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PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS / EQUIVALENCE

PROBLEM / SYMMETRY GROUP / GROUP ANALYSIS

This thesis is devoted to the study of the equivalence problem of parabolic
second-order partial differential equations with two independent variables. The
results obtained in the thesis are separated into three parts. The first result de-
scribes the form of parabolic second-order partial differential equations which are
equivalent to a linear equation. It is proven that this form is an invariant with
respect to a change of the dependent and independent variables. The second part
of the thesis is related with obtaining invariants with respect to point transforma-

tions of linear second-order parabolic partial differential equations
u + a(t, ©)ug, + b(t, x)uy + c(t, z)u = 0.

Differential invariants of sixth and seventh-order are obtained. The third part
of the thesis presents the solution of the equivalence problem for the canonical

classes of the equations u; = g, + a(x)u and u; = Uy, + x%u, where k is constant.
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CHAPTER 1

INTRODUCTION

Mathematical modelling is the basis for analyzing physical phenomena.
Many mathematical models are represented by partial differential equations. The
equivalence problem is one of the important problems of partial differential equa-
tions. Two differential equations are said to be equivalent, if there exists an
invertible transformation which transforms one equation into the other. The lin-
earization problem is a particular case of the equivalence problem. In this problem
one of equations is a linear equation.

S. Lie (1883) was the first to study the linearization problem of a second-
order ordinary differential equation. He found that an equation y" = F(z,y,v’) is

linearizable if and only if it has the form
Y+ a1y + 3agy’ * + 3azy’ +as = 0, (1.1)

and the coefficients a;(x,y), (i =1,2,3,4) satisfy conditions

L1 = Q9ry — 2a3;,;y + 3a4yy — 6a1xa4 + aopa3 + 3a2ya4 — 2a3ya3 - 3a4xa1
+3CL4yCL2 =0

Ly = 30100 — 2024y + G3yy — 301,03 + Q1404 + 202,02 — 33,01 — 3402
+6a4ya1 =0.

Liouville (1889), investigated the invariants of equation (1.1). He found

relative invariants of equation (1.1) with respect to a change of the independent



and dependent variables:

Vs = LQ(LlLQ;E — Lngx) + Ll(LQLly — Lngy) — CLlL? + 3@2[/%[/2 — 3@3[/1[/%
—HML%,

wy = L1_4(—L:1)’H12L1 — 1111 L) + Rl(L%)t - L%th + Ly Ry (asLy — aqLs)),

where
Ry = LiLy — LoLy + (12[1% — 2a3Ly Ly + G4L§,

IT;; = 2(CL§ — Gga4) + a3t — Gy,
Iy = agaz — ajay + agy — asy,.
If we have v5 = 0 or w; = 0, then v5 or w; is not changed.

Tresse (1896) applied the Lie approach for finding invariants of equation
(1.1) with respect to point transformations. He found the complete set of in-
variants for equation (1.1). Cartan (1924) used a differential geometry approach
for solving the linearization problem of equation (1.1). The linearization of third
order differential equations by point and contact transformations was studied by
Chern (1940), Grebot (1996), Ibragimov and Meleshko (2005), and Petitot and
Neut (2002).

In this thesis, parabolic partial differential equations with two independent
variables are studied. There are number of publications which are related to the
subject of the thesis. ILie (1881) applied group analysis for solving the linear
heat equation u; = ku,,. Ovsiannikov (1959) studied the nonlinear heat equation
up = (k(u)ug)..

Lie (1881) classified linear parabolic partial differential equations with re-
spect to admitted Lie groups. He found canonical forms of all linear second-order
partial differential equations

Upy = Uy + Hu, (1.2)

where H = H(t,z). For arbitrary H(t,z) the symmetry Lie algebra is infinite



dimensional and is spanned by

19)
s Xoo = 20<t7'x)_7

Xn =
0= ou

du
where z(t,z) is any solution of equation (1.2). The algebra is extended in the

following cases:

H=0, Xi=2,X =22 +aul,

9 9 o)
X3 = l’t% + tQE + (i.ﬁ(/’Q - %t)U%,

H=Hz), Xi=%,
H=%k#0, X, =5 Xo =2 +2t5,

Xy = atZ + 122 + (327 + t)u.
Ibragimov (2002) found semi-invariants (up to second-order) for a linear

parabolic partial differential equation under an action of the equivalence group of

point transformations which transform a linear partial differental equation
U + a(t, ©) g, + b(t, x)uy + c(t,x)u =0, a(t,z)#0 (1.3)

into an equation of the same form. He showed that equation (1.3) has the following

semi-invariants (up to second order)
a, g, Qg, Aggy Atz Ay K7
where
2 2 L, 2
K = 2c¢,a° — bja — by,a” — byba + byaa + §b ay + ba; + bay,a — ba.

Johnpillai and Mahomed (2002) showed that there are no first, second, third

and fourth order invariants other than constants and they obtained the relative



invariant of fifth-order for equation (1.3):

A =4a (20K, — 5a,K,) — 12K (aa,, — 2a2) + a, (4aay — 9a’)
— 12a,a, (a; + 2a2) + 4a (3a; + 6a2 — 5aa,, ),
+ 2aa, (164404, — 12002, + 15020,4,) — 40y — 120701010,

— 402 ppn (2a; — 4aay, + 3a§) + 8a3tppe — 40  Upprs (1.4)

(see the detail in Chapter V). Morozov (2003) found invariants of contact transfor-
mations of equation (1.3). There are also examples of linearization of the nonlinear
heat equation by contact transformations (see the discussion in Morozov (2003),
page 110).

Part of the thesis is devoted to finding differential invariants of a linear
second-order parabolic partial differential equations (1.3). Differential invariants
of sixth and seventh-order are found in the thesis. The invariants of eighth and
ninth-order are also found, but because of their cumbersome nature, they are not
presented in the thesis.

Since in obtaining differential invariants the semi-invariant K is used, we
also give a review of this subject here. Ibragimov (2008) is devoted to an exten-
sion of Euler’'s method to linear parabolic equations (1.3) with two independent

variables. First at all, these equations are mapped to the form
Up — Ugy + alt, )u, + c(t,x)u=0 (1.5)

by an appropriate change of the independent variables. The condition of reducibil-

ity of equation (1.5) to the heat equation
Vg — Vg = 0 (1.6)
is obtained in the term of the semi-invariant

K = aay; — Gy + a; + 2¢,, (1.7)



of equation (1.5). Namely, it is shown that equation (1.5) can be mapped to the
heat equation (1.6) by an appropriate change of the dependent variable if and
only if the semi-invariant (1.7) vanishes, i.e. K = 0. The method developed
in the article allows one to derive an explicit formula for the general solution of
a wide class of parabolic equations. In particular, the general solution of the
Black-Scholes equation is obtained.

Even though, many publications are devoted to equivalence and lineariza-
tion problems of ordinary differential equations, this problem is less studied for
partial differential equations. Equivalence problem for the first canonical form of
parabolic linear second-order partial differential equations was studied by Johnpil-
lai and Mahomed (2002). For the second and third canonical forms this problem
has not been developed yet. Part of the research of the thesis deals with the equiv-
alence problem of linear second-order parabolic equations to be equivalent to these
canonical forms. Moreover, we also found necessary conditions for the linearization
problem of a nonlinear second-order parabolic partial differential equation.

The thesis is designed as follows. Chapter II introduces background and
notations of the group analysis method. Definitions and theorems of the group
analysis are also presented. Chapter III provides an introduction to the concepts
of the compatibility theory. General theorems of compatibility and its particular
cases are also discussed. Chapter IV deals with obtaining necessary conditions for
the linearization problem of a nonlinear second-order parabolic partial differential
equation. Chapter V is devoted to finding sixth and seventh-order invariants of
linear parabolic differential equations. Equivalence problems of linear second-
order parabolic equations to one of the canonical forms are studied in Chapter VI.

The conclusion of the thesis is presented in the last chapter.



CHAPTER 11

GROUP ANALYSIS METHOD

In this chapter the group analysis method for finding invariants is discussed.

2.1 Local one-parameter Lie groups
Consider transformations
2 =4g'(z0) (2.1)

wherei =1,2,..,N,2€V C Z = R",a € Ais aparameter and A is a symmetric

interval of R'. The set V is an open set in Z.

Definition 2.1. A set of transformations (2.1) is called a local one-parameter Lie
group G' if it has the following properties

1. g(2;0) =z for all z € V.

2. g(g(z;a),b) = g(z;a+b) for all a,b,a+be Az € V.

3. If for a € A one have g(z;a) = z for all z € V, then a = 0.

4. g€ C=(V,A).

To the group G! is associated to the infinitesimal generator

X — i\f:gl(z)i (in short, X = CI(Z)E)
i=1 0z ’ Oz

where

() = (€2, ) = (z:0).

Conversel, if one knows a generator X, the one can find the Lie group to which it



is associated by the following theorem:

Theorem 2.1. A local Lie group of transformations (2.1) is completely defined

by the solution of the Cauchy problem:

dz;

=2, (i=1,..N) (2.2)

Z=1z (2.3)
Here the initial data (2.3) are taken at the point a = 0.

Equation (2.2) are called Lie equations. Transformations of independent,
dependent variables and arbitrary elements, preserving the differential structure
of the equations themselves are called equivalence transformations.

Example Let us check whether the transformations g = (z, §) where

a

T=¢ex, y=e %y (2.4)

obey the group properties:

1. equation (2.4) becomes the identity transformation when a = 0.

2. we have T = €'7 = ey, §j = ety = e (atd)y,

3. if for a € A one has x =z, y =y for all (z,y) € V, then a = 0.
4. (z,y) € C=(V,A).
Thus (2.4) is a local one-parameter Lie group. From (2.4) one gets

oz

0
Cay) = 5o (a.930) = 2, Ce,y) = Fo (@, 350) = —.

Therefore the group (2.4) is associated to the infinitesimal generator

0 0
X=r——y—. 2.5
"5 Yoy (2.5)
Applying theorem 2.1, from (2.5) one has the Cauchy problem:

dr  _ dy  _
— = = =
da " da Y (2.6)
a=0,T=x y=1y.

Solving the system (2.6) we obtain (2.4).



2.2 Equivalence groups

Definition 2.2. A nondegenerate change of the dependent variable u, indepen-
dent variables z, and arbitrary elements ¢, which transfers a system of /-th order

differential equations of the given class
FF(a,u,p,¢) =0,(k=1,2,...,5) (2.7)

into a system of equations of the same class is called an equivalence transformation.
The class is defined by the functions F*(z,u,p, ¢). Here (x,u) € V. C R™™, and
¢:V — R
Let us consider a one-parameter Lie group of transformations
7= f*(z,u,0;0), u= fU(x,u,¢;0) 6 = [*(z,u, d;a). (2.8)
The generator of this group has the form
8 ¢l a

e :cza u’
X = T g T

7

where the coordinates are

€5 = €% (z,u, ), ¢ = (¥ (w,u,0), ¢ = (2,u,9),

The transformed arbitrary elements are obtained in the following way. Assume

that we know ¢g(z,u), then we have
T = fx(xa u, qu(l‘v U), CI,), u= fu(xa u, QSO(Iv U), CL). (210)
By the inverse function theorem applied to (2.10), one can find

x = (Z,u;a), u= " (z,u;a) (2.11)



Substituting (2.11) into

ba(Z,0) = fO(2,u, $;a), (2.12)

one has identity with respect to the space (z,u)

The transformed function u,(z) is obtained as follows. If ug(z) is a given

function, then we define

T = f%(x,up(z), po(z,up(z));a). (2.13)

By the inverse function theorem, one finds z = ¢(Z;a). Substituting z = ¢(7;a)
into

ua(Z) = f*(x, uo(z), go(z, up(x)); a), (2.14)

one gets the transformed function

ua(Z) = [*(0(T;0), uo(p(T; a)), do((T; @), uo(p(T; a))); a)-

Using (2.13) and (2.14), there is the identity with respect to x

ua(f* (2, uo(2), do (2, uo(2)); a)) = [*(0(T; a), uo(p(T; a)), Po(p(T; a), uo(p(T; a))); a).

(2.15)
Formulae for transformations of the partial derivatives p, = f*(x,u,p, ¢, ...;a) are
obtained by differentiating (2.15) with respect to z.

Note that for constructing the transformations of dependent variables
(2.14), x and u are considered to be independent and dependent variables, respec-
tively. For constructing the transformations of arbitrary elements (2.12), (z,u)
are considered as the independent variables.

Assuming that wug(x) is a solution of system (2.7) with ¢g(x,u), and the

transformed function w,(z) is a solution of system (2.7) with the transformed
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arbitrary element ¢,(Z,u), the equations
F*(Z,uq(Z), pa(Z), 00(Z,ua(7))) = 0, (k = 1,2, ..., 5) (2.16)

are satisfied for an arbitrary z. Then one has

Fk( JE(w, uo(w), golw, uo()); a), f*(x,uo(), po(, uo()); a),
F2(, up(w), go(w, uo(w)); @), 7 (x, uo(x), do(x, uo(x)), po(x), ...; @) (2:17)
=0,(k=1,2,....5)

Differentiating (2.17) with respect to group parameter a and substituting a = 0,

one has

Fy (2, u(2), po(2), ¢ol@, uo(2)))E% (, uo(x), do(x, uo(x)))+
Ffj (x,up(x), po(x), do(z, uo(x)))C“j (2, ug(x), oz, up(x)))+ (2.18)

F(;fz (2, uo(2), po(), do(, uo(2)))C? (2, uo (@), Po (@, uo(x))) + ... = 0.

where

£ (0, uale), ol o)) = 2L AT ol tale)le)

0¥ (o), ol up())) = 2L A2 00l@): ol uolw); )

da _0’
: ¢l$uo$, olx,up());a
(o ua(a) ol o)) = 2L 10l2) ol o))

Since u,(z) is an arbitrary solution on (2.7), one can write the equations

)?epk(xauJ)? ¢)\(S) = Oa (219)
where
~ i 0 0 0
X = X€ 4 (Ui~ 4 (%, Pus 2.20
+¢ 8uxi+< 8%% a¢;j+ : (2.20)

In (2.19), the sign |(g) means that the equations )?eFk(x,u,p, ¢) = 0 are con-

sider on the set (S) = {(z,u,p,¢)| F¥(z,u,p,¢)=0,(k=1,2,..,s)}, defined
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by equations (2.7). Equations (2.19) are equations for the coefficients of the gen-
erator X¢. They are called determining equations. After solve the determining
equation (2.19), one obtains the generator X°. The set of transformation (2.8)
which is generated by one parameter Lie-groups corresponding to the generator
X¢, is called an equivalence group,

The coefficients of the prolonged operator are defined by the prolongation
formulae

Cuzpl — D;icuj UJ De gxk
! !
Cbmi - %g(b xlgxk - LkaZSUky
i
(P = Dy = ¢, D™ — 8, D™, .

Here the operators Dg. are operators of the total derivatives with respect to w;,

where the space of the independent variables consists of x;,

e 9 9 l l
sz‘ axz + ’U/;EZ (¢ + uxz(b )a¢l

The operators D,, and D,; are operators of total derivatives with respect to z;

and u’, where the space of the independent variables consists of x; and u/,

ala,a

D, = 9
= 9z, T gy

g

2.2.1 Invariant manifolds

This section is devoted to the definitions concerning invariant regularly
assigned manifolds. Assume that ¢ : V' — R® is a mapping of the class C*(V)

and V is an open set in R .

Definition 2.3. The mapping ¢ has a rank on the set V' if the rank of the Jacobi

matrix % is constant on V.
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Definition 2.4. The set ¥ = {z € V|i(z) =0} is called a regularly assigned

manifold if U has the rank s.
Definition 2.5. A function J(z), z € V is called an invariant of a Lie group G if
J(g(z;0)) = J(2), Vz€ V,Ya € A

and the function J(z) is called a relative invariant if Vz € V such that J(z) =0,
then

J(g(z;a)) =0, Ya € A.

Theorem 2.2. A function J(z) is an invariant of a Lie group G(X) with generator

X if and only if it satisfies the infinitesimal test
XJ(z) =0.

Definition 2.6. A manifold V¥ is invariant with respect to a Lie group G if after

its transformation, any point z € ¥ belongs to the same mainifold .

Theorem 2.3. A regularly assigned manifold V is an invariant manifold with

respect to a Lie group G(X) if and only if
X (2)1y, = 0, (k= 1,2,...,5).

Here |(y) means that the equations are considered on the mainfold ¥. For

applications the following theorem plays a very important role.

Theorem 2.4. Any regularly assigned by V*(z1, 22, ....,25) = 0, (k = 1,2,...,5)

wwvariant manifold W can be represented by the formula
DUJN2), JH(2), .., SNTH2) =0,(i = 1,2, ..., 5),

where ®° are arbitrary functions of N — 1 functionally invariants J'(z), (I =

1,2,...,N —1) for a Lie group G(X).
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Notice that definitions and theorems above can apply to an equivalence
group, because an equivalence group is a special case of a Lie group.
It is assumed that (5) is a regularly assigned manifold. That is for differ-

ential equations it is also assumed

By OF B
ran <m%UJ%@)_—&

By virtue of the inverse function theorem, it enough to assume

rmm(ﬁgé)zs

This assumption allows system () to be solved with respect to s terms, which are
derivatives of the dependent variables u and arbitrary elements ¢. These terms
are called main variables and the other variables are called parametric variables.

Now, one can notice that equations (2.19) mean that the regularly assigned
manifold (S) is invariant with respect to the prolonged equivalence group C;'e.
This means that the point (x, ug(x), po(x), do(z,u)) belonging to the manifold (5)
is transformed to the point (Z,u,(Z), pa(Z), ¢o(Z,w)) which also belongs to the
manifold (S). Such as it is the main feature of the equivalence group G¢, any
solution ug(x) with ¢g(x,u) of the system (.5) is transformed to the solution u,(Z)

with ¢o(Z, u) of the same system.



CHAPTER III

THEORY OF COMPATIBILITY

This section gives the necessary knowledge of involutive systems. Because
this theory is very specialized subject of mathematical analysis, the statements
are given without proofs. Detailed theory of involutive systems can be found in
Cartan (1946), Finikov (1948), Kuranashi (1967), and Pommaret (1978). A short
history of the theory can be found in Pommaret (1978).

There are two approaches for studying compatibility. These approaches are
related to the works of E.Cartan and C.H.Riquier.

The Cartan approach is based on the calculus of exterior differential forms.
The problem of the compatibility of a system of partial differential equations is
then reduced to the problem of the compatibility of a system of exterior differential
forms. Cartan studied the formal algebraic properties of systems of exterior forms.
For their description he introduced special integer numbers, named characters.
With the help of the characters he formulated a criterion for a given system of
partial differential equations to be involutive.

The Riquier approach has a different theory of establishing the involution.
This method can be found in Kuranashi (1967) and Pommaret (1978). The main
advantage of this approach is that there is no necessity to reduce the system of
partial differential equations being studied to exterior differential forms. Calcu-
lations in the Riquier approach are shorter than in the Cartan approach. The
main operations of the study of compatibility in the Riquier approach are prolon-

gations of a system of partial differential equations and the study of the ranks of
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some matrices. First we consider a simple case of compatibility, system of linear
homogeneous equations with one dependent variable. In the next case we give a
solution of first-order partial differential equation where all derivatives are defined.

Then the general approach is discussed.

3.1 Complete systems partial differential equations

This section is devoted to solving a linear system of homogeneous first-order

partial differential equations with one unknown function u(z), (z € R"):

Xi(u) Eﬁé(x)g—;] =00=12,.,m). (3.1)

Here, the function u(x) and the coefficients £}(x) are assumed to be sufficiently
many times continuously differentiable. For the sake of simplicity it is assumed
that rank(&;(x)) = m. This means that m < n. Notice that, because for m =
n, the determinant det((¢}(z))) # 0, hence, the linear homogeneous (3.1) yields
ugy, = 0. In this case there is only the trivial solution u = constant. Thus, a

necessary condition for the existence of nontrival solution is m < n.

3.1.1 Homogeneous linear equation

Let © = (z1,...,2,) be n > 2 independent variables and u a dependent

variable. Consider the linear partial differential operator of the first order

0

(3.2)

In terms of this operator, the homogeneous linear partial differential equation is

written as follow:

- =0. (3.3)
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Theorem 3.1. The general solution of equation (3.3) has the form

u=F((2), ..., Yn1(2))

where F' is an arbitrary function of n — 1 variables and

1(2), 92(2), o Y () (3.4)
are functionally independent solutions of (3.3).

Notice that, functions (3.4) are said to be functionally dependent if there
exists a function W such that W (¢ (), ..., ¥Yn—1(x)) = 0 for all z, and functionally
independent otherwise. The solutions (3.4) are obtained by solving the character-

istic system of equations

3.1.2 Poisson bracket

The linear operators X; have the properties

Xi(ur +ug) = Xi(ur) + Xi(uz), Xi(urug) = uaXi(ur) + w1 Xi(uz),

ou
0x,

Xi(X;(u) — X;(Xi(u) = [Xi(€(2)) — X;(&.(2))]

Definition 3.1. The operator (X;, X;)(u) = [X;(&(z)) — X; (5;(33))]8%"; is called

a Poisson bracket with X; and X.

Definition 3.2. The equations (3.1) are said to be linearly dependent if there

exist functions \*(x), not all zero, such that
M(@) X1 (u) + ..+ N (2) X, (u) = 0, (3.5)

in some neighborhood of x. If the relation (3.5) implies A = ... = \™ = 0, we say

that the equations (3.1) are linearly independent .
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It is obvious that if u(x) is a solution of the equations X;(u) = 0 and
X;(u) = 0, then it also a solution of the equation (X;, X;)(u) = 0. Hence, new
linear homogeneous equations can be produced by means of Poisson brackets. If
the new equations (X;, X;)(u) = 0 are linearly independent of the equations of
system (3.1), then one can append them to the initial system. Let m’ be the
number of the equations after append equations produced by Poisson brackets to
the initial system. There are only two possibilities either m’ = n and m’ < n. In
the first case one has only trivial solution. The second case leads to the following

definition.

Definition 3.3. System (3.1) is called a complete system if any Poisson bracket

is linearly dependent on the equations of the initial system (3.1).

That is, every system of homogeneous linear partial differential equations
can be converted into a complete system by adding all equations which produced
by Poisson brackets. We can solve the complete system by solving equation by

equation.

3.2 General theory of compatibility

Let a system of ¢-th order differential equations (S) be defined by the

equations

(9) ®'(z,u,p) =0, (i=1,2,...,5). (3.6)
Here x = (z1, %, ...,T,) are the independent variables, u = (u!,u? ... u™) are
the dependent variables, p = (p) is the set of the derivatives pJ, = agilfj,
G=1,2,....,m; |a| <q), a=(aq, g, ..., an), |a|=a1+as+ -+ a,. All

constructions are considered in some neighborhood of the point X = (¢, uo, po) €

(S). First the algebraic properties of a symbol of the system (S) are studied. The
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symbol G, of the system (S) at the point X is defined as the vector space of vec-
tors with the coordinates (¢2),(j =1, 2, ..., m; |a| = q), where the coordinates

(&J) satisfy the algebraic equations

z:z:&ayb%%ﬂL@:LQPH,Q.

oph

i=1 |al=q

The subspace of the symbol G, composed by the vectors with
=0 (8l=q-1; 1=1,2 ..k j=1,2 ..., m)

is denoted by (Gq)k, (k=1,2, ..., n—1). Here (3, [ =

(B, Bay -os Bioty Bt 1, Bty ooy Ba)y (Gy)” = Gy, and (Gy)" = {0}.

Let the dimensions of the vector spaces (Gq)k be 7. For example,

n+q-—1 P
To=m — rank ( (Xo)) , Ta = 0.

J

q pe
The number
n—1
D
k=0
is called the Cartan number. With the help of the numbers 7, (k=0, 1, ..., n)

the Cartan characters are defined by the formulae
Ok+1 = Tk — Tk+1, (k’:L Sy n—l)-

Note that 7o = ) oy and the Cartan number can be expressed through the Cartan

k=1

characters
n—1 n
Z T = Z k’O’k.
k=0 k=1

Let G441 be the symbol of the prolonged system (D.S):
(DS) D@ (z,u,p)=0, (I=1,2,....,n; i=1,2, ..., 5). (3.7)

Here the operator D; is the total derivative with respect to z;
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Definition 3.4. The system of differential equations composed by the system (5)

and (DJS) is called the first prolongation of the system (.5).

The theory of compatibility is a local theory, i.e., all properties are con-
sidered in some neighborhood of a point Xy, and all manifolds and functions are
assumed to be the necessary number of times continuously differentiable. More-
over, the Cartan theorem works only for analytical functions.

Note that Cartan characters depend on the order of the independent vari-
ables (x1, 29,3, ...,x,): so any change of the order can change the Cartan char-

acters. There is the estimate

3

dim (Gq+1) < ka'k
k=1

Definition 3.5. A coordinate system of the independent variables in which there
is the equality
dim (Ggs1) = Y _ koy,
k=1

is called a quasireqular coordinate system.

Definition 3.6. If there exists a quasiregular coordinate system, then a symbol

G, is called an involutive symbol.

After studying the algebraic properties of the system (.S) one has to analyze
the differential structure of the manifold defined by the equations (DS). From
the system (DS) one can find N = dim (G41) derivatives of the highest ¢ + 1
order. These derivatives are called the main derivatives of the system (DS) of

order q + 1.

Definition 3.7. If a system (.5) with an involutive symbol posseses the property
that after substituting the main derivatives of the prolonged system (DS) of order
q + 1, the remaining equations of the system (DS) are identities because of the

system (S), then system () is called involutive.
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Theorem 3.2 (Cartan). Any analytic system of partial differential equations after

a finite number of prolongations becomes either involutive or incompatible.

Theorem 3.3 (Cartan — Kohler). If a system (S) of order q is involutive and
analytic, there exists one and only one analytic solution of the Cauchy problem

with given oy, functions of k arguments (k=1,2,...,n—1).

The property of analyticity of an involutive system is not a necessary con-
dition for the existence of a solution. There are theorems of existence of involutive
systems of the class C' (Meleshko (1980)).

Any study of compatibility requires a large amount of symbolic calculations.
These calculations consist of consecutive algebraic operations: prolongation of
a system, substitution of some expressions (transition onto manifold), and the
determination of ranks of matrices (for obtaining the Cartan characters). Because
these operations are very labor intensive, it is necessary to use a computer for
symbolic calculations.

In practice, sometimes it is enough to use the particular case of the com-

patibility theorem.

Corollary 3.4 (completely integrable systems). If in an overdetermined system of
partial differential equations all derivatives of order n are defined and comparison
of all mized derivatives of order n+1 does not produce new equations of order less

or equal to n, then this system is compatible.

3.3 Completely integrable systems

One class of overdetermined systems, for which the problem of compat-
ibility is solved, is the class of completely integrable systems. The theory of

completely integrable systems is developed in the general case.
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Definition 3.8. A system

07"
oa’

= fz:(aaz)a (Z = 1727 -"7N; j = 1727 "'77a) (38)

J

is called a completely integrable if it has a solution for any initial values ag, 29 in

some open domain D.

Theorem 3.5. Any system of the type (3.8) is completely integrable if and only

if all of the mixzed derivatives equalities

ofi N ofi o N 0
f Zfﬁ f a‘z:f ij’yai.f ) = 27 "'7N; ﬁ’] = 172""7r) (3'9)

are identically satisfied with respect to the variables (a,z) € D.



CHAPTER IV
NECESSARY CONDITIONS FOR THE

LINEARIZATION PROBLEM

In this thesis a nonlinear parabolic partial differential equation
F<t7x7ut7uxauttaut:muxm) =0 (41)

is studied. The problem considered in this chapter is related with the lineariza-
tion problem. The linearization problem is to find an invertible change of the

independent and dependent variables
T=H(t,z,u), y=Y(t,x,u), v=V(t,x,u) (4.2)

which transforms the nonlinear equation (4.1) into a linear second-order parabolic

partial differential equation
Uy + bivyy + bovy + bgv = 0. (4.3)

Here the functions by, bs, b3 depend on the independent variables 7, y.
This chapter is devoted to obtaining a form of parabolic second-order par-
tial differential equation which is necessary for equation (4.1) to be linearizable

via point transformations (4.2).

4.1 Obtaining necessary conditions

We assume that the equation (4.1) is obtained from a linear equation (4.3)

by an invertible change of variables (4.2). Let us obtain change of derivatives. For
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this we suppose that uo(t, x) is a given function. Substituting wug (¢, x) into (4.2),
one obtains

T=H(t,x,uo(t,x)), y =Y (t,x,uo(t,x)). (4.4)

By virtue of the inverse function theorem, there exist functions 7'(7,y), X(7,y)
such that

t=T(ry), v =X(1.y). (4.5)
After substituting (4.5) into the third equation of (4.2), one obtains the transfor-

mation of the function u(t, z):

vo(T,y) = V(t, z,ue(t, x)),

where ¢ and x are defined by (4.5). Notice that the function vy(7,y) satisfies the

relation
vo(H(t, 2, wo(t,2)), Y (1, 2, wo(t, 7)) = V (£, 7, uolt, 7)),

Uo(T, y) = V(T<7—7 y)v X(Ta y)7 UO(T(T7 y)? X(T, y)))

Differentiating the first equation of (4.6) with respect to ¢ and x, and using the

(4.6)

chain rule one gets
vor DiH + v, DY = DV,  wvo, D, H +vo,D,Y = D,V, (4.7)
where
Dy = 0 + w0y + U004, + utOy,, Dy = O + U0y + UpyOu, + Uty Oy, -
Solving a linear system of algebraic equations (4.7) with respect to the derivatives

vor and vy, one has

UOT(Ta y) = A71(DCCYDt‘/ - DtYDacv)a (4 8)
UOy(T7 y) = _A_I(DIHDtV - DtHva)a
where A = (D,H)(D,Y) — (D,H)(D;Y) # 0 is the Jacobian of the change of

variables. Differentiating the second equation in (4.8) with respect to ¢ and x, one
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obtains

UOyTDtH + ’onyDtY = Al, UOyTDxH + onnyY = Ag, (49)

where
Ay = (ADy(D,HD,V — DiHD,V)— (D ,HD,V — DtHDxV)DtA)/AQ,

Ay = (AD,(D,HD,V — D;HD,V) — (DyHD,V — D;HD,V)D,A) /A

Hence, the derivative vy, is
Vogy = N H(—A D, H + AyDH). (4.10)

Substituting (4.8) and (4.10) into (4.3), one obtains a nonlinear equation of the

form

Auy + Bugy + Cug, + aluf + agui + agufugg + a4utu§ + a5uf + aﬁui (4 )
A1
+a7uty + aguy + agu, + ayp = 0,

where

_ 2
A = an + appui — a13uy,
B = aj5 — 2a10uuy + 413U — Q14y,

_ 2
C = a1 + apuj + arauy,

and a;, (i = 1,...,16) are some functions which depend on ¢,z and u *. For

nonlinear parabolic partial differential equation, one requires the condition B? —

4AC =0, i.e.,
(Cﬁg - 461116112)“,52 + 2(a13a14 — 2a15a12) Uty + 2(ar3a15 — 2a11a14) Uy (4.12)
—i—(ai - 4a12a16>ui + 2(2a13a16 — a15014)U; — dargann + G%5 = 0.
Equation (4.12) implies that
a?y — dajran = 0, aizaiy — 2ai5a12 = 0, aizars — 2a11a14 = 0,
(4.13)

2 _ _ 2 _
aj, — 4apa16 = 0, 2a13a16 — ajsais = 0, ajs — 4aear; = 0.

*The representations of a;, (¢ =1,2,...,16) are in Appendix A
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The equation in the form (4.11) is a necessary condition for the linearization
problem by means of point transformations (4.3) which transforms the nonlinear
equation (4.1) into a linear second-order parabolic partial differential equation
(4.3).

Let us transform (4.11) by an invertible change of the independent and

dependent variables
t=®(t,z,u), x=V(z0), u=Q(zT, ). (4.14)

The change of derivatives of the dependent variable u is similar to the change
of derivatives of the dependent variable v given in the beginning of this section.

Substituting them into (4.11), one gets

Atigs + Bugg + Cligz + G102 + Qo + a3tz + asUu2 + a5u? + ag2 1)
11
+arslz + Gyl + dgliz + aip = 0,

where

A

— — _2 — —
a1 + G12Uz — A13Uz,

B = @15 — 212Usliz + 13Uz — G1alsz,

C = Q16 + A12U2 + Gty
and a;, © = 1,2,...,16 are some functions which depend on ¢,z and % and the
coefficients a;, (i = 1,...,16). Direct checking shows that the following conditions

are satisfied

Aty — 411012 = 0, Q13014 — 2015012 = 0, Q13015 — 2011014 = 0,
(4.13)
aty — 4812016 = 0, 2013816 — G15014 = 0, G35 — 416011 = 0.
These conditions guarantee that B2 — 4AC = 0, which means that (4.11) is a
nonlinear parabolic differential equations. From (4.11") and (4.13'), we see that

the form and type of parabolic second-order partial differential equations (4.11)

are not changed by a change of the dependent and independent variables (4.14).
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4.2 Particular forms of linearlizable parabolic partial dif-

ferential equations

4.2.1 Case a1 #0

One can assume that a;; = 1. Then (4.13) give

_ 2 _ _ 2
a1 = aijs3/4, a1s = ayza15/2, a1 = ays/4.

Substituting aja, a4 and aj¢ from (4.15) into (4.11), one has

a2 a2
(1+ =202 — ayguy)up + (a15 — BRugy + azuy — S5 U, Juy,

afs | af3,2 | aisa 3 3 2
(2 + T 4 WL Y, 4 aquf + agud 4 azufu,

+a4utui + a5uf + aﬁui + a7uu, + aguy + agtiy, + a9 = 0.
4.2.2 Case a11 =0, a;g # 0

Assume a6 = 1, from (4.13), one obtains

— _ _ 2
a1z = O, a5 = 0, 12 = CL14/4.

Substituting a;, as and aq3 into (4.11), one gets

a2 a2 a2
Ly — (Fugty + a14ug ) + (14 B2 + a14U;) gy + a1 + agu

+azuu, + aguu + asu? + agu? + arugt, + aguy + aguy + ag = 0.
4.2.3 Case ajlp = 0, a1 — 0

From (4.13), one obtains

a3 =0, a;5 =0, a4 = 0.

Substituting a;3, a;s and ayy from (4.19) into (4.11), one gets

2 2 2 2 2
a1 (Ut — 2UtipUy + Ulgy) + Cl1u§’ + agui + azuiu, + aguiuy + asuy

+G6Ui + arul, + aguy + AglUy + G190 = 0.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



CHAPTER V
INVARIANTS OF LINEAR PARABOLIC

DIFFERENTIAL EQUATIONS

5.1 Introduction

We consider linear second-order parabolic partial differential equations in

two independent variables:
ur + a(t, o)y, + b(t, x)u, + c(t,z)u =0, a(t,z) #0. (5.1)

Recall that the well-known group of equivalence transformations for equation (5.1)
(Lie (1881)), i.e. the changes of variables ¢, z and u that do not change the form of

equation (5.1), is composed of the linear transformation of the dependent variable
u=o(t,x)u, (5.2)
and the following change of the independent variables:

t= ¢(t>’ T = ¢(t7 :L"), (53)

where o(t,x),¢(t) and (¢, z) are arbitrary functions obeying the invertibility
conditions, o(t,xz) # 0, ¢'(t) # 0 and ,(t,x) # 0. Invariance of the form
of Equation (5.1) means that the transformations (5.2)—(5.3) map equation (5.1)

into an equation of the same form:

)Uzz + b(t, T) Uz + ¢(t, ) u = 0. (5.1)

8l
KU

uz + a(t,
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Equations (5.1) and (5.1") connected by an equivalence transformation are called

equivalent equations. We leave the proof that any transformation
u=U(t,z,u), T=X(tz,u), t =T z,u) (5.4)

which maps equation (5.1) into an equation of the same form has the representa-
tion (5.2) and (5.3) to chapter VI.

An invariant of Equation (5.1)is a function
J(CI,, ba C, G, Qg bta ba:a Cty Cxy Qgts Aty Aggy - - - 5 Cagy - - )

that remains unaltered under the equivalence transformations (5.2)—(5.3). It

means that J has the same value for equivalent equations (5.1) and (5.1):
J(a,b,c,ay, ..., Con,...) =J(@b,¢ag...,Cuz,...)

If J is invariant only under the transformation (5.2) it is termed a semi-invariant
(Ibragimov N.H. (2002)). The order of an invariant (or semi-invariant) J is iden-
tified with the highest order of derivatives of a, b, ¢ involved in J.

Semi-invariants of hyperbolic equations (termed the Laplace invariants)
have been known since the 1770s. Recently there has been considerable interest
in invariants of parabolic equations. The first step toward solving the problem of
invariants for parabolic equations was made in (Ibragimov N.H. (2002)) where the

semi-invariant of the second order

T

1
K = 2c,a® — bja — bypa® — byba + byaza + 5620’“’0 + bay + bagza — ba? (5.5)

was found. It was also shown that K and the coefficient a(¢,x) provide a basis
of semi-invariants. This solves the problem of semi-invariants. Namely, any semi-
invariant J of arbitrary order involves only a and K together with their derivatives

of appropriate order, i.e.

J = J(a,ap, ag, g, Qs Qg - - K Ky Koy Ky, Koy Koy -2 ). (5.6)
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Furthermore, it follows from this result that the invariants of Equation (5.1) with
respect to the general equivalence group can be obtained by subjecting the func-
tions (5.6) to the condition of invariance under the change (5.3) of the independent
variables.

The method and result of (Ibragimov N.H. (2002)) were used in (Johnpillai
[.K. and Mahomed F.M. (2001)) for investigating invariants and invariant equa-
tions up to fifth-order with respect to the joint transformations (5.2) and (5.3).
It has been shown in (Johnpillai I.K. and Mahomed F.M. (2001)) that Equation
(5.1) has no invariants up to fifth-order and that it has precisely one invariant

equation of the fifth-order, namely the equation
A=0 (5.7)
where the quantity A is defined by

A =4a (20K, — 50, K,) — 12K (aay, — 2a2) + a, (4aay — 9a’)
— 12a4a, (a; + 2a2) + 4a (3a; + 642 — 50, ),
+ 2aa, (16a4a,, — 12aa2, + 1562 a,4,) — 4a%ay, — 120% 0,040,

— 42 appn (2a; — 4aay, + 3a§) + 8a3tppe — 40 Qs (5.8)

and is termed a relative invariant due to the invariance of equation (5.7) with
respect to the equivalence transformations (5.2)—(5.3). The function A becomes
an invariant if it restricted to equation (5.1) satisfying A = 0. It is demonstrated
in (Johnpillai [.LK. and Mahomed F.M. (2001)) that equation (5.7) provides a
necessary and sufficient condition for Equation (5.1) to be equivalent to the heat
equation.

In the thesis, we find all invariants and invariant equations of the sixth

and seventh orders. Since A = 0 singles out the heat equation and all equations
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equivalent to the heat equation, we exclude these equations and assume in what

follows that A # 0. Under this assumption, we prove the following result.

Theorem 5.1. An arbitrary equation (5.1) with X # 0 has one invariant of the

6-th order:
2a\, — dAha,
and one tnvariant of the 7th order:
20 N\pe — 9aaz N\, + 5(3a2 — aagy )\
A, — a aa; A + 5(3ag — aag)A (5.10)

\7/5

Furthermore, there are additional invariants of the 7-th order in the following
particular cases.

(A) The family of Equations (5.1) obeying the invariant conditions

5Ay —3A7 =0, A, #0 (5.11)
has the invariant
a 12
A3 = W CLxAt + Zat/\w - 5_)\ a/\t>\z + 2a/\t;r - 5>‘atx . (512)

(B) The family of Equations (5.1) defined by two invariant equations

A=0, Ay=0, Ay= (5.13)

has the invariant

Ay

1
= 0% [10)\a2(3amamx — 200 p0p + 302, — a14e) + HAa(8014,

— 8ay; + 16a,a5, — 15a2a,, — 8K,) + 2A(50a; — 4a,a? + 1542

+ 400, K) + aXy(8a,a; + 660,00 — 402 Agzy — Saay, — 3a> — 8K)  (5.14)

3 2
2
— 40(lat>\t + 8a )‘tt] - W (2@)\,5 - 5/\(1,5) .
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(C) The family of Equations (5.1) obeying the invariant conditions
Ai=0, Ay#0 (5.15)

has the invariant

As = 4AyA 4 — 3A3. (5.16)

5.2 Equivalence Lie group

For obtaining invariants we use the Lie approach. This approach consists
of finding an equivalence group of point transformations, and finding its invariants
by solving a system of homogeneous linear equations. Let us recall the method
for obtaining an equivalence group. Consider a parabolic equation (5.1). Since
the functions a, b, ¢ depend on the independent variables ¢, z only, the equivalence

group should leave invariant the equations
a,=0, b,=0, ¢,=0. (5.17)

Let the generator of a one-parameter equivalence Lie group be

0 0 0 0 0 0
Xe — ¢t x = u_ a b~ c 5.18
S TR PR TR PR TR (5.18)
where the coefficients £',...,¢° may, in general, depend on the variables

t,x,u,a,b, c. The coefficients of the prolonged operator

= 0 0
X = Xe—f-guta—ut +<ux% + ¢

0 0 9,
R e

Oy da ob,, ey

are defined by the prolongation formulae
¢" = DEC" — w D —u, DS, (" = DSC" — wy DSE! — u, DEE,

Cuxm _ D;Cux _ uthzgt _ uwnggx’ Cau — DUC‘I _ atDuft _ axDu€m7

Cbu = Dqu - thugt - beU£xa Ccu = Dqu - CtDuft - CmDU£xa
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Here the operators Dy, D¢ are operators of the total derivatives with respect to ¢

and z, respectively, where the space of the independent variables consists of ¢ and

1’,
. 0 0 0 0 0
Di = En + Uty + (a; + utau)% + (b + utbu)% + (e + utcu)a—c +-
0 0 0
DS = — 4 up— + (ap + uzay)=— + (by + uzby) = + (co + ugcy) — + - - -

o Ox ou Oa ob oc

The operators D;, D, and D, are operators of total derivatives with respect to ¢,

x and u, where the space of the independent variables consists of ¢, x, and u,

0 0 0 0

D a +ata +btab+ct&+,
0 0 0 0
D=5y T aagy Thogy Teoge T
Du:£+aua+b 0 2_|_

aa " ™aa " an T ae
Because of (5.17) and the definitions of (%, (b+, (°, one can split the part of

determining equations
(= =0, (=0, (=0

with respect to a;, @y, by, by, ¢, cy. Consequently the coefficients &, &%, (®, P
and (¢ do not depend on u.

Solving the determining equations

XGF‘u),(z) =0,

one finds
=p &=q "= uo(t,x), ¢*=2aq — ap,
(" = aGua +bge — bpr + @ — 2004, (¢ = —Cpy — 0 — 404y — b0,
with arbitrary functions p = p(t), ¢ = q(t,x), 0 = o(t,z). Hence, we arrive at
the following generator of the equivalence Lie group:

X = p5t+q8x+uo— +a(2qgc pt)%
(5.19)

+(aqupe + bge — bpy + g1 — 2aax)% — (epy + 0y + ao., + bar)%
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5.3 Representation of invariants

For obtaining n-th order invariants we use the infinitesimal test
Xe(J) =0,

where J depends on a, b, ¢ and their derivatives up to order n. Notice that for

relative invariants the infinitesimal test is

X%hmszu k=1,..s,

)

where (S) is the manifold defined by equations J, =0, k=1, ..., s.
Recall that the generator for finding semi-invariants is (see (Ibragimov N.H.
(2002))
Xeé = ua% — (Qaax)% — (oy + a0z + b%)a% (5.20)

and that Equation (5.1) has the following semi-invariants up to the second order

(see Introduction)
G, Gy Oy Qs Grg,  Ogy KK
where K is given by Equation (5.5):
2 2 Lo 2
K = 2¢c,a* — bja — by,a® — byba + byaa + §b a, + ba; + bay,.a — ba,.

Furthermore, the invariants of the equivalence group defined by the gener-
ator (5.19) are in the class of functions J of the form (5.5) involving, in general,
the derivatives of a up to the order n, and derivatives of the function K (¢, ) are

up to the order n — 2. Accordingly, the generator (5.19) is rewritten in the form

0 0
X¢ = a(2q, — p))— + (K —,
where
gK = Q004 — quzxa3 - qu%GQ - 2qua2 + BQIK

—qua + q; (as + agea — a?) — 3p: K.
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The coefficients of the prolonged operator

Ye — ye ati azi Kti K, 0
X = X (Mg (g ek Mg+ g (5.21)

are defined by the prolongation formulae, e.g.

(" = Di(" — arDi' — a; D&, (% = Dyp(" — a1 Do’ — a; D€,

(F = DR — Ky D&t — K,Di&", (% = DX — KyD,&" — K, D,&",
where

0 0 0 0

For finding invariants one has to apply the following procedure. Let us
consider an invariant of order n, where it is assumed that J depends on the
variable a, its derivatives up to n!” order, the function K and its derivatives up

to (n — 2) order. Invariants can be obtained by solving the equations
Xe(J) =0,

and relative invariants by solving the equations

X(Jy) 0.

lsy —

5.4 Method of solving
This section is devoted to finding sixth-order differential invariants. Let
J(a, Aty Qg Aty Qpgy Qggy -y Apzazas, K’ Kt7 Kata Ktt7 Kta:a Kma:a ceny Km:c;rz)

be a sixth-order differential invariant.
The prolonged operator X¢ is defined by (5.21). Splitting the equations

X ¢(J) = 0 with respect to p,q and its derivatives, one obtains a system of 43
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linear homogeneous equations. Some of these equations are of the following two
types. The first type is
T+ aid, =0, (5.22)
i=1
where J = J(x,y1,92,...,Yn), and the coefficients a; (i = 1,2,...,n) are linear

functions of the independent variables y1, 4o, ..., y;_1 which have the form

i—1
ai =Y Bik () g+ ().
k=1

The characteristic system for equation (5.22) is

dx dy: dys dys

1 v(z) B Bo1 (x) y1 + 72 () B B3 (2) y1 + Bs2 () y2 + 73 ()

From the characteristic system one can obtain the general solution of (5.22).
The second type of equations is
vlo+ Y kiyidy, =0, (5.23)
i=1

where k; (i = 1,2,...,n) are constant. The general solution of (5.23) is

Yi
aki’

J=J(Nh,J2y .y Jy), where J;= (i=1,2,...,n).

The calculations for obtaining the system of equations for finding invariants
and solving its equations are cumbersome. For these calculations we therefore used
the Reduce programs developed for solving the linearization problem of third-order

ordinary differential equation (Ibragimov, N.H. and Meleshko, S.V. (2005)).

5.5 Sixth-order invariants

After solving the equations of the first and second types the system is

reduced to the following system of equations

a.J aJ aJ a.J aJ
=0, b Sy 5 T T, =0, = T3 =0 5.24
0J, 1 T T 0, 3t a.J, 1 0Jy, 2 T ad, P T (5:24)



where

O\ _oa O\ _da
_ 5 AP -l 7 AP -t
Li=XM(8a), = (2g7a—55.0)/(16a7), Jy=(25"a— 55"\

and J = (Jl, JQ, Jg)
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)/(8a")

If A\ =0, then J; = J; = J3 = 0. This case was studied in (Johnpillai I.K.

and Mahomed F.M. (2001)). If A # 0, then J; # 0. Because of the first equation

of (5.24), J does not depend on Jy. Solving the second equation of (5.24), one

obtains the only invariant J3/JP. This invariant was also obtained in (Morozov

O.1. (2003)) as an invariant with respect to contact transformations.

5.6 Seventh-order invariants

Similar to the previous section the system for finding invariants of seventh-

order is reduced to the following equations

oJ oJ oJ
24 =
8JJ2+68JJ3+58J2J 0,

9‘9JJ6+78‘]J5+68JJ3+83JJ4+58JJ1 78JJ2—0

aJ a.J aJ
3 T 2 T = Ty =0
0Js 4t 0., +€9J2 B

where

Ji = (—5M\aga — 4\ aa — Saga) + 15a,a,\ + 20 ,a%) /(8a®),

J5 = (_9)\;15@3;@ - 5&3;3;0/)\ + 15a$2A + 2A$ma2)/(8a7)7

(5.25)

(5.26)

(5.27)

Jo = (—400120° X — 40200 M:0> + 3004220,0° X — 40N saza + Apa(—8aza + 8asa,

+6a,,a,a — 3a,® — 8K ) + 80as,aa\ — 40agaX + 100a2\

+40a1 040X — 80a:a:2 N — 20C450:0° X + 300,20\

—T50zp0z2a) + 30a, X + 80a, K\ — 40K .a)\ + 8\ya?)/(324%).
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Taking the Poisson bracket of equation (5.25) and (5.27), one obtains the equation

9 0 2
55 =0 (5.28)

Assuming A # 0, equations (5.25) and (5.26) can be solved. The remaining

equation (5.27), (5.28) are reduced to the equations

oJ oJ
2 5Js — 3J7%) +15-—J1p =0 5.29
aJm( 8 7))+ 975710 ) ( )
oJ
—J;=0 5.30
0., 7 ) ( )
where J = J(J7, Js, Jo, J10), and
J - J3 J o J5 J o 5J1J6 - 12J22 . 5J1J4 — 6J2J3
T J,5/5° 8= G 9= 5J 5 10 = 5J 36

Since equations (5.29), (5.30) contain no derivatives with respect to J; and Js,
the variables J; and Jg are invariants.
If J; # 0, then J does not depend on Jy, and equation (5.29) becomes

oJ

2
dJ1o

(5Js — 3J;%) = 0.

This equation shows that there is the additional invariant .J;y which is obtained
for (5.J3 — 3J7%) = 0.
If J; =0, then one needs only to solve equation (5.29) which becomes

0J Jg + 158—JJ10 =0.

10
8J10 0Jg

If Jg # 0, this equation yields the invariant

The assumption Jg = 0 leads to the analysis of the equation

JlO 0.

oy

If J19 = 0 then one only obtains the invariant Jg.



Conditions Additional invariant
J: #0| 5Js —3J2#0 no
5Js —3J7* =0 J1o
J; =0 Jg £ 0 Ji
Js=0]|Jg#0 no
Jio =0 Jo

Table 5.1 Invariants for particular case
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Remark. The invariants J;, Jg, Jig and J;; are equal, up to immaterial constant

factors, to the invariants (5.9), (5.10), (5.12), (5.14) and (5.16) respectively, i.e.,

Jr = 8PNy, Jg = 82/0Ny, Jyg =803, Jog =8Ny, Jy =840 As

4Ao "



CHAPTER VI
EQUIVALENCE OF LINEAR SECOND
ORDER PARABOLIC EQUATIONS TO

CANONICAL FORMS

6.1 Introduction

The equivalence problem of a linear second-order parabolic partial differ-

ential equations in two independent variables
ar(t, x)us + as(t, v)us + as(t, v)u + Uz =0 (6.1)

is considered in the thesis. Notice that equation as in (5.1) can be rewritten in
form (6.1). Recall that the well-known group of equivalence transformations for
equation (6.1) (given in Lie (1881)), i.e. the changes of the independent variables
t,x and the dependent variable u that do not change the form of equation (6.1),

is composed of the linear transformation of the dependent variable
v=uV(t,x) (6.2)
and the following change of the independent variables:
T=H(t), y=Y(tx), (6.3)

where V (¢t,x), H(t) and Y (t,z) are arbitrary functions obeying the invertibility
conditions, V(t,z) # 0, H'(t) # 0 and Y,(t,z) # 0. Invariance of the form of

equation (6.1) means that the transformations (6.2)—(6.3) map equation (6.1) into
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an equation of the same form:

Br(7,y)vr + Bo(7,y)vy + B3(T,y)v + v,y = 0. (6.4)

Equations (6.1) and (6.4), related by an equivalence transformation, are called
equivalent equations. Notice that in our calculation we let 5 = —b, (2 =

_b27 53 = _b3-

Let us show that any transformation
T=H(t,z,u), y=Y(t,z,u), v=V(t x,u). (6.5)

which maps equation (6.1) into an equation of the same form has the representa-
tion (6.2) and (6.3).
Using (4.11), we have that equation (6.1) is mapped into the equation of

the same form if the following relations are satisfied

a; =0, ay=0, a3 =10, a,=0, a5=0, as=0, ay=0, ag, =0,

agy =0, a0, =0, a1 =0, a2=0, a13=0, aa=0, a5 =0, aie, =0,

(6.6)
where the representation of a;, (i = 1,2,...,16) are given in Appendix A. From

the relations a;; = 0, a;» = 0, one has H2b; = 0, H2b; = 0. This implies that
H, =0, H, = 0. (6.7)

Thus

H, # 0. (6.8)

From a4 = 0, one obtains H;Y;? = 0, which means that

The equation ag = 0 gives

Vi = 0. (6.10)
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From equation (6.7)-(6.10), one gets
H=H(),Y=Y(tz),V=atz)u+ [t ). (6.11)
Substituting (6.11) into (4.11), one obtains the nonhomogenous linear equation
A (t,z)up + As(t, ) uy + As(t, 2)u + uyy = Ay, (6.12)

where

Ay = Y2/(H'by),

Ay = (20, H'Y by — H'Y ooy + H'Y2aby — oy Y2) /(Yoo H'by),

Az = (Y2 + e H'Y, 0y — ap H'Y 30by + a H'Y 2by — cip Y2
+H'Y2abs)/(YyaH'by),

Ay = (BoH'Yesby — BiY) — Bon H'Yyb1 — B H'Y 20y + Bo Y7
CH'Y3b,8) /(Y. H'D,).

Equation (6.12) is the same form as (6.1) if and only if the function A4 = 0. This
condition can be considered as equation for the functions 5. A particular solution
of this equation is # = 0. That is, any transformation which maps equation (6.1)
into an equation of the same form has the representation (6.2) and (6.3).

Lie (1881) obtained the classification of linear second-order partial differ-
ential equations (6.1). Ovsiannikov (1978) studied the group classification of
a nonlinear parabolic equation. Ibragimov (2002) found first and second order
semi-invariants of a parabolic partial differential equation (6.1). Johnpillai and
Mahomed (2001) showed that there are no first, second, third and fourth order
invariants other than constant and they obtained one relative invariant. Sixth
and seventh-order differential invariants of linear second-order parabolic partial
differential equation (6.1) under an action of the equivalence group of point trans-

formations (6.2)—(6.3) were found in chapter V. The paper (Ibragimov (2008))
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gives an extension of Euler’s method to linear parabolic equations with two inde-
pendent variables. The new method allowed deriving an explicit formula for the
general solution of a wide class of parabolic equations. Morozov (2003) studied

invariants of contact transformations for linear parabolic equations.

6.1.1 Canonical parabolic equations

According to Lie’s classification (Lie (1881)), the canonical forms of linear

second-order parabolic partial differential equations (6.4) are the heat equation
Up = Ugy, (6.13)

the equation

Up = Uy + a(T)u, (6.14)

with arbitrary function a(z), and the equation
B k
Up = Ugy + ﬁu, (6.15)

where k is a nonzero constant. These equations posses additional symmetry
properties compared with the general case of linear parabolic equations. These
properties allow constructing additional exact solutions. Notice that a change of
the dependent and independent variables conserves symmetry properties. Hence
equivalent equations to (6.13),(6.14) also posses additional invariant solutions. For
example, the Block-Scholes equation is a linear parabolic equation which is equiv-
alent to the heat equation. Invariant solutions of the heat equation can be used
for Block-Scholes equation. Thus, there is interest to finding equations which are
equivalent to equation (6.13),(6.14) and (6.15).

As explained in chapter V, equation (6.4) is equivalent to the heat equation

(6.13) if and only if
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because we have changed the form of the equation to (6.4), A and K are new of

the form

A= (—=8brryyyb? + 36b1ryy b1 bt — 4byrybib? + 28Dy, by, bt
— 801,02, b3 + 4Dy yb$ — b1 by, b+ 402 by, bt + 8birbyyy, b
—64b1, b1y bry b3 + 80016352 + 4byyyyyy bt — 401y, b1, b3 (6.16)

—64b1yy b1y + 22001, b3, b2 + 28852, by, b — 810b1,,b% by

lyy

12Dy, BTk + 40555, + 2001, Kb + 81, b5) /b1,
K = (2b1,bay — byyb? — 4byybs + 2bo:b — 2bay, by + 2baybyby + 4bg,by)/(2b4).

The present chapter is devoted to obtaining conditions for equation (6.4)

to be equivalent to (6.14) or (6.15). The chapter is organized as follows.

6.2 Statement of the problem

Let us obtain a representation of the changed equations. For this we sup-
pose that ug(t,x) is a given function. Applying the inverse function theorem to

(6.3), there exist functions ¢t = T'(7), * = X (7,y) such that
{ = H(T(r)), y = Y(X(r.y)). (6.17)

After substituting 7'(7), X (7,y) into equation (6.2), one obtains the transforma-

tion of the function wg(¢, x):
vo(7,y) = uo(T(7), X (7, 9))V(T(7), X(7,9)),
Notice that the function vg(7,y) satisfies the relation
vo(H(t),Y (t,x)) = ug(t,x)/V (¢, ). (6.18)
Differentiating equation (6.18) with respect to ¢ and z, one gets

’UOTH/ + onY; = ('LL()/V)t, UOyY; = (Uo/V)x (619)
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Solving linear system (6.19) with respect to the derivatives vy, and wp,, one has

vor (T,y) = Ail(yt(uﬂ/v):v — Y (uo/V)y),
voy(1,y) = AT H (uo/ V),

(6.20)

where it assumed that A = —H'Y, # 0. Differentiating second equation (6.20)

with respect to x, one obtains
Vogy = AP H ((H (o) V) ) Dw — A(H (w0 )V ) i) ) (6.21)
Thus equation (6.4) becomes (6.1), where

a; = Ailyvngl,
ag = _A_IV_I(QH/VxYx - H,Ymcv - H,YbeZ + }/;Yx2Vb1)7 (6 22)
a3 = —A VN HV,,Y, — H'V,Yse — HV,Y2by — H'Y 35V

—ViY7by + VoYY .2by).
6.3 Equivalence problem for equation (6.13)

This section studies equations (6.4) which are equivalent to equation (6.13).

Since for equation (6.13)
a; = —1, a9 = 07 as = 07 (623)

equation (6.22) becomes

1= —A'Y3,
0= 2H'V,Y, — HY,,V — HY?Vby + Y,Y2Vby, -
0= —AWNH'YV,,Y, — HV,Y,, — H'V,Y2by — H'Y?b;V (024
—ViY2b + VY, Y 2by).
The problem is to find conditions for the coefficients by(7,y), bo(7,y), bs(T,y)

which guarantee existence of the functions H(t), Y (¢,z), V (¢, x) transforming the
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coefficients of (6.4) into (6.23). Solution of this problem consists of the analysis
of compatibility of (6.24).

From the first equation of (6.24) one has
H =bY?2 (6.25)
Differentiating equation (6.25) with respect to x, one finds
Voo = b, V2/(2hr) (6.26)
The second and the third equation of (6.24) become

Y = (—4V,Y,by + Y2V (=by, + 2b1b2)) / (20, V), (6.27)

Viw = (=bi, Vo Y2 4+ 2V, by — 2V, Yiby + 2V, Y 201bs (6.28)
Y3005V /(2Y,h1).

Comparing the mixed derivatives (Y;)z. — (Yiz): = 0, one finds

Vie = (VY Y07 + 2ViY 03 (bry — 2b1ba) — AV, Y207 + 4V, VY207 (—byy,
+2b1b2) + VoY, 01 (—4biyyby + T02, + 4br,biby — 4b302 — 8b2by)
F2VY 301V (=buyybr + 263, + 2025) + Y2V (=201, b3 + 91y biyby
— b3, — 61y by b2 + 1001, 025 + 4boy, b — 8ba, b — 4b3baby)

F2Y3H'bV (biryby — birbyy))/ (8Y25).
(6.29)

The equation (V)i — (Vig)z = 0 gives

Vie = (=32V2Y3b1V + 128V, V2Y3bE + 80V, V, Y, Y204V
+8ViV, Y263V (3by, — 10b1by) + 8V,Y,2Y,b1V2 — 16V, Y, Y 3bib, V2
F2ViY DRV (b3, + 4b3b3) — 6AVIY,Y 20} + 32V2Y 03 (bry + 2b1bs)
—32V2Y2Y, b1V + 32V2Y, Y23V (byy + 2b1by) + 8V2Y203V (8by b1

— 002, — dbyybiby — 8bayb? — AB2E + 24b2bg) — 64V2Y3by H'BV
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—8V,Y201V2 + AV, Y2V 203V 2(byy, + 6b1be) + 2V, Y, Y202V 2 (4by,, by
+5b3, — 4byybiby — 16bgy b7 — 126363 + 24b3bs) — 32V, Y, Y 2by H'b3V?
+Vo Y501 V2(—8b1yy,bF + 68b1y, b1, by — 73b3, — 2663 b1by + 8b1ybay b
+4b1,b2b% + T2b1,bibs — 16ba,, b3 + 3202, b3by + 8b3bs — 48b3bobs3)
+8V,YAH' B2V 2(=biryby — birbyy + 4by, biby) + 4Y2Y, 362V 3 (—3byy, by
+6b3, + 2b3b3) 4 2Y, Y21 V3 (—10b1yy b7 + 5001y, b1y by 4 6b1y,b3bs
—43b3, — 1207, b1by — 181, boy bT + 48b1,bibs + 129y, b} — 323, b}
—8b3bob3) + 12V, Y2 H'V2V3(byryb1 — birbuy) + YTV (—8byyyy, b
+5001y b1y b7 + 12b1,,b3by + 4007, b3 — 195b1,,b3, by — 54b1y, b1, bibs
— 3201y, bay b + 64Dy, bibs + 113b1, + 4203 biba + 58b7 bay b7 — 987, bibs
—36b1,boy b3 + 36b1,bo,biby + 64by, by, b3 — 3201, b3bobs + 16bgy,, bl
—24boy, b1by — 64by, bibs — 3203, b + 32b3,b7by + 8b1b3bs + 64b1b3)
F2Y 7 H'b V3 (4b17yyb? — Thirybryby — 6biryblby — 4b1 by by + Thi b3,

F6by-biybiby — 16b3,53))/(32Y3b4V/2).
(6.30)

Comparing the mixed derivatives (Vi) — (Viz): = 0, one obtains
A =0, (6.31)

where A is defined in (6.16). This condition guarantees that the overdetermined
system (6.24) is compatible. Moreover, the overdetermined system of equations
(6.25)-(6.39) is involutive under the condition (6.31). The condition (6.31) was

obtained in Johnpillai and Mahomed (2001).
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6.4 Equivalence problem for equation (6.14)

This section studies equations (6.4) which are equivalent to equation (6.14).

Since for equation (6.14)
ap=—1, a;=0, az=a(x), (6.32)

equations (6.22) become

1= —AY3,,

0= 2H'V,Y, — H'Y,,V — HY2Vby + Y,Y2Vb,, 6.35)
6.33

a= —AWNHV,Y, — HV,Y, — HV,Y2by — HY?3b3V

—ViY2by + VoYY by ).
The problem is to find conditions for the coefficients by (7,y), ba(7,y), bs(7,y)
which guarantee existence of the functions H(t), Y (¢,z), V (¢, x) transforming the
coefficients of (6.4) into (6.32). Solution of this problem consists of the analysis
of compatibility of (6.33).

From the first equation of equation (6.33), one has
H =bY2 (6.34)

Then

Yoo = —by, Y2/ (20y). (6.35)

The second equation and the third equation of equation (6.33) can be solved with

respect to Y; and V,,:

Y = (—4V,Y,eby + Y2V (=byy, + 2b102)) / (20, V), (6.36)

Vie = (=biy Vo Y7 + 2ViYoby — 2V, Yiby + 2V, Y 2bibs (6.37)

+2ngb1bgv -+ 2%@[)1‘/)/(2%61)
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Comparing the mixed derivatives (Y;)., — (Yzz): = 0, one finds

Vie = (VY Y03 4 2ViY 303 (b1, — 2b1bo) — AV, Y203 + 4V, Y, Y203 (—by,

+201by) + VY0 (—4biyyby + T2, + 4byybiby — 46263 — 8b2by)
=8V, Y2abi + 2Y,Y 20,V (—byyyby + 207, + 2b3bs) + 4YY,ab}V (6.38)
YV (=2b1yy b3 + Oy bryby — b3, — 6byybayb? + 100y, b2bs
4byy b3 — 8bs, b3 — Ab3bybs) + 2Y 30y V (byyy H'by — bybyy H’

Fbyyaby — 2ab3by) — 8Y2a,b3V) /(S8Y2H2).

The equation (Viz): — (Viz) = 0 gives

Vie =

(=32V2Y204V + 128V, V2Y2b4 + 80V, V, Y Y2h1V + 8V, V, Y. Ab3V (3by,,
—10byba) + 8V, Y2Y, b1 V? — 16V, Y,Y 2010,V + 2V, Y 07V 2 (b3,

F4032b2) — 128V, Y3abtV? — 64V3Y,Y2b 4 32V3Y 403 (b, + 201by)
—32V2Y2Y, bV + 32V2Y, Y03V (byy + 2b1by) + SV2Y203V (8byy, b
—9b3, — Ab1ybiby — 8boyb? — 4203 + 24b3b3) + 64V2Y 203V (—by H'
+3aby) — SV, Y20V + AV, Y2Y 203V 2 (by, + 6biby) + 2V, Y, Y03V
(4bryybr + 563, — 4biybiby — 16b, b7 — 120303 + 24b3bs) + 16V,Y,Y .26V
(—2b1, H' + Taby) + VY80, V2(—8byyy, b2 + 68Dy, by by — 73b3,
—26b2,b1bs + 8byyboyb? + by, b33 + 7201, b2bs — 16bayy b3 + 320y, b3bs
+803b3 — 48b3Dybs) + 8V Y203V (—byry H'by — bybyy H' + 4by, H'by by
+5byyaby — 14ab3by) + AYV2Y202V3(—3byy,by + 662, + 2b2D;)
+8Y2Y,abt V3 + 2V, b, V3 (1001, + 50b1,,b1,b1 + 6Dy, b2bs

—A43b3, — 1262 b1by — 181 b, b? + 48b1,b3bs + 123y, b3 — 3203,
—8b3bybs) + 4Y, Y203V 3(3by,, H'by — 3b1,by, H' — 4ab?by) — 32Y;Y2a,biV?
+YV3(=8b1yyyy b} 4 50b1yy by b2 + 12b1,b3bs + 4003, b3 — 195by,,b3, by
—54b1yy b1y b3y — 32b1,,bo, b + 64b1,, bibs + 113b7, + 4203 b1bs
+58b3,bay b2 — 98b3,b3bs — 36byybayy b + 36b1,baybibs + 64by,bsy b}

— 321, B3bybs + 16y, bt — 24Dy, biby — 64byybibs — 32bs,, b
(6.39)
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+32D3,biby + 8b62bs + 64b4b2) + 2Y by V3 (dby,yy H'b? — Thyry by, H'by
61y H'V2by — 4b1,b1, H'by + Thi, 02, H' + 6by, by, H'by by — b3, aby
—16b37—H,b? + 4@()?[)%) + 16Yx4azbsz3(—b1y + 2b1b2)

132V 30V (—ag, — 202))/(32Y3054V2).

Equating (Vit). = (Viz):, one obtains

where A3 = —b{°\. Notice that by virtue of A # 0, one has A3 # 0. Because a

does not depend on ¢, differentiating (6.40) with respect to ¢, one has

Vi= (=20V203\3 + 2V, Y, b, V (15b1, A3 — 2X3,b1) + Y2\ V2 (6.41)

—20ab?A3V2) /(2002 73V),
where

A

—b1yyb1 + Qb%y — 2b1,b1by + 2by, b3 — 4bTbs,

A= 1003 B2Ag + 552, As — biyAgyby — 10b1,b1baAs + 275,07

+2X3,03ba + HA2 3.

Substitution of V; into (6.38) and (6.39) gives

Ay — (—16‘/;2}/;26%/\5 — 8‘/;}/;53[)1)‘6‘/ + }/;4)\7‘/2 + 40Y;56be?)\3v2
(6.42)

(15b1y A3 — 2A3,b1))/(40067A3V2),

AV As + YodeV = 0, (6.43)
where
M= 201y b3 — 261,01, b3 — 201,53 + 10011, by — 21, b30s — 9b3,
42, b1y — 6byybay b + 8Dy, b3bs + 4bay, b3 — 8y, b7,
As = —15002 A2 + 25b1, Ay biAs + 150b1,b1ba A2 — 150y, b2\2

F10Ag,b3As — 1223, 52 + 30002b5 03 + T5 A2,
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Ao = —30001,b3b3 A3 + 15b1, A3 Ay + 40A3,b3b3 A3 + 123,01\,
—10AgybiAs + 2502,

Ar = 140byb2Ag\y — 30002, b2bs A3 — 5552 Aghy + 200by,bs, b2A2,
+40b1,, A3, b303 A3 + 1201, A3,b1 Ay + 60001, b3bab3 A3
+110b1,bbaAs Ay — 275b1, M AZ — biyAg — 400bs, bIAZ
—400b3, BBy A2 + 501, b1 A2 — 80As,bbabs s — 24Ms,b2ba\s
+10A3,01 M1 A3 — 20\, b3 A3 — 80061633 — 400673 A2 A3
—50b1ba M A2 + 2b1badg — TOA A3 + 12X2.

Differentiating (6.42) with respect to ¢, one has
64V3Y B3 (15b1, A3 hs — 14Aa,bi\s + BAsybiAs)
+16V2Y, 107V (1206103 A3 A5 — 6063, A3 A5 + 5b1yAsy b1 As
12001, b1bs A s + 15b1, A A — 28X5,b1 A6 — 10As 53N
— 10X, B2ba A5 + 10Ag,b1 A5 + 400263X525 — 60A2 A3 A5 + 14A,A5)
FAV,Y b V(260015205 — 13062, As A + 10b1y Agybi As
26001, b1bs A3 e + 14Agybi Ay — 2006-B3As — 2006, 52ba A3 — 5ArybiAs
4025325 N6 — 10A AaAs — 130Aadshg + 28Xsg) + 480V, Y 2a,b A\ V2
FYOV3(—140b1,52 A5 A + T0B2, AsAr — 5biyAzybi g — 140b1,biboAsAs
F10A7, D225 + 107, 20225 — 10A Ash + T0Aa A3 A7 — 14Ag A7)

F120Y3a,b3 A3 A6 V3 = 0.

(6.44)
Substituting a,, into (6.40), one finds
16V2Y,b7(15b1, 35 — 263,01 A5 + 105,01 A3) + 8V, Y20,V
(—15b1,A3A6 — 24X3,b1 26 + 106, b1 Az + 4003b3 A3 A5 + 24 A5) (6.45)

+Y3V2(45b1, A3 A7 + 22X3,b1 A7 — 107,103 + 80b3b3 A3 A6

Further study depends on the value of As.
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Case 1: A5 #0.

From equations (6.43) and (6.45), one finds
V, = —YidsV/(4b1\s) (6.46)

gy = Y3 /(80B3A3A3), (6.47)
where
As = 10A7ybiAsA2 — 45b1, AsAsA2 — 2223, b1 A2A7 — 223, by A5 A2
—10X5,b1 A3 A2 — 45b1, As A2\ + 20X, b1 AshsAg — 250 A4N2.

Equation (6.44) becomes

9503, As A2 A7 — 28061, b2 A3 A3 — 280D, b2 A3 AZNZ + 9502 A AZN2

—22b1, Aaybi N3Ny — 2201, A3, b1 AZAZ — 190D1,b1ba A3 A2 A

—190D1,b1ba A3 AENZ — 25001, NEA2 + 45b1, AsAZ A6 A7 + 45D1, Az A5\

—DiyAshs + 443, D20 NEN; + 4405, b2 A2NE — 63, b1 A2 A6 )7 (6.48)
—6A3,01 A5 A8 — 205,53 A3 A5 A2 + 40N, DIAZNZ NG + 207, D3NN
+50001 b2 A3A2 + 2b1b2 A5 Ag + 140AaA3AEN; + 140 A0 A3 A2 N2

F250AA2 N — 28 M A3A; — 28AAZAZ + AgAs = 0.

Substituting V, into (6.37), one has

Aoy = (15b1,A3A5A6 — Asyb1AsAg + BAsybiAgAg — 2002bsAgA2

(6.49)
CAAD) /(5B As ).
Comparing the mixed derivatives (V;), — (V): = 0, one gets
40D1, B2bs A5 A2 — 2001, B2 AN — 2002 M A2 + 21, gy biAZAg
+400b1,b1ba A3 AE NG + 15b1, A3 A5 A2 + 201, Ag A3 — 4X3, b7 A2 N6 (6.50)

—2X3,D1 A5 A2 — 20 A5 b3 A3 A5 A6 + 2006, B3 A5 A2 — 80BBbybs Ag A3

—Abybo A2 4 10 ASAE + 10X A3AZAg — 204 A2\g — Ag = 0.
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Substituting a, into (6.42), one obtains

15b1,A3X5 8 — 2X3,01 A58 + D12 + 203 N7 + 20202 = 0, (6.51)
) Yy 5 576

where
A2 = 9b1y A3 A5 Ag 4 2X3,D1 A5 Ag + 65,01 A3 As — 28, b1 Az 5.

Since a does not depend on ¢, the equation (a,); = 0 gives

3507, As A3 As — 1001y A3y b1 AZAs — 160b1-DTAsAEAs
— 0By, by baAsA2As + 51y Ai2As + 45b1, AsAs AeAs + 20Ag,b2b A2Ag 652
—06A3,01A506 A8 — 605,03 A3 M50 + 208,63 A3A2 — 10b1ba A 125
—5A 1206 + 80A2A3A2As — 164 A2Ns = 0.
If conditions (6.48)-(6.52) are satisfied, then the system of equation (6.33) is
compatible. Thus, we have obtained that conditions (6.48)-(6.52) guarantee that

the parabolic equation (6.4) is equivalent to (6.14).

Case 2: A5 =0.

From (6.43), one has that, \¢ = 0, and equation (6.45) becomes

Azy = (45b1,A3\7 + 22X3,b1 A7 + 2503) /(1061 A3). (6.53)

Notice that the condition A3 # 0 implies A7 # 0. Differentiating a,, in (6.42) with

respect to t, one gets
12Vob1 Ag + Yo AoV = 0, (6.54)
where
Ao = 6Az,b1 A7 — 45b1, A3 A7 — 25073,
Ao = 42001,b1ba A3 A7 — 840b1,bIA3 A7 — 21Ob%y)\3)\7 — 350001, A3
—11b1,Ag 4 607,633 + 70000102 A5 + 22b1b2\g + 4209 A3\

—84N A7
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From definition of Ay, one finds A3,. Then (6.53) becomes
Ay = (63001, A3A7 + 350073 + 11)) /(3001 A3). (6.55)

Case 2.1: \g # 0.
From (6.54), one finds

Ve = =Y, A0V/ (1201 ). (6.56)
Substituting V,, into (6.37) and (6.38), one has

Aoy = (451, A10A3A7 00 + 309, b1 A 10 A3 A7 — 36003b3 A3 A7 A3 (6.57)

—250)\10)\§A9 — )\10)\3 — 18)\4)\7)\3)/(30171)\3)\7)\9),
Ay = }/‘;3)\11, (658)
where

Mi = (=12b1b2A 002 + 662, AoA2 — b1,y Aioybi A + Gbiy Agybi Ao A
—12b1,b1byA10AE — b1y A2)Ae + 12X10,53A2 + 1210, b2by A2
+2X 10,01 M0 e — 1220-53 A 1000 — 1229, 02b5 A 10 A0 — 2Ag,b1 A2,

+24b2b3 A 1003 + 18AAS + 6X10A223) /(144D3N3).

Differentiating (6.58) with respect to ¢, and substituting a, into (6.42), one gets

540001-b1, b2 A0 A3 A7 XS — 10800b1,53bo A 1g A A7 A3
—1800b1, b2 AZ A3 A7 A3 — 270063 A 1pAzAg A
+135b%, Agybi Ao AsAzAZ — 145800062 B3N AZAZAS
1080063, b1 b2 10 A Ar N + 225003, A2 As Ar A2
—270b1, Agr b3 A 10As AT AZ — 540b1, Ag, b2by A 10 As A7 A2
—90b1, Aoy b1 A2 A3 A7 Ag + 2016001, b4bo A1 AZAZAS
—810000b1,b3A 11 ASA7AS — 3240b1, b3 A1 As Az Ad
+97200b1, 53 A3 AZAZAS — 10800y, b2b3A10 A3 A7 A2

—4500b1, b1 by A2 A3 A7 A2 — 450b1, A3 A3 7 Ao
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750061, A2 AA2 4 30b1, A2 A3 — 2700b1, Ao A As AT A
+540b1, Ao AsAr A + 243by, A3A3
+194400A 11 B8 AZAZAS + 54009, b2by A1 A A7 A
F90Xg,3A2) A3 A7 A 4 5400, B30I N 10 A3 A7 N2
+180A0, b2bo A 20 A3 A7 Ao + 15 Ay b1 A3 A3 A7
+16200006%by A1 ASA7AS + 6480b2by Aq1 Az Az AL
—194400b2by A3 AZAZA3 — 54000063\ 10 A1 A A7 A2 (6.59)
—2160b3 A10A11 A3 A7 A — 3240063 A 10 A 13 A2 A2 N2
29160063 A 11 Ao A2A2A3 — 5832063 A1 As A AZA3

— 1500061 b3 A2 AEAZ — 60b1 by A2 A2
+5400b1ba A 10 A2 Az AT A — 1080b e A1g A AT AS
—486b1ba A3A3 — 25003, Mg — 10A3,\2

+900AZ) A Mg AP A2 — T80AZ A AL — 8T A pASAZ = 0,

60063 A2 A\7 A 13 — 1000063 A1 A3 — 4063 X131 A Ag + 3A2 = 0, (6.60)
where

A1z = 3biyAin — 2A11,b1.

Therefore the conditions As = 0, A\¢ = 0, (6.55), (6.57), (6.59) and (6.60)

guarantee that the parabolic equation (6.4) equivalent to equation (6.14).

Case 2.2 : \g =0.

From (6.54) and (6.55), it follow that
)\10 = 07

Ary = T(9b1,\7 + 50)3)/(3by). (6.61)

Therefore the conditions A5 = 0, \¢ = 0, A\g = 0, A\jp = 0 and (6.61) guarantee

that the parabolic equation (6.4) equivalent to equation (6.14).
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Theorem 6.1. The parabolic equation (6.4) is equivalent to equation (6.14) if and
only if the coefficients of (6.4) obey one of the following conditions:

(A) equations (6.48)-(6.52), in this case the functions H(t),Y (t,z),V(t,x) and
a(x) are obtained by solving involutive system of equations (6.34)-(6.36), (6.41),
(6.46), (6.47);

(B) equations \s = 0, \¢ = 0, (6.55), (6.57), (6.59), (6.60), in this case the
functions H(t),Y (t,z),V(t,x) and a(x) are obtained by solving involutive system
of equations (6.34)-(6.36), (6.41), (6.56), (6.58);

(C) equations A\s = 0, \¢ = 0, \g = 0, A\jp = 0, (6.61), in this case the func-
tions H(t),Y (t,z),V(t,z) and a(x) are obtained by solving involutive system of

equations (6.34)-(6.37), (6.41), (6.42).

6.5 Equivalence problem for equation (6.15)

This section studies equations (6.4) which are equivalent to equation (6.15).

Since for equation (6.15), the coefficient is
a(x) = k/a, (5 £ 0), (6.62)

we continue studying the various cases from the previous section.
Case 1: A5 #0.

Substituting a in (6.62) into (6.47), one has
k= —Y3 23/ (16063 A3 A3). (6.63)
Since k is constant, differentiating (6.63) with respect to z, one obtains

Yx)\lgiv — 6b1)\3)\5)\8 = 0. (664>
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Case 1.1: A\ #0.

In this case, one can find

}/r == 6b1)\3)\5/\8/()\121’). (665)
Substituting Y, into (6.35), one has

3A12yb1 AsAs A — 18b1, A 12 A3 A5 s — 63,01 A 125\
(6.66)
_12)\5yb1/\12)\3/\8 + 2)\%2 = 0

Comparing the mixed derivatives (Y;), — (Y,): = 0, one obtains

60A 12 A A A2 As — 1200152 A12 A5 A2As + 10562, Ao As A2Ag
—10b1, 12y b1 AsAZAs + 10b1, AsybiAaA2As + 4061, A5, b1 Ao AsAs A
—210b1,b1ba A 12 A3 02N — b1y AT A5 — 45b1, A 12 A3 A5 6 \s
+20 12,03 A3 A2 \g + 20X 12,6202 A3 A2 Ag + 10X 12,01 A3 A5 6\ (6.67)
—20A3, 0302 A 12 A2 \s — 223,01 A 12 A5 06 A8 — 205,03 A 19235 A8
—80A5,03b2 A 12 A3 58 — 405,01 A1 A3 A6 A8 — 20 s, DA 12 A3 A2
F10b1ba A2y A5 4+ 5AZAg — 12019 AuA2)g = 0.

Therefore the condition (6.48)-(6.52) and (6.66)-(6.67) guarantee that the

parabolic equation (6.4) equivalent to equation (6.15).

Case 1.2 : A2 =0.
Equation (6.64) implies Ag = 0. Then (6.52) is the identity and equation (6.51)
and (6.48) become

e (6.68)
X6 = As(b1y — 2b1bo). (6.69)
Substituting A\ into (6.49) and (6.50), one gets

oy = (15b%y)\3>\5 — biyA3ybi A5 + 5b1yAsy b1 Az — 30D1,b1b2 A3 A5 (6.70)

+2A3,b309 05 — 10A5,02bo A3 — 2002b3A3 05 — AyX5)/(5b1)3),
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b3, — 402 biby + 4byybo, b2 + 4by, b33 — 8by,b3bs + 10Dy, Ay — 8by, b -

—Sbgyb‘?bg - 4)\2yb1 + 4)\1 == O
Therefore the conditions A\g = 0, A\;2 = 0, (6.68)-(6.70) and (6.71) guarantee that

the parabolic equation (6.4) equivalent to equation (6.15).

Case 2: A5 =0.
Case 2.1 : \g # 0.

Substituting a from (6.62) into (6.58), one has
k= —-Y>\2°/2. (6.72)

Differentiating k£ with respect to ¢t and x, one gets
4507, M1 As A7 Xg — 90b1,b1ba A 11 A3 A7 g — 15b1, A1sA3 A7 Ag
—60A11- D3 A3 A7 Ag + 30b1D3A13A3M7 A + 250 A1 A1 AL (6.73)
2Y, Az — 60\ = 0, (6.74)
Case 2.1.1 : A3 #0.
Solving (6.74) with respect to Y., one obtains
Yx == 6b1/\11/(/\131‘). (675)

Substituting Y, into (6.35), one has

0 = 3Aizyb1 A1 — 91y A1 A1z + 2%, (6.76)
The requirement (Y;), — (Y,); = 0, leads to condition

22507, A1 A3 As A7 A9 — 1806107 A11 A isAs Az Ag
_9Ob1y)\13ybl)\11)\3)\7)\9 — 45Ob1yblb2>\11)\13)\3)\7>\9

—90()12’,)\1())\11)\13>\3>\7 — 45b1y>\%3/\3>\7)\9 — 180)\11719:{’)\13)\3)\7)\9



‘|‘18O)\137—b?)\11)\3)\7/\9 + 180)\1@[)?52)\11)\3)\7)\9
+30A 13,01 A 10A 11 A3 A7 + 90b1ba AT A3 A7 A9 — 250A10A11 A 13\
—)\10)\11>\13/\9 + 15/\10/\%3)\3/\7 + 90/\11)\13)\2)\3/\7/\9

—18)\11>\13)\4>\7)\9 = 0.
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(6.77)

Therefore the conditions (6.55), (6.57), (6.59), (6.60), (6.73), (6.76) and (6.77)

guarantee that the parabolic equation (6.4) equivalent to equation (6.15).

Case 2.1.2 : \;3=0.

Equation (6.74) and (6.60) imply A;; = 0 and A\; = 0. This contradicts A; # 0.

Case 2.2 : \g =0.
Equation (6.42) is
3Y 0224 + 80063 N2k(25Y, A3z — 9by M) = 0.
Analyzing equation (6.78) one obtains that 25Y, A3z — 9b; \; # 0. Hence,
k= —3Y 221/ (8003 A2(25Y, A3z — 9B \r)).
Differentiating & with respect to x, one has
675V, b A3N2e — 1875V 2A0\2? + 108b2A2 = 0.

Differentiating (6.80) with respect to ¢t and z, one gets

93750V, Y30, \ja2 (13b1, A7 + TOAD) + 33750V, V23 N Az
(—13b1, A7 — TOA3) + 5400V, Y, b3 A3 A2(—13b1, A7 — TOAD)
FI8TSY ANV 22(—22001, 52 \g + 11002, A5 — 220b1,b1bs s
10529 — 2104) + 675Y3b AIAZV 2(220b1, b3 A3 — 11063, A
+220b1,b1baAs — 105X0)3 + 2104) + 108Y2b2AEV (2200;,b2 )

—110b%y)\3 + 220b1yb1l)2)\3 - 105/\2)\3 + 21)\4) - 0,

(6.78)

(6.79)

(6.80)

(6.81)
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3125Y2A822(—39b1, A7 — 220A3) + 375Y,by A A7z (117b1, A7

(6.82)
+63573) + 13562 \2(52b1, A7 + 285\3) = 0.
Using (6.80) and (6.82), one finds
Y, = —3b1 A7/ (25)\3x). (6.83)

Substituting Y, into (6.81) and equations Y., = (Y,)s, Yie = (Ya)i, (Vo) = (Ya)s,
one obtains identities. Therefore the conditions A5 = 0, A\¢ = 0, \g =0, A\jp =0

and (6.61) guarantee that the parabolic equation (6.4) equivalent to equation

(6.15).

Theorem 6.2. The parabolic equation (6.4) is equivalent to equation (6.15) if and
only if the coefficients of (6.4) obey one of the following conditions:

(A) (6.48)-(6.52), (6.66)-(6.67), in this case the functions H(t),Y (t,x),V (t, z)
and k are obtained by solving involutive system of equations (6.34), (6.56), (6.41),
(6.46), (6.63), (6.65);

(B) s = 0, N2 = 0, (6.68)-(6.70), (6.71), in this case the functions
H(t),Y(t,x),V(t,x) and k are obtained by solving involutive system of equations
(6.34)-(6.36), (6.41), (6.46), (6.63);

(C) (6.55), (6.57), (6.59), (6.60), (6.73), (6.76), (6.77), in this case the functions
H(t),Y(t,x),V(t,x) and k are obtained by solving involutive system of equations
(6.34), (6.36), (6.41), (6.56), (6.72), (6.75);

(D) As = 0, A\¢ = 0, \g = 0, A\jg = 0, (6.61), in this case the functions
H(t),Y(t,x),V(t,xz) and k are obtained by solving involutive system of equations

(6.34), (6.36), (6.57), (6.41), (6.79), (6.83).

Remark. Using an invariant of sixth-order one can conclude that if equation
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(6.4) is equivalent to (6.15) then it satisfies the following relation

3125/(3k) = 4(5062500%, Mg bi A3 — 75937507, A5 — 13500068, A3, b2A3

(6.84)
+18000b%y)\§yb?{)\§ — 1200b1y)\§yb‘11)\3 + 32A§yb?)/)\g.
Example 1. Consider the Black-Scholes equation
1
vy + §A2y2vyy + Byv, — Cv =0, (6.85)

where A, B, C are constants. It has the form of equation (6.4) with the following

coefficients
by = —2/(A%?), by = —2B/(A%)), by = 20/(A%*)?). (6.86)

For the coeflicients (6.95) one obtains that A = 0. Hence equation (6.94) is
equivalent to the heat equation. For finding a transformation mapping equation
(6.94) into the heat equation, one need to solve equations (6.25)-(6.28) for H(t),
Y(t,x), V(t, x).

Let us find the transformations which maps equation (6.94) into equation

(6.13). Substituting b; into equation (6.26), one has
YY,, - Y2 =0.
Thus the general solution is
Y = ¢y (t)e2®Ae,
where c1, ¢y are arbitrary functions. Substituting Y into equation (6.25), one gets
H' = —2c3. (6.87)
From equations (6.27) and (6.28), one finds

Vo= V(=¢, — hAciz + A%cic} — 2Beid3) /(2Acic), (6.88)
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Vi, = V(= —2dchAcix + 27 A%cic3 — 4y Beyci — i A% a?
+2c, A3 3x — 2¢, APy — Ay ABA G — A*Gch + 4A2Béeh (6.89)
—8A2C 3y — AB%cicy) [ (4A%E3c3).
Comparing the mixed derivatives (V;), — (V); = 0, one gets
Aci(cyey — 2¢)x + (dJerea — ey — 2¢ycher) = 0.
Splitting this equation with respect to x, we have

dycy — 207 =0, (6.90)

dleicy — ey — 2ccher = 0. (6.91)

The general solution of equation (6.90) is
Cy = 1/(k31t + ko),

where ky and ki are arbitrary constants. Setting kg = V2, k= 0, one has

¢y = 1/4/2. Substituting c, into (6.91), one has
dicy = 2.

Hence,

C1 = k’46k3t,

where k3 and k4 are arbitrary constants. Substituting ¢, ¢z into equation (6.87)
and (6.88), one gives
H = -1, (6.92)

B_A+k3
V24 2v2 V24

The general solution of equation (6.92) and (6.93) are

V, = —V( ). (6.93)

H=—t+ks,
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k-
V= o (Famatat gk

Y

where ks is arbitrary constant and c3 is arbitrary function. Substituting ¢, ¢o and

V into (6.89), one obtains

That is

A2 B B? ks ksB k2
= S T T L ey
3 (C + 2+2A2 2+A2+4A2)+6’

where kg is arbitrary constant. Setting k3 = 0, ks = 1, ks = 0, kg = 0. Thus,
the transformation which maps the Black-Scholes equation (6.94) into the heat

equation u; = Uy, is

where

B A A? B B?

Example 2. Consider the linear second-order parabolic partial differential equa-
tion

TUr + yv, — (477 + 1) — 730, = 0. (6.94)

It has the form of equation (6.4) with the following coefficients
by =1/7% by = y/7%, by = —(e¥"7 +1)/7°. (6.95)

Coefficients of equation (6.95) satisfy conditions (A) in Theorem 1. Hence, the
parabolic equation (6.94) is equivalent to equation (6.14). For finding transfor-
mation H(t),Y (t,z), V(t,z) which mapping equation (6.94) into equation (6.14),

and a(z) one needs to solve equations (6.34)-(6.36), (6.41), (6.46) and (6.47).
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Substituting by, bs, bs into Ag, one has A\¢ = 0. Thus equation (6.46) becomes
Ve.=0,ie.,
V=V().

Substituting b; into equation (6.35), one has Y,, = 0. Hence,
Y = H(t)(a(t)z + 5(1)),
where a(t) and ((t) are arbitrary functions. From equation (6.47), one finds
a= a4 O,

where C' is arbitrary constant, which can chosen, for example C' = 0. Substituting

V, Y, and a into (6.34), (6.41), (6.36), one obtains

H' = a?, (6.96)
V' =a*V/H, (6.97)
o =0, 3 =0. (6.98)

Since any particular solution for equations (6.96)-(6.98) can be used, we set a = 1,
B =0. Hence, H =t,Y =tx, V =t and a(z) = e*. Therefore, one obtains the

following transformations
T=1t,y=1x, v=_tu,
mapping equation (6.94) into the equation
Up = Ugy + €7 U.

Example 3. Consider the linear second-order parabolic partial differential equa-
tion

%0, + y(27° + y*)v, — 370 — Ty, = 0. (6.99)
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It is an equation of the form (6.4) with the coefficients
by =1/7°, by = (27° + y*) /(T%y), by = =3/y°. (6.100)

One can check that the coefficients (6.100) obey the conditions (D) in Theorem
2. Furthermore, they also satisfy condition (6.84). Thus, the parabolic equation
(6.99) is equivalent to equation (6.15). For finding a transformation mapping
equation (6.99) into equation (6.15), one need to solve equations (6.34), (6.36),
(6.37), (6.41), (6.79), (6.83) for H(t),Y (t,x), V(t,x) and k.

Substituting by, bs, b3 into equation (6.83), one has
zY,—Y =0.
Substituting the general solution of this equation
Y =c(t)H(t)x (6.101)

into equation (6.79), one has k = 1, where ¢,(¢) is an arbitrary function. From

equations (6.34) and (6.36), one obtains
H =¢, (6.102)
2c17V, + (dha® — 2¢,)V = 0.
The general solution of the last equation is
V = cy(t)ze (h/4e0e",
Substituting the function V' into (6.37), one gets
(cJercy — 22 cq)a® + (2¢,cicy — 4chc?) = 0.
Splitting this equation with respect to x, we have

clc” — 26’2,
P (6.103)

2¢1¢y = dico.
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The general solution of the system of ordinary differential equations (6.103) is

C1 = ]./(k?lt + kfg),
2= (1/(ks(kit + k2))).

Substituting ¢; into (6.102), one has
H' =1/(kit + ky)*. (6.104)

Further study depends on quantity of k;.

Case k; # 0

The general solution of (6.104) is
H =ky—1/(ki(kit + ko).

Because of k; # 0, k3 # 0 and ks, k4 are arbitrary constant. Setting k; = 1,

ko =0, ks = 1, ky = 0. Therefore, one obtains the following transformations

1 T z? 42213
T:_;vy:__ V= —=¢€ .

2’ Vi
mapping equation (6.99) into the equation

1
Up = Ugy + — U
x

Case k; =0
For this case we have

cl = 1/]{72, C% = 1/k’2,
where kg # 0. The general solution of (6.104) is

t

H=—
k3

+ ks.

where k5 is arbitrary constant. Setting ko = 1, k5 = 0. Therefore, one obtains the

following transformations

T=t y=1tr, v=_71U,



mapping equation (6.99) into the equation

1

Ut = Uy + — U
x
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CHAPTER VII

CONCLUSIONS

This thesis was devoted to the study of the equivalence problem for
parabolic second-order partial differential equations with two independent vari-
ables. The results obtained are separated into three parts.

The first result is the form of parabolic second-order partial differential
equations which are equivalent to a linear equation. It is proven that this form is
an invariant with respect to a change of the dependent and independent variables.

The second result of the thesis is related with obtaining invariants of the
linear second-order parabolic partial differential equations with respect to point
transformations. Differential invariants of sixth and seventh-order are obtained.

The third result is devoted to the equivalence problem for a linear second-
order parabolic partial differential equations to be equivalent to one of the canon-
ical equations. Conditions which guarantee that the second-order parabolic dif-

ferential equations is equivalent to one of the canonical forms are found.
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APPENDIX A

COEFFICIENTS OF EQUATION (4.11)

a9 =

as —

FH3V,,Yyby — H3V,Y,,by + H3V,Y2by + H3Y3b3V — H2H,,V,Y,b;
+H2H, Vo Yuby — 2H2H Vo Yoby + H2ZHGV,Yooby — HZHV,Y by
—H2H,V,,Y,by + 2H2H,V,Y,uby — 2H2H,V,Y, Y by — 3H2H,Y, Y 2bsV
FH2V,Y3 — H2V,Y, Y2 + 2H, H2V, . Yuby + HyH2V,,Yb:

—2H, H2V,Y,ub1 + 2H, H2V, Y, Yyby — HyH2V,Youby + HyH2V, Y 2b,
+3H, H2Y2Y, b3V — 2H, H,V,Y, Y2 + 2H, H,V,Y2Y, — H3V,,Y,b,
+HIVY by — HiV,Y 20y — HYY 205V + HDV,YZY, — HZV, YD),

A (2H H,H, V;Y, by — 2Hy HyH, V,Y;by — Hy H2V,Y, by + Hy H2V,Y,by
FH3V,Youby — H3V, Yyuby + H3V,Y2by + H3Y 303V — H2H,,V,Y,by
+H2H,,V,Yby — 2H2H, V. Yuby + HEH,V,Y, by — H2H,V,Y2b,
—H2H,V,WYyby + 2H2H,V, Yyuby — 2H2H,V,Y,Y,by — 3H2H,Y,Y 203V
+H2V,Y3 — H2V,Y,Y2 + 2H,H2V,,Y;by + H,H2V,, Y, by — 2H,H2V,Y,,by
+2H,H2V,Y,Y by — HH2V,Yyuby + H,H2V,Y2by + 3H,H2Y,2Y, b3V
—2HtHthYtYu2 + QHtHuVuY?Yu - Hg‘étﬁh + HSVthtbl - Hgvtytzbz
—HYP03V + HIV,YPY, — HIV,YP),

AY(=2H, H,H,V,Y;by + 2H; H,H,V, Yy + 2H,, H2V, Y, by
—2H,,H2V,Y,,by — 2H,H,,,H,V,,Y;:b1 + 2H,H,,,H,V, Y, by

+2H,H, H,V,Y,by — 2H,Ho H,V, Y, by + 2H,H2V,, Y, by

—H,H2V,Yyuby + HH2V,Y2by + HH?V,,Y,by — 2H,H2V, Y, b,



ay =

+2H,H?V,Y,Y,b + 3H,H?Y,Y?bsV — 4H,H,H,V,, Y, by
—2H,H,H,V,,,Y:by + 4H,H,H,V,Y,uby — 4H,H,H,V,Y,Y,b
+2H,H, H,V,Y,by — 2H,H, H,V,Y2by — 6 H,H,H,Y?Y,bsV
+2H,H,V,Y,Y? — 2H,H,V,Y2Y, + 3H,H2V,,,Y,by — 3H,H2V,Y,,,by
+3H,H?V,Y2by + 3H,H?Y3bsV — 2H,H,V,Y?Y, + 2H,H,V,Y?

F2H . H HViYuby — 2Hy Hy HV,Yiby — Ho HEVY by

+Ho H7V, Y0y — 2H Vi, Yoby 4+ HiViYauby — HOViY 20y — HV,,Yiby
+2H3V, Yipby — 2H3V,Y,Y,by — 3H3Y, Y205V — H2H,,V;Y.,by
+H2H,,V, by + 2H2H,V,,Yyby + 2H2H,V;, Yoby — 2H2H,V;Y,,by
+2H2H,V,Y, Y, by + 2H>H,V,, Yiby — 2H2H,V, Yiuby + 2H>H,V,Y,Y, b,
—2H2H,V,Yyby + 2H2H,V,Y:Y, by + 6 H2H,Y,Y, Y, b3V + H2V,Y, Y2
—3H2V,Y,Y? + 2H>V,Y,Y,Y, — 2H,H2V,,,Y,by + H,H>V;Y,.,b,

—H H2V,Y.2by — H,H2V,,,Y;by + 2H,H2V, Y0y — 2H, H?V, Y;Y, b,
—3H, H2Y,Y2bsV — 2H,H,V;Y2Y, + 4H,H,V,Y;Y,Y, — 2H,H,V,Y,Y??
HHIVY) — HIV,Y,Y ),

A-Y(2H,,H,H,V,Y,by — 2H, HH,V,Y, by — 2H,, H, H,V;Y,b,
+2H, H, H,V,Yiby + 2H,, H*V,Y, by — 2H,, H2V,Y,by — Hy H2V, Y, by
+HyH2V, Y, by — H2H,, V,Yeby + H2H,\ Vo Yuby + 2H?H,V,, Vb
+H2H,V,,Yyby — 2H2H,V,Ypuby + 2H2H,V, Y, Y by — H2H,V,Y,.b;
+H2H,V,Y2by + 3H?H,Y2Y,bsV — 3H?>H,V,,Yyuby + 3H2H,V,Y,uby
—3H?H,V,Y2by — 3H?H,YbsV + H?V,Y2Y, — H?V,Y}?
—2H,H,,H,V;Y, by + 2H,H,,H,V,Y;by + 2H,H,, H,V,Y,b;
—2H,H,,H,V,Yiby — 2H,H?V,,,Y,by — 2H,H>V,,Y,by + 2H,H>V,Y,,b
—2H,H2V,Y, Yyby — 2H,H?V,,Y;by + 2H,H>V, Yi,by — 2H,H2V,Y,Y, by
+2HHV, Yo by — 2H HV,Y,Y by — 6H HLY,Y, Y b5V

75



as =

76

+4H,H,H,V,Y;Y, by + 6HtHuHx}Qbe3V + 2HtHuV;Yu2Yx
+2H,H,V,Y,Y? — 2H,H,V,Y? + 2H,H,V,Y,Y? + 2H3V,,Y;b, + H3V,Y, b,
—2HV,Yyuby + 2HV,Y,Y,by — HEV,Yyuby + HIV,Y?b + 3HIY Y, b5V
—2H2H,V;,Yiby — H2H, Vi Yuby + 2H2H,ViYs,by — 2H2H,V,Y;Y,by
+H2H,V,Yyuby — H2H,V,Y?by — 3H2H,Y2Y,bsV — 2H2V,Y,Y, Y,
F3H2V,Y2Y, — H2V,Y2Y, + 2H,H,V,Y,Y2 — 2H,H,V,Y2Y,
—4H,H,H,V,Y; by — 4H,H,V, Y, Y, Y, + 4H,H, H, VY, b1),
A—l(—2HmH§Vqubl + 2HtuH§Vqubl +2H,,H,H,V, Y, b
+2H, Hyo HyV, Yoy — 2H o Ho Vo Yoby + 3H H2 Vo Yoby — 3HHZV,Y,0by
+3H,H2V, Y 2by + 3H,H>Y b3V — 2H,H,H,, V.Y, by + 2H,H,H,,V,Y,b
—4H,H H,V,, Y. by + 2H,H, H,V,Y,.bp — 2HtHuHxVu1{3b2

+4H,H, H,V,Y,by — 4HH, H,V,Y, Y, by — 6H,H,H,Y,Y,2bsV
—2HH,V, Y, Y2+ 2H,H?*V,,,Y,,by + H H?V,,,Y,by — 2HH?V, Y,.,b1
+2H,H2V,)Y, Y, by — H H2V,Y,by + HH2V, Y 2by + 3H,H2Y,2Y, b3V
—2H,H,V,Y, Y2 + 2H,H,V,Y2Y, + 2H,, H,H,V;Y,by — 2H,,H,H,V,Y,b,
—Hoy H2V:Yby + Hoy H2V,Yiby — H HooViYeby + H Hop Ve Yiby
—2H2H,V,Yyby + H2H,VY,ooby — HEH, VY 2by — H2H,V,,Yiby
+2H2H,V,Yioby — 2HZH,V, Y, Y, by — 3HZH,Y,Y 2bsV + HZV,Y?
—H2V,Y,Y? + 2H,H2V,, Y, by + 2H, H2V,, Y, by — 2H, H2V;Y by

+2H, H2V,Y, Y by + 2H, H?V,,Y;by — 2H, H?V,Y;,by + 2H, H?V,Y,Y, by
—2H,H2V,Y,,by + 2H,H2V,Y,Y, by + 6H, H2Y,Y,Y,b;V — 2H,H,V,Y,Y?
—2H,H,V,Y,Y? + 4H,H,V,Y,Y,Y, — 2H3V;,Y,.by + H2V,Y,uby
—H3V,Y2by — H3V,,,Y;by + 2H2V, Y by — 2H?V,Y,Y, by — 3H3Y, Y203V
HHIVIY2Y, + 2HV,Y,Y,Y, — 3HV,Y,Y,? — 2H,, H, H, V. Y,by

—2H,H,H,V,,Y,by + 2H,H,V,Y?),
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a7 =

7

AY2H, H,H,V,Y by — 2H, H.H,V,Y;by + 2H, H, H,V,Y, b,
+2H, H H,V,Y by — 2H,, H H,V,Y;by — HyH2V,Y, by + Hy H2V, Y, by
—2H, H, H,V,Y,by + 2H, H, H,V,Y;by + 2HV,, Y, by + H?V,, Y, by
—2H}V,Youby + 2HPV, Y, Yoby — HEV,Y,uby + HPVEY,2by + 3HPY,2Y b3V
—2H7H, V,Yuby + 2H} H, V,Yiby — HEH W ViYoby + HEH WV, Yiby
—2H2H,V;,,Yoby — 2H2H,V;, Y, by + 2H2H, ViY,uby — 2HZH,V,Y, Y, by
—2H2H,V,,Y;by + 2H2H,V,Y;,by — 2H2H,V,Y;Y,by + 2H2H,V, Y;,by
—2H2H,V,Y,Y, by — 6H2H,Y,Y,Y,bsV — 2H2H,V,,Y,by + H2H,V,Y,uby
—H2H,V,Y2by — H2H,V,,Yiby + 2H? H,V,Ysuby — 2H2H,V,Y,Y, by
—3H2H,Y,Y2bsV + 3H2V,Y2Y, — 2H2V,Y,Y,Y, — H2V,Y,Y?
+2H,H2V,,Y;by + H,H2V,)Y,by — 2H,H2V,Y,;,by 4+ 2H,H2V,Y,Y, b,
—H,H?V,Yyby + HH2V,Y2by + 3H,H2Y2Y, b3V + 4H,H,H,V,,Y:b,
+2H,H,H,V,)Yyby — AH,H,H,V;Y;,by + AH,H,H,V,Y,Y,bs
+2H,H,H,V,Y2by + 6H,H,H,Y2Y,bsV — AH,H,V;Y,Y, Y,
+2H,H,V,Y?Y, — 2H,H,V;Y,Y,? + 2H,H,V,Y?Y, — 3H; H,V,;Y;b,
+3HH,ViYibi — SHH VY ?by — SHLH, Y b3V + HIVIY?Y, — HIV, Y
+2H,H,V,Y2Y, — 2H,H,V,Y? — 2H, H,H,V,Y;by — 2H,H,H,V,Yy,b,
+2H,H,V,Y?Y,),

oA"Y (Hy H,H,V,Y,by — Hy H,H,V,Y, by — Hy\ H,H,V,Y, b

—H, H2V,Y, by + H, H2V,Y,by + Hy H,H,V,Y,by — Hy H,H,V, Y, by
+Hy H2V,Y, by — Hi H2V,Y;by + Hy H, H, VY, by — Hy, H H,V, Y;by
—HuH,H,V,Y,by + Hy H H, V.Y, by — HY Hy V, Yoy + HPHy Ve Yo
+2H?H, V., Yyby — H2H,V,Yyuby + H2H,V,Y2by + H?H,V,, Y, b —
2H2H,V,Y,.by + 2H?H,V,Y,Y,by + 3H2H,Y,Y2bsV — 2H2H,V,,Y,b,
—HZ?H,V,.Y,by + 2H2H,V,Y, by — 2H2H,V, Y, Y,by + H2H,V,Y,,by

—H2H,V,Y2by — 3H2H,Y2Y,bsV + H2V,Y, Y2 — H?V,Y?2Y,
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—HyH,\ H,ViYyby + HH,y H,V,Yiby + HoHy H VY by — HoH, H,V,Yiby
+H H o H, VY, by — HiHo Ho Vo Yib — 2HH2V,, Yoby + HAH2V,Y0by
—HH>V,Y2by — H H?2V,,Y;by + 2H,H>V,Y;,by — 2HH2V,Y;Y, by
—3H,H2Y,Y2b;V — H,H,H,,ViYuby + HH, H,, V,Yiby + 2H,H,V;Y, Y2
—2H,H,V,Y,Y? + 2H,H?>V,,Y, by — H H2V,Y by + HH?V,Y b,

+H H?V,,)Y;b1 — 2H,H?V, Y;,by + 2H,H?V,)Y,Y by + 3H,H2Y,Y2b3V
—2H H ViY2Y, + 2H H, V.Y, Y.E + 2H H Vi Yiby + HE H Vi Yaby
—2H2H,V;Y;,by + 2H2H, V.Y, Y, by — H2H,V,Yyuby + H2H,V,Yby
F3HLH,YPY,bsV — HIViY,Y? + HoV, Y)Y, — 2H,H2 Vi, Yiby

—H H2VyY by + 2H,H2V,Y,by — 2H, H2V,Y,Y, by + H H2V, Vb

—H, H?*V,Y2by — 3H, H*Y?Y,bsV + 2H,H,V,Y;2Y, — 2H,H,V,Y?Y,
+H2VY,Y,E — H2V,Y2Y, + HHy H, V. Yiby),

AN (—2H, H?>V,Y, by + 2H,  H?V, Y by + 2H, H,H,V, Y, by
+2H..H,H V.Y, by —2H., H,H,V,Y;:b; — HttHg%Vqubl + HttHgvaubl
+3HPH, Vo Yoby — 3HEH,V, Yooby + 3HEH, V.Y 2by + 3HEH,Y b5V
—HPHpo Vo Yoby + HP Hyo Vo Yoy — 2HEH,V;, Yoby + HEH,V, Yaoby
—H2H,V,Y?2by — HXH,V,,Yyby + 2H2H,V, Y, by — 2H2H,V,Y,Y,b,
—3HPH,Y,Y;bsV + HV,Y) — HV,Y,Y? + 2H, H, H, VY, by
—2H,H,,H,V,Y;by — 2H,H,H,,V;Y;b, + 2H,H,H,,V,Y;b,
+2H.H, H, V,Y,.bi — 2HtHuHthYm262 —2H,H,H,V,.Y,b

—4H.H, H,V,Y;Y, by — 6H,H,H,Y;Y2bsV + 2H,H,V;Y,? — 2H,H,V,Y;Y?
+2H,H?V,,Y, by + 2H,H?V,, Y, by — 2H,H2V,Y,,by + 2H,H2V,Y, Y, b,
+2H,H2V,,)Y;by — 2H, H?V, Y,,b1 + 2H, H?*V, Y, Y, by — 2H,H?V,Y;,,by
+2H H2V,Y,Y, by + 6 H H2Y,Y, Y, bsV — 2H,H,V;Y, Y2 — 2H,H,V, Y;Y?
HAHH,V,Y,Y, Y, + 2H, H2V,,Yiby + H H2V,Yoby — 2H,H2V,Y,by

F2H H2V,Y,Y,b — HyH2V, Y by + HyH2V,Y 2y + 3H, H2Y2Y,bsV
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—2H,H,V,Y,Y? + 2H,H,V,Y?Y, — 2H}V,,Y;by — HVy Vb + 2H2VY, by
—2H3V,Y,Y by + H3V,Yyby — H3V,Y2by — 3H3Y2Y, b3V + 2H2V,Y}Y, Y,
+H2V,Y2Y, — 3H2V,Y2Y, — 2H,, H,H,V,Y, by — AH,H,H,V,,Y,b,
+4H,H, H,V,Y;.by),

AY2H, H,H,V,Y, b, — 2H, H,H,V,Y;b, + 2H,, H,H,V,Y, b,

+2H,, H,H,V,Y,by — 2H,, H,H,V,Y;b; — 2H, H,H,V,Y, b,

—Hy H2V,Y, by + HyH2V,Y;by + 2HPV,, Yoby — HAV,Y,,by + HPV,Y.2b,
+HV,,Yuby — 2HRV, Y, by + 2HPV,Y, Yoby + 3HEY, Y 2bsv
+2H} Hy Vo Yiby — 2H H, Vi Yoby + HE H, Vi Yooby — HP H, VY 2Dy
—H?H,V,,Yiby + 2H? H,V,Yyuby — 2H H,V,Y,Y,by — 3HZH,Y,Y 203V
—H}H, . ViYyuby + HHy oV, Yiby — 2HP Ho Vi, Yoby — 2HH, Vi Yuby

+2H7 H,ViYopuby — 20 H, VY, Yoby — 2H H, Ve, Yiby + 2H7 H,V, Y20y
—2H}H,V,Y:Y,by + 2H H,V, Yiby — 2H H, VY Yby — 6HE HLY;Y, Y03V
+3HVY,Y? — HEV,Y,Y? — 2HV, Y, Y, Y, + 4H H, H,V,, Y;by
+2H,H,H,VyYyby — AH,H, H,V,Ysby + AH,H, H,V,Y,Y,bs
+2H,H,H,V,Y2by + 6H,H,H,Y?Y,bsV — 2H,H,V,Y,Y? 4+ 2H,H,V,Y?Y,
+2H,H2V,,Y;by + H,H?V,, Y, by — 2H,H2V, Y, by + 2H,H2V,Y,Y, b,
—H,H?V,Yyby + HH?V,Y?by + 3H,H?Y?Y,bsV — 4H,H,V;Y;Y,Y,
+2H,H V,Y?Y, + 2H H,V,Y2Y, — 3H,H2V,,Yiby + 3H, HV,Yyby
—3H,H>V,Y,?by — 3H,H>Y b5V + 2H,H,V,Y?Y, — 2H,H,V,Y;
+HVYY, — HV,Y? — 2H, H,H,V,Yiby + 2H; H, H, V. Yiby

_ZH?H:L‘uV;SYEL‘bl - 2HtHuH:ch}/i-ftbl)a
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aw = AY(2H, HH,V,Y,b; — 2H, H,H,V,Y;b, — HyH2V,Y, b, + Hy H2V, Y b
FH3V,, Vb — H3V,Y,uby + H3V,Y2by + H3Y3b3V — HXH,, VY, by
+HP Hypo Vo Yiby — 2H H, Vi, Yoby + HY HV;Yo0by — HYHL VY 2Dy
—H?H,Vy, Yiby + 2H? H,V,Yiuby — 2H2H,V,Y,Y,by — 3H2H,Y,Y2b,V
FH2V,YS — H2V,Y,Y2 + 2H,H?V,,Yby + HH2V,, Y, by — 2H,H2V,Y by
F2HH2V,Y Y, by — HyH2V,Yuby + HH2V,Y,2by + 3H,H2Y2Y,bsV
—2H,H VY2 + 2H,H,V,Y2Y, — H3V,Yiby + H3V;Yuby — H2V;Y2by

~HIYPY + HVY2Y, — H2V,YP),

ai; = HZ2by, aip = H2by, aj3 = —2H,H,by,
ayy = 2H H,by, a5 = —2H;H,by, ae = Hthl-

where it assumed the jacobian

of (4.2) is not equal to zero.
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