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When ultrasonic wave encounter rough surfaces, they become scattered,

leading to speckle noise in an ultrasound image. The speckle noise occurring can

be explained statistically by the Rayleigh distribution:

Rσ(r) =
r

σ2
e−

r2

2σ2 ,

where r ≥ 0 and σ is a parameter.

One mathematical model for reconstructing an observed noisy ultrasound

image is the integral equation

E(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(
ũ2

u2
+ 2 ln u + F(ũ)

)
dA,

where F(ũ) being a constant depending on ũ, for coordinate (x, y), u(x, y) is

intensity of desired image, ũ(x, y) is intensity of observed image and Ω is the

image domain.

The Calculus of Variations is the tool used to finding an optimal solution

u of the integral equation. It transforms the integral equation to the differential

equation

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2) = 0,
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where u = ũ on ∂Ω, which is called Euler-Lagrange equation.

The solution u is expected to be the noiseless image. The gradient descent

method is used to find the solution of the Euler-Lagrange equation numerically in

the prototype software. The results show that the noise in the ultrasound images

and videos is reduced.

School of Mathematics Student’s Signature

Academic Year 2008 Advisor’s Signature

Co-Advisor’s Signature



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor,

Asst. Prof. Dr. Jessada Tanthanuch and thesis co-advisor, Dr. Paramate Horkaew,

for their support, patient help, providing me with extensive literature background

and offering many useful suggestions. Also, I am indebted Dr. Chumrus Sakul-

paisarn for his ultrasound videos.

In addition, I would like to acknowledge the personal and professional

support received from the faculty of the School of Mathematics, Suranaree Uni-

versity of Technology: Assoc. Prof. Dr. Prapasri Asawakun, Prof. Dr. Sergey

Meleshko, Prof. Dr. Pairote Sattayatham, Assoc. Prof. Dr. Nikolay Moshkin,

Asst. Prof. Dr. Arjuna Chaiyasena, and Asst. Prof. Dr. Eckart Schulz.

Watchirawoot Seekot



CONTENTS

Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . II

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II RAYLEIGH DISTRIBUTION AND SPECKLE NOISE . . . 4

2.1 Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Derivation of the Rayleigh probability density function . . . . . . . 4

2.3 Harmonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 One-Dimensional Waves and Harmonic Waves . . . . . . . . 6

2.3.2 Superposition of harmonic Waves of the Same Frequency . . 7

2.3.3 Coherence and Incoherence . . . . . . . . . . . . . . . . . . . 11

2.4 Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III CALCULUS OF VARIATIONS AND ROF MODEL . . . . . 15

3.1 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The ROF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 The Least Square Problem . . . . . . . . . . . . . . . . . . . 19



VI

CONTENTS (Continued)

Page

3.2.3 Description of the ROF Model . . . . . . . . . . . . . . . . . 20

IV RESULT AND CONCLUSION . . . . . . . . . . . . . . . . . . 23

4.1 Description of the Proposed Model . . . . . . . . . . . . . . . . . . 23

4.2 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

APPENDICES

APPENDIX A SPECKLE FILTERS IN RADAR IMAGING . . . . . 54

APPENDIX B PROTOTYPE SOFTWARE . . . . . . . . . . . . . . . 57

B.1 Prototype Software . . . . . . . . . . . . . . . . 57

B.2 Source Code . . . . . . . . . . . . . . . . . . . . 58

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



LIST OF TABLES

Table Page

4.1 Correlation coefficients of reconstructed pattern images . . . . . . . 37

4.2 Correlation coefficients of reconstructed Lenna images. . . . . . . . 38



LIST OF FIGURES

Figure Page

2.1 The figures of coherent waves . . . . . . . . . . . . . . . . . . . . . 12

2.2 The figure of waves that combine with lots of different phases nearly

cancel out and yield very low irradiance (incoherent). . . . . . . . 12

2.3 Figure of scattering reflection from a rough surface. . . . . . . . . 13

4.1 The figures of pattern images reconstructed by ROF model. . . . . 39

4.2 The figures of pattern images reconstructed by Le et al.’s model . . 40

4.3 The figures of pattern images reconstructed by Proposed model. . . 41

4.4 The figures of Lenna images reconstructed by ROF model. . . . . . 42

4.5 The figures of Lenna images reconstructed by Le et al.’s model. . . 43

4.6 The figures of Lenna images reconstructed by proposed model. . . . 44

4.7 The figures of ultrasound images reconstructed by ROF model. . . 45

4.8 The figures of ultrasound images reconstructed by Le et al.’s model. 46

4.9 The figures of ultrasound images reconstructed by proposed model. 47

B.1 The figure of prototype software and its components. . . . . . . . 57



CHAPTER I

INTRODUCTION

Ultrasound images provide clinicians with non-invasive, low cost and real-

time images which can help them in diagnosis, planning and therapy. However,

the ultrasonic wave encounters rough surfaces which results in scattering and leads

to noise which is called speckle noise.

According to the literature review, there are many researches concerned

with speckle filters for radar images. For example the filter by Frost et al., the

filter by Lee, the filter by Kuan et al. and the homomorphic filter.

Frost et al. describe a filter dealing with multiplicative noise model while

the additive noise model is used in the filter by Kuan et al. Moreover, Lee adapted

the linear filter to consider the multiplicative noise model, while the homomorphic

filter uses the logarithm function to transform the multiplicative noise model to

the linear filter. The method of minimum mean square error is used for these

filters. See more details of all of these filter in APPENDIX A.

The main disadvantage of the above filters is that we have to know the

information of the noise in the computation. Difficulties arise when we work with

an ultrasound video because we do not have the speckle noise information.

This problem can be solved by the mathematical model called the varia-

tional approach. The representation of the image in several variational models is

presented by

ũ(x, y) = u(x, y) + n(x, y),

where (x, y) is the spatial coordinate, u(x, y) is intensity of the desired image at
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coordinate (x, y), ũ(x, y) is the intensity of the observed image and n(x, y) is the

intensity of additive noise at coordinate (x, y). The variational approach is used

for finding the desired image u from the obtained image ũ.

There are studies of digital image denoising models dealing with the varia-

tional approach, for example

1. The ROF model (1992)

In 1992, Rudin, Osher, and Fatemi presented a mathematical denoising

model which is called the ROF model which uses the additive noise model

and is based on calculus of variation. The ROF model considers u as the

solution to a problem of calculus of variation which minimizes the functional

F (u) =

∫∫
Ω

(√
u2

x + u2
y

)
dA + λ

∫∫
Ω

(u − ũ)2dA,

where Ω ∈ R
2 is the domain of the image functions and λ is a chosen pa-

rameter. By calculus of variations, the solution of this problem is obtained

when the Euler-Lagrange differential equation is satisfied, i.e.

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+ λ(u − ũ) = 0,

where
∂u

∂N
= 0 on ∂Ω and N is the normal vector to the boundary ∂Ω.

2. The variational approach for Poisson noise (2007)

Le, Chatrand and Asaki adapted the ROF model to reduce Poisson noise in

the image by minimizing the functional

G(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(u − ũ ln u)dA.

The Euler-Lagrange differential equation for solving this problem is

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

1

βu
(u − ũ) = 0,

where
∂u

∂N
= 0 on ∂Ω and N is the normal vector to the boundary ∂Ω.
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In this thesis, a variational approach adapted from the ROF model is used

to construct the model to reduce the speckle noise in the ultrasound image. The

model is to minimize the functional

E(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(
ũ2

u2
+ 2 ln u + F(ũ)

)
dA,

where β is a chosen parameter and F(ũ) is a function of ũ. We show that this

minimization problem has a unique solution.

Here, the Euler-Lagrange equation for minimizing E(u) is

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2) = 0,

where u = ũ on ∂Ω.

The solution of the above problem is approximated by the numerical method

called gradient descent method. Furthermore, prototype software for the model

implementation is developed . The pattern image and the Lenna image are used

to evaluate the proposed model by comparing the correlation coefficient of the

noisy images and the reconstructed images to the original ones. It is found that the

model can be used to denoise noisy images and ultrasound videos. The description

of the results is shown in section 4.4.



CHAPTER II

RAYLEIGH DISTRIBUTION AND SPECKLE

NOISE

This chapter presents the mathematical background of speckle noise which

concerns with the Rayleigh distribution.

2.1 Rayleigh distribution

The Rayleigh distribution is a continuous probability distribution. It can

arise when a two-dimensional vector has elements that are normally distributed

random variables, independent and they both have zero mean and equal variance.

The vector’s magnitude will then have a Rayleigh distribution.

Definition 2.1. The Rayleigh probability density function is

Rσ(r) =
r

σ2
e−

r2

2σ2 , (2.1)

where r ≥ 0 and σ is parameter.

2.2 Derivation of the Rayleigh probability density function

Let < x, y >∈ R
2 be a two-dimensional vector where x and y are nor-

mally distributed random variables, independent and both having zero mean and

equal variance. By definition of normal distribution, the probability density of the

random variable x is

Nσ(x) =
1

σ
√

2π
e−

x2

2σ2 ,
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where σ is a variance.

Similarly, the probability density of the random variable y is

Nσ(y) =
1

σ
√

2π
e−

y2

2σ2 .

Since x and y are independent then, the probability density function in the

rectangular coordinate of < x, y > is

R̂(x, y) = Nσ(x)Nσ(y)

=
1

2πσ2
e−

(x2+y2)

2σ2 .

We have the joint distribution in rectangular coordinates as∫ ∞

−∞

∫ ∞

−∞
R̂(x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x2+y2)

2σ2 dxdy.

By changing to the polar coordinate we let x = r cos θ and y = r sin θ. The

corresponding Jacobian is ∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣ = r.

By the theorem of changing variables to polar form (Wade, 1999) and prop-

erty of distribution, we have∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x2+y2)

2σ2 dxdy =

∫ 2π

0

∫ ∞

0

r

2πσ2
e−

r2

2σ2 drdθ = 1. (2.2)

The marginal density function of r is obtained by integrating R̂(r, θ) with

respect to θ, thus we get

R̂(r) =

∫ 2π

0

r

2πσ2
e−

r2

2σ2 dθ

=
r

σ2
e−

r2

2σ2 .

This function is known as the Rayleigh density function and

Rσ(r) =

⎧⎪⎨⎪⎩
0 if r < 0∫ r

0

τ

σ2
e−

τ2

2σ2 dτ if r ≥ 0
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is a Rayleigh distribution.

The notation Rσ(r) =
r

σ2
e−

r2

2σ2 is denoted for the Rayleigh density function

in this thesis.

2.3 Harmonic Waves

2.3.1 One-Dimensional Waves and Harmonic Waves

First, we will describe the mathematical expression for wave motion and

the harmonic wave.

Definition 2.2. Let ψ be an n-dimensional vector, say ψ = ψ(x1, x2, ..., xn). The

Laplacian ∇2ψ of ψ is defined by

∇2ψ =
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+ ... +
∂2ψ

∂x2
n

.

Note that we may sometimes replace xn with variable t.

Definition 2.3. The differential wave equation which describes propagation

of waves with speed v respect to time t is given by

∇2ψ =
1

v2

∂2ψ

∂t2
.

In particular, the one-dimensional differential wave equation is given

by

∂2ψ

∂x2
=

1

v2

∂2ψ

∂t2
.

Definition 2.4. A function y = f(x ± vt) is said to be a function of one-

dimensional wave which moves along the x-axis at speed v relative to coordinate

(x, y) if it satisfies the one-dimensional differential wave equation,

∂2y

∂x2
=

1

v2

∂2y

∂t2
. (2.3)
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Definition 2.5. Harmonic wave is a particular wave which involves the sine

function

y = A sin[c(x ± vt)]

or cosine function

y = A cos[c(x ± vt)],

where A and c are constants. Note that A is called the amplitude of the wave and

can be assumed to be nonnegative.

We claim that y = A sin[c(x± vt)] satisfies the one-dimensional differential

wave equation. Since

∂2y

∂x2
= −Ac2 sin[c(x ± vt)]

and

∂2y

∂t2
= −Ac2v2 sin[c(x ± vt)].

This shows that y = A sin[c(x± vt)] satisfies the one-dimensional differential wave

equation, so it is a one-dimensional wave.

Similarly, in the case of y = A cos[c(x ± vt)], we conclude that it is also a

one-dimensional wave.

Denote ω = cv which is called the angular frequency. With these relation-

ships, it is easy to show the equivalence of the following general forms for harmonic

waves: y = A sin[cx±ωt]. Note that we only consider the case of the sine function

because the case of the cosine function is similar.

2.3.2 Superposition of harmonic Waves of the Same Fre-

quency

It is necessary to deal with situations in which two or more such waves arrive

at the same point in space or exist together along the same direction. Several im-
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portant cases of the combined effects of two or more harmonic waves are described

in this section. The first case deals with the superposition of harmonic waves of

different amplitudes and phases but with the same frequency. This leads to an

important difference between the irradiance attainable from randomly phased and

coherent harmonic waves.

To explain the combined effects of waves, we require the superposition prin-

ciple∗.

By the superposition principle, the superposition of harmonic waves may

be expressed in terms of equation

y = y1 + y2,

where y1 and y2 are the independent waves which exist together in the space.

The time variations of the harmonic waves at the given point can be ex-

pressed by

y1 = A1 sin(ωt + α1),

y2 = A2 sin(ωt + α2),

where A1, A2 are amplitudes of y1 and y2, α1, α2 are phases of y1 and y2 respec-

tively.

By the superposition principle, the resultant yR at the point is

yR = y1 + y2 = A1 sin(ωt + α1) + A2 sin(ωt + α2).

Using the trigonometric identity for sum of two sine functions with different

angles and recombining terms,

yR = (A1 cos α1 + A2 cos α2) sin ωt + (A1 sin α1 + A2 sin α2) cos ωt.

∗The superposition principle says that “the resultant displacement is the sum of the separate

displacements of the constituent waves”.
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Notice that if we set magnitude and phase angle as vectors and add them, a

resultant or sum is found with magnitude A and phase α. The components of the

resultant are

A cos α = A1 cos α1 + A2 cos α2

and

A sin α = A1 sin α1 + A2 sin α2.

The quantities A and α are defined by this technique, hence

yR = A cos α sin ωt + A sin α cos ωt

or

yR = A sin(ωt + α).

We conclude that the resultant wave yR is another harmonic wave of the

same frequency ωt, with amplitude A and phase α. The cosine law may be applied

to yield an expression for A,

A2 = A2
1 + A2

2 + 2A1A2 cos(α2 − α1)

and the phase angle is given by

α = tan−1

(
A1 sin α1 + A2 sin α2

A1 cos α1 + A2 cos α2

)
.

Using induction, these computation generalize to the superposition of N

harmonic waves:

yk = Ak sin(ωt + αk)

of amplitude Ak and phase αk. The resultant will be a wave

yR = A sin(ωt + α),

where

A cos α = A1 cos α1 + A2 cos α2 + ... + AN cos αN . (2.4)



10

A sin α = A1 sin α1 + A2 sin α2 + ... + AN sin αN . (2.5)

Thus,

α = tan−1

⎛⎜⎜⎜⎝
N∑

k=1

Ak sin αk

N∑
k=1

Ak cos αk

⎞⎟⎟⎟⎠
and by the Pythagorean theorem,

A2 =

(
N∑

k=1

Ak sin αk

)2

+

(
N∑

k=1

Ak cos αk

)2

.

The above equation may profitably be cast into a form that looks more like

a generalization of the cosine law. Expanding each term, we have

A2 =
N∑

k=1

A2
k(sin

2 αk + cos2 αk) + 2
N∑

k=1

N∑
j>k

AkAj(cos αk cos αj + sin αk sin αj).

Note that the double sum represents all cross products, by the use of no-

tation j > k the self-product already accounted for in the first term and also

avoiding a duplication of the indices.

Using the trigonometric identity of cos(αi − αj) in the second term, finally

A2 =
N∑

k=1

A2
k + 2

N∑
k=1

N∑
j>k

AkAj cos(αk − αj). (2.6)

The pair of equations (2.4) and (2.5) are easily express in exponential form.

Each pair (Ak, αk) uniquely determines a complex number

Ake
iαk = Ak(cos αk + i sin αk).

Then the resultant wave is expressed byAeid = A(cos α + i sin α).

Observe that by (2.4) and (2.5),

Aeiα = A cos α + iA sin α

= A cos α + iA sin α

=
N∑

k=1

Ak sin αk + i

N∑
k=1

Ak sin αk

=
N∑

k=1

Ake
iαk .
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Summarizing, the sum of N harmonic waves of identical frequency is again

a harmonic wave of the same frequency, with amplitude given by A and phase

given by α.

2.3.3 Coherence and Incoherence

Before discussing speckle in the next section, coherence and incoherence

are introduced. The term coherence and incoherence are used to describe the

correlation between phases of monochromatic waves†.

Definition 2.6. Let

y1(x) = A1 sin(ωx + α1),

y2(x) = A2 sin(ωx + α2)

be harmonic waves with the same frequency ω. The relative phase of y1 and y2

is given by α1 − α2.

Definition 2.7. Waves are said to be coherent if they have a constant relative

phase, which also implies that they have the same frequency. In the superposition

of coherent waves, individual amplitudes add together. As present in figure 2.1(a)

and 2.1(b), waves add constructively or subtract destructively, depending on their

relative phase.

Definition 2.8. Waves are said to be incoherent if they have random relative

phase, i.e. they are combined with a lots of different phases as shown in figure 2.2

†A monochromatic wave is represented by a wave function with harmonic time dependence.

Amplitude and phase are generally position dependent, however the wave function is a harmonic

function of time with the same frequency at all positions.
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(a) Figure of wave that combine in phase add

up relatively high irradiance (constructive co-

herent).

(b) Figure of wave that combine π radiance

out of phase cancel out and yield zero irradi-

ance (destructive coherent).

Figure 2.1 The figures of coherent waves

Figure 2.2 The figure of waves that combine with lots of different phases nearly

cancel out and yield very low irradiance (incoherent).

2.4 Speckle

Definition 2.9. Speckle is a random pattern which has a negative impact on

coherent imaging, including ultrasound imaging. It is a result of the superposition

of many waves, which have different phases (incoherent).

Speckle occurs in an ultrasound image because the ultrasonic wave encoun-

ters rough surfaces that result in the scattering of waves, and we can see in figure

2.3, each scattered wave from a rough surface has a different phase which leads to

the forming of speckles.
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Figure 2.3 Figure of scattering reflection from a rough surface.

Next, we will use the Rayleigh distribution to describe the speckles from

the statistical point of view.

A sum of a very large number N of waves which have random phases is con-

sidered. Assume that the k-th wave has random amplitude Ak/
√

N and random

phase αk. The resultant wave a with amplitude |a| and phase α is given by

a = |a|eiα =
1√
N

N∑
k=1

Ake
iαk ,

where i =
√−1.

Let aR and aI denote the real and imaginary parts of the resultant, respec-

tively,

aR =
1√
N

N∑
k=1

Ak cos αk,

aI =
1√
N

N∑
k=1

Ak sin αk,

where

|a| =
√

a2
R + a2

I .

Goodman (2000) showed that aR and aI are normally distributed, have zero

mean, have the same variance and are independent.

If we consider |a| as a random variable, thus the Rayleigh distribution can

be used to describe the speckle statistically and |a| is called a Rayleigh random

variable.
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Note that the amplitude of the harmonic wave, |a|, corresponds to the

intensity of the image at each point.



CHAPTER III

CALCULUS OF VARIATIONS AND ROF

MODEL

This chapter discusses the calculus of variations which is a mathematical

field used for optimization such as the construction of image denoising models.

The ROF model, a well-known image denoising model dealing with calculus of

variation, is also presented.

3.1 Calculus of Variations

calculus of variations is a field of mathematics that deals with functionals,

as opposed to ordinary calculus which deals with functions. Such functionals can

be formed as integrals involving an unknown function and its derivatives. The

interest is in extremal functions making the functional attain an extremum value.

The candidates in the competition for an extremum are functions.

Example 3.1. The problem involves finding the extrema of integrals of the form

I =

∫∫
Ω

F (x, y, u, ux, uy)dxdy (3.1)

over a bounded region Ω, where F is uniformly continuous on Ω.

Assume that u is the solution, which is continuous, has continuous deriva-

tives up to second order and exists on the boundary of Ω. We will vary u by an

arbitrary function η(x, y) with η = 0 on the boundary curve of Ω and define the

function uε by the equation

uε(x, y) = u(x, y) + εη(x, y),
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where ε is a parameter.

Because of arbitrariness of η, uε represents any function with continuous

second derivatives on Ω. Out of all these uε, we want to pick the one function that

makes I smallest or largest. Now I is a function of the parameter ε. When ε = 0,

we have

uε(x, y) = u(x, y),

which is the desired solution. Our problem is to make I taking its extremum

value, when ε = 0. In other words, we want

dI
dε

(u + εη)|ε=0 = 0.

Differentiating equation (3.1) with respect to ε, we get

dI
dε

(u + εη)|ε=0 =

∫∫
Ω

(
Fuη + Fuxηx + Fuyηy

)
dxdy

=

∫∫
Ω

(Fuη) dxdy +

∫∫
Ω

(Fuxηx) dxdy +

∫∫
Ω

(
Fuyηy

)
dxdy = 0,

which will be transformed by integrating by parts.

Consider

∫∫
Ω

(Fuxηx) dxdy, we will compute

∫
(Fuxηx) dx by integrating

by parts. Let w = Fux , we have dw =

(
∂

∂x
Fux

)
dx, dv = (ηx) dx and v = η, then∫

(Fuxηx) dx = wv −
∫

vdw

= Fuxη −
∫ (

η
∂

∂x
Fux

)
dx.

By Gauss’s integral theorem (Courant, 1924), we obtain∫∫
Ω

(Fuxηx) dxdy =

∫
Υ

(Fuxη) dy −
∫∫

Ω

(
η

∂

∂x
Fux

)
dxdy,

where Υ is the boundary curve of Ω.

Similarly,∫∫
Ω

(
Fuyηy

)
dxdy =

∫
Υ

(
Fuyη

)
dx −

∫∫
Ω

(
η

∂

∂y
Fuy

)
dxdy.
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Thus, we obtain

dI
dε

(u + εη)|ε=0 =

∫∫
Ω

η

(
Fu − ∂

∂x
Fux −

∂

∂y
Fuy

)
dxdy

+

∫
Υ

η (Fux) dy +

∫
Υ

η
(
Fuy

)
dx = 0.

Since η = 0 on the boundary Υ of Ω, the second term and the third term

on the right side vanish. Hence∫∫
Ω

η

(
Fu − ∂

∂x
Fux −

∂

∂y
Fuy

)
dxdy = 0.

By continuity and arbitrariness of η on Ω, then

Fu − ∂

∂x
Fux −

∂

∂y
Fuy = 0.

This is equivalent to the equation

∂

∂x
Fux +

∂

∂y
Fuy − Fu = 0, (3.2)

which is called Euler-Lagrange differential equation.

There are a lot of works establishing the existence of extrema and charac-

terizing them. In many cases, extremal functions or curves can be expressed as

solutions to differential equations. In particular, we will use the Euler-Lagrange

differential equation presented in equation (3.2).

3.2 The ROF Model

In image processing, it is important to decrease the noise in the image. If

we represent the noisy image as a function ũ obtained by adding noise n to a

noiseless image u, then ũ can be represented by

ũ(x, y) = u(x, y) + n(x, y), (3.3)
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where u(x, y) is intensity of desired image at coordinate (x, y), ũ is intensity of

observed image at coordinate (x, y) and n(x, y) is intensity of additive noise at

coordinate (x, y).

Our purpose is to find the desired image u which is the solution of the

corresponding denoising problem.

Rudin, Osher and Fatemi (1992) presented a mathematical denoising model

called the ROF model which is based on gradient, the least squares problem and

calculus of variation. In particular, calculus of variation leads the ROF model to

the Euler-Lagrange differential equation similar to example 3.1.

Before discussing the ROF model, we need to review about the gradient

and the least square problem.

3.2.1 Gradient

Given a function f(x, y), the partial derivatives fx and fy represent the

rates of change of f in directions parallel to the x-axes and the y-axes respec-

tively. However, it is also necessary to consider rates of change of f(x, y) in other

directions. This is the reason why we study the gradient.

Definition 3.1. Let f be a function of x and y. The gradient of f is denoted

by ∇f and is defined by

∇f =< fx, fy >

and its magnitude is defined by

‖∇f‖ =
√

f2
x + f2

y .

In vector calculus, the gradient is a vector which points in the direction of

the greatest rate of increase and whose magnitude is the greatest rate of change.

We use the gradient to investigate the directional derivative.
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Definition 3.2. Let f be a function of x and y. If v =< v1, v2 > is a unit vector,

then the directional derivative of f in the direction of v at (x, y) is denoted by

Dvf(x, y) and is defined by

Dvf(x, y) = ∇f(x, y) · v.

If θ is the angle between ∇f and v, then

Dvf = ∇f · v

= ‖∇f‖‖v‖ cos θ

= ‖∇f‖ cos θ.

This equation tells us that the maximum value of Dvf(x, y) is ‖∇f‖ and

this maximum occurs when θ = 0, that is when v is in the direction of ∇f .

Geometrically, this mean that the surface z = f(x, y) has its maximum slope at

point (x, y) in the direction of the gradient, where the maximum slope is ‖∇f‖.

3.2.2 The Least Square Problem

A task that occurs in scientific investigation is finding a straight line that

fits some set of data points. Typically we have a large number of points (xi, yi),

where i = 1, 2, ..., n, and we have theoretical reason to believe that these points

should lie on a straight line. Thus we seek a linear function p(x) = a + bx such

that p(xi) = yi, where i = 1, 2, ..., n. In fact, the points will deviate from a straight

line, thus it is not possible to find a linear function p(x) that passes through all of

them which is the best representation of all data (xi, yi). Instead, one settles for

a line that fits the points well, in the sense that the errors

|yi − p(xi)|,

where i = 1, 2, ..., n are made as small as possible.
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Denote r =< y1 − p(x1), ..., yn − p(xn) > as the vector of residuals. We can

solve our problem by choosing a vector norm ‖ · ‖.∗ The solution depends on the

choice of norm. If we choose the Euclidean norm †, we minimizing the quantity

‖r‖2 =

(
n∑

i=1

|yi − p(xi)|2
) 1

2

.

To minimize ‖r‖2 is equivalent to minimize

(‖r‖2)
2 =

n∑
i=1

|yi − p(xi)|2.

Thus we are minimizing the sum of the squares of the residuals. For this

reason the problem of minimizing ‖r‖2 is called the least square problem.

In the continuous case, the discrete points are replaced by continuous data

{(x, y(x))|x ∈ [a, b]}. Thus given a function y defined on some bounded interval

[a, b], we seek a linear function ψ such that ψ approximates y. As norm ‖ · ‖ of a

continuous function h on [a, b] we choose

‖h‖2 =

(∫ b

a

|h(x)|2dx

) 1
2

,

which is called the L2-norm. Then the summation in the discrete case is substi-

tuted by the integral, and the least square problem in the continuous case is to

find a continuous function ψ(x) minimizing∫ b

a

|y(x) − ψ(x)|2dx.

3.2.3 Description of the ROF Model

From the relation between a noisy image ũ and a noiseless image u in

equation (3.3), we wish to reconstruct u from ũ. The most conventional method

∗See the definition of vector norm in Introductory Functional Analysis with Application

(Kreyszig, 1988).
†Let x =< x1, ..., xn >∈ R

n, Euclidian norm on R
n is the vector norm defined by

‖x‖ =

(
n∑

i=1

|xi|2
) 1

2

.
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involves the least squares with the L2 − norm because this leads to a linear term

in the Euler-Lagrange equation.

Rudin et al. (1992) presented the denoising model which applies the so-

lution of the one-dimensional linear integral equation of the first kind ‡. In the

two-dimensional case, the problem is to minimize∫∫
Ω

(uxx + uyy)
2dxdy +

∫∫
Ω

(u − ũ)2dxdy.

The first term is a generalization of the one-dimensional case and the sec-

ond term is the error term. However the result is disappointing in digital image

denoising.

After that, they found that when the L1-norm is applied to the gradient,

which is defined by ∫∫
Ω

‖∇u‖ dxdy =

∫∫
Ω

(√
u2

x + u2
y

)
dxdy,

then this L1 approximation looks better than the L2 approximation on a computer

screen. This is the reason why Rudin et al. use the L1-norm of the gradient in the

ROF model.

Definition 3.3. Let ũ be a function describing the noisy image and u a function

describing the noiseless image with respect to ũ. The ROF model considers u as

a solution to a problem of calculus of variations, which minimizes the functional

F (u) =

∫∫
Ω

(√
u2

x + u2
y

)
dxdy + λ

∫∫
Ω

(u − ũ)2dxdy, (3.4)

where Ω ∈ R
2 is the domain of the image functions and λ is a chosen parameter.

‡Let K(x, y) and g(x) be the given bounded functions, the linear integral equations of

the first kind is written as
∫ b

a

K(x, y)f (y) dy = g(x).

Phillips (1962) showed that finding the solution of this equation is equivalent to minimizing∫ b

a

(f ′′)2ds.
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The first term of equation (3.4) is a regularization term which is the magni-

tude of ∇u, i.e. it is the maximum rate of change of u. By regularization we mean

that the gradients of u over Ω should be small on the average. The second term

is the data-fidelity term. In fact, if we minimize this term we can see in equation

(3.3) that we find the least square of the noise over the region Ω.

By calculus of variations, the solution of equation (3.4) obtained by the

Euler-Lagrange differential equation is satisfied, i.e.

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+ λ(u − ũ) = 0, (3.5)

where
∂u

∂N
= 0 on Ω, here N is the normal vector to the boundary Ω.



CHAPTER IV

RESULT AND CONCLUSION

The model for speckle denoising in the ultrasound image is presented in

this chapter. Rayleigh distribution are used for the description of the speckle

noise occurring in this model. The method of calculus of variation leads the

model to the Euler-Lagrange equation. The equation is solved numerically by the

gradient descent method. Finally, the experimental results to verify the model

and theorems are also presented.

4.1 Description of the Proposed Model

Assume that ũ is a given noisy ultrasound image defined on Ω, a bounded

open rectangle in R
2 with piecewise Lipschitz boundary∗ ∂Ω. We assume that ũ

is bounded and positive on Ω and ũx,y is the intensity of ũ at the location (x, y).

Note that ũ is assumed to be noiseless on ∂Ω.

Recall that the image intensity of an ultrasound image is a Rayleigh random

variable, which has a density function:

Rσ(r) =
r

σ2
e−

r2

2σ2 ,

where r ≥ 0 is the image intensity and σ is a parameter.

Let Ux,y be a random variable on the set of noiseless images, which corre-

sponds to noiseless image intensity at point (x, y) and Ũx,y be a random variable

on the set of observed images, which corresponds to the observed image intensity

∗See the definition of Lipschitz boundary in definition 4.5.
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at point (x, y). We wish to determine the image u which is most likely given the

observed image ũ.

From the statistical point of view, we are going to find an image u which

maximizes the conditional probability that the intensity of a noiseless image is the

most likely given the intensity of the observed image for all (x, y). We assume

that Ω is pixelleted by Ω = {(x, y)|x, y = 0, . . . , N − 1} and the values of image

intensity for each pixel (x, y) are independent, thus the conditional probability

mentioned is ∏
(x,y)∈Ω

P
(
Ux,y = ux,y|Ũx,y = ũx,y

)
,

where ux,y = u(x, y) and ũx,y = ũ. Bayes’ Rule says that

P
(
Ux,y = ux,y|Ũx,y = ũx,y

)
=

P
(
Ũx,y = ũx,y|Ux,y = ux,y

)
P (Ux,y = ux,y)

P
(
Ũx,y = ũx,y

) ,

where, at point (x, y), P
(
Ux,y = ux,y|Ũx,y = ũx,y

)
is the conditional probability

of the intensity of the noiseless image u on the condition of the intensity of the

observed image ũ, P
(
Ũx,y = ũx,y|Ux,y = ux,y

)
is the conditional probability of the

intensity of the observed image ũ on the condition of the intensity of the noiseless

image u, P (Ux,y = ux,y) is the probability of intensity of the noiseless image and

P
(
Ũx,y = ũx,y

)
is the probability of intensity of the observed image ũ.

In order to maximizing P (Ux,y = ux,y|Ũx,y = ũx,y), we are going to find the

noiseless image u which maximizes

∏
(x,y)∈Ω

P
(
Ũx,y = ũx,y|Ux,y = ux,y

)
P (Ux,y = ux,y) . (4.1)

For each (x, y), ũ is Rayleigh random variable and its probability density is

P
(
Ũx,y = ũx,y

)
= Rσ(ũx,y)

=
ũx,y

σ2
e−

[eux,y ]2

2σ2 .
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Recall that the above density function Rσ(ũx,y) depends on the parameter σ. As-

sume the parameter σ of the conditional probability of ũ on the condition of the

noiseless image u is a function of u, σ = σ(u). The conditional probability of the

intensity of the observed image ũ at the point (x, y) is

P
(
Ũx,y = ũx,y|Ux,y = ux,y

)
= Rσ(ux,y)(ũx,y)

=
ũx,y

[σ (ux,y)]
2 e

− [eux,y]2

2[σ(ux,y)]2 .

Expression (4.1) becomes⎛⎝ ∏
(x,y)∈Ω

ũx,y

[σ (ux,y)]
2 e

− [eux,y]2

2[σ(ux,y)]2

⎞⎠P (Ux,y = ux,y) . (4.2)

Since the natural logarithm function which is denoted by ln(x) is an increas-

ing continuous function, the function − ln(x) is a decreasing continuous function.

Hence the minimizing of − ln

⎛⎝ ∏
(x,y)∈Ω

P
(
Ũx,y = ũx,y|Ux,y = ux,y

)
P (Ux,y = ux,y)

⎞⎠
is equivalent to the maximizing expression (4.1). Therefore, we seek a minimizer

of

− ln

⎛⎝ ∏
(x,y)∈Ω

P
(
Ũx,y = ũx,y|Ux,y = ux,y

)⎞⎠− ln

⎛⎝ ∏
(x,y)∈Ω

P (Ux,y = ux,y)

⎞⎠ . (4.3)

The expression (4.3) becomes

N−1∑
x=0

N−1∑
y=0

(
[ũx,y]

2

2[σ (ux,y)]2
+ 2 ln σ (ux,y) − ln ũx,y

)
− ln

⎛⎝ ∏
(x,y)∈Ω

P (Ux,y = ux,y)

⎞⎠ .

We regard this as a discrete approximation of the functional

E(u) = − ln P (u) +

∫∫
Ω

(
ũ2

2[σ(u)]2
+ 2 ln σ(u) − ln ũ

)
dA, (4.4)

where P (u) is the probability that the random variable Ux,y is equal to the intensity

of the noiseless image u at pixel (x, y) for all (x, y) ∈ Ω. For the model of a

variational approach, Green (2002) presents that P (u) is given by

P (u) = e
−β

RR
Ω
(
√

u2
x+u2

y)dA

,
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where β is a parameter. Hence, functional E(u) becomes

E(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(
ũ2

2[σ(u)]2
+ 2 ln σ(u) − ln ũ

)
dA. (4.5)

The Euler-Lagrange equation for minimizing E(u) is

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

σ′(u)

β[σ(u)]3
(
ũ2 − 2[σ(u)]2

)
= 0. (4.6)

Since the last term of equation (4.6) is a data-fidelity term (Le, 2005), the con-

straint vanishing of it where u = ũ is considered:

σ′(u)

β[σ(u)]3
(
ũ2 − 2[σ(u)]2

)
= 0. (4.7)

For the sake of the simplicity, function

σ(u) =
u√
2
,

is chosen for satisfying the requirement (4.7). The functional E(u) obtained is

E(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(
ũ2

u2
+ 2 ln u − ln

√
2 − ln ũ

)
dA. (4.8)

The functional E is defined on the set of functions u which are of bounded

variation † on Ω such that
1

u2
and ln u belong to L1(Ω), i.e.

∫∫
Ω

∣∣∣∣ 1

u2

∣∣∣∣ dA and∫∫
Ω

|ln u| dA exist.

Hence, the requirements which we impose on u are

u ∈ C(Ω), u ∈ C2(Ω) and u is positive on Ω. (4.9)

For the uniqueness of the solution u, we require that

0 < u <
√

3ũ, (4.10)

which is explained in section 4.2.

The Euler-Lagrange equation for minimizing E(u) is

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2) = 0, (4.11)

where u = ũ on ∂Ω.

†See the definition of bounded variation in Definition 4.4
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4.2 Existence and Uniqueness

Next, we will show existence and uniqueness of the minimizer for model

(4.8).

In order to show the existence of the minimizer of our model, the

compactness-like of L1 in the space of function of bounded variation has to be

claimed. Sobolev space and space of bounded variation are presented to satisfy the

claim.

Definition 4.1. Let Ω be a subset of R
n. A function f belongs to Sobolev space

W 1,p(Ω) if f ∈ Lp(Ω), i.e. ‖f‖Lp is finite and all weak partial derivatives
∂f

∂xi

exist

and belong to Lp(Ω), i = 1, 2, ..., n.

Here the norm of Lp(Ω) is defined by

‖f‖Lp =

⎛⎝∫
Ω

|f |p
⎞⎠ 1

p

and the norm of W 1,p(Ω) is defined by

‖f‖W 1,p(Ω) =

⎛⎝∫
Ω

‖f‖p + |∇f |p
⎞⎠ 1

p

.

Definition 4.2. Let f : R
n → R.

i) The support of f is the closure of the set of points where f is nonzero, i.e.

sptf = {x ∈ Rn, f(x) �= 0},

where {.} is the closure of the set.

ii) The function f is said to have compact support if sptf is a compact set.

Definition 4.3. Ck(Ω) is the set of functions f defined on Ω whose k-order deriva-

tives exist and are continuous.
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The set of functions f which belong to Ck(Ω) for all k ∈ N is denoted by

C∞(Ω).

Also, set

C1
c (Ω) = {f ∈ C(Ω) : f has compact support}.

Definition 4.4. Let Ω be an open bounded subset of R
n. A function f ∈ L1(Ω)

is said to be of bounded variation in Ω, if

‖Df‖(Ω) = sup{
∫
Ω

fdivϕ| ϕ ∈ C1
c (Ω, Rn), ‖ϕ(x)‖ ≤ 1,∀x ∈ Ω} < ∞.

Here C1
c (Ω, Rn) denotes the set of ϕ : Ω → R

n which is continuously differentiable

vector function and its compact support is contained in Ω. We set

BV (Ω) = {f ∈ L1(Ω) : ‖Df‖(Ω) < ∞}.

The norm on BV (Ω) is defined by

‖f‖BV (Ω) ≡ ‖Df‖(Ω) + ‖f‖L1(Ω).

BV (Ω) becomes a Banach space. ‖Df‖(Ω) is called the total variation of f on

Ω.

Remark If f ∈ C1(Ω) and f and its first-order partial derivatives lie in L1(Ω),

then

‖Df‖(Ω) =

∫
Ω

‖∇f‖.

Theorem 4.1. Let {fk} ⊂ BV (Ω) and suppose that fk → f in the norm of L1(Ω).

Then

1. f ∈ BV (Ω).

2. ‖Df‖(Ω) ≤ lim
k→∞

inf ‖Dfk‖(Ω).
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See proof of the theorem in Evans (1992).

Definition 4.5. Let Ω be an open bounded subset of R
n. We say that Ω is a

bounded open set with Lipschitz boundary if for every a ∈ ∂Ω there exist a

neighborhood U ∈ R
n of a and a bijective map H : Q → U , where

Q = {a = (a1, ..., an) ∈ R
n, |aj| < 1, j = 1, 2, ..., n},

H ∈ C(Q),

H−1 ∈ C(U),

H(Q+) = U ∩ Ω,

H(Q0) = U ∩ ∂Ω

H ∈ C0,1(Q),

where Q+ = {a ∈ Q, an > 0}, Q0 = {a ∈ Q, an = 0} and C0,1(Q) is the set of

f ∈ C(Q) so that

sup
x,y∈K

x�=y

{ |f(x) − f(y)|
‖x − y‖

}
< ∞,

for every compact set K ⊂ Q.

Theorem 4.2. Let Ω be an open bounded subset of R
n with Lipschitz boundary.

Assume {fk} is a sequence in BV (Ω) satisfying

‖fk‖BV (Ω) ≤ M, ∀k.

Then, there exist a subsequence {fkj
} and a function f ∈ BV (Ω) such that

fkj
→ f

in the norm of L1(Ω).

See proof of the theorem in Evans (1992).

Remark This theorem says that subsets of BV (Ω) which are bounded under

‖ · ‖BV (Ω) are even compact under the norm of L1(Ω).
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Additionally, for the uniqueness of the minimizer of the denoising model,

convexity is considered.

Definition 4.6. A subset M of a vector space X is said to be convex if y, z ∈ M

implies that the line segment

L = {v = αy + (1 − α)z|0 ≤ α ≤ 1}

is a subset of M .

Definition 4.7. A functional F is said to be convex if its domain D(F ) is a

convex set and for every a, b ∈ D(F ),

F (λa + (1 − λ)b) ≤ λF (a) + (1 − λ)F (b),

where 0 ≤ λ ≤ 1. In additional if for every a, b ∈ D(F ), a �= b,

F (λa + (1 − λ)b) < λF (a) + (1 − λ)F (b),

where 0 < λ < 1, then F is said to be a strictly convex.

Theorem 4.3. If F in equation (3.1) is strictly convex and the minimizer of the

equation (3.1) exists, then the minimizer of (3.1) is unique.

Proof. Assume that u and v are two minimizers of equation (3.1) such that u �= v,

m denoting the value of the minimizer. Define

w =
1

2
u +

1

2
v.

So wx =
1

2
ux +

1

2
vx and wy =

1

2
uy +

1

2
vy.

By strict convexity of F we obtain

1

2
F (x, y, u, ux, uy) +

1

2
F (x, y, v, vx, vy) > F

(
x, y,

1

2
u +

1

2
v,

1

2
ux +

1

2
vx,

1

2
uy +

1

2
vy

)
= F (x, y, w, wx, wy)
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and then

m =
1

2
I(u) +

1

2
I(v) > I(w) ≥ m.

This is a contradiction. Hence, our assumption is false. Because of the

arbitrariness of u and v, we conclude that if the minimizer of the equation (3.1)

exists, it is unique.

Lemma 4.4. If F : (a, b) → R is continuously twice differentiable and F ′′(u) > 0,

for every u ∈ (a, b) then, F is strictly convex.

Proof. The Taylor series expansion of F about the point u0 ∈ (a, b) is

F (u) = F (u0) + F ′(u0)(u − u0) +
1

2
F ′′(u)(u − u0)

2,

where min(u0, u) < u < max(u0, u).

If F ′′(u) > 0, for every u �= u0 then the last term is positive.

Let u0 = λu1 + (1 − λ)u2 where 0 < λ < 1. Then

F (u) > F (u0) + F ′(u0)(u − (λu1 + (1 − λ)u2)).

For the case u = u1,

F (u1) > F (u0) + F ′(u0)(1 − λ)(u1 − u2).

This implies that

λF (u1) > λF (u0) + λ(1 − λ)F ′(u0)(u1 − u2).

In the case u = u2,

F (u2) > F (u0) + F ′(u0)(λ)(u2 − u1).

This implies that

(1 − λ)F (u2) > (1 − λ)F (u0) − λ(1 − λ)F ′(u0)(u1 − u2).
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Combine the inequalities, we obtain

λF (u1) + (1 − λ)F (u2) > F (u0) = F (λu1 + (1 − λ)u2)

and get the strictly convexity result for arbitrary u1, u2 such that u1 �= u2.

Lemma 4.5. Let Ω be an open bounded subset of R
2, ũ be a continuous positive

bounded function on Ω and

Ŵ =
{
u : Ω → R|u satisfies expression (4.9) and inequality (4.10)

}
Let Ĵ : Ŵ → C(Ω) be defined by

Ĵ(u) =
ũ2

u2
+ 2 ln u + F(ũ),

F(ũ) being a constant depending on ũ. Then, Ĵ(u) is strictly convex on Ŵ .

Proof. One easily verifies that Ŵ is convex. Next for fixed constants c > 0 and

c1, consider the function F : (0,
√

3c) → R given by

F (u) =
c

u2
+ 2 ln u + c1.

Since F ′′(u) = 2

(
3c − u2

u4

)
> 0,∀u ∈ (0,

√
3c), it follows from lemma 4.4 that F

is strictly convex on (0,
√

3c). That is,

F (λu + (1 − λ)v) < λF (u) + (1 − λ)F (v), (4.12)

∀u, v ∈ (0,
√

3c) and 0 < λ < 1. It follows from inequality (4.12) that for each

w ∈ Ω, c = ũ2(w) and c1 = F(ũ(w)), ∀u, v ∈ Ŵ and 0 < λ < 1,

Ĵ(λu(w) + (1 − λ)v(w)) < λĴ(u(w)) + (1 − λ)Ĵ(v(w)),

which proves the lemma.
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Remark For the functional

J(u) =

∫∫
Ω

(
ũ2

u2
+ 2 ln u + F(ũ)

)
dA, (4.13)

if J(u) has a minimizer then theorem 4.3 and lemma 4.5 say J(u) must has a

unique minimizer.

Theorem 4.6. Let Ω be an open bounded subset of R
2 with Lipschitz bound-

ary.Given ũ ∈ BV (Ω) satisfying 0 < m ≤ ũ(x, y) ≤ M , almost everywhere

(x, y) ∈ Ω, fix s, 1 < s <
√

3,

W = {u ∈ BV (Ω) : 0 < m ≤ u(x, y) ≤ sũ(x, y), almost everywhere (x, y) ∈ Ω} .

Let E : W → R be given by

E(u) = ‖Du‖(Ω) + J(u),

where J(u) is defined as equation (4.13). Then E has a unique minimizer.

Proof. 1. Prove the existence of the minimizer.

Note first that by choice of u, E(u) is defined for all u ∈ W . In fact we

have

m0 :=

∫∫
Ω

(
m2

3M2
+ 2 ln m + F(ũ)

)
dA

≤
∫∫

Ω

(
ũ2

u2
+ 2 ln u + F(ũ)

)
dA

≤
∫∫

Ω

(
M2

m2
+ 2 ln M + F(ũ)

)
dA =: M0. (4.14)

In particular, J(u) is bounded below. Since ‖Du‖(Ω) ≥ 0, then the func-

tional E(u) is bounded below. Thus there exists a sequence {un} in W minimizing

E, that is

E(un) → b := inf{E(u) : u ∈ W}.
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We need to show that there exists u0 ∈ W such that E(u0) = b.

Now as un minimizes E, the sequence {E(un)} is bounded, hence the se-

quence {‖Dun‖(Ω)} is bounded. Also, {‖un‖L1(Ω)} is bounded, in fact,

m|Ω| ≤ ‖u‖L1(Ω) ≤ M |Ω|,∀u ∈ W,

where |Ω| is an area of Ω. Hence, {un} is a bounded sequence in the norm of

BV (Ω). Thus by theorem 4.2, there exist u0 ∈ BV (Ω) and a subsequence {unk
}

such that {unk
} → u0 in the norm ‖ · ‖L1(Ω).

Since every convergent sequence in L1(Ω) possesses a subsequence converg-

ing pointwise almost everywhere, we may assume, replacing {unk
} by a suitable

subsequence, that

unk
(x, y) → u0(x, y), almost everywhere Ω.

In particular,

0 < m ≤ u0(x, y) ≤ sũ(x, y), almost everywhere Ω

and hence u0 ∈ W .

Now by theorem 4.1, and as {unk
} is bounded in BV (Ω),

‖Du0‖(Ω) ≤ lim
k→∞

‖Dunk
‖(Ω). (4.15)

On the other hand, by expression (4.14) we can apply the Dominated Convergence

Theorem to obtain that

J(u0) =

∫∫
Ω

lim
k→∞

(
ũ2

u2
nk

+ 2 ln unk
+ F(ũ)

)
dA

= lim
k→∞

∫∫
Ω

(
ũ2

u2
nk

+ 2 ln unk
+ F(ũ)

)
dA

= lim
k→∞

J(unk
). (4.16)
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Combining expression (4.15) and (4.16) then

E(u0) = J(u0) + ‖Du0‖(Ω)

≤ lim
k→∞

J(unk
) + lim

k→∞
‖Dunk

‖(Ω)

= lim
k→∞

E(unk
) = b

since the sequence {un} minimizes E. This proves existence of a minimizer u0.

2. Prove the uniqueness of the minimizer.

Observe that W is a convex set. By convexity of ‖∇u‖ and by lemma 4.5,

it implies uniqueness of the minimizer of E(u).

4.3 Numerical Scheme

Consider the problem

ut =
∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2), (4.17)

where u(x, y, 0) is given and u = ũ on the boundary ∂Ω of Ω and Ω is a unit

rectangle. Here u = u(x, y, t) is a dependent variable, x, y, t are independent

variables and ũ(x, y) is a given function of spatial variables x, y. In order to solve

problem (4.17) numerically, the spatial space of domain is considered as a square

grid with N points width and N points height. The grid point (i, j) corresponds

to location (xi, yj), i = 0 . . . N − 1, j = 0 . . . N − 1, where xi = ih, yj = jh and

Nh = 1.

Denote un
ij = u(xi, yj, tn) where tn = nΔt, n = 0, 1, 2, ... and Δt is step size.

Let u0
ij = ũij, Rudin (1992) shows that the numerical scheme of problem (4.17) is

un+1
ij = un

ij +
Δt

h

[
Δx

−

(
Δx

+un
ij

((Δx
+un

ij)
2 + (m(Δy

+un
ij, Δ

y
−un

ij))
2)1/2

)]
+

Δt

h

[
Δy

−

(
Δy

+un
ij

((Δy
+un

ij)
2 + (m(Δx

+un
ij, Δ

x−un
ij))

2)1/2

)]
+Δt

[
2

β(un
ij)

3
((ũij)

2 − (un
ij)

2)

]
, (4.18)
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with boundary conditions

un
0j = ũ0j

un
(N−1)j = ũ(N−1)j

un
i0 = ũi0

un
i(N−1) = ũi(N−1)

where Δx
±Θij = ±(Θ(i±1)j − Θij) and similarly for Δy

±Θij, the step size Δt and h

are chosen for stability such that

Δt

h
≤ 1,

m(a, b) = (
sgn(a) + sgn(b)

2
)min(|a|, |b|)

and

sgn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if x < 0

0 if x = 0

1 if x > 0

.

Note that if un
ij converge as n → ∞, then

un+1
ij − un

ij

Δt
→ 0 as n → ∞.

Thus, the numerical solution of problem (4.18) will converge to the approximated

solution of equation

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2) = 0,

where u = ũ on ∂Ω, which is the noiseless image of our model.

4.4 Numerical Results

To verify the theoretical part, we use some images in our experiments. The

correlation coefficients of the original images and the noisy images are compared

with the correlation coefficients of the original images and the reconstructed im-

ages.
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First, speckle noise with 0.02 variance is added in the original pattern image

by MATLAB software version 7.2. Correlation coefficients of the original image

and the noisy image is 0.9678 while correlation coefficients of the original image

and reconstructed images with respective to the number of iterative loops are

shown in table 4.1. They are higher than 0.9678.

Table 4.1 Correlation coefficients of reconstructed pattern images

Iterative loops ROF Model Model by Le et al. Proposed Model

0 0.9678 0.9678 0.9678

200 0.9882 0.9960 0.9963

250 0.9889 0.9971 0.9974

300 0.9893 0.9978 0.9980

350 0.9895 0.9981 0.9982

Furthermore, we use the Lenna image which is a well-known image in the

field of image processing in our experiment. Speckle noise with 0.02 variance is

added in the original image by MATLAB software. Similarly, correlation coeffi-

cients are compared and they are shown in table 4.2. The correlation coefficient

of the original image and noisy image is 0.9444 while the correlation coefficients

of the original image and reconstructed images are all higher.

We found that after enhancing the images by the numerical process, the

correlation coefficient of the original image and reconstructed images are closer to 1

than the correlation coefficient of the original image and noisy images. This shows

that the original image and the reconstructed images have better relationship and

our result is claimed. The results show that the noise can be removed by the

numerical process.
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Table 4.2 Correlation coefficients of reconstructed Lenna images.

Iterative loops ROF Model Model by Le et al. Proposed Model

0 0.9444 0.9444 0.9444

80 0.9663 0.9725 0.9730

120 0.9704 0.9798 0.9804

160 0.9728 0.9843 0.9848

200 0.9743 0.9868 0.9871

Additionally, if the correlation coefficients of the reconstructed images is

used to compare the results of models, the proposed model provides better results

than the results of ROF model and the model by Le et al.

The output of the prototype software shows that after enhancing the ultra-

sound image, one obtain a smoother image as presented in figure 4.9(a) and figure

4.9(b) which is 100-loops iterative process reconstructed ultrasound image.
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) 200-loops iterative process re-

constructed image.

(d) 250-loops iterative process re-

constructed image.

(e) 300-loops iterative process re-

constructed image.

(f) 350-loops iterative process re-

constructed image.

Figure 4.1 The figures of pattern images reconstructed by ROF model.
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) 200-loops iterative process re-

constructed image.

(d) 250-loops iterative process re-

constructed image.

(e) 300-loops iterative process re-

constructed image.

(f) 350-loops iterative process re-

constructed image.

Figure 4.2 The figures of pattern images reconstructed by Le et al.’s model
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) 200-loops iterative process re-

constructed image.

(d) 250-loops iterative process re-

constructed image.

(e) 300-loops iterative process re-

constructed image.

(f) 350-loops iterative process re-

constructed image.

Figure 4.3 The figures of pattern images reconstructed by Proposed model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) 80-loops iterative process re-

constructed image.

(d) 120-loops iterative process re-

constructed image.

(e) 160-loops iterative process re-

constructed image.

(f) 200-loops iterative process re-

constructed image.

Figure 4.4 The figures of Lenna images reconstructed by ROF model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) 80-loops iterative process re-

constructed image.

(d) 120-loops iterative process re-

constructed image.

(e) 160-loops iterative process re-

constructed image.

(f) 200-loops iterative process re-

constructed image.

Figure 4.5 The figures of Lenna images reconstructed by Le et al.’s model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) 80-loops iterative process re-

constructed image.

(d) 120-loops iterative process re-

constructed image.

(e) 160-loops iterative process re-

constructed image.

(f) 200-loops iterative process re-

constructed image.

Figure 4.6 The figures of Lenna images reconstructed by proposed model.
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(a) Original ultrasound image (Provided by Dr.Chumrus Sakulpaisarn).

(b) 100-loops iterative process reconstructed ultrasound image.

Figure 4.7 The figures of ultrasound images reconstructed by ROF model.
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(a) Original ultrasound image (Provided by Dr.Chumrus Sakulpaisarn).

(b) 100-loops iterative process reconstructed ultrasound image.

Figure 4.8 The figures of ultrasound images reconstructed by Le et al.’s model.
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(a) Original ultrasound image (Provided by Dr.Chumrus Sakulpaisarn).

(b) 100-loops iterative process reconstructed ultrasound image.

Figure 4.9 The figures of ultrasound images reconstructed by proposed model.
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4.5 Conclusion

A new model for speckle reduction of ultrasound images is presented. The

model is minimizing the functional

E(u) = β

∫∫
Ω

(√
u2

x + u2
y

)
dA +

∫∫
Ω

(
ũ2

u2
+ 2 ln u + F(ũ)

)
dA,

where β is a chosen parameter and F(ũ) is a function of ũ. The model is based

on calculus of variations which leads to the Euler-Lagrange differential equation:

∂

∂x

(
ux√

u2
x + u2

y

)
+

∂

∂y

(
uy√

u2
x + u2

y

)
+

2

βu3
(ũ2 − u2) = 0,

where u = ũ on ∂Ω and approximation of the solution is by gradient descent

method. Our technique can reduce the noise better than the ROF model. However,

the result of the reconstructed images by our model are almost identical to the one

by Le. The constraint is the processing time required. Moreover, because we work

with the gray scale 256 bits mode, errors may arise from the rounding function in

the software implementation.
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APPENDIX A

SPECKLE FILTERS IN RADAR IMAGING

speckle noise is present not only in ultrasound imagez, but also in the radar

images. There are many researches dealing with speckle filter in the radar images.

For example

1. Frost et al. filter (1982)

The speckle noisy image can be represented by the uncorrelated multiplica-

tive model:

ũ(x, y) = R(x, y) · n(x, y), (A.1)

where (x, y) are the spatial coordinate, ũ(x, y) is the observed image, n(x, y)

is the white noise and R(x, y) is an autoregressive process∗ with an autocor-

relation function RR(x, y):

RR(x, y) = σ2
Re−a‖(x,y)‖ + R

2
,

where R(x, y) is the image local mean, σ2
R is the image local variance, a is

the autocorrelation parameter and ‖(x, y)‖ is the norm of (x, y).

There are several methods used for reducing the speckle noise which follow

the above noise model and the method for the minimum mean square error †

∗Autoregressive process is a model which presents that the observed value xt is determined

by the values of xt−1, ..., xt−p or the p-observed values before xt. The autoregressive process can

be written by

xt = c + σp
i=1ϕixi−t + εt,

where c is a constant, ϕi is called autocorrelation parameter and εt is error of process.
†The mean square error of the parameter u to approximate the parameter ũ is given by the

the mean or expected value of (u − ũ)2.
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(MMSE).

Frost presented the MMSE filter m(x, y) which is given by

m(x, y) = K2αe−α‖(x,y)‖,

where K2 is a constant and

α2 = a2 + 2a ·
(

n
σn

)2(
1 +

(
R
σR

)2
) ,

where n is the mean of the noise and σn is the variance of the noise.

A simplification of the above filter leads to the loss of the parameter a. The

simplifier expression α2 = K · C2
eu is used. Hence the Frost filter is given by

m(x, y) = K1e
(−KC2

eu(x0,y0)‖(x,y)‖),

where K1 is the filter parameter, C2
eu(x0, y0) is computed over an area centered

at (x0, y0) and K1 is a normalizing constant which includes α.

2. Lee filter (1980)

The noisy image can be represented by an additive model also.

ũ(x, y) = u(x, y) + n(x, y), (A.2)

where ũ is the considered image, u is a noiseless image, n is the additive

noise.

Then, the linear MMSE filter is given by the following function û(x, y),

û(x, y) = ũ(x, y) + (ũ(x, y) − ũ(x, y))

(
σ2

u(x, y)

σ2
u(x, y) + σ2

n(x, y)

)
, (A.3)

where ũ is the mean of ũ, σ2
u and σ2

n is the variance of u and n respectively.
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The Lee filter applies this linear MMSE filter for considering the multiplica-

tive noise. It can be described in the form of weighted sum of the observed

image and mean values:

û(x, y) = ũ(x, y) · W (x, y) + ũ(x, y) · (1 − W (x, y)), (A.4)

where the weight function W is given by

W (x, y) = 1 − C2
n

C2
eu(x, y)

,

where C2
n =

σn

n
and C2

eu =
σeu
ũ

are the noise and image variation coefficients

respectively.

3. Kuan et al. filter (1985)

Kuan presented a filter to deal which linear MMSE filter for considering of

the multiplicative noise just as the Lee filter. This filter is written by (A.4)

with the weight function

W (x, y) =
1 − C2

n

C2
eu
(x,y)

1 + C2
u

.

4. Homomorphic Filter

Arsenals (1984) and Yan and Chen (1986) also used the multiplicative speckle

noise model shown in equation (A.1). A logarithmic transformation is per-

formed to obtain the additive noise model by

ln ũ(x, y) = ln R(x, y) + ln n(x, y).

Then, the linear MMSE filter in equation (A.3) is used for this noise model.
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PROTOTYPE SOFTWARE

B.1 Prototype Software

The Prototype software is developed for the experiment. It is implemented

in the Pascal language on Borland Delphi version 6. In order to work with the

video files, the additional library Mitov software VideoLab version 3.1 is installed.

Figure B.1 The figure of prototype software and its components.

As show in figure B.1, the software components are as follows;

1. Original video displayer

The original video is shown on the left displayer.

2. Reconstructed video displayer

The reconstructed video is shown on the right displayer.
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3. Pause button

The video is paused if this button is clicked.

4. Resume button

The paused video is resumed if this button is clicked.

5. Exit button

This button is used for the program closing.

6. Step size text field

The step size is filled in the text field and then the OK button is used for

the activation.

7. OK button

This button is used for activating of the step size in text field.

8. Iterative label

The number of iterative loops is labeled in this component.

9. Up button

When the increasing of the reconstructed iteration loops is required, this

button is used.

10. Down button

Converse from Up button, if the decreasing of the reconstructed iteration

loops is required, this button is used.

B.2 Source Code

Source code is composted by two classes.



59

1. Main class.

This part is used for initialization all of the modules, components and vari-

able of the form. This class is the first part working when the program is

execute and run.

program Project1;

uses

Forms,

Unit1 in ’Unit1.pas’ {Form1};

begin

Application.Initialize;

Application.CreateForm(TForm1, Form1);

Application.Run;

end.

2. Computational class.

The computational part dealing with the numerical scheme include the dis-

play part is implemented in this class.

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants,
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Classes, Graphics, Controls, Forms,

Dialogs, VLCommonDisplay, VLDSImageDisplay,

VLDSVideoPlayer, SLScope, VLSinkFilter, VLHistogram,

VLCommonFilter, VLGenericFilter, StdCtrls,

ComCtrls, Buttons, VLImageDisplay;

{component declarations}

type

TForm1 = class(TForm)

VLDSVideoPlayer1: TVLDSVideoPlayer;

VLDSImageDisplay1: TVLDSImageDisplay;

VLDSImageDisplay2: TVLDSImageDisplay;

VLGenericFilter1: TVLGenericFilter;

PlayButton: TButton;

PauseButton: TButton;

Label2: TLabel;

BitBtn1: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

Label3: TLabel;

Edit1: TEdit;

Button1: TButton;

procedure VLGenericFilter1ProcessData(Sender: TObject;

InBuffer: IVLImageBuffer; var OutBuffer: IVLImageBuffer;

var SendOutputData: Boolean);

procedure PlayButtonClick(Sender: TObject);



61

procedure PauseButtonClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure BitBtn1Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure FormCloseQuery(Sender: TObject;

var CanClose: Boolean);

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

{constant declarations}

const

p = 0.1;

err_thres = 0.0001;

maxloop = 500;

{variable declarations}

var

Form1 : TForm1;

U0, U, UTemp : Array of Array of real;

t,temp,rn : real;
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Loop : Integer;

St : String;

implementation

{computational and displayed procedure}

procedure TForm1.VLGenericFilter1ProcessData(Sender: TObject;

InBuffer: IVLImageBuffer; var OutBuffer: IVLImageBuffer;

var SendOutputData: Boolean);

{variable declarations}

var

InDataAccess : IVLImageDataAccess;

OutDataAccess : IVLImageDataAccess;

i, j ,k, m, n: Integer;

Dx, Dy, DX1, DX2, DY1, DY2, E, sume : real;

um1, um2, um3, um4, ui1, ui2, ui3, ui4 : real;

un1, un2, un3, un4, uj1, uj2, uj3, uj4 : real;

sm2, sm3, si2, si3 : real;

sn2, sn3, sj2, sj3 : real;

mm, mi, mn, mj : real;

{get the image data}

begin

InDataAccess := InBuffer.Data();

OutDataAccess := OutBuffer.Data();
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SetLength(U0,InDataAccess.Width,InDataAccess.Height);

SetLength(U,InDataAccess.Width,InDataAccess.Height);

SetLength(UTemp,InDataAccess.Width,InDataAccess.Height);

{gray scaling transformation}

for i := 0 to InDataAccess.Width-1 do

begin

for j := 0 to InDataAccess.Height-1 do

U0[i,j] := Round(0.33*InDataAccess.Red[i,j]

+0.33*InDataAccess.Green[i,j]

+0.33*InDataAccess.Blue[i,j]);

end;{end for i}

{initialization of array}

for i := 0 to InDataAccess.Width-1 do

begin

for j := 0 to InDataAccess.Height-1 do

U[i,j] := U0[i,j];

end;{end for i}

{numerical part}

k := 0;

while (k<Loop) do

begin

for i := 0 to InDataAccess.Width-1 do

begin
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for j := 0 to InDataAccess.Height-1 do

UTemp[i,j] := U[i,j];

end;{end for i}

for i := 1 to InDataAccess.Width-2 do

begin

for j := 1 to InDataAccess.Height-2 do

begin

{DX1**********************************}

m := i-1;

um1 := UTemp[m+1,j]-UTemp[m,j];

um2 := UTemp[m,j+1]-UTemp[m,j];

um3 := UTemp[m,j]-UTemp[m,j-1];

{sign um2}

if um2 > 0 then sm2 := 1

else if um2 = 0 then sm2 := 0

else sm2 := -1;

{sign um3}

if um3 > 0 then sm3 := 1

else if um3 = 0 then sm3 := 0

else sm3 := -1;

{min m}

if abs(um2) < abs(um3) then mm := abs(um2)

else mm := abs(um3);
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um4 := ((sm2+sm3)/2)*mm;

temp := (um1*um1)+(um4*um4);

if abs(temp)<err_thres then Dx1 := 0

else DX1 := um1/Sqrt(temp);

{end DX1******************************}

{DX2**********************************}

ui1 := UTemp[i+1,j]-UTemp[i,j];

ui2 := UTemp[i,j+1]-UTemp[i,j];

ui3 := UTemp[i,j]-UTemp[i,j-1];

{sign ui2}

if ui2 > 0 then si2 := 1

else if ui2 = 0 then si2 := 0

else si2 := -1;

{sign ui3}

if ui3 > 0 then si3 := 1

else if ui3 = 0 then si3 := 0

else si3 := -1;

{min i}

if abs(ui2) < abs(ui3) then mi := abs(ui2)

else mi := abs(ui3);

ui4 := ((si2+si3)/2)*mi;
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temp := (ui1*ui1)+(ui4*ui4);

if abs(temp)<err_thres then Dx2 := 0

else DX2 := ui1/Sqrt(temp);

{end DX2******************************}

Dx := DX2-DX1;

{DY1**********************************}

n := j-1;

un1 := UTemp[i,n+1]-UTemp[i,n];

un2 := UTemp[i+1,n]-UTemp[i,n];

un3 := UTemp[i,n]-UTemp[i-1,n];

{sign um2}

if un2 > 0 then sn2 := 1

else if un2 = 0 then sn2 := 0

else sn2 := -1;

{sign um3}

if un3 > 0 then sn3 := 1

else if un3 = 0 then sn3 := 0

else sn3 := -1;

{min n}

if abs(un2) < abs(un3) then mn := abs(un2)

else mn := abs(un3);
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un4 := ((sn2+sn3)/2)*mn;

temp := (un1*un1)+(un4*un4);

if abs(temp)<err_thres then Dy1 := 0

else DY1 := un1/Sqrt(temp);

{end DY1******************************}

{DY2**********************************}

uj1 := UTemp[i,j+1]-UTemp[i,j];

uj2 := UTemp[i+1,j]-UTemp[i,j];

uj3 := UTemp[i,j]-UTemp[i-1,j];

{sign uj2}

if uj2 > 0 then sj2 := 1

else if uj2 = 0 then sj2 := 0

else sj2 := -1;

{sign um3}

if uj3 > 0 then sj3 := 1

else if uj3 = 0 then sj3 := 0

else sj3 := -1;

{min j}

if abs(uj2) < abs(uj3) then mj := abs(uj2)

else mj := abs(uj3);

uj4 := ((sj2+sj3)/2)*mj;
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temp := (uj1*uj1)+(uj4*uj4);

if abs(temp)<err_thres then Dy2 := 0

else DY2 := uj1/Sqrt(temp);

{end DY1******************************}

Dy := DY2-DY1;

if abs(Utemp[i,j])<err_thres then E := 0

else

E := (2/(Utemp[i,j]*Utemp[i,j]*Utemp[i,j]))*

((U0[i,j]*U0[i,j])-

(Utemp[i,j]*Utemp[i,j]));;

U[i,j] := Utemp[i,j]+t*((Dx+Dy)/2+E);

if U[i,j]<0 then U[i,j]:=0;

end;{end for j}

end;{end for i}

k := k+1;

end;

{displayed part}

for j := 0 to InDataAccess.Height-1 do

begin

for i := 0 to InDataAccess.Width-1 do

begin

OutDataAccess.Red[i,j] := Round(U[i,j]);

OutDataAccess.Green[i,j] := Round(U[i,j]);
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OutDataAccess.Blue[i,j] := Round(U[i,j]);

end;{end for i}

end;{end for j}

end;{procedure}

{Resumed procedure}

procedure TForm1.PlayButtonClick(Sender: TObject);

begin

VLDSVideoPlayer1.Resume;

end;

{Paused procedure}

procedure TForm1.PauseButtonClick(Sender: TObject);

begin

VLDSVideoPlayer1.Pause;

end;

{Form variable initialization}

procedure TForm1.FormCreate(Sender: TObject);

begin

Loop := 7;

str(loop,st);

Label2.Caption := st;

t := 1;

str(t:10:2,st);
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edit1.text := st;

end;

{Loop increasing procedure}

procedure TForm1.BitBtn1Click(Sender: TObject);

begin

If Loop<maxloop then

begin

Loop := Loop+1;

str(loop,st);

Label2.Caption := St;

end;

end;

{Loop decreasing procedure}

procedure TForm1.BitBtn2Click(Sender: TObject);

begin

If Loop>0 then

begin

Loop := Loop-1;

str(loop,st);

Label2.Caption := St;

end;

end;

{Form closed procedure}
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procedure TForm1.BitBtn3Click(Sender: TObject);

begin

Form1.Close;

end;

{Object Destroyed procedure}

procedure TForm1.FormCloseQuery(Sender:

TObject; var CanClose: Boolean);

begin

VLGenericFilter1.Destroy;

VLDSVideoPlayer1.Destroy;

end;

{Step size controller}

procedure TForm1.Button1Click(Sender: TObject);

var code : integer;

temp : real;

begin

st := edit1.text;

val(st,temp,code);

if code=0 then t := temp;

str(t:0:2,st);

edit1.text := st;

end;

end.
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