
การจําแนกประเภทเชิงกลุมของสมการของไหลหนึ่งมิติ ซึ่งมี 
พลังงานภายในขึ้นอยูกับความหนาแนนและเกรเดียนตของความหนาแนน 

 
 
 
 
 

 
 
 
 

 

0นางประครอง  วรกา 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

วิทยานิพนธนีเ้ปนสวนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบณัฑิต 
สาขาวิชาคณิตศาสตรประยุกต 
มหาวิทยาลัยเทคโนโลยีสุรนารี 

ปการศึกษา 2551 



GROUP CLASSIFICATION OF

ONE-DIMENSIONAL EQUATIONS OF FLUIDS

WITH INTERNAL ENERGY DEPENDING ON

THE DENSITY AND THE GRADIENT OF THE

DENSITY

Mrs. Prakrong Voraka

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Applied Mathematics

Suranaree University of Technology

Academic Year 2008



GROUP CLASSIFICATION OF ONE-DIMENSIONAL

EQUATIONS OF FLUIDS WITH INTERNAL ENERGY

DEPENDING ON THE DENSITY AND THE GRADIENT

OF THE DENSITY

Suranaree University of Technology has approved this thesis submitted in partial

fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee

(Assoc. Prof. Dr. Prapasri Asawakun)

Chairperson

(Prof. Dr. Sergey Meleshko)

Member (Thesis Advisor)

(Assoc. Prof. Dr. Jack Asavanant)

Member

(Assoc. Prof. Dr. Nikolay Moshkin)

Member

(Asst. Prof. Dr. Eckart Schulz)

Member

(Prof. Dr. Pairote Sattayatham) (Assoc. Prof. Dr. Prapan Manyum)

Vice Rector for Academic Affairs Dean of Institute of Science



ประครอง  วรกา : การจําแนกประเภทเชิงกลุมของสมการของไหลหน่ึงมิติ ซ่ึงมี 
พลังงานภายในข้ึนอยูกับความหนาแนนและเกรเดยีนตของความหนาแนน  
(GROUP CLASSIFICATION OF ONE-DIMENSIONAL EQUATIONS OF  
FLUIDS WITH INTERNAL ENERGY DEPENDING ON THE DENSITY  
AND THE GRADIENT OF THE DENSITY) อาจารยท่ีปรึกษา : ศาสตราจารย  
ดร. เซอรเก  เมเลชโก, 54 หนา  

          
การวิเคราะหเชิงกลุม สามารถสรางกระบวนการสําหรับแบบจําลองทางคณิตศาสตรท่ีใช

อธิบายสมบัติของของไหล โดยการจําแนกสมการเชิงอนุพันธเทียบกบัสมาชิกใด ๆ วิทยานิพนธนี้
นําเสนอการจาํแนกประเภทเชิงกลุมของสมการของไหลหนึ่งมิติซ่ึงมีพลังงานภายใน  เปนฟงกชัน
ของความหนาแนน  และเกรเดียนตของความหนาแนน : 

ε

ρ xρ
 

2

2 2

( ) 0, ( ) ( ) 0,

, ( ) , 2 ,
t x t x

x x x

u u u

P P ρ α

ρ ρ ρ ρ

ρλα ρ ε ρ ρλρ λ ε α ρ

+ = + +Π =

Π = + = − = =
 

 

ไดนําเสนอกลุมสมมูลของลีและกลุมยอมรับของลีในงานวิจยันี้ การจําแนกประเภทเชิงกลุมแบง
แบบจําลองออกเปน 21 แบบท่ีแตกตางกนัตามกลุมยอมรับของลี  วิทยานิพนธนี้ไดใหผลเฉลยยืนยง
ของแบบจําลองเฉพาะหนึ่งแบบ 

 
 
 
 
 
 

 
 
 

  

   
  

ลายมือช่ือนักศึกษา สาขาวิชาคณิตศาสตร 
ปการศึกษา 2551 ลายมือช่ืออาจารยท่ีปรึกษา 

 



PRAKRONG VORAKA : GROUP CLASSIFICATION OF

ONE-DIMENSIONAL EQUATIONS OF FLUIDS WITH INTERNAL

ENERGY DEPENDING ON THE DENSITY AND THE GRADIENT

OF THE DENSITY. THESIS ADVISOR : PROF. SERGEY

MELESHKO, Ph.D., 54 PP.

FLUIDS WITH INTERNAL ENERGY / GROUP CLASSIFICATION / INVARIANT

SOLUTION

Group analysis provides a regular procedure for mathematical modeling describ-

ing the behavior of fluids by classifying differential equations with respect to arbitrary

elements. This thesis presents the group classification of one-dimensional equations of

fluids where the internal energy ε is a function of the density ρ and the gradient of the

density ρx:

ρt + (ρu)x = 0, (ρu)t + (ρu2 + Π)x = 0,

Π = P + ρλα, P = ρ2ερ − ρ (ρλρx)x , λ = 2εα, α = ρ2
x.

The equivalence Lie group and the admitted Lie group are provided. The group classifi-

cation separates all models into 21 different classes according to the admitted Lie group.

Invariant solutions of one particular model are obtained.

School of Mathematics Student’s Signature

Academic Year 2008 Advisor’s Signature



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Prof. Dr. Sergey V. Meleshko from

Suranaree University of Technology for his guidance and discussion of my thesis.

Second, I also would like to thank all teachers of mine, Assoc. Prof. Dr. Nickolay

P. Moshkin and Asst. Prof. Dr. Eckart Schulz from whom I learnt a lot during my

studies at Suranaree University of Technology. I also would like to express my special

thanks to Assoc. Prof. Dr. Prapasri Asawakun, Assoc. Prof. Dr. Jack Asavanan and

Asst. Prof. Dr. Jessada Tantanuch for their valuable discussions and comments.

Third, I acknowledge the financial support for my graduate studies to the Col-

laborative Research Network of Thailand (CRN).

Finally, I am very gratefully to my parents, and my husband for their kind

support, understanding, encouragement, and love. I would like to thank all my friends

who always have given their friendly help during my studies at Suranaree University of

Technology.

Prakrong Voraka



CONTENTS

Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II FLUIDS WITH INTERNAL ENERGY . . . . . . . . . . . . . . . . 4

III THE GROUP ANALYSIS METHOD . . . . . . . . . . . . . . . . . 7

3.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 One-Parameter Lie-Group of Transformations . . . . . . . . . . . 7

3.1.2 Infinitesimal Transformations . . . . . . . . . . . . . . . . . . . . 8

3.1.3 The Lie equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.4 Prolongations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.5 Admitted Lie group of Transformations . . . . . . . . . . . . . . . 13

3.1.6 Equivalence Lie group of transformations . . . . . . . . . . . . . . 14

3.1.7 Multi-Parameter Lie-Group of Transformations . . . . . . . . . . 16

3.2 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Classification of Subalgebras . . . . . . . . . . . . . . . . . . . . . 20

3.3 Invariant Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

IV DETAILED GROUP CLASSIFICATION . . . . . . . . . . . . . . . 24

4.1 Equivalence Lie Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Admitted Lie group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Case k4 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Case k4 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

dim(Span(V )) = 2 . . . . . . . . . . . . . . . . . . . . . . . 31



V

CONTENTS (Continued)

Page

dim(Span(V )) = 1 . . . . . . . . . . . . . . . . . . . . . . . 35

dim(Span(V )) = 0 . . . . . . . . . . . . . . . . . . . . . . . 38

V INVARIANT SOLUTIONS OF MODEL M4 . . . . . . . . . . . . . 42

5.1 Optimal system of subalgebras . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Invariant solutions of Y1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Invariant solutions of Y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Invariant solutions of Y3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Invariant solutions of Y1 + Y3 . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Invariant solutions of Y4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



CHAPTER I

INTRODUCTION

Many important physical processes in nature are governed by partial differential

equations (PDEs). For this reason, the knowledge of the mathematical character and

properties of the governing equations are required. Properties of PDEs can be effectively

studied by using their exact solutions. Therefore, there is interest in finding exact

solutions of PDEs. In general, it is not easy to obtain exact solutions of PDEs. One of

the methods for obtaining exact solutions is the group analysis method (Ovsiannikov,

1978). It is well-known that the group analysis method is a powerful and direct approach

to constructing exact solutions of PDEs. Furthermore, based on the group analysis

method, many other types of exact solutions of PDEs can be obtained, such as traveling

wave solutions, soliton solutions, fundamental solutions (Ovsiannikov, 1978), (Olver,

1986), (Handbook, 1994-1996), (Meleshko, 2005).

The general problem in the study of the group properties of differential equations

was set up and investigated in the second half of the 19th century by the Norwegian

mathematician Sophus Lie. He found a new method for integrating differential equa-

tions. This method is universal and effective for solving nonlinear differential equations

analytically. It involves the study of symmetries of differential equations, with the em-

phasis on using the symmetries to find solutions. Symmetry means that any solution

of a given system of differential equations is transformed by a Lie group of transfor-

mations into a solution of the same system. L. V. Ovisiannikov further developed the

group analysis method and applied this method to problems of continuous mechanics.

Many applications of Lie group analysis to partial differential equations are collected in

Handbook (1994-1996).

Group analysis, besides constructing exact solutions provides a regular procedure

for mathematical modelling by classifying differential equations with respect to arbitrary
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elements. This is the main motivation to use this method for the analysis of differential

equations considered in this thesis.

In this thesis the group analysis method is applied to one class of the dispersive

models (Gavrilyuk and Shugrin, 1996), (Anderson and McFadden and Wheeler, 1998),

(Gavrilyuk and Teshukov, 2001)∗. The equations describing the behavior of a dispersive

continuum are obtained on the basis of the Euler-Lagrange principle with the Lagrangian

L = L(ρ,
∂ρ

∂t
,∇ρ, u),

where t is time, ∇ is the gradient operator with respect to the space variables, ρ is the

fluid density, u is the velocity field. The density ρ and the velocity u satisfy the mass

conservation equation and the equation of conservation of linear momentum

ρt + div(ρu) = 0, ρu̇+∇p = 0, (1.1)

where (̇) = ∂()/∂t + u∇(). In the literature there are two classes of dispersive models.

One class of models is constructed assuming that the Lagrangian is of the form

L =
1

2
ρ|u|2 −W (ρ, ρ̇),

where W (ρ, ρ̇) is a given potential. In this case the pressure p is given by the formula

p = ρ (Wρ − (Wρ̇)t − div(Wρ̇u))−W. (1.2)

These models include the non-linear one-velocity model of a bubbly fluid (with incom-

pressible liquid phase) at small volume concentration of gas bubbles and the disper-

sive shallow water model. Group classification of equations (1.1), (1.2) was studied in

Hematulin, Meleshko and Gavrilyuk (2007), Siriwat and Meleshko (2008). Invariant

and partially invariant solutions were considered in Hematulin, Meleshko and Gavrilyuk

(2007), Siriwat and Meleshko (2008), Bagderina and Chupakhin (2005), Hematulin and

Siriwat (2008).

This thesis deals with another class of models describing the behavior of dispersive

continuum. These models are constructed, assuming that the internal energy ε depends

∗See also references therein.
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on the density ρ and the gradient of the density |∇ρ|, and include the models studied in

Cahn and Hilliard (1959), Pratz (1981), Truskinovsky (1993), Ngan and Truskinovsky

(2002), and Gouin (2005). A Review of these models can be found in Gavrilyuk and

Shugrin (1996), Anderson, McFadden and Wheeler (1998) and references therein.

The one-dimensional equations of fluids (1.1) with internal energy ε = ε(ρ, α)

satisfy the following system (Gavrilyuk and Shugrin, 1996)

ρt + (ρu)x = 0, (ρu)t + (ρu2 + Π)x = 0, (1.3)

and

Π = P + ρλα, P = ρ2ερ − ρ (ρλρx)x , λ = 2εα, α = ρ2
x,

where P is the pressure.

The thesis is devoted to group classification of one-dimensional equations (1.3),

where ε 6=
√
αϕ1(ρ) + ϕ2(ρ), ϕ1 and ϕ2 are arbitrary functions. Notice that for ε =

√
αϕ1(ρ) + ϕ2(ρ), equations (1.3) are similar to the gas dynamics equations. This case

was completely studied in Chirkunov (1990). Another part of the thesis is devoted to

the analysis of invariant solutions.

An application of the group analysis method requires to carry out a lot of compli-

cated symbolic manipulations. Because this is a very laborious part, we used a computer

for these tasks. All calculations were done with the REDUCE program (Hearn, 1999).

The outline of the thesis is as follows. The first chapter is this introduction. The

second chapter introduces equations describing the behavior of fluid with internal iner-

tia. The third chapter deals with the notations of group analysis and provides references

to known facts on application of group analysis to partial differential equations. Com-

plete group classification of one-dimensional equations of fluids with internal energy ε

depending on the density ρ and the gradient of the density α, where ε 6=
√
αϕ1(ρ)+ϕ2(ρ)

is presented in the fourth chapter. In the fifth chapter the invariant solutions of the

one-dimensional case of the model with ε = ϕ(ρ)αp are presented. The conclusion of

the thesis is presented in the last chapter.



CHAPTER II

FLUIDS WITH INTERNAL ENERGY

In this chapter, we introduce the equations describing the behavior of fluids with

internal energy (Gavrilyuk and Shugrin, 1996), (Anderson, McFadden and Wheeler,

1998), (Gavrilyuk and Teshukov, 2001).

These equations are obtained as the Euler-Lagrange equation with the Lagrangian

of the form

L = L(ρ,
∂ρ

∂t
,∇ρ, u),

where t is time, ∇ is the gradient operator with respect to the space variables, ρ is the

fluid density, u is the velocity field. The density ρ and the velocity u satisfy the mass

conservation equation

ρ̇+ ρ div u = 0, (2.1)

and the equation of conservation of linear momentum

ρu̇+∇p = 0, (2.2)

where p is the pressure, and ”dot” denotes the material time derivative: (̇) = ∂()/∂t +

u∇().

Among fluids with internal energy two classes of models have been intensively

studied. One class of models is constructed assuming that the Lagrangian is of the form

L =
1

2
ρ|u|2 −W (ρ, ρ̇),

where W (ρ, ρ̇) is a given potential. In this case the pressure p is given by the formula

p = ρ (Wρ − (Wρ̇)t − div(Wρ̇u))−W. (2.3)

These models include the non-linear one-velocity model of a bubbly fluid (with incom-
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pressible liquid phase) at small volume concentration of gas bubbles (Iordanski, 1960),

and the dispersive shallow water model (Green-Naghdi, 1975).

This thesis is devoted to the study of another class of models. These models are

constructed, assuming that the internal energy depends on the density ρ and the gradient

of the density. The mass conservation equation (2.1) and the equation of conservation

of momentum (2.3) are

∂ρ

∂t
+

3∑
k=1

∂

∂xk
(ρuk) = 0,

∂

∂t
(ρuj) +

3∑
k=1

∂

∂xk
(ρujuk + Πjk) = 0; (j = 1, 2, 3),

(2.4)

where α = |∇ρ|2,

Πjk ≡ Pδjk + ρλ
∂ρ

∂xj

∂ρ

∂xk
, P = ρ2 ∂ε

∂ρ
− ρ

3∑
i=1

∂

∂xi

(
ρλ

∂ρ

∂xi

)
, λ = 2

∂ε

∂α
,

t is time, ∇ρ is the gradient of ρ with respect to the space variable x, P is the pressure

and ε(ρ, α) is the internal energy. Equations (2.4) include the models studied in Cahn

and Hilliard (1959), Pratz (1981), Truskinovsky (1993), Ngan and Truskinovsky (2002),

Gouin (2005). Review of these models can be found in Gavrilyuk and Shugrin (1996),

Anderson, McFadden and Wheeler (1998) and references therein. For example, Chan

and Hilliard (1959) studied

ε = F (ρ, T ) +
C(ρ, T )

2ρ
(∇ρ)2,

where T is the temperature. Partz (1981) proposed

ε = F (ρ, S) +
C

2ρ
(∇ρ)2,

where S is the entropy and C is a constant.

Notice that if ε =
√
αϕ1(ρ) + ϕ2(ρ), these equations are similar to the isentropic

gas dynamics equations. A complete study of group properties of the one-dimensional

isentropic gas dynamics equations was done in Chirkunov (1990) (see also Meleshko,

1998).
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This thesis is devoted to group classification of the one-dimensional motions of

fluids. The corresponding equations (2.4) become

∂

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + Π) = 0,

(2.5)

where

Π = P + ρλρ2
x, P = ρ2 ∂ε

∂ρ
− ρ

∂

∂x
(ρλρx) , λ = 2

∂ε

∂α
, α = ρ2

x,

t is time, ρx is the gradient of ρ with respect to the space variable x, P is the pressure

and ε(ρ, α) is the internal energy.



CHAPTER III

THE GROUP ANALYSIS METHOD

In this chapter, the group analysis method is discussed. An introduction to this

method can be found in various textbooks, e.g. L. V. Ovsyannikov (1978), P. Olver

(1986), N. H. Ibragimov (1999).

3.1 Lie Groups

Let V be an open subset in RN , ∆ a symmetric interval in R1. Consider a set of

invertible transformations defined by equations of the form

z̄i = ϕi(z; a), a ∈ ∆, z ∈ V, (3.1)

where i = 1, 2, . . . , N , a is a parameter.

If z = (x, u), then one uses the notation ϕ = (f, g). Here x = (x1, x2, . . . , xn) ∈

Rn is the vector of the independent variables, and u = (u1, u2, . . . , um) ∈ Rm is the

vector of the dependent variables. The transformation of the independent variables x,

and the dependent variables u has the form

x̄i = f i(x, u; a), (i = 1, 2, . . . , n),

ūj = gj(x, u; a), (j = 1, 2, . . . ,m),

(3.2)

where (x, u) ∈ V ⊂ Rn × Rm, and the set V is open in Rn × Rm.

3.1.1 One-Parameter Lie-Group of Transformations

Definition 3.1. A set of transformations (3.1) is called a local one-parameter Lie group

if it has the following properties:

1. ϕ(z; 0) = z for all z ∈ V .

2. ϕ(ϕ(z; a), b) = ϕ(z; a+ b) for all a, b, a+ b ∈ ∆, z ∈ V .
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3. If a ∈ ∆ and ϕ(z; a) = z for all z ∈ V , then a = 0.

The transformations (3.2) are called a one-parameter Lie group of point trans-

formations.

3.1.2 Infinitesimal Transformations

For Lie groups of point transformations, let us expand the functions f i(x, u; a)

and gj(x, u; a) into Taylor series with respect to the parameter a in a neighborhood of

a = 0

x̄i = xi + a
∂f i

∂a

∣∣∣∣
a= 0

+O(a2),

ūj = uj + a
∂gj

∂a

∣∣∣∣
a= 0

+O(a2).

Then, invoking the first property of Lie group one obtains

x̄i ≈ xi + aξi(x, u), (i = 1, 2, . . . , n),

ūj ≈ uj + aζj(x, u), (j = 1, 2, . . . ,m),

(3.3)

where

ξi(x, u) =
∂f i(x, u; a)

∂a

∣∣∣∣
a=0

, ζj(x, u) =
∂gj(x, u; a)

∂a

∣∣∣∣
a=0

. (3.4)

The transformations xi + aξi(x, u) and uj + aζj(x, u) are called infinitesimal transfor-

mations of the Lie group of transformations (3.2) and

X =
n∑

i=1

ξi(x, u)
∂

∂xi

+
m∑

j=1

ζj(x, u)
∂

∂uj
(3.5)

is called an infinitesimal generator of the Lie group (3.2).

Example 3.1. The infinitesimal transformation of the rotation group

x̄ = x cos a+ u sin a, ū = u cos a− x sin a,

has the form x̄ ≈ x+ ua, ū ≈ u− xa, and its infinitesimal generator is

X = u
∂

∂x
− x

∂

∂u
.
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3.1.3 The Lie equations

The following theorem, due to Lie, asserts that local one-parameter Lie groups

are determined by their infinitesimal transformations.

Theorem 3.1. Let functions f i(x, u; a), i = 1, . . . , n and gj(x, u; a), j = 1, . . . ,m satisfy

the group properties and have the expansion

x̄i = f i(x, u; a) ≈ xi + aξi(x, u),

ūj = gj(x, u; a) ≈ uj + aζj(x, u).

Then the functions f i and gj solve the system of first-order ordinary differential equa-

tions (known as the Lie equations)

dx̄i

da
= ξi(x̄, ū),

dūj

da
= ζj(x̄, ū),

(3.6)

with the initial conditions

x̄i |a=0 = xi, ū
j |a=0 = uj. (3.7)

3.1.4 Prolongations

When applying the group of transformations (3.2) to differential equations one

needs to know the transformations of the derivatives. For the sake of simplicity, we

explain the basic idea by the case where n = 1, and m = 1.

Let u0(x) be a given function. The transformed function ua(x) can be obtained

in the following way. As a first step, we have to solve the equation

x̄ = f(x, u0(x); a)

with respect to x. Since the Jacobian is nonzero,

∂x̄

∂x

∣∣∣∣
a=0

=

[
∂f

∂x
+
∂f

∂u

du0

dx

]
a=0

= 1,

by the inverse function theorem one can express x as a function of x̄ and a in some

neighborhood of a = 0,
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x = θ(x̄, a). (3.8)

Note that there is the identity

x̄ = f(θ(x̄, a), u0(θ(x̄, a)); a). (3.9)

The transformed function ua(x) is

ua(x̄) = g(θ(x̄, a), u0(θ(x̄, a)); a). (3.10)

Differentiating the last expression with respect to x̄, one gets

dua(x̄)

dx̄
=
∂g

∂x

∂θ

∂x̄
+
∂g

∂u

du0

dx

∂θ

∂x̄
=

[
∂g

∂x
+
∂g

∂u
u′0(x)

]
∂θ

∂x̄
. (3.11)

The derivative ∂θ/∂x̄ is obtained by differentiating (3.9) with respect to x̄

1 =
∂f

∂x

∂θ

∂x̄
+
∂f

∂u

du0

dx

∂θ

∂x̄
=

[
∂f

∂x
+
∂f

∂u
u′0(x)

]
∂θ

∂x̄
. (3.12)

Because ∂f/∂x+ u′0(x)∂f/∂u 6= 0 in some neighborhood of a = 0, one has

∂θ

∂x̄
= 1

/[
∂f

∂x
+
∂f

∂u
u′0(x)

]
and

ūx̄ =

[
∂g(x, u0; a)

∂x
+
∂g(x, u0; a)

∂u
u′0(x)

]/[
∂f(x, u0; a)

∂x
+
∂f(x, u0; a)

∂u
u′0(x)

]
= h(x, u0(x), u

′
0(x); a).

Transformation (3.2) together with

ūx̄ = h(x, u, ux; a) (3.13)

is called the prolongation of (3.2). As before, the function h can be written by Taylor

expansion with respect to the parameter a in some neighborhood of the point a = 0 :

∂ū

∂x̄
≈ ux + aζux(x, u, ux), (3.14)

where



11

ζux(x, u, ux) =
∂h(x, u, ux, a)

∂a

∣∣∣∣
a=0

, h|a=0 = ux.

Using the definition of the function h, equation (3.11) can be rewritten

h

[
∂f

∂x
+ ux

∂f

∂u

]
=
∂g

∂x
+ ux

∂g

∂u
.

Differentiating this equation with respect to the group parameter a and substituting

a = 0, one finds[
∂h

∂a

(
∂f

∂x
+ ux

∂f

∂u

)
+ h

(
∂2f

∂x∂a
+ ux

∂2f

∂u∂a

)]
a=0

=

[
∂2g

∂x∂a
+ ux

∂2g

∂u∂a

]
a=0

or

ζux(x, u, ux) =
∂h

∂a

∣∣∣∣
a=0

=

[
∂2g

∂x∂a
+ ux

∂2g

∂u∂a

]
a=0

− h|a=0

[
∂2f

∂x∂a
+ ux

∂2f

∂u∂a

]
a=0

=

(
∂ζu

∂x
+ ux

∂ζu

∂u

)
− ux

(
∂ξx

∂x
+ ux

∂ξx

∂u

)
= Dx(ζ

u)− uxDx(ξ
x),

where

ξx =
∂f

∂a

∣∣∣∣
a=0

, ζu =
∂g

∂a

∣∣∣∣
a=0

, ζux =
∂h

∂a

∣∣∣∣
a=0

,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux

+ . . . .

The first prolongation of the generator (3.5) is given by

X
1

= X + ζux(x, u, ux)
∂

∂ux

.

Similar, one obtains the infinitesimal transformation of the second derivative

ūx̄x ≈ uxx + aζuxx(x, u, ux, uxx),

where

ζuxx = Dx(ζ
ux)− uxxDx(ξ

x).

The second prolongation of generator (3.5) is
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X
2

= X
1

+ζuxx(x, u, ux, uxx)
∂

∂uxx

.

In case n,m ≥ 2 one proceeds similarly.

Let x = (x1, . . . , xn) be the independent variables and u = (u1, . . . , um) the

dependent variables. We will use the notion u(1) = {uj
i}, u(2) = {uj

is}, . . . for partial

derivatives of first, second, etc. order:

uj
i = Di(u

j), uj
is = Ds(u

j
i ),

where

Di =
∂

∂xi

+ uj
i

∂

∂uj
+ uj

is

∂

∂uj
s

+ uj
isk

∂

∂uj
sk

+ . . . . (3.15)

Let a generator of a Lie group be

X = ξi(x, u)
∂

∂xi

+ ηj(x, u)
∂

∂uj
.

The generator of the prolonged Lie group is

X
1

= X + ζj
i (x, u, u(1))

∂

∂uj
i

,

where

ζj
i = Di(η

j)− uj
sDi(ξ

s), (i, s = 1, . . . , n; j = 1, . . . ,m).

The generator of the second prolongation is

X
2

= X
1

+ζj
i1i2

(x, u, u(1), u(2))
∂

∂uj
i1i2

,

where

ζj
i1i2

= Di2(ζ
j
i1
)− uj

si1
Di2(ξ

s), (i1, i2, s = 1, . . . , n; j = 1, . . . ,m).

The generator of l-th prolongation is

X
l

= X
l−1

+ζj
i1···il(x, u, u(1), . . . , u(l))

∂

∂uj
i1···il

,

where

ζj
i1···il = Dil(ζ

j
i1···il−1

)− uj
si1···il−1

Dil(ξ
s), (i1, . . . , il, s = 1, . . . , n; j = 1, . . . ,m). (3.16)
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3.1.5 Admitted Lie group of Transformations

Consider a system of l-th order differential equations

Fα(x, u, u(1), u(2), . . . , u(l)) = 0, (α = 1, 2, . . . , t), (3.17)

where the order l refers to the highest derivative appearing in (3.17).

Definition 3.2. A Lie group of transformations (3.2) which transforms a solution u0(x)

of (3.17) into a solution ua(x) of the same system of equations is called an admitted Lie

group of transformations.

Hence one has

Fα(x̄, ū, ū(1), ū(2), . . . , ū(l)) = 0, (α = 1, 2, . . . , t).

Differentiating these equations with respect to the parameter a, and substituting a = 0,

one finds [
∂Fα

∂xi

∂x̄i

∂a
+
∂Fα

∂uj

∂ūj

∂a
+
∂Fα

∂uj
i1

∂ūj
i1

∂a
+ · · ·+ ∂Fα

∂uj
i1i2···il

∂ūj
i1i2···il
∂a

]
a=0

= 0

or

ξi∂Fα

∂xi

+ ζj ∂Fα

∂uj
+ ζj

i1

∂Fα

∂uj
i1

+ ζj
i1i2

∂Fα

∂uj
i1i2

+ · · ·+ ζj
i1i2···il

∂Fα

∂uj
i1i2···il

= 0,

where

ξi =
∂x̄i

∂a

∣∣∣∣
a=0

, ζj =
∂ūj

∂a

∣∣∣∣
a=0

, ζj
i1

=
∂ūj

i1

∂a

∣∣∣∣∣
a=0

, ζj
i1···il =

∂ūj
i1···il
∂a

∣∣∣∣∣
a=0

.

Note that the coefficients ζj
i1···il are given by (3.16). The last equation can be expressed

as an action of the prolonged infinitesimal generator

X
l
Fα(x, u, u(1), u(2), . . . , u(l))

∣∣∣∣
(3.17)

= 0, (α = 1, 2, . . . , t), (3.18)

where

X
l

= ξi ∂

∂xi

+ ζj ∂

∂uj
+ ζj

i1

∂

∂uj
i1

+ ζj
i1i2

∂

∂uj
i1i2

+ · · ·+ ζj
i1i2···il

∂

∂uj
i1i2···il

.

The symbol |(3.17) means that the equations X
l
Fα(x, u, u(1), u(2), . . . , u(l)) = 0 are

considered on any solution u0(x) of equations (3.17).
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Theorem 3.2. A Lie group of transformations (3.2) is admitted by the system (3.17)

(or the system (3.17) admits the Lie group of transformations (3.2)) if and only if it

satisfies (3.18).

3.1.6 Equivalence Lie group of transformations

Let p = (u(1), u(2), . . . , u(l)). A non-degenerate change of the dependent variables

u, the independent variables x and arbitrary elements φ which transfers any system of

differential equations of a given class

Fα(x, u, p, φ) = 0, (α = 1, 2, . . . , t) (3.19)

into a system of equations of the same class, but with different arbitrary elements φ,

is called an equivalence transformation. Let equivalence transformations compose a Lie

group

x̄i = f i(x, u, φ; a), ūj = gj(x, u, φ; a), φ̄k = hk(x, u, φ; a), (3.20)

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . . , r).

Generators of this Lie group have the form

Xe = ξi ∂

∂xi

+ ζj ∂

∂uj

+ ζφk ∂

∂φk

,

where

ξi = ξi(x, u, φ) =
∂f i

∂a

∣∣∣∣
a=0

,

ζj = ζj(x, u, φ) =
∂gi

∂a

∣∣∣∣
a=0

,

ζφk

= ζφk

(x, u, φ) =
∂hk

∂a

∣∣∣∣
a=0

.

Transformation of the arbitrary elements is obtained in the following way. Let φ0(x, u)

be given. By virtue of the inverse function theorem one can solve the equations

x̄ = f(x, u, φ0(x, u); a), ū = g(x, u, φ0(x, u); a)

with respect to x and u:
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x = f̄(x̄, ū;a), u = ḡ(x̄, ū;a).

The transformed arbitrary elements are

φa(x̄, ū) = h(f̄(x̄, ū; a), ḡ(x̄, ū; a), φ0(f̄(x̄, ū; a), ḡ(x̄, ū; a)); a).

Transformation of a function u0(x) is given in a different way. If u0(x) is a solution of

system (3.19) with φ0(x, u), by the equation

x̄ = f(x, u0(x), φ0(x, u0(x)); a),

one finds x = f̄(x̄; a), and the transformed function is

ua(x̄) = g(f̄(x̄, a), u0(f̄(x̄, a)), φ0(f̄(x̄, a), u0(f̄(x̄, a))); a). (3.21)

Differentiating (3.21) with respect to x̄, we get the transformation of derivatives p̄a =

q(x, u, p, φ, . . . ; a). By the assumption that ua(x̄) is a solution of the same system of

equations with transformed arbitrary elements φa(x̄, ū), the equations

Fα(x̄, ua(x̄), p̄a(x̄), φa(x̄, ua(x̄))) = 0, (α = 1, 2, . . . , t)

are satisfied for an arbitrary x̄. Because of a one-to-one correspondence between x and

x̄ one has

Fα(f(z(x), a), g(z(x), a), q(zp(x), a), h(z(x))) = 0, (α = 1, 2, . . . , t),

where z(x) = (x, u0(x), φ(x, u0(x))), zp(x) = (x, u0(x), φ(x, u0(x)), p0(x), . . .). Differen-

tiating these equations with respect to the group parameter a, one obtains the deter-

mining equations

X̃eFα(x, u, p, φ)
∣∣∣
(3.19)

= 0, (α = 1, 2, . . . , t).

The prolonged operator for the equivalence Lie group

X̃e = Xe + ςux∂ux + ςφx∂φx + ςφu∂φu + · · · (3.22)

where

ςuλ = De
λς

u − uxD
e
λξ

x, De
λ=∂λ+uλ∂u+(φuuλ+φλ)∂φ,

ςφλ = D̃e
λς

φ − φxD̃
e
λξ

x − φuD̃
e
λς

u, D̃e
λ = ∂λ + φλ∂φ.

The sign |(3.19) means that the equations X̃eFα(x, u, p, ϕ) = 0 are considered on any
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solution u0(x) of equations (3.19).

3.1.7 Multi-Parameter Lie-Group of Transformations

Let O be a ball in the space Rr with center at the origin. Assume that ψ is a mapping,

ψ : O×O −→ Rr. The pair (O,ψ) is called a local multi-parameter Lie group with the

multiplication law ψ if it has the following properties:

1. ψ(a, 0) = ψ(0, a) = a for all a ∈ O.

2. ψ(ψ(a, b), c) = ψ(a, ψ(b, c)) for all a, b, c ∈ O for which ψ(a, b), ψ(b, c) ∈ O.

3. ψ ∈ C∞(O,O).

Let V be an open set in Z. Consider transformations

z̄i = ϕi(z; a), (3.23)

where i = 1, 2, ..., N , z ∈ V ⊂ Z = RN , and the vector-parameter a ∈ O.

Definition 3.3. The set of transformations (3.23) is called a local r-parameter Lie group

Gr if it has the following properties:

1. ϕ(z, 0) = z for all z ∈ V .

2. ϕ(ϕ(z, a), b) = ϕ(z, ψ(a, b)) for all a, b, ψ(a, b) ∈ O, z ∈ V .

3. If for a ∈ O one has ϕ(z, a) = z for all z ∈ V , then a = 0.

Note that if one fixes all parameters except one, for example ak, then the multi-

parameter Lie group of transformations (3.23) composes a one-parameter Lie group.

Conversely, in group analysis it is proven that any r-parameter group is a union of one-

parameter subgroups belonging to it. Infinitesimal generators of these groups compose

a Lie algebra.

Let Gr be a Lie group admitted by the system of partial differential equations

F k(x, u, p) = 0, k = 1, ..., s.

Assume that {X1, X2, ..., Xr} is a basis of the Lie algebra Lr, which corresponds to the

Lie group Gr.
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Definition 3.4. A function Φ(x, u) is called an invariant of a Lie group Gr if

Φ(x̄, ū) = Φ(x, u).

Theorem 3.3. A function Φ(x, u) is an invariant of the group Gr with the generators

Xi, (i = 1, ..., r) if and only if,

XiΦ(x, u) = 0, (i = 1, ..., r). (3.24)

In order to find an invariant, one needs to solve the overdetermined system of

linear equations (3.24). Any invariant Φ can be expressed through this set

Φ = φ
(
J1(x, u), J2(x, u), ..., Jm+n−r∗(x, u)

)
.

where n,m is the numbers of independent and dependent variables, respectively and r∗

is the total rank of the matrix composed by the coefficients of the generators Xi, (i =

1, 2, ..., r). A set of functionally independent invariants

J =
(
J1(x, u), J2(x, u), ..., Jm+n−r∗(x, u)

)
is called an universal invariant.

Definition 3.5. A set M is said to be invariant with respect to the group Gr, if the

transformation (3.23) carries every point z of M to a point of M .

Definition 3.6. Let V be an open subset of RN , and Ψ : V −→ Rt, t ≤ N a mapping

belonging to the class C1(V ). The system of equations Ψ(z) = 0 is called regular, if for

any point z ∈ V :

rank

(
∂( ψ1, ..., ψt)

∂ ( z1, ..., zN )

)
= t

where Ψ = (ψ1, ..., ψt).

If a system Ψ(z) = 0 is regular, then for each z0 ∈ V with Ψ(z0) = 0 there exists a

neighborhood U of z0 in V such that

M = { z ∈ U : Ψ(z) = 0 }
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is a manifold. Such a manifold is called a regularly assigned manifold.

Theorem 3.4. A regularly assigned manifold M is an invariant manifold with respect

to a Lie group Gr with the generator Xi, (i = 1, ..., r), if

Xiψ
k(z)

∣∣
M

= 0, (i = 1, ..., r), k = 1, ..., t.

3.2 Lie algebras

Definition 3.7. A Lie algebra is a vector space L of operators X = ζα(z) ∂/∂zα with

the following property. If the operators

X1 = ζα
1 (z)

∂

∂zα

, X2 = ζα
2 (z)

∂

∂zα

are elements of L, then their commutator

[X1, X2] ≡ X1X2 −X2X1 =
N∑

α=1

(X1(ζ
α
2 )−X2(ζ

α
1 ))

∂

∂zα

(3.25)

is also an element of L. The Lie algebra is denoted by the same letter L, and the

dimension dimL of the Lie algebra is the dimension of the vector space L. We will use

the symbol Lr to denote an r−dimensional Lie algebra.

It follows from (3.25) that the commutator satisfies the following properties:

1.(bilinearity): for any X1, X2, X3 ∈ L and a, b ∈ R,

[aX1 + bX2, X3] = a[X1, X3] + b[X2, X3],

[X1, aX2 + bX3] = a[X1, X2] + b[X1, X3].

2.(skew-symmetry): for any X1, X2 ∈ L,

[X1, X2] = −[X2, X1].

3.(the Jacobi identity): for any X1, X2, X3 ∈ L,

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0.
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Definition 3.8. A vector space S ⊂ L is called a subalgebra of a Lie algebra L if

[X1, X2] ∈ S for any X1, X2 ∈ S.

Definition 3.9. A subalgebra I ⊂ L is called an ideal of the Lie algebra L if for any

X ∈ L, Y ∈ I then [X, Y ] ∈ I.

Consider a Lie algebra Lr of a finite dimension r with basis X1, X2, . . . , Xr: i.e.,

any vector X ∈ Lr can be decomposed as

X =
r∑

k=1

xkXk

where xk are the coordinates of the vector X in the basis {X1, . . . , Xr}. Then

[Xi, Xj] =
r∑

k=1

ckijXk; i, (j = 1, 2, . . . , r) (3.26)

with real constants ckij. The numbers ckij are called the structural constants of the Lie

algebra Lr for the basis {X1, . . . , Xr}.

Given any set of operators X1, X2, . . . , Xr, their linear span will be denoted by

〈X1, X2, . . . , Xr〉. For example, a Lie algebra Lr with the basis X1, X2, . . . , Xr is written

Lr = 〈X1, X2, . . . , Xr〉.

In applications, it is convenient to use the relations (3.26) written in the form of

a table of commutators of the basis X1, X2, . . . , Xr. Consider an example.

Example 3.2. Let L6 be the vector space with the following basis

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂u
, X4 = y

∂

∂u
,

X5 = x
∂

∂x
+ 3u

∂

∂u
, X6 = y

∂

∂y
− 2u

∂

∂u
.

(3.27)

Thus, L6 is the linear span of the operators (3.27), L6 = 〈X1, X2, . . . , X6〉. One can

readily calculate, by definition (3.25), the commutators [Xi, Xj] of the basic operators

(3.27) and verify that they satisfy the test (3.26) for a Lie algebra. The result becomes

directly visual if the commutators are disposed as in the following table, where the

intersection of the Xi row with the Xj column represents the commutator [Xi, Xj].
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X1 X2 X3 X4 X5 X6

X1 0 0 0 0 X1 0

X2 0 0 0 X3 0 X2

X3 0 0 0 0 3X3 −2X3

X4 0 −X3 0 0 3X4 −3X4

X5 −X1 0 −3X3 −3X4 0 0

X6 0 −X2 2X3 3X4 0 0

3.2.1 Classification of Subalgebras

One of the aims of group analysis is to find exact solutions of differential equa-

tions. All solutions can be divided into equivalence classes of solutions as follows.

Definition 3.10. Two solutions u1 and u2 of a differential equation are said to be

equivalent with respect to the admitted Lie group G if one of the solutions can be

transformed into the other by a transformation belonging to the group G.

The problem of classification of exact solutions is equivalent to the classification

of subalgebras of the admitted Lie algebra L. Because there is a one-to-one corre-

spondence between Lie groups and Lie algebras let us explain here the classification of

subalgebras. In order to give a method for classification of subalgebras, we need to give

some definitions.

Definition 3.11. Let L andK be Lie algebras and let dimL=dimK. A linear one-to-one

map f of L onto K is called an isomorphism if it preserves commutators

f ([X1, X2]L) = [f(X1), f(X2)]K , ∀ X1, X2 ∈ L,

where the indices L and K denote the commutators in the corresponding algebras. An

isomorphism of L onto itself is called an automorphism of the Lie algebra L. This

mapping will be denoted by the symbol A : L→ L.
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Theorem 3.5. Two finite-dimensional Lie algebras are isomorphic if and only if one

can choose bases for the algebras such that the algebras have, in theses bases, equal

structure constants, i.e. the same table of commutators.

Let Lr be an r-dimensional Lie algebra with basis {X1, X2, . . . , Xr}. Then one

has

[Xi, Xj] =
r∑

k=1

ckijXk, (i, j = 1, 2, . . . , r),

where ckij are the structural constants. One constructs a one-parameter family of auto-

morphism, Ai, (i = 1, . . . , r) on Lr,

Ai :
r∑

j=1

xjXj →
r∑

j=1

x̄jXj

where x̄i = x̄i(a), as follows. Consider the system

dx̄j

da
=

r∑
β=1

cjβix̄β, (j = 1, 2, . . . , r).

Initial values for this system are xj = xj at a = 0. The set of solutions of these equations

induces an automorphism Ai, (i = 1, 2, . . . , r) of the Lie algebra Lr.

The set of all subalgebras is divided into equivalence classes with respect to

these automorphisms. A list of representatives, where each element of this list is one

representative from every class is called an optimal system of subalgebras.

Because of the difficulties in constructing the optimal system of subalgebras for

Lie algebras of large dimension, there is a two-step algorithm (Ovsiannikov, 1993), which

reduces this problem to the problem for constructing an optimal system of algebras of

lower dimensions. In brief, let us consider an algebra Lr with basis {X1, X2, . . . , Xr}.

According to the algorithm, assume that the algebra Lr is decomposed as I1 ⊕ N1,

where I1 is an ideal of Lr and N1 is a subalgebra of the algebra Lr. In the same way, the

subalgebra N1 can also be decomposed as N1 = I2 ⊕ N2. Repeating the same process

(α−1) times one ends up with an algebra Nα. Since the algebra Nα has lower dimension,

an optimal system of the subalgebras for it can be more simply constructed. By glu-

ing the ideals Il and subalgebras Nl starting from l = α to l = 1, together one constructs
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the optimal system of subalgebras for the algebra Lr. Note that for every subalgebra

Nl one needs to check the subalgebra conditions and use the automorphisms to simplify

the coefficients of these systems. Therefore, the problem for constructing an optimal

system of subalgebras of the algebra Lr by this method is reduced to the problem of

classification of algebras of lower dimensions.

After constructing the optimal system, one can start seeking invariant solutions

of subalgebras from the optimal system.

3.3 Invariant Solutions

Representations of invariant solutions are obtained with the help of the admitted

Lie group. These solutions can be constructed in the following way. Assume that G is a

group admitted by the system (3.17). Let L be the Lie algebra which corresponds to G,

and Lr ⊂ L a r subalgebra. The algorithm of finding invariant solutions with respect

to the subalgebra Lr consists of the following.

Let Lr be a Lie algebra with the basis

Xk = ξi
k(x, u)

∂

∂xi

+ ζj
k(x, u)

∂

∂uj
, (k = 1, 2, . . . , r).

Find the general solution of the system of linear homogeneous equations

ξi
k

∂J

∂xi

+ ζj
k

∂J

∂uj
= 0, (k = 1, 2, . . . , r),

where J = J(x, u). The set of functionally independent solutions of these equations is

called an universal invariant of the Lie algebra Lr. The universal invariant J consists

of s = m+ n− r∗ functionally independent invariants

J =
(
J1(x, u), J2(x, u), . . . , Jm+n−r∗(x, u)

)
,

where r∗ is the total rank of the matrix composed by the coefficients of the generators

Xk, (k = 1, 2, . . . , r).

Choosing m invariants such that the rank of the Jacobi matrix
∂(J1, . . . , Jm)

∂(u1, . . . , um)
is

equal to m, one composes the relations
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J i = Φi
(
Jm+1, Jm+2, . . . , Jm+n−r∗

)
, (i = 1, 2, . . . ,m). (3.28)

Equations (3.28) form the representation of the invariant solution with respect to the

algebra Lr. The representation of an invariant solution is obtained by solving the in-

variants J1, J2, . . . , Jm with respect to the dependent variables u1, . . . , um:

ui = φi(x, um+1, um+2, . . . , um+n−r∗), (i = 1, . . . ,m).

The last set of relations is called the representation of the solution invariant with respect

to Lr.



CHAPTER IV

DETAILED GROUP CLASSIFICATION

The purpose of this chapter is to give a complete classification of one-dimensional

equations of fluids with internal energy depending on the density ρ and the gradient of

the density,

ρt + (ρu)x = 0, (ρu)t + (ρu2 + Π)x = 0,

and

Π = P + ρλα, P = ρ2ερ − ρ (ρλρx)x , λ = 2εα, α = ρ2
x,

where P is the pressure, t is time, ρx is the gradient of ρ with respect to the space

variable x and ε(ρ, α) is the internal energy.

Equivalence Lie group, Admitted Lie group and complete group classification of

one-dimensional equations of fluids with internal energy depending on the density and

the gradient of the density are presented in this chapter.

4.1 Equivalence Lie Group

In this section, we will determine the equivalence Lie group for the equations

(1.3). Since the arbitrary element ε depends on ρ and α only, the system of equations

(1.3) has to be supplemented with auxiliary equations

εx = 0, εt = 0, εu = 0.

The infinitesimal generator of the equivalence Lie group has the representation

(Meleshko, 2005)

Xe = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α + ζε∂ε,

where all coefficients ξx, ξt, ζρ, ζu, ζα and ζε are functions of (x, t, ρ, u, α, ε). Let us denote
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u1 = ρ, u2 = u, u3 = α

and

z1 = x, z2 = t, z3 = ρ, z4 = u, z5 = α.

The coefficients of the prolonged generator

X̃e = Xe +
∑

i

(ζui
x∂ui

x
+ ζui

t∂ui
t
) +

∑
j

ζε
zj∂ε

zj
+ · · ·.

are obtained by using the prolongation formulae:

ζui
x = De

xζ
ui − ui

xD
e
xξ

x − ui
tD

e
xξ

t

ζui
t = De

t ζ
ui − ui

xD
e
t ξ

x − ui
tD

e
t ξ

t

ζε
zj = D̃e

zjζε −
∑
γ

εzγD̃e
zjζzγ

.

The operators De
x and De

t are operators of the total derivatives with respect to x and t,

respectively in the space of the independent variables x and t:

De
x = ∂x + ρx∂ρ + ux∂u + αx∂α + (εx + ερρx + εααx)∂ε,

De
t = ∂t + ρt∂ρ + ut∂u + αt∂α + (εt + ερρt + εααt)∂ε.

The operators D̃e
zj are operators of the total derivatives with respect to z1, . . . , z5 in the

space of the independent variables x, t, ρ, u and α:

D̃e
zj = ∂zj + (δ3jερ + δ5jεα)∂ε,

where δij is the Kronecker delta symbol.

For constructing the determining equations and solving them, the symbolic

computer Reduce program was applied (Hearn, 1987). Calculations give the following

basis of generators of the equivalence Lie group:

Xe
1 = x∂x + ρ∂ρ + u∂u + 2ε∂ε, Xe

2 = ρ∂ρ + 2α∂α,

Xe
3 = t∂t + x∂x + ρ∂ρ, Xe

4 = ∂t, Xe
5 = t∂x + ∂u,

Xe
6 = ∂x, Xe

7 = ρ−1∂ε, Xe
8 = ∂ε, Xe

9 = f(ρ)
√
α∂ε,

where the function f(ρ) is an arbitrary function.

Since the equivalence transformations corresponding to the operators Xe
7 , X

e
8
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and Xe
9 are applied for simplifying the function ε in the classification process, let us

present these transformations. The Lie equations for finding equivalence transformation

corresponding to Xe
7 , X

e
8 and Xe

9 are

Xe
7 :



dx̃

da
= 0

dt̃

da
= 0

dρ̃

da
= 0

dũ

da
= 0

dα̃

da
= 0

dε̃

da
= ρ̃−1

Xe
8 :



dx̃

da
= 0

dt̃

da
= 0

dρ̃

da
= 0

dũ

da
= 0

dα̃

da
= 0

dε̃

da
= 1

Xe
9 :



dx̃

da
= 0

dt̃

da
= 0

dρ̃

da
= 0

dũ

da
= 0

dα̃

da
= 0

dε̃

da
= f(ρ̃)

√
α̃

Solving these equations with internal conditions for a = 0:

x̃ = x, t̃ = t, ρ̃ = ρ, ũ = u, α̃ = α, ε̃ = ε

we obtained the transformations:

Xe
7 : ρ̃ = ρ, α̃ = α, ε̃ = ε+ ρ−1a,

Xe
8 : ρ̃ = ρ, α̃ = α, ε̃ = ε+ a,

Xe
9 : ρ̃ = ρ, α̃ = α, ε̃ = ε+

√
αf(ρ)a;

Because the function ε depends on ρ and α, only the transformations of these variables

are presented. Here a is the group parameter.

Remark. Using the equivalence transformations corresponding to the generators

Xe
7 and Xe

8 , a term C1ρ
−1 + C2, appearing in the function ε(ρ, α) can be transformed

to zero. Here C1 and C2 are arbitrary constants. By virtue of the equivalence transfor-

mations corresponding to the generator Xe
9 , the function ε(ρ, α) is considered up to the

term
√
αf(ρ) with arbitrary function f(ρ).
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4.2 Admitted Lie group

Let an infinitesimal generator of a one-parameter Lie group admitted by system

of equations (1.3) be

X = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α,

where the coefficients ξx, ξt, ζρ, ζu, ζα are functions of the variables (x, t, ρ, u, α).

Calculations have shown that

ξx = k3x+ k4tx− k5t
3 − k6t

2 − k7t− k8,

ξt = k2t− 2k3t− k4t
2 + k9, ζρ = k1ρ+ k4ρt,

ζu = k2u− k3u− k4(ut− x)− 3k5t
2 − 2k6t− k7,

ζα = 2k1α+ 2k3α+ 4k4αt,

k1 (2αρ2εαρρρ + 10αρεαρρ + 8αεαρ + 4α2ρεααρρ + 8α2εααρ − ρ2ερρρ

−4ρερρ − 2ερ) + 2k2 (2αρεαρρ + 4αεαρ − ρερρ − 2ερ)

+2k3 (−αρεαρρ − 2αεαρ + 2α2ρεααρρ + 4α2εααρ + ρερρ + 2ερ)

−2k6q(α) = 0,

(4.1)

k4 (ρεαρ + 8α2εααα + 2αρεααρ + 16αεαα + 2εα) = 0, (4.2)

k1 (ρεαρ + 4α2εααα + 2αρεααρ + 10αεαα + 2εα) + 2k2 (2αεαα + εα)

+2k3 (2α2εααα + 3αεαα) = 0,
(4.3)

k4 (2αρ2εαρρρ − 8αρεαρρ + 4αεαρ + 8α2ρεααρρ + 16α2εααρ

−ρ2ερρρ − 2ρερρ + 2ερ)− 6k5q(α) = 0,
(4.4)

where ki, (i = 1, 2, ..., 9) are constants, q(α) = a/
√
α and a2 = 1. The determining

equations (4.1)-(4.4) define the kernel of admitted Lie algebras and its extensions.

The kernel of admitted Lie algebras consists of the generators which are admitted

by equations (1.3) for any function ε(ρ, α). The kernel consists of the generators

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u.

Extensions of the kernel of admitted Lie algebras depend on the value of the function

ε(ρ, α). They can only be operators of the form
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k1X1 + k2X2 + k3X3 + k4X4 + k5X5 + k6X6,

where k1, k2, k3, k4, k5, k6 are constants, and

X1 = ρ∂ρ + 2α∂α, X2 = t∂t − u∂u,

X3 = u∂u + 2α∂α − x∂x − 2t∂t,

X4 = ρt∂ρ + (ut− x)∂u + 4αt∂α − tx∂x − t2∂t,

X5 = t3∂x + 3t2∂u, X6 = t2∂x + 2t∂u.

Relations between the constants k1, k2, k3, k4, k5, k6 depend on the function ε(ρ, α).

For easily to solve the equations (4.1)-(4.4), first let us consider equation (4.2).

4.2.1 Case k4 6= 0

If k4 6= 0, then equation (4.2) gives

4αgα + ρgρ + 2g = 0,

where

g = 2αεαα + εα.

By using the equivalence transformation corresponding to Xe
9 , the general solution of

this equation is

ε(ρ, α) = ρ2ϕ(αρ−4) + ϕ2(ρ), (4.5)

where ϕ(z) and ϕ2(ρ) are arbitrary functions and z = αρ−4.

Notice that if (
√
zϕ

′
)
′
= 0, then by virtue of the arbitrariness of the functions ϕ

and ϕ2, one can assume that ϕ = 0. Hence, we assume that (
√
zϕ

′
)
′ 6= 0.

For the function ε(ρ, α) having the representation (4.5), equation (4.4) becomes

k4(ρ
2ϕ

′′′

2 + 2ρϕ
′′

2 − 2ϕ
′

2) + 6k5q(α) = 0.

Splitting this equation with respect to α, one obtains

k5 = 0

and



29

ρ2ϕ
′′′

2 + 2ρϕ
′′

2 − 2ϕ
′

2 = 0.

The general solution of the last equation is

ϕ2 = C1 + C2ρ
2 + C3ρ

−1.

Because of the equivalence transformation corresponding to Xe
7 and Xe

8 then

ϕ2 = C2ρ
2.

Substituting ε(ρ, α) = ρ2ϕ(αρ−4) + C2ρ
2 into (4.3), it gives

2(k3 − k1)z
2ϕ

′′′
+ (2k2 + 3(k3 − k1))zϕ

′′
+ k2ϕ

′
= 0. (4.6)

For arbitrary function ϕ one has

(k3 − k1) = 0, k2 = 0.

Then equation (4.1) gives

k6 = 0.

In this case the extension of the kernel of admitted Lie algebras consists of the generators

X1 +X3, X4. (4.7)

Extensions of (4.7) can only occur for (k3−k1) 6= 0. Equation (4.6) is an Euler ordinary

differential equation. The general solution of (4.6) depends on µ = k2(k3 − k1)
−1.

If µ 6= 1/2, then ϕ
′
= C4z

−µ, C4 6= 0. Equation (4.1) becomes

6(k3 − k1)ρ[(1− µ)(ϕ+ C2) + C4z
1−µ]− k6q(α) = 0.

Splitting this equation with respect to α, one obtains

k6 = 0

and

(1− µ)(ϕ+ C2) + C4z
1−µ = 0.
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By virtue of C4 6= 0, one gets µ 6= 1. Hence,

ε = Cα1−µρ2(2µ−1), (µ− 1/2)(µ− 1) 6= 0.

and the extension of the kernel of admitted Lie algebras consists of the generators

X1 − µX2, µX2 +X3, X4.

If µ = 1/2, then ϕ
′
= C4 ln(z)z−1/2, and similar to the previous case, one obtains

k6 = 0

and

ε = C
√
α ln(α), (C 6= 0).

The extensions of the kernel of admitted Lie algebras are

2X1 −X2, X2 + 2X3, X4.

4.2.2 Case k4 = 0

If k4 = 0, then equation (4.4) gives

k5 = 0.

Equation (4.3) becomes

k1a+ k2b+ k3c = 0, (4.8)

where

a = 2αgα + ρgρ + 2g, b = 2g, c = 2αgα,

and

g = 2αεαα + εα.

Further analysis of the determining equations (4.1)-(4.4) is similar to the group classi-

fication of the gas dynamics equations (Ovsiannikov, 1978).

Let us analyze the vector space Span(V ), where the set V consists of vectors

(a, b, c) with ρ and α varied. If the function ε(ρ, α) is such that dim(Span(V ))=3, then
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equation (4.8) is only satisfied for

k1 = 0, k2 = 0, k3 = 0.

Substituting k1, k2, k3 into (4.1) gives

k6 = 0.

Hence, an extension of the kernel of admitted Lie algebras is only possible if

dim(Span(V )) < 3.

dim(Span(V )) = 2

There exists a constant vector (λ, β, γ) 6= 0, which is orthogonal to the set V :

λa+ βb+ γc = 0.

This means that the function g(ρ, α) satisfies the equation

2α(λ+ γ)gα + ρλgρ + 2(λ+ β)g = 0. (4.9)

The characteristic system of this equation is

dα

−2α(λ+ γ)
=

dρ

−ρλ
=

dg

2(λ+ β)g
.

The general solution of equation (4.9) depends on the constants λ, β and γ.

Case λ = 0. Since dim(Span(V )) = 2, then γ 6= 0 and the general solution of equation

(4.9) is

g = g1(ρ)α
k,

where k = −β/γ, g1(ρ) is an arbitrary function. Thus

2αεαα + εα = g1(ρ)α
k. (4.10)

For obtaining the function ε one needs to integrate equation (4.10) with respect to α.

This integration depends on the value of the exponent k.

If (2k + 1)(k + 1) 6= 0, then using the equivalence transformation corresponding

to Xe
9 ,
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ε(ρ, α) = ϕ(ρ)αp + ϕ2(ρ), (4.11)

where p = k + 1, ϕ(ρ) = g1(ρ)/((2k + 1)(k + 1)), ϕ2(ρ) are arbitrary functions. Substi-

tuting (4.11) into (4.8) leads to

k1ρϕ
′
+ 2(k2 + k1p+ k3(p− 1))ϕ = 0.

If ϕ = C1ρ
c then dim(Span(V )) = 1. Hence,

k1 = 0, k2 = (1− p)k3.

Equation (4.1) becomes

pk3(ρϕ
′′

2 + 2ϕ
′

2)− k6q(α) = 0.

Splitting this equation with respect to α, one obtains k6 = 0 and

k3(ρϕ
′′

2 + 2ϕ
′

2) = 0.

If k3 = 0, then k2 = 0 and there is no extension of the kernel of admitted Lie algebras.

Hence, an extension of the kernel of admitted Lie algebras occurs for the function ϕ2

satisfying ϕ2 = C1 +C2ρ
−1. According to the equivalence transformation corresponding

to Xe
7 and Xe

8 , ϕ2 = 0. In this case ε = ϕ(ρ)αp and the extension of the kernel of

admitted Lie algebras is given by the generator

(p− 1)X2 −X3.

If k = −1, then according to the equivalence transformation corresponding to

Xe
9 ,

ε(ρ, α) = ϕ(ρ) ln(α) + ϕ2(ρ). (4.12)

Substituting (4.12) into (4.3) leads to

k1ρϕ
′
+ 2(k2 − k3)ϕ = 0.

Since dim(Span(V )) = 2, one has

k1 = 0, k2 = k3.

Equation (4.1) becomes
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k3(ρϕ
′′

+ ϕ
′
)− 2k6q(α) = 0.

Then

k6 = 0

and

k3(ρϕ
′′

+ 2ϕ
′
) = 0.

An extension of the kernel of admitted Lie algebras occurs for the function ϕ = β+γρ−1.

If βγ = 0, then dim(Span(V )) = 1. Hence, βγ 6= 0,

ε = (β + γρ−1) ln(α) + ϕ2(ρ)

and the extension of the kernel of admitted Lie algebras is

X2 +X3.

If k = −1/2, then according to the equivalence transformation corresponding to Xe
9 ,

ε(ρ, α) = ϕ(ρ)
√
α ln(α) + ϕ2(ρ). (4.13)

Substituting (4.13) into (4.8), it leads to

k1ρϕ
′
+ (2k2 + k1 − k3)ϕ = 0.

Since dim(Span(V )) = 2, one obtains that

k1 = 0, k2 =
k3

2
.

Equation (4.1) becomes

k3(ρϕ
′′

2 + 2ϕ
′

2)− 2k6q(α) = 0.

Then

k6 = 0

and

k3(ρϕ
′′

2 + 2ϕ
′

2) = 0.

Since for k3 = 0, there is no extension of the kernel of admitted Lie algebras, then by

using the equivalence transformation corresponding to Xe
7 and Xe

8 , ϕ2 = 0. In this case
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ε = ϕ(ρ)
√
α ln(α).

The extension of the kernel of admitted Lie algebras is given by the generator

X2 + 2X3.

Case λ 6= 0. According to the equivalence transformation corresponding to Xe
9 , the

general solution of equation (4.9) is

ε(ρ, α) = ρµϕ(αρk) + ϕ2(ρ), (4.14)

where k = −2(1 + γ/λ), µ = −2(β − γ)/λ. Substituting (4.14) into (4.3) leads to

2((k+ 2)k1 + 2k3)z
2ϕ

′′′
+ 2((k+ µ+ 5)k1 + 2k2 + 3k3)zϕ

′′
+ ((k+ µ+ 2)k1 + 2k2)ϕ

′
= 0,

where z = αρk. If ϕ
′
= C1z

c or ϕ
′
= C1z

c ln(z) then dim(Span(V )) = 1.

Hence

k3 = −k1(k + 2)/2, k2 = −k1(k + µ+ 2)/2.

Note that for extensions of the kernel of admitted Lie algebras, k1 6= 0. Substituting

(4.14) into (4.1) one obtains

k1(ρ
2ϕ

′′′

2 − (µ− 4)ρϕ
′′

2 − 2(µ− 1)ϕ
′

2) + 2k6q(α) = 0.

Then

k6 = 0

and

ρ2ϕ
′′′

2 − (µ− 4)ρϕ
′′

2 − 2(µ− 1)ϕ
′

2 = 0.

If µ 6= −1, then ϕ
′
2 = C1ρ

µ−1, the extension of the kernel of admitted Lie algebras is

2X1 − (µ+ k + 2)X2 − (k + 2)X3.

If µ = −1, then ϕ2 = C1ρ
−1 ln(ρ). Hence

ε = ρµϕ(αρk) + C1ρ
−1 ln(ρ)

and the extension of the kernel of admitted Lie algebras is

2X1 − (k + 1)X2 − (k + 2)X3.
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dim(Span(V )) = 1

There exists a constant vector (λ, β, k) 6= 0 such that

(a, b, c) = (λ, β, k)B

for some function B(ρ, α) 6= 0. Since dim(Span(V )) = 1, then g 6= 0 and hence, b 6= 0.

Without loss of generality one can assume that β = 2, which leads to B = b/2 and

a = (λb)/2, c = (kb)/2. Thus, the function ε(ρ, α) satisfies the equations

4α2εααα + 2αρεααρ + ρεαρ − (2λ− 10)αεαα − (λ− 2)εα = 0,

4α2εααα − 2(k − 3)αεαα − kεα = 0.

According to the equivalence transformation corresponding to Xe
9 , the general solution

of the last equation is

εα = g2(ρ)α
k/2, (k 6= −1).

Substituting this solution into the first equation, one obtains

ρg
′

2 − (λ− k − 2)g2 = 0.

Then

g2 = Cργ,

where γ = λ− k − 2 and C is an arbitrary constant. Thus,

εα = Cργαk/2, (C 6= 0). (4.15)

Since dim(Span(V )) = 1, then γ and k are such that γ2 + k2 6= 0. Substituting (4.15)

into (4.8), one obtains

k2 =
−k1(γ + k + 2)− k3k

2
. (4.16)

If (k + 2) 6= 0, integrating (4.15), one obtains

ε(ρ, α) = Cργαp + ϕ2(ρ), (4.17)

where p = 1 + k/2 6= 0. Substituting (4.17) into (4.1) gives
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k1ρ
2ϕ

′′′

2 + ((4− γ − 2p)k1 − 2pk3)ρϕ
′′

2 + 2((1− γ − 2p)k1 − 2pk3)ϕ
′

2 + 2k6q(α) = 0.

Splitting this equation with respect to α, one has

k6 = 0

and

k1ρ
2ϕ

′′′

2 + ((4− γ − 2p)k1 − 2pk3)ρϕ
′′

2 + 2((1− γ − 2p)k1 − 2pk3)ϕ
′

2 = 0. (4.18)

For an arbitrary function ϕ2 one obtains

k1 = 0, k3 = 0,

then there exists no extension of the kernel of admitted Lie algebras. Hence an extension

of the kernel of admitted Lie algebras can only occur for special types of the function

ϕ2.

If ϕ
′
2 = C1ρ

−2, then by using the equivalence transformation corresponding to

Xe
7 and Xe

8 ,

ε = Cργαp

and the admitted generators are

2X1 − (γ + 2p)X2, (p− 1)X2 −X3.

If ϕ
′
2 6= C1ρ

−2, then k1 6= 0. Hence the general solution of (4.18) depends on

µ = ((1− γ − 2p)k1 − 2pk3)/k1.

If µ 6= 2, then ϕ
′
2 = C1ρ

−µ 6= 0, and equation (4.1) gives

k3 =
(1− µ− γ − 2p)k1

2p
.

The extension of the kernel of admitted Lie algebras is given by the generator

2pX1 + (pµ− γ − 3p− µ+ 1)X2 + (1− γ − 2p− µ)X3.

If µ = 2, then ϕ
′
2 = C1ρ

−2 ln(ρ) 6= 0, hence
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ε = Cργαp + C1ρ−1 ln(ρ).

Equation (4.1) gives

k3 =
(−1− γ − 2p)k1

2p

and the admitted generator is

2pX1 − (γ + p+ 1)X2 − (γ + 2p+ 1)X3.

If k = −2, then

ε = Cρλ ln(α) + ϕ2(ρ), C 6= 0. (4.19)

Equation (4.16) gives

k2 =
2k3 − λk1

2
.

Substituting (4.19) into (4.1) and splitting it with respect to α one obtains

k6 = 0

and

k1(ρ
2ϕ

′′′

2 + (4− λ)ρϕ
′′

2 + 2(1− λ)ϕ
′

2) = −2Cλ(λ+ 1)ρλ−1(k1 + k3). (4.20)

The solution of equation (4.20) depends on the value of λ.

Let λ(λ+ 1) = 0. In this case for arbitrary ϕ
′
2 one obtains

k1 = 0,

hence, the extension of the kernel of admitted Lie algebras is only the generator

X2 +X3.

If λ = 0, and ϕ
′
2 = C2ρ

−1, then by using the equivalence transformation corresponding

to Xe
7 and Xe

8 ,

ε = Cρλ ln(α)

and there is one more admitted generator
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X1.

If λ = −1 and ϕ
′
2 = C2ρ

−2 ln(ρ), then according to the equivalence transformation

corresponding to Xe
7 and Xe

8 ,

ε = Cργαp + Cρ−1 ln(ρ)

and there is one more admitted generator

2X1 +X2.

If λ(λ+ 1) 6= 0, then from analysis of (4.20) one obtains that an extension of the kernel

of admitted Lie algebras only occurs for

ϕ
′

2 = ρλ−1(γ ln(ρ) + l),

where γ and l are constants, and

k2 = −(
γ

2Cλ
+
λ+ 2

2
)k1, k3 = −(1 +

γ

2Cλ
)k1.

The extension of the kernel of admitted Lie algebras is given by the generator

X1 − (
λ+ 2

2
+

γ

2Cλ
)X2 − (

γ

2Cλ
+ 1)X3.

dim(Span(V )) = 0

In this case the vector (a, b, c) is constant:

(a, b, c) = (λ, β, k)

for some constant values λ, β and k. This leads to

ε(ρ, α) = Cα + ϕ2(ρ), (4.21)

where C 6= 0. Substituting (4.21) into (4.3) gives

k2 = −k1.

After splitting Equation (4.1), one has
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k6 = 0

and

k1ρ
2ϕ

′′′

2 + 2(k1 − k3)ρϕ
′′

2 − 2(k1 + 2k3)ϕ
′

2 = 0.

Note that for extensions of the kernel, k2
1 + k2

3 6= 0. Hence, for the particular choice of

the function ϕ2 = 0, the admitted generators are

X1 −X2, X3.

For the choice of the function ϕ
′
2 = C1ρ

−µ 6= 0, µ 6= 2, the extension of the kernel of

admitted Lie algebras only consists of the generator

2X1 − 2X2 − (µ+ 1)X3.

For the function ϕ2 satisfying ϕ2 = C1ρ
−1 ln(ρ) 6= 0, then the admitted generator is

2(X1 −X2)− 3X3.

The result of the group classification of equation (1.3) is summarized in Table 1.
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Table 1: Group classification

ε(ρ, α) Extensions Remarks

M1 ρ2ϕ(αρ−4) X1 + X3, X4 ϕ arbitrary

M2 Cα1−µρ2(2µ−1) X1 − µX2, µX2 + X3, X4 (µ− 1/2)(µ− 1) 6= 0

M3 C
√

α ln(α) 2X1 −X2, X2 + 2X3, X4

M4 ϕ(ρ)αp (p− 1)X2 −X3 p(2p− 1) 6= 0

M5 (β + γρ−1) ln(α) X2 + X3 βγ 6= 0

+ϕ2(ρ) ϕ2 arbitrary

M6 ϕ(ρ)
√

α ln(α) X2 + 2X3

M7 ρµϕ(αρk) + Cρµ 2X1 − (µ + k + 2)X2 µ(µ + 1) 6= 0

−(k + 2)X3

M8 ρµϕ(αρk) + C2 ln(ρ) 2X1 − (k + 2)(X2 + X3)

M9 ρµϕ(αρk) + Cρ−1 ln(ρ) 2X1 − (k + 1)X2 − (k + 2)X3

M10 Cργαp 2X1 − (γ + 2p)X2, p(2p− 1) 6= 0

(p− 1)X2 −X3 γ2 + (p− 1)2 6= 0

M11 Cργαp + C1ρ
µ 2pX1 − (γ + 2p− µ)X3 C1µp(2p− 1) 6= 0

−(γ + pµ + 2p− µ)X2 γ2 + (p− 1)2 6= 0

M12 Cργαp + C1 ln(ρ) (γ + 2p)(X2 + X3) p(2p− 1) 6= 0

−2pX1 γ2 + (p− 1)2 6= 0

M13 Cργαp + C1 ln(ρ)ρ−1 2pX1 − (γ + p + 1)X2 p(2p− 1) 6= 0

−(γ + 2p + 1)X3 γ2 + (p− 1)2 6= 0

M14 Cρλ ln(α) + ϕ2(ρ) X2 + X3 λ(λ + 1) = 0

M15 C ln(α) + C2 ln(ρ) X1, X2 + X3

M16 C ln(α)ρ−1 + C2 ln(ρ)2 2X1 + X2, X2 + X3

M17 Cρλ ln(α) + ϕ2(ρ) X1 − (λ+2
2 + γ

2Cλ)X2 λ(λ + 1) 6= 0

−( γ
2Cλ + 1)X3 ϕ

′
2 = ρλ−1(γ ln(ρ) + l)

M18 Cα X1 −X2, X3

M19 Cα + C1ρ
µ 2(X1 −X2)− (2− µ)X3 µ 6= 0

M20 Cα + C1 ln(ρ) X1 −X2 −X3

M21 Cα + C1 ln(ρ)ρ−1 2(X1 −X2)− 3X3
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According to Table 1, the set of all models (1.3), equations of fluids with internal energy ε

depending on the density ρ and the gradient of the density α, where ε 6=
√
αϕ1(ρ)+ϕ2(α)

can be separated into two types. The first type consists of models for which the admitted

Lie algebra includes the generatorX4. The second type of models for which the admitted

Lie algebra does not include the generator X4. In the case of gas dynamics equations

the generator X4 corresponds to the mono-atomic gas.



CHAPTER V

INVARIANT SOLUTIONS OF MODEL M4

Invariant solutions can be sought for a subalgebra of an admitted Lie algebra.

Essentially different invariant solutions are obtained on the basis of an optimal system

of admitted subalgebras. The set of all generators nonequivalent with respect to auto-

morphisms composes an optimal system of one dimensional subalgebras (Ovsiannikov,

1978). This set is used for constructing nonequivalent invariant solutions. Equivalence

of invariant solutions is considered with respect to an admitted Lie group.

Here we give examples of invariant solutions of equations (1.3) with

ε = ϕ(ρ)αp,

where p(2p − 1) 6= 0 (model M4). For the sake of simplicity it is also assumed that

(2p+ 1)(p+ 1) 6= 0. In this case equations (1.3) admit the Lie algebra

L4 = {Y1, Y2, Y3, Y4}, (5.1)

where

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u, Y4 = x∂x + (p+ 1)t∂t − pu∂u − 2α∂α.

5.1 Optimal system of subalgebras

In addition to automorphisms one has to use involutions for constructing an opti-

mal system of subalgebras. Equations (1.3) posses two involutions. The first involution

E1 corresponds to the change x → −x. The second involution E2 is related with the

change t→ −t. These involutions act on the generator

Y = y1Y1 + y2Y2 + y3Y3 + y4Y4
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by transforming the generator Y into the generator Ỹ with the changed coordinates:

E1 :

 ỹ1 = −y2,

ỹ3 = −y3,
E2 :

 ỹ2 = −y1,

ỹ3 = −y3.

Here only changed coordinates are presented.

The table of commutators of (5.1) is

Y1 Y2 Y3 Y4

Y1 0 0 Y2 (p+ 1)Y1

Y2 0 0 Y2

Y3 0 −pY3

Y4 0

The Lie equations for finding automorphisms are constructed according to the table of

commutators. In particular, they are

A1 :



dỹ1

da
= (p+ 1)ỹ4

dỹ2

da
= ỹ3

dỹ3

da
= 0

dỹ4

da
= 0

A2 :



dỹ1

da
= 0

dỹ2

da
= ỹ4

dỹ3

da
= 0

dỹ4

da
= 0

A3 :



dỹ1

da
= 0

dỹ2

da
= −ỹ1

dỹ3

da
= −pỹ4

dỹ4

da
= 0

A4 :



dỹ1

da
= −(p+ 1)ỹ1

dỹ2

da
= ỹ2

dỹ3

da
= −pỹ3

dỹ4

da
= 0

Solving these equations with internal conditions for a = 0:

ỹ1 = y1, ỹ2 = y2, ỹ3 = y3, ỹ4 = y4,

we obtained the automorphisms:
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A1 :

 ỹ1 = y1 + a1(p+ 1)y4,

ỹ2 = y2 + a1y3,
A2 :

{
ỹ2 = y2 + a2y4, A3 :

 ỹ2 = y2 − a3y1,

ỹ3 = y3 − a3py4,

A4 :


ỹ1 = y1e

(p+1)a4 ,

ỹ2 = y2e
a4 ,

ỹ3 = y3e
−pa4 ,

In the following coordinates (y1, y2, y3, y4) of the generator Y are simplified by the au-

tomorphisms Ai, (i = 1, 2, 3, 4).

The Lie algebra L4 can be presented as the direct sum L4 = J ⊕ N , where

J = {Y1, Y2, Y3} is an ideal and N = Y4 is a subalgebra.∗ The classification of the

subalgebra N is simple and consists of two elements

N1 = {0}, N2 = {Y4}.

The next step consists of gluing the ideal J to the subalgebra Ni, (i=1,2) .

Let us consider the first case N1. Assuming that y3 6= 0, and choosing a1 =

−y2/y3, one maps y2 into zero. This means that ỹ2 = 0. For simplicity of explanation,

we write it as y2 → 0(A1). If ỹ1 6= 0, then applying A4 and E1, then Y1 + y3Y3 can be

transform to Y1 + Y3. Hence, one has the subalgebra {Y1 + Y3}. If ỹ1 = 0, then one gets

the subalgebra {Y3}.

Let us assume that y3 = 0. If y1 6= 0, then, y2 → 0(A3), and the subalgebra is

{Y1}. If y1 = 0, one obtains the subalgebra {Y2}.

One can study the case N2 in a similar way. The optimal system of one dimen-

sional subalgebras of the Lie algebra corresponding to L4 consists of the subalgebras:

{Y1}, {Y2}, {Y3}, {Y4}, {Y1 + Y3}.

5.2 Invariant solutions of Y1

Invariants of the generator

Y1 = ∂t

∗For constructing optimal system of subalgebras we use the algorithm (Ovsiannikov, 1993).
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are

x, ρ, u.

An invariant solution has the representation

u = U(x), ρ = R(x).

Substitution of this representation into equations (1.3) gives

U = k/R

and

2p(1− 2p)R
′′′
(R′)2(p+2)R4ϕ+ 4(1− 2p)(p− 1)(R

′′
)2(R

′
)2p+3R4ϕ

+4p(1− 2p)R
′′
(R

′
)2p+5R3(Rϕ

′
+ ϕ)

+(1− 2p)(R
′
)7+2pR3(Rϕ

′′
+ 2ϕ

′
)− k2(R

′
)7 = 0,

where k is a constant.

5.3 Invariant solutions of Y2

Invariants of the generator

Y2 = ∂x

are

t, ρ, u.

An invariant solution has the representation

u = U(t), ρ = R(t).

Substitution of this representation into equations (1.3) gives

R = k, U = C,

where k and c are constants.
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5.4 Invariant solutions of Y3

Invariants of the generator

Y3 = t∂x + ∂u

are

t, ρ, u− x/t.

An invariant solution has the representation

u = U(t) + x/t, ρ = R(t).

Substitution of this representation into equations (1.3) gives

R = k/t, U = Ce−t,

where k and c are constants.

5.5 Invariant solutions of Y1 + Y3

Invariants of the generator

Y1 + Y3 = ∂t + t∂x + ∂u

are

x− t2/2, ρ, u− t.

An invariant solution has the representation

u = U(z) + t, ρ = R(z),

where z = x− t2/2. Substitution of this representation into equations (1.3) gives

U = k/R

and

2p(1− 2p)R
′′′
(R

′
)2p+4R4ϕ+ 4p(1− 2p)(p− 1)(R

′′
)2(R

′
)2p+3R4ϕ

+4p(1− 2p)R
′′
(R

′
)2p+5R3(Rϕ

′
+ ϕ) + (1− 2p)(R

′
)2p+7R3(Rϕ

′′
+ 2ϕ

′
)

−k2(R
′
)7 + (R

′
)6R3 = 0,
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where k is a constant.

5.6 Invariant solutions of Y4

Invariants of the generator

Y4 = x∂x + (p+ 1)t∂t − pu∂u − 2α∂α

are

xt−1/(p+1), ρ, xpu.

An invariant solution has the representation

u = x−pU(z), ρ = R(z),

where z = xt−1/(p+1). Substitution of this representation into equations (1.3) gives

(p+ 1)zR
′
U − zp+2R

′
+ (p+ 1)zU

′
R− p(p+ 1)UR = 0

and

2p(1− 2p3 − 3p2)z2p+1ϕR
′′′
(R

′
)2p+1R2

+4p(ϕ
′
R− 2ϕ

′
Rp3 − 3ϕ

′
Rp2 − 2ϕp3 − 3ϕp2 + ϕ)z2p+1R

′′
(R

′
)2p+2R

+4p(p− 2p4 − p3 + 3p2 − 1)z2p+1ϕ(R
′′
)2(R

′
)2pR2

−(p+ 1)2z(R
′
)4U2 + 2(p+ 1)zp+2(R

′
)4U + z2p+1(R

′
)4(−2(R

′
)2pϕ

′′
R2p3

−3(R
′
)2pϕ

′′
R2p2 + (R

′
)2pϕ

′′
R2 − 4(R

′
)2pϕ

′
Rp3 − 6(R

′
)2pϕ

′
Rp2

+2(R
′
)2pϕ

′
R− z2)− zp+1p(p+ 1)(R

′
)3UR = 0.



CHAPTER VI

CONCLUSIONS

This thesis is devoted to an application of group analysis to the one-dimensional

motion of fluids with internal energy depending on the density and the gradient of the

density,

ρt + (ρu)x = 0, (ρu)t + (ρu2 + Π)x = 0,

where

Π = P + ρλρ2
x, P = ρ2 ∂ε

∂ρ
− ρ

∂

∂x
(ρλρx) , λ = 2

∂ε

∂α
, α = ρ2

x,

t is time, ρx is the gradient of ρ with respect to the space variable x, P is the pressure

and ε(ρ, α) is the internal energy. The case ε =
√
αϕ1(ρ) + ϕ2(ρ), where ϕ1 and ϕ2

are arbitrary functions is excluded from the thesis consideration because it was studied

easily.

Complete group classification of the equations is given. The classification is

considered with respect to the function ε(ρ, α). The group classification separates all

models of the one-dimensional motion of fluids with internal energy depending on the

density and the gradient of the density into 21 classes, which are presented in Table 1.

The set of all models is separated into two types. The first type consists of models for

which the admitted Lie algebra includes the generator X4. The second type of models

for which the admitted Lie algebra does not include the generator X4.

All invariant solutions of the particular model where the internal energy function

ε(ρ, α) = ϕ(ρ)αp are obtained. For this we classified all subalgebras of the Lie group

admitted the equations by constructed optimal system of admitted subalgebras found

invariants of the subalgebra and then studied invariant solution.

In the future work I will analyze the three-dimensional motion of fluids with

internal energy depending on the density and the gradient of the density, and I will also
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apply group analysis to the motion of fluids with internal energy depending on the

density ρ, the gradient of the density ∇ρ and the entropy S, ε = ε(ρ, α, S).



REFERENCES



REFERENCES

Anderson, D. M., McFadden, G. B., and Wheeler, A. A. (1998). Diffuse-interface meth-

ods in fluids mechanics. Annual Review of Fluid Mechanics. 30: 139-165.

Bagderina, Y. Y. and Chupakhin, A. P. (2005). Invariant and partially invariant solu-

tions of the Green-Naghdi equations. Journal of Applied Mechanics and

Technical Physics. 46(6): 791-799.

Cahn, J. W. and Hilliard, J. E. (1959). Free energy of a non uniform system. iii. J.

Chem. Phys. 31: 688-699.

Chirkunov, Y. A. (1990). Group classification of systems of linear partial differential

equations of first-order with two unknown functions and two independent vari-

ables. Docl AS USSR. 314(1): 155-159.

Gavrilyuk, S. L. and Shugrin, S. M. (1996). Media with equations of state that depend

on derivatives. Communications in Nonlinear Science and Numerical

Simulation. 37(2): 177-189.

Gavrilyuk, S. L. and Teshukov, V. M. (2001). Generalized vorticity for bubbly liquid

and dispersive shallow water equations. Continuum Mech. Thermodyn.

13: 365-382.

Gouin, H. and Ruggeri, T. (2005). Mixture of fluids involving entropy gradients and

acceleration waves in interfacial layers. European Journal of Mechanics

B/Fluids. 24: 596–613.

Green, A. E. and Naghdi, P. M. (1975). A derivation of equations for wave propagation

in water of variable depth. J. Fluid Mech. 78: 237-246.



52

Hearn, A. C. (1987). REDUCE User Manual version 3.3. Santa Monica: The Rand

Corporation CP 78.

Hematulin, A., Meleshko, S. V., and Gavrilyuk, S. G. (2007). Group classification of one-

dimensional equations of fluids with internal inertia. Mathematical Meth-

ods in the Applied Sciences. 30: 2101-2120.

Ibragimov, N. H., editor (1994, 1995, 1996). CRC Handbook of Lie Group Analysis

of Differential Equations, volume 1, 2, 3. N. H. Ibragimov (ed.) Boca

Raton: CRC Press.

Ibragimov, N. H. (1999). Elementary Lie Group Analysis and Ordinary Differ-

ential Equations. Chichester: John Wiley & Sons Ltd.

Iordanski, S. V. (1960). On the equations of motion of the liquid containing gas bubbles.

Zhurnal Prikladnoj Mekhaniki i Tekhntheskoj Fiziki 3: 102-111.

Meleshko, S. V. (1998). Isentropic flows of an ideal gas (Fragment 401). Docl AS

USSR. Institute of Theoretical and Applied Mechanics and Institute of Hy-

drodynamics.

Meleshko, S. V. (2005). Methods for Constructing Exact Solutions of Partial

Differential Equations. New York: Springer Science+Business Media, Inc.

Mathematical and Analytical Techniques with Applications to Engineering.

Ngan, S. C. and Truskinovsky, L. (2002). Thermo-elastic aspects of dynamic nucleation.

Journal of the Mechanics and Physics of Solids. 50: 1193-1229.

Olver, P. J. (1986). Applications of Lie groups to differential equations. New

York: Springer- Verlag.

Ovsiannikov, L. V. (1978). Group analysis of differential equations. Moscow:

Nauka. English translation, Ames, W.F., Ed., published by Academic Press,

New York, 1982.



53

Ovsiannikov, L. V. (1993). On optimal system of subalgebras. Docl. RAS. 333(6):

702-704.
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