วัชชิราวุฒิศรี โคตร : การปรับปรุงภาพถ่ายเหนือเสียง โดยวิธีการแปรผัน (ULTRASOUND IMAGE ENHANCEMENT BY MEANS OF A VARIATIONAL APPROACH) อาจารย์ที่ปรึกษา : ผศ. ดร. เจษฎา ตัณฑนุช, 72 หน้า.

เมื่อคลื่นเหนือเสียงตกกระทบที่พื้นผิวหยาบจะทำให้เกิดการกระเจิงและสัญญาณรบกวนที่ เรียกว่า สเปกเคิล ในภาพถ่ายเหนือเสียง โดยที่การเกิดสัญญาณรบกวนแบบสเปกเคิลนั้น สามารถ อธิบายได้ด้วยการแจกแจงทางสถิติที่เรียกว่า การแจกแจงเรย์ลี ซึ่งมีฟังก์ชันการแจกแจงความน่าจะ เป็น ดังนี้

$$P(r) = \frac{r}{\sigma^2} e^{-r^2/(2\sigma^2)}$$

เมื่อ r มากกว่าหรือเท่ากับศูนย์ และ σ คือพารามิเตอร์ โดยตัวแบบทางคณิตศาสตร์ที่ใช้สำหรับการ ปรับปรุงภาพของภาพถ่ายเหนือเสียงที่มีสัญญาณรบกวนสามารถแสดงได้โดยสมการเชิงปริพันธ์ ดังนี้

$$E(u) = \beta \iint_{\Omega} \left(\sqrt{u_x^2 + u_y^2} \right) dx dy + \iint_{\Omega} \left(\frac{\tilde{u}^2}{u^2} + 2\ln u + F(\tilde{u}) \right) dx dy$$

เมื่อ *u*(*x*, *y*) คือค่าของความเข้มสี ณ ตำแหน่ง (*x*, *y*) ของภาพที่ต้องการ *ũ*(*x*, *y*) คือค่าของ ความเข้มสี ณ ตำแหน่ง (*x*, *y*) ของภาพที่กำลังพิจารณา Ω คือโดเมนของภาพ และ F เป็นค่าคงที่ซึ่ง ขึ้นกับ*ũ*(*x*, *y*)

แกลคูลัสของการแปรผันเป็นเครื่องมือที่ใช้ในการหากำตอบ u ที่เหมาะสมที่สุดของสมการ เชิงปริพันธ์ โดยจะแปลงสมการเชิงปริพันธ์ไปสู่สมการเชิงอนุพันธ์ ดังนี้

$$\frac{\partial}{\partial x} \left(\frac{u_x}{\sqrt{u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \right) + \frac{2}{\beta u^3} \left(\tilde{u}^2 - u^2 \right) = 0$$

โดยจะเรียกสมการนี้ว่า สมการออยเลอร์-ลากรองจ์ และคำตอบ u นั้นจะเป็นภาพที่ไม่มีสัญญาณ รบกวน สำหรับการหาคำตอบสมการออยเลอร์-ลากรองจ์ในโปรแกรมคอมพิวเตอร์ต้นแบบจะใช้วิธี เชิงตัวเลขที่เรียกว่า วิธีเกรเคียนท์เคสเซนท์ และผลลัพธ์ที่ได้แสดงให้เห็นว่าสัญญาณรบกวนใน

สาขาวิชาคณิตศาสตร์	ลายมือชื่อนักศึกษา
ปีการศึกษา 2551	ลายมือชื่ออาจารย์ที่ปรึกษา
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

WATCHIRAWOOT SEEKOT : ULTRASOUND IMAGE ENHANCEMENT BY MEANS OF A VARIATIONAL APPROACH. THESIS ADVISOR : ASST. PROF. JESSADA TANTHANUCH, Ph.D. 72 PP.

CALCULUS OF VARIATIONS / EULER-LAGRANGE EQUATION/ GRA-DIENT DESCENT METHOD/ RAYLEIGH DISTRIBUTION / SPECKLE NOISE / TOTAL VARIATIONS / ULTRASOUND IMAGE / VARIATIONAL APPROACH

When ultrasonic wave encounter rough surfaces, they become scattered, leading to speckle noise in an ultrasound image. The speckle noise occurring can be explained statistically by the Rayleigh distribution:

$$R_{\sigma}(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}},$$

where $r \ge 0$ and σ is a parameter.

One mathematical model for reconstructing an observed noisy ultrasound image is the integral equation

$$E(u) = \beta \iint_{\Omega} \left(\sqrt{u_x^2 + u_y^2} \right) dA + \iint_{\Omega} \left(\frac{\widetilde{u}^2}{u^2} + 2\ln u + \mathcal{F}(\widetilde{u}) \right) dA,$$

where $\mathcal{F}(\widetilde{u})$ being a constant depending on \widetilde{u} , for coordinate (x, y), u(x, y) is intensity of desired image, $\widetilde{u}(x, y)$ is intensity of observed image and Ω is the image domain.

The Calculus of Variations is the tool used to finding an optimal solution u of the integral equation. It transforms the integral equation to the differential equation

$$\frac{\partial}{\partial x} \left(\frac{u_x}{\sqrt{u_x^2 + u_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \right) + \frac{2}{\beta u^3} (\widetilde{u}^2 - u^2) = 0,$$

where $u = \tilde{u}$ on $\partial \Omega$, which is called Euler-Lagrange equation.

The solution u is expected to be the noiseless image. The gradient descent method is used to find the solution of the Euler-Lagrange equation numerically in the prototype software. The results show that the noise in the ultrasound images and videos is reduced.

School of Mathematics	Student's Signature
Academic Year 2008	Advisor's Signature
	Co-Advisor's Signature