

from 75 L/d in RUN I to 25 L/d but in RUN III it was still 75 L/d.  However, there was 

recirculation of effluent at a rate of 525 L/d and 475 L/d for RUN II and RUN III, 

respectively, with overall inflow rate to the system to reach 550 L/d. 
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(a) Segment 1-3         (b) Segment 4 
    

Figure 3.5  The segment of two DHS systems and sponge media   

   

Process performances of the systems were investigated during each run.  Behavior of the 

two DHS systems in response to hydraulic loading rate (flow rate per unit volume of 

sponge) and organic loading rate were investigated.  The experimental set-up and operating 

conditions for the three runs are shown in Figure 3.6 and Table 3.2.   

   

Table 3.2 The operating conditions of two DHS systems during three runs 

Operating conditions RUN I RUN II RUN III 

Flow rate (L/d) 75.0 25 (550 75 (475* *) 

HRT (h) 7.0 1.0 1.0 

Downflow velocity (m/h) 0.2 1.5 1.5 

Recirculation (L/d) - 525 475 
 
Remark: *inflow + recirculation 
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Figure 3.6  Experimental setups for RUN I, RUN II and RUN III 

   
  3.6   Biokinetic Coefficient Determination 

Understanding the biodegradation kinetics of biofilms is essential for the rational 

optimization of biofilm reactor design and operation.  However, the biokinetic parameters 

are particularly difficult to be measured because diffusional resistance within the biofilm 

would likely mask its true reaction kinetics.  Respirometric technique, based on the 

determination of the respiration rate of microorganisms (oxygen uptake rate, OUR), has 

been commonly used to quantify microbial growth, associated substrate depletion, and 

product formation in activated sludge.  Recently, several researchers have also determined 
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the OUR in biofilm reactors to quantify the biokinetic parameters in biofilm systems 

(Riefler  et al., 1998; Carvallo et al., 2002; Plattes et al., 2007) and also applied in DHS 

system (Tawfik et al., 2006a; Tandurkar et al., 2006a and Tandurkar et al., 2006b).  These 

studies have nonnegligible drawbacks, although these results can reflect heterogeneity of 

biofilms in that highly complex structures containing voids, connecting channels between 

these voids, and microbial clusters or layers with nonuniform spatial distribution of biofilm 

properties such as density, porosity, and the diffusivity mass transport limitations.  

However, s new approach to quantify spatial distribution of biofilm kinetic parameters by 

in situ determination of oxygen uptake rate (OUR) was study by Zhou et al. (2009).  This 

depends on oxygen concentration profiles, which are usually obtained by using a 

microelectrode technique.  But it is only one research to study by this technique now.    

The oxygen uptake rate (OUR) experiments were conducted to determine the 

biokinetic coefficients of aerobic heterotrophs in the sludge samples obtained from different 

DHS location heights (first, second, third and fourth segment).  The harvested sponge with 

biomass was squeezed and centrifuged at 3000 rpm for 15 min and decant the supernatant. 

Dilute the sludge with phosphate buffer 10 mm, pH 7.0, homogenize and centrifuge, then 

decant again the supernatant.  This step has been repeated 5.0 times.  Before starting OUR 

experiments, both UASB effluent and the sludge were aerated for 45 min to ensure that no 

hydrogen sulfide and no external carbon source were present in the effluent of UASB 

reactor and the harvested sludge respectively (Tawfik et al., 2006a; Tandurkar et al., 2006a 

and Tandurkar et al., 2006b). 

The initial MLVSS concentration, X0 in the sludge samples of two DHS system 

were brought to 400 mg/L by dilution for both runs.  The biokinetic coefficients were 

determined using a closed 0.9 L batch respirometer, equipped with a recorder and a 

dissolved oxygen (DO) meter (YSI, model: 556 MPS).  Constant temperature was 
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maintained by circulating water through a water jacket enclosing the reactor vessel.  Figure 

3.7 and Table 3.3 present the respirometer set up and operating conditions of the 

experiments.  The S0/X0

a) Obtaining endogenous sludge: The respirometer was filled with fresh sludge 

without substrate and aerated at least for 2 h. 

 ratio (initial substrate concentration/biomass concentration) that 

governs the quality of the batch respirometric tests was maintained in the range of 0.05-0.8.  

The experimental procedures for OUR determination were summarized in Figure 

3.8 with details below: 

b) Suppressing nitrification:  NH4

 

Cl was with the concentration of 70 mg N-

ammonium/L.  Dan, N. P. (2001) and Wichitsathian, B. (2004) referred that if ammonia 

was presented in wastewater, organic oxidation and nitrification simultaneously occurred.  

At high enough ammonia concentration (70 mg/L), the OUR in nitrification process was 

constant during organic oxidation.  When this ammonia dose was added to endogenous 

sludge, nitrification OUR was determined.  Thus, OUR of organic oxidation was the 

difference between total OUR and the sum of endogenous OUR and nitrification OUR. 
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Figure 3.7  Experimental setup for the respirometric tests 

 

 

Table 3.3  Operating conditions of the respirometric experiment of fugal  

                  and bacterial cultures (Wichitsathian, B., 2004)     

Operating conditions Fungal culture Bacterial culture 

Initial pH 4.0±0.2 7.5±0.2 

Temperature (ºC) 30±0.5 30±0.5 

X0 500  (mgMLSS/L) 500 
Substrate concentration, 
S0

5-50  (mgCOD/L) 5-50 

S0/X0 ratio (d-1 0.01-0.10 ) 0.01-0.10 

Suppressing nitrification - 70 g N-ammonia/L(a) 
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Figure 3.8  Biokinetics coefficients study processes 

 

 

 

c) Recording endogenous OUR: After suppressing the nitrification process, the 

mixture was aerated at least half an hours before measuring endogenous OUR. 

d) Adding substrate: An accurate amount of substrate was added to the 

respirometer and total OUR recorded by data logger.  New re-aeration was necessary when 

the dissolved oxygen concentration dropped below 2 mg/L. 

The results of the respirometric experiments provided values of the oxygen uptake 

rates (OUR) that were used for calculating maximum specific growth rates (µmax), substrate 

utilization rate (rx), half-velocity constant (KS

3.7 Investigation for Biodegradable COD Fractions 

) and sludge yield coefficient (Y) based on 

Monod kinetics by regression analysis (Wichitsathian, 2004; Dan, 2001 and Grady et al., 

1999). 

 

 The carbonaceous material characterizations measured in terms of the COD 

parameter were subdivided into a number of fractions following Wentzel, et al. (1999) as 

shown in Figure 3.9.  That is presented to quality four COD fractions–unbiodegradable 

soluble (USCOD) and particulate (UPCOD), readily (BSCOD) and slowly (BPCOD) 

biodegradable.  Biodegradation fractions (BCOD) were calculated from the measured of the 

total COD (TCOD) and BOD 20 days with inhibited nitrification.  The BOD values were 

calculated using negative pressure values from the OxiTop®-C measuring head (Boursier et 

al., 2005).  The particle and colloidal were separated from soluble fractions by filtration 

method through a glass fiber filter (Whatman’s GF/C). 
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Figure 3.9 Division of COD fractions in two DHS systems 

        

3.8 Material Balance Calculation Methods 

The calculation methods of COD and nitrogen balances on two DHS systems were 

processed by following formula of Barker and Dold (1995).  To perform a COD balance on 

two DHS systems, must be estimated the mass of COD in the influent and effluent, COD of 

wasted sludge, and amount of COD oxidized.  The amount of COD mass balance can be 

noted by Equation 3.1. 

 

lossoxidCOD,effCOD,infCOD, MMMM ++=                                            (3.1) 

 

Where: MCOD,inf and MCOD,eff is mass of TCOD in the influent and effluent, respectively 

(g/d); MCOD,oxid is mass of TCOD oxidized through aerobic heterotroph utilization or 

oxygen utilization rate with deduction of oxygen required for nitrification (g/d); MCOD,denit 

is a mass of nitrate denitrified per day multiplied by 2.86 that is the transfer of one electron 

equivalent requires the reduction of 1/4 mol of oxygen or 1/5 mol of nitrate during 
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denitrification process (g/d); MCOD,wasted  is mass of COD in wasted sludge of DHS effluent 

and MCOD,slu 

losseffN,NOeffN,NOeffTKN,infN,NOinfN,NOinfTKN, MMMMMMM
3232

+++=++ −−−−

mass of assimilated COD in sludge. 

 Based on nitrogen removal theory, nitrogen removal can be achieved by two 

principal processes, assimilation by microorganism and nitrification-denitrification.  The 

amount of nitrogen mass balance was illustrated in the Equation 3.2. 

    

  

                                                               sludN,M−                                                        (3.2) 

 

Where:  MTKN,inf, MNO2-N,inf, MNO3-N,inf are mass flow of TKN, nitrite and nitrate (g/d) in the 

influent, respectively; MTKN,eff, MNO2-N,eff, MNO3-N,eff are mass flow of TKN, nitrite and 

nitrate (g/d) in the effluent, respectively; MN,ass is nitrogen assimilation obtained by 

analyzing the amount of nitrogen accumulation in dry sludge (g/d); Mdenit is the mass of 

nitrate denitrified per day which equals to the differences between the input and output 

nitrate and MN,wasted 

3.9 Identifying Cultures 

 is mass of TKN in wasted sludge of DHS effluent. 

 

To investigate the predominant microorganisms in BDHS and FDHS sludge, they 

were cultured on medium of different mixtures the BDHS system used Trypti-caseine Soy 

Agar (TSA) medium with sterilized DHS influents and the FDHS system used Potato 

Dextrose Agar (PDA) medium with sterilized DHS influents.  The predominant 

microorganisms were identified from their fast growing rate and in a considerable number.  

Subsequently, the purified dominant fungal and bacterial cultures were sent to National 

Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand for genus 

identifications.  
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3.10 Sludge Characteristics 

The variation in sludge characteristics were estimated in two DHS systems during 

three runs under different operational conditions on the sludge characteristics.  Based on the 

system efficiencies and biofilm compositions were determined.  The harvested sponges 

with biomass were squeezed.  The obtained liquid was centrifuged at 3,000 rpm for 15 min 

and the supernatant was removed.  The residual sludge was diluted with phosphate buffer of 

10 mM, and pH of 7.0.  Sludge was homogenized and centrifuged and then the supernatant 

was removed again.  This step was repeated 5 times (Tandukar et al., 2005).  Characteristics 

of the sludge after above steps, in terms of SS, VSS, and specific oxygen uptake rate 

(SOUR), as well as extracellular polymeric substances (EPS), active biomass and retained 

biomass concentrations were determined experimentally.   

3.10.1 Microorganism Morphology 

Microbial morphology in the two continuous reactors were determined by 

scanning electron microscopy (SEM) in JEOL, model JSM 6400, apparatus.  For SEM 

preparation, harvested sponges were fixed for 4 h in 2% (v/v) glutaradehydrate, washed 3 

times with 0.10M sodium cacodylate buffer, and dehydrated with T-butyl alcohol of 

increasing concentration (50, 70, 85, 95 and 100% v/v).  Dehydrated sludge was dried with 

a freeze dryer, sputter-coated with gold at 20 mA in a high vacuum (2.8×10-6

3.10.2 Extracellular Polymeric Substances (EPS)  

 Torr) and low 

temperature (-170ºC) cryo-chamber for 90 seconds, and then viewed with SEM 

(Geng et al., 2004).        
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The quantification of EPS in biomass was analyzed using thermal extraction 

method (Chang and Lee, 1998).  A measured volume of sludge solid was centrifuged in 

order to subtract the soluble EPS at 3,200 rpm for 30 min from bound EPS.  After 

collecting the soluble EPS, the remaining pellet was re-suspended with 0.9% NaCl solution 

before heating at 80o

3.10.3 Active biomass concentrations 

C for 1 h.  The extracted solution was separated from the sludge solids 

by centrifugation at 3,200 rpm for 30 min.  The obtained supernatant was the bound EPS.  

The quantity of bound EPS and soluble EPS were measured by measuring proteins and 

carbohydrates (Wichitsathian, B., 2004).  Protein and carbohydrate, being the main 

components of EPS, were analyzed using Lowry method (Lowry et al., 1951) and phenolic 

sulfuric acid method (Dubois et al., 1956) with Bovine Serum Albumin (BSA) and glucose, 

respectively used as the standards. 

The concentration of active biomass procedure was used in this study is 

referee of that by Zhang and Bishop (1994) with phospholipids analysis that consists of: 

- 6 mL samples from homogenized bacterial suspensions for each 

biofilms was added into 150 mL screw cap bottles, while they used 50 mg of cells.  Then, 

20 mL of chloroform, 40 mL of methanol, and 10 mL of water was added to the samples 

(thus the ratio of chloroform: methanol: water was 1: 2: 0.8) 

- 5 mL portions of the chloroform layer was transferred to clean COD 

test tube, while they transfer 100 μL portions to a 2 mL glass ampoule. 

- 2.7 mL potassium persulfate was added; 

- the sealed COD test tubes are heated in an oven at 103ºC for 2 h; 

- the phosphate release by digestion was determined by adding 0.6 mL 

ammonium molybdate; and 
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- The absorbance at 610 nm was then read using a diode array 

spectrophotometer.  The concentration of phosphate was calculated by using a standard 

curve saves in diode array spectrophotometer.  

In order to find the conversion factors from phospholipids concentration to 

active cells based on total volatile suspended solids (VSS).  By measuring VSS and 

phospholipids content of these enrichment cultures, the conversion factors were obtained 

(Zhang and Bishop, 1994).    

3.11 Analytical Methods 

Table 3.4 illustrates the analytical methods of experimental study.  Influent and 

effluent samples were analyzed following the Standard Methods for the examination of 

water and wastewater (APHA, 1998).  The BOD values were obtained by using an 

OxiTop®-C measuring pressure head.  Biodegradation rate was calculated from the 

measured BOD20

Parameters 

 values with inhibited nitrification and total COD (TCOD) 

(Reuscchenbach et al., 2003).  Protein and carbohydrate, being the main components of 

EPS, were analyzed using Lowry method (Lowry et al., 1951) and phenolic sulfuric acid 

method (Dubois et al., 1956) with Bovine Serum Albumin (BSA) and glucose, respectively 

used as the standards. 

        

Table 3.4 Parameters and analytical methods 

Methods Equipments 

pH pH meter pH meter 
DO DO meter DO meter 
COD Dichromate reflux Titration 

BOD OxiTop® OxiTop-C 
®-C measuring pressure 

head/bottle 
TKN Marcro-Kjeldahl Titration 
NH3 Nesslerization -N Titration 
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MLSS Dried at 103-105ºC Oven 
MLVSS Ignited at 550ºC Furnace 
TOC Combustion method TOC analyzer 
EPS Thermal and centrifugal method Centrifugal equipment 
Proteins Lowry Spectrophotometer 
Carbohydrates Phenolic-sulfuric acid Spectrophotometer 
Microbial 
composition Microscopic Scanning electron microscopic  

 

   
3.12 Application of the UMCCA Model for Biofilm Composition and 

Density in Two DHS Systems 

Biofilm processes have been widely applied to the various fields of water and 

wastewater treatment technologies. Biofilm formation takes place by a variety of biological, 

chemical, and physical processes.  During biofilm development, the large number of 

chemical and biological species that occur and interact simultaneously over a broad range 

of length and time scales can easily confuse human intuition.  Mathematical models can 

help in deeper and broader understanding of a system by generating quantitative prediction 

from the descriptions of biofilm characteristics that have been turned into the rational form 

of a complete set of equations (Piocioreanu et al., 2004).   

Biofilms are multiphase systems that consist of solids and a liquid phase in the void 

space between the solids.  Most biofilms are spatially heterogeneous, characterized by 

complex assemblages of cell types and gradients of physical/chemical parameters.  The 

spatial gradients of microbial species and density, the volume fraction of the water phase 

(porosity), and the tortuosity of biofilms have to change as the depth of the biofilm 

increases.  Theses spatial distributions of biotic and abiotic components in turn affect the 

mass transfer mechanisms and diffusivities in biofilms (Zhang and Bishop, 1994a, b).  
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Because of the complexity of biofilms, the determination of diffusivities within the biofilm 

is extremely difficult.  Up to now, the following three basic methods have been used to 

determine biofilm diffusivities: (a) the diffusion cell method; (b) the diffusion reaction 

model data fitting method; and (c) the concentration profiles data fitting method.  The 

classical diffusion cell method depends on time course of concentration changes between 

two diffusion cells.  It treats the biofilm as a black box, and does not take into consideration 

changes of density, porosity and pore structure within biofilm.  Thus, it can only give 

average diffusion information over the total biofilm depth.  The second method requires the 

accurate determination of kinetic parameters, which is usually done in a suspended 

microorganism system, a very labor intensive undertaking.  The third method depends on 

concentration profiles, which are usually obtained by using a microelectrode technique 

(Zhang and Bishop, 1994b). 

Along with increasing interests in biofilm processes, there have also been numerous 

efforts toward mathematical modeling of biofilms.  In the early stage of biofilm modeling, a 

major issue was how to describe substrate dynamics including the mass transport of 

substrates and their microbial conversions which take place simultaneously within biofilms.  

These models usually assumed predefined biofilm thickness and homogeneous microbial 

density of the biofilm, not considering biofilm growth (Lee and Park, 2007). 

Study of biofilm growth is very important in the mathematical modeling of biofilms 

because it is closely related to microbial performance, which has an auto-catalytic effect on 

the substrate dynamics.  Biofilm growth is an extremely complicated phenomenon where 

several fundamental sub-processes are involved.  Microorganisms are subject to different 

environmental conditions depending on time and space of the biofilm, which would 

eventually lead to a non-homogeneous biofilm growth.  Moreover, relocation of the 

biomass including all particulate components, such as active microorganisms (Xa), inert 
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residues (Xres

• The unified multi-component cellular automaton (UMCCA) Model 

Definition 

), and extracellular polymeric substances (EPS), should be considered as the 

biomass exceeds a certain limit of space availability.  Biomass attachment and detachment 

also remarkably contribute to overall biofilm growth (Lee and Park, 2007). 

The unified multi-component cellular automaton (UMCCA) was developed 

by Laspidou and Rittmann (2002a, 2002b, 2003, 2004a, 2004b) aiming to quantify 

composite density of biofilm that shows relationships among three solid species ─ active 

cells (Xa), extracellular polymeric substances (EPS), and residual inert biomass (Xres

EPS
UAP

Active 
Biomass, Xa  Xres

2

S

3

6

EnergyElectron Acceptor
(e.g. O2)

Reduced Aceeptor
(e.g. H2O)

kEPSrsXa

k1rsXa

5
4

[1-kEPS-k1-Ys(1-kEPS-k1)]rsXa
fdbXa

1

7
khydEPS

(1-kEPS-k1)YsrsXa (1-fd)bXa

), three 

soluble species ─ original substrate (S), utilization associated products (UAP), and biomass 

associated products (BAP), and electron acceptor, such as dissolved oxygen (DO) (Figures 

3.10 and 3.11).  The UMCCA model combines a discrete representation of the solid phase 

by cellular automaton (CA) with classical continuous methods for soluble components.  

The suitability of this combination for representing the structure of a heterogeneous biofilm 

has been demonstrated.   
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(1) Biomass synthesis 
(2) Substrate-utilization associated 

product (UAP) formation 
(3) Extracellular polymeric 

substance (EPS) formation 
 

(4) Substrate respiration 
(5) Endogenous biomass respiration 
(6) Formation of inert biomass 
(7) Biomass association product (BAP) 

formation from EPS hydrolysis 

   

Figure 3.10  Schematic of electron flows dealing with original substrate and active 

           biomass.  Kinetic forms are shown for each flow.  All flows are 

                            expressed in mg-COD/L-d (Laspidou and Rittmann, 2002b) 

 

 

 

All mass in gCOD, L3

k

 is liters, and T is days.  Subscript are S for organic substrate, P for 

UAP and BAP, EPS for EPS, and X for active biomass and residual biomass.   where: 

1      is UAP formation rate coefficient  

         (MP/MS) 

kEPS  is EPS formation rate coefficient   

         (MP/MX)  

khyd   is first-order hydrolysis rate  

         coefficient (T-1) 

rS      is specific substrate utilization rate  

         (MS/MX-T) 

S       is original substrate concentration  

         (MS/L3) 

Xa     is active biomass concentration     

         (MX/L3

X

) 

res   is residual inert biomass  

         concentration (MX/L3) 

YS     is true yield for substrate  

         utilization (MX/MS) 

YP     is true yield for soluble  

         microbial product (SMP)  

         utilization (MX/MP)  

fd      is biodegradable fraction of  

         active biomass (-) 

b       is first-order endogenous decay  

         rate coefficient (T-1

         

)   
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An advantage of this approach is that it can provide a fast and accurate model solution with 

readily available computing resources, such as high-capacity personal computers.  The 

UMCCA model begins with a differential discrete cellular automaton (CA) approach 

similar to that used by Picioreanu et al. (1998a, 1998b).  It computes properties that are 

associated with biofilm heterogeneity, such as biofilm density, porosity, and surface shape.   

3.12.1 Computer Environment 

The UMCCA model was programmed in Compaq Visual Fortran 6 and was 

executed on a personal computer that uses a standard, commercially available Pentium with 

4 CPU, 2.8 GHz., with 1 GB of RAM.           

 

Active 
Biomass, Xa  Xres

UAP
6

EnergyElectron Acceptor
(e.g. O2)

Reduced Aceeptor
(e.g. H2O)

5
10

(1-YP)rUAPXa

fdbXa

(1-fd)bXa

BAP 9YPrBAPXa

8YPrUAPXa

11

(1-YP)rBAPXa

     

 

(1) Biomass synthesis by utilization of donor substrate UAP 
(2) Biomass synthesis by utilization of donor substrate BAP 
(3) Donor substrate UAP respiration 
(4) Donor substrate BAP respiration 
(5) Endogenous biomass respiration (same as Figure 5.1) 
(6) Formation of inert biomass from decay (same as Figure 5.1 ) 

   
   

Figure 3.11  Schematic of electron flows for BAP and UAP utilization. Kinetic forms 

      are shown for each flow.  All flows are expressed in COD/L-d  

                          (Laspidou and Rittmann, 2002b) 
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where: 

rUAP   is specific substrate utilization rate  

          (MP/MX

r

-T) 

BAP   is specific substrate utilization rate   

          (MP/MX

 

-T) 

3.12.2 System Definition 

The physical space of the model is represented by a rectangular uniform grid 

with square compartments used to fill the 2D space.  The model had Nx = 150 grid points 

across the x Cartesian direction (parallel to the substratum) and Nz

3.12.3 Initial and Boundary Conditions 

 = 70 square elements 

across the z direction (perpendicular to the substratum).  The dimension of each square 

compartment is d = 4 µm, that is small enough to make it possible to have each 

compartment contain one microbial cell, as well as EPS and residual dead biomass.  The 

entire domain is a biofilm cluster that is approximately twice as wide as it is long (Laspidou 

and Rittmann, 2004a). 

The initial conditions for all quantities are shown at the top of Figure 3.12.  

The grid starts saturating in original donor substrate and oxygen, while all other quantities 

except for active biomass are set at zero.  A random seeding of half of the compartments 

adjacent to the substratum with biomass starts off the system with biomass.  As biomass 

grows, it consumes substrate and produces UAP and BAP, which diffuse within and out of 

the biofilm.  Biomass also produces EPS and residual dead biomass, which do not diffuse, 

but move according to the CA algorithm (Figure 3.13).  An inexhaustible source of 

substrate is located at the upper boundary of the grid space, i.e. jiS ,max
= 1.0 at all times, 

with maxi  = 70.  In other words, even if the substrate is consumed by the biofilm 

microorganisms, there is an infinite supply of substrate at the top of the grid, which diffuses 

down to the biofilm.  The extent of the biofilm development, for example, is determined by 
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the balance between how fast the substrate diffuses down to the biofilm and how fast it is 

consumed by the microorganisms.  The absolute concentration (dimensional domain) can 

vary with each model run.  The zero-flux boundary condition is assumed for all soluble 

species at the substratum of the modeled space, i.e., 
0=∂

∂

ZZ
S = 0 at that boundary.  The same 

is true for the two sides of the biofilm cluster, i.e., 
0=∂

∂

XX
S = 0 and 

maxXXX
S

=∂
∂ = 0.  This 

means that the substratum and the two sides of the system are completely impermeable to 

the substrate, while the top surface of the biofilm cluster is completely immersed in it. 
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Initialize
1. Randomly choose half of 150 components adjacent 
to the substratum and “seed” them with Cin,                                   
                                             (random between 0.5-1.0)
2.Bioagei,j(random)   = 0
3.                          = 0
4.                          = 0
5.                          = 0
6.                          = 0
7.                          = 0
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•  Calculate Xai,j by solving Eq. 3-13
•  Calculate Xresi.j by solving Eq. 3-14
•  Calculate EPSi,j by solving Eq. 3-15
•  Caculate BAPi,j by solving Eq. 3-12
•  Calculate CompDeni,j by solving Eq. 3-16
•  Calculate Uci,j by solving Eq. 3-17
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Figure 3.12  Flowchart of the solution strategy for the UMCCA model  

                                      (Laspidou and Rittman, 2004a). 
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Figure 3.13  Flowchart of CA algorithm of the UMCCA model  

                                            (Laspidou and Rittman, 2004a). 
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3.12.4 Model Variables 

The values of the variables the UMCCA model are listed in Tables 3.5 and 

3.6 for FDHS and BDHS systems, respectively.  The nomenclature lists are illustrated in 

Table 3.7.  The unit system for the parameters used g-COD for all organic species, liters for 

volume, metres for distances, and days for time.  This study chooses the UMCCA model 

parameter values based on the following criteria: 

• The values for Smax, Ys, b, Ks Sq
Λ

, , fd and O2,max

• The values for D

 took directly from the 

experimental study.  

s, xa,max, epsmax, Yp, k1, kEPS, khyd, KUAP UAPq
Α

,  KBAP, 

and 
Α

BAPq  directly from the literature.  Ds and xa,max were taken from Picioreanu et al. (1998).  

epsmax was taken from Kreft and Wimpenny (2001), who quote a maximum EPS density as 

75 g C/L.  Assuming that a mole of EPS is similar to that of a cell (C5H7O2N, as in 

Rittmann and McCarty, 2001), we can obtain epsmax, using the ratios of 60 g C per mole of 

EPS and 1.42 g CODx

• The value for b

 per formula weight.  The other variables are identical to the ones 

used in Laspidou and Rittmann (2002b), in which evaluated from the unified theory 

(Laspidou and Rittmann, 2002a) by comparing it with experimental data found in Hsieh et 

al. (1994). 

det 

• Values for uap

is typical for aerobic heterotrophs in environmental 

biotechnology (Rittmann and McCarty, 2001). 

max and bapmax are needed to have dimensionless 

concentrations of UAP and BAP.  This study chose uapmax to be the same as Smax, since it 
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cannot exceed that maximum.  Then chose a smaller value for bapmax

 

, because BAP is 

usually smaller than UAP (Laspidou and Rittmann, 2004a).  

 

Table 3.5  Parameter values for illustrating the trends of the UMCCA model  

                 for FDHS system 

Parameters Units 
Variable Values of FDHS system 

Segment 1 Segment 2 Segment 3 Segment 4 

D mS 2 1.38×10/day 1.38×10-4
 1.38×10-4 1.38×10-4 -4 

S mgmax s 336.1 /L 75.2 63.9 74.0 

uap mgCODmax p 336.1 /L 75.2 63.9 74.0 

bap mgCODmax p 65.2 /L 59.9 41.6 76.6 

x mgCODa,max x 70 /L 70 70 70 

eps mgCODmax x 200 /L 200 200 200 

x mgCODres,max x 220 /L 220 220 220 

O mg-O2,max 2 3.30 /L 4.10 4.60 2.60 

 1/µm 0.005 0.005 0.005 0.005 

Y mgS x/mg 0.63 s 0.63 0.63 0.63 

Y mgP x/mg 0.45 p 0.45 0.45 0.45 

b 1/day 0.086 0.051 0.084 0.044 

 1/h 0.0315 0.0315 0.0315 0.0315 

Sq
∧

 
mgCODs/mgCODx 3.40 -

day 1.60 1.20 1.60 

K mgCODS s 92 /L 100 52 80 

f - D 1.5 1.2 1.4 1.5 

b 1/day det 0.15 0.15 0.15 0.15 

k mgCOD1 p/mgCOD 0.05 s 0.05 0.05 0.05 

k mgCODEPS p/mgCOD 0.18 s 0.18 0.18 0.18 

k 1/day hyd 0.17 0.17 0.17 0.17 

UAPq
∧

 
mgCODp/mgCODs 1.80 -

day 1.80 1.80 1.80 

λ

η
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K mgCODUAP s 100 /L 100 100 100 

BAPq
∧

 
mgCODs/mgCODs 0.1 -

day 0.1 0.1 0.1 

K mgCODBAP s 85 /L 85 85 85 

B - 0.9820 0.9820 0.9820 0.9820 

 

 

Table 3.6  Parameter values for illustrating the trends of the UMCCA model  

                  for BDHS system 

Parameters Units 
Values of BDHS system 

Segment 1 Segment 2 Segment 3 Segment 4 

D mS 2 1.38×10/day 1.38×10-4
 1.38×10-4 1.38×10-4 -4 

S mgmax s 336.1 /L 240.1 156.5 136.2 

uap mgCODmax p 336.1 /L 240.1 156.5 136.2 

bap mgCODmax p 29.3 /L 22.2 30.6 26.3 

x mgCODa,max x 70 /L 70 70 70 

eps mgCODmax x 200 /L 200 200 200 

x mgCODres,max x 220 /L 220 220 220 

O mg-O2,max 2 0 /L 1.06 2.60 3.20 

 1/µm 0.005 0.005 0.005 0.005 

Y mgS x/mg 0.84 s 0.86 0.85 0.86 

Y mgP x/mg 0.45 p 0.45 0.45 0.45 

b 1/day 0.199 0.098 0.082 0.093 

 1/h 0.0315 0.0315 0.0315 0.0315 

Sq
∧

 
mgCODs/mgCODx 2.20 -day 3.50 1.60 3.60 

K mgCODS s 54.8 /L 81.1 50.0 100.2 

f - D 0.9 1.1 1.2 1.3 

b 1/day det 0.15 0.15 0.15 0.15 

k mgCOD1 p/mgCOD 0.05 s 0.05 0.05 0.05 

k mgCODEPS p/mgCOD 0.18 s 0.18 0.18 0.18 

k 1/day hyd 0.17 0.17 0.17 0.17 

λ

η
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UAPq
∧

 
mgCODp/mgCODs 1.8 -day 1.8 1.8 1.8 

K mgCODUAP s 100 /L 100 100 100 

BAPq
∧

 
mgCODs/mgCODs 0.1 -day 0.1 0.1 0.1 

K mgCODBAP s 85 /L 85 85 85 

B - 0.9820 0.9820 0.9820 0.9820 

 

 

Table 3.7  Nomenclature for all components in the UMCCA model (Laspidou and  

                  Rittmann, 2004a) 

Nomenclature Description Nomenclature Description 
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b 
 
B 
 
BAP 
 
bap 
 
bapmax 

 
bdet 
Bioage 
 
CompDen 
d 
 
D 
dmax 
 
DS 
EPS 
 
eps 
epsmax 
 
fd 
 
k1 
 
KBAP 
 
KD 
 
kESP 
khyd 
KO 
 
KS 
 
 
KUAP 
 
O2 
O

BAPq
Λ

2,max 

 

Dq
Λ

 
 

 
First-order endogenous decay rate 
coefficient (T-1) 
Rate of secondary consolidation to 
total consolidation ( - ) 
Dimensionless concentration of 
BAP [-] 
Concentration of BAP 
concentration [Mp/L3] 
Maximum BAP concentration 
[Mp/L3] 
Biofilm detachment coefficient [T-

1] 
“Age” of each biofilm compartment 
(T) 
Composite density of biofilm 
[Mx/L3] 
Dimension of each square grid 
space element [L] 
Dimension donor substrate [-] 
Maximum donor substrate 
concentration [MD/L3] 
Diffusion coefficient [L2/T] 
Dimensionless concentration of 
EPS [-] 
Concentration of  EPS [MP/L3] 
Maximum EPS packing density 
[MP/L3] 
Biodegradable fraction of active 
biomass [-] 
UAP formation rate coefficient 
[MP/MS] 
Half maximum rate concentration 
for BAP utilization [MP/L3] 
Half maximum rate concentration 
for utilization 
EPS formation coefficient [MD/L3] 
EPS formation coefficient [MP/MS]  
Half maximum rate concentration 
for O2 consumption [MO/L3] 
Half maximum rate concentration 
for utilization of original substrate 
[MS/L3] 
Half maximum rate concentration 
for UAP utilization [MP/L3] 
Oxygen concentration [MO2/L3] 
Maximum oxygen concentration 
[MO2/L3] 
Maximum specific BAP utilization 
rate [MP/MX-T] 
Maximum specific substrate 
utilization rate for donor substrate 
[MD/MX

Sq
Λ

-T] 

 
 

UAPq
Λ

 
 
S 
 
s 
 
smax 
 
tc 
UAP 
 
uap 
uapmax 

 
Uc 
x 
X 
Xa 
 
xa 
xa,max 
 
Xres 
 
xres 
 
xres,max 
 
YP 
 
Y

bt∂

S 
 
z 
Z 

 

st∂  
 
η 
λ 
 
 
ρBAP 
ρD 
ρS 
ρ

 
Maximum specific substrate 
utilization rate for original substrate 
[M

UAP 

S/MX-T]  
Maximum specific UAP utilization 
rate [MP/MX-T] 
Dimension concentration of original 
donor substrate [-] 
Concentration of original donor 
substrate [MS/L3] 
Maximum concentration of electron 
donor substrate [MS/L3]   
Consolidation time [T] 
Dimensionless concentration of 
UAP [-] 
Concentration of UAP [MP/L3] 
Maximum concentration of UAP 
[MP/L3] 
Consolidation ratio [-] 
Biofilm width [L] 
Dimensionless biofilm width [-] 
Dimensionless density of active 
biomass [-] 
Active biomass density [MX/L3] 
Maximum active biomass packing 
density [MX/L3] 
Dimensionless density of true 
residual inert biomass [-] 
Density of residual inert biomass 
packing density [MX/L3] 
Maximum residual inert biomass 
packing density [MX/L3] 
True yield for SMP (UAP and 
BAP) utilization [MX/MP] 
True yield for substrate utilization 
[MX/MS] 
Biofilm depth [L] 
Dimensionless biofilm depth [-] 
Time steps used for biomass growth 
[T] 
Time step usage for relaxation of S 
[T] 
Creep constant [T-1] 
1st order decay coefficient for 
dissolved oxygen in the biofilm   
[L-1] 
Utilization rate of BAP [T-1] 
Utilization rate of any donor 
Utilization rate of substrate [T-1] 
Utilization rate of UAP [T-1] 
 
  

 

 

• The value of ß, η and xres,max are unique to the UMCAA model, 

because they are new variables associated with biofilm consolidation.  ß and η were 
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developed in Laspidou and Rittmann (2002b, 2004a).  The value for xres,max

In other words, unlike the active biomass that is mostly water, the residual 

dead biomass includes mostly the partially dehydrated remnants of the cells and all other 

mineral deposits that can achieve a maximum packing density; therefore, x

 approaches the 

maximum packing density of biomass solids, because it includes the remains of the active 

cells, after their lysis when they have released their internal water.   

res,max

3.12.5 Variables and Mass Balance Equations  

 is higher 

than the other solid species. 

The variables chosen to represent the status of each compartment are the 

dimensionless concentrations of the soluble organic species, densities of each of the solid 

species, and concentration of the electron acceptor, i.e., dissolved oxygen (O2). Soluble 

organic species are the bacteria’s limiting donor substrate (S) and two types of SMP, i.e., 

substrate utilization-associated products (UAP) and biomass-associated products (BAP).  

Solid species are the active biomass (Xa), EPS, and the inert biomass (Xres

3.12.6 Solution Algorithm 

) produced by the 

decay/lysis of active biomass.  For all species, dimensionless quantities are used to enhance 

the uniformity and stability of the algorithm, while time is not dimensionless (Laspidou and 

Rittmann, 2004a). 

The mass balance equations used in the UMCCA model come directly from 

Laspidou and Rittmann (2004a), which quantified the unified theory presented in Laspidou 

and Rittmann (2002) were shown in Table 3.8 and nomenclature list illustrate in Table 3.7. 

The solution strategy follows Laspidou and Rittmann (2004a) directly and is 

illustrated in the flowchart in Figures 3.12 and 3.13.  The model solution by a numerical 

method also follows the scheme presented by Picioreanu et al. (1998a) with a finite-

difference discretization scheme that is then solved with the alternating-direction implicit 
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(ADI) method.  Solution begins with initial conditions for all components in all 

compartments.  For all compartments, Si,j 

Components 

=1.0, indicating that the maximum substrate is 

initially available throughout the domain.   

   

Table 3.8  Equation for all components in the UMCCA model  

                 (Laspidou and Rittmann, 2004a) 

Equations No. 

Utilization rate of any 
donor substrate a

OD

a
D X

OOK
O

DdK
Dq

d
X












+







+

=
Λ

2max,22

2

maxmax

max,

//
ρ  (3.3) 

Mass balance for original 
donor substrate  

S
S

Z
S

X
S

d
D

t
S ρ−








∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2
 

 
                                 2-D diffusion   utilization 

(3.4) 

Mass balance for UAP UAPS
S k

uap
S

Z
UAP

X
UAP

d
D

t
UAP ρρ −+








∂

∂
+

∂
∂

=
∂

∂
1

max

max
2

2

2

2

2
 

 
                                                                        UAP formation    UAP utilization 

(3.5) 

Mass balance for BAP 
BAPhyd

S EPSk
Z
BAP

X
BAP

d
D

t
BAP ρ−+








∂

∂
+

∂
∂

=
∂

∂
2

2

2

2

2
 

 
                                                EPS formation    BAP utilization 

(3.6) 

Mass balance for active 
biomass (Xa

EPSbbX
x

bap
Y

x
uap

Y
x
S

kkY
t

X
aBAP

a
PUAP

a
PS

a
EPSS

a
det

max,

max

max,

max

max,

max
1 )1( −−++−−=

∂
∂

ρρρ

) 

 

 
                                    synthesis                              synthesis,                    synthesis      endogenous    detachment    
                                     from S                                 from UAP                   from BAP          decay 

(3.7) 

Mass balance for residual 
inert biomass (Xres

resaD
res XbXfb
t

X
det)1( −−=

∂
∂

) 

 

 
              formation of       detachment 
                     inert biomass 

(3.8) 

Mass balance for EPS 
EPSbEPSk

eps
s

k
t

EPS
hydSEPS det

max

max −−=
∂

∂ ρ  

 
                 EPS formation      EPS hydrolysis    EPS detachment 

(3.9) 

Definition of composite 
density max,maxmax res

ij
res

ijij
a

ij xXepsEPSxXCompDen ++=  (3.10) 

Definition of 
consolidation ratio 

)0315.0exp(9820.01 cC tU −−=  
 
                B [-]                   η [h-1

(3.11) 
] 

Profile for oxygen (O2
ZeOO λ−= max,22)  (3.12) 

   

All other quantities, except for active biomass and oxygen are set to zero then 

randomly seeded with active biomass.  Half of the compartments adjacent to the substratum 

(i.e., 35 out of 70) are randomly selected and inoculated with an amount of active biomass 
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that is randomly selected between 0.5 and 1.0 for each compartment.  This inoculation 

simulates an initial random and patchy attachment of biomass across the substratum.  All 

mass balance equations (Equations 3.3-3.12) are solved by using a strategy similar to 

described in Laspidou and Rittmann (2004a) and Picioreanu et al. (1998a) i.e., keeping the 

biomass density unchanged, while iterating until the substrate concentration field converges 

to a steady-state condition, and using a time step δts to solve the substrate field of about 1s 

and a time step for changes in biomass, δtb

      

 of 1000s (Figures 3.12 and 3.13).   

3.13   Dynamics of Biofilm Compositions and Density 

In this study, a multi-component model—the Unified Multiple Component Cellular 

Automotan (UMCCA) model was used—that predicts quantitatively the biofilm’s 

heterogeneity for many components of a biofilm system: three solid species (active 

biomass, inert or dead biomass produced by dead and decay, and EPS) and three soluble 

components (soluble substrate and two type of soluble microbial products (SMP)).  This 

model builds on the unified theory, which reconciles the apparently disparate findings about 

active and inert biomass, EPS, and SMP.  The model presented here is the biofilm 

adaptation of the multi-component mathematical model that quantifies the unified theory 

(Laspidou and Rittmann, 2004a).  The equations for all components of UMCCA model 

were summarized in Table 3.8.  The flowchart for the solution of model equations carried 

out in Figure 3.12 and CA algorithm in Figure 3.13.  Data prediction was real for as well as 

simulated conditions, including of low oxygen supply, higher detachment, and lower and 

higher substrate supply caused varying hydraulic loading rate and organic loading rate.  

 

 
   



CHARPTER IV 

EXPERIMENTAL RESULTS AND DISCUSSION 

 
4.1 UASB Effluent Characterizations 

The initial wastewater characterization consisted of quantifying the solid, organic 

and nitrogen contents.  The results are presented in Table 4.1.  In order to find out the 

reason of poor removal efficiency of COD and nitrogen, the characteristics of influent and 

effluent were analyzed.  The ratio of BOD/COD is often used as an index to evaluate 

biodegradability of wastewater.  BOD/COD > 0.45 indicates that biodegradability is very 

good; BOD/COD=0.45, biodegradability is good; BOD/COD = 0.2–0.3, biodegradability is 

poor; BOD/COD < 0.2, biological treatment is unsuitable (Deng et al., 2006).  

Biodegradability of the wastewater could be continuously characterized by BOD/COD 

ratios during the period of 20 days as shown in Figure 4.1.  The TBOD/TCOD ratios were 

found to be 0.13, 0.17, 0.22 and 0.23 on 5th, 10th, 15th and 20th

  

 days, respectively.  The 

corresponding values were 0.41, 0.47, 0.53 and 0.60, respectively for soluble fractions.  

The results in Figure 4.1 indicated that the UASB effluent contained high amount of 

biologically resistant organics.  These suggested that the residual COD of anaerobic 

effluent may be comprised of residual non-degraded substrate, intermediate volatile fatty 

acids (VFA) and soluble microbial products (SMP).  In well operated systems only a small 

fraction of the effluent COD is usually due to VFAs, while SMP account for 85-100% of 

residual COD.  These SMP may not be readily biodegradable, or may even be refractory, 

and comprise a wide variety of organic compounds distributed across a broad spectrum of 

molecular weight (MW) (Jarrusutthirak, C. and Amy, G., 2007; Yun, M. E., 2007).   
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Table 4.1  The UASB effluent characteristics form tapioca starch industry   

Parameters Units Concentrations 

1.    pH - 6.5-7.8 

2.    TSS mg/L 350-1,050 

3.    TCOD mg/L 594-1,494 

4.    SCOD mg/L 294-574 

5.    TBOD mg/L 227-385 

6.    SBOD  mg/L 180-252 

7.    TKN  mg-N/L 85-267 

8.    NH4
+ mg-N/L -N  77-259 

9.    NO3
- mg-N/L -N  <0.1 

10.  NO2
- mg-N/L -N  <0.1 

11.  Total P mg/L 5-10 

12.  TBOD/TCOD - 0.29 

13.  SBOD/SCOD - 0.50 

14.  TBOD/TKN - 1.74 
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Figure 4.1 Time profiles of BOD/COD ratio of UASB effluents 
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The effluents of UASB reactor still contained relatively high nitrogen nutrient contents 

based on the COD:N ratio which seems to be too high for heterotroph microorganisms 

utilization.  Moreover, the UASB effluent characteristics suggest poor efficiency of 

denitrification process (BOD/TKN < 2.5 or BOD/NH3

 

 < 4 and COD/TKN < 5) 

(Grady et al., 1999) 

4.2 Sludge Enrichment and Acclimatization 

Prior to the DHS experimental study, it is necessary to acclimatize the organisms to 

the prevailing contaminates of the UASB effluent that having high COD and ammonia 

concentrations.  After acclimatization of the culture to be used, a rich mixture of resistant 

UASB effluent degrading organisms could be obtained.  The bacterial and fungal sludge 

enrichments were completely accomplishment when MLSS concentrations reached to 3,000 

mg/L.  The overall COD removal and biomass production during acclimatization processes 

as shown below: 

4.2.1   COD Removal 

 In order to estimate organic removal rates, the COD profiles of acclimatized 

fungal and bacterial sludge batch were examined.  The COD profiles were defined as the 

quantity of COD varies with times.  The acclimatization was done step-wise until a COD 

removal approximately 70% could be achieved.  The changes in the biomass concentration 

along with the F/M ratio and COD removal efficiencies were noticed.  Acclimatization of 

fungal and bacterial cultures took about 60 days.  The variation of COD removal efficiency 

and the F/M ratio of fungal and bacterial sludge are shown in Figure 4.2 and 4.3, 

respectively.  In the final of this experiment, it was found to be the capability of fungal 

culture in COD removal efficiency was higher than bacterial sludge.  These performances 

were reached to 75% and 70% of SCOD removed by fungal and bacterial sludge, 

respectively.  
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Figure 4.2 COD removal and F/M ratio profiles in fungal sludge 
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Figure 4.3 COD removal and F/M ratio profiles in bacterial sludge 
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This indicated that fungi culture could probably be more effective to treating organic 

contaminants in UASB effluent than the bacterial culture.  However, as the results obtained 

are not sufficient to conclude that the fungi system has a better performance than the 

bacterial system, further investigation is necessary.  The F/M ratios of fungal and bacterial 

systems were decreased from 0.59 to 0.10 kg COD/kg SS and 0.59 to 0.12 kg COD/kg SS-

d, respectively.  That seems to be the F/M ratios of fungal system were decreased faster 

than bacterial system.  This suggested that the growth of the fungal culture was more 

prominence than the bacterial culture.  Moreover, higher organic loading allows downsizing 

the treatment reactors, which improves the overall economy of the system.  Thus, the fungi 

system could be the reason for the better efficiency of COD removal. 

4.2.2    Biomass 

The growth of biomass is important parameters for the biological wastewater 

treatment.  Sufficient MLSS should be obtained in order to get a good COD removal 

efficiency.  The change in the biomass for bacterial and fungal cultures was increased is 

illustrated in the Figure 4.4.  The initial MLSS of the fungal and bacterial systems were 

about 1,500 mg/L.  The final MLSS of fungal and bacterial mixed liquor after 

acclimatization were 9,012 and 7,954 mg/L, respectively.  These values were 6 times of the 

initial MLSS concentration in fungal system which shown about 83% of biomass 

increasing.  And in the bacterial system, the final MLSS was 5.3 times of initial biomass, 

which shown about of 81% in the biomass increasing.   
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Figure 4.4 MLSS concentrations of two cultures during acclimatization processes 

 

4.3 Sponge Media Characteristics  

The physical characteristics of polyurethane foam media (sponge) are shown in 

Table 4.2.  The sponge media has a high void space of about 90%, surface area 600 m2/m3

 

 

and pore size 0.7-1.0 mm (Figure 4.5).  These cloud be better than physical properties of 

trickling filter media that recommended by Metcarf and Eddy (1991).  It appeared to be an 

excellent colonization matrix for a biofilter.  Pore size was one of most important parameter 

for microbiological and engineering requirements in high efficiency beds (Nakamura et al., 

1999; Yang et al., 2004; Quek et al, 2006).  The ideal filter medium is a material that has a 

high surface area per unit of volume, is low in cost, a high durability, and dose not clogs 

easily (Metcarf and Eddy, 2003).  These could be the reason for used polyurethane sponge 

as filter media in DHS system.  
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Table 4.2  Physical characteristics of sponge media    

Characteristics Dimensions 

1. Specific surface area (m2/m3 600 ) 

2. Void ratio 0.9 

3. Pore size (mm) 0.7-1.0 

4. Density (kg/m3 2.5 ) 
 

  

4.4 Immobilized Biomass Preparation  

 The steps of fill-and-draw process were also used for the enrichment of sponges, i.e. 

replacing the enriched sludge and wastewater mixture daily during the 30 days period. 

Bacterial and fungal sludge were used to degrade the UASB in the attached growth 

conditions like the moving bed biofilm reactors (MBBR).  In order to two important criteria 

in the selection of microorganisms to be immobilized onto sponge media for biological 

wastewater treatment are ability to (i) immobilize on sponge media and (ii) carbonaceous 

material and nitrogen removal.   

 

 

 

Figure 4.5  The SEM photo of the sponge media 
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4.4.1 Immobilization of Microorganisms onto Sponge Media 

The ability of fungal and bacterial biomass that was immobilized inside the 

sponge media with using UASB effluent as the substrate is shown in Figure 4.6.  It is likely 

that the higher number of immobilized fungi than bacteria and was equally efficient on 

sponge surface.  The efficient immobilization of fungal could also be due to the dispersed 

filaments (filamentous growth).  Fungal culture also has potential application as 

immobilized cell systems which, because of their shape, may not require cross-linking or 

entrapment (Tung et al., 2004).  

 

 

     (a) Bacterial sludge                          (b) Fungal sludge 

 

Figure 4.6 SEM photos of microbes immobilized on sponge media 

 

4.4.2 Retained Biomass and Treatment Efficiencies 

As shown in Figure 4.7, the MLSS concentration inside of the sponge media 

in bacterial and fungal systems were increased to 13,400 mg/L and 25,600 mg/L of sponge 

volume, respectively, after starting the experiment for 30 days.  The bacterial sludge has 

capability to COD and TKN removal efficiencies that were about 72% and 68%, 

respectively.  Nitrogen was not removed in fungal system but high ability of organic 

degradation as about 92% of COD removal efficiency.  After this stage, the two types of 
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harvested sponges were used as the filter media in fungal downflow hanging sponge 

(FDHS) and bacterial downflow hanging sponge (BDHS) systems, respectively.    
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Figure 4.7 The profiles of retained biomass in sponge media 

 

4.5 Tracer Study 

At the onset of this research, a tracer study was carried out to evaluate the flow 

pattern in the experimental DHS system units.  The NaCl solution was mixed with tap 

water (5 gNaCl/L) and fed into the DHS system.  The effluents were observed of chloride 

concentrations.  Tracer analysis for DHS system was performed different theoretical 

Hydraulic Retention Times (HRT) under clean sponge media (without biomass).  The five 

inflow rates were used as 45, 75, 200, 300 and 550 L/d for fed NaCl solution to DHS 

systems.  With Equations 4.1-4.5, data of tracer study were used to find out the dispersion 

number (D/µL) and actual HRT (Levenspiel, 1972) as results are shown in Table 4.3.  And 

raw data of tracer study are given in Tables A.1-A.5 in Appendix A.  Results shown the 
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percentage difference between the theoretical HRT (Tt: based on the sponge volume and 

flow rate) and the actual HRT (Ta

 

: obtained from the tracer analysis) increased with the 

increase in flowrate.  The fractions of dead volume in DHS system were determined with 

Equation 4.4 (Tandukar et al., 2006).  Results shown the fractions of dead volume were 

decreased when increase inflow rate in DHS systems.        

(i) Actual HRT (Ta)
     

  

∑

∑
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dtC
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(iii) Dispersion Number (
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(iv) Fraction of Dead Volume (f) 
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where: C is tracer concentration (mg/L); t is time (min) and Tt is theoretical HRT  
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Table 4.3  Actual HRT, dispersion numbers and fractions of dead volume  

                  of DHS system by tracer study  

Flow rate 
(L/d) 

Theoretical 
HRT (h) Actual HRT (h) Dispersion 

Number  
Fractions of Dead 

Volume 

45 11.52 3.94 0.077 0.66 

75 6.91 3.94 0.077 0.43 

200 2.59 1.25 0.105 0.52 

300 1.73 1.27 0.077 0.27 

550 0.94 0.89 0.105 0.05 
       

 

Figure 4.8 shows the experimental outcome of tracer analysis.  It seems to be the effluent of 

chloride concentrations increased with the time to reach peak values.  After reaching the 

peak, chloride concentration decreased with time to low concentration approaching to 

steady values.  The values of dispersion numbers indicated that the intermediate amount of 

dispersion according to the Levenspeil’s classification as shown in Figure 4.9.  The flow 

condition was characterized according to the following ranges; D/µL = 0.002, is small 

amount of dispersion; D/µL = 0.0025, is intermediate amount of dispersion; D/µL = 0.2, is 

large amount of dispersion; and D/µL = ∞, is mixed flow condition (large dispersion).  The 

dispersion number, determine by Equation 4.3 were in range of 0.077-0.105.  This value 

showed intermediate amount of flow dispersion in the DHS system unit.  In view of the 

dispersion number (D/µL) the all flow characteristics could be classified as approaching 

plug flow pattern.   
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Figure 4.8  The variation curve of tracer concentrations in relation to elapsed times 
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Figure 4.9  C-curve of simulation dispersion in closed vessels (Levenspeil, 1972) 

4.6 DHS Treatment Efficiency 
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In order to examine the suitable treatment methods for UASB effluent from tapioca 

starch industry.  The main role of the post treatment is to complete the removal of organic, 

as well as constituents little affected by the anaerobic treatment, such as nitrogen nutrient.  

In this study was focus on removal efficiencies and several operating parameters.  The 

evaluated parameters were included of DO, SS, COD, BOD and nitrogen species as details 

below:             

4.6.1 Dissolved Oxygen (DO) Profiles 

DO profiles of the two DHS systems during 3 runs are shown in Table 4.4.  

DO concentration was very low in UASB effluent.  But as the wastewater passed through 

DHS, the DO concentration increased steadily attaining the values of about 5.0 mg/L in the 

system.   The fate of wastewater in the DHS is such that, it first flows into a sponge unit, 

comes out of it, comes in contact with air and then again penetrates the next sponge unit.  

As the wastewater comes in contact with air, the air gets diffused into it, thus increasing the 

DO concentrations gradually in each segment.  This repeated phenomena maintains DO in 

the wastewater almost to the level that whereby satisfy the demand of aerobes residing in 

DHS system.  By virtue of this, there is no need for aeration in the system.  In RUN I, DO 

concentrations were very low in the first and second segments of BDHS system.  This 

suggests that oxygen utilization of bacteria was higher than fungi.  There is more evidence 

from typical stoichiometry of aerobic respiration of bacteria and fungi using glucose as the 

substrate (Equations 4.5 and 4.6).  That shows bacteria consumed oxygen higher than fungi.    

Moreover, DHS clearly demonstrated the advantage of needlessness of external aeration for 

RUN II and RUN III operating conditions because of the DO concentration in recirculation 

flows. 

 

Aerobic respiration of fungi (Berry, 1998):  
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C6H12O6 + 2O2 + N.P.K.Mg.S  →  Biomass + CO2 + H2O                                  (4.5) 

  2       0.7          0.1  1     1.1     0.7 

 

Aerobic respiration of bacteria (Supawech, S. and Vorawichit, M., 1990):  

 

C6H12O6 + 6O2 + 38ADP + 38Pi  →  6CO2 + 6H2O + 38ATP + Biomass           (4.6) 

  2        2.13        2.93        0.6  

 

Table 4.4  Average dissolved oxygen concentration in segment effluent of FDHS  

                  and BDHS system 

RUN 

Segment effluents 

Segment 1 Segment 2 Segment 3 Segment 4 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

RUN I 3.27 0.18 4.12 0.63 4.56 2.64 2.55 3.23 

RUN II 3.44 3.72 5.08 3.60 4.92 5.16 3.76 3.56 

RUN III 3.08 2.7 4.26 3.24 5.14 3.48 3.8 3.32 
 
Remark: Number of samples and standard deviation are shown in Appendix H 

   

4.6.2 pH  

The influent wastewater was adjusted pH to 4.0±0.2 and 7.0±0.2 for FDHS 

and BDHS systems, respectively during three experimental runs.  The average pH values of 

two DHS system effluent are shown in Table 4.5 and raw data in Appendix H.  Results of 

pH effluents were in range of 4.0-5.0 and 7.0-8.0 for FDHS and BDHS systems, 

respectively.  The pH values along two DHS height seem to be regularity.  This was 

encouraging the growth of fungi and bacteria in FDHS and BDHS systems, respectively.     

 

 

                



Table 4.5  Average process performance of BDHS and FDHS systems during three runs  

Parameters 

RUN I RUN II RUN III 

Effluent (mg/L) Efficiency (%) Effluent (mg/L) Efficiency (%) Effluent (mg/L) Efficiency (%) 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

pH 4.7 7.8 - - 4.8 7.8 - - 4.8 7.9 - - 

TSS (mg/L) 65 195 91 72 70 77 90 89 82 164 88 76 

VSS (mg/L) 61 183 - - 66 69 - - 79 139 - - 

TCOD (mg/L) 306 634 76 50 229 236 85 85 260 486 77 56 

SCOD (mg/L) 222 201 50 54 102 111 72 76 119 162 74 64 

TBOD (mg/L) 56 60 83 82 21 27 95 94 25 117 95 77 

SBOD (mg/L) 34 35 85 84 16 21 92 90 18 25 93 90 

Total N (mg-N/L) 178 62 - 68 197 78 - 59 191 78 - 56 

NH4 170 -N (mg-N/L) 35 - 79 180 62 - 63 184 62 - 63 

NO2 <0.1 -N (mg-N/L) 7.8 - - <0.1 0.4 - - <0.1 0.2 - - 

NO3 <0.1 -N (mg-N/L) 8.4 - - <0.1 7.3 - - <0.1 7.4 - - 
 
Remark: “─” the data cannot calculate the removal efficiency; “<0.1” the concentration is lower than detection limit of the analytical method
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4.6.3 TSS Removal 

The average influent and effluent TSS concentrations during the three 

experimental runs are presented in Table 4.1 and 4.5, respectively.  Raw data and standard 

deviation are shown in Appendix H. High TSS removal efficiencies of FDHS systems were 

about 91%, 90% and 88% during RUN I, RUN II and RUN III, respectively.  In BDHS 

system, the TSS removal efficiency was lower than FDHS system with amounted of 72%, 

89% and 76% in RUN I, RUN II and RUN III, respectively.  In DHS system, TSS 

concentrations were mainly removed by retained on sponge media and degraded 

(Tawfik et al., 2006a).   However, TSS concentrations in the effluent of two DHS systems 

were higher during RUN II and RUN III.  The biomass sloughing is one cause of TSS 

concentration in biofilter effluent.  It is known that the shear force of water flow amplifies 

as hydraulic loading increases.  This may lead the disruption of the retained sludge inside 

the sponge DHS, finally raising the value of SS in the effluent (Tandukar et al., 2006a).  

Also high value organic loading rate (OLR) increased the retained biomass in sponge that 

can be washed out of the system. 

4.6.4 Organic Matter Removal 

In order to estimate organic removal rate, the SCOD profiles of DHS 

influent and effluent were examined.  The results of this experiment during three runs (522 

days) are shown in Figure 4.11 and 4.12 for FDHS and BDHS systems, respectively.  The 

fluctuation SCOD influents were in range of 179-647 mg/L.  The SCOD effluent 

concentrations were fluctuate with the influent concentrations in three runs of BDHS 

system.   However, in FDHS system, the SCOD effluents quite are steady in RUN II and 

RUN III.  Time profiles of total and soluble BOD (SBOD) of raw UASB effluent and DHS 

effluents as well as TBOD/TCOD ratios of the two systems are presented in Figure 4.13 for 

each run.   
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Figure 4.11  SCOD removal profiles of FDHS system during three runs 
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Figure 4.12  SCOD removal profiles of BDHS system during three runs 
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The overall process performance of the two DHS systems during the whole experimental 

period are shown in Table 4.5.  During three runs, the low BOD/COD ratios in BDHS and 

FDHS effluents, as shown in Figure 4.13, indicate the presence of refractory substances 

which were either slowly biodegradable organic materials or non-biodegradable materials. 
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Figure 4.13 Organic removal profiles in two DHS systems during three runs 

    

In RUN I, two random types of DHS systems operated in parallel for 320 days.  The 

organic loading rate (OLR) in inflows of DHS systems were about 1.0 kgTBOD/m3-d 
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(Table 4.6).  The results in Table 4.5 showed that the DHS systems achieved high organic 

removal.  The overall TBOD removal efficiency reached about 82-83% in both BDHS and 

FDHS systems.   

The results presented in Figure 4.13 show that during the RUN I, most of 

TBOD were removed in the first segment of FDHS (about 70% of TBOD5

In RUN II, two DHS systems operated in parallel for 95 days.  In this run, OLR 

in two DHS system decreased to 0.86-1.01 kgTBOD/m

 removed).  But 

the BOD was removed gradually in all 4 segments of BDHS system.  This can be explained 

by the fact that the most coarse and soluble organic matter were adsorbed and degraded in 

the first segment of FDHS system.  And this also indicated the potential advantage of fungi 

over bacteria in terms of rate of organics removed.  High organic loading may enable 

downsizing of reactors and better rate of acclimation allows for early start-up and rapid 

recovery from shock, both of that being desirable from the practical stand point.  Several 

researches recommended that fungi have a wide range of enzymes, and are capable of 

metabolizing complex mixtures of organic compounds such as particulate matters and dead 

cells (Tripathi et al., 2007; Thanh and Simard, 1973; Mannan et al., 2005; Tung et al., 

2004; Guest et al., 2002) 

3
sponge-d, but the HLR was increased 

from 6.1 m3/m3
Sponge-d to 25.6 m3/m3

Sponge-d (Table 4.6).  Organic removal improved with the 

efficiencies for TBOD reaching up to 96% and 94% in FDHS and BDHS, respectively (Table 

4.6).  Most of TBOD was removed in the 1st segment of both systems.  This was probably due 

to the recirculation of DHS effluents and thus more effective for dissolved oxygen (DO) 

transfer to the wastewater due to increased flow velocity.  Tandurkar et al. (2006a) also 

reported that dissolution of air into the wastewater was further enhanced by increased down-

flow velocity, providing more oxygen to aerobic organisms residing inside the sponge.  In 

addition, higher flow rate also increased the penetration of wastewater deep into the sponge 

material, facilitating better substrate distribution.   



Table 4.6  Organic and nitrogen loading profiles along the four segments during three runs  

Parameters 
Segment 1 Segment 2 Segment 3 Segment 4 Overall 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

Run I 
OLR (kgTBOD5/m3

sponge
NLR (kg-N/m

-d) 
3

ALR (kg-N/m
-d) 

3

 

-d) 

4.25 
2.44 
2.33 

 
4.25 
2.44 
2.33 

 
1.04 
2.47 
2.39 

 
3.33 
2.02 
1.82 

 
0.89 
1.92 
2.71 

 
2.18 
1.60 
1.17 

 
1.03 
1.93 
2.53 

 
1.89 
1.39 
0.79 

 
1.06 
0.61 
0.58 

 
1.06 
0.61 
0.58 

Run II 
OLR (kgTBOD5/m3

sponge
NLR (kg-N/m

-d) 
3

ALR (kg-N/m
-d) 

3

 

-d) 

3.46 
19.87 
18.27 

 
4.04 
8.40 
6.71 

 
2.75 
21.08 
19.05 

 
4.68 
9.67 
7.74 

 
2.75 
21.49 
20.17 

 
3.56 
8.76 
6.93 

 
2.34 
20.27 
18.54 

 
0.86 
4.99 
4.57 

 
0.86 
4.99 
4.57 

 
1.01 
2.10 
1.70 

Run III 
OLR (kgTBOD5/m3

sponge
NLR (kg-N/m

-d) 
3

ALR (kg-N/m
-d) 

3

 

-d) 

6.45 
19.25 
18.52 

 
15.54 
9.97 
7.79 

 
4.52 
19.86 
18.84 

 
31.0 
10.98 
8.65 

 
2.79 
19.15 
18.13 

 
12.41 
9.31 
7.23 

 
2.59 
20.47 
19.56 

 
14.10 
9.11 
6.62 

 
1.61 
4.81 
4.63 

 
3.63 
2.49 
1.95 

 
Remark: Organic and nitrogen loading profiles along the four segments during RUN I calculated by actual HRT values 
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In RUN III, two DHS systems operated in parallel for 105 days.  In this run, 

OLR in FDHS and BDHS systems were about 1.60 kgTBOD/m3-d and 3.63 kgTBOD/m3-

d, respectively.  The difference OLR of two systems was causing of the remained TBOD in 

BDHS system is higher than FDHS system.  And it comes to the BDHS system with 

recirculation flow During RUN III.  The HLR in DHS remained the same as in RUN II, 

25.6 m3/m3
Sponge-d.  Organic removal improved with the efficiencies for TBOD about 95% 

in FDHS system but decreased to 77% in BDHS system (Table 4.5).  Most of TBOD was 

removed in the 1st

4.6.5 Nitrogen Removal 

 segment of FDHS systems.  But in this run, it was the lowest TBOD 

removal efficiency for BDHS system. These caused of biomass sloughing is one cause of 

TSS concentration in biofilter effluent under high value HLR and OLR conditions.   

During RUN I, two DHS systems received total nitrogen loading (NLR) 1.06 

kg-N/m3-d, which includes 1.02 kg-N/m3

   

-d of ammonia nitrogen loading (AUR) as shown 

in Table 4.6.  Nitrogen was not removed in FDHS system during three runs.  However, it 

was reduced in BDHS via nitrification and denitrification.  During RUN I, the 

concentrations of total nitrogen, ammonia, nitrite and nitrate in the effluent of BDHS 

system were 62, 35, 7 and 8 mg/L, respectively, amounting to 68% of total nitrogen 

removal efficiency as shown in Figure 4.14.  Nitrification in BDHS took place in second, 

third and fourth segments shown by the appearance of nitrogen oxides.  Results also 

indicated that nitrification was limited in the first segment of BDHS system at high organic 

contents.  The ammonia oxidizer populations at high loading rate compete with 

heterotrophs for space and oxygen.  The ammonia oxidation activities appeared to be 

slightly higher than nitrite oxidation activities, accounting for the observation that nitrite 

was present in the effluents.  
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Figure 4.14 Nitrogen profiles of BDHS systems in two runs 

 

In RUN II, two DHS systems received total nitrogen loading rate (NLR) of 

about 2.10 kg-N/m3-d and 4.99 kg-N/m3-d of BDHS and FDHS systems, respectively.  This 

included 1.70 kg-N/m3-d and 4.57 kg-N/m3-d of ammonia nitrogen for BDHS and FDHS 

systems, respectively.  Under such conditions, oxygen was not limiting in BDHS because 

recirculation wastewater enhanced dissolved oxygen concentration.  However, due to 

increased NLR, the nitrogen removal efficiencies decreased to 59% and 63% for total 

nitrogen and ammonia nitrogen, respectively.  It is a known fact that the shear force of 

water flow amplifies as hydraulic loading increases.  This may lead to the disruption of the 

retained sludge inside the sponge of DHS, finally raising the value of SS in the effluents. 

Tawfik et al. (2002) also observed deterioration in the nitrogen removal in RBC during 
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hydraulic shock load.  It was explained that the contact time between the nitrifiers and 

substrate was very short.         

In RUN III, two DHS systems received total nitrogen loading rate (NLR) of 

about 9.97 kg-N/m3-d and 19.25 kg-N/m3-d of BDHS and FDHS systems, respectively.  

This included 7.79 kg-N/m3-d and 18.52 kg-N/m3

The nitrification under high influent organic concentrations was found in the 

BDHS.  This is in contrast with the results of Chae et al. (2004) according to which, the 

presence of organic matter in aerobic system, that promotes the growth of heterotrophs, 

inhibits ammonia oxidation.  The result of present study was very interesting as it meant 

that the attached nitrifiers in the sponge media were quite resistant to organic shocks.  

However, nitrifying bacteria are strict aerobes that are they can only nitrify in the presence 

of dissolved oxygen.  Therefore, at DO concentration <0.5 mg/L, little, if any, nitrification 

occurs (Geradi, 2002).  The influent BOD/TKN ratios of BDHS during both runs were 

about 1.7 (Table 4).  This was much less than the recommend BOD

-d of ammonia nitrogen for BDHS and 

FDHS systems, respectively.  During this run, the concentrations of total nitrogen, 

ammonia, nitrite and nitrate in the effluent of BDHS system were 85, 62, 0.2 and 7.4 mg/L, 

respectively, amounting to 56% and 63% of total nitrogen and ammonia nitrogen removal 

efficiencies, respectively.  

5/TKN ratio of about 20 

which promotes the growth of aerobic heterotrophs.  Probably, the nitrogen removal in 

BDHS system was caused by aerobic denitrification and/or denitrification occurring in the 

anoxic biomass (Mechdar et al., 1997).  Araki et al. (1999) suggested that the internal part 

of the sponge maintains anoxic environment where denitrification prevails, whereas up to 

the depth of approximately 0.75 cm from the surface of the sponge, aerobic environment 

prevails.  Nitrifiers in this region convert ammonium nitrogen in to oxide forms, which are 

then transferred to the anoxic zone where they are denitrified.  In this way, DHS allows 

both nitrification and denitrification to take place within a single system (Tandukar et al., 



 
 

136 
 

2006a).  In addition, even though from the wastewater characteristics in each segment of 

BDHS reactors, efficiency of denitrification process is usually considered poor at 

BOD/TKN <2.5.  Also, Grady et al. (1999) suggested that in order to ensure successful 

ammonia removal in the nitrification process, an external carbon source would be 

necessary.  However, few past studies reported high endogenous respiration of DHS sludge 

suggesting that the sludge accumulation was in near balance with the degradation of sludge 

in reactor itself.  And it was also being utilized as a carbon source during denitrification 

(Tandukar et al., 2006a).  When high amounts of organic matter are present in a biofilter, 

the fast growing heterotrophic bacteria will ‘out-space’ the slow growing nitrifiers from the 

aerobic zone in the biofilm as they compete for oxygen and space.   

4.6.6 Effect of Recirculation  on DHS Efficiencies 

The term recirculation refers to the return of DHS effluents.  That purposes 

to couple the effect of hydraulic and organic loading rates on two DHS efficiencies.  The 

effect of recirculation flows on the DHS efficiencies was investigated during three runs.  

Hydraulic loading rate (HLR) of RUN I to two DHS systems were 3.5 m3/m3
sponge-d at 7.0 

h HRT, which increased to 25.6 m3/m3
sponge-d (HRT 1 h) during RUN II and RUN III.  

Organic loading rate (OLR) of RUN I and RUN II were in the same OLR ranges about 

0.86-1.06 kgTBOD/m3-d by recirculation as shown in Table 4.5.  Figure 4.15 shows the 

effect of recirculation on BOD removal efficiencies of FDHS and BDHS systems were 

increased in RUN II.  This indicated that the organic removal of two DHS systems were 

almost unaffected by increased hydraulic loading.  This can explain by microbial utilization 

of macromolecules involves several steps, including transport to the cell and binding to 

hydrolytic enzymes; macromolecule hydrolysis in to sizes of compounds able to be 

transported across the cell membrane; and metabolism of components for either energy 

(catabolism) or cell growth (anabolism).  Confer and Logan (1991) suggested that fluid 

shear can increase macromolecule uptake by suspended bacteria in trickling filter.  And this 
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confirmed by Confer and Logan (1998) study that found the majority of protein and 

polysaccharide hydrolytic activity in trickling filter effluent was associated with suspended 

cells.  Although it is likely that substantially higher hydrolytic activity would be produced 

by biofilm itself than was produced by the sloughed and recycled cells present in trickling 

filter effluent.  “And this obtained by the other research suggest that the present results can 

be generalized to other macromolecules and colloidal substrates in wastewater treatment 

plants, indicating that successively smaller compounds will be produced from degradation 

by cell-associated hydrolytic enzymes” (Confer and Logan, 1991).  Based on these results, 

FDHS system had high capable of hydrolytic activity and it produced low excess sludge 

with high organic removal rate.  These suggested that the sludge accumulation was near 

balance with the degradation of sludge in the reactor itself.  However, TBOD effluent from 

BDHS system during RUN III was higher than RUN I and RUN II.  Because of both 

highest OLR and HLR values were operated in RUN III.  That was presence of sufficient 

high heterotroph organism population at high loading rate.             
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Figure 4.15  Effect of recirculation flows on organic removal of two DHS systems 
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Furthermore, results obtained also verified that BDHS system can exhibit 

substantial tolerance against about four fold organic (RUN II and RUN III) and seven fold 

hydraulic (RUN I and RUN II) increased loading.  HLR was affected on nitrogen removal 

as decreased about 9% of total nitrogen removal but unaffected of increasing OLR.  Tawfik 

et al (2002) and Tandurkar et al. (2006) explained by contact time between the nitrifiers and 

substrate was very short and high hydraulic loading lead to the disruption of the retained 

sludge inside the sponge of BDHS system, finally raising the value of SS in the effluent.            
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Figure 4.16 Effect of recirculation flows on nitrogen removal of BDHS system 

 

Recirculation treated effluent to the two DHS systems dilutes the influent 

wastewater entering the DHS system.  Since the BOD removal process is first order (i.e., 

the rate of removal of BOD is affected by the initial concentration of BOD), recirculation 

helps distribute the loading evenly through the depth of the filter.  It also helps to manage 

the diurnal variation in loading while maintaining a minimum wetting rate throughout the 

day.  In general, higher recirculation ratios (recirculation flow rate: influent flow rate) the 

better the effluent quality, at least to the point where the hydraulic retention time in the 

filter bed becomes too short.   
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4.7 COD Fractions and Organic Biodegradation 

 The average fraction of influent and effluent of two DHS systems during three runs 

were obtained with division in Figure 3.8 as results shown in Figure 4.17.  In RUN I, most 

BSCOD fractions were removed in the first segment of the two DHS segments.  And the 

slowly biodegradation or BPCOD fractions increased in effluent of BDHS system in 

segment 1 and 4 of BDHS system.  This caused of high accumulated biomass in these 

segments then it became to BPCOD fraction in the DHS effluent by sloughed biomass.  

And it also found that the BPCOD in BDHS effluent was higher than FDHS system in 

every segment.  In general, a biofilter as concept of trickling filter performs optimally at 

increasing or stable waste loads (up to the designed maximum load).  When the feed load in 

the system is reduced, part of the filter may be detached.  The filter sheds part of its biofilm 

and the detached biofilm particles add to the SS concentration in the water.  Since they 

generally have a size below 40 mm, they are difficult to remove (Eding et al., 2006).  The 

process of biofilter detachment is not yet fully understood.  Biofilm parameters, which were 

used to clarify the process of biofilm detachment, are dry density, wet density, the content 

of the extra cellular biopolymer (ECP), increased gas content in maturing biofilm and shear 

stress (Ohashi and Harada, 1994).  Further research is required to in biofilter filters.  As a 

consequence of UPCOD variations, the slowly biodegradable fraction (BPCOD) was 

strongly variable for the four segment of BDHS effluent.  This reveals that the hydrolysis 

rate by bacteria more slowly than fungi.  Thus it led to strong limiting process in substrate 

biodegradation in denitrification process in BDHS system.  In contrast, the FDHS system 

achieved an almost complete removal of BPCOD fraction in the final effluent.  And this 

also indicated the potential advantage of fungi over bacteria in terms of organic removal 

rate.  From several studies, fungi had a wide range of enzyme, and were capable of 

metabolizing complex mixtures of organic compounds such as particulate matters and dead 

cells (Jin et al., 2002; Orgaz et al., 2006; Tripathi et al., 2007).             
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Figure 4.17  The carbonaceous material characterizations of two DHS systems  

       

In RUN II, the average COD fractions of BDHS effluent were about 115.4 mg/L, 

65.6 mg/L, 10 mg/L and 45 mg/L of UPCOD, USCOD, BPCOD and BSCOD, respectively.  

Those were same ranges of FDHS system as about 120.1 mg/L, 76.9 mg/L, 7 mg/L and 25 

mg/L, respectively.  Most of particulate fractions (UPCOD and BPCOD) were decreased in 

segment 1 of two DHS systems.  This can be explained by particulate matters were retained 
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on sponge media and degraded in segment 1 during RUN II.  This is a recommended 

recirculation method of increasing the BOD removal efficiency.  The main finding of 

Confer and Logan (1998) study, that hydrolysis occurs primarily in contact with cells in 

suspended culture and in contact with biofilms in fixed-film systems, makes good sense for 

two main reasons.  First, hydrolytic enzymes released into bulk solution are soluble 

proteins that could become microbial substrate.  Second, and perhaps more important, any 

hydrolytic enzymes released into bulk solution by cells could be quickly washed out of the 

reactor and would need to be continuously replenished, a process that would be 

energetically unfavorable to cells.            

In RUN III, the average COD fractions of BDHS effluent were about 232.4 mg/L, 

136.2 mg/L, 91.6 mg/L and 25.4 mg/L of UPCOD, USCOD, BPCOD and BSCOD, 

respectively.  And FDHS system were about 133.8 mg/L, 101.1 mg/L, 7 mg/L and 17.7 

mg/L, respectively.  Particulate fractions of BDHS effluent were being higher than FDHS 

effluent.  It was likely that fungi substantially higher hydrolytic activity than bacteria.          

 

4.8 Mass Balances 

As consequence, the two DHS systems achieve simultaneous removal of organic 

matter and nutrients.  Current understanding of biological wastewater treatment system 

behavior has developed from observations on operating systems.  Mass balances provide 

one way of checking the data.  Surprisingly this is seldom done, most likely because 

gathering the data to conduct these balances may necessitate additional sampling and 

monitoring of the experimental system, beyond the regarded as necessary for addressing a 

particulate research problem.  Also, in certain cases it may not be feasible to gather the 

required data; for example, on a full-scale plant with dynamic influent loading (Barker and 

Dold, 1995).  Two balances be applied to experimental data are for chemical oxygen 

demand (COD) and nitrogen (N) during RUN I.  In addition the results of mass balance 
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calculations can also be used to investigate process behavior, leading to improved 

understanding of underlying mechanisms.   

4.8.1 COD and Nitrogen Assimilation in Sludge 

Based on theory of metabolism, microorganisms require nutrients such as 

organic matter and nitrogen to assimilate into cell components.  The ratios of COD/VSS 

(fCV) and TKN/VSS (fN

 

) of sludge in two DHS systems were analyzed in four identical 

modules of column segments.  The amount of COD and nitrogen for microbial synthesis 

were calculated from Equations 4.7 and 4.8, respectively.     

removedCODCVassCOD, MYfM ××=                                                                       (4.7) 

 

removedCODNassN, MYfM ××=                                                                             (4.8) 

 

Table 4.7 illustrates the mass flow of COD and nitrogen were used in microbial 

assimilation.  The COD used in microbial assimilation decreased according to the levels of 

the height of the DHS reactors in both systems.  This became the amount of influent COD 

in the upper segments was higher than in the lower ones.  And in general, higher contents 

of organic in the system resulted in higher heterotroph organism population.  Moreover, the 

content of the organic and nitrogen assimilated in FDHS sludge is higher than in BDHS 

sludge in every segments except in segment 1 having lower contents.  This indicated that 

the organic nitrogen utilization rate of fungi was higher than bacteria.      

 

 

 

 

 

 



Table 4.7  Mass flows of COD and nitrogen assimilation in cells 

DHS profiles/ 
Parameters 

FDHS system BDHS system 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 1 Segment 2 Segment 3 Segment 4 

Sludge yield
f

* 

f
N 

0.63 

COD 
0.07 
1.54 

0.63 
0.42 
1.20 

0.63 
0.18 
1.38 

0.63 
0.18 
1.38 

0.84 
0.11 
0.88 

0.86 
0.19 
1.08 

0.88 
0.21 
1.20 

0.86 
0.10 
1.31 

Assimilated mass flows: 
MCOD,ass 
M

(g/d) 
N,ass 

 

(g/d) 
29.5 
0.3 

 
19.5 
0.7 

 
3.5 
0.4 

 
0.7 
0.1 

 
15.7 
1.0 

 
17.9 
0.7 

 
2.2 
0.3 

 
-15.6 

0 

Assimilated ratio 
(Mass/Minf
M

): 
COD,ass 

M
(%) 

N,ass 
COD:N 

(%) 

 
 

37.7 
2.3 

100:4.2 

 
 

41.6 
6.7 

100:35.0 

 
 

15.5 
3.8 

100:12.8 

 
 

3.9 
1.0 

100:7.9 

 
 

20.1 
7.5 

100:12.8 

 
 

37.4 
6.7 

100:17.3 

 
 

10.0 
2.9 

100:17.3 

 
 

-86.7 
0.3 

100:7.5 
 
Remark:  Sludge yield in unit of mgVSS/mgCOD

 

removed 
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4.8.2 COD and Nitrogen Mass Balances 

Two balances applied to experimental data were chemical oxygen demand 

(COD) and nitrogen (N).  Results of COD and nitrogen mass balances in two DHS systems 

are shown in Tables 4.8 and 4.9.  The highest COD removed was found in segment 1 of 

FDHS system which included the electron transferred from the organic material to electron 

acceptor (COD oxidized) about 11.6 g/d and COD loss 18.9 g/d.  And COD loss in segment 

4 of two DHS systems were to be in deficit because oxygen utilization (COD oxidized) is 

higher than MCOD,remved

 

.  This indicated the sludge was utilized as a carbon sources during 

endogenous respiration in two DHS systems.  Moreover, the result of two mass balances 

studies indicated that there was a possibility in eliminating COD in BDHS system due to 

aerobic heterotroph consumption and denitrification processes.  Although, nitrogen removal 

did not occur in overall FDHS system but nitrogen loss was found in segment 1, 2 and 3.  

This caused by the nitrogen assimilation in sludge and the metabolism by facultative 

microorganism in anoxic zone as more detail in Table 4.7. 

 

 

 

 

 

 

 

 

 

 

 



Table 4.8  Total COD mass balance in two DHS systems 

DHS 
profiles 

FDHS (g/d) BDHS (g/d) 

M Minf Meff Mremoved
 M,oxid Mloss Minf Meff rem Mb M,oxid loss 

Segment 1 78.3 47.8 30.5 11.6 18.9 78.3 57.0 21.3 4.7 16.6 

Segment 2 47.8 21.9 25.9 0.9 25.0 57.0 37.7 19.3 3.4 15.9 

Segment 3 21.9 18.0 3.9 1.8 2.1 37.7 35.6 2.2 1.8 0.4 

Segment 4 18.0 17.3 0.8 3.3 -2.6 35.6 49.4 -13.9 6.1 -19.9 
   

 
Table 4.9  Nitrogen mass balance in two DHS systems 

DHS 
profiles 

FDHS (g/d) BDHS (g/d) 

Nitrogen influent Nitrogen effluent 
Sludge 
TKN 

TN 
loss 

Nitrogen influent Nitrogen effluent 
Sludge 
TKN 

TN 
loss TKN NO3 NO- 2 TKN - NO3 NO- 2 TKN - NO3 NO- 2 TKN - NO3 NO- 2

- 

Segment 1 13.2 0 0 10.4 0 0 0.3 3.1 13.2 0 0 11.0 0 0 1.0 3.1 

Segment 2 10.4 0 0 10.4 0 0 0.7 0.7 11.0 0 0 8.7 0 0.2 0.7 2.8 

Segment 3 10.4 0 0 9.8 0 0 0.4 1.0 8.7 0 0.2 7.5 0.3 1.5 0.3 0 

Segment 4 9.8 0 0 13.4 0 0 0.1 -3.5 7.5 0.3 1.5 4.7 0.6 0.5 0 3.5 
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4.8.3 Denitrification Potential in DHS Systems 

Biological nitrogen removal of an UASB effluent without substrate addition 

is possible if the wastewater contains enough biodegradable organics to denitrify all its 

nitrifiable nitrogen content.  The denitrification potential is often expressed with the ratio 

TCOD/TKN or TCOD/NH4-N instead of TBOD/TKN or TBOD/NH4-N.  Results indicated 

that some organic nitrogen was generally in particulate form, thus becoming inert organic 

polymers and probably not nitrifiable (Table 4.10).  The stoichiometric requirement for 

denitrification is theoretically 2.86 gO2

  

/gN.  Therefore, it can be concluded that BDHS 

system can be denitrified, whereas most of the BDHS segment system will need an external 

carbon source to achieve complete denitrification.  However, the result of COD and N 

balances in BDHS system showed potential of denitrification in segment 1, 2 and 4.  Thus, 

sludge was also being utilized as a carbon source during denitrification in BDHS system. 

Table 4.10  Denitrification potential of two DHS systems 

Runs 

TBOD/NH4
(gO
-N of FDHS Influent  

2

TBOD/NH
/gN) 

4
(gO
-N BDHS of Influent  

2/gN) 

Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 1 Seg. 2 Seg. 3 Seg. 4 

RUN I 2.03 0.44 0.33 0.41 2.03 1.83 1.82 2.40 

RUN II 2.43 0.16 0.13 0.13 2.43 0.57 0.52 0.43 

RUN II 3.08 0.24 0.15 0.13 3.08 3.60 1.63 0.47 

  

4.9 Biokinetic Parameters 

Values of biokinetic coefficients of aerobic heterotrophs during RUN I shown in 

Table 4.11 indicated that substrate utilization rate (rx) and maximum specific growth rate 

(µmax

 

) were higher in the first segment of fungal culture in FDHS, which explained the 

highest BOD removal in this segment.   
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Table 4.11  Biokinetic coefficients of FDHS and BDHS sludge during RUN I 

Biokinetic  
parameters 

Segment 1 Segment 2 Segment 3 Segment 4 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

µmax (d-1 2.20 ) 3.40 3.50 1.60 1.60 1.20 3.60 1.60 
rx 0.11  (mgCOD/mgVSS-
h) 0.21 0.16 0.10 0.09 0.09 0.15 0.10 

Y (mgVSS/mgCOD) 0.84 0.63 0.86 0.63 0.85 0.63 0.86 0.63 

kd (d-1 0.199 ) 0.086 0.198 0.051 0.182 0.184 0.193 0.044 

KS 54.8  (mg/L) 92 81.1 100 50.0 52 100.2 80 
µmax/Y.KS × 10-3

(L/mg-h) 
  1.99 2.35 2.09 1.12 1.57 1.53 1.74 1.30 

   

 
The rx and µmax decreased in the lower segments caused by limiting organic content as 

shown in the organic content profiles in Table 4.6.  This was different in case of bacterial 

cultures in BDHS.  The rx and µmax values were highest in second and fourth segments.  

The organic biodegradation rate of bacteria was less than fungi in the first segment.  And 

the most of suspended solids were adsorbed and inhibited organic removal in the first 

segment of BDHS.  Additionally, estimation of µmax/Y.KS

 

 is used as a measure for 

comparing the biodegradation kinetics, as suggested by Grady et al. (1999), indicating the 

highest biodegradation of organics in the first segment of fungal sludge (FDHS).  Results of 

biokinetics experiments show that a fungi-based DHS have the higher potential for organic 

removal than BDHS treating the UASB effluent of tapioca starch wastewater.  Moreover, it 

can also be observed that the yield (Y) of the fungal culture is lower than that of the 

bacterial culture.  This indicates that lower excess sludge would be produced from the 

fungal system compared to the bacterial system for the same substrate quantity, thus having 

the advantage of less sludge handling.  
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4.10 Dominant Culture in DHS Sludge  

From the identification, it appeared that nitrosomonas and nitrobacter were 

dominant cultures in segment 2, 3 and 4 of the BDHS biomass.  Cell concentrations of both 

nitrifying bacteria were in good agreement with the magnitudes of ammonia-oxidizing and 

nitrite-oxidizing activities evaluated from those segments.  The three dominant fungal 

genuses in FDHS system were included of Trichoderma, Aspergillus and Candida.  As 

presented by several researchers, these fungi had a wide range of enzymes, and were 

capable of metabolizing complex mixtures of organic compounds such as particulate 

matters and dead cells (Tripathi et al., 2007).  Moreover, simple operating control condition 

can be operated by adjusting the pH to 4.0±0.2 and 7.0±0.2 for FDHS and BDHS systems, 

respectively.  Under such condition, fungi and bacteria were the dominant cultures of 

FDHS and BDHS systems, respectively for treating UASB effluent in tapioca starch 

industry.  The photos of dominant cultures are showed in Figures 4.18 and 4.19.    

      

(a) Genus of Aspergillus cultures (b) Genus of Candida cultures 

(c) Genus of Trichoderma cultures 
 

 

Figure 4.18  Dominant cultures in FDHS sludge 



 
 

149 
 

(a) Genus of Psuedomonas cultures  (b) Genus of Bacillus cultures   

(c) Genus of Nitrosomonas cultures    (d) Genus of Nitrobacter cultures    
 

 

Figure 4.19  Dominant cultures in BDHS sludge 

 

4.11 Sludge Characteristics 

Table 4.12 shows the comprehensive results of sludge composition study.  In Table 

4.12, the data concerning TS, TVS, EPS and lipid phosphate concentrations are direct 

measurements. 

4.11.1 Retained Sludge 

The good performance of organic removal in two runs can be attributed to a 

large amount of retained biomass in sponge media of FDHS and BDHS systems.  The 

values are 5-20 times higher than that of activated sludge system and trickling filter treating 

domestic sewage (Tandukar et al., 2006a).  The characteristics of sponge biomass along 

two DHS systems height were determined (Table 4.12).  Little differences were found in 

total solids and volatile solids accumulated in the various segments of the FDHS reactor.  In 

steady state, the concentration of retained sludge in FDHS and BDHS systems remained 

almost constant suggesting that the degradation of old biomass nearly balanced the 

accumulation of fresh one.   



Table 4.12  Retained sludge concentrations in sponge media of two DHS systems          

DHS profiles/ 
Retained sludge 

Segment 1 Segment 2 Segment 3 Segment 4 Average 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

RUN I 
MLVSS (g/L) 75.6 30.3 12.1 21.4 28.8 20.0 41.9 50.4 39.6 30.5 

MLVSS/MLSS 0.97 0.76 0.95 0.72 0.92 0.66 0.94 0.85 0.95 0.75 

RUN II 
MLVSS (g/L) 50.9 20.0 12.3 18.5 25.8 15.5 35.6 30.2 31.2 21.1 

MLVSS/MLSS 0.93 0.76 0.97 0.71 0.97 0.68 0.94 0.89 0.95 0.76 

RUN III 
MLVSS (g/L) 55.4 25.5 13.4 19.4 27.2 18.3 38.5 42.5 33.6 26.4 

MLVSS/MLSS 0.94 0.77 0.95 0.75 0.96 0.67 0.96 0.85 0.95 0.76 
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The MLVSS/MLSS ratio of sludge was also measured; it was found that the bacterial 

sludge (MLVSS/MLSS: 0.66-0.89) had a lower degradability compared to that of the 

fungal sludge (MLVSS/MLSS: 0.92-0.97).  In a previously (Tandukar et al., 2006a) on 

bacterial DHS system treating domestic sewage, the MLVSS/MLSS was also found to be 

lower about 0.66-0.75.  This suggested that the ratios fungal sludge has higher degradability 

compared to BDHS sludge.       

4.11.2 Viable Cell Concentrations 

Based on phospholipid analysis, the ratios of viable cells to total biomass of 

all fungal and bacterial sludge were in range of 56-89% and 35-82%, respectively.  That 

seems to be fungal sludge contained active biomass in sludge higher than bacterial sludge.  

The ratios of viable cells to total biomass decreased during DHS height decrease.        

4.11.3 Extracellular Polymeric Substances (EPS)   

The extracellular polymeric substances (EPS) production is a general 

property of microorganisms in natural environments and occurs in bacteria, algae, yeast, 

and fungi.  They are construction materials for microbial aggregates such as biofilm, floc, 

and sludge.  However, EPS is inert biofilm composition and can also act as a diffusion 

barrier to nutrients and cellular products (Allison, 1998; Laspidou and Rittmann, 2002).  

EPS in fungal and bacterial sludge were measured in two DHS systems.  Figure 4.20 and 

Table 4.13 summarize the variation in bound and soluble EPS of BDHS and FDHS sludge.  

The bound EPS corresponds to polymeric substance adhered together with each other and 

microorganisms.  The soluble EPS indicate the microbial products which have been 

produced by the microorganisms and suspended in mixed liquor in a soluble form. 

Several studies have suggested a major disadvantage of trickle-bed 

bioreactors and so causing the limiting use of them for biological wastewater treatment.  

This is attributed to the progressive simultaneous biological clogging and physical plugging 

phenomena induced by the formation of  an excessive amount of biomass and the retention  
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Figure 4.20  Extracellular polymeric substances (EPS) concentrations in two DHS systems  
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Table 4.13  Retained sludge, Extracellular polymeric substances (EPS), viable cell and dead concentrations of two DHS sludge         

DHS profiles/ 
Sludge compositions 

Segment 1 Segment 2 Segment 3 Segment 4 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

RUN I 

EPS (mgCODEPS/gCODSS 47.4 ) 58.7 33.3 39.0 22.5 48.7 32.4 26.0 

Viable cells (mgCODcell/gCODSS 848.9 ) 792.4 735.3 732.0 656.6 607.1 632.2 469.2 

Dead cells (mgCODdead-cell/gCODSS 103.7 ) 148.9 231.4 229.0 320.9 344.2 335.4 232.1 

RUN II 

EPS (mgCODEPS/gCODSS 21.0 ) 20.6 25.0 35.4 29.2 20.1 29.7 41.3 

Viable cells (mgCODcell/gCODSS 897.0 ) 821.8 752.8 674.0 639.9 498.8 562.4 358.9 

Dead cells (mgCODdead-cell/gCODSS 82.0 ) 157.6 222.2 290.6 330.9 481.1 408.0 599.9 

RUN III 

EPS (mgCODEPS/gCODSS 41.1 ) 26.9 30.8 41.1 37.7 22.4 28.6 38.5 

Viable cells (mgCODcell/gCODSS 878.4 ) 803.8 762.6 596.6 676.4 367.4 572.6 388.7 

Dead cells (mgCODdead-cell/gCODSS 80.5 ) 169.3 206.5 362.2 285.9 610.2 398.8 572.7 
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of inert suspended fine particles and EPS (Iluita and Larachi, 2005; Thullner et al., 2004).  

Results of a study Thullner et al. (2004) reported that porous media samples showed that 

only 5% of the total organic carbon was present as bacterial biomass, whereas the 

remaining 95% were attributed to EPS.  The total volume of the bacterial cells remained 

below 0.01% of the pore space even in the vicinity of the injection port. Therefore, the 

observed clogging effects were assumed to be mainly caused by EPS. This is one of the 

causes of filter clogging in BDHS system as found during the first experimental run. 

Experimental results of BDHS sludge show that the two highest bound EPS 

concentrations were found to be in the first and third segments which had two lowest 

biomass growth rates.  This suggests that the highly bound EPS accumulated in the sludge 

may have the negative effect on the bacteria consumption rate.  In case of fungal sludge 

(FDHS), higher amount of bound EPS were accumulated in biofilms than bacterial sludge.  

Highest values of bound EPS concentrations and specific growth rate were found to be in 

the first segment of FDHS.  Evidence from experiment suggests that the relationship of 

EPS-production rate with substrate consumption rate seems to depend on the kind of 

microorganisms involved and system conditions.  Furthermore, it can be observed that the 

sludge respiration rate in second, third and forth segments of FDHS systems were under 

low OLR or limiting carbon source in influent wastewater. This suggests that fungi are 

more capable to consume soluble EPS as the carbon source (Belén et al. 2006).  

4.11.4 Dead Cell Fractions 

In this study, dead cells fractions can include the residues of dead cells, 

captured suspended solids, and inorganic precipitates as results shown in Table 4.12.  Based 

on the calculation, the ratios of dead cells to total biomass of all fungal and bacterial sludge 

were in range of 8-40.8% and 14-61%, respectively.  That seems to be bacterial sludge 

contained dead biomass fraction in sludge is higher concentration than fungal sludge.  The 

ratios of dead cells to total biomass increased during DHS height decrease.   
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4.11.5 Sludge Retention Time (SRT) 

The sludge of two DHS systems were calculated according to the following 

Equation 4.9 as results were showed in Table 4.14.   

 

SRT   =         
XV

XRQW + �Q-QW�Xe
                                              (4.9)          

           

Where, V is sponge volume of DHS system, Qw is wasted sludge flow rate of recirculation 

line (L/d), Qe is volumetric flow rate of effluent wastewater (L/d), X is VSS concentration 

in harvested sponge (mg/L), Xe is VSS concentration in wasted sludge (mg/L), XR

 

 is 

concentration of VSS in wasted sludge in recirculation line (mg/L).    

Table 4.14 Sludge retention time of two DHS systems 

System/Operating 
Conditions 

SRT (days) 

RUN I RUN II RUN III 

FDHS  187 204 61 

BDHS 48 132 27 
   

 
In general, the organic and nitrogen removal increases with the increase 

sludge age.  Those results shown that higher organic removal performance of FDHS system 

can be attributed longer SRT than BDHS system.  However, two DHS systems were 

possibility due to the long sludge age or longer SRT in RUN I, which was calculated to be 

187 days of FDHS system and 48 days of BDHS system considering the sludge input, 

retained biomass, its degradation and yield.  The value of FDHS system in RUN I was more 

than double that of extended aeration system, which ranges from 20-40 days (Mefcalf and 

Eddy, 2003).    
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4.11.6 Sludge Morphology 

The morphological and structural characteristics of two DHS sludge were 

investigated using scanning electronic microscopy (SEM) are shown in Figures 4.21 and 

4.22.  The retained sludge was consisting mainly small granules in sponge pore and biofilm 

formation on sponge surface.  Results suggested that bacterial sludge exhibited a denser and 

more compact structure than fungi with a variety of morphotypes, embedded in 

extracellular polymeric substances, dominated.  Mycelial granules consisting of fungi and 

filamentous microorganisms formed the loose filamentous granular and biofilm that 

presence the sufficient high in substrate and oxygen mass transport.  Fungal culture has 

potential application as immobilized cell systems, because of their shape, may not require 

cross-linking or entrapment (Tung et al., 2004).  However, bacteria can be formed 

filamentous structure but SEM photos show a little filamentous microorganism in BDHS 

sludge. This may cause of insufficient conditions in BDHS system not suitable to promote 

filamentous bacterial growth.     
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(a) Retained sludge in sponge media (b) Biofilm accumulation on sponge surface

(c) Granular accumulation in sponge pore (d) Granular accumulation in sponge pore

(e) Biofilm accumulation on sponge surface (f) Biofilm accumulation on sponge surface
 

 

Figure 4.21 Sludge Morphology of BDHS System by SEM Photos 
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(a) Retained sludge in sponge media (b) Biofilm accumulation on sponge surface

(c) Granular accumulation in sponge pore (d) Granular accumulation in sponge pore

(e) Biofilm accumulation on sponge surface (f) Biofilm accumulation on sponge surface
 

 
Figure 4.22 Sludge Morphology of FDHS System by SEM Photos 
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4.12 Effect of Extracellular Polymeric Substances (EPS) on Effluent 

Organic Matter Concentrations 

Effluent from biological wastewater treatment contains complex and heterogeneous 

soluble organic compounds.  The so-called effluent organic matter (EfOM) is composed of 

refractory compounds, residual degradable substrate, intermediates, end products, complex 

organic compounds, and soluble microbial products (SMP).  The SMP are organic 

compounds that are biologically derived from substrate metabolism during biomass growth 

(utilization associated products, UAP) and that are released from cell lysis during biomass 

decay (biomass-associated products, BAP).  The SMP are found to be the majority of 

soluble organic matter in wastewater effluent.  The characteristics of EfOM and/or SMP 

from different wastewater treatment plants vary due to differences in treatment processes 

and their operational conditions.  Several process parameters influence the production and 

properties of SMP, leading to the different quantities and qualities of EfOM.  Formation of 

SMP was found to increase during stress conditions, e.g., hydraulic shock loads, low pH, 

nutrient deficiency, and presence of toxic compounds, etc.  With an increase of feed 

strength, the SMP–UAP concentration increased, whereas the SMP–BAP concentration 

decreased.  However, the SMP–UAP was more biodegradable than the SMP–BAP, 

therefore, the accumulation of the SMP–BAP was expected in most biological treatment 

systems (Jarusutthirak, C. and Amy, G., 2007). 

As EPS are microbial mass produced, which are not active cells, they represent a 

diversion of electrons and carbon that could otherwise be invested in cells yield and growth 

rate.  Hence ignoring EPS formation could lead to a general overestimation of true cellular 

growth rate.  Moreover, both soluble microbial products (SMP) and the soluble component 

of EPS may contribute to the residual soluble COD casing the lower effluent quality.  

Macromolecular compounds such as protein and carbohydrate can comprise a significant 
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portion of dissolved organic carbon in the DHS effluents (about 60-70% of effluent COD; 

details shown in Table 4.15).  Several researchers found that the chemical components of 

SMP consisted mainly of proteins, polysaccharides, and organic colloids, and that the SMP 

and EPS were identical (Wichitsathian, B., 2004; Jarusutthiruk, C., and Amy, G., 2007; 

Yan, M. E., et al., 2007).  The presence and characteristics of effluent organic matter and/or 

SMP in wastewater effluent are of great interest with respect to discharge quality and the 

efficiency of advanced treatment facilities.   

   
Table 4.15  Soluble EPS concentrations in the DHS effluents  

DHS  
Effluents 

Soluble EPS (mgCOD/L) 

RUN I RUN II RUN III 
BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 1 132.8 199.8 53.0 119.9 169.7 165.4 

Segment 2 126.0 187.3 50.9 107.8 179.2 145.3 

Segment 3 123.0 175.5 56.6 98.6 189.1 140.2 

Segment 4 121.6 170.2 55.2 93.7 136.4 146.3 

  

4.13 Effect of Treatment Loading on Sludge Compositions 

 Experience over the years with biofilms and other microbial processes have 

suggested that many physical, biological and chemical factors affect the structure to various 

extents. The hydrodynamic shear, mass transfer, detachment, substratum texture and 

particulate matter are among the physical forces whereas substrate concentration, physico-

chemical environment, type of substrate and nutrients are some of the chemical factors 

reported to influence biofilm structure.  The investigation into the influence of each of these 

parameters on biofilm structure is straightforward; however, the biological parameters 

(physiology of cells, microbial population and EPS) remain intermingled with the above 

and present a formidable problem. Conceptual and mathematical modeling attempts have 
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been made to describe the influence of some of the factors on biofilm structure. However, 

very little experimental evidence is available as to how each of the factors sighted; 

influence the structure due to the difficulty in developing appropriate methodologies for 

studying each independent event. 

 In this study, the effect of substrate and hydraulic loading on biofilm 

composition/structure were investigated by analyzed the concentrations of viable or active 

cells, EPS and dead cells during three runs as results shown in Figure 4.23.  The inert or 

dead cells of BDHS sludge increased in every segment with organic and hydraulic loading 

rate increase (RUN II, RUN III) with caused of decreasing in viable cell fractions.  Sludge 

composition fractions were not different in FDHS system during three runs.  However, 

viable cells were decreased gradually in all 4 segments of BDHS and FDHS systems.  This 

caused of low substrate concentrations in lower FDHS and BDHS height.  Moreover, 

hydrodynamic strength is one of the key parameters that influence microbial adhesion 

(Busscher and van der Mei, 2006) and biofilm formation (Liu and Tay, 2002; Wa¨she et al., 

2004).  A wide literature is available on the influence of hydrodynamic conditions on the 

physical structure of the biofilms; high shear forces usually result in thinner, denser and 

stronger biofilms (Kwok et al., 1998; Liu and Tay, 2002; Laspidou and Rittmann, 2004a).    
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Figure 4.23 The fractions of two DHS sludge compositions  

(a) Segment 1 of FDHS 
 

(b) Segment 1 of BDHS 
 

(c)    Segment 2 of FDHS 
 

(d) Segment 2 of BDHS 
 

(e) Segment 3 of FDHS 
 

(f) Segment 3 of BDHS 
 

(g)  Segment 4 of FDHS 
 

(h)  Segment 4 of BDHS 
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However, little is known about the effect of shear stress on the microbial composition of 

biofilms.  Recent works showed that hydrodynamic conditions influence the composition 

and diversity of freshwater biofilm communities (Rickard et al., 2004; Besemer et al., 

2007).  Also, Rochex et al. (2008) recommended shear stress affects the composition 

biofilm of bacterial communities. High shear stress decreases biofilm diversity which 

confirms the effect of shear on biofilm diversity in another environment (simulated 

industrial conditions).  The dynamics of biofilm communities also change in relation to 

shear stress.  Our results suggest that shear stress would slow down biofilm maturation and 

tend to maintain a young biofilm.  Furthermore, biofilm growth rate was positively 

influenced by substrate loading. It was demonstrated that biofilm internal microstructure is 

affected by substrate loading rate with increasingly high substrate concentrations producing 

increasingly compact biofilms with lower porosity.  Specific activities were found to 

decrease with increasing cell age and biofilm compactness.  Slowly growing biofilms 

having porous structures were found to have higher specific activities, which exemplifies 

the importance of microstructure for mass transport.  The spatial competition between 

nitrifiers and heterotrophs is one of the limiting criteria for stable nitrification.  The 

ammonia oxidizer spatial organization is strongly related to the structure of the biofilms.  

They were exclusively found close to the top surface in dense biofilms and close to the 

pores in porous biofilms. The higher ammonium concentrations seem to select for the faster 

growing ammonia oxidizer strains.  The above findings provide clear experimental 

evidence concerning the influence of substrate loading on biofilm structure and function 

(Wijeyekoon et al., 2004).  Furthermore, the same sponge media was used during three 

experimental runs via flushing reactor by tap water about 12 h with inflow rate 550 L/d to 

remove some of the retained sludge before starting the new runs.  This seems to be effect 

on the sludge compositions and its density during RUN II and RUN III.  High values of 

dead cell fraction were accumulated in DHS sludge this promised the higher biofilm 
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density during the start up period of RUN II and RUN III.  However, at steady state 

conditions, the overall process performance of two DHS systems were rather constant.  

This can explained by inert biomass was degraded or washed out of the system by 

hydraulic shear strength during the initial of startup period.  Moreover, the sludge 

composition was balance at the steady state condition.  Few past studies reported 

endogenous respiration of DHS sludge suggesting that the sludge accumulation was in near 

balance with degradation of sludge in reactor itself (Tandukar et al., 2006a;  Tawfik et al., 

2006a)         

   

4.14 Problems and Limitation of DHS Systems 

4.14.1 The development of predators 

 The development of predators (e.g. worms, filter flies etc.) has caused serve 

problems in BDHS system in sustaining organic and nitrogen removal.  Won et al. (2004) 

observed that fly larvae rapidly spread throughout the biofilter reactor and biomass was 

rapidly removed from the packing, initially at a rate of 13.1 kg wet weight/m3-day and 

increasing up to 70-140 kg/m3-day of reactor.  In that case, the wet biomass content in the 

reactor was reduced from 455 to 28 kg/m3 of reactor in 16 days with 80% of biomass 

reduction occurring in 2-4 days.  An aspect of biofilm control in BDHS system concerns 

prevention of and the control of predators.  The key to controlling the level of nuisance 

organisms is finding a condition toxic to the target nuisance organism that either no effect 

upon or is only temporarily inhibiting to organic and nitrogen removal of BDHS system.  

This study used substances toxic to eukaryotic organisms (Cypermethrin) to control biofilm 

predators (Parker et al., 1997; Grant et al., 2002).  However, it’s not observed the predator 

aspect in FDHS system.  This can be explained by  a study of Prakash et al. (2008) showed 

that the toxicity of fungal spore on earthworms which included of 14 different species 
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belonging to the genera, Aspergillus, Chaetomium, Cladosporium, Cunninghamella, 

Fusarium, Mucor, Penicillium and Rhizopus.      

4.14.2 Filter clogging 

 Several physico-chemical and biological phenomena can be involved in the 

clogging.  The evolution of the head loss of biofilter process is mostly caused by the 

accumulation of solids and the growth of biomass.   For high filtration rates, the inert 

particles and the biofilm detached from the support are distributed deep in filter, hence 

accelerating the clogging (Bihan and Lessard, 2000).  During whole experimental study, 

filter clogging aspect was observed in RUN I of BDHS system.   We control this 

phenomenon by hydraulic flushing (tap water) with inflow rate 550 L/d every 30 days of 

operating period.    

 

4.15 Operating Cost Analysis 

In comparison of overall performance of FDHS and BDHS systems, the operating 

cost analysis of two DHS systems was evaluated.  Chemical using for pH adjusts is only 

one main operating cost of BDHS and FDHS systems that results are illustrated in Table 

4.16.  The activated sludge process (ASP) has long been a main in the world of wastewater 

treatment especially in industrialized or developed countries through it is complex and 

expensive system.  Stare et al. (2007) was study on the operating cost of IWA activated 

sludge model No. 1 (ASM1) with inflow rate 300 m3

    

/d (Table 4.17).  Results of this past 

study suggested that requirement of aeration and production of huge amount of excess 

sludge is two main drawbacks of ASP in spite of its superior performance.  Likewise, cost 

for sludge handling in ASP constitutes up to 40% of the total operating cost.   
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Table 4.16  The operating cost of BDHS and FDHS treatment systems 

Treatment 
systems 

Chemicals 
requirements 

(kg/m3

Chemicals cost 
per unit 

(Baht/kg) wastewater) 
Sponge 

cost 
(Baht/m3

Sponge 
replacement cost   

) @ every 5 years  
(Baht/m3

wastewater

Operating cost 

) 
(Baht/m3

wastewater) 

NaOH H2SO NaOH 4 H2SO4 

BDHS 0.19 - 15 - 400 6.30×10 2.85 -5 

FDHS - 1.05 - 12 400 6.30×10 12.60 -5 

   

   
Table 4.17  The operating cost of IWA activated sludge model No. 1 (ASM1) was  

                    operated with inflow rate 300 m3

 

/d (Stare et al., 2007) 

Cost (€/d) Cost* (Baht/d) Cost (Baht/m3) 

Aeration costs 576 30,528 101.8 

Sludge disposal costs 1,258 66,674 222.2 

Carbon costs 264 13,992 46.6 

Effluent fines 976 51,728 172.4 

Total operating costs 3,074 162,922 543.1 
 
Remark: * Based on average exchange rate on February 2010 (1 € = 53 Baht)  

   

However, regarding operation and maintenance of the reactors, ASP is labor-intensive and 

demands regular and skilled operation and maintenance to ensure proper functioning of 

moderately complex equipment.   

 This result seems UASB-DHS system could be a better option as it has very less 

mechanical and electrical appurtenances and thus less threatened by power outages.  

Moreover, since it is a simple system, it does not demand highly skilled personnel for its 

operation and maintenance, which is one of constrains in developing countries. 

 

 

 



 

 

CHAPTER V 

MATHEMATICAL MODELING OF BIOFILM 

COMPOSITION AND DENSITY DYNAMICS  

 
5.1 Application of the UMCCA Model for Biofilm Composition and 

Density in two DHS Systems 

5.1.1 Simulated Dynamics of Biofilm Compositions 

In this study applied a mechanistic, multiple component model ─ the 

UMCCA model for the quantitative simulation of the biofilm’s heterogeneity through many 

components related to a biofilm system: three solid species [active biomass (Xa); inert or 

dead biomass (Xres) and extracellular polysaccharides (EPS)], and three soluble 

components [soluble organic donor substrate (S) and two types of soluble microbial 

products (UAP and BAP)].  Simulation results by using the UMCCA model showed how 

the six components varied, on average, along the depth of biofilm for segments 1-4 of 

FDHS and BDHS systems as shown in Figures 5.1-5.6.  Each graph (Figures 5.1-5.6) of the 

model shows 70 data points, one for the average of every row of the grid, and error bars 

show the two standard deviations one above and one below the mean.  The simulated data 

are shown in Appendix G (Table G.3-G.8).  All variables on the abscissa (Y-axis) are 

dimensionless, while the ordinate (X-axis) represents the biofilm depth and ranges from 0 

to 280 µm, corresponding to termination time or biofilm age (Bioage) for each segment of 

BDHS and FDHS systems as illustrated in Table 5.1. 
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Figure 5.1  Simulated soluble organic donor substrate (S) profiles along the biofilm depth  

                     in four segments of FDHS and BDHS systems 
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Figure 5.2  Simulated active biomass (Xa

                                  in four segments of FDHS and BDHS systems 

) profiles along the biofilm depth  
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Figure 5.3  Simulated residual or inert biomass (Xres

                         in four segments of FDHS and BDHS systems 

) profiles along the biofilm depth  
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Figure 5.4  Simulated extracellular polymeric substances (EPS) profiles along the biofilm  

                     depth in four segments of FDHS and BDHS systems 
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Figure 5.5  Simulated utilization-associated product (UAP) profiles along the biofilm  

                        depth in four segments of FDHS and BDHS systems 
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Figure 5.6  Simulated biomass-associated product (BAP) profiles along the biofilm  

                           in four segments of FDHS and BDHS systems 

 

 

 



 
 

174 
 

Table 5.1  The run termination time (Bioage) sufficient in 280 µm of the biofilm depth  

DHS Profiles 
Bioages (days) 

FDHS BDHS 

Segment 1 45 245 

Segment 2 180 65 

Segment 3 180 145 

Segment 4 180 105 
  

 
The simulation run termination time of segments 2 to 4 of FDHS system and segments 1, 3 

and 4 of BDHS system were much longer than for the segments 1 and 2 of FDHS and 

BDHS system, respectively.  This could possibly be explained by the fact that active 

biomass and EPS growth were slowed down significantly due to the low substrate or oxygen 

concentrations.   

(i) Simulated Organic Donor Substrate (S) Profiles along Biofilm 

Depth 

The substrate mass balance (Equation 3.4) was solved for all locations 

follow the solution algorithm (Figures 3.9 and 3.10) to define the substrate field at time 

T+δtb; while the biomass field was kept constant.  This computation was then repeated until 

the substrate concentration converged to steady state.  This was done using a strategy 

similar to that described in Laspidou and Rittmann (2004), i.e. keeping the biomass density 

unchanged, while iterating until the substrate concentration field converged to a steady-state 

condition, and using a time step δts of about 1s to solve the substrate field, and a time step 

δtb of 1000s to incorporate changes in biomass.  The substrate field solution by a numerical 

method was also applied that followed the scheme presented by Picioreanu et al. (1998) and 

Laspidou (2003) with a finite-difference discretization scheme that was then solved with the 

alternating-direction implicit (ADI) method. 
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Results showed that the substrate concentration decreased with distance 

from the top surface of the biofilms (Figure 5.1).  The substrate concentrations within each 

row stayed relatively constant, so the concentration was determined almost totally by 

distance from the substratum, not by lateral position.  The error bars were very small, 

signifying the small variability (low σ) of substrate concentration within each row.   On the 

other hand, column variability was high (high σ), for every column (Tables G.1-G.8).  Thus, 

lateral diffusion in the biofilm was sufficient to ‘‘level out’’ the substrate concentration, 

despite differences in utilization rate due to different densities of active biomass. 

When compared for each segment of two DHS systems, organic donor 

substrate concentration appeared to have much greater variability substrate concentrations 

for segments 2 and 4 of FDHS system, and segment 1 of BDHS system.  Of high 

significance is the fact that the variability of original substrate was greater for biofilm 

depths, higher than 150-200 μm, where most of the growth was concentrated in one 

mushroom cluster as explained in detail in Section 2.15.  This non-uniform pattern for 

substrate explains why the large clusters preferentially developed in biofilm.  Once a new 

cluster develops above the top of the other clusters, it is exposed to a higher substrate 

concentration than the other clusters, and this gave it a growth-rate advantage.  This cluster 

effect was not present in segment 1 and 3 of FDHS system and segment 2, 3 and 4 of BDHS 

system, because Smax was sufficiently greater than Ks so that the biomass growth rate was 

not sensitive to differences in Smax (Table 5.2) (Laspidou and Rittmann, 2004a; Picioreanu 

et al., 1998a).  However, Smax even if was also greater than Ks in segment 1 of BDHS 

system the dissolved oxygen concentration in wastewater was about zero (Section 4.6.1).  

The lower dissolved-oxygen concentration caused a slower growth rate and, hence, a longer 

time to have some biomass in each compartment.  Laspidou and Rittmann (2004b) 

suggested that, under low dissolved oxygen conditions (bottom row of biofilm had 0.49 mg 

DO/L), cavities form at the base of an old biofilm.  Hence, the integrity of the base of the 
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biofilm is compromised when low dissolved-oxygen concentration leads to a biofilm with 

cavities at its base.  Such loss of biofilm integrity in its base can be extended to possibly 

provide an explanation for biofilm sloughing, a phenomenon not well understood so far. 

   

Table 5.2  Comparison of Smax and Ks

DHS profiles 

 values   

FDHS system BDHS system 

S Kmax Ss Kmax s 

Segment 1 336 92 336 55 

Segment 2 75 100 240 81 

Segment 3 64 52 157 50 

Segment 4 74 80 136 100 

   

(ii) Simulated Biomass Species (Xa, EPS, Xres

Mathematical modeling was used in this study to quantify the 

relationships among three solid species ─ active or viable cells, EPS, and residual inert 

biomass following Equations 3.7, 3.8 and 3.9, respectively.  Active biomass decays in two 

ways.  Part of the active biomass is oxidized by endogenous respiration (path 5 in Figure 

3.9) to yield energy for maintenance.  The rate is proportional to the biodegradable fraction 

of the active biomass (f

) Profiles along Biofilm 

Depth 

d), the endogenous-decay coefficient (b; T-1), and the active biomass 

concentration (Xa).  Acceptor is consumed at the same rate.  Biomass decay produces 

residual inert biomass (Xres) in proportion to the rate of endogenous decay (path 6 in Figure 

3.9) and the fraction of the active biomass that is not biodegradable (1-fd).  EPS 

dissolution/hydrolysis produces BAP (path 7 in Figure 3.9), with a rate proportional to EPS 

and with khyd being the first-order rate coefficient (T-1).  As discussed in Laspidouand 

Rittmann (2002a), hydrolysis of EPS is the only source of BAP.   Overall, active biomass 

was very low in the bottom rows of the biofilm column, peaks just above the middle rows, 
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and drops down to lower values in the top rows (Figure 5.2).  In the bottom rows, active 

biomass was close to zero, because the termination time (bioages) was long enough for all 

the initially synthesized active biomass to decay almost completely and turn to residual inert 

biomass (Xres), which was relatively high.  Thus, Xres

All EPS concentrations trends were similar to active biomass, thus the 

values were lower than active biomass throughout the biofilm depth (Figure 5.4).  The 

biofilm was ‘‘old’’, near the bottom of the biofilm, and EPS had decayed to BAP.  EPS was 

at a low concentration in the top layers, since its formation depended on the presence of 

active biomass, which was very sparse at the top of the biofilm.  EPS showed small-scale 

heterogeneity similar to that of active biomass.  The standard deviation by row was low in 

the bottom rows and got higher for the top rows, where many of the compartments were 

nearly unoccupied. 

 had its highest concentration below 

the point where the active biomass peaks (Figure 5.3).  The top of the biofilm also had a low 

concentration of active biomass, but for the opposite reason: the biofilm was very young and 

had not had enough time to synthesize and consolidate biomass that completely fills in the 

top compartments; thus, the active biomass and the inert biomass were close to zero at the 

top.  Although the average active biomass concentration was low in the top and bottom 

rows, the variability (error bars) was high only in the top rows.  This was true because, in 

the top rows, even if some compartments were relatively full, most were almost completely 

unoccupied, resulting in a low mean value with a high standard deviation. In the bottom 

rows, the mean value was close to zero, because most compartments had active-biomass 

concentrations close to zero, due to extensive decay; thus the standard deviation was close 

to zero as well. 

Due to the lower substrate and oxygen concentration throughout much 

of the biofilm, active biomass and EPS were lower throughout the biofilm for lower oxygen 

and Smax cases (segment 1 of BDHS system and segment 2, 3 and 4 of FDHS system).  
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Active biomass and EPS dip at about the 150 μm biofilm depth, because almost all biomass 

at was in one “mushroom”-shaped cluster.  The large cluster had little active biomass (and 

EPS) at that depth, because its active biomass was much closer to its top surface.  The very 

top of the mushroom cluster was fluffy, being irregular with small Xa, EPS, and Xres.  

Residual inert biomass was very high in the bottom rows, since the biofilm in the bottom 

rows was very old and, hence, fully consolidated (i.e. Uc = 1).  The plateau from about 150 

to 200 μm occurred with the transition to all the biomass being in the one mushroom-like 

cluster above 150 μm.   

(iii) Simulated Soluble Microbial Products Profiles along Biofilm Depth 

The first type of soluble microbial products (SMP) is utilization-

associated products (UAP), which are produced as a direct result of substrate utilization.  

The formation kinetics of UAP was presented in Equation 3.5.  The second category is 

biomass-associated products (BAP), and they are formed from biomass, presumably as part 

of decay.  The BAP rate is expressed by Equation 3.6.   In addition to S, the other two 

soluble substrates are UAP and BAP, UAP is formed directly during substrate utilization, 

consumed by active biomass as an electron-donor substrate, and diffuse out of the biofilm 

through the top surface.  Like S, UAP had little heterogeneity across their rows (very small 

average σ by row, shown in Tables G.3-G.8, and small error bars in Figure 5.5).  The UAP 

concentration was lower throughout the biofilm depth.  Moreover, due to the BAP was 

formed from the hydrolysis of EPS.  The BAP concentration was stable, since active 

biomass was low there and unable to consume BAP.    

Like UAP, the BAP concentration declined toward the top surface 

because of its consumption by active biomass and diffusion to the bulk liquid above the 

biofilm.  The BAP concentrations also had little heterogeneity across the rows (Figure 5.6).  

UAP concentrations were higher for high Smax case (segment 1 of FDHS system and 

segment 2-4 of BDHS system) than for the other cases.  This could have happened because, 
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although UAP formation was lower due to the lower substrate utilization rate, UAP 

utilization was also lower due to the lower active biomass. So, UAP became relatively more 

important when Smax

5.1.2 Biofilm Composite Density Simulation 

 was lower.  BAP were lower too because their parent compounds 

─EPS─ were also lower. 

The UMCCA model was used to computes the composite density of the solid 

components for every compartment following Equation 3.10.  Figures 5.7 and 5.8 are shown 

the simulated composite density of FDHS and BDHS systems, respectively.  The top, where 

the biofilm was young and irregular, had small composite densities, since all three solid 

species had low values.  With little of any type of biomass and an irregular surface, the top 

of the biofilm took on a ‘‘fluffy’’ nature.  The highest composite density, near the middle of 

the biofilm, was the result of active biomass, EPS, and inert biomass having significant 

densities together.  The highest composite density did not correspond to the location that has 

high active biomass.  The highest density was somewhat deeper in the biofilm, where inert 

biomass had time to accumulate.  The bottom part of the biofilm had high composite 

density, composed almost totally of inert biomass.  The composite density showed small-

scale heterogeneity.  Its average standard deviation by row (as a percentage) was among 

those of EPS, Xa, and Xres, while the standard deviation by column was lower than the other 

solid species (Table G.3-G.8), since combining all 3 solid species (Xa, EPS, and Xres

 

) 

‘‘evens out’’ their differences.  Results showed that average biofilm densities of FDHS 

system were about 43.8, 20.4, 22.7 and 26.3 gCOD/L for segment 1 to 4, respectively 

(Table 5.3).  The average values in BDHS system were about 99, 58.2, 67.2 and 59.2 

gCOD/L for segment 1 to 4, respectively (Table 5.3).    
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Figure 5.7  Simulated composite densities along the biofilm depth of BDHS system  
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Figure 5.8  Simulated composite densities along the biofilm depth of FDHS system  
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Table 5.3  Simulated average composite biofilm density in each segment  

                  of FDHS and BDHS systems  

Parameters 

Average composite biofilm densities (gCOD/L) 

Segment 1 Segment 2 Segment 3 Segment 4 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

Average 43.80 99.05 20.44 58.19 22.69 67.24 26.33 59.19 

S.D. 13.82 55.95 7.24 17.56 9.34 28.27 12.45 20.14 

 

 

All results indicated that BDHS biofilms were denser than FDHS biofilms.  This can be 

explained by the biomass decay rates (kd

Simulations with low substrate concentration near and below Ks or lower 

dissolved-oxygen concentration, promote the formation of the cluster-and-channel structure.  

Then, once a new cluster developed above the top of the other clusters, it was exposed to a 

higher substrate concentration than the other clusters, and this gave it a growth-rate 

advantage.  Low substrate or/and dissolved oxygen concentration also slowed the biofilm’s 

growth rate, while accumulation of residual dead biomass proceeds even in this conditions, 

making biofilm aged, dense, and almost composition was inert.  A high specific detachment 

rate also favored the cluster-and-channel structure and maintains relatively open channels 

) of FDHS system which were lower than BDHS 

system.  For segment 1, BDHS system had the highest density under low dissolved oxygen 

concentrations (the value about zero), in such condition active biomass and EPS growth 

might have slowed down significantly due to the low dissolved oxygen concentration.  This 

simulation run terminated in 245 days, which is much longer than the other runs (Table 5.1) 

because active biomass and EPS growth were slowed down significantly due to the low 

oxygen concentration.  As a result, the biofilm grew very slowly, while accumulation of 

residual dead biomass proceeded even in the absence of oxygen, making the biofilm aged 

and dense.                
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near the substratum.  The high surface-detachment rate accentuated the growth-rate benefit 

for a protruding cluster.  It also kept the biofilm less dense overall, but with a lower 

proportion of residual inert biomass.  Consolidation showed two dramatic trends.  First, it 

makes the biofilm denser overall, and this slowed its vertical expansion rate.  Second, 

consolidation increased the local heterogeneity in all biomass types (Lapidou and Rittmann, 

2004b). 

   

5.1 Influence of Biofilm Density on Mass Transport  

Mass transport in biofilms is influenced by the biofilm structure which in turn is 

influenced by the local availability of substrate.  A quantitative understanding of how 

biofilm structure is linked to mass transport is essential for understanding of biofilms.  

Solute transport in biofilms is the result of diffusion in the denser aggregates and potentially 

convective transport within pores and water channels.  Diffusion has been shown to 

dominate mass transport in many biofilm systems (Horn and Morgenroth, 2006).  Moreover, 

biofilm density and depth are the main design parameters used to evaluate substrate 

consumption rate in a biofilm.  The density of the biofilm increases the reaction rate in the 

biofilm, meanwhile it limits the diffusion substrate transfer due to the decreased effective 

diffusion coefficient.  Therefore, substrate consumption rate must yield a maximum as a 

function of biofilm density, whereas the rate controlling step changes from reaction to 

diffusion.  When the biofilm thickness increases, the total reaction volume of the 

microorganisms increases accordingly and, in turn, the substrate consumption rate of the 

biofilm increases.  However, due to diffusion limitations, an inactive core layer of 

microorganisms develops with the increasing biofilm thickness and an active portion of the 

biofilm will be solely responsible for the consumption (Şeker et al, 1995).   
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5.1.1 Relative Diffusivity (fD

Biofilms are mainly composed of water and the macro scale diffusion 

coefficient for the biofilm (D

)   

F) is often related to the diffusion coefficient in pure water 

(DW) as DF = fDDW where fD is relative diffusivity.  A number of reviews on diffusion in 

biofilms have summarized the available data (Fan et al., 1990, Hinson and Kocher, 1996, 

Stewart, 1998).  A key motivation of such literature reviews are to identify a relationship 

between parameters characterizing the biofilm or solute properties and the macro scale 

diffusion coefficient so that relative diffusivity (fD) can be predicted.  Based on their 

experimental results evaluating diffusion of phenol in particle fixed biofilms and data from 

the literatures, Fan et al. (1990) and Horn and Morgenroth (2006) provided an empirical 

relationship between fD 

 

and the biofilm density (ρ) as follows (Equation 5.1):  

  0.99

0.92

D 0.27ρ11.19
0.43ρ1f
+

−=                                                            (5.1) 

 

Profiles of fD along the biofilm depth were obtained for both of FDHS and 

BDHS systems by Equation 5.1 as shown in Figures 5.9 and 5.10.  The average fD values 

are illustrated in Table 5.4.  Results showed that the fD values had opposite trends of 

density.  The top, where the biofilm was young and irregular, had high fD values which were 

the cause of small composite density.  Also fD

 

 values of all segments of FDHS system were 

higher than BDHS system. 
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Figure 5.9 Simulated relative diffusivity (fD

 

) along the biofilm depth of BDHS system 
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Figure 5.10 Simulated relative diffusivity (fD

 

) along the biofilm depth of FDHS system 
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Table 5.4  Simulated average relative diffusivity (fD

Parameters 

) in each segment of FDHS and BDHS 

systems  

fD 

Segment 1 Segment 2 Segment 3 Segment 4 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

Average f 0.405 D 0.275 0.596 0.336 0.577 0.321 0.548 0.335 

S.D. 0.123 0.195 0.104 0.130 0.126 0.160 0.147 0.132 

   

 
As shown in Figures 5.9 and 5.10, simulation values of fD were plotted as a function of 

biofilm depth.  It can be seen that, for the biofilms tested in this study, there was correlation 

between biofilm depth and fD.  Similar results of Zhang et al. (1998) reported a dependence 

of fD on the biofilm depth, and that biofilms were grown on substratum with an electron 

donor and acceptor diffusing into the biofilm through the substratum and the bulk phase, 

respectively.  Zhang et al. (1998) observed that a correlation between depth and fD could be 

due to culturing of the biofilm on such a substratum or due to an indirect effect where the 

internal biofilm structure (e.g., density, porosity, tortuosity) is, in turn, correlated with the 

biofilm depth.  However, this study assumed that the fD depended on the biofilm density and 

its compositions.  The results showed that the fD for each segment of two DHS systems 

decreased with biofilm thickness due to the amount of biomass.  Meanwhile, the fD 

decreased with an enhanced biofilm density up to a critical values of about 80 g/L (or equal 

to 96 gCOD/L with 1.2 gCOD/gSS as conversion factor), and then started to decrease due to 

the dominating effect of diffusion (Şeker et al., 1995).  Moreover, Şeker et al. (1995) 

recommended this density value (96 gCOD/L) limit substrate consumption rate in biofilms.  

However, fungal biofilm densities for all segments were lower than the critical value; that 

means there was no limitation of biofilm diffusion in FDHS system within 250 µm of 

biofilm depth (maximum biofilm density of FDHS system was 57.7 gCOD/L).  But for the 



 
 

186 
 

BDHS system, the biofilm diffusion was limited in segment 1 and 4 where critical depth 

were about 130 µm and 180 µm, respectively.   

               
5.2  Biofilm Porosity by Simulation  

Recently, several experimental methods have been developed for a more direct 

quantification of biofilm structure rather than characterizing biofilm structure based on 

density.  For example, specific staining combined with confocal laser scanning microscopy 

(CLSM) and digital image analysis can provide three dimensional representations of the 

different constituents within the biofilm matrix (Heydorn et al., 2000).  Parameters, such as 

porosity or the maximum and average diffusion distance could then be correlated with the 

factor fD.  Zhang and Bishop (1994b) correlated diffusion in a biofilm with the biofilm 

porosity (εf

 

) and tortuosity (τ) and proposed the following Equation 5.2: 

2
f

D τ
εf =                                                   (5.2) 

   
Equation 5.2 can be further simplified by approximating the tortuosity as the inverse of the 

porosity (Zhang and Bishop, 1994b) resulting in 

  

  3
fD εf =                                                   (5.3) 

 

To be able to use Equation 5.3 by using results from this study, the biofilm porosity was 

approximated from the measured biofilm density.  The results of simulated porosities along 

the biofilm depth are illustrated in Figures 5.11 and 5.12 for BDHS and FDHS systems, 

respectively.         
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Figure 5.11  Simulated biofilm porosity of BDHS system along the biofilm depth 
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Figure 5.12  Simulated biofilm porosity of FDHS system along the biofilm depth 
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And the average value porosity values of two DHS biofilms are shown in Table 5.5.  Results 

show that porosity decreased along the biofilm depth while the density was increased.  The 

biofilm porosities changed from 100% to 51% and 100% to 67% in the top biofilm layer of 

BDHS and FDHS systems, respectively.  This shows that biofilm porosities for almost all 

segments of FDHS system were higher than BDHS system.   

 

Table 5.5 Simulated average porosities (εf

Parameters 

) in each segment of FDHS and BDHS systems  

εf 

Segment 1 Segment 2 Segment 3 Segment 4 

FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS 

Average f 0.73 D 0.62 0.84 0.69 0.83 0.67 0.81 0.69 

S.D. 0.06 0.13 0.04 0.07 0.06 0.10 0.07 0.08 

  

. 

Moreover, the results showed that the biofilm became denser and porosity decreased along 

the biofilm depth.  Simulated trends were observed past studies, by the Zhang and Bishop 

(1994); Roger et al. (1996); Zhang and Bishop (2001) and Laspidou and Rittmann (2004b).  

The biofilm porosity is a parameter to describe the internal mass transfer efficiency.  Several 

researchers suggested that high biofilm cavity provide an explanation for biofilm sloughing 

(Rittmann and McCatry, 2001; Zhang and Bishop, 2001; Horn and Morgenroth, 2006 and 

Laspidou and Rittmann, 2004b).  However, the experimental results showed that the value 

of SS effluent in FDHS system was lower than BDHS system (Section 4.6.2).  This can 

explained by most of fungi were filamentous structure that provides greater aggregate and 

adhesion that act in same manner as the EPS matrix (Guest and Smith, 2002). 
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5.3 Model Validation  

Validity of the UMCCA model application was carried out by company the 

simulated results with the experimental data from two previous studies: Bishop et al. (1995) 

and Zhang and Bishop (2001) and simulated data of Laspidou and Rittmann (2004b). 

5.3.1 Comparison of the UMCCA Model Results with Laspidou and Rittmann 

(2004b) Study   

For the validation of the algorithm to solve the equations of UMCCA model, 

the simulated program was run with the initial conditions of Laspidou and Rittmann 

(2004b).  In this part, we present the results at the end of simulation run for six variables: S, 

UAP, BAP, Xa, Xres

 .          

 and EPS by using standard parameter values for UMCCA model 

(standard case).  For standard case, the elapsed time was 24.5 days (bioages).  Figure 5.13 

shows how the six parameters of biofilm components varied on average along the depth of 

the biofilm that appear to be similar to the trends of Laspidou and Rittmann (2004b) study, 

in Figure 5.14.  Table 5.6 illustrates the comparison range values (lowest and highest) for 

the whole biofilm and total average, or the average of all values in every biofilm 

compartment.  The experiment was evaluated by computing the average values and standard 

deviations for each row and each column.  As a measure of heterogeneity, Table 5.10 

presents the standard deviations (σ) of the row and column averages.  Since some average 

values are much smaller than others, we also present the values of s as percentages of the 

mean value, which makes the standard deviations directly comparable.                    
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Figure 5.13  Simulated profiles of  six biofilm components along the biofilm depth using  

 parameter values of  the UMCCA model presented in this study 

                       (termination time = 24.5 days) 
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Figure 5.14  Simulated profiles of six biofilm components along the biofilm depth by 

                           Laspidou and Rittmann (2004b) study (termination time=24.5 days) 

 

 

 

 



Table 5.6  The comparison of the variables range for whole biofilm depth and the average values from the model output with Laspidou and 

Rittmann (2004b) results 

Variables 
Range of values Total average Average σ by row % of average value by 

row Average σ by column % of average value by 
column 

A B A B A B A B A B A B 

S 0.1890-1 0.1972-1 0.3479 0.3629 0.0034 0.0035 0.98 0.96 0.2130 0.2312 61.2 63.7 

X 0-0.7537 a 0-0.6386 0.2430 0.1983 0.0508 0.0414 20.9 20.8 0.2125 0.1553 87.4 78.3 

X 0-0.4887 res 0-0.4488 0.2299 0.2111 0.0260 0.0239 11.3 10.3 0.1322 0.1165 57.5 55.2 

EPS 0-0.1553 0-0.1236 0.0652 0.0519 0.0134 0.0107 20.6 16.4 0.0402 0.0345 61.7 67.2 

UAP 0-0.0131 0-0.0124 0.0109 0.0103 1.85×10 1.74×10-5 0.17 -5 0.16 0.0034 3.32×10 31.2 -3 32.3 

BAP 0-1.3×10 0-1.3×10-4 9.94×10-4 9.89×10-5 2.50×10-5 2.48×10-7 0.25 -7 0.25 3.85×10 3.83×10-5 38.7 -3 38.9 

CompDen 
(gCODx

0-131.4 /L) 0-124.6 80.6 76.4 11.42 10.82 14.2 14.1 23.54 23.8 29.2 31.2 

 
Remark: A is output data from the application of Laspidou and Rittmann (2004b) study (termination time = 24.5 days) 

       B is output data of our program following the application of Laspidou and Rittmann (2004), (termination time = 24.5 days) 
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5.4.2 Comparison of the Simulated Biofilm Compositions and Density with 

some Previous Studies 

Bishop et al. (1995) and Zhang and Bishop (2001) used laboratory-scale 

rotating drum biofilm reactors with the working volumes of 954 mL to develop their 

biofilms.  The outer cylinder of each reactor had removable strips wrapped with polyolefin 

shrink film, offering a surface for the growth of biofilms that could be sampled easily.  

Influent COD concentrations were 350 and 700 mg/L.  The effluent COD concentrations 

were usually higher than 30 mg/L, with bulk DO in the range of 0.5–2.0 mg/L.  They used a 

microtome to slice the biofilm into layer samples with a thickness of 10–20 µm.  This 

enabled them to measure the density of the biofilm for different distances from the 

substratum.  The results represented by the model with the experimental data of Bishop et 

al. (1995) can be compared by computing the average composite density in layers of 

different distances from the substratum.  Also, simulated dynamics of biofilm components 

(S and Xa) were compared with the experimental study of Zhang and Bishop (2001).  Since 

the biofilms assayed by Zhang and Bishop (2001) were much thicker than the ones included 

in this modeling study here, they surely had an anaerobic sub-layer through much of the 

bottom of the biofilm.  This anaerobic sub-layer supported the metabolism and 

accumulation of fermenting bacteria, something that the UMCCA model does not include.  

Therefore, we cannot directly compare the viable biomass values in this study with those of 

Zhang and Bishop (2001).  However, Laspidou and Rittmann (2004b) suggested the 

UMCCA model can be describes the trends of biofilm components that included anaerobic 

sub-layer (Zhang and Bishop, 1994a).  To simulate the experimental conditions, the 

UMCCA model was ran by using the set of parameters in Table 5.7.  The microbial kinetic 

parameters, also used in the case of Laspidou and Rittmann (2004a), are appropriate, since 

they are typical values of heterotrophic biofilms.  Three variables differ from the standard 

case.  The bulk substrate concentrations Smax and O2,max were reduced to 30 mg CODs/L and 
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2.0 mg DO/L, respectively, to match the experimental conditions in Bishop et al. (1995) and 

Zhang and Bishop (2001).  The decay rate (b) was set at 0.2/day, a value typical for aerobic 

heterotrophs in environmental biotechnology (Rittmann and McCarty, 2001). 

   
Table 5.7  Parameters values used in the UMCCA model to simulate the experiments of    

                  Bishop et al. (1995) and Zhang and Bishop (2001) 

Parameters Values Parameters Values 

Ds 1.38×10-4 m2
sq̂/day  28.5 mgCODs/L-day 

S 350 mgmax s Ks /L 20 mgCODs/L 
uap 500 mgCODmax p uapq̂/L  1.8 mgCODp/mgCODx-day 
bap 50 mgCODmax p K/L 100 mgCODUAP p/L 
x 70 gCODa,max x bapq̂/L  0.1 mgCODp/mgCODx-day 
eps 200 gCODmax x K/L 85 mgCODBAP p/L 
x 220 gCODres,max x k1 /L 0.05 mgCODp/mgCODs 
O 2.0 mg2,max O2 k/L 0.18 mgCODEPS p/mgCODs 
Y 0.34 mgs x/mg ks 0.17/day hyd 
Y 0.45 mgp x/mg λ p 0.005/m 
b 0.2/day η 0.0315/h 
b 0.15/day det B 0.9820 
f 0.8 d   

 

   

(i) Substrate (S) 

Zhang and Bishop (2001) was study on the spatial distribution of the 

soluble COD (SCOD) concentration along the biofilm depth.  A layered biofilm sample was 

well mixed by applying the washing and stripping steps, was steamed in an autoclave at 

80ºC under 1 bar pressure for 10 min and then centrifuged while still hot at 8,000g for 10 

min.  Result shows simulated S are similar trend that observed for the SCOD profile 

throughout the biofilm depth by Zhang and Bishop (2001) that illustrate in Figure 5.15.  The 
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variance of simulated S and experimental data of Zhang and Bishop (2001) was statistically 

compared as details in Table 5.8.            
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Figure 5.15  Modeling results for SCOD profile throughout the biofilm depth and  

                              experimental data of Zhang and Bishop (2001) for the 1,420 µm  

                              of thickness layer 

   

From statistical analysis (independent samples t test), it was found the variance of two 

groups, simulated and the experimental study of Zhang and Bishop (2001) was equal.  

Therefore, the UMCCA model can be used to predict the trend of SCOD profile throughout 

the biofilm depth.   



Table 5.8  The group statistics and independent samples t test of simulated and experimental data of Zhang and Bishop (2001)  

                  for original substrate 

Group Statistics 

Study Cases N Mean Std. Deviation Std. Error Mean 

S 
             The UMCCA Model  

          Zhang and Bishop (2001) 6 
46 

0.48000 
0.37266 

0.273642 
0.232307 

0.111714 
0.034252 

 
Independent Sample 

 

Levene’s Test for 
Equality of Variances t-test for Equality of Mean 

F Sig. T df Sig.  
(2-tialed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence Interval of 
the Difference 

Lower Upper 

S      Equal variances        
        assumed 
        Equal variances 
        not assumed 

0.076 
 
 
 

0.784 
 
 
 

1.044 
 

0.919 
 

50 
 

5.978 
 

0.301 
 

0.394 
 

0.107340 
 

0.107340 
  

0.102770 
 

0.116847 
 

-0.099080 
 

-0.178825 
 

0.313759 
 

0.393505 
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(ii) Active Biomass (Xa

Zhang and Bishop (2001) presented data on the active biomass 

concentration throughout the biofilm depth.  To find the viable biomass within the biofilm, 

they measured lipid phosphate concentrations within the biofilm using phospholipids as a 

predictor of viable biomass.  Lipid phosphate can occur inside living cells, this study 

interpret that the ‘‘viable’’ biomass measured by Zhang and Bishop (2001) is most like 

active biomass in the UMCAA model. The trends of the UMCCA model describes for 

active biomass are similar to those observed for ‘‘viable’’ biomass by Zhang and Bishop 

(2001) that illustrate in Figure 5.16.  The average active biomass of simulated and 

experimental data of Zhang and Bishop (2001) was statistically compared as details in Table 

5.9.  From statistical analysis (independent samples t test), it was found the variance of two 

groups, simulated and the experimental study of Zhang and Bishop (2001) was equal.   

)  
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Figure 5.16  Modeling results for active biomass profile throughout the biofilm depth and  

                       experimental data of Zhang and Bishop (2001) for the 1,420 µm  

                       of thickness layer 



Table 5.9  The group statistics and independent samples t test of simulated and experimental data of Zhang and Bishop (2001) for active biomass 

Group Statistics 

Study Cases N Mean Std. Deviation Std. Error Mean 

Xa 
             The UMCCA Model  

        Zhang and Bishop (2001) 5 
21 

.5800 

.4652 
.36763 
.38583 

.16441 

.08420 

 
Independent Sample 

 

Levene’s Test for 
Equality of Variances t-test for Equality of Mean 

F Sig. t df Sig.  
(2-tialed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence Interval 
of the Difference 

Lower Upper 

Xa   Equal variances        
        assumed 
        Equal variances 
        not assumed 

1.343 
 
 
 

.258 
 
 
 

.602 
 

.621 
 

24 
 

6.287 
 

.553 
 

.556 
 

.11476 
 

.11476 
 

.19052 
 

.18471 
 

-.27844 
 

-.33226 
 

.50797 
 

.56179 
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Therefore, the UMCCA model can be used to predict the trend of active biomass throughout 

the biofilm depth.   

(iii) Composite Density  

In his section, the UMCCA model was solved for the set parameters 

shown in Table 5.7.  This solution is used to evaluate how well the model can describe 

experimental results (Bishop et al., 1995) and illustrate the dynamics of biofilm density 

along the biofilm depth using the micro slice technique.  The average composite density 

values produced by the UMCCA model match the trends of the measured density 

distribution very well (Figures 5.17 and Figure 5.18).  The first set of data (●) (Bishop et al., 

1995) was obtained from biofilms of thicknesses between 52 and 130 µm, and the 

experimental values follow the model outputs for the thicknesses in that range (64 and 96 

µm).   
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Figure 5.17  Modeling results for composite density and experimental data of  

         Bishop et al. (1995) for the 52-130 µm of thickness layer 
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Figure 5.18  Modeling results composite density and experimental data of  

                 Bishop et al. (1995) for the 130-240 µm of thickness layer 

      

The other data set (o), which was obtained with biofilms 130–240 µm thick, lies above the 

first data set and matches well to the modeling results for 164 µm and 200 µm.  The 

modeling curve for the highest thickness (280 µm) lies above the second data set, as we 

would expect, since that thickness is outside the data range. 

For all curves and data sets, average biofilm densities in the bottom layers are 5–10 

times higher than those in the top layers.  This happens because the bottom layers have a 

biofilm that is much ‘‘older’’ than the ones in the top.  A large bioage leads to the bottom 

layers having a consolidation ratio (Uc) much larger than the younger top layers, and, as a 

result, being packed more densely.  In addition, the bottom layers have more time to 

accumulate inert biomass, with a higher maximum density, which also contributes to the 

higher composite density near the substratum.  The top layers, which are ‘‘young’’ biofilms, 

have a small consolidation factor, are mostly active biomass and EPS, and remain loosely 

packed and fluffy.  The average biofilm density of simulated and experimental data of 
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Bishop et al. (1995) was statistically compared as details in Tables 5.10 and 5.11.  From 

statistical analysis (ANOVA), it was found the average biofilm density in the study of 

Bishop et al. (1995) with respect to simulated density were not different for all experimental 

data in case of the thicknesses in range of 64-96 µm and 130-240 µm.  Therefore, the 

UMCCA model can be used to predict the density in biofilm wastewater treatment.   

     
5.5 Summary 

The aims of mathematical modeling of biofilm composition and density dynamics 

study were to (i) investigated the spatial distribution of biofilm components throughout the 

biofilm depth, (ii) to computed a “composite density” or the density that includes active 

biomass (Xa), inert biomass (Xres) and extracellular polymeric substance (EPS) using 

Unified Multiple Component Cellular Automotan (UMCCA) model and (iii) evaluated the 

biofilm mass transport through its density provide an empirical relationship between relative 

diffusivity (fD) and biofilm density (ρ) and approximated the porosity that correlated with 

the factor fD 

5.5.1 The UMCCA Model  

(Horn and Morgenroth, 2006).  

All outputs of the UMCCA model showed five general trends.  First, the 

concentration profiles for the two soluble microbial products are opposite the profile for 

original substrate, since they are produced in the biofilm and must diffuse out the top 

surface.  Second, the top of the biofilm is dominated by active biomass and EPS, while the 

bottom is dominated by residual inert biomass.  Within the top layers, active biomass has a 

much higher concentration than EPS.  Third, the top of all biofilms is quite ‘‘fluffy,’’ since 

the newly synthesized biomass has not had time to fill in the top compartments and 

consolidate.  Fourth, the peak of the composite density does not correspond to the peak of 

active biomass.   

 



Table 5.10  Statistical analysis of biofilm density through the model validation within the biofilm thickness 52-130 µm (Bishop et al., 1995) 

ANOVA 

Source Sum of Squares df Mean Square F Sig. 

Between Group 2173.823 2 1086.912 
 

790.767 
 

1.375 
 
 

.265 
 
 Within Group 30839.926 39 

Total 33013.750 41 

 
Multiple Comparisons 

Dependent Variable: Density 

LSD 

(I) Case Study (J) Case Study Mean Difference 
(I-J) Std. Error Sig. 

95% Conference Interval 

Lower Bound Upper Bound 

Bishop experimental 
Model Output @ 64 µm 8.964 10.629 .404 -12.53 30.46 

Model Output @ 96 µm -8.657 10.629 .420 -30.16 12.84 

Model Output @ 64 µm 
Bishop experimental -8.964 10.629 .404 -30.46 12.53 

Model Output @ 96 µm -17.621 10.629 .105 -39.12 3.88 

Model Output @ 96 µm 
Bishop experimental 8.657 10.629 .420 -12.84 30.16 

Model Output @ 64 µm 17.621 10.629 .105 -3.88 39.12 



Table 5.11  Statistical analysis of biofilm density through the model validation within the biofilm thickness 130-240 µm (Bishop et al.,  1995) 

ANOVA 

Source Sum of Squares df Mean Square F Sig. 

Between Group 3038.559 2 1519.279 
 

1155.564 
 

1.315 
 
 

.278 
 
 Within Group 55467.088 48 

Total 58505.647 50 
 
Multiple Comparisons 

Dependent Variable: Density 

LSD 

(I) Case Study (J) Case Study Mean Difference 
(I-J) Std. Error Sig. 95% Conference Interval 

Lower Bound Upper Bound 

Bishop experimental 
Model Output @ 164 µm -6.97059 11.65971 .553 -30.4140 16.4728 

Model Output @ 200 µm -18.70588 11.65971 .115 -42.1493 4.7375 

Model Output @ 164 µm 
Bishop experimental 6.97059 6.97059 .553 -16.4728 30.4140 

Model Output @ 200 µm -11.73529 11.65971 .319 -35.1787 11.7081 

Model Output @ 200 µm 
Bishop experimental 18.70588 11.65971 .115 -4.7375 42.1493 

Model Output @ 164 µm 11.73529 11.65971 .319 -11.7081 35.1787 
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Finally, the biomass concentration has considerable local heterogeneity in the vertical and 

later a direction, even when the soluble species have generally flat profiles that vary only in 

the vertical direction. 

All results indicated that BDHS biofilms were denser than FDHS biofilms.  

This can be explained by the biomass decay rates (kd) of FHDS system which were lower 

than BDHS system.  For segment 1, BDHS system had the highest density under low 

dissolved oxygen concentrations (the value about zero), in such condition active biomass 

and EPS growth might have slowed down significantly due to the low dissolved oxygen 

concentration. As a result, the biofilm grew very slowly, while accumulation of residual 

dead biomass proceeded even in the absence of oxygen, making the biofilm aged and dense.  

And, in condition of the substrate concentration was near and below Ks

5.5.2 Mass Transport Approach 

 or lower dissolved-

oxygen concentration promotes the formation of the cluster-and-channel structure in two 

DHS biofilms.  A high specific detachment rate also favors the cluster-and-channel structure 

and maintains relatively open channels near the substratum.  The high surface-detachment 

rate accentuates the growth-rate benefit for a protruding cluster.  It also keeps the biofilm 

less dense overall, but with a lower proportion of residual inert biomass. 

Mass transport in biofilms is influenced by the biofilm structure which in turn 

is influenced by the local availability of substrate.  Solute transport in biofilms is the result 

of diffusion in the denser aggregates and potentially convective transport within pores and 

water channels.  Diffusivity has been shown to dominate mass transport in many biofilm 

systems (Horn and Morgenroth, 2006).  Moreover, biofilm density and depth are the main 

design parameters used to evaluate substrate consumption rate in a biofilm. 

(i) Relative Diffusivity (fD

Results shown the f

) 

D values are opposite trends of density.  The top, 

where the biofilm was young and irregular, had high fD values that causes of small 
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composite density.  Also fD values of all segments of FDHS system were higher than BDHS 

system.  This study would consider the fD that depends on the biofilm density and its 

compositions.  The results show that the fD

(ii) Biofilm Porosity (ε) 

 for each segment of two DHS systems decreased 

with biofilm depth due to the amount of biomass. 

 Results show porosity decrease belong the biofilm depth or the density 

was increased.  The biofilm porosities change from 100% to 51% and 100% to 67% in the 

top biofilm layer of BDHS and FDHS systems, respectively.  These show most of all 

biofilm porosities of FDHS system are higher than BDHS system.  Moreover, the results 

show that the biofilm becomes denser and porosity was decrease along the biofilm depth.  

Although, the biofilm porosity is a parameter to describes the internal mass transfer 

efficiency.  Several researchers suggested that high biofilm cavity provide an explanation 

for biofilm sloughing. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 
6.1 Conclusions 

This study investigated both of fungal and bacterial downflow hanging sponge 

systems as a post treatment of UASB effluent of a tapioca starch wastewater by 

experimental study and mathematical modeling for evaluated the on biofilm composition 

and density dynamics.   

6.1.1 Experimental Results 

The overall experimental results show two DHS systems viable and 

economic treatment method as it ensures low investment and running costs, operational 

simplicity.  Cost is reduced as there was no need for aeration, cutting down the expenses 

associated with aerating device, their operation, maintenance or replacement.  Various 

aspects of the bacterial downflow hanging sponge (BDHS) and fungal downflow hanging 

sponge (FDHS) systems had been elaborated in this study were considered into five parts 

namely, (1) treatment efficiencies and suitable operating conditions; (2) treatment 

mechanisms; (3) biokinetic parameters and (4) sludge characteristics.  

(1) Treatment Efficiencies and Suitable Operating Conditions 

• The dissolved oxygen (DO) concentration increased steadily 

attaining the values of about 5.0 mg/L in the system.  Two DHS systems clearly 

demonstrated the advantage of needlessness of external aeration for RUN II and RUN III 

operating conditions because of the DO concentration in recirculation flows.  However, In 

RUN I, DO concentrations were low in the first and second segments of BDHS system.  

This suggests that oxygen utilization of bacteria was higher than fungi.   
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• High TSS removal efficiencies of FDHS systems were about 

91%, 90% and 88% during RUN I, RUN II and RUN III, respectively.  In BDHS system, 

the TSS removal efficiency was lower than FDHS system with amounted of 72%, 89% and 

76% in RUN I, RUN II and RUN III, respectively. 

• The overall organic removal performance of the two DHS 

systems during the whole experimental period.  In RUN I, the organic loading rate (OLR) 

in inflows of DHS systems were in the range of 1.0-1.1 kgTBOD/m3-d which results of the 

overall TBOD removal efficiency reached about 82-83% in both BDHS and FDHS 

systems.  The most of TBOD were removed in the first segment of FDHS system (about 

70% of TBOD5 removed).  But the BOD was removed gradually in all 4 segments of 

BDHS system.  In RUN II, OLR in DHS remained the same as in RUN I, but the hydraulic 

loading rate (HLR) was increased from 3.5 m3/m3
Sponge-d to 25.6 m3/m3

Sponge-d.  Organic 

removal improved with the efficiencies for TBOD reaching up to 96% and 94% in FDHS 

and BDHS systems, respectively.  And in RUN III, two DHS systems operated with OLR 

in FDHS and BDHS systems were about 1.60 kgTBOD/m3-d and 3.63 kgTBOD/m3

• Nitrogen was not removed in FDHS system during three runs.  

BDHS system received total nitrogen loading rate (NLR) about 0.61, 2.1 and 9.97 kg-

N/m3-d during RUN I, RUN II and RUN III, respectively.  Under these conditions, the total 

nitrogen removal efficiencies were about 68%, 59% and 56%, respectively.  The nitrogen 

removal decreased during RUN II and RUN III that shear force of water flow amplifies as 

-d, 

respectively.  The difference OLR of two systems was causing of the remained TBOD in 

BDHS effluent was higher than FDHS system.  The HLR in two DHS systems remained 

the same as in RUN II.  Organic removal improved with the efficiencies for TBOD about 

95% and 77% in FDHS and BDHS systems, respectively.   
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HLR increases.  This may lead to the disruption of the retained sludge inside the sponge of 

DHS, finally raising the value of SS in the effluents.   

(2) Treatment Mechanisms 

• Results of biodegradation determination showed that the inert 

fraction of organic matter has an impact on BDHS system removal efficiencies.  It also 

found that the BPCOD in BDHS effluent was higher than FDHS system in every segment.  

Thus it led to strong limiting process in substrate biodegradation by aerobic heterotrophs 

and denitrifying bacteria in BDHS system.  However, the FDHS system achieved an almost 

complete removal of BPCOD fraction in the final effluent.  This indicated the potential 

advantage of fungi over bacteria in terms of organic removal rate.   

• The results of COD and nitrogen mass balances indicated that the 

highest COD removed was found in segment 1 of FDHS system which included the 

electron transferred from the organic material to electron acceptor (COD oxidized) about 

11.6 g/d and COD loss, 18.9 g/d.  And COD loss in segment 4 of two DHS systems were to 

be in deficit because oxygen utilization (COD oxidized) was higher than mass flow of COD 

removal (MCOD,inf - MCOD,eff).  

• The identification dominant cultures in two DHS systems 

appeared that nitrosomonas and nitrobacter were dominant cultures in segment 2, 3 and 4 

of the BDHS biomass.  Cell concentrations of both nitrifying bacteria were in good 

agreement with the magnitudes of ammonia-oxidizing and nitrite-oxidizing activities 

evaluated from those segments.  The three dominant fungal genuses in FDHS system were 

included of Trichoderma, Aspergillus and Candida.  As presented by several researchers, 

these fungal genuses had a wide range of enzymes, and were capable of metabolizing 

complex mixtures of organic compounds such as particulate matters and dead cells. 

This caused of the sludge was utilized as a carbon sources 

during endogenous respiration in two DHS systems.   
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(3) Biokinetic Parameters 

Results of biokinetic parameters showed that the fungi-based DHS 

system had the higher potential for organic removal than BDHS system treating the UASB 

effluent of tapioca starch wastewater.  Moreover, it can also be observed that the yield (Y) 

of the fungal culture is lower than that of the bacterial culture.  This indicates that lower 

excess sludge would be produced from the fungal system compared to the bacterial system 

for the same substrate quantity, thus having the advantage of less sludge handling.  

(4) Sludge Characteristics 

The good performance of organic removal in two runs can be 

attributed to a large amount of retained biomass in sponge media of FDHS and BDHS 

systems.  The values are 5-20 times higher than that of activated sludge system and 

trickling filter treating domestic sewage.  However, the FDHS achieved higher removal rate 

than bacteria.  This can explain by the higher ratios of viable cells to total biomass of all 

fungal sludge than bacterial sludge.  Moreover, the results suggested that the highly bound 

EPS accumulated in the sludge may have the negative effect on the bacteria consumption 

rate but fungal sludge (FDHS) that seems to be no effects. 

6.1.2 Mathematical Modeling of Biofilm Compositions and Density Dynamics 

Application of the Unified Multi-component cellular automaton (UMCCA) 

model for quantitative simulation of the biofilm’s composite density for three biofilm 

components: active bacteria, inert or dead biomass, and extracellular polymeric substances.  

The model also described the concentrations of three soluble organic components (soluble 

substrate and two types of soluble microbial products).  All simulated results of the 

UMCCA model were shown in five trends.   
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(1) The concentration profiles for the two soluble microbial products are 

opposite the profile, for original substrate, since they were produced in the biofilm and 

must diffuse out the top surface.   

(2) The top of the biofilm was dominated by active biomass and EPS, 

while the bottom was dominated by residual inert biomass.  Within the top layers, active 

biomass had a much higher concentration than EPS.   

(3) The top of all biofilms was quite ‘‘fluffy,’’ since the newly synthesized 

biomass has not had time to fill in the top compartments and consolidate.  

(4) The peak of the composite density did not correspond to the peak of 

active biomass.   

(5) Finally, the biomass concentration had considerable local 

heterogeneity in the vertical and later a direction, even when the soluble species have 

generally flat profiles that vary only in the vertical direction. 

Moreover, all simulated results indicated that BDHS biofilms were denser than 

FDHS biofilms.  This can be explained by the biomass decay rates (kd) of FHDS system 

which were lower than BDHS system.  The relative diffusivity (fD) values were opposite 

trends of density.  The top, where the biofilm was young and irregular, had high fD values 

that causes of small composite density.  Also fD values of all segments of FDHS system 

were higher than BDHS system.  Furthermore, results show porosity decrease belong the 

biofilm depth or the density was increased.   

 

6.2     Recommendations 

Based on the literatures and results of this study obtained, several recommendations 

for further research are suggested as follow: 
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6.2.1 The experimental results suggested that FDHS system had high capable in 

TSS and organic removal but not effective to remove nitrogen.  However, BDHS system is 

effective in nitrification process but most of the BDHS segment system will need an 

external carbon source to completed denitrification.  In order to achieve sufficiently organic 

and nitrogen removal efficiency in tapioca starch wastewater that completed with long 

biomass retention time, high organic and hydraulic loading rate operation, high process 

stability, oxygen requirement and low production of waste sludge.  Thus, it is strongly 

recommended to apply DHS system in treating tapioca starch wastewater by using UASB 

reactor and two post treatments of FDHS and BDHS systems, respectively, the schematic 

diagram was showed in Figure 6.1.  FDHS system offers an attractive process for remove 

organic contents.  They are capable of metabolizing complex mixtures of organic 

compounds such as particulate matters and dead cells.  Filamentous fungi formed the loose 

biofilm that presented sufficient high substrate and oxygen mass transport.  However, 

nitrogen concentration still high contained in FDHS effluents.  Thus, BDHS system should 

be applied to polish up the nitrogen nutrient before discharge to receiving water.  In 

addition, most of BDHS segment system will need an external carbon source to achieve 

complete denitrification and establishment of a cost-efficient treatment system.   Raw 

tapioca starch wastewater is too high COD/N ratio that suitable for used to improve carbon 

source in inflows of BDHS system.    
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Figure 6.1  The schematic diagram of recommendation of two DHS systems  

                               for tapioca starch industry   

   

 

6.2.2 Several literatures suggested that bacterial and fungal sludge have capable 

for treating acute and chronic heavy metal stress (Section 2.9.5).  The results from such 

studies might provide information on quantitative toxicity evaluation of the heavy metals 

for both fungal and bacterial treatment systems.  The mechanisms of heavy metal removal 

by fungal and bacterial sludge may also be investigated. 

6.2.3 The application of fungal downflow hanging sponge (DHS) system 

treatment for high strength hazardous organic wastewater may be a feasible biological 

approach such as toxic or chemical wastes, pesticides, herbicides, phenolic derivatives, 

aromatic compounds, cyanide, and tannery wastewater. 

6.2.4 The dynamic phenomenon investigation of specific activities of carbon, 

ammonia and nitrite oxidizers along the two DHS heights with the function of the C/N ratio 

in wastewater entering the biofilter. 



REFERENCES 

 
Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B. and Mehranian, M.  (2006). Empirical 

modeling loofa-immobilized Phanerochaete chrysoporium. Process Biochemistry.  

41: 1148-1154. 

Alam, M. Z., Fakhru-Razi, A., Abd-Aziz, S. and Molla, A. H.  (2003).  Optimization of 

compatible mixed cultures for liquid state bioconversion of municipal wastewater 

sludge.  Water, Air, and Soil Pollution.  149: 113-126. 

Amatya, P. L.  (1996).  Anaerobic Treatment of Tapioca Starch Industry Wastewater 

by Bench Scale Upflow Anaerobic Sludge Blanket (UASB) Reactor.  Master 

thesis. Asian Institute of Technology.  Bangkok, Thailand.     

Agrawal, L., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H. and Ohashi, A.  

(1997).  Treatment of raw sewage in a temperature climate using a UASB reactor 

and the hanging sponge cubes process.  Water Sci. and Technol.  36(6-7): 433-

440. 

Annachhatre A. P. and Amatya P. L.  (2000).  UASB Treatment of Tapioca Starch 

Wastewater.  J. Envi. Eng.  126(12): 1149-1152. 

Annachhatre A. P. and Amornkaew A.  (2001).  Upflow Anaerobic Sludge Blanket 

Treatment of Starch Wastewater Containing Cyanide.  Water Environmental 

Research.  73(5): 622-632.   

APHA, AWWA, WEF.  (2003).  Standard Methods for the Examination of Water and 

Wastewater.  20th

Araki, N., Ohashi, A., Mechadar, I. and Harada, H.  (1999).  Behaviors of nitrifiers in a 

novel biofilm reactor employing hanging sponge cubs as attachment site.   Water 

Sci. and Technol.  39(7): 23-31. 

 (ed).  Washington, DC, USA. 



 
 

214 
 

 

Barker, P. S. and Dold, P. L. (1995).  COD and nitrogen mass balances in activated sludge 

systems.  Water Research.  29(2): 633-643. 

Barana A. C. and Cereda M. P.  (2000).  Cassava Wastewater (Manipureira) Treatment 

Using a Two-phase Anaerobic Biodigestor.  Ciênc Technol Aliment [Online].  

20(2).   Available: http://www.scielo.br/scielo.php. 

Berry, D. R. (1998). Product and primary metabolism pathway.  Physiology of Industrial 

Fungi.  Backwell Scientific Pubblications. London, UK.  

Besemer, K., Singer, G., Limberger, R., Chlup, A.-K., Hochedlinger, G., Ho¨ dl, I., 

Baranyi, C., Battin, T.J. (2007). Biophysical controls on community succession in 

stream biofilms. Appl. Environ. Microbiol. 73 (15): 4966–4974. 

Blánquez, P., Caminal, G., Sarrá, M. and Vicent, T.  (2007).  The effect of HRT the 

decolorisation of the Grey Lanaset G textile dye by Trametes versicilor.  Chemical 

Engineering Journal.  126: 163-169.  

Bihan, Y. and Lessard, P. (2000). Monitoring biofilter clogging: biochemical characteristics 

of the biomass.  Water Research. 34(17): 4284-4294. 

Bishop, P. L., Zhang, T. C., Fu, Y. C. (1995).  Effect of biofilm structure, microbial 

distribution and mass transport on biodegradation processes.  Water Sci. Technol. 

31(1): 143-152.  

Boursier, H., Beline, F. and Paul, E.  (2005).  Piggery wastewater characterization for 

biological nitrogen removal process design.  Bioresource Technology.  96: 351-

358.  

Brauer, H.  (1991).  Growth of fungi and bacteria in the reciprocating jet bioreactor. 

Bioprocess Engineering.  6: 1-15. 

Busscher, H.J., van der Mei, H.C. (2006). Microbial adhesion in flow displacement 

systems. Clin. Microbiol. Rev. 19 (1): 127–141. 

http://www.scielo.br/scielo.php�


 
 

215 
 

 

Carvallo, L., Carrera, J. and Chamy, R. (2002). Nitrifying activity monitoring and kinetic 

parameters determination in a biofilm airlift reactor by respirometry.  Biotechnol. 

Lett.  24: 2063–2066.  

Cech J. S., Chudoba J. and Grau P.  (1984).  Determination of kinetic constants of activated 

sludge microorganisms.  Water. Sci. Tech. 17: 259-272. 

Chaiprasert, C., et.al.  (2003). Thai Biogas Plants High Rate Anaerobic Fixed Film 

Technology for Agroindustrial Wastewater.  The Award Contest of Best Program 

on New and Renewable Sources of Energy (Off-Grid) in Year 2003. Research and 

development cluster unit of waste utilization and management laboratory.  King 

Mongkut’s University of Technology Thonburi (KMUTT). Bangkok, Thailand.   

Chang, I.S., and Lee, C.H.  (1998).  Membrane filtration characteristics in membrane 

coupled activated sludge system-the effect of physiological states of activated 

sludge on membrane fouling.  Desalination.  120: 221-233. 

Chang, I., Gilbert, E. S., Eliashberg, N. and Keasling1, J. D.  (2003).  A three-dimensional, 

stochastic simulation of biofilm growth and transport-related factors that affect 

structure.  Microbiology.  149: 2859-2871. 

Chavalparit, O. and Ongwandee, M.  (2009).  Clean technology for the tapioca starch 

industry in Thailand.  Journal of Cleaner Production.  17(2): 105-110. 

Chea, K.J., Yim, S.K. and Choi, K. H.  (2004).  Application of a sponge media (BioCube) 

process for upgrading and expansion of existing caprolactam wastewater treatment 

plant for nitrogen removal.  International Conference on Wastewater Treatment 

for Nutrient Removal and Reuse 2004.  Phathumthanee, Thailand: Asian Institute 

of Technology. 

Chernicharo, C. A. L.  (2006).  Post-treatment options for the anaerobic treatment of 

domestic wastewater.  Environmental Science and Bio/Technology.  5:73–92. 



 
 

216 
 

 

Chuang, H., Ohashi, A., Imachi, H, Tandukar, M, Harada, H.  (2007).  Effective partial 

nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen 

condition.  Water Research.  41: 295-302. 

Chernicharo, C. A. L. and Nasciimento, M. C. P. (2001).  Fesibility of a pilot-scale 

UASB/tricking filter system for domestic sewage treatment.  Water Sci. and 

Technol.  44(4): 221-228. 

Confer, D. R. and Logan, B. E.  (1991).  Increased bacterial uptake of marcromolecular 

substrates with fluid shear.  Applied and Environmental Microbiology.  57(11): 

3093-3100.    

Confer, D. R. and Logan, B. E.  (1998).  Location of protein and polysaccharide hydrolytic 

activity in suspended and biofilm wastewater cultures.  Water Research.  32(1): 

31-38.     

Coulibaly, L., Gourène, G. and Agathos, N. S.  (2003).  Utilization of fungi for 

biotreatment of raw wastewaters A Review.  African Journal Biotechnology.  

2(12): 620-630. 

Dan, N.P.  (2001).  Biological Treatment of High Salinity Wastewater using Yeast and 

Bacterial System.  Ph. D. thesis, Asian Institute of Technology.  Pathumthani, 

Thailand.   

Dan, N. P., Visvanathan, C., Biswadeep Basu. (2003).  Comparative evaluation of yeast and 

bacterial treatment of high salinity wastewater based on biokinetic coefficients.  

Bioresource Technology.  87: 51-56. 

Deng, W., Zheng, P. and Chen, Z.  (2006).  Anaerobic digestion and post-treatment of 

swine wastewater using IC–SBR process with bypass of raw wastewater. Process of 

Biochemistry.  41: 965-969. 



 
 

217 
 

 

Dhouib, A., Aloui, F., Hamad, N. and Sayadi, S.  (2006).  Pilot-plant treatment of olive mill 

wastewater by Phanerochaete chrysorium coupled to anaerobic digestion and 

ultrafiltration.  Process Biochemistry.  41: 159-167. 

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers R. A. and Smith, F.  (1956).  

Colorimetric method for the determination of sugars and related substances.  

Analytical Chemistry.  28(3): 350-356. 

Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B., Loosdrecht, M. and 

Wanner, O. (2006).  Mathematical Modeling of Biofilms.  Scientific and 

Technical Report No. 18.  IWA Publishing. Hove, UK.     

Eding, E. H., Kamstra, A. J., Verreth, A. J., Huisman, E. A.,  and Klapwijk, A. (2006).  

Design and operation of nitrifying trickling filters in recirculating aquaculture: A 

review.  Aquacultural Engineering.  34: 234-260. 

Elmaleh S., Defrance M.B., Ghommidh C. and Navarro J.M.  (1996).  Technical note: 

Acidogenic effluents treatment in a yeast reactor.  Water Research.  30(10): 2526-

2529. 

Ekama G. A., Dold P. L. and Marais G. V. R.  (1986).  Procedures for determining influent 

COD fractions and the maximum specific growth rate of heterotrophs in activated 

sludge systems.  Water Sci. Tech.  18 (6): 91-114. 

Eusėbio, A. et. al.  (2007).  Characterization of the microbial communities in jet-loop 

(JACTO) reactors during aerobic olive oil wastewater treatment.  International 

Biodeterioration & Biodegradation.  59: 226-233.   

Falih, A. M. K., and Wainwright, M.  (1995).  Nitrification in vitro by a range of 

filamentous fungi and yeasts.  Lett. Appl. Microbiol.  21: 18–19. 



 
 

218 
 

 

Fakhru’l-Razi, A. and Molla, A. H.  (2007).  Enhancement of bioseparation and 

dewaterability of domestic wastewater sludge by fungal treated dewatered sludge.  

J. Hazardous Material.  147(1-2): 350-356.  

Fan, L-S., Leyva-Romos, R., Wisecarver, K. D. and Zehner, B. J. (1990).  Diffusion of 

phenol through a biofilm grown on activated carbon particles in a draft-tube three 

phase fluidized bed bioreactor.  Biotechnology and Bioengineering.  35: 279-286.   

Fu, Y. and Viraraghavan, T.  (2001).  Fungal decolorization of dye wastewater: a review.  

Bioresource Technology.  79. 251-262. 

Gao, D., Wen, X., Zeng, Y. and  Qian, Y.  (2006).  Decolourization of a textile-reactive dye 

with Phanerochaete chrysosporium incubated in different ways under non-sterile 

conditions.  Water Practice & Technology.  11(3):  

Geng, A. L., Lim, A. E., Soh, E. W., Zhao, B. and Leck, T. S.  (2004).  Physiological and 

Proteomic Analysis of EPS Production and Biofilm Formation for Phenol 

Degrading Bacterium.  Teylor & Francis Group.  ISBN 90 5809 653 X.  London.  

pp195-198.   

Geradi, M. H.  (2002).  Dissolved Oxygen.  Nitrification and denitrification in the 

activated sludge process.  Jonh Weiley & Sons, Inc., Publication, New York, 

pp103-108. 

Grady Jr C. P. L., Daigger, T. G., and Lim H. C. (1999).  Biological Wastewater 

Treatment.  Marcel Dekker Inc.  New York, USA.  

Grant, R. J., Daneill, T. J. and Betts, W. B. (2002). Isolation and identification of synthetic 

pyretroid-degrading bacteris.  J. App. Micro. 92: 534-540. 

Gonçalves, R. F., de Araújo, V. L. and Bof, V. S.  (1999).  Combining upflow anaerobic 

sludge blanket (UASB) reactors and submerged aerated biofilters for secondary 

domestic wastewater treatment.  Water Sci. and Technol. 40(8): 71-79. 



 
 

219 
 

 

Guest R. K. and Smith (2002).  A potential new role for fungi in a wastewater MBR 

biological nitrogen reduction system.  J. Environ. Sci.  1: 433-437. 

Hai, F. I., Yamamoto, K. and Fukushi, K.  (2006).  Development of a submerged membrane 

fungi reactor for textile wastewater treatment.  Desalination.  192: 315-322. 

Hein, P. G., Oanh, L. T. K., Viet, N. T. and Lettingga, G.  (1999).  Closed Wastewater 

System in the Tapioca Industry in Vietnam.  Water Sci and Technol.  39(5): 89-96.  

Heydom, A., Nielson, A. T., Hentzer, M., Stemberg, C., Givskov, M., Ersböll, B. K., and 

Molin, S. (2000).  Quantification of biofilm structure by the novel computer 

program COMSTAT.  Microbiology.  146: 2395-2407.  

Hinson, R. K., Kocher, W. M. (1996).  Model for effective diffusivities in aerobic biofilms.  

Journal of Environmental Engineering.  122(11): 1023-1030.  

Hirsch, P., Overrein, L., and Alexander, M.  (1961).  Formation of nitrite and nitrate by 

actinomycetes and fungi.  J. Bacteriol.  82: 442–448. 

Horn, H. and Morgenroth, E. (2006).  Transport of oxygen, sodium chloride, and sodium 

nitrate in biofilms.  Chemical Engineering Science.  61: 1347-1356.  

Hwang, S., Lin, C., Chen, I., Chen, J., Liu, L. and Dodds, W. K.  (2004).  Removal of 

multiple nitrogeneous wastes by Aspergillus niger in a continuous fixed-slab 

reactor.  Bioresource Technology.  93: 131-138.  

Jackson J. V. and Edwards V. H.  (1975).  Kinetics of substrate inhibition of exponential 

yeast growth.  Biotechnol. Bioeng.  17: 943-983. 

Jarusutthirak, C. and Amy, G. (2007).  Understanding soluble microbial products (SMP) as 

a component of effluent organic matter (EfOM).  (2007).  Water Research.  41: 

2787–2793. 



 
 

220 
 

 

Jasti, N., Khanal, S. K., Anthony, L. P. and Leeuwen, J.  (2006).  Fungal treatment of corn 

processing wastewater in an attached growth system.  Water Practice & 

Technology.  1(3): 1-8.   

Jin, B., Leeuwen, H. J., Patel, B., Doelle, H. W. and Yu, Q.  (1999).  Production of fungal 

protein and glucoamylase by Rhizopus oligosporus from starch processing 

wastewater.  Process Biochemistry.  34: 59-65.  

Juang, D. (2005).  Effects of synthetic polymer on the filamentous bacteria in activated 

sludge.  Bioresource Technology. 96(1): 31-40.     

Karim, M. I. A., and Sistrunk, W. A.  (1984).  Efficiency of selected strains of fungi in 

reducing chemical reducing chemical oxygen demand in wastewater from steam-

peeled potatoes.  Journal of Food Processing and Preservation.  8: 21 1-218. 

Kurakov, A. V., and Popov, A. I.  (1996).  Nitrifying activity and phytotoxicity of 

microscopic soil fungi.  Eurasian Soil Sci.  28: 73–84. 

Kwok, W.K., Picioreanu, C., Ong, S.L., van Loosdrecht, M.C.M., Ng, W.J., Heijnen, J.J. 

(1998). Influence of biomass production and detachment forces on biofilm 

structures in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 58 (4): 400–

407. 

Laspidou, C. Y. and Rittmann, B. E.  (2002a).  A unified theory for extracellular polymeric 

substances, soluble microbial products, and active and inert biomass.  Water 

Research.  36: 2711–2720. 

Laspidou, C. Y. and Rittmann, B. E.  (2002b).  Non-steady state modeling of extracellular 

polymeric substances, soluble microbial products, and active and  inert biomass.  

Water Research.  36: 1983–1992. 



 
 

221 
 

 

Laspidou, C. Y. (2003).  Modeling Heterogeneous Biofilms Including Active Biomass, 

Inert and Extracellular Polymeric Substances.  Ph. D. thesis.  Northwestern 

University.  Evanston, Illinois, USA.     

Laspidou, C. Y. and  Rittmann, B. E.  (2004a).  Modeling the development of biofilm 

density including active bacteria, inert biomass, and extracellular polymeric 

substances.  Water Research.  38: 3349–3361. 

Laspidou, C. Y. and Rittmann, B. E. (2004b).  Evaluating trends in biofilm densityusing the 

UMCCA model.  Water Research.  38: 3362–3372. 

Lee, M. W. and Park, J. M. (2007).  One-dimensional mixed-culture biofilm model 

considering different space occupancies of particulate components.  Water 

Research.  41: 4317-7328. 

Levenspiel, O. (1972).  Chemical Reaction Engineering.  2nd 

Machdar, I., Harada, H., Ohashi, A., Sekiguchi, Y., Okui, H. and Ueki, K.  (1997). A novel 

& cost effective sewage treatment system consisting of UASB pre treatment and 

edition.  John Wiley & Sons.  

Canada. 

Lettinga, G., and Hulshoff Pol, L. W.  (1991).  UASB process design, operation and 

economy.  Water Sci and Technol.  24: 87-107. 

Loosdrecht, M. C. M.,  Heijnen, J. J., Eberl, H., Kreft , J. and Picioreanu, C. (2002). 

Mathematical Modelling of Biofilm Structures.  Antonie van Leeuwenhoek. 81: 

245-256, Kluwer Academic Publishers. Netherlands 

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.  (1951).  Protein 

measurement with the Folin-Phenol reagents.  J. Biol. Chem.  193: 265–275. 

Liu, Y., Tay, J.-H. (2002). The essential role of hydrodynamic shear force in the formation 

of biofilm and granular sludge. Water Res. 36 (7): 1653–1665. 



 
 

222 
 

 

aerobic post treatment units for developing countries.  Water Sci. and Technol.  

36(12): 189-197. 

Machdar, I., Sekiguchi, Y., Sumino, H. and Harada, H.  (2000).  Combination of a UASB 

reactor and a curtain DHS reactor as cost effective sewage treatment system for 

developing countries.  Water Sci. and Technol.  42(3): 83-89. 

Mai, H. N. P., Duong, H. T., Trang, T. T. T., and Viet, N. T.  (2004).  Sustainable treatment 

of tapioca processing wastewater in South Vietnam.  International Conference on 

Wastewater Treatment for Nutrient Removal and Ruse. Asian Institute of 

Technology, Vol. 2.  Bangkok: Thailand. 

Mannan, S., Fakhu’l-Razi, A. and Alam, M. Z.  (2005).  Use of fungi improve 

bioconversion of activated sludge.  Water Research.  39: 2935-2943. 

Metcalf & Eddy Inc. (2003).  Wastewater Engineering.  Tchobanoglous and Burton 

(eds.).  McGraw-Hill, Inc., New York, USA. 

Molla, A. H., Fakhru’l-Razi, A., Abd-Aziz, S., Hanafi, M. M., Roychoudhury, P. K.,  

Alam, M. Z.  (2002).  A potential resource for bioconversion of domestic 

wastewater sludge.  Bioresource Technology.  85: 263–272 

Nakamura, Y., Sungusia, M. G., Sawada, T. and Kuwahara, M.  (1999).  Lignin-Degrading 

enzyme production by Bjerkandera adusta immobilized on polyurethane foam.  J. 

of Biosci. and Bioeng.  88(1): 41-47.  

Ohashi, A., Harada, H.  (1994).  Adhesion strength of biofilm developed in an attached 

growth reactor.  Water Sci. Technol.  29(10–11): 281–288. 

Ohashi, K., Hiroyuki, I., Harada, H. (2006).  Anaerobic/Aerobic Treatment of Actual Dye 

Wastewater Using System Combining UASB and DHS Reactors.  J. Japan Society 

on Water Environment [Online].  29(10): 613-620.  Available: 

http://sciencelinks.jp/j-east/article/200622/000020062206A09 



 
 

223 
 

 

21183.php 

Oliveira, M.A. Reis, E. and Nozaki, J.  (1999).  Biological treatment of wastewater from 

the cassava meal industry.  Environmental Research.  85: 177-183. 

O’Nill, C., Hawkes, F. R., Hawkes, D. L., Lourenço, N. D. Pinheiro, H. M. and Delée, W.  

(1999).  Colour in textile effluent-sources, measurement, discharge consents and 

simulation: a reviews.  J. Chem. Technol.  Biotecnol.  74: 1009-1018.    

Parker, D. S., Jacobs, T. Bower, E., Stowe, D. W. and Faemer, G. (1997). Maximizing 

trickling filter nitrification rates through biofilm control: Research review and full 

scale application. Wat. Sci. Tech. 36(1): 255-262. 

Plattes, M., Fiorelli, D., Gille, S., Girard, C., Henry, E., Minette, F., O’Nagy, O. and 

Schosseler, P. M. (2007). Modelling and dynamic simulation of a moving bed 

bioreactor using respirometry for the estimation of kinetic parameters.  Biochem. 

Eng. J.  33. 253–259. 

Pizarro, G. E., Teixeira, J., Sepúlveda, M. and Noguera, D. R.  (2005).  Bitwise 

implementation of a two-dimensional cellular automata biofilm model.  J. 

Computing in Civil Engineering.  19(3): 258-268.    

Picioreanu, C., Loosdrecht, M. C. M. and Heijnen, J. J. (1998a).  A new combined 

differential-discrete cellular automaton for growth in gel beads.  Biotechnology and 

Bioengineering. 57(6): 718-731. 

Picioreanu, C.,  van Loosdrecht, M. C. M. and Heijnen, J. J.  (1998b).  Mathematical 

modeling of biofilm structure with a hybrid differential-discrete cellular automaton 

approach.  Biotechnology and Bioengineering.  58(1): 101-116. 

Polprasert C. and Chatsangthai S. (1989).  Sulfide Production during Anaerobic Lagoon 

Treatment of Tapioca Wastewater.  Environmental International. 14: 563-567. 



 
 

224 
 

 

Pontes, P. P, Chernicharo, C. A. L, Frade, E. C. and Porto M. T. R. (2003).  Performance 

evaluation of an UASB reactor used for combined treatment of domestic sewage 

and excess aerobic sludge from a trickling filter. Water Sci. Technol. 48(6): 227–

234 

Quek, E., Ting, Y. and Tan, H. M.  (2006).  Rhodococcus sp. F92 immobilized on 

polyurethane foam shows ability to degrade various petroleum products.  

Bioresource Technology.  97: 32–38. 

Radwan, K. H. and Ramanujam, T. K. (1996).  Organic reduction of tapioca wastewater 

using modified RBC.  Bioproocess Engineering.  14: 125-129. 

Reampim, J.  (2002).  Kinetics of Tapioca Starch Wastewater Treatment Using 

Anaerobic Contact Process with Steel Plates.  M. S. thesis (ISBN 974-533-167-

8).  Suranaree University of Technology.  Nakhon Ratchasima, Thailand.   

 

Reuscchenbach, P., Pagga, U. and Strotmann, U. (2003).  A critical comparison of 

resiromeric biodegradation tests based on OECD 301 and related methods.  Wat. 

Res.  37(7): 1571-1582.  

Rickard, A.H., McBain, A.J., Stead, A.T., Gilbert, P., 2004. Shear rate moderates 

community diversity in freshwater biofilms. Appl. Environ. Microbiol. 70 (12): 

7426–7435. 

Riefler, R. G., Ahlfeld, D. P. and Smets, B. F. (1998).  Respirometric assay for biofilm 

kinetics estimation: parameter identifiability and retrievability.  Biotechnol. 

Bioeng. 57(1): 35–45. 

Rittmann, B. E. and McCarty, P. L.  (2001). Environmental Biotechnology: Principles 

and Applications.  McGraw-Hill. New York. USA.       



 
 

225 
 

 

Rochex, A., Godon, J., Bernet, N. and Escudié, R. (2008). Role of shear stress on 

composition, diversity and dynamics of biofilm bacterial communities.  Water Res. 

42: 4915-4922.  

Roh, S., Chum, Y. N., Nah, J., Shin, H. and Kim, S.  (2006).  Wastewater treatment by 

anaerobic digestion coupled with membrane processing.  J. Ind. Eng. Chem.  

12(3): 489-493. 

Rukvichitkul, T. (2002).  Treatment of Tapioca Starch Wastewater Using Anaerobic 

Attached Growth Pond.  M. S. thesis (ISBN 974-533-164-3). Suranaree University 

of Technology.  Bangkok, Thailand.   

Seejuhn, R.  (2002).  Waste Audit in a Tapioca Starch Milk Processing Factory. M. S. 

thesis.  Asian Institute of Technology.  Pathunthani, Thailand.      

Şeker, Ş., Beyenal, H. and Tanyolaç, A. (1995).  The effects of biofilm thickness on biofilm 

density and substrate consumption rate in a differential fluidized bed biofilm reactor 

(DFBBR).  Journal of Biotechnology.  41:39-47.     

Shoun, H., and Tanimoto, T.  (1991).  Denitrification by the fungus Fusarium oxysporum 

and involvement of cytochrome P-450 in the respiratory nitrite reduction.  J. Biol. 

Chem.  266: 11078–11082. 

Stare, A.,  Vrečko, D., Hvala, N. and Strmčnik, S. (2007). Comparison of control strategies 

for nitrogen removal in an activated sludge process in terms of operating costs: A 

simulation study.  Water Research. 41(9): 2004-2014. 

Stewart, P. S., (1998).  A review of experimental measurements of effective diffusive 

permeability and effective diffusion coefficients in biofilms.  Biotechnology and 

Bioengineering.  59(3): 261-272.  

Supawech, S. and Vorawichit, M. (1990). Basic Bacteriology.  Siriyod Publication.  

Bangkok, Thailand.  



 
 

226 
 

 

Tandukar, M., Uemura, S., Machdar, I., Ohashi, A. and Harada, H.  (2005).  A low cost 

municipal sewage treatment system with a combination of UASB and the “forth 

generation” downflow hanging sponge reactors.  Water Sci. and Technol.  52(1-2): 

323-329. 

Tandukar, M., Mechdar, I., Uemura, S., Ohashi, A. and Harada, H.  (2006a).  Potential of a 

novel sewage treatment system for developing countries: long term evaluation.  J. 

Environ. Eng.  32(2): 166-172. 

Tandukar, M., Uemura, S., Ohashi, A. and Harada, H.  (2006b).  Combining UASB and the 

“fourth generation” down-flow hanging sponge reactor for municipal wastewater 

treatment.  Wat. Sci. Tech.  53(3): 209-218. 

Tawfik, A. Machdar, I., Uemura, S., Ohashi, A. and Harada, H.  (2006a).  Sewage 

treatment in a combined upflow anaerobic sludge blanket (UASB)–DHS system.  

Biochemical Engineering J.  26: 210-219. 

Tawfik, A., El-Gohary, F., Ohashi, A. and Harada, H.  (2006b).  The influence of physical-

chemical and biological factors on the removal a fecal coliform through down-flow 

hanging sponge (DHS) system treating UASB reactor effluent.  Water Research.  

40: 1877-1883.  

Thanh, N. C. and Simard, R. E.  (1973).  Biological treatment of domestic sewage by fungi.  

Mycopathologia et Mycologia Applicata.  51(2-3): 223-232. 

Tripathi, A. K., Harsh, N. S. K. and Gupta, N.  (2007).  Fungal treatment of industrial 

effluent: a mini review.  Life Science Journal.  4(2): 78-81.  

Thullner, M., Schroth, M. H., Zeyer, J. and Kinzelbach, W.  (2004).  Modeling of microbial 

growth experiment with bio-clogging in two-dimensional saturated porous media 

flow field.  J. Contaminant Hydrology.  70(1-2): 37-62. 



 
 

227 
 

 

Torres, P. and Foresti, E.  (2001).  Domestic sewage treatment in a pilot system composed 

of UASB and SBR reactors.  Water Sci. and Technol.  44(4): 247-253. 

Tung, T. Q., Miyata, N. and Iwahori, K.  (2004).  Growth of Aspergillus oryzea during 

treatment of cassava starch processing wastewater with high content of suspended 

solids.  Journal of Bioscience and Bioengineering.  97(5): 329-335.   

von-Sperling, M., Freire, V. H. and de Lemon-Chernicharo, C. A.  (2001). Performance 

evaluation of UASB-activated sludge system treating municipal wastewater.  Water 

Sci. and Technol.  43(11): 323-328. 

 

 

Vanrolleghem P. A., Spanjers H., Petersen B., Ginestet P. and Takacs, I.  (1999). 

Estimating (combinations of) activated sludge model No.1 parameters and 

components by respirometry.  Water Sci. Tech.  39 (1): 195-214. 

Vogelaar, J. C. T., Klapwijk, B., Temmink, H., van Lier, J. B.  (2003).  Kinetic 

comparisons of mesophilic and thermophilic aerobic biomass. J. Microbiol. 

Biotechnol.  30: 81–88. 

Wa¨she, S., Horn, H., Hempel, D.C., 2004. Influence of growth conditions on biofilm 

development and mass transfer at the bulk/biofilm interface. Water Res. 36 (19): 

4775–4784. 

Wentzel, M., Mbewe, A., Lakay, M. and Ekama, G.  (1999).  Batch test for characterization 

of the carbonaceous materials in municipal wastewater. Water SA.  25(2): 327-335. 

Wichitsathian, B.  (2004).  Application of Membrane Bioreactor System for Landfill 

Leachate Treatment.  Ph.D. thesis.  Asian Institute of Technology.  Pathumthani, 

Thailand. 



 
 

228 
 

 

Wijeyekoon, S., Mino, T., Satoh, H. and Matsuo, T. (2004).  Effects of substrate loading 

rate on biofilm structure.  Water Res. 38: 2479-2488.   

Won, Y., Lee, T., Wu, Y. G. and Deshusses, M.R. (2004). An environmentally friendly 

methods controlling biomass in biotrickling filter for air pollution control.  J. Ind. 

Eng. Chem. 10(1): 60-65.  

Uemara, S., Takahashi, K., Takaishi, A., Machdar, I., Ohashi, A. and Harada, H.  (2002).  

Removal of indigenous coliphages and fecal coliforms by a novel sewage treatment 

system consisting of UASB and DHS units.  Water Sci. and Technol.  46(1): 303-

309. 

Vanrolleghem P. A., Spanjers H., Petersen B., Ginestet P. and Takacs, I.  (1999). 

Estimating (combinations of) activated sludge model No.1 parameters and 

components by respirometry.  Watter Sci. Tech.  39 (1): 195-214. 

Vigneswaran, S., Ngo, H. H., Harada, H., Moon, H. and Aim, R. B.  (2003).   Hanging 

sponge aerobic bioreactor and membrane-adsorption hybrid system: a novel 

two stage system in wastewater reuse [Online].   Available:  

 http://64.233.179.104/search?q=cache:kQCkbVm6t3wJ:www.uts.edu.au/research/d

ocs/2002_UTS.pdf+Downflow+hanging+sponge&hl=th&gl=th&ct=clnk&cd=6. 

Yan, S., Subramanian, B., Surampalli, R. Y., Narasiah, S. and Tyagi, R. D.  (2007). 

Isolation, characterization, and identification of bacteria from activated sludge and 

sludge and soluble microbial products in wastewater treatment systems.  Practice 

Periodical of Hazardous, Toxic, and Radioactive Waste Management.  11(4): 

240-258.  

Yang, Y., Tada, C., Tsukahara, K. and Sawayama, S. (2004).  Methanogenic community 

and performance of fixed- and fluidized-bed reactors with reticular polyurethane 

form with different pore sizes.  Material Science and Engineering.  24: 803-813.  

http://64.233.179.104/search?q=cache:kQCkbVm6t3wJ:www.uts.edu.au/research/docs/2002_UTS.pdf+Downflow+hanging+sponge&hl=th&gl=th&ct=clnk&cd=6�
http://64.233.179.104/search?q=cache:kQCkbVm6t3wJ:www.uts.edu.au/research/docs/2002_UTS.pdf+Downflow+hanging+sponge&hl=th&gl=th&ct=clnk&cd=6�
http://64.233.179.104/search?q=cache:kQCkbVm6t3wJ:www.uts.edu.au/research/docs/2002_UTS.pdf+Downflow+hanging+sponge&hl=th&gl=th&ct=clnk&cd=6�


 
 

229 
 

 

Yun, M. E., Yeon, K. M., Park, J. S., Lee, C. H., Chun, J. and Lim, D. J. (2006). 

Characterization of biofilm structure and its effect on membrane permeability in 

MBR for dye wastewater treatment.  Water Research. 40(1): 45-52. 

Zhang, T. C. and Bishop, P. L. (1994a).  Density porosity and pore structure of biofilms.  

Water Research.  28(11): 2267-2277. 

Zhang, T. C. and Bishop, P. L. (1994b).  Evaluation tostuosity factors and effective 

diffusivities in biofilms.  Water Research. 59: 80-89.   

Zhang, S-F, Splendiani, A., Freitas dos Santos, L. M. and Livingston, A. G. (1988).  

Determination of pollutant diffusion coefficients in naturally formed biofilms 

using a single tube extractive membrane bioreactor.  Biotechnology and 

Bioengineering.  59: 80-89.  

Zhang, X. and Bishop, P. L. (2001).  Spatial distribution of extracellular polymeric 

substances in biofilms.  J. Envi. Eng.  127(9): 850-856.  

 

 

 



 

 

 

 

 

 

 

APPENDIX A 

 

EXPERIMENTAL DATA OF TRACER STUDY 

 

 

 

 

 

 

 



 
 

230 
 

Table A.1  The experimental data of tracer study at HRT = 0.9 h       

Time 
(min) 

mL of 
AgNO3

    C      
0.141 N  (mgCl- dt/L) 

C
i i  = 

C/C t
0 iC ti iCidt Ci idt ti i

2C ti i
2Cidti 

0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 
10 6.0 1119.7 10 0.4 4.0 40.3 4.0 40.3 402.9 
20 7.0 1319.6 10 0.5 9.5 95.0 4.7 189.9 1899.4 
30 9.5 1819.4 10 0.7 19.6 196.4 6.5 589.2 5892.4 
40 12.4 2399.3 10 0.9 34.5 345.3 8.6 1381.4 13813.6 
50 13.5 2619.2 10 0.9 47.1 471.2 9.4 2356.2 23562.3 
60 8.0 1519.5 10 0.5 32.8 328.1 5.5 1968.4 19684.4 
70 6.0 1119.7 10 0.4 28.2 282.0 4.0 1974.2 19742.0 
80 5.5 1019.7 10 0.4 29.4 293.5 3.7 2348.3 23483.2 
90 4.0 719.8 10 0.3 23.3 233.1 2.6 2097.9 20979.5 

100 3.5 619.8 10 0.2 22.3 223.0 2.2 2230.3 22303.3 
110 3.1 539.8 10 0.2 21.4 213.7 1.9 2350.5 23504.8 
120 1.2 160.0 10 0.1 6.9 69.1 0.6 828.8 8288.2 
130 0.8 80.0 10 0.0 3.7 37.4 0.3 486.4 4863.6 
140 0.6 40.0 10 0.0 2.0 20.1 0.1 282.0 2820.3 
150 0.7 60.0 10 0.0 3.2 32.4 0.2 485.6 4856.4 
160 0.6 40.0 10 0.0 2.3 23.0 0.1 368.4 3683.6 
170 0.5 20.0 10 0.0 1.2 12.2 0.1 207.9 2079.2 
180 0.5 20.0 10 0.0 1.3 13.0 0.1 233.1 2331.1 
190 0.5 20.0 10 0.0 1.4 13.7 0.1 259.7 2597.3 
200 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
210 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
220 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
230 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
240 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
250 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
260 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
270 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
280 0.4 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 
310 0.4 0.0 30 0.0 0.0 0.0 0.0 0.0 0.0 
340 0.4 0.0 30 0.0 0.0 0.0 0.0 0.0 0.0 
370 0.4 0.0 30 0.0 0.0 0.0 0.0 0.0 0.0 

Total 5.5 294.3 2942.6 54.9 20,678.7 20,6787.3 
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Table A.2  The experimental data of tracer study at HRT = 1.7 h       

Time 
(min) 

mL of 
AgNO3

    C     
(mgCl 

0.141 N 
- dt

/L) 

C
i i  = 

C/C t
0 iC ti iCidt Ci idt ti i

2C ti i
2Cidti 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10.0 0.5 20.0 10.0 0.0 0.1 0.7 0.1 0.7 7.2 

20.0 4.5 819.7 10.0 0.3 5.9 59.0 2.9 118.0 1179.9 

30.0 8.9 1699.5 10.0 0.6 18.3 183.5 6.1 550.4 5503.9 

40.0 9.7 1859.4 10.0 0.7 26.8 267.6 6.7 1070.6 10705.6 

50.0 12.4 2399.3 10.0 0.9 43.2 431.7 8.6 2158.4 21583.8 

60.0 13.4 2599.2 10.0 0.9 56.1 561.2 9.4 3367.1 33670.7 

70.0 13.2 2559.2 10.0 0.9 64.5 644.6 9.2 4512.5 45124.5 

80.0 12.0 2319.3 10.0 0.8 66.8 667.7 8.3 5341.3 53412.7 

90.0 10.4 1999.4 10.0 0.7 64.8 647.5 7.2 5827.6 58276.3 

100.0 9.4 1799.4 10.0 0.6 64.8 647.5 6.5 6475.1 64751.4 

110.0 8.2 1559.5 10.0 0.6 61.7 617.3 5.6 6790.3 67902.7 

120.0 6.4 1199.6 10.0 0.4 51.8 518.0 4.3 6216.1 62161.4 

130.0 3.4 599.8 10.0 0.2 28.1 280.6 2.2 3647.7 36476.6 

140.0 1.0 120.0 10.0 0.0 6.0 60.4 0.4 846.1 8460.9 

150.0 1.0 120.0 10.0 0.0 6.5 64.8 0.4 971.3 9712.7 

160.0 0.9 100.0 10.0 0.0 5.8 57.6 0.4 920.9 9209.1 

170.0 0.9 100.0 10.0 0.0 6.1 61.2 0.4 1039.6 10396.2 

180.0 0.9 100.0 10.0 0.0 6.5 64.8 0.4 1165.5 11655.3 

190.0 0.8 80.0 10.0 0.0 5.5 54.7 0.3 1038.9 10389.0 

200.0 0.8 80.0 10.0 0.0 5.8 57.6 0.3 1151.1 11511.4 

210.0 0.7 60.0 10.0 0.0 4.5 45.3 0.2 951.8 9518.5 

220.0 0.7 60.0 10.0 0.0 4.7 47.5 0.2 1044.7 10446.6 

230.0 0.7 60.0 10.0 0.0 5.0 49.6 0.2 1141.8 11417.8 

240.0 0.6 40.0 10.0 0.0 3.5 34.5 0.1 828.8 8288.2 

250.0 0.4 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

260.0 0.4 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

270.0 0.4 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

280.0 0.4 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

310.0 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

340.0 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

370.0 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 8.0 612.5 6124.8 80.4 57,176.2 57,1762.2 
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Table A.3  The experimental data of tracer study at HRT = 2.6 h       

Time 
(min) 

mL of 
AgNO3

    C     
(mgCl 

0.141 N 
- dt/L) 

C
i i  = 

C/C t
0 iC ti iCidt Ci idt ti i

2C ti i
2Cidti 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.9 90.0 10.0 0.0 0.3 3.2 0.3 3.2 32.4 

20 6.6 1245.6 10.0 0.4 9.0 89.6 4.5 179.3 1792.9 

30 10.6 2039.4 10.0 0.7 22.0 220.2 7.3 660.5 6604.6 

40 12.0 2319.3 10.0 0.8 33.4 333.8 8.3 1335.3 13353.2 

50 12.6 2445.2 10.0 0.9 44.0 439.9 8.8 2199.7 21997.5 

60 12.7 2465.2 10.0 0.9 53.2 532.3 8.9 3193.5 31935.4 

70 12.9 2489.2 10.0 0.9 62.7 627.0 9.0 4389.1 43890.7 

80 12.7 2459.2 10.0 0.9 70.8 707.9 8.8 5663.6 56635.9 

90 12.4 2399.3 10.0 0.9 77.7 777.0 8.6 6993.2 69931.5 

100 11.1 2147.3 10.0 0.8 77.3 772.7 7.7 7727.0 77270.0 

110 8.2 1565.5 10.0 0.6 62.0 619.7 5.6 6816.4 68163.8 

120 5.1 943.7 10.0 0.3 40.8 407.5 3.4 4890.0 48900.3 

130 3.1 541.8 10.0 0.2 25.3 253.5 1.9 3295.1 32950.6 

140 2.1 345.9 10.0 0.1 17.4 174.3 1.2 2439.5 24395.5 

150 1.2 165.9 10.0 0.1 9.0 89.6 0.6 1343.6 13435.9 

160 1.0 120.0 10.0 0.0 6.9 69.1 0.4 1105.1 11050.9 

170 1.0 118.0 10.0 0.0 7.2 72.2 0.4 1226.8 12267.5 

180 1.0 112.0 10.0 0.0 7.3 72.5 0.4 1305.4 13053.9 

190 0.9 108.0 10.0 0.0 7.4 73.8 0.4 1402.5 14025.2 

200 0.8 84.0 10.0 0.0 6.0 60.4 0.3 1208.7 12086.9 

210 0.7 60.0 10.0 0.0 4.5 45.3 0.2 951.8 9518.5 

220 0.7 52.0 10.0 0.0 4.1 41.2 0.2 905.4 9053.7 

230 0.6 30.0 10.0 0.0 2.5 24.8 0.1 570.9 5708.9 

240 0.6 30.0 10.0 0.0 2.6 25.9 0.1 621.6 6216.1 

250 0.6 30.0 10.0 0.0 2.7 27.0 0.1 674.5 6744.9 

260 0.6 30.0 10.0 0.0 2.8 28.1 0.1 729.5 7295.3 

270 0.5 20.0 10.0 0.0 1.9 19.4 0.1 524.5 5244.9 

280 0.4 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

310 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

340 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

370 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 8.8 660.8 6607.9 88.0 62355.7 623556.9 
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Table A.4  The experimental data of tracer study at HRT = 6.9 h       

Time 
(min) 

mL of 
AgNO3

    C     
(mgCl 

0.141 N 
- dt/L) 

C
i i  = 

C/C t
0 iC ti iCidt Ci idt ti i

2C ti i
2Cidti 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30.0 0.4 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

60.0 3.0 519.8 30.0 0.2 10.9 327.3 5.5 654.6 19,637.1 

90.0 6.7 1,259.6 30.0 0.4 39.7 1,189.6 13.2 3,568.7 107,060.2 

120.0 10.5 2,019.4 30.0 0.7 84.8 2,542.8 21.2 10,171.0 305,131.0 

150.0 12.4 2,399.3 30.0 0.8 125.9 3,776.4 25.2 18,881.9 566,456.0 

180.0 12.5 2,419.2 30.0 0.8 152.3 4,569.4 25.4 27,416.5 822,494.2 

210.0 12.9 2,499.2 30.0 0.9 183.6 5,507.2 26.2 38,550.5 1,156,514.4 

240.0 12.8 2,479.2 30.0 0.9 208.1 6,243.6 26.0 49,948.8 1,498,465.0 

270.0 10.2 1,959.4 30.0 0.7 185.0 5,551.3 20.6 49,961.4 1,498,842.7 

300.0 9.0 1,719.5 30.0 0.6 180.4 5,412.8 18.0 54,128.0 1,623,840.6 

330.0 8.0 1,519.5 30.0 0.5 175.4 5,261.7 15.9 57,879.2 1,736,376.6 

360.0 6.0 1,119.7 30.0 0.4 141.0 4,229.5 11.7 50,754.5 1,522,633.8 

390.0 4.2 759.8 30.0 0.3 103.6 3,109.2 8.0 40,419.8 1,212,593.5 

405.0 3.2 559.8 15.0 0.2 79.3 1,189.6 2.9 32,118.1 481,770.9 

420.0 2.5 419.9 15.0 0.1 61.7 925.2 2.2 25,905.9 388,588.8 

435.0 2.2 359.9 15.0 0.1 54.8 821.4 1.9 23,819.5 357,292.1 

450.0 1.5 219.9 15.0 0.1 34.6 519.3 1.2 15,577.5 233,663.1 

465.0 1.4 199.9 15.0 0.1 32.5 487.8 1.0 15,121.2 226,818.4 

480.0 1.2 160.0 15.0 0.1 26.9 402.8 0.8 12,890.0 193,350.3 

495.0 1.1 146.0 15.0 0.1 25.3 379.1 0.8 12,508.8 187,631.5 

510.0 0.9 100.0 15.0 0.0 17.8 267.5 0.5 9,094.8 136,421.5 

525.0 0.8 80.0 15.0 0.0 14.7 220.3 0.4 7,710.1 115,651.4 

540.0 0.8 80.0 15.0 0.0 15.1 226.6 0.4 8,157.0 122,354.5 

555.0 0.8 80.0 15.0 0.0 15.5 232.9 0.4 8,616.4 129,246.4 

570.0 0.6 40.0 15.0 0.0 8.0 119.6 0.2 4,544.2 68,163.5 

585.0 0.6 40.0 15.0 0.0 8.2 122.7 0.2 4,786.6 71,798.3 

600.0 0.6 40.0 15.0 0.0 8.4 125.9 0.2 5,035.2 75,527.5 

615.0 0.6 46.0 15.0 0.0 9.9 148.4 0.2 6,083.6 91,253.7 

645.0 0.6 40.0 30.0 0.0 9.0 270.6 0.4 5,818.8 174,562.9 

675.0 0.6 40.0 30.0 0.0 9.4 283.2 0.4 6,372.6 191,178.9 

705.0 0.6 40.0 30.0 0.0 9.9 295.8 0.4 6,951.7 208,550.2 

Total 8.1 2,031.6 54,759.3 231.7 613,446.7 15,523,869.2 
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Table A.5  The experimental data of tracer study at HRT = 11.5 h       

Time 
(min) 

mL of 
AgNO3

    C     
(mgCl 

0.141 N 
- dt/L) 

C
i i  = 

C/C t
0 iC ti iCidt Ci idt ti i

2C ti i
2Cidti 

0 0.0 -80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.8 72.0 30.0 0.0 0.8 22.7 0.8 22.7 679.7 

60 2.2 353.9 30.0 0.1 7.4 222.8 3.7 445.6 13,368.4 

90 9.5 1,825.4 30.0 0.6 57.5 1,723.9 19.2 5171.7 15,5152.3 

120 11.9 2,299.3 30.0 0.8 96.5 2,895.2 24.1 11,580.9 34,7426.4 

150 13.0 2,519.2 30.0 0.9 132.2 3,965.2 26.4 19,826.0 59,4778.8 

180 13.2 2,559.2 30.0 0.9 161.1 4,833.8 26.9 29,002.5 870,076.5 

210 13.7 2,659.2 30.0 0.9 195.3 5,859.7 27.9 41,017.7 1,230,531.3 

240 13.6 2,639.2 30.0 0.9 221.5 6,646.4 27.7 53,171.3 1,595,140.2 

270 13.3 2,579.2 30.0 0.9 243.6 7,307.3 27.1 65,765.5 1,972,966.4 

300 13.0 2,519.2 30.0 0.9 264.3 7,930.4 26.4 79,303.8 2,379,115.3 

330 12.1 2,339.3 30.0 0.8 270.0 8,100.3 24.5 89,103.5 2,673,106.0 

360 6.2 1,159.6 30.0 0.4 146.0 4,380.6 12.2 52,567.1 1577013.6 

390 3.3 579.8 30.0 0.2 79.1 2,372.8 6.1 30,846.7 925,400.3 

405 2.6 439.9 15.0 0.2 62.3 934.7 2.3 25,235.6 378,534.2 

420 2.2 359.9 15.0 0.1 52.9 793.0 1.9 22,205.1 333,076.1 

435 1.9 299.9 15.0 0.1 45.6 684.5 1.6 19,849.6 297743.5 

450 1.4 199.9 15.0 0.1 31.5 472.0 1.0 14,161.4 212,421.0 

465 1.3 179.9 15.0 0.1 29.3 439.0 0.9 13,609.1 204,136.6 

480 1.2 160.0 15.0 0.1 26.9 402.8 0.8 12,890.0 193,350.3 

495 1.1 146.0 15.0 0.1 25.3 379.1 0.8 12,508.8 187,631.5 

510 1.0 120.0 15.0 0.0 21.4 321.0 0.6 10,913.7 163,705.8 

525 1.0 114.0 15.0 0.0 20.9 313.9 0.6 10,986.9 164,803.3 

540 1.0 114.0 15.0 0.0 21.5 322.9 0.6 11,623.7 174,355.2 

555 0.8 80.0 15.0 0.0 15.5 232.9 0.4 8,616.4 129,246.4 

570 0.7 66.0 15.0 0.0 13.2 197.3 0.3 7,498.0 112,469.8 

585 0.7 60.0 15.0 0.0 12.3 184.1 0.3 7,179.8 107,697.5 

600 0.7 60.0 15.0 0.0 12.6 188.8 0.3 7,552.7 113,291.2 

615 0.6 46.0 15.0 0.0 9.9 148.4 0.2 6,083.6 91,253.7 

645 0.6 40.0 30.0 0.0 9.0 270.6 0.4 5,818.8 174,562.9 

675 0.6 40.0 30.0 0.0 9.4 283.2 0.4 6,372.6 191,178.9 

705 0.5 26.0 30.0 0.0 6.4 192.3 0.3 4,518.6 135,557.6 

Total 9.3 2,301.2 63,021.5 266.9 68,5449.6 17,699,770.8 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

experimental study 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD 
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

23 Sep 07 350.0 190.0 45.7 264.0 24.6 
25 Sep 07 320.0 157.0 50.9 180.0 43.8 
27 Sep 07 341.0 168.0 50.7 236.0 30.8 
29 Sep 07 350.0 197.0 43.7 242.0 30.9 
1 Oct 07 329.0 152.0 53.8 290.0 11.9 
3 Oct 07 307.0 164.5 46.4 230.4 25.0 
5 Oct 07 376.0 192.0 48.9 230.0 38.8 
7 Oct 07 367.0 170.0 53.7 192.0 47.7 
9 Oct 07 340.0 160.0 52.9 206.0 39.4 
11 Oct 07 309.0 196.0 36.6 227.0 26.5 
13 Oct 07 332.0 162.0 51.2 198.0 40.4 
15 Oct 07 363.0 124.3 65.8 148.0 59.2 
17 Oct 07 424.0 144.0 66.0 240.0 43.4 
19 Oct 07 424.0 144.0 66.0 184.0 56.6 
21 Oct 07 364.0 221.0 39.3 182.0 50.0 
23 Oct 07 337.1 141.1 58.1 180.3 46.5 
25 Oct 07 313.6 141.0 55.0 141.1 55.0 
27 Oct 07 284.2 165.1 41.9 153.6 46.0 
29 Oct 07 392.0 187.8 52.1 196.0 50.0 
31 Oct 07 320.0 160.0 50.0 108.0 66.3 
2 Nov 07 439.0 247.0 43.7 207.8 52.7 
4 Nov 07 495.4 227.2 54.1 192.0 61.2 
6 Nov 07 345.4 171.6 50.3 194.0 43.8 
8 Nov 07 441.1 162.8 63.1 232.8 47.2 
10 Nov 07 441.1 175.5 60.2 232.8 47.2 
12 Nov 07 375.1 165.0 56.0 258.7 31.0 
14 Nov 07 370.3 165.9 55.2 219.9 40.6 
16 Nov 07 313.3 213.1 32.0 200.5 36.0 
18 Nov 07 376.0 138.0 63.3 238.1 36.7 
20 Nov 07 338.4 213.1 37.0 200.5 40.7 
22 Nov 07 338.4 178.1 47.4 200.5 40.7 
24 Nov 07 323.7 185.6 42.7 198.4 38.7 
26 Nov 07 312.5 160.8 48.5 199.6 36.1 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

experimental study (Continued) 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD 
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

28 Nov 07 297.6 184.4 38.0 212.0 28.8 
30 Nov 07 517.0 308.8 40.3 251.0 51.5 
2 Dec 07 383.2 166.4 56.6 223.0 41.8 
4 Dec 07 469.0 271.0 42.2 246.0 47.5 
6 Dec 07 493.0 399.6 18.9 260.0 47.3 
8 Dec 07 442.3 298.8 32.4 271.6 38.6 
10 Dec 07 442.3 271.6 38.6 271.6 38.6 
12 Dec 07 411.3 294.9 28.3 244.4 40.6 
14 Dec 07 411.3 271.6 34.0 244.4 40.6 
16 Dec 07 434.6 254.6 41.4 232.8 46.4 
18 Dec 07 434.6 243.2 44.0 232.8 46.4 
20 Dec 07 410.4 254.6 38.0 254.6 38.0 
22 Dec 07 410.4 243.2 40.7 254.6 38.0 
24 Dec 07 325.0 146.0 55.1 209.0 35.7 
26 Dec 07 442.7 169.2 61.8 282.7 36.1 
28 Dec 07 487.3 159.2 67.3 245.5 49.6 
31 Dec 07 346.0 171.1 50.5 122.8 64.5 
2 Jan 08 359.6 148.8 58.6 260.4 27.6 
4 Jan 08 399.3 173.6 56.5 212.0 46.9 
6 Jan 08 436.5 173.6 60.2 174.8 60.0 
8 Jan 08 359.6 137.6 61.7 260.4 27.6 
10 Jan 08 399.3 173.6 56.5 212.0 46.9 
12 Jan 08 436.5 137.6 68.5 174.8 60.0 
14 Jan 08 440.8 137.6 68.8 315.4 28.4 
16 Jan 08 241.0 112.0 53.5 133.2 44.7 
18 Jan 08 324.0 178.6 44.9 154.8 52.2 
20 Jan 08 309.2 178.6 42.2 169.2 45.3 
22 Jan 08 388.8 133.2 65.7 216.0 44.4 
24 Jan 08 324.0 144.0 55.6 154.8 52.2 
26 Jan 08 309.2 187.2 39.5 169.2 45.3 
28 Jan 08 388.8 154.8 60.2 216.0 44.4 
30 Jan 08 457.2 154.8 66.1 180.0 60.6 
1 Feb 08 400.4 162.0 59.5 192.9 51.8 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

experimental study (Continued) 

DATE Influent  
(mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD 
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

3 Feb 08 411.3 218.4 46.9 207.5 49.6 
5 Feb 08 415.0 171.1 58.8 243.9 41.2 
7 Feb 08 296.6 141.2 52.4 171.1 42.3 
9 Feb 08 456.7 291.2 36.2 254.8 44.2 
11 Feb 08 498.7 229.3 54.0 309.4 38.0 
13 Feb 08 498.0 238.5 52.1 309.4 37.9 
15 Feb 08 232.9 72.8 68.7 87.4 62.5 
17 Feb 08 243.9 110.2 54.8 160.2 34.3 
19 Feb 08 245.0 123.8 49.5 109.2 55.4 
21 Feb 08 218.4 110.2 49.5 160.2 26.6 
23 Feb 08 345.8 129.3 62.6 156.5 54.7 
25 Feb 08 345.8 110.2 68.1 156.5 54.7 
27 Feb 08 345.8 123.8 64.2 156.5 54.7 
29 Feb 08 211.9 110.2 48.0 112.8 46.8 
2 Mar 08 345.8 110.2 68.1 156.5 54.7 
4 Mar 08 320.1 123.8 61.3 156.5 51.1 
6 Mar 08 296.9 110.2 62.9 99.4 66.5 
8 Mar 08 296.9 110.2 62.9 99.4 66.5 
10 Mar 08 296.9 123.8 58.3 99.4 66.5 
12 Mar 08 284.7 110.2 61.3 124.0 56.4 
14 Mar 08 284.7 155.2 45.5 124.0 56.4 
16 Mar 08 505.0 221.2 56.2 231.4 54.2 
18 Mar 08 505.0 249.2 50.7 231.4 54.2 
20 Mar 08 235.1 112.0 52.4 39.2 83.3 
22 Mar 08 235.1 110.2 53.1 39.2 83.3 
24 Mar 08 356.8 155.2 56.5 90.2 74.7 
26 Mar 08 235.1 67.0 71.5 39.2 83.3 
28 Mar 08 260.0 140.0 46.2 194.0 25.4 
30 Mar 08 465.6 155.2 66.7 170.7 63.3 
1 Apr 08 465.6 221.2 52.5 170.7 63.3 
3 Apr 08 492.8 276.0 44.0 182.4 63.0 
5 Apr 08 372.0 148.0 60.2 80.0 78.5 
7 Apr 08 298.5 148.0 50.4 104.0 65.2 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

experimental study (Continued) 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD 
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

9 Apr 08 536.0 276.0 48.5 287.1 46.4 
11 Apr 08 536.0 110.2 79.4 287.1 46.4 
13 Apr 08 536.0 155.2 71.0 287.1 46.4 
15 Apr 08 418.5 67.0 84.0 195.0 53.4 
17 Apr 08 418.5 140.0 66.5 195.0 53.4 
19 Apr 08 418.5 155.2 62.9 195.0 53.4 
21 Apr 08 237.7 102.0 57.1 123.0 48.3 
23 Apr 08 273.9 187.4 31.6 140.0 48.9 
25 Apr 08 238.5 140.0 41.3 135.0 43.4 
27 Apr 08 356.0 155.2 56.4 132.0 62.9 
29 Apr 08 356.0 102.0 71.3 132.0 62.9 
1 May 08 238.5 187.4 21.4 135.0 43.4 
3 May 08 356.0 248.3 30.3 132.0 62.9 
5 May 08 356.0 155.2 56.4 132.0 62.9 
7 May 08 356.0 221.2 37.9 132.0 62.9 
9 May 08 358.5 156.0 56.5 135.0 62.3 
11 May 08 356.0 148.0 58.4 132.0 62.9 
13 May 08 295.3 148.0 49.9 131.0 55.6 
15 May 08 370.1 276.0 25.4 131.0 64.6 
17 May 08 370.1 110.2 70.2 131.0 64.6 
19 May 08 370.1 102.0 72.4 131.0 64.6 
21 May 08 295.3 116.9 60.4 131.0 55.6 
23 May 08 273.4 116.9 57.2 150.7 44.9 
25 May 08 265.2 116.9 55.9 154.9 41.6 
27 May 08 207.7 119.7 42.4 112.6 45.8 
29 May 08 325.5 102.0 68.7 199.0 38.9 
31 May 08 262.0 87.7 66.5 153.0 41.6 
2 Jun 08 262.0 87.7 66.5 153.0 41.6 
4 Jun 08 265.6 133.6 49.7 115.5 56.5 
6 Jun 08 266.8 102.0 61.8 147.6 44.7 
8 Jun 08 266.8 187.4 29.8 147.6 44.7 
10 Jun 08 359.9 140.0 61.1 162.2 54.9 
12 Jun 08 370.2 155.2 58.1 194.7 47.4 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all   

                  experimental study (Continued) 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD 
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

14 Jun 08 359.9 102.0 71.7 162.2 54.9 
16 Jun 08 429.2 229.3 46.6 278.4 35.1 
18 Jun 08 310.8 238.5 23.3 271.6 12.6 
20 Jun 08 343.4 72.8 78.8 252.2 26.6 
22 Jun 08 456.0 110.2 75.8 290.3 36.3 
24 Jun 08 440.0 123.8 71.9 306.4 30.4 
26 Jun 08 359.9 110.2 69.4 162.2 54.9 
28 Jun 08 370.2 129.3 65.1 194.7 47.4 
30 Jun 08 359.9 110.2 69.4 162.2 54.9 
2 Jul 08 370.2 243.2 34.3 194.7 47.4 
4 Jul 08 234.3 146.0 37.7 144.6 38.3 
6 Jul 08 456.0 169.2 62.9 290.3 36.3 
8 Jul 08 440.0 159.2 63.8 306.4 30.4 
10 Jul 08 370.2 171.1 53.8 194.7 47.4 
12 Jul 08 359.9 148.8 58.7 162.2 54.9 
14 Jul 08 349.2 173.6 50.3 192.0 45.0 
16 Jul 08 349.2 173.6 50.3 192.0 45.0 
18 Jul 08 404.5 137.6 66.0 260.0 35.7 
20 Jul 08 340.4 155.2 54.4 217.6 36.1 
22 Jul 08 395.6 67.0 83.1 302.1 23.6 
24 Jul 08 30.4 140.0 58.9 217.6 36.1 
26 Jul 08 340.4 155.2 54.4 217.6 36.1 
28 Jul 08 263.4 102.0 61.3 201.0 23.7 
30 Jul 08 370.2 187.4 49.4 194.7 47.4 
1 Aug 08 359.9 140.0 61.1 162.2 54.9 
3 Aug 08 349.2 155.2 55.6 192.0 45.0 
5 Aug 08 349.2 102.0 70.8 192.0 45.0 
7 Aug 08 370.2 187.4 49.4 194.7 47.4 
9 Aug 08 359.9 137.6 61.8 162.2 54.9 
11 Aug 08 368.7 175.4 52.4 183.0 50.4 
13 Aug 08 296.0 123.0 58.4 102.0 65.5 
15 Aug 08 363.5 213.8 41.2 144.6 60.2 
17 Aug 08 204.8 110.0 46.3 98.2 52.1 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

experimental study (Continued) 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD  
(mg/L) 

% COD 
removal 

SCOD 
(mg/L) 

% COD 
removal 

19 Aug 08 277.8 166.4 40.1 93.4 66.4 
21 Aug 08 179.2 97.0 45.9 93.4 47.9 
23 Aug 08 290.5 136.9 52.9 89.6 69.2 
25 Aug 08 373.5 142.0 62.0 190.0 49.1 
27 Aug 08 293.7 120.0 59.1 145.0 50.6 
29 Aug 08 279.5 110.0 60.6 124.6 55.4 
31 Aug 08 279.5 142.0 49.2 124.6 55.4 
2 Sep 08 235.3 100.0 57.5 78.1 66.8 
4 Sep 08 476.0 110.0 76.9 120.0 74.8 
6 Sep 08 325.6 130.6 59.9 107.0 67.1 
8 Sep 08 236.8 122.0 48.5 105.0 55.7 
10 Sep 08 471.0 96.0 79.6 173.9 63.1 
12 Sep 08 435.2 88.7 79.6 100.9 76.8 
14 Sep 08 435.2 130.0 70.1 67.5 84.5 
16 Sep 08 340.0 92.0 72.9 108.8 68.0 
18 Sep 08 353.6 141.4 60.0 103.4 70.8 
20 Sep 08 427.8 113.0 73.6 89.2 79.1 
22 Sep 08 340.0 103.0 69.7 108.8 68.0 
24 Sep 08 279.0 116.0 58.4 111.6 60.0 
26 Sep 08 279.0 98.0 64.9 111.6 60.0 
28 Sep 08 279.0 96.7 65.3 96.7 65.3 
30 Sep 08 297.6 85.0 71.4 111.6 62.5 
2 Oct 08 409.2 113.0 72.4 134.0 67.3 
4 Oct 08 297.6 86.0 71.1 120.0 59.7 
6 Oct 08 502.2 108.3 78.4 113.0 77.5 
8 Oct 08 253.2 98.0 61.3 104.2 53.3 
10 Oct 08 223.2 87.0 61.0 108.0 51.6 
12 Oct 08 260.4 97.0 62.7 109.0 58.1 
14 Oct 08 340.0 143.8 57.7 108.8 68.0 
16 Oct 08 340.0 118.6 65.1 108.8 68.0 
18 Oct 08 279.0 85.0 69.5 111.6 60.0 
20 Oct 08 279.0 113.0 59.5 96.7 65.3 
22 Oct 08 427.8 86.0 79.9 89.2 79.1 
24 Oct 08 409.2 108.0 73.6 134.0 67.3 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

                  experimental study (Continued) 

DATE Influent  
(mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD  
(mg/L) 

% COD 
removal 

SCOD 
 (mg/L) 

% COD 
removal 

26 Oct 08 297.6 98.0 67.1 120.0 59.7 
28 Oct 08 297.6 87.0 70.8 111.6 62.5 
30 Oct 08 502.2 97.0 80.7 113.0 77.5 
1 Nov 08 279.0 103.8 62.8 96.7 65.3 
3 Nov 08 427.8 143.8 66.4 89.2 79.1 
5 Nov 08 409.2 128.2 68.7 134.0 67.3 
7 Nov 08 297.6 85.0 71.4 120.0 59.7 
9 Nov 08 340.0 113.0 66.8 108.8 68.0 
11 Nov 08 298.4 86.0 71.2 114.0 61.8 
13 Nov 08 298.4 82.7 72.3 114.0 61.8 
16 Nov 08 298.4 115.7 61.2 114.0 61.8 
19 Nov 08 389.0 107.5 72.4 82.7 78.7 
22 Nov 08 410.0 115.7 71.8 82.7 79.8 
25 Nov 08 396.8 133.6 66.3 134.0 66.2 
28 Nov 08 385.2 97.0 74.8 143.0 62.9 
1 Dec 08 396.0 98.0 75.3 156.0 60.6 
4 Dec 08 425.0 123.0 71.1 203.0 52.2 
7 Dec 08 512.0 154.0 69.9 198.0 61.3 
10 Dec 08 595.2 164.0 72.4 323.0 45.7 
13 Dec 08 617.5 124.0 79.9 234.0 62.1 
16 Dec 08 520.8 148.0 71.6 249.2 52.2 
19 Dec 08 647.3 134.0 79.3 271.6 58.0 
22 Dec 08 578.0 241.0 58.3 360.8 37.6 
25 Dec 08 446.4 102.0 77.2 223.0 50.0 
28 Dec 08 639.8 103.0 83.9 334.8 47.7 
31 Dec 08 367.8 96.0 73.9 208.3 43.4 
3 Jan 09 468.7 145.0 69.1 133.9 71.4 
6 Jan 09 491.0 142.0 71.1 186.0 62.1 
9 Jan 09 319.0 123.0 61.4 186.0 41.7 
12 Jan 09 425.0 145.0 65.9 154.0 63.8 
15 Jan 09 417.0 123.0 70.5 165.0 60.4 
18 Jan 09 389.0 89.0 77.1 125.0 67.9 
21 Jan 09 458.0 128.0 72.1 106.0 76.9 
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Table B.1  SCOD removal efficiencies monitoring of two DHS systems during all  

                  experimental study (Continued) 

DATE Influent (mg/L) 

SCOD Effluent 

FDHS BDHS 

SCOD  
(mg/L) 

% COD 
removal 

SCOD 
 (mg/L) 

% COD 
removal 

24 Jan 09 465.0 165.0 64.5 204.0 56.1 
27 Jan 09 521.0 127.0 75.6 219.0 58.0 
30 Jan 09 426.0 123.0 71.1 165.0 61.3 
2 Feb 09 437.0 115.0 73.7 154.0 64.8 
5 Feb 09 445.0 124.0 72.1 123.0 72.4 
8 Feb 09 426.0 132.0 69.0 145.0 66.0 
11 Feb 09 478.0 126.0 73.6 165.0 65.5 
14 Feb 09 426.0 141.0 66.9 102.0 76.1 
17 Feb 09 454.0 119.0 73.8 121.0 73.3 
20 Feb 09 521.0 118.0 77.4 145.0 72.2 
23 Feb 09 475.0 116.0 75.6 162.0 65.9 
26 Feb 09 485.0 119.0 75.5 154.0 68.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table B.2   Experimental results of TCOD, TBOD, SCOD and SBOD concentrations of two DHS influents (RUN I)  

DHS 
profiles  DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD 
A B* 

TCOD 
* 

SCOD TBOD SBOD 
A B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Inlet 

10 Dec 08 729.4 442.3 330.0 193.8 0.45 0.44 729.4 442.3 330.0 193.8 0.45 0.44 

23 Feb 08 1,106.6 436.8 416.0 234.0 0.38 0.54 1,106.6 436.8 416.0 234.0 0.38 0.54 

4 Mar 08 538.7 254.8 280.0 180.0 0.52 0.71 538.7 254.8 280.0 180.0 0.52 0.71 

18 Mar 08 1,685.0 605.0 308.0 257.0 0.18 0.42 1,685.0 605.0 308.0 257.0 0.18 0.42 

7 Jun 08 754.0 432.0 397.0 211.0 0.53 0.49 754.0 432.0 397.0 211.0 0.53 0.49 

30 May 08 1,830.0 297.0 230.0 170.0 0.13 0.57 1,830.0 297.0 230.0 170.0 0.13 0.57 

7 Jul 08 1,285.0 537.0 340.0 215.0 0.26 0.40 1,285.0 537.0 340.0 215.0 0.26 0.40 

8 Jul 08 1,343.0 521.5 350.0 230.0 0.26 0.44 1,343.0 521.5 350.0 230.0 0.26 0.44 

9 Jul 08 1,567.0 366.1 340.0 250.0 0.22 0.68 1,567.0 366.1 340.0 250.0 0.22 0.68 

10 Jul 08 1,890.0 497.0 370.0 230.0 0.20 0.46 1,890.0 497.0 370.0 230.0 0.20 0.46 

AVE 1,272.9 439.0 336.1 217.1 0.3 0.5 1,272.9 439.0 336.1 217.1 0.3 0.5 

SD 481.2 108.9 54.5 28.8 0.1 0.1 481.2 108.9 54.5 28.8 0.1 0.1 
 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 
 



Table B.3  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 1 effluent of two DHS systems (RUN I)  

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD A B* TCOD * SCOD TBOD SBOD A B* * 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
1 

10 Dec 08 541.4 399.6 225.1 159.1 0.42 0.40 342.0 415.2 83.0 32.0 0.24 0.08 

23 Feb 08 786.2 254.8 298.0 116.0 0.38 0.46 655.2 269.0 60.0 50.0 0.09 0.19 

4 Mar 08 385.8 207.5 230.0 113.0 0.60 0.54 364.0 207.5 90.0 45.0 0.25 0.22 

18 Mar 08 795.0 284.0 224.0 131.0 0.28 0.46 450.0 397.0 87.0 67.0 0.19 0.17 

7 Jun 08 398.0 97.2 135.0 50.6 0.34 0.52 340.0 162.0 67.5 45.0 0.20 0.28 

30 May 08 1,651.0 257.0 245.0 180.0 0.15 0.70 340.0 257.0 56.0 68.0 0.16 0.26 

7 Jul 08 865.0 413.0 267.0 132.0 0.31 0.32 265.0 467.7 86.0 56.0 0.32 0.12 

8 Jul 08 765.0 451.6 256.0 145.0 0.33 0.32 450.0 505.3 76.0 47.0 0.17 0.09 

9 Jul 08 780.0 262.1 245.0 156.0 0.31 0.60 387.0 353.6 78.0 65.0 0.20 0.18 

10 Jul 08 789.0 282.9 276.0 143.0 0.35 0.51 399.0 249.6 68.0 77.0 0.17 0.31 

AVE 775.6 291.0 240.1 132.6 0.31 0.46 399.2 328.4 75.2 55.2 0.19 0.17 

SD 353.5 105.6 43.8 35.2   105.6 115.8 11.8 13.8   
 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 



Table B.4  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 2 effluent of two DHS systems (RUN I)  

DHS 
profiles  DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD 
A B* 

TCOD 
* 

SCOD TBOD SBOD 
A B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
2 

10 Dec 08 451.2 349.2 196.4 89.0 0.44 0.25 579.0 388.0 50.0 35.0 0.09 0.09 

23 Feb 08 567.8 193.0 154.0 69.0 0.27 0.36 582.4 256.5 43.0 30.0 0.07 0.12 

4 Mar 08 990.0 145.6 143.0 45.0 0.14 0.31 458.6 265.7 34.0 45.0 0.07 0.17 

18 Mar 08 676.0 178.0 134.0 52.0 0.20 0.29 557.0 231.0 35.0 65.0 0.06 0.28 

7 Jun 08 1,204.0 55.1 234.0 22.5 0.19 0.41 356.0 184.7 42.2 35.0 0.12 0.19 

30 May 08 894.0 222.0 127.0 67.0 0.14 0.30 344.0 208.0 67.0 50.0 0.19 0.24 

7 Jul 08 980.0 397.8 145.0 54.0 0.15 0.14 450.0 376.3 87.0 49.0 0.19 0.13 

8 Jul 08 750.0 344.1 134.0 45.0 0.18 0.13 356.0 467.7 98.0 45.0 0.28 0.10 

9 Jul 08 670.0 228.8 154.0 67.0 0.23 0.29 445.0 303.7 88.0 54.0 0.20 0.18 

10 Jul 08 890.0 193.4 144.0 66.0 0.16 0.34 427.0 235.0 95.0 45.0 0.22 0.19 

AVE 807.3 230.7 156.5 57.7 0.19 0.25 455.5 291.7 63.9 45.3 0.14 0.16 

SD 225.7 104.7 33.3 18.1   91.2 91.2 26.0 10.3   
 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 



Table B.5  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 3 effluent of two DHS systems (RUN I)  

DHS 
profiles  DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD 
A B* 

TCOD 
* 

SCOD TBOD SBOD 
A B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
3 

10 Dec 08 376.0 310.4 144.4 123.7 0.38 0.40 451.2 399.6 80.0 40.0 0.18 0.10 

23 Feb 08 313.0 182.0 99.0 77.0 0.32 0.42 509.6 229.3 85.0 36.0 0.17 0.16 

4 Mar 08 231.0 83.7 123.0 112.0 0.53 1.34 269.4 163.8 78.0 54.0 0.29 0.33 

18 Mar 08 534.0 249.0 134.0 57.0 0.25 0.23 581.0 207.0 79.0 38.0 0.14 0.18 

7 Jun 08 786.0 48.6 194.0 22.5 0.25 0.46 469.0 178.2 39.4 19.7 0.08 0.11 

30 May 08 708.0 191.0 123.0 65.0 0.17 0.34 206.0 142.0 69.0 36.0 0.33 0.25 

7 Jul 08 480.0 306.4 145.0 77.0 0.30 0.25 250.0 376.3 79.0 47.0 0.32 0.12 

8 Jul 08 342.0 306.4 132.0 98.0 0.39 0.32 235.0 290.3 76.0 44.0 0.32 0.15 

9 Jul 08 456.0 194.7 112.0 89.0 0.25 0.46 243.0 182.2 78.0 34.0 0.32 0.19 

10 Jul 08 234.0 190.9 156.0 78.0 0.67 0.41 267.0 232.1 77.0 32.0 0.29 0.14 

AVE 446.0 206.3 136.2 79.9 0.31 0.39 348.1 240.1 74.0 38.1 0.21 0.16 

SD 200.7 110.3 57.9 39.8   138.2 88.5 12.8 9.3   

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 



Table B.6   Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 4 effluent of two DHS systems (RUN I)  

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD 
A B* 

TCOD 
* 

SCOD TBOD SBOD 
A B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
4 

10 Dec 08 278.2 271.6 60.0 50.0 0.22 0.18 353.4 298.8 40.0 32.0 0.11 0.11 

23 Feb 08 1,092.0 156.5 50.0 45.0 0.05 0.29 509.6 229.3 62.0 30.0 0.12 0.13 

4 Mar 08 240.2 156.5 45.0 67.0 0.19 0.43 342.2 192.9 50.0 40.0 0.15  

18 Mar 08 676.0 231.0 65.0 36.0 0.10 0.16 391.0 249.0 45.0 60.0 0.12 0.24 

7 Jun 08 1,095.4 45.6 30.9 16.9 0.03 0.37 256.0 204.0 30.9 25.3 0.12 0.12 

30 May 08 571.0 199.0 67.0 32.0 0.12 0.16 206.0 102.0 67.0 32.0 0.33 0.31 

7 Jul 08 567.0 290.3 45.0 19.0 0.08 0.07 232.0 267.0 68.0 33.0 0.29 0.12 

8 Jul 08 398.0 306.4 75.0 24.0 0.19 0.08 234.0 306.4 85.0 27.0 0.36 0.09 

9 Jul 08 654.0 162.2 87.0 32.0 0.13 0.20 256.0 215.9 45.0 29.0 0.18 0.13 

10 Jul 08 765.0 194.7 78.0 27.0 0.10 0.14 277.0 153.5 67.0 28.0 0.24 0.18 

AVE 633.7 201.4 60.3 34.9 0.10 0.17 305.7 221.9 56.0 33.6 0.18 0.15 

SD 295.9 77.9 17.5 15.4   93.5 63.4 16.4 10.1   

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 



Table B.7   Experimental results of TCOD, TBOD, SCOD and SBOD concentrations of two DHS influents (RUN II)  

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Inlet 

2 Sep 08 1,358.0 420.0 410.0 165.0 0.30 0.39 1,358.0 420.0 410.0 165.0 0.30 0.39 

3 Sep 08 1,657.0 416.0 396.0 175.0 0.24 0.42 1,657.0 416.0 396.0 175.0 0.24 0.42 

11 Sep 08 1,537.0 465.0 430.0 259.0 0.28 0.56 1,537.0 465.0 430.0 259.0 0.28 0.56 

15 Sep 08 1,442.0 445.0 425.0 210.0 0.29 0.47 1,442.0 445.0 425.0 210.0 0.29 0.47 

20 Sep 08 1,647.0 398.0 410.0 220.0 0.25 0.55 1,647.0 398.0 410.0 220.0 0.25 0.55 

AVE 1,528.2 428.8 414.2 205.8 0.27 0.48 1,528.2 428.8 414.2 205.8 0.27 0.48 

SD 129.6 26.3 13.5 37.6 0.03 0.07 129.6 26.3 13.5 37.6 0.03 0.07 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 



Table B.8  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 1 effluent of two DHS systems (RUN II)  

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment 
 1 

2 Sep 08 448.8 220.0 52.0 32.0 0.12 0.15 364.0 198.0 25.0 20.0 0.07 0.10 

3 Sep 08 544.0 182.0 49.0 25.0 0.09 0.14 320.0 142.1 32.0 19.2 0.10 0.14 

11 Sep 08 380.0 186.0 42.2 28.0 0.11 0.15 432.0 133.8 33.8 19.5 0.08 0.15 

15 Sep 08 325.0 175.0 39.0 23.0 0.12 0.13 432.0 174.0 28.0 16.0 0.06 0.09 

20 Sep 08 354.0 195.0 35.0 24.0 0.10 0.12 368.0 156.0 27.0 21.0 0.07 0.13 

AVE 410.4 191.6 43.4 26.4 0.11 0.14 383.2 160.8 29.2 19.1 0.08 0.12 

SD 87.6 17.4 7.0 3.6 0.01 0.01 48.4 25.8 3.6 1.9 0.01 0.02 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 

 



Table B.9  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 2 effluent of two DHS systems (RUN II) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
2 

2 Sep 08 336.0 256.0 32.0 21.0 0.10 0.08 320.0 102.0 22.0 18.0 0.07 0.18 

3 Sep 08 230.0 185.0 40.2 19.0 0.17 0.10 297.0 149.0 29.0 19.0 0.10 0.13 

11 Sep 08 310.0 175.0 36.6 22.5 0.12 0.13 275.0 113.1 28.1 19.6 0.10 0.17 

15 Sep 08 257.0 165.0 32.0 21.0 0.12 0.13 310.0 182.4 28.1 19.6 0.09 0.11 

20 Sep 08 295.0 187.0 35.0 22.0 0.12 0.12 254.0 156.0 25.0 19.6 0.10 0.13 

AVE 285.6 193.6 35.2 21.1 0.13 0.11 291.2 140.5 26.4 19.2 0.09 0.14 

SD 42.2 36.0 3.4 1.3 0.03 0.02 26.8 32.8 2.9 0.7 0.01 0.03 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 
 
 



Table B.10  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 3 effluent of two DHS systems (RUN II) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
3 

2 Sep 08 408.0 210.0 32.0 25.0 0.08 0.12 321.0 120.0 25.0 19.7 0.08 0.16 

3 Sep 08 236.0 220.0 32.0 30.0 0.14 0.14 310.0 177.6 20.0 19.3 0.06 0.11 

11 Sep 08 210.0 189.0 28.1 19.5 0.13 0.10 235.0 81.5 25.3 18.0 0.11 0.22 

15 Sep 08 234.0 179.0 23.0 15.0 0.10 0.08 289.0 170.2 23.0 19.0 0.08 0.11 

20 Sep 08 256.0 165.0 24.0 17.0 0.09 0.10 275.0 164.0 25.0 17.0 0.09 0.10 

AVE 268.8 192.6 27.8 21.3 0.11 0.11 286.0 142.7 23.7 18.6 0.08 0.14 

SD 79.5 22.4 4.3 6.1 0.03 0.02 33.7 40.9 2.2 1.1 0.02 0.05 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 

 



Table B.11  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 4 effluent of two DHS systems (RUN II) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
4 

2 Sep 08 225.0 118.0 27.0 23.0 0.12 0.19 265.0 98.0 20.0 17.0 0.08 0.17 

3 Sep 08 223.0 114.0 25.0 24.0 0.11 0.21 256.0 101.0 19.4 16.0 0.08 0.16 

11 Sep 08 267.0 95.0 28.0 22.0 0.10 0.23 178.0 93.6 23.4 16.5 0.13 0.18 

15 Sep 08 245.0 114.0 27.0 19.0 0.11 0.17 232.0 122.0 23.0 17.0 0.10 0.14 

20 Sep 08 221.0 112.0 27.0 19.0 0.12 0.17 214.0 95.0 19.0 15.0 0.09 0.16 

AVE 236.2 110.6 26.8 21.4 0.11 0.19 229.0 101.9 21.0 16.3 0.09 0.16 

SD 19.7 9.0 1.1 2.3 0.01 0.03 34.9 11.6 2.1 0.8 0.02 0.01 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 
 

 



Table B.12  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations of two DHS influents (RUN III)  

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Inlet 

12 Jan 09 1,421.0 541.0 541.0 297.0 0.38 0.55 1,421.0 541.0 541.0 297.0 0.38 0.55 

15 Jan 09 954.0 421.0 457.0 234.0 0.48 0.56 954.0 421.0 457.0 234.0 0.48 0.56 

25 Feb 09 754.0 365.0 386.0 168.0 0.51 0.46 754.0 365.0 386.0 168.0 0.51 0.46 

15 Mar 09 1,141.0 485.0 534.0 256.0 0.47 0.53 1,141.0 485.0 534.0 256.0 0.47 0.53 

17 Mar 09 1,259.0 435.0 621.0 254.0 0.49 0.58 1,259.0 435.0 621.0 254.0 0.49 0.58 

AVE 1,105.8 449.4 507.8 241.8 0.47 0.54 1,105.8 449.4 507.8 241.8 0.47 0.54 

SD 260.2 66.7 89.5 47.2 0.05 0.05 260.2 66.7 89.5 47.2 0.05 0.05 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 



Table B.13  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 1 effluent of two DHS systems (RUN III) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment 
 1 

12 Jan 09 745.0 425.0 325.0 132.0 0.44 0.31 650.0 112.0 52.0 32.0 0.08 0.29 

15 Jan 09 525.0 321.0 315.0 103.0 0.60 0.32 418.0 154.0 42.0 25.0 0.10 0.16 

25 Feb 09 421.0 312.0 298.0 98.0 0.71 0.31 398.0 132.0 45.0 34.0 0.11 0.26 

15 Mar 09 589.0 410.0 330.0 120.0 0.56 0.29 417.0 147.0 52.0 29.0 0.12 0.20 

17 Mar 09 621.0 394.0 256.0 104.0 0.41 0.26 425.0 132.0 30.0 25.0 0.07 0.19 

AVE 580.2 372.4 304.8 111.4 0.54 0.30 461.6 135.4 44.2 29.0 0.10 0.22 

SD 119.7 52.3 29.9 14.2 0.12 0.02 105.8 16.2 9.1 4.1 0.02 0.05 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 

 



Table B.14  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 2 effluent of two DHS systems (RUN III) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
2 

12 Jan 09 350.0 287.0 134.0 99.0 0.38 0.34 450.0 102.0 22.0 18.0 0.05 0.18 

15 Jan 09 325.0 241.0 119.0 82.0 0.37 0.34 360.0 92.0 29.0 19.0 0.08 0.21 

25 Feb 09 312.0 169.0 108.0 95.0 0.35 0.56 325.0 113.1 28.1 19.6 0.09 0.17 

15 Mar 09 351.0 269.0 127.0 102.0 0.36 0.38 310.0 125.0 28.1 19.6 0.09 0.16 

17 Mar 09 294.0 287.0 121.0 110.0 0.41 0.38 298.0 103.0 30.0 18.0 0.10 0.17 

AVE 326.4 250.6 121.8 97.6 0.37 0.40 348.6 107.0 27.4 18.8 0.08 0.18 

SD 24.6 49.3 9.7 10.3 0.02 0.09 61.3 12.5 3.1 0.8 0.02 0.02 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 

 
 



Table B.15  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 3 effluent of two DHS systems (RUN III) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment 
3 

12 Jan 09 569.0 256.0 165.0 25.0 0.29 0.10 359.0 109.0 25.0 19.7 0.07 0.18 

15 Jan 09 457.0 248.0 108.0 30.0 0.24 0.12 310.0 104.0 20.0 19.3 0.06 0.19 

25 Feb 09 362.0 198.0 145.0 27.0 0.40 0.14 286.0 98.0 25.3 18.0 0.09 0.18 

15 Mar 09 378.0 196.0 165.0 29.0 0.44 0.15 289.0 154.0 23.0 19.0 0.08 0.12 

17 Mar 09 396.0 213.0 109.0 28.0 0.28 0.13 294.0 75.0 34.0 19.0 0.12 0.25 

AVE 432.4 222.2 138.4 27.8 0.33 0.13 307.6 108.0 25.5 19.0 0.08 0.19 

SD 84.4 28.1 28.5 1.9 0.09 0.02 30.2 28.8 5.2 0.6 0.02 0.05 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
 

 

 

 

 



Table B.16  Experimental results of TCOD, TBOD, SCOD and SBOD concentrations in segment 4 effluent of two DHS systems (RUN III) 

DHS 
profiles DATE 

BDHS FDHS 

TCOD SCOD TBOD SBOD5 
A

5 
B* 

TCOD 
* 

SCOD TBOD SBOD5 
A

5 
B* * 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Segment  
4 

12 Jan 09 654.0 184.0 135.0 29.0 0.21 0.16 289.0 110.0 20.0 18.0 0.07 0.16 

15 Jan 09 546.0 126.0 129.0 26.0 0.24 0.21 265.0 133.8 19.4 16.0 0.07 0.12 

25 Feb 09 436.0 135.0 109.0 26.0 0.25 0.19 254.0 93.6 25.3 18.5 0.10 0.20 

15 Mar 09 397.0 189.0 98.0 27.0 0.25 0.14 216.0 149.6 34.0 19.0 0.16 0.13 

17 Mar 09 395.0 174.0 114.0 19.0 0.29 0.11 274.0 107.0 25.0 17.0 0.09 0.16 

AVE 485.6 161.6 117.0 25.4 0.25 0.16 259.6 118.8 24.7 17.7 0.10 0.15 

SD 112.4 29.1 15.0 3.8 0.03 0.04 27.5 22.5 5.9 1.2 0.04 0.03 

 
Remark: A = TBOD/TCOD, B=SBOD/SBOD 
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EXPERIMENTAL DATA OF NITROGEN  

REMOVAL EFFICIENCY 

 

 

 

 



 

 

Table C.1  Nitrogen concentrations of influent of two DHS systems during RUN I 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Inlet 

10 Dec 08 38.9 156.0 0.1 0.1 195.1 38.9 156.0 0.1 0.1 195.1 

23 Feb 08 45.0 175.0 0.1 0.1 220.2 45.0 175.0 0.1 0.1 220.2 

4 Mar 08 25.9 145.0 0.1 0.1 171.1 25.9 145.0 0.1 0.1 171.1 

18 Mar 08 18.0 169.0 0.1 0.1 187.2 18.0 169.0 0.1 0.1 187.2 

7 Jun 08 38.0 184.0 0.1 0.1 222.2 38.0 184.0 0.1 0.1 222.2 

30 May 08 15.6 132.0 0.1 0.1 147.8 15.6 132.0 0.1 0.1 147.8 

7 Jul 08 28.9 165.0 0.1 0.1 194.1 28.9 165.0 0.1 0.1 194.1 

8 Jul 08 42.0 185.0 0.1 0.1 227.2 42.0 185.0 0.1 0.1 227.2 

9 Jul 08 38.5 175.8 0.1 0.1 214.5 38.5 175.8 0.1 0.1 214.5 

10 Jul 08 35.8 166.0 0.1 0.1 202.0 35.8 166.0 0.1 0.1 202.0 

AVE 32.7 165.3 0.1 0.1 198.1 32.7 165.3 0.1 0.1 198.1 

SD 10.1 16.9 0.0 0.0 25.0 10.1 16.9 0.0 0.0 25.0 

 

 

 



 

 

Table C.2  Nitrogen concentrations of segment 1 effluent of two DHS systems during RUN I 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment  
1 

10 Dec 08 25.0 125.0 0.3 0.7 151.0 96.0 184.0 0.1 0.1 280.2 

23 Feb 08 29.0 145.0 0.2 0.6 174.8 95.0 171.0 0.1 0.1 266.2 

4 Mar 08 15.0 123.0 0.3 0.8 139.1 87.0 175.0 0.1 0.1 262.2 

18 Mar 08 12.0 137.0 0.2 0.9 150.1 94.3 166.0 0.1 0.1 260.5 

7 Jun 08 25.0 142.0 0.4 0.4 167.8 97.0 174.0 0.1 0.1 271.2 

30 May 08 9.0 104.0 0.6 0.5 114.1 92.0 171.0 0.1 0.1 263.2 

7 Jul 08 20.5 123.0 0.1 0.6 144.2 94.0 173.0 0.1 0.1 267.2 

8 Jul 08 16.0 142.0 0.3 0.8 159.1 99.0 172.0 0.1 0.1 271.2 

9 Jul 08 22.0 134.0 0.3 0.7 157.0 102.0 171.0 0.1 0.1 273.2 

10 Jul 08 19.0 136.0 0.3 0.7 156.0 97.0 168.0 0.1 0.1 265.2 

AVE 19.3 131.1 0.3 0.7 151.3 95.3 172.5 0.1 0.1 268.0 

SD 6.3 12.5 0.1 0.1 16.7 4.0 4.8 0.0 0.0 6.0 

 

 



 

 

Table C.3  Nitrogen concentrations of segment 2 effluent of two DHS systems during RUN I 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
2 

10 Dec 08 23 86.0 4.1 0.6 113.7 71.0 195.0 0.1 0.1 266.2 

23 Feb 08 25 89.0 5.2 0.5 119.7 85.0 178.0 0.1 0.1 263.2 

4 Mar 08 19 96.0 2.3 0.8 118.1 74.0 210.0 0.1 0.1 284.2 

18 Mar 08 19 68.0 1.3 0.4 88.7 70.0 212.0 0.1 0.1 282.2 

7 Jun 08 22 75.0 3.0 0.3 100.3 69.0 190.0 0.1 0.1 259.2 

30 May 08 26 83.0 3.0 0.7 112.7 65.0 189.0 0.1 0.1 254.2 

7 Jul 08 28 87.0 1.9 0.9 117.8 71.0 187.0 0.1 0.1 258.2 

8 Jul 08 26 94.0 2.9 0.4 123.3 69.0 195.0 0.1 0.1 264.2 

9 Jul 08 22 93.0 3.6 0.7 119.3 67.0 196.0 0.1 0.1 263.2 

10 Jul 08 21 88.0 4.1 0.5 113.6 69.0 198.0 0.1 0.1 267.2 

AVE 23.1 85.9 3.1 0.6 112.7 71.0 195.0 0.1 0.1 266.2 

SD 3.1 8.7 1.2 0.2 10.5 5.5 10.2 0.0 0.0 9.8 

 

 



 

 

Table C.4  Nitrogen concentrations of segment 3 effluent of two DHS systems during RUN I 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
3 

10 Dec 08 12.0 59.0 12.0 6.0 89.0 60.0 189.0 0.1 0.1 266.2 

23 Feb 08 13.0 65.0 20.0 3.0 101.0 52.0 175.0 0.1 0.1 263.2 

4 Mar 08 9.0 63.0 23.0 2.0 97.0 67.0 179.0 0.1 0.1 284.2 

18 Mar 08 8.0 62.0 25.0 6.0 101.0 57.0 186.0 0.1 0.1 282.2 

7 Jun 08 13.0 54.0 15.0 5.0 87.0 50.0 179.0 0.1 0.1 259.2 

30 May 08 14.0 55.0 19.0 3.9 91.9 63.0 189.0 0.1 0.1 254.2 

7 Jul 08 12.0 57.0 20.0 4.2 93.2 62.0 192.0 0.1 0.1 258.2 

8 Jul 08 15.0 54.0 24.0 4.6 97.6 56.0 174.0 0.1 0.1 264.2 

9 Jul 08 11.0 52.0 19.0 4.9 86.9 62.0 176.0 0.1 0.1 263.2 

10 Jul 08 9.0 46.0 17.0 4.8 76.8 61.0 177.0 0.1 0.1 267.2 

AVE 11.6 56.7 19.4 4.4 92.1 59.0 181.6 0.1 0.1 240.8 

SD 2.3 5.7 4.0 1.2 7.5 5.2 6.7 0.0 0.0 9.8 

 

 



 

 

Table C.5  Nitrogen concentrations of segment 4 effluent of two DHS systems during RUN I 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
4 

10 Dec 08 15.0 36.0 7.8 9.6 68.4 52.0 198.0 0.1 0.1 195.1 

23 Feb 08 11.0 31.0 8.9 9.6 60.5 56.0 165.0 0.1 0.1 220.2 

4 Mar 08 11.0 37.0 6.0 6.7 60.7 59.0 174.0 0.1 0.1 171.1 

18 Mar 08 14.0 41.0 9.0 7.5 71.5 68.0 169.0 0.1 0.1 187.2 

7 Jun 08 9.0 39.0 6.0 5.7 59.7 49.0 162.0 0.1 0.1 222.2 

30 May 08 17.0 28.0 7.0 9.6 61.6 39.0 170.0 0.1 0.1 147.8 

7 Jul 08 8.0 29.0 10.2 8.2 55.4 53.0 185.0 0.1 0.1 194.1 

8 Jul 08 22.0 32.0 6.0 10.1 70.1 33.0 186.0 0.1 0.1 227.2 

9 Jul 08 9.2 37.0 9.0 8.6 63.8 52.0 183.0 0.1 0.1 214.5 

10 Jul 08 8.5 38.0 8.0 7.9 62.4 55.0 186.0 0.1 0.1 202 

AVE 12.5 34.8 7.8 8.4 63.4 51.6 177.8 0.1 0.1 229.6 

SD 4.5 4.5 1.5 1.4 5.1 9.8 11.5 0.0 0.0 13.6 

 

 



 

 

Table C.6  Nitrogen concentrations of influent of two DHS systems during RUN II 

DHS 
profiles  DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Inlet 

2 Sep 08 46.0 77.0 0.1 0.1 123.2 46.0 77.0 0.1 0.1 123.2 

3 Sep 08 39.0 164.9 0.1 0.1 204.1 39.0 164.9 0.1 0.1 204.1 

11 Sep 08 37.0 187.0 0.1 0.1 224.2 37.0 187.0 0.1 0.1 224.2 

15 Sep 08 32.0 168.0 0.1 0.1 200.2 32.0 168.0 0.1 0.1 200.2 

20 Sep 08 48.2 252.0 0.1 0.1 300.4 48.2 252.0 0.1 0.1 300.4 

AVE 40.4 169.8 0.1 0.1 210.4 40.4 169.8 0.1 0.1 210.4 

SD 6.6 62.6 0.0 0.0 63.3 6.6 62.6 0.0 0.0 63.3 

 

 

 

 

 

 

 



 

 

Table C.7  Nitrogen concentrations of segment 1 effluent of two DHS systems during RUN II 

DHS 
profiles  DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
1 

2 Sep 08 10.0 86.0 0.0 7.3 103.3 20.5 193.0 0.1 0.1 123.2 

3 Sep 08 16.0 71.5 0.3 4.6 92.4 20.1 180.0 0.1 0.1 204.1 

11 Sep 08 11.5 64.7 0.5 9.2 85.9 21.1 179.0 0.1 0.1 224.2 

15 Sep 08 7.6 79.5 0.3 8.4 95.8 24.0 195.7 0.1 0.1 200.2 

20 Sep 08 10.4 81.0 0.4 7.1 98.9 17.0 188.0 0.1 0.1 300.4 

AVE 11.1 76.5 0.3 7.3 95.3 20.5 187.1 0.1 0.1 207.9 

SD 3.1 8.4 0.2 1.7 6.6 2.5 7.5 0.0 0.0 8.7 

 

 

 

 

 

 

 



 

 

Table C.8  Nitrogen concentrations of segment 2 effluent of two DHS systems during RUN II 

DHS 
profiles  DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
2 

2 Sep 08 10.7 71.0 0.2 9.0 90.9 13.0 201.0 0.1 0.1 214.2 

3 Sep 08 14.9 62.0 0.2 7.5 84.6 16.0 198.0 0.1 0.1 214.2 

11 Sep 08 8.9 79.0 0.2 6.7 94.8 12.7 185.0 0.1 0.1 197.9 

15 Sep 08 6.7 62.0 0.3 8.1 77.1 11.0 198.0 0.1 0.1 209.2 

20 Sep 08 12.3 66.0 0.1 7.9 86.3 12.5 210.0 0.1 0.1 222.7 

AVE 10.7 68.0 0.2 7.8 86.7 13.0 198.4 0.1 0.1 211.6 

SD 3.1 7.2 0.1 0.8 6.7 1.8 9.0 0.0 0.0 9.1 

 

 

 

 

 

 

 



 

 

Table C.9  Nitrogen concentrations of segment 3 effluent of two DHS systems during RUN II 

DHS 
profiles  DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
3 

2 Sep 08 14.0 64.2 0.3 9.0 87.5 15.0 194.0 0.1 0.1 209.2 

3 Sep 08 15.0 61.0 0.3 7.2 83.5 25.0 180.0 0.1 0.1 205.2 

11 Sep 08 12.0 69.0 0.2 9.2 90.4 14.0 179.0 0.1 0.1 193.2 

15 Sep 08 16.0 62.8 0.1 7.9 86.8 13.0 191.5 0.1 0.1 204.7 

20 Sep 08 13.8 66.0 0.5 7.4 87.7 15.0 168.0 0.1 0.1 183.2 

AVE 14.2 64.6 0.3 8.1 87.2 16.4 182.5 0.1 0.1 199.1 

SD 1.5 3.1 0.1 0.9 2.5 4.9 10.5 0.0 0.0 10.7 

 

 

 

 

 

 

 



 

 

Table C.10  Nitrogen concentrations of segment 4 effluent of two DHS systems during RUN II 

DHS 
profiles  DATE 

BDHS (mg-N/L) FDHS (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
4 

2 Sep 08 9.0 63.0 0.4 7.5 79.9 17.0 186.7 0.1 0.1 203.9 

3 Sep 08 14.0 64.0 0.1 7.9 86.0 15.0 178.0 0.1 0.1 193.2 

11 Sep 08 3.0 62.0 0.3 6.8 72.1 18.0 174.0 0.1 0.1 192.2 

15 Sep 08 14.0 57.0 0.3 7.2 78.5 14.0 183.5 0.1 0.1 197.7 

20 Sep 08 10.0 64.0 0.3 7.0 81.3 17.0 179.4 0.1 0.1 196.6 

AVE 10.0 62.0 0.3 7.3 79.6 16.2 180.3 0.1 0.1 196.7 

SD 4.5 2.9 0.1 0.4 5.0 1.6 4.9 0.0 0.0 4.6 

 

 

 

 

 

 



 

 

Table C.11  Nitrogen concentrations of influent of two DHS systems during RUN III 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS  (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Inlet 

12 Jan 09 36.0 179.0 0.1 0.1 215.2 36.0 179.0 0.1 0.1 215.2 

15 Jan 09 36.0 156.0 0.1 0.1 192.2 36.0 156.0 0.1 0.1 192.2 

25 Feb 09 32.0 165.0 0.1 0.1 197.2 32.0 165.0 0.1 0.1 197.2 

15 Mar 09 34.0 156.0 0.1 0.1 190.2 34.0 156.0 0.1 0.1 190.2 

17 Mar 09 37.0 167.0 0.1 0.1 204.2 37.0 167.0 0.1 0.1 204.2 

AVE 35.0 164.6 0.1 0.1 199.8 35.0 164.6 0.1 0.1 199.8 

SD 2.0 9.5 0.0 0.0 10.2 2.0 9.5 0.0 0.0 10.2 

 

 

 

 

 

 



 

 

Table C.12  Nitrogen concentrations of segment 1 effluent of two DHS systems during RUN III 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS  (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
1 

12 Jan 09 15.0 86.0 0.3 7.5 108.8 12.0 195.0 0.1 0.1 207.20 

15 Jan 09 16.0 77.0 0.2 6.8 100.0 9.0 174.0 0.1 0.1 183.20 

25 Feb 09 14.0 95.0 0.4 9.5 118.9 8.0 179.0 0.1 0.1 187.20 

15 Mar 09 12.0 75.0 0.3 6.8 94.1 14.0 181.0 0.1 0.1 195.20 

17 Mar 09 17.0 90.0 0.3 7.1 114.4 9.0 197.0 0.1 0.1 206.20 

AVE 14.8 84.6 0.3 7.5 107.2 10.4 185.2 0.1 0.1 195.80 

SD 1.9 8.5 0.1 1.1 10.2 2.5 10.2 0.0 0.0 10.85 

 

 

 

 

 

 

 



 

 

Table C.13  Nitrogen concentrations of segment 2 effluent of two DHS systems during RUN III 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS  (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
2 

12 Jan 09 12.0 85.0 0.2 7.9 105.1 10.0 182.0 0.1 0.1 192.20 

15 Jan 09 11.0 77.0 0.2 7.5 95.7 16.0 174.0 0.1 0.1 190.20 

25 Feb 09 9.6 68.0 0.1 9.3 87.0 8.0 196.0 0.1 0.1 204.20 

15 Mar 09 8.5 64.0 0.3 7.4 80.2 7.0 164.0 0.1 0.1 171.20 

17 Mar 09 17.0 79.0 0.2 9.1 105.3 10.0 176.0 0.1 0.1 186.20 

AVE 11.6 74.6 0.2 8.2 94.7 10.2 178.4 0.1 0.1 188.80 

SD 3.3 8.5 0.1 0.9 11.1 3.5 11.8 0.0 0.0 11.91 

 

 

 

 

 

 

 



 

 

Table C.14  Nitrogen concentrations of segment 3 effluent of two DHS systems during RUN III 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS  (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment  
3 

12 Jan 09 12.0 71.0 0.2 10.6 93.8 9.0 198.0 0.1 0.1 207.2 

15 Jan 09 14.0 68.0 0.1 9.5 91.6 7.0 191.0 0.1 0.1 198.2 

25 Feb 09 19.0 54.0 0.3 8.3 81.6 12.0 187.0 0.1 0.1 199.2 

15 Mar 09 15.0 64.5 0.3 8.2 88.0 7.0 185.0 0.1 0.1 192.2 

17 Mar 09 13.0 67.5 0.1 9.5 90.1 11.0 201.0 0.1 0.1 212.2 

AVE 14.6 65.0 0.2 9.2 89.0 9.2 192.4 0.1 0.1 201.8 

SD 2.7 6.6 0.1 1.0 4.7 2.3 6.9 0.0 0.0 7.9 

 

 

 

 

 

 

 



 

 

Table C.15 Nitrogen concentrations of segment 4 effluent of two DHS systems during RUN III 

DHS 
profiles DATE 

BDHS (mg-N/L) FDHS  (mg-N/L) 

Org-N NH4 NO-N 2 NO-N 3 Total-N -N Org-N NH4 NO-N 2 NO-N 3 Total-N -N 

Segment 
4 

12 Jan 09 12.0 67.0 0.2 7.8 87.0 6.0 189.0 0.1 0.1 195.2 

15 Jan 09 11.0 63.0 0.3 6.4 80.7 5.0 175.0 0.1 0.1 180.2 

25 Feb 09 9.0 58.0 0.1 8.5 75.6 8.0 194.0 0.1 0.1 202.2 

15 Mar 09 6.0 56.0 0.4 7.1 69.5 9.0 176.0 0.1 0.1 185.2 

17 Mar 09 4.0 67.0 0.1 7.2 78.3 7.0 185.0 0.1 0.1 192.2 

AVE 8.4 62.2 0.2 7.4 78.2 7.0 183.8 0.1 0.1 191.0 

SD 3.4 5.1 0.1 0.8 6.4 1.6 8.2 0.0 0.0 8.58 
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Table D.1  Experimental results of COD fractionation of BDHS system during RUN I 

Profiles 
COD Concentrations (mg/L) Soluble COD 

(mg/L) 
Particulate COD 

(mg/L) 
Soluble COD 

 (%) Particulate COD (%) 

TCOD SCOD PCOD TBOD SBOD20 PBOD 20 USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,273 439 834 335 211 124 228 211 710 124 18 17 56 10 

Segment 1 776 291 485 234 115 119 176 115 366 119 23 15 47 15 

Segment 2 807 231 577 552 93 459 138 93 117 459 17 12 15 57 

Segment 3 446 206 240 260 75 185 131 75 55 185 29 17 12 42 

Segment 4 634 201 432 76 68 8 133 68 50 382 21 11 8 60 

 
Table D.2  Experimental results of COD fractionation of FDHS system during RUN I 

Profiles 
COD Concentrations (mg/L) Soluble COD 

(mg/L) 
Particulate COD 

(mg/L) 
Soluble COD 

 (%) Particulate COD (%) 

TCOD SCOD PCOD TBOD SBOD20 PBOD 20 USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,273 439 834 335 211 124 228 211 710 124 18 17 56 10 

Segment 1 427 328 99 138 93 45 236 93 53 45 55 22 13 11 

Segment 2 356 292 64 101 45 56 247 45 8 56 69 13 2 16 

Segment 3 469 240 229 96 56 39 184 56 190 39 39 12 40 8 

Segment 4 256 222 34 65 56 8 166 56 26 8 65 22 10 3 

 

 



 

 

Table D.3 Experimental results of COD fractionation of BDHS system during RUN II 

Profiles 

COD Concentrations (mg/L) Soluble COD 
(mg/L) 

Particulate COD 
(mg/L) 

Soluble COD  
(%) 

Particulate COD 
(%) 

TCOD SCOD PCOD TBOD SBOD20 PBOD 20 USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,528 429 1,099 550 379 171.0 49.8 379.0 928.2 171.0 3.3 24.8 60.7 11.2 

Segment 1 410 192 219 95 82 13.0 109.6 82.0 205.8 13.0 26.7 20.0 50.1 3.2 

Segment 2 286 194 92 65 56 9.0 137.6 56.0 83.0 9.0 48.2 19.6 29.1 3.2 

Segment 3 269 193 76 57 45 12.0 147.6 45.0 64.2 12.0 54.9 16.7 23.9 4.5 

Segment 4 236 111 125 55 45 10.0 65.6 45.0 115.4 10.0 27.8 19.1 48.9 4.2 

             

Table D.4 Experimental results of COD fractionation of FDHS system during RUN II 

Profiles 
COD Concentrations (mg/L) Soluble COD 

(mg/L) 
Particulate COD 

(mg/L) 
Soluble COD  

(%) 
Particulate COD 

(%) 

TCOD SCOD PCOD TBOD SBOD20 PBOD 20 USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,528 429 1,099 520 379 141 50 379 958 141 3 25 63 9 

Segment 1 383 161 222 42.0 42 0.0 119 42 222 0 31 11 58 0 

Segment 2 291 141 151 35.0 25 10 116 25 140 10 40 9 48 3 

Segment 3 286 143 143 32.0 25 7 118 25 136 7 41 9 48 2 

Segment 4 229 102 127 32.0 25 7 77 25 120 7 34 11 52 3 

 



 

 

Table D.5 Experimental results of COD fractionation of BDHS system during RUN III 

Profiles 
COD Concentrations (mg/L) Soluble COD 

(mg/L) 
Particulate COD 

(mg/L) 
Soluble COD 

 (%) 
Particulate COD 

(%) 

TCOD SCOD PCOD TBOD SBOD2

0 
PBOD 2

0 
USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,106 449 656 508 242 266 208 242 390 266 19 22 35 24 

Segment 1 580 372 208 305 111 193 261 111 14 193 45 19 2 33 

Segment 2 326 251 76 122 98 24 153 98 52 24 47 30 16 7 

Segment 3 432 222 210 138 28 111 194 28 100 111 45 6 23 26 

Segment 4 486 162 324 117 25 92 136 25 232 92 28 5 48 19 

 
                  
Table D.6 Experimental results of COD fractionation of FDHS system during RUN III 

Profiles 
Concentrations (mg/L) Soluble COD 

(mg/L) 
Particulate COD 

(mg/L) 
Soluble COD 

(%) 
Particulate COD 

(%) 

TCOD SCOD PCOD TBOD SBOD2

0 
PBOD 20 USCOD BSCOD UPCOD BPCOD USCOD BSCOD UPCOD BPCOD 

Inlet 1,106 449 656 508 242 266 208 242 390 266 19 22 35 24 

Segment 1 462 135 326 44 29 15 106 29 311 15 23 6 67 3 

Segment 2 349 107 242 27 19 9 88 19 233 9 25 5 67 2 

Segment 3 308 108 200 26 19 7 89 19 193 7 29 6 63 2 

Segment 4 260 119 141 25 18 7 101 18 134 7 39 7 52 3 
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Table E.1  Experimental data of biokinetic parameters of BDHS system 

DHS 
profiles S0/X S 

(mg/L) 0 DATE OURx,t 
(mgO2

OURx,e 
(mgO/mgVSS-h) 2

OC 
(mgO/mgVSS-h) 2

OURx,ox 
(mgO/L) 2

OC/S /mgVSS-h) 
rx         

(mgCOD/mgVSS-h) 
Yvss

(mgVSS/mgCOD) 
  µ (d-1) 

Segment 1 

0.05 20 24 May 08 0.011610 0.003000 5.72 0.00861 0.286 0.030 0.638 0.461 
0.10 40 24 May 08 0.011464 0.003900 6.58 0.00756 0.165 0.046 0.746 0.823 
0.20 80 24 May 08 0.014470 0.008100 7.02 0.00637 0.088 0.073 0.815 1.419 
0.30 120 24 May 08 0.017800 0.010650 7.61 0.00715 0.063 0.113 0.836 2.263 
0.50 200 24 May 08 0.020740 0.016950 8.28 0.00379 0.041 0.092 0.856 1.880 
0.80 320 3 Jun 08 0.021300 0.019200 8.30 0.00210 0.026 0.081 0.870 1.690 

Segment 2 

0.05 20 29 May 08 0.005870 0.001230 4.77 0.00464 0.239 0.019 0.680 0.317 
0.10 40 29 May 08 0.012590 0.007020 6.03 0.00557 0.151 0.037 0.758 0.672 
0.20 80 29 May 08 0.014040 0.007800 6.68 0.00624 0.084 0.075 0.818 1.468 
0.30 120 29 May 08 0.016890 0.008900 7.02 0.00799 0.059 0.137 0.841 2.756 
0.40 160 29 May 08 0.017890 0.010580 7.22 0.00731 0.045 0.162 0.853 3.315 
0.50 200 29 May 08 0.018200 0.012600 7.52 0.00560 0.038 0.149 0.859 3.071 
0.80 320 3 Jun 08 0.019260 0.016580 7.66 0.00268 0.024 0.112 0.871 2.342 

Segment 3 

0.05 20 2 Jun 08 0.00766 0.00240 5.13 0.00526 0.257 0.021 0.664 0.327 
0.10 40 2 Jun 08 0.00900 0.00480 5.22 0.00420 0.131 0.032 0.776 0.600 
0.20 80 3 Jun 08 0.00905 0.00600 5.40 0.00305 0.068 0.045 0.833 0.903 
0.30 120 3 Jun 08 0.01044 0.00630 5.69 0.00414 0.047 0.087 0.851 1.782 
0.40 160 3 Jun 08 0.01130 0.00860 6.03 0.00270 0.038 0.072 0.859 1.477 
0.50 200 3 Jun 08 0.01218 0.00990 6.13 0.00228 0.031 0.074 0.865 1.545 
0.80 320 3 Jun 08 0.01309 0.01234 6.35 0.00075 0.020 0.038 0.875 0.794 

Segment 4 

0.05 20 3 Jun 08 0.00748 0.00150 4.82 0.00598 0.241 0.025 0.678 0.404 
0.10 40 3 Jun 08 0.00831 0.00330 5.13 0.00420 0.131 0.032 0.776 0.600 
0.20 80 3 Jun 08 0.00962 0.00360 5.27 0.00305 0.068 0.045 0.833 0.903 
0.30 120 3 Jun 08 0.00985 0.00390 5.59 0.00595 0.047 0.128 0.851 2.610 
0.40 160 3 Jun 08 0.01198 0.00640 5.91 0.00558 0.037 0.151 0.860 3.118 
0.50 200 3 Jun 08 0.01605 0.01160 5.99 0.00445 0.030 0.149 0.866 3.089 
0.8 320 3 Jun 08 0.01890 0.01650 6.33 0.00240 0.020 0.121 0.875 2.551 

 



 

 

Table E.2  Experimental data of biokinetic parameters of FDHS system 

DHS 
profiles S0/X S 

(mg/L) 0 DATE OURx,t 
(mgO2

OURx,e 
(mgO2/mgVSS-h) /mgVSS-h) 

OC 
(mgO2

OURx,ox 
(mgO2/mgVSS-h) /L) OC/S rx         

(mgCOD/mgVSS-h) 
Yvss 

(mgVSS/mgCOD) µ (d-1) 

Segment 1 

0.05 20 29 May 08 0.005550 0.000730 6.03 0.00482 0.151 0.032 0.551 0.423 
0.10 40 29 May 08 0.007180 0.000900 6.16 0.00628 0.154 0.041 0.549 0.538 
0.20 80 29 May 08 0.007640 0.000920 6.35 0.00672 0.079 0.085 0.598 1.215 
0.30 120 29 May 08 0.010350 0.001500 6.37 0.00885 0.053 0.167 0.615 2.460 
0.40 160 3 May 08 0.011310 0.003700 6.64 0.00761 0.042 0.183 0.622 2.739 
0.50 200 29 May 08 0.013370 0.006240 6.88 0.00713 0.034 0.207 0.627 3.119 
0.80 320 3 Jun 08 0.014225 0.010135 7.25 0.00409 0.023 0.181 0.635 2.750 

Segment 2 

0.05 20 3 May 08 0.003920 0.000923 5.86 0.00300 0.293 0.010 0.459 0.113 
0.10 40 3 May 08 0.004950 0.001200 5.88 0.00375 0.147 0.026 0.554 0.339 
0.20 80 3 May 08 0.005020 0.001500 6.15 0.00352 0.077 0.046 0.599 0.659 
0.30 120 24 May 08 0.005329 0.001880 6.85 0.00345 0.057 0.060 0.612 0.888 
0.40 160 3 May 08 0.006675 0.002600 6.89 0.00408 0.043 0.095 0.621 1.411 
0.50 200 3 May 08 0.007670 0.004300 7.01 0.00337 0.035 0.096 0.627 1.446 

Segment 3 

0.05 20 2 Jun 08 0.005490 0.000670 5.83 0.00482 0.292 0.017 0.460 0.183 
0.10 40 2 Jun 08 0.006840 0.001570 5.90 0.00527 0.148 0.036 0.554 0.475 
0.20 80 2 Jun 08 0.008300 0.003330 6.30 0.00497 0.079 0.063 0.598 0.906 
0.30 120 2 Jun 08 0.008740 0.004870 6.51 0.00387 0.054 0.071 0.614 1.051 
0.40 160 3 Jun 08 0.009020 0.005980 6.80 0.00304 0.043 0.072 0.622 1.067 
0.50 200 3 Jun 08 0.010100 0.007200 6.85 0.00290 0.034 0.085 0.627 1.274 
0.80 320 3 Jun 08 0.012130 0.010811 7.56 0.00132 0.024 0.056 0.634 0.850 

Segment 4 

0.05 20 3 Jun 08 0.004230 0.001200 2.53 0.00303 0.127 0.024 0.567 0.326 
0.10 40 3 Jun 08 0.004350 0.001500 4.94 0.00285 0.124 0.023 0.569 0.315 
0.20 80 29 May 08 0.004450 0.001500 5.14 0.00295 0.064 0.046 0.608 0.670 
0.30 120 2 Jun 08 0.005050 0.001700 5.42 0.00335 0.045 0.074 0.620 1.104 
0.40 160 3 Jun 08 0.008290 0.004600 6.02 0.00369 0.038 0.098 0.625 1.471 
0.50 200 3 Jun 08 0.009600 0.006800 6.23 0.00280 0.031 0.090 0.629 1.357 
0.80 320 3 Jun 08 0.010500 0.008912 6.5 0.001588 0.020 0.078 0.636 1.194 
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Table F.1  Experimental data of retained sludge concentrations during RUN I  

DHS profiles 

RUN I  

Date 
BDHS (g/L-sponge) FDHS (g/L-sponge) 

MLSS MLVSS MLSS MLVSS 

Segment 1 

30 May 08 39.4 33.4 78.6 77.0 
7 Jul 08 39.0 34.0 79.4 78.0 
8 Jul 08 34.0 29.0 78.0 72.0 
9 Jul 08 42.0 28.0 76.0 74.0 
10 Jul 08 45.0 27.0 77.5 77.0 

AVE 39.9 30.3 77.9 75.6 
SD 4.1 3.2 1.3 2.5 

Segment 2 

30 May 08 36.0 24.0 13.9 13.2 
7 Jul 08 32.0 26.0 12.8 12.0 
8 Jul 08 26.0 20.0 10.8 10.0 
9 Jul 08 30.5 19.0 13.4 13.0 
10 Jul 08 24.0 18.0 12.9 12.5 

AVE 29.7 21.4 12.8 12.1 
SD 4.8 3.4 1.2 1.3 

Segment 3 

30 May 08 32.0 18.0 34.2 30.0 
7 Jul 08 29.0 22.0 32.0 29.0 
8 Jul 08 30.0 23.0 28.7 27.0 
9 Jul 08 28.0 18.0 31.0 28.4 
10 Jul 08 32.5 19.2 30.5 29.5 

AVE 30.3 20.0 31.3 28.8 
SD 1.9 2.3 2.0 1.2 

Segment 4 

30 May 08 62.5 52.0 48.9 46.0 
7 Jul 08 57.9 48.0 45.4 42.7 
8 Jul 08 61.0 54.0 42.0 39.5 
9 Jul 08 56.0 47.0 41.4 38.9 
10 Jul 08 58.9 51.0 45.3 42.6 

AVE 59.3 50.4 44.6 41.9 
SD 2.6 2.9 3.0 2.9 
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Table F.2  Experimental data of retained sludge concentrations during RUN II  

DHS profiles 

RUN II 

Date 
BDHS (g/L-sponge) FDHS (g/L-sponge) 

MLSS MLVSS MLSS MLVSS 

Segment 1 

30 May 08 27.0 19.6 56.0 55.0 
7 Jul 08 29.0 18.4 58.3 48.0 
8 Jul 08 25.0 26.0 51.4 57.0 
9 Jul 08 24.0 17.0 57.4 47.0 
10 Jul 08 26.3 18.7 50.4 47.5 

AVE 26.3 19.9 54.7 50.9 
SD 1.9 3.5 3.6 4.7 

Segment 2 

30 May 08 28.0 21.0 11.5 11.2 
7 Jul 08 24.5 17.0 14.5 14.0 
8 Jul 08 26.0 17.0 13.7 13.5 
9 Jul 08 24.6 15.6 11.5 11.0 
10 Jul 08 27.5 22.1 12.4 12.0 

AVE 26.1 18.5 12.7 12.3 
SD 1.6 2.8 1.3 1.4 

Segment 3 

30 May 08 23.0 14.0 27.0 26.0 
7 Jul 08 24.0 19.0 28.0 27.0 
8 Jul 08 20.0 13.0 29.4 29.0 
9 Jul 08 24.4 15.0 22.0 22.0 
10 Jul 08 22.7 16.5 26.6 25.0 

AVE 22.8 15.5 26.6 25.8 
SD 1.7 2.3 2.8 2.6 

Segment 4 

30 May 08 36.0 32.0 39.4 37.0 
7 Jul 08 40.4 36.0 36.2 34.0 
8 Jul 08 27.0 24.0 38.3 36.0 
9 Jul 08 31.5 28.0 39.4 37.0 
10 Jul 08 34.8 31.0 36.2 34.0 

AVE 33.9 30.2 37.9 35.6 
SD 5.0 4.5 1.6 1.5 
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Table F.3  Experimental data of retained sludge concentrations during RUN III  

DHS profiles 

RUN III  

Date 
BDHS (g/L-sponge) FDHS (g/L-sponge) 

MLSS MLVSS MLSS MLVSS 

Segment 1 

30 May 08 34.0 25.6 60.0 69.0 
7 Jul 08 42.0 24.0 58.9 57.0 
8 Jul 08 28.0 29.0 57.0 51.0 
9 Jul 08 33.5 22.0 62.0 47.0 
10 Jul 08 28.2 27.0 56.5 53.5 

AVE 33.1 25.5 58.9 55.5 
SD 5.7 2.7 2.2 8.4 

Segment 2 

30 May 08 26.0 21.0 13.4 13.0 
7 Jul 08 27.0 18.0 16.0 15.0 
8 Jul 08 25.0 22.0 13.0 12.0 
9 Jul 08 24.6 17.5 15.0 14.5 
10 Jul 08 26.0 18.5 13.0 12.4 

AVE 25.7 19.4 14.1 13.4 
SD 0.9 2.0 1.4 1.3 

Segment 3 

30 May 08 25.0 16.0 26.0 25.0 
7 Jul 08 19.0 14.0 27.4 26.7 
8 Jul 08 29.0 19.0 32.9 31.0 
9 Jul 08 29.6 21.5 28.0 27.0 
10 Jul 08 33.2 21.0 27.0 26.5 

AVE 27.2 18.3 28.3 27.2 
SD 5.4 3.2 2.7 2.2 

Segment 4 

30 May 08 50.2 42.7 40.6 39.0 
7 Jul 08 48.2 41.0 38.5 37.0 
8 Jul 08 58.8 50.0 42.7 41.0 
9 Jul 08 45.9 39.0 38.5 37.0 
10 Jul 08 47.1 40.0 40.1 38.5 

AVE 50.0 42.5 40.1 38.5 
SD 5.2 4.4 1.7 1.7 

 

 

 

 

 



Table F.4 EPS concentrations in sludge during RUN I 

DHS 
Profiles DATE 

Bound EPS (mg/mg-SS) Soluble EPS  (mg/mg-SS) 

Protein (P) Carbohydrate (C) P/C Protein (P) Carbohydrate (C) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 1 

30 May 08 45.0 45.5 10.2 14.5 4.4 3.1 18.2 38.9 7.1 19.4 2.6 2.0 

7 Jul 08 56.0 38.0 11.5 13.0 4.9 2.9 15.6 35.4 8.5 17.5 1.8 2.0 

8 Jul 08 37.0 40.4 8.7 12.0 4.3 3.4 14.7 34.2 6.9 17.9 2.1 1.9 

9 Jul 08 37.4 40.0 9.4 14.0 4.0 2.9 19.7 37.2 6.5 16.1 3.0 2.3 

10 Jul 08 46.5 39.0 8.2 15.0 5.7 2.6 18.9 38.4 6.3 19.5 3.0 2.0 

AVE 44.4 40.6 9.6 13.7 4.6 3.0 17.4 36.8 7.1 18.1 2.5 2.0 

SD 7.8 2.9 1.3 1.2 0.7 0.3 2.2 2.0 0.9 1.4 0.5 0.2 

Segment 2 

30 May 08 26.4 32.0 11.6 12.0 2.3 2.7 13.8 32.0 7.0 19.4 2.0 1.6 

7 Jul 08 28.7 27.0 9.8 9.6 2.9 2.8 12.3 38.0 5.7 14.6 2.2 2.6 

8 Jul 08 30.2 29.0 8.7 12.0 3.5 2.4 14.5 39.0 4.8 13.0 3.0 3.0 

9 Jul 08 33.9 33.0 10.9 8.9 3.1 3.7 10.6 31.0 6.5 12.1 1.6 2.6 

10 Jul 08 25.2 28.7 10.7 9.9 2.4 2.9 12.3 35.0 6.0 16.7 2.1 2.1 

AVE 28.9 29.9 10.3 10.5 2.8 2.9 12.7 35.0 6.0 15.2 2.2 2.4 

SD 3.4 2.5 1.1 1.4 0.5 0.5 1.5 3.5 0.8 2.9 0.5 0.5 

 

 

 



Table F.4 EPS concentrations in sludge during RUN I (Continued) 

DHS 
Profiles DATE 

Bound EPS (mg/g-SS) Soluble EPS  (mg/g-SS) 

Protein (P) Carbohydrate ( C ) P/C Protein (P) Carbohydrate ( C ) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 3 

30 May 08 40.2 19.5 14.6 10.6 2.8 1.8 18.9 24.2 7.8 13.5 2.4 1.8 

7 Jul 08 36.5 17.5 9.2 9.3 4.0 1.9 19.7 20.6 6.7 11.9 2.9 1.7 

8 Jul 08 35.1 16.7 8.7 10.5 4.0 1.6 19.4 20.1 6.9 14.2 2.8 1.4 

9 Jul 08 33.8 21.4 10.8 8.4 3.1 2.5 18.2 19.8 5.9 10.8 3.1 1.8 

10 Jul 08 39.8 18.4 13.2 8.9 3.0 2.1 16.8 27.6 7.0 13.0 2.4 2.1 

AVE 37.1 18.7 11.3 9.5 3.4 2.0 18.6 22.5 6.9 12.7 2.7 1.8 

SD 2.8 1.8 2.5 1.0 0.6 0.4 1.2 3.4 0.7 1.3 0.3 0.3 

Segment 4 

30 May 08 25.7 30.1 9.8 13.0 2.6 2.3 13.6 50.2 9.6 21.0 1.4 2.4 

7 Jul 08 21.3 28.3 8.5 10.5 2.5 2.7 14.9 43.1 8.7 23.0 1.7 1.9 

8 Jul 08 18.9 25.4 9.8 11.7 1.9 2.2 15.2 45.1 7.8 19.5 1.9 2.3 

9 Jul 08 17.6 26.4 9.2 13.7 1.9 1.9 13.6 39.7 8.2 18.0 1.7 2.2 

10 Jul 08 19.9 26.8 9.6 12.3 2.1 2.2 12.3 44.7 7.9 17.0 1.6 2.6 

AVE 20.7 27.4 9.4 12.2 2.2 2.3 13.9 44.6 8.4 19.7 1.7 2.3 

SD 3.1 1.8 0.5 1.2 0.3 0.3 1.2 3.8 0.7 2.4 0.2 0.3 

 

 

 



Table F.5 EPS concentrations in sludge during RUN II 

DHS 
Profiles DATE 

Bound EPS (mg/g-SS) Soluble EPS  (mg/g-SS) 

Protein (P) Carbohydrate ( C ) P/C Protein (P) Carbohydrate ( C ) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 1 

2 Sep 08 15.0 17.5 5.6 10.2 2.7 1.7 2.6 11.6 3.0 9.7 0.9 1.2 

3 Sep 08 13.0 15.2 4.9 8.5 2.7 1.8 3.2 14.2 1.7 8.6 1.9 1.7 

11 Sep 08 12.0 14.8 6.3 10.2 1.9 1.5 1.9 9.6 2.3 8.7 0.8 1.1 

15 Sep 08 11.3 16.4 4.7 8.9 2.4 1.8 2.0 9.2 1.4 10.2 1.4 0.9 

20 Sep 08 14.0 14.9 5.9 9.3 2.4 1.6 1.8 12.9 1.7 9.4 1.1 1.4 

AVE 13.1 15.8 5.5 9.4 2.4 1.7 2.3 11.5 2.0 9.3 1.2 1.2 

SD 1.5 1.2 0.7 0.8 0.3 0.2 0.6 2.1 0.6 0.7 0.4 0.3 

Segment 2 

2 Sep 08 27.0 19.0 9.0 10.9 3.0 1.7 4.0 7.0 5.9 6.5 0.7 1.1 

3 Sep 08 22.0 24.0 8.7 10.4 2.5 2.3 4.8 4.0 5.4 4.7 0.9 0.9 

11 Sep 08 26.0 18.0 9.4 12.0 2.8 1.5 5.7 5.0 3.9 6.8 1.5 0.7 

15 Sep 08 21.0 26.0 10.8 9.4 1.9 2.8 6.2 7.0 4.2 4.9 1.5 1.4 

20 Sep 08 24.0 15.0 12.0 8.7 2.0 1.7 5.2 8.3 3.9 6.5 1.3 1.3 

AVE 24.0 20.4 10.0 10.3 2.4 2.0 5.2 6.3 4.7 5.9 1.2 1.1 

SD 2.5 4.5 1.4 1.3 0.5 0.5 0.8 1.7 0.9 1.0 0.4 0.3 

  

 

 



Table F.5 EPS concentrations in sludge during RUN I (Continued) 

DHS 
Profiles DATE 

Bound EPS (mg/g-SS) Soluble EPS  (mg/g-SS) 

Protein (P) Carbohydrate ( C ) P/C Protein (P) Carbohydrate ( C ) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 3 

2 Sep 08 15.0 29.0 6.7 14.5 2.2 2.0 4.0 4.7 3.2 5.2 1.3 0.9 

3 Sep 08 16.0 21.0 5.5 9.8 2.9 2.1 2.9 6.0 3.1 4.9 0.9 1.2 

11 Sep 08 13.0 26.4 6.7 12.3 1.9 2.1 3.8 5.8 4.5 4.7 0.8 1.2 

15 Sep 08 12.5 24.0 7.1 11.7 1.8 2.1 4.1 3.4 3.2 4.8 1.3 0.7 

20 Sep 08 14.2 26.8 5.4 13.0 2.6 2.1 4.2 5.0 3.5 4.1 1.2 1.2 

AVE 14.1 25.4 6.3 12.3 2.3 2.1 3.8 5.0 3.5 4.7 1.1 1.1 

SD 1.4 3.1 0.8 1.7 0.5 0.1 0.5 1.0 0.6 0.4 0.2 0.2 

Segment 4 

2 Sep 08 36.0 29.0 14.0 12.0 2.6 2.4 9.7 8.4 9.3 7.4 1.0 1.1 

3 Sep 08 29.8 25.0 10.8 14.0 2.8 1.8 7.9 8.7 9.6 8.2 0.8 1.1 

11 Sep 08 29.7 30.0 17.0 9.4 1.7 3.2 10.9 7.4 7.5 6.2 1.5 1.2 

15 Sep 08 32.0 25.0 10.0 8.8 3.2 2.8 9.6 8.6 8.0 7.8 1.2 1.1 

20 Sep 08 31.9 24.0 10.7 9.9 3.0 2.4 8.7 8.3 9.8 6.7 0.9 1.2 

AVE 31.9 26.6 12.5 10.8 2.7 2.5 9.4 8.3 8.8 7.3 1.1 1.1 

SD 2.6 2.7 3.0 2.1 0.6 0.5 1.1 0.5 1.0 0.8 0.3 0.1 

 

 

 



Table F.6 EPS concentrations in sludge during RUN III  

DHS 
Profiles DATE 

Bound EPS (mg/g-SS) Soluble EPS  (mg/g-SS) 

Protein (P) Carbohydrate ( C ) P/C Protein (P) Carbohydrate ( C ) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 1 

12 Jan 09 18.4 35.0 5.3 14.0 3.5 2.5 4.0 16.0 3.2 12.0 1.3 1.3 

15 Jan 09 21.2 30.1 5.6 10.0 3.8 3.0 7.5 17.2 3.0 14.0 2.5 1.2 

25 Feb 09 20.1 29.8 5.7 12.0 3.5 2.5 4.9 18.0 5.0 8.0 1.0 2.3 

15 Mar 09 18.0 34.3 6.3 11.0 2.9 3.1 5.6 21.0 3.8 12.0 1.5 1.8 

17 Mar 09 19.0 32.4 5.0 12.0 3.8 2.7 5.4 14.0 2.0 5.0 2.7 2.8 

AVE 19.3 32.3 5.6 11.8 3.5 2.8 5.5 17.2 3.4 10.2 1.8 1.9 

SD 1.3 2.4 0.5 1.5 0.4 0.3 1.3 2.6 1.1 3.6 0.8 0.7 

Segment 2 

12 Jan 09 36.0 22.0 10.1 14.0 3.6 1.6 6.7 8.9 4.9 6.0 1.4 1.5 

15 Jan 09 29.8 23.0 12.3 13.0 2.4 1.8 7.5 6.4 5.2 7.8 1.4 0.8 

25 Feb 09 32.0 28.0 11.4 11.0 2.8 2.5 5.8 9.7 3.8 5.6 1.5 1.7 

15 Mar 09 30.1 25.0 8.5 9.7 3.5 2.6 7.1 11.4 3.9 6.9 1.8 1.7 

17 Mar 09 32.0 24.0 9.4 16.0 3.4 1.5 5.9 8.4 4.5 5.6 1.3 1.5 

AVE 32.0 24.4 10.3 12.7 3.1 2.0 6.6 9.0 4.5 6.4 1.5 1.4 

SD 2.5 2.3 1.5 2.5 0.5 0.5 0.7 1.8 0.6 1.0 0.2 0.4 

 

 

 



Table F.6 EPS concentrations in sludge during RUN III (Continued) 

DHS 
Profiles DATE 

Bound EPS (mg/g-SS) Soluble EPS  (mg/g-SS) 

Protein (P) Carbohydrate ( C ) P/C Protein (P) Carbohydrate ( C ) P/C 

BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS BDHS FDHS 

Segment 3 

12 Jan 09 19.2 38.0 4.9 17.0 3.9 2.2 7.9 6.0 3.7 4.5 2.1 1.3 

15 Jan 09 17.0 30.0 7.2 19.0 2.4 1.6 8.3 4.2 3.5 5.6 2.4 0.8 

25 Feb 09 15.0 31.0 6.7 16.0 2.2 1.9 5.9 5.8 4.1 3.9 1.4 1.5 

15 Mar 09 18.0 31.0 7.8 15.0 2.3 2.1 7.4 4.8 2.8 5.1 2.6 0.9 

17 Mar 09 16.4 29.0 5.2 15.0 3.2 1.9 8.5 5.2 3.9 4.9 2.2 1.1 

AVE 17.1 31.8 6.4 16.4 2.8 2.0 7.6 5.2 3.6 4.8 2.2 1.1 

SD 1.6 3.6 1.3 1.7 0.7 0.2 1.0 0.7 0.5 0.6 0.4 0.3 

Segment 4 

12 Jan 09 35.0 27.0 13.4 16.0 2.6 1.7 9.2 8.5 7.8 9.0 1.2 0.9 

15 Jan 09 28.0 19.4 14.1 13.0 2.0 1.5 7.9 7.4 8.4 9.7 0.9 0.8 

25 Feb 09 27.9 25.0 12.0 17.0 2.3 1.5 8.2 5.8 6.9 7.5 1.2 0.8 

15 Mar 09 35.0 21.0 13.4 12.0 2.6 1.8 8.3 8.7 7.4 7.4 1.1 1.2 

17 Mar 09 37.0 23.0 10.5 13.0 3.5 1.8 8.3 7.9 7.2 8.4 1.2 0.9 

AVE 32.6 23.1 12.7 14.2 2.6 1.6 8.4 7.7 7.5 8.4 1.1 0.9 

SD 4.3 3.0 1.4 2.2 0.6 0.1 0.5 1.2 0.6 1.0 0.1 0.2 

 

 



 

 

 

 

 

 

 

 

 

 

APPENDIX G 

 

THE UNIFIED MULTI-COMPONENT CELLULAR 

AUTOMATON (UMCCA) MODEL DATA  

 

 

 

 



 

 

G.1    Part of the 2-D Physical Space of the Model 

There are 150 compartments across the x direction and 70 compartments across the z direction.  For the shaded element, i=1 since it is in 

the 1st row, and j=2 since it is in the 2nd

      

 column.  Thus, the shaded element is compartment (2, 1). 

 

 

Figure G.1 Example of the part of 2-D physical space of the model 

 

 

X-direction 

Y
-direction 



 

 

G.2     Statistical Analysis of Data Output for the UMCCA Model 

 
Table G.1  Statistical analysis of data output for the segment 1 of FDHS system (Bioage 45 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0703-1.0 0.2301 0.0023 1.00 0.1429 62.10 
X 0-0.7189 a 0.3120 0.0121 3.88 0.2546 81.60 
X 0-0.2624 res 0.1383 0.0098 7.09 0.0848 61.32 
EPS 0-0.0555 0.0304 0.0038 12.50 0.0167 54.93 
UAP 0-0.0102 0.0084 1.23×10 1.46 -4 0.0027 32.14 
BAP 0-1.06×10 8.72×10-4 3.12×10-4 0.36 -6 2.79×10 32.00 -4 
CompDen (gCODx 0-57.7 /L) 43.8 2.1 4.79 13.8 31.51 

          

Table G.2  Statistical analysis of data output for the segment 2 of FDHS system (Bioage 180 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0161-1.0 0.2412 0.0142 5.89 0.1465 60.73 
X 0-0.2940 a 0.0699 0.0107 15.36 0.0578 82.69 
X 0-0.1198 res 0.0683 8.43×10 12.34 -3 0.0416 60.91 
EPS 0-0.0048 2.63×10 2.41×10-3 9.85 -4 1.45×10 55.13 -3 
UAP 0-0.0047 0.0038 1.70×10 4.48 -4 1.22×10 32.11 -3 
BAP 0-1.31×10 1.07×10-5 3.67×10-5 3.43 -7 3.44×10 32.15 -6 
CompDen (gCODx 0-32.9 /L) 20.4 1.5 7.25 7.2 35.29 



 

 

Table G.3  Statistical analysis of data output for the segment 3 of FDHS system (Bioage 180 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.1181-1.0 0.1793 0.5917 3.30 0.1192 66.48 
X 0-0.1563 a 0.0526 7.78×10 14.80 -3 0.0479 91.06 
X 0-0.1520 res 0.0852 0.0113 13.24 0.0522 61.27 
EPS 0-1.46×10 7.24×10-3 5.68×10-4 7.85 -5 4.90×10 67.68 -4 
UAP 0-4.23×10 3.47×10-3 1.91×10-3 5.51 -5 1.11×10 31.98 -3 
BAP 0-3.41×10 2.79×10-3 1.10×10-4 3.95 -5 8.92×10 31.97 -5 
CompDen (gCODx 0-33.1 /L) 22.7 1.9 8.30 9.5 41.85 

   

Table G.4  Statistical analysis of data output for the segment 4 of FDHS system (Bioage 180 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0957-1.0 0.1466 9.50×10 6.48 -3 0.1067 72.78 
X 0-0.1269 a 0.0427 5.16×10 12.08 -3 0.0389 91.10 
X 0-0.1851 res 0.1048 8.33×10 7.95 -3 0.0643 61.35 
EPS 0-1.29×10 6.43×10-3 5.39×10-4 8.38 -3 4.35×10 67.65 -4 
UAP 0-3.89×10 3.18×10-3 9.38×10-3 2.95 -5 1.09×10 34.28 -3 
BAP 0-3.02×10 2.46×10-5 1.30×10-5 5.26 -6 7.89×10 32.07 -6 
CompDen (gCODx 0-40.8 /L) 26.3 2.2 8.25 12.6 47.91 

 

 



 

 

Table G.5  Statistical analysis of data output for the segment 1 of BDHS system (Bioage 245 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.2106-1.0 0.2909 0.0107 3.68 0.2028 69.74 
X 0-0.1922 a 0.3365 0.0322 9.58 0.2169 64.47 
X 0-0.0968 res 0.0543 7.47×10 13.76 -4 0.0334 61.51 
EPS 0-0.0050 0.0012 2.23×10 18.58 -4 7.23×10 60.24 -4 
UAP 0-0.0103 0.0103 3.89×10 3.78 -4 6.43×10 6.24 -4 
BAP 0-2.63×10 2.15×10-5 3.69×10-5 2.49 -7 6.89×10 3.20 -6 
CompDen (gCODx 0-170.5 /L) 99.0 9.4 9.45 35.5 35.81 

   

Table G.6  Statistical analysis of data output for the segment 2 of BDHS system (Bioage 65 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0502-1.0 0.2234 0.0028 1.25 0.1897 84.91 
X 0-0.3107 a 0.1172 0.0215 18.34 0.1035 88.31 
X 0-0.3074 res 0.1709 0.0215 12.58 0.1044 61.09 
EPS 0-0.1235 0.0620 0.0102 16.47 0.0400 64.52 
UAP 0-0.0167 0.0137 1.56×10 1.14 -4 0.0044 32.12 
BAP 0-1.53×10 1.26×10-4 2.26×10-4 1.79 -6 4.02×10 31.90 -5 
CompDen (gCODx 0-68.7 /L) 58.2 5.2 8.93 17.56 30.17 

 

 



 

 

Table G.7  Statistical analysis of data output for the segment 3 of BDHS system (Bioage 145 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0402-1.0 0.1820 0.0047 2.58 0.1560 85.71 
X 0-0.2354 a 0.0889 0.0135 15.19 0.0780 87.74 
X 0-0.4458 res 0.2491 0.0439 17.63 0.1516 60.86 
EPS 0-0.0594 0.0326 2.61×10 8.01 -3 0.0179 54.91 
UAP 0-0.0151 0.0124 3.98×10 3.21 -4 0.0039 31.45 
BAP 2.39×10 1.96×10-4 3.12×10-4 3.12 -6 6.27×10 31.99 -5 
CompDen (gCODx 0-98.9 /L) 67.2 8.6 12.80 28.3 42.11 

               

Table G.8  Statistical analysis of data output for the segment 4 of BDHS system (Bioage 105 days) 

Variables Range of Values Total Average Average σ by 
row 

% of average 
value 

Average σ by 
column 

% of average 
value 

S 0.0397-1.0 0.1815 0.0043 2.36 0.1081 59.56 
X 0-0.3531 a 0.1332 0.0224 16.81 0.1176 88.29 
X 0-0.3625 res 0.2015 0.0178 8.78 0.1231 61.09 
EPS 0-0.0506 0.2780 0.0252 9.06 0.1821 65.50 
UAP 0-0.0139 0.0114 0.68×10 5.96 -4 0.0036 31.58 
BAP 0-2.61×10 2.14×10-4 5.37×10-4 2.51 -6 6.84×10 31.96 -5 
CompDen (gCODx 0-81.2 /L) 59.2 6.2 10.47 20.1 33.95 



 

 

 

 

 

 

 

 

APPENDIX H 

 

EXPERIMENTAL DATA OF DISOLVED OXYGEN, TOTAL 

SUSPENDED SOLIDS AND PH VALUES 

 

 

 

 

 

 

 

 



 
 
 

 

Table H.1  TSS removal efficiency of FDHS and BDHS system during RUN I  

Date 
BDHS system FDHS system 

Influent Effluent % 
Removal Influent Effluent % 

Removal 
10 Dec 08 350 96 72.6 350 35.0 90.0 
23 Feb 08 1,050 230 78.1 1,050 97.6 90.7 
4 Mar 08 560 145 74.1 560 72.0 87.1 
18 Mar 08 801 233 70.9 801 56.0 93.0 
7 Jun 08 688 189 72.5 688 61.0 91.1 
30 May 08 650 165 74.6 650 56.0 91.4 
7 Jul 08 920 276 70.0 920 74.0 92.0 
8 Jul 08 712 224 68.5 712 66.0 90.7 
9 Jul 08 690 202 70.7 690 65.0 90.6 
10 Jul 08 650 189 70.9 650 64.0 90.2 
Average 707.1 194.9 72.4 707.1 64.7 90.9 
S.D 190.9 51.0 2.8 190.9 15.9 91.7 

       

Table H.2  TSS removal efficiency of FDHS and BDHS system during RUN II  

Date 
BDHS system FDHS system 

Influent Effluent % 
Removal Influent Effluent % 

Removal 
2 Sep 08 740 67 90.9 740 65 91.2 
3 Sep 08 820 75 90.9 820 73 91.1 
11 Sep 08 720 89 87.6 720 68 90.6 
15 Sep 08 720 74 89.7 720 70 90.3 
20 Sep 08 657 79 88.0 657 72 89.0 
Average 731.4 76.8 89.4 731.4 69.6 90.4 
S.D 58.6 8.1 1.6 58.6 3.2 0.9 

 
 

 

 

 

 

 

 



 
 
 

 

Table H.3  TSS removal efficiency of FDHS and BDHS system during RUN III 

Date 
BDHS system FDHS system 

Influent Effluent % 
Removal Influent Effluent % 

Removal 
12 Jan 09 780 179 77.1 780 89 88.6 
15 Jan 09 670 160 76.1 670 78 88.4 
25 Feb 09 560 148 73.6 560 65 88.4 
15 Mar 09 813 175 78.5 813 87 89.3 
17 Mar 09 673 156 76.8 673 93 86.2 
Average 699.2 163.6 76.4 699.2 82.4 88.2 
S.D 100.5 13.0 1.8 100.5 11.2 1.2 

 

Table H.4 pH values of FDHS and BDHS system during RUN I 

Date 
BDHS System FDHS System 

Influent Effluent Influent Effluent 
10 Dec 08 6.9 7.6 4.1 4.6 
23 Feb 08 6.9 7.7 3.9 4.4 
4 Mar 08 7.0 7.8 3.9 4.3 
18 Mar 08 7.1 8.0 4.1 4.8 
7 Jun 08 7.0 7.9 4.0 4.5 
30 May 08 6.8 7.6 3.9 4.7 
7 Jul 08 6.8 7.6 3.8 4.9 
8 Jul 08 6.9 7.9 3.9 4.9 
9 Jul 08 7.0 7.8 4.1 4.9 
10 Jul 08 7.1 8.1 4.0 4.8 
Average 6.95 7.80 3.97 4.68 
S.D 0.11 0.18 0.11 0.22 

 

 

 

 

 

 

 



 
 
 

 

Table H.5  pH values of FDHS and BDHS system during RUN II 

Date 
BDHS System FDHS System 

Influent Effluent Influent Effluent 
2 Sep 08 7.2 7.9 4.1 4.8 
3 Sep 08 7.0 7.8 4.2 4.9 
11 Sep 08 6.9 7.7 3.9 4.8 
15 Sep 08 6.9 7.9 3.8 4.7 
20 Sep 08 6.8 7.7 4.0 4.9 
Average 6.96 7.79 4.00 4.81 
S.D 0.15 0.11 0.16 0.08 

 

Table H.6  pH values of FDHS and BDHS system during RUN III 

Date 
BDHS System FDHS System 

Influent Effluent Influent Effluent 
12 Jan 09 6.9 7.9 4.0 4.8 
15 Jan 09 6.9 7.8 3.8 4.8 
25 Feb 09 7.1 8.1 3.9 4.9 
15 Mar 09 7.0 7.9 4.0 4.8 
17 Mar 09 7.2 8.0 4.1 4.9 
Average 7.02 7.93 3.96 4.84 
S.D 0.13 0.13 0.11 0.06 

 

 

 

 

 

 

 

 

 



Table H.7  Dissolved oxygen profiles of FDHS and BDHS effluent during RUN I 

Date 
FDHS Effluent BDHS Effluent 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 1 Segment 2 Segment 3 Segment 4 
10 Dec 08 4.2 4.3 4.8 3.2 0.2 1.0 2.2 2.9 
23 Feb 08 3.1 3.8 4.3 2.4 0.1 0.3 2.7 3.1 
4 Mar 08 2.9 3.9 4.5 2.5 0.3 0.5 2.6 3.2 
18 Mar 08 3.4 4.2 4.6 2.4 0.2 0.6 2.9 3.0 
7 Jun 08 3.2 4.4 4.9 3.0 0.2 0.4 2.7 3.4 

30 May 08 2.8 4.1 4.5 2.6 0.1 0.6 3.1 3.3 
7 Jul 08 3.1 3.8 4.3 2.3 0.2 0.5 2.8 3.5 
8 Jul 08 3.2 4.2 4.5 2.2 0.3 0.7 2.5 3.2 
9 Jul 08 3.5 4.2 4.5 2.4 0.1 0.8 2.4 3.3 
10 Jul 08 3.3 4.3 4.7 2.5 0.1 0.9 2.5 3.4 

Average 3.27 4.12 4.56 2.55 0.18 0.63 2.64 3.23 
S.D 0.39 0.21 0.20 0.31 0.08 0.22 0.26 0.19 

 

 

 

 

 



 
 
 

 
Table H.8  Dissolved oxygen profiles of FDHS and BDHS effluent during RUN II 

Date 
FDHS Effluent BDHS Effluent 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 1 Segment 2 Segment 3 Segment 4 
2 Sep 08 2.9 4.9 5.0 3.1 4.1 3.8 5.2 3.4 
3 Sep 08 3.7 5.3 4.8 3.6 3.7 3.4 4.8 3.5 
11 Sep 08 3.3 5.2 5.1 3.7 4.0 3.5 5.4 3.6 
15 Sep 08 4.0 5.0 4.9 4.3 3.0 3.6 4.9 3.7 
20 Sep 08 3.3 5.0 4.8 4.1 3.8 3.7 5.5 3.6 

Average 3.44 5.08 4.92 3.76 3.72 3.60 5.16 3.56 
S.D 0.42 0.16 0.13 0.47 0.43 0.16 0.30 0.11 

    

         
Table H.9  Dissolved oxygen profiles of FDHS and BDHS effluent during RUN III 

Date 
FDHS Effluent BDHS Effluent 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 1 Segment 2 Segment 3 Segment 4 
12 Jan 09 2.9 4.2 5.2 3.7 2.6 3.1 3.6 3.4 
15 Jan 09 3.3 3.9 4.9 3.9 2.8 3.2 3.5 3.2 
25 Feb 09 2.9 4.1 5.3 3.7 2.9 3.4 3.3 3.3 
15 Mar 09 3.1 4.6 5.4 3.9 2.7 3.1 3.6 3.3 
17 Mar 09 3.2 4.5 4.9 3.8 2.5 3.4 3.4 3.4 

Average 3.08 4.26 5.14 3.80 2.70 3.24 3.48 3.32 
S.D 0.18 0.29 0.23 0.10 0.16 0.15 0.13 0.08 
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Abstract  
Aim of this research is to study the performances of the Downflow Hanging Sponge (DHS) systems using 
mixed fungal culture (FDHS) and mixed bacterial culture (BDHS) for treatment of UASB effluent of 
tapioca starch wastewater.  This study attempted to compare the performance of the fungal and bacterial 
systems by systematically studying biokinetics coefficients by respirometery. Also, the influencing of 
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bacteria culture, which explained the higher COD removal rate for the bacterial culture.  In steady state, 
the concentration of retained sludge in FDHS remained almost constant suggesting that the degradation of 
old biomass nearly balance the accumulation of the fresh one.  Macromolecular compounds such as 
proteins and carbohydrate can comprise a significant portion of dissolved organic carbon in the DHS 
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7 h HRT.  Values of biokinetic coefficients showed that substrate utilization rate and maximum specific 
growth rate were higher for the bacteria culture, which explained the higher COD removal rate for the 
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การประเมินการยอยสลายทางชีวภาพในระบบ Down-flow Hanging Sponge (DHS)  

ดวยคาคงที่ทางจลศาสตร  

Biokinetic Parameters as an Indicator to Biodegradability Assessment  

of Down-flow Hanging Sponge (DHS) System  
 

พัชรินทร  ราโช1 บุญชัย  วิจิตรเสถียร2 และ รญัจนา จลิดาล3 

Patcharin  Racho1 Boonchai  Wichitsathian2 and Ranjna Jindal3 
 

บทคัดยอ 
 บทความนีน้าํเสนอการอธิบายกลไกการยอยสลายทางชีวภาพในระบบ Downflow Hanging Sponge 

(DHS) เพ่ือบําบัดน้ําทิ้งจากระบบ UASB ในอุตสาหกรรมแปงมันสําปะหลัง ดวยการศึกษาองคประกอบของคาซีโอ

ดีที่เปนสารตั้งตนและคาคงที่ทางจลศาสตรของจุลชีพในระบบ DHS จากการศกึษาความสามารถในการยอยสลาย

ทางชีวภาพในระบบ DHS พบแนวโนมการลดลงของ BSCOD ตามระดับความสูงของถังปฏิกรณ DHS แต BPCOD 

พบการเพ่ิมขึ้นในน้ําเสียที่เขาและออกจากระบบ DHS ใน segment ที่ 2 และ 4 โดยเพ่ิมจาก 119 mg/L เปน 456 

mg/L และ 185 mg/L เปน 382 mg/L ตามลําดับ ซ่ึงการเพ่ิมขึ้นของ PBOD เกิดเนือ่งจากการสะสมและการหลุดของ

ระบบฟลมชีวภาพและมีผลกระทบตอคาคงที่ทางจลศาสตรในระบบ DHS โดย BPCOD เปนสารอินทรียที่มีโมเลกุล

ขนาดใหญจึงตองการกระบวนการไฮโดรไลซีสใหมีโมเลกุลขนาดเล็กกอนจึงจะดูดซึมเขาสูเซลลได อีกทั้งจากผล

การศกึษาพบวาองคประกอบของ BSCOD สวนใหญถูกกําจัดไปใน Segment ที่ 1 ของระบบ DHS โดยเม่ือพิจารณา

คาคงที่ทางจลศาสตรของจุลชีพในกลุม aerobic heterotrophs พบวาคา substrate utilization rate (rsu) และ maximum 

specific growth rate (µmax) ของตะกอนในระบบ DHS กลับสูงสุดใน Segment ที่ 4 และ 2 ซ่ึงอาจเกิดเนือ่งจากการใช

ออกซิเจนของจุลชีพในกระบวนการไฮโดรไลซีสเพ่ือเปล่ียนรูปสารอินทรียที่มีโมเลกุลขนาดใหญใหมีขนาดเล็กลง 

 คําสําคัญ: ระบบ downflow hanging sponge (DHS), การยอยสลายทางชีวภาพ, องคประกอบของซีโอดี, คาคงที่ทาง
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Quantification of Organic and Nitrogen Removal in Downflow 
Hanging Sponge (DHS) Systems as a Post-Treatment of UASB 
Effluent  

  
 

B. Wichitsathian* and P. Racho** 
 
 
 *School of Environmental Engineering, Institute of Engineering, Suranaree University of 

Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand 30000 (E-
mail: boonchai@sut.ac.th)  

 **School of Environmental Engineering, Institute of Engineering, Suranaree University of 
Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand 30000 (E-
mail: racho_p@hotmail.com) 

  
 
Abstract The aim of this research was to investigate the nature and composition 
of organic substrate in two down-flow hanging sponge (DHS) systems using 
mixed fungal (FDHS) and bacterial (BDHS) cultures treatment for UASB 
effluent of tapioca starch wastewater, evaluated by COD fractionations and two 
material balances.  The random type DHS reactors were operated module 
column consisting of four identical segments connected vertically.  Results of 
the wastewater characterization showed that carbonaceous fractions were varied 
on a function of DHS height.  Two balances applied to experimental data were 
for chemical oxygen demand (COD) and nitrogen (N).  Results of mass balance 
calculations can also be used to examine the process behavior of two DHS 
systems to improve the organic and nitrogen removal mechanisms.    

  
KEYWORDS: downflow hanging sponge (DHS) system; biodegradation; COD 
fractions; COD mass balance; nitrogen mass balance; tapioca starch wastewater  
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