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CHAPTER 1

INTRODUCTION

Mathematical modelling is a basis for analyzing physical phenomena by
partial differential equations. Almost all fundamental equations of physics are
nonlinear, and in general, are very difficult to solve explicitly. Numerical methods
are often used with much success for obtaining approximate, not exact solutions.
Hence, there is interest in obtaining exact solutions of nonlinear equations. Each
solution has value, firstly, as an exact description of a real process in the framework
of a given model; secondly, as a model to compare with various numerical methods;

thirdly, as a basis to improve the models used.

Group analysis is one of the methods for constructing particular exact solu-
tions of partial differential equations. This method makes use of symmetry proper-
ties of differential equations. Symmetry means that any solution of a given system
of partial differential equations is transformed by a Lie group of transformations to
a solution of the same system. Moreover, a symmetry allows finding new solutions
of the system. There are two types of solutions which can be obtained by group
analysis: invariant and partially invariant solutions. Many applications of group
analysis to partial differential equations are collected in Handbook (1994-1996).
Group analysis, besides constructing exact solutions, provides a regular procedure
for mathematical modeling by classifying differential equations with respect to

arbitrary elements.

In the thesis, the group analysis method is applied to one class of dispersive
models (Gavrilyuk and Shugrin, 1996), (Anderson, McFadden and Wheeler, 1998),

(Gavrilyuk and Teshukov, 2001). See also references therein. The equations de-



scribing the behavior of a dispersive continuum are obtained as an Euler-Lagrange

equation for the Lagrangian of the form
L= L(pa Pt, Vp> U)

where ¢ is time, V is the gradient operator with respect to space variables, p is
the fluid density, u is the velocity field. The density p and the velocity satisfy the
mass conservation equation

pt + div(pu) =0 (1.1)

and the equation of conservation of linear momentum
pu+ Vp =0, (1.2)

where p is the presssure, and “dot” denotes the material time derivative: f =
fi + uV f. In the literature, there are two classes of dispersive models. One
class of models, describing diffusive-interface behavior of fluids, is obtained for the
internal energy (p, Vp). The thesis is focused on group classification of another
class of dispersive models. These models are defined by L = 1plul* — W(p, p),

where W(p, p) is a potential function. For this class of models the pressure is

SW oW 9 [OW _[OW
=5 a (G) o (5e)) - oo
)

where % denotes the variational derivative of W with respect to p at a fixed
value of u. These models include the non-linear one-velocity model of a bubbly
fluid (with incompressible liquid phase) at small volume concentration of gas bub-
bles (Iordanski, 1960), (Kogarko, 1961), (Wijngaarden , 1968) and the dispersive
shallow water model (Green and Naghdi, 1975), (Salmon, 1998).

The thesis is devoted to group classification of three-dimensional equations
(1.1), (1.2), (1.3), where the function W, satisfies the condition W, # 0. Notice

that for W;, =0 or W(p, p) = pe(p) + ¥ (p) the momentum equation becomes



w+"p, = 0.

Hence, in the case W;, = 0 equations (1.1), (1.2), (1.3) are similar to the
gas dynamics equations. This case was completely studied in (Chirkunov, 1989).
the one-dimensional case of equations (1.1), (1.2), (1.3) was studied in (Hematulin,
Meleshko and Gavrilyuk, 2007). Similar to the gas dynamics equations there are
differences in the group classifications of one-dimensional and three-dimensional
equations. Part of the thesis is devoted to the analysis of invariant and partially
invariant solutions.

Applications of the group analysis method require to carry out a lot of
complicated symbolic manipulations. Because this is a very laborious part, a
computer was used for these tasks. All calculations were done with the REDUCE
program (Hearn, 1999).

The thesis is organized as follows. Chapter II introduces equations de-
scribing the behavior of fluids with internal inertia. The representations of the
function W (p, p) for the lordanski-Kogarko-Wijngaarden and Green-Naghdi mod-
els are given in this chapter. Chapter III gives notations of group analysis and
provides references to known facts on application of group analysis to partial dif-
ferential equations. Chapter IV is devoted to group classification of the three-
dimensional equations (1.1), (1.2), (1.3). Group classification separates all set of
models into 15 classes. Chapter V studies one class of partially invariant solutions:
special vortex. Complete group classification of the reduced system of equations
for invariant functions is given. Chapter VI studies invariant solutions of the one-
dimensional case of the model with W (p, p) = —ap~3p? + Bp>: optimal systems of
subalgebras are constructed, representations of all invariant solutions are obtained.
All invariant solutions for the reduced system of partial differential equations are

presented.



CHAPTER 11

FLUIDS WITH INTERNAL INERTIA

Equations of fluids with internal inertia are obtained on the base of the

Euler-Lagrange principle with the Lagrangian
L= L(pv Pt vp7 U),

where t is time, V is the gradient operator with respect to the space variables
X1, To, X3, p is the fluid density, u = (uq,us, u3) is the velocity field. The density
p and the velocity u satisfy the mass conservation equation and the equation of

conservation of linear momentum

p+ pdiv(u) =0, pi+ Vp=0, (2.1)

where () = 0/0t + uV is the material derivative.

Among fluids with internal inertia two classes of models have been inten-
sively studied. One class of models is constructed, assuming that the internal
energy ¢ depends on the density p and the gradient of the density |Vp|. Review
of these models can be found in (Gavrilyuk and Shugrin, 1996), (Anderson, Mc-
Fadden and Wheeler, 1998) and references therein. The thesis is devoted to the
study of another class of models. These models are obtained by assuming that the

Lagrangian is of the form (Gavrilyuk and Teshukov, 2001):

1 )
L= Splul* =W(p,p), (2:2)

where W(p, p) is a given potential. In this case the pressure p is given by the

formula

ow 9 oW . OW
p=p (8_p - §<8_p') - dw(a—pu)) - W (2.3)



Notice that if W is a linear function with respect to p, then these equations
are reduced to the classical Euler equations of a barotropic gas.

In the next sections we give examples of two the most well-known models.

2.1 Tordanski-Kogarko-Wijngaarden model

The Tordanski-Kogarko-Wijngaarden model describes a bubbly fluid with
incompressible liquid phase and small volume concentration of gas bubbles. This

type of model was proposed by lordanski (1960), Kogarko (1961) and Wijngaarden

(1968).
This mathematical model can be written in the form
0 )
% + div(pyu) = 0,
0 )
% + div(pau) = 0,
N
oN + div(Nu) = 0, (24)
ot .
uw+—-Vp=0,
p
.. 3 1
RR + —_— = - 5
2R?2  pio (P2 = 1)
where
P1 = Q1P10, P2 = Q2020, (2-5)

p1o = const is the physical density of the liquid, pyg is the physical density of the
gas, «;, (1 =1,2) are the volume fractions: oy + ag = 1, N is the bubble number

density, R is the bubble radius,
p=p1+ po (2.6)
The volume fraction of the gas phase s is defined by the formula

4 .
Qg = §7TR3N. (27)



The gas pressure p, is a given function of pyg:

P2 = Pgoé?/zo(Pm)a

where e99(pap) is the internal energy of the gas phase. It is assumed that the mass
concentrations ¢; = p;/p, (i = 1,2), and the number of bubbles per unit mass

n = N/p are constant. From (2.5)-(2.7) one obtains

3 1 c 1 C1 .\ _
e e e
dmn - p  pio P P10

Bedford and Drumbheller (1978) proved that equations (2.1), (2.3) can be obtained

by using the potential function
W = P(C2€20(P20) - 27”9103332)-

Replacing R and poy in the potential function, one obtains that system of par-
tial differential equations (2.4) is equivalent to (2.1) and (2.3) with the potential

function

1
A _k.g 8 o 1/3
W(p,p) =v(p) ppS(a_p) ,

where

o= 20 g L0 ATy,
c1 &mn " 3¢

2.2 Green-Naghdi model

Consider the dispersive shallow water equations of Green and Naghdi (1975)

oh .
Fn + div(hu) =0 (2.8)
i+ gVh+ iwh%) =0 (2.9)

where h is the water depth, u is the horizontal velocity, g is the gravity, ¢ is the

ratio of the vertical length scale to the horizontal length scale. Replacing h by p,



equations (2.8) take the form

d
d—f + pdiv(u) =0

2

u+ng+%§Nﬁm:o.

The last equation of (2.10) can be rewritten as
pu+Vp =0

where
2
g 2

_ 90 E
p=5p P

Introducing the potential function

(2.10)

(2.11)

(2.12)

(2.13)

and substituting it into (2.3), one arrives at the Green-Naghdi model which is

presented in the form (2.1) and (2.3) with the potential function (2.12).

The group analysis method was applied to one-dimensional equations (2.8) and

(2.10) in Bagderina and Chupakhin (2005).



CHAPTER III

GROUP ANALYSIS METHOD

In this chapter, the group analysis method is discussed. An introduction
to this method can be found in various textbooks (cf. Ovsiannikov 1978), (Olver,

1986), (Ibragimov, 1999), (Meleshko, 2005).

3.1 Lie Groups

Consider a set of invertible point transformations
7= (za), a€ A, z€V, (3.1)

where i = 1,2,..., N, a is a parameter, and A is a symmetric interval in R!. The
set V is an open set in R,

If 2 = (z,u), then we use the notation ¢ = (f,g). Here x = (21, 29, ..., x,) €
R" is the vector of the independent variables, and u = (u!,u?,...,u™) € R™ is the
vector of the dependent variables. The transformation of the independent variables

x, and the dependent variables u has the form

T = fix,u;a), @ = ¢ (v, u;a), (3.2)
where i =1,2,...,n,j=1,2,...m, (z,u) € V C R" x R™, and the set V is open
in R™ x R™.
3.1.1 One-Parameter Lie-Group of Transformations

Definition 1. A set of transformations (3.1) is called a local one-parameter Lie

group if it has the following properties



1. ¢(z;0) =z for all z € V;
2. p(p(z;a),b) = p(z;a+b) for all a,b,a+be A z € V;
3. If for a € A one has ¢(z;a) = z for all z € V., then a = 0;

4. p € C*(V,A).

The Lie group of transformations (3.2) is called a one-parameter Lie group
of point transformations. For a Lie group of point transformations, the functions
f* and ¢’ can be written by Taylor series expansion with respect to the group

parameter a in a neighborhood of a = 0

Ro= o o), (3.3)
| | j
W = u]+a8i + O(a?).

8(1 a= 0

The transformations #; ~ x; + a&%(z,u) and w/ ~ u + aC* (x,u) are called
infinitesimal transformations of the Lie group of transformations (3.2), where

of(x, u; a)
Oa

0’ (z,u; a)

(Y () = =0k

a= 0

gaji(x? u) =

a= 0

The components & = (£7,£%,...,&%) , ( = (C“l,CUQ,...,C“m) are called the in-
finitesimal representation of (3.2). This can be written in terms of the first-order
differential operator
X = €% (2, u)0y, 4+ % (2,u)0,. (3.4)
This operator X is called an infinitesimal generator.
There is a theorem, which relates a one-parameter Lie group G with its

infinitesimal generator.

Theorem 1 (Lie). Let functions f(z,u;a), i = 1,....,n and ¢/(z,u;a), j =

1, ..., m satisfy the group properties and have the expansion

T; = fz(x,u, CL) R X+ gﬂﬂi(m?u)a’

W =g (z,u;a) 2w + ¢V (z,u)a
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where
. Of(x,u;a) v _ 0¢/(x,u;0a)
f (I,U) - T . 07C (I,U) - T 0
Then it solves the Cauchy problem
dz; | du! j
= &(z,u), — =("(z,u 3.5
== ), =) (35)
with the initial data
(Z’Z'|a: 0 = Iy, ﬂj‘a: 0 = uj. (36)

Conversely, given &% (2, u) and ¢* (x, u), the solution of the Cauchy problem (3.5),

(3.6) forms a Lie group.

Equations (3.5) are called the Lie equations.

To apply a Lie group of transformations (3.2) for studying differential equa-
tions one needs to know how this group acts on the functions v/(x) and their
derivatives. For the sake of simplicity, let us explain the basic idea for the case
n =1 and m = 1. Assume that ug(z) is a given known function, and the trans-

formation is

T = f(z,uja) =z +al(x,u) (3.7)

u = g(z,u;a) = u+ al*(z,u).
Substituting ug(z) into the first equation (3.7), one obtains
T = f(z,uo(x);a).

Since f(x,uo(x);0) = z, the Jacobian at a = 0 is

_(Of  Of dug _
B <8x+8uax)‘a:0_1'

@
ox

a= 0

Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

one can express r as a function of Z and a,

x=0(z,a). (3.8)
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Note that after substituting (3.8) into the first equation (3.7), one has the identity
T = f(0(Z,a),u(0(7,a));a). (3.9)

Substituting (3.8) into the second equation (3.7), one obtains the transformed

function
uo(7) = g(0(Z, a), uo(0(7, a)); a). (3.10)

Differentiating equation (3.10) with respect to T, one gets

_ Oug(z) _ 0g 00 N dg Oug 00 (ag g ' )> 00

0 0x0t  oudrdr \oz  ou" oz

I~
8l

where the derivative 22 can be found by differentiating equation (3.9) with respect
to T,
- 0f 00  0f Oug 90 8f+8f al (2)
0x 0T  Ou 0z 0T \Odr  Ou 8:5'
Since
0 0
o (0.0 u(0(7.0):0) = 1, 2 (0(2,0), wo(0(z.0)):0) =0, (3.1
ox Ou
one has 8f + gi uy(z) # 0 in some neighborhood of @ = 0. Thus,
o 1
01 (G + Geup(e))
and
9g(z,u03a) (36 ugsa) , /1
+ ug ()
o oz Ou 0
Uz = h(x,up(z), ug(x); a
8f(ﬂg;to ;a) + ﬁf(:r,‘azoa)u{)(x) ( 0( ) 0( ) )

Transformation (3.2) together with
uz = h(z,u,uy.; a) (3.12)

is called the prolongation of (3.2).
As before, the function h can be written by Taylor series expansion with

respect to the parameter a in a neighborhood of the point a =0 :

Uz = h(x,u,um;a) ~ uw—i_acuz(xﬂu?uZ)? (313)
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where
Oh(x,u,u,;a)
da

Cux(x7uaux) = 5 h|a:0 = Ug.-

a=0

Equation (3.12) can be rewritten as

(0f(euwa) | Bf(rua))  (Ogwuia)  Ogleusa)
A, v, s a) < Ox T+ s ou N Ox T s ou '

Differentiating this equation with respect to the group parameter a and substitut-

ing a = 0, one finds

Oh (Of of O f O f (D% d*g
(8a (8.:5 Tl au) * h(@x@a Tl ouda))|,_, \0zda il Juda

a=0
or
C (x7u7ux) - 8@ o (ax +uxau) -
B D?g D?g 0% f 0% f
B (8x8a Tt 8u8a) 40 = Pl (8x8a Tt 8u8a) 40
- (a_ * “w%) e (a_ Ty
where
0 0 0 af dg Oh
D,=— — —F ..., == = o = — :
Y Ox +”mau +um@um AR da|,_,’ ¢ da|,_o’ ¢ da|,_,

The first prolongation of the generator (3.4) is given by
XW = X 4 ¢ (2, 1, uy) 0y, .

In the same way, one obtains the infinitesimal transformation of the second deriva-
tive

L u

Uzz =~ Ugy + CZC = (iL‘, u, ux> uxx)a

where ("** = D, (¢**) — ug, D, (€7), and the second prolongation of the generator
(3.4) is

X(2) _ X(l) + C’Uzz (I,U,ux7u$$)a
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For constructing prolongations of an infinitesimal generator in case n, m > 2
one proceeds similarly.

Let @ = {x;} be the set of independent variables and u = {u/} the set of
dependent variables. The derivatives of the dependent variables are given by the
sets u() = {uf}, Uy = {ufs},..., where j = 1,...,m and 7,s = 1,...,n. The
derivatives of the differentiable functions u’ can be written in terms of the total

differentiation operator D; :

uf = D;(v),
ugs = Ds(“i%
where
0 ; 0 ;0 , .
D, = o, +ui%+ui88ug +..., (i,s=1,2,...,n; j=1,2,...,m). (3.14)

The formula of the first prolongation of the generator X = &% (z,u)0,, +
Cuj (l‘, u)auf is
X(l) =X + Cuz (IL‘, u, U(l))au]_',
where

¢ =D (¢7) = ulDi(€) s ivs=1,m 5 j=1,m.

The second prolongation of the generator X is

X(Z) = X(l) + Cuzl’m (.CE, u, U(1), U(Q))aug ’

11,19

where

(i = D, (g“%) —wl Dy (€%) ;iniss=1,..n ; j=1,..,m. (3.15)

11,8

In the general case, the k-th prolongation of the generator X is
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W o j vy, 5 o
" = Dy <C ot ) —aqg o Dy (§7)5 A ik s =105 =1, m.

Lie groups of transformations are related with differential equations by the

following.

Definition 2. Given a partial differential equation, a Lie group of transformations,
which transforms a solution ug(z) into a solution u,(z) of the same equation is

called an admitted Lie group of transformations.

Let F = (F,...,F¥), k=1,..., N be differential functions of order p. The
equations

FF (2, u, w01y, woys s ) =0, k=1,..,N (3.16)

compose a manifold [F = 0] in the space of the variables x, u, uy, Uy, ..., Up)-
After applying an admitted Lie group of transformations to a solution u(x),

one has

F* (2,1, 40y, W) - Ugyy) =0, (k=1,...,N). (3.17)

Differentiating these equations with respect to the group parameter a, and substi-

tuting a = 0, one finds

OF% 9z,  OF* 9w  OF oul oFt  oul ,,
—+ , + — Lt 4+ — s =0
Ox; Oa ow Oda Oyl Oa o’ .. Oa
i1 11,225-+4ylp a=0
or
OFF ;OFF i OFF i OFF i OF*
x 27 w : Ui i Wiy i i Wigsigrnip ()
¢ axiJrC 8uﬂ+clauﬂ. +C123u4. totC paufu . ’
i1 11,12 11,82, 050p
where
£ = 0z; Cuj = @ “gl — % “gl ,,,,, ip — %
da |,_,’ da |,_o Oa azow" Oa e
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The last equation can be expressed as an action of the prolonged infinitesimal

generator
XPF" | pq) =0, (k=1,..,N), (3.18)
where
0 ;0 i 0 i j 0
X(P): Ti_ 4 U]_‘_i_ sy _ L (Minsig ! o+ Wil yigseesip .
¢ ox; ¢ ou? ¢ ou, ¢ 8ugm~2 ¢ 3ughi2 77777 0

Hence, in order to find the infinitesimal generator of the Lie group admitted by

differential equations (3.16) one can use the following theorem.

Theorem 2. The differential equations (3.16) admits the group G with the gen-

erator X, if and only if, the following equations hold:
XOFE g =0, (k=1,..,N). (3.19)

Equations (3.19) are called the determining equations.

3.1.2 Multi-Parameter Lie-Group of Transformations

Let O be a ball in the space R" with a center at the origin. Assume that 1 is a
mapping, ¢ : O x O — R". The pair (O, ) is called a local multi-parameter Lie
group with the multiplication law ¢ if it has the following properties:

1. ¥(a,0) =¢(0,a) = a for all a € O;

2. Y((a,b),c) =(a, (b, c)) for all a,b,c € O for which v (a,b), (b, c) € O;

3. ¢ € C>®(0,0).

Let V be an open set in RY. Consider transformations
"= p'(z;a), (3.20)

z

where 1 =1,2,..., N, z € V, and a € O is a vector-parameter.
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Definition 3. The set of transformations (3.20) is called a local r-parameter Lie
group G" if it has the following properties:

1. ¢(2,0) =z forall z € V.

2. p(e(z,a),b) = @(z,9(a,b)) for all a,b,¥(a,b) € O, z€ V.

3. If for a € O one has p(z,a) = z for all z € V| then a = 0.

Note that if one fixes all parameters except one, for example a;, then the
multi-parameter Lie group of transformations (3.20) composes a one-parameter
Lie group. Conversely, in group analysis it is proven that any r-parameter group
is the union of one-parameter subgroups belonging to it.

Let G" be a Lie group admitted by the system of partial differential equa-
tions

FF(2,u,p) =0, k=1,...,5.

Assume that {X;, Xy, ..., X,.} is a basis of the Lie algebra L", which corresponds

to the Lie group G".
Definition 4. A function ®(z,u) is called invariant of a Lie group G if
O(z,u) = P(x,u).

Theorem 3. A function ®(x, u) is an invariant of the group G” with the generators

X;, (i=1,...,r)if and only if,
X;®(x,u) =0, (i=1,..r). (3.21)

In order to find an invariant, one needs to solve the overdetermined system

of linear equations (3.21). A set of functionally independent solutions of (3.21)
J=(J"z,u), P (z,u), .., ] (2, u))
is called an universal invariant. Any invariant ® can be expressed through this set

o = qb( JH,w), JA(z, ), .., JT (2, ) ) :
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Here n, m is the numbers of independent and dependent variables, respectively and
r, is the total rank of the matrix composed by the coefficients of the generators

X;, (i=1,2,...,r).

Definition 5. A set M is said to be invariant with respect to the group G”, if the

transformation (3.20) carries every point z of M to a point of M.

Definition 6. Let V be an open subset of RV, and ¥ : V — R, t < N a
mapping belonging to the class C1(V). The system of equations ¥(z) = 0 is called

regular, if for any point z € V' :

oYt 9\

where U = (¢!, ... 9").
If a system W(z) = 0 is regular, then for each zy € V' with ¥(zp) = 0 there exists

a neighborhood U of z; in V' such that
M={zeU : ¥(2)=0}
is a manifold. Such a manifold is called a regularly assigned manifold.

Theorem 4. A regularly assigned manifold M is an invariant manifold with re-

spect to a Lie group G" with the generator X;, (i =1,...,7), if

3.2 Lie algebra

Before giving the definition of a Lie algebra, one needs to introduce the
commutator. Let X; = &0, + C{@u]., Xy = &40, + gg'auj be two generators. Let

us define a new generator X, denoted by [X7, X5, by the following formula

X = [X1, Xa] = (X1 — Xo6)) 0, + (X — X)) D,
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The generator X is called the commutator of the generators X, Xs.

Definition 7. A vector space L over the field of real numbers with the operation
of commutation | -, - ] is called a Lie algebra if [ X7, X5] € L for any X;, X, € L,

and if the operation [ -, - | satisfies the axioms:
a.l (bilinearity) : for any X3, Xo, X3 € Landa, b € R
[aX) +0Xs, X3] = a[Xy, X3]+0[Xs, X3
[(X1,aXs +b0X3] = a[Xy, Xo] +0[Xy, X3]
a.2 (antisymmetry) : for any X;, Xy € L

[X1,X2] = - [X2>X1]

a.3 (the Jacobi identity) : for any X3, X, X3 € L

[X1, Xo] , X3] + [[ X2, X3], Xu] + [[X3, X1], Xo] = 0.

Let L" be an r-dimensional Lie algebra with basis Xy, Xs,..., X,: i.e., any

vector X € L" can be decomposed as

k=1
where z, are the coordinates of the vector X in the basis {Xj,..., X, }. Then
(Xi, X5 =) Xy i,j=1,2,....r
k=1

with real constants cfj The numbers ci-“j are called the structural constants of the

Lie algebra L" for the basis {X,..., X, }.

Definition 8. A vector space H C L is called a subalgebra of the Lie algebra L,

if [Y1,Y3] € H for any Yy,Y, € H.

Definition 9. A subalgebra I C L is called an ideal of the Lie algebra L if for

any X € L, Y € [ it is also true that [X,Y] € I.
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3.3 Classification of subalgebras

One of the main aims of group analysis is to construct exact solutions of
differential equations. The set of all solutions can be divided into equivalence

classes of solutions:

Definition 10. Two solutions u; and uy of a differential equation are said to be
equivalent with respect to a Lie group G, if one of the solutions can be transformed

into the other by a transformation belonging to the group G.

The problem of classification of exact solutions is equivalent to the clas-
sification of subgroups (or subalgebras) of the group G (or the subalgebra L).
Because there is a one-to-one correspondence between Lie groups and Lie algebras
let us explain here the classification of subalgebras. For this purpose, one needs

the following definitions.

Definition 11. Let L and L be Lie algebras. A linear one-to-one map f of L onto

L is called an isomorphism if it satisfies the equation
f([X1, Xor) = [f(X0), f(Xa)lp, VXu, Xo €L

where the indices L and L denote the commutators in the corresponding algebras.
An isomorphism of L onto itself is called an automorphism of the Lie algebra L.

This mapping will be denoted by the symbol A: L — L.

In the finite-dimensional case, isomorphic Lie algebras have the same di-
mensions. The criterion for two Lie algebras to be isomorphic can be stated in
terms of their structural constants. Two Lie algebras L and L are isomorphic, if
and only if there exist bases for each of them in which their structural constants

are equal.
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Let L be a Lie algebra with basis {X7, Xs,..., X,,}. Then one has

(X0, Xj] =) @ Xa; (i,j=1,2,...,n),
a=1

where ¢; are the structural constants. One constructs a one-parameter family of

automorphism, A;, (i =1,...,n) on L,

i=1 i=1

where Z; = Z;(a), as follows. Consider the system

%:chifﬁ, (Gj=1,2,...,n). (3.22)
B=1
Initial values for this system are ; = x; at a = 0. The set of solutions of these
equations determines the set of automorphisms {4;}.

The set of all subalgebras is divided into equivalence classes with respect
to these automorphisms. A list of representatives, where each element of this list
is one representative from every class, is called an optimal system of subalgebras.

Because of the difficulties in constructing the optimal system of subalgebras
for Lie algebras of large dimension, there is a two-step algorithm (Ovsiannikov,
1994), which reduces this problem to the problem for constructing an optimal
system of algebras of lower dimensions. In brief, let us consider an algebra L" with
basis { X1, X, ..., X, }. According to the algorithm, the algebra L" is decomposed
as I; @ Ny, where [ is an ideal of L™ and N, is a subalgebra of the algebra L". In
the same way, the subalgebra N; can also be decomposed as N1 = I, & Ny. Repeat
is the same process (o — 1) times one ends up with an algebra N,, for which an
optimal system of subalgebras can be easily constructed. By gluing the ideals I;
and subalgebras N; starting from [ = « to [ = 1, together one constructs the
optimal system of subalgebras for the algebra L". Note that for every subalgebra

N; one needs to check the subalgebra conditions and use the automorphisms to
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simplify the coefficients of these systems. Therefore, the problem for constructing
an optimal system of subalgebras of the algebra L" by this method is reduced to
the problem of classification of algebras of lower dimensions.

After constructing the optimal system, one can start seeking invariant and

partially invariant solutions of subalgebras from the optimal system.

3.4 Equivalence group of transformations

A system of PDES can be classified by the symbol E(m,n,s,[), where m
is the number of the dependent variables, n is the number of the independent
variable, s is the order of the highest derivative and [ is the number of differential
equations. Normally the differential equations include arbitrary elements (). For
searching Lie groups which are admitted by the original system, one needs to de-
termine a group of transformations that changes arbitrary elements but does not
change the differential structure. An infinitesimal approach (Meleshko, 1996) was
applied for finding this group.

A nondegenerate change of dependent, independent variables and arbitrary ele-

ments which transfers any system of the differential equations of the given class
Fi(z,u,p,0) =0 (3.23)

to the system of the equations of the same class but with different arbitrary ele-

ments is called an equivalence transformation. Here p defines the partial derivatives

A Lie group of equivalence transformations with parameter a can be written

as follows

z; = ¢'(z,u,0;a), uj = W (z,u,0;a), 0 = Hk(x,u,Q; a), (3.24)
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where 0, = (i1, 052, ..., 0~) is the set of arbitrary elements. The generator of this

group has the form

X =€, + 0, + (" 0y,
where

i ¢t _a¢z j o g _a'ébj ok .k _8Hk
é- _g (I,U,@) - %Lz:()’ C _C (x,u,@) - %Lz:()’ C _C (x7u79) - %“«:07

Transformations of arbitrary elements are obtained in the following way.
Let 6y(0,u) be given. By the inverse function theorem with equation (3.23), we
can find x = f(z,u;a) and u = ¢(Z,u;a). The transformed vector of arbitrary

elements is

If ug(z) is solution of system (3.22) and y(x, u) is a concrete value of the arbitrary

elements, then we have
T = ®(x,up(x), bo(x,up(x)); a).
By the inverse function theorem, we can find
v = f(z;0)
and we also obtain the transformed function
ua(T) = V([ (7,a),uo(f(7,a)),00(f (7, a),uo(f(7,a)); a)). (3.25)

Differentiating (3.24) with respect to Z, we get the transformation of deriva-
tives p. Since u,(Z) is a solution of the same system with transformed arbitrary

elements 0,(z,u) then
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The s-th prolongation of the infinitesimal generator X¢ is

XE = X4 ¢0, + ¢ 0, + ¢ Oy (3.26)
where
¢/ = Do’ — ulD, %,
¢0 = D5 — 05 D5 ¢ — 05, s ¢
¢ = D5 " — 0k D5 ¢ — 05, D5 ¢,
Here
D, = + Zaa + (6%, +0’“ )aik 4+ .
chizaa x%+ . Dy :%+9§]£k+

By the same way as for the admitted Lie group, one can obtain the determining
equations for the equivalence Lie group.

Let G(0) be admitted by the equations for all arbitrary elements. The group G(6)
is called a kernel of groups. The corresponding Lie-algebra is called a kernel of Lie

algebras.

3.5 Invariant and partially invariant solutions

Let G be a Lie group admitted by a system of differential equation (S) and

H C G be a subgroup.

Definition 12. A solution v = U(z) of the system (.5) is called an H invariant
solution if the manifold v = U(z) is an invariant manifold with respect to any

transformation of the group H.

The notion of invariant solution was introduced by Sophus Lie (1895). The

notion of a partially invariant solution was introduced by Ovsiannikov (1958).
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The notion of partially invariant solutions generalizes the notion of an invariant
solution, and extends the scope of applications of group analysis for constructing
exact solutions of partial differential equations. The algorithm of finding invariant
and partially invariant solutions consists of the following steps.

Let L™ be a Lie algebra with the basis X1, ..., X,. The universal invariant

J consists of s = m + n — r, functionally independent invariants
J=(J'z,w), P (z,u),...., ] (z,u) ),

where n, m is the numbers of independent and dependent variables, respectively

and 7, is the total rank of the matrix composed by the coefficients of the generators

O(JL, ..., Jmtn=r)
o(ul,...,um)

to ¢, then one can choose the first ¢ < m invariants J!, ..., J9 such that the rank

a(J, ..., J9)

O(Ury ooy Upy)

characterized by two integers: ¢ > 0 and 6 > 0. These solutions are also called

X;, (i =1,2,...,r). If the rank of the Jacobi matrix is equal

of the Jacobi matrix is equal to ¢q. A partially invariant solution is
H(o,§)-solutions. The number o is called the rank of a partially invariant solution.
This number gives the number of the independent variables in the representation
of the partially invariant solution. The number ¢ is called the defect of a partially
invariant solution. The defect is the number of the dependent functions which can
not be found from the representation of partially invariant solution. The rank o
and the defect § must satisfy the conditions
oc=0+n—1r,>0,02>0,
p<o<n, max{r, —n,m—q,0} <6 <min{r, — 1,m — 1},

where p is the maximum number of invariants which depend on the independent
variables only. Note that for invariant solutions, 6 = 0 and ¢ = m.

For constructing a representation of a H (o, d)-solution one needs to choose

[l =m — ¢ invariants and separate the universal invariant in two parts:

T=(J . JY, T = (Ji, g2, e,
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The number [ satisfies the inequality 1 < [ < ¢ < m. The representation of
the H(o,d)-solution is obtained by assuming that the first I coordinates J of the

universal invariant are functions of the invariants 7:
T=w(). (3.27)

Equation (3.27) forms the invariant part of the representation of a solution. The
next assumption about a partially invariant solution is that equation (3.27) can

be solved for the first [ dependent functions, for example,
u' = ¢ (Wt R L u™ ), (=1, .1, (3.28)

It is important to note that the functions W* (i = 1,...,1) are involved in the
expressions for the functions ¢*, (i = 1,...,1). The functions v u'*2 ... u™ are
called superfluous. The rank and the defect of the H (o, §)-solution are § = m — [
and o =m+n—r, —1 =09+ n—r,, respectively.

Note that if 6 = 0, the above algorithm is the algorithm for finding a
representation of an invariant solution. If § # 0, then equations (3.28) do not
define all dependent functions. Since a partially invariant solution satisfies the
restrictions (3.27), this algorithm cuts out some particular solutions from the set
of all solutions.

After constructing the representation of an invariant or partially invariant
solution (3.28), it has to be substituted into the original system of equations.
The system of equations obtained for the functions W and superfluous functions
ub, (k = 1+ 1,2,...,m) is called the reduced system. This system is overde-
termined and requires an analysis of compatibility. Compatibility analysis for
invariant solutions is easier than for partially invariant solutions. Another case of

partially invariant solutions which is easier than the general case occurs when 7
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only depends on the independent variables
Jl—l—l — Jl+1(.l‘),Jl+2 — Jl—l—?(I),”.,Jm—i-n—m — Jm+n—r* (IL’)

In this case, a partially invariant solution is called regular, otherwise it is irregular

(Ovsiannikov, 1995). The number o — p is called the measure of irregularity.



CHAPTER 1V
GROUP CLASSIFICATION OF THE

THREE-DIMENSIONAL EQUATIONS

4.1 Introduction

This chapter is devoted to group classification of the three-dimensional
equations describing flows of fluids with internal inertia. (Gavulyuk and Teshukof
(2001)):

p+ pdiv(u) =0, pu+ Vp =0,
p=rfy — W= (5 -5 (%) - div (57u)) -

where W = W (p, p). The given equations include models as such the non-linear

(4.1)

one-velocity model of a bubbly fluid (with incompressible liquid phase) at small vol-
ume concentration of gas bubbles (Iordanski (1960), Kogarko (1961), Wijngaarden
(1968)), and the dispersive shallow water model (Green and Naghdi (1976), Salmon
(1988)). These models are obtained for special types of the function W (p, p). In
this chapter the admitted and equivalence Lie groups are found. Group classifica-

tion separates out the function W(p, p) out into different cases.

4.2 Equivalence Lie group

Since the function W depends on the derivatives of the dependent variables,
and for the sake of simplicity of finding the equivalence Lie group, new dependent

variables are introduced:

U5:p> ¢1:W ¢2:Wp7 ¢3:Wf)7
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where uy = p and x4 = t. An infinitesimal operator X¢ of the equivalence Lie

group is sought in the form (Meleshko, 2005),
Xe — fzaxl + Cuj8Uj + g(bka(bk’

where all the coefficients &/, (% and (%, (i =1,2; j =1,2,3,4,5; k =1,2,3) are
functions of the variables x;, u; and ¢;. Hereafter a sum over repeated indices is
implied.

The coefficients of the prolonged operator are obtained by using the pro-

longation formulae:
(Mt = DECYe — g jDEER, (1=1,2,3,4),
Die = axl + uoz,iauOé + (pxiwﬁ,l + pxiW672)8W57

where a = (o, a9, a3, a4) and § = (1, f2) are multindices (a; > 0, 3; > 0),

(a1, 0, a3, 04), 7 = (011 + 615, g + Oaj, a3 + O35, i + b4j),
aal+a2+a3+a4u aﬁ1+ﬂ2W

a1,02,03,04) ) |44 = N BAG
Uar,az,a3,a4) 3.@?131‘;‘2({%?33#}‘4 (B1,62) (‘)pﬂlapﬁ2

The condition that W does not depend on t, z; ,u;, (i =1,2,3) give that

G =0, G =0,¢ =0,¢) =0, (i=1,2,3,4 j=1,2,3; k=4,5).

Using these relations the prolongation formulae for the coefficients ¢""# become:
(Wit = DiWe = Wy DM = W D, (i = 1,2),
Di =0, + Wp10w,, D35 =0;+ Ws20w,.
For constructing the determining equations and solving them a symbolic

computer system of calculations was applied. We used the system Reduce (Hearn,

1987). Calculations gave the following basis of generators of the equivalence Lie
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group
‘Xl6 = &vu X2€ = 83627 X§ = ax:a’

X§ =10y, + Ouy, XE =101, + Ouy, X§ = t02s + Ous,
X¢ = u20y, — U110y, + 120, — T10,,,
X§ = u30y, — 10y, + £30,, — T10,,,
X§ = u30y, — U0y, + 30, — 1204,
Xio =0, X§1 =10y + 2,04,
Xiy = 0w, Xi3 = pow, Xy = f(p)pow,
Xi5 = p0; + p0y + Wi,

X{s = 70y, + w0y, — 2p0,.

i

Here only essential part of the operators X7 is written. For example, the operator

X{,, found in the result of calculations, is

t@t + l’larpl - pap

The part —pd; is obtained from X7, by using the prolongation formulae.

Since the equivalence transformations corresponding to the operators X7,
X{y,..., Xig are applied for simplifying the function W in the process of the clas-
sification, let us present these transformations. Because the function W depends

on p and p, only the transformations of these variables are presented:

Xi: p=p  p=ep W =W,

X5 p=p, P =p, W'=W +a.
Xi3: p=np, p=p, W'=W + ap;
Xiyw o =0p, P = p, W'=W +apf(p);

Xz p=e"p, p=ep, W =eW,;
Xig: p=ep, f=e?p W=W;

Here a is the group parameter.
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4.3 Admitted Lie group of (4.1)
An admitted generator X of equations (4.1) is sought in the form
X =50, + %00, + £0p, + €0, + ("1 0yy + €200y + 04y + CPO,,

where the coefficients of the generator are functions of the variables
xla£2a£37t7u17u27u37p'

Calculations showed that
" = gt + eyt + 33 + Coxg + T1C7 + T1C + C5,
§" = ceTat + crat + T3C11 + Xacy + Tac) — T1C2 + 13,
& = cgt? + crt + g, (P = (=3cgt + c15)p,
("' = cguz + coug — cgurt + crug + cgxy + ¢y,
("2 = c1uz — CeUat + Crup — CoUy + CeTa + Cra,
(" = —cgugt + ciug — c11ug — c3uy + CeT3 + Ci6,
where the constants ¢;, (1 =1,2,...,8,11,12,13,15) satisfy the conditions
27¢6p° (3WspppPp + WisppP — 3Wpppp — W) + 600W5¢60°p

+25p3(5prppp2(Cl5 — 07) + 5prpppp015 + 18prpp015 (42)
+Wp'p'pp(28015 — 3307 - 1001) + 18pr(615 — 267 — 261)) = 0,
Wﬁppp<c7 — 615) — Cl5prpp + (261 —C15 + 207)pr' + 306W/)/')/')p = 0, (43)
W spppPp’crs + A0Wpps50" (cr — 15) + Wippop® p(9cr — 49¢15) — IWppppp?p?cr
+8W/3/,/,p3(1061 — 17015 + 2207) + 2prpp2p(901 — 37015 + 907) — 9prpp3615

+9prppp2(cl5 — 2(31) -+ 56prp2(2C1 — C15 + 2C7) —+ 9pr,02(2(31 — 615) = 0,
(4.4)

C6(OWippp + 3Wisspp +5Wpp) = 0. (4.5)
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Let us consider equations (4.3)-(4.5). Since W is arbitrary, one can choose for
example W = p?. In this case these equations become 2¢; — ¢j5 +2¢7 = 0, ¢ = 0.

After that equation (4.3) is reduced to the equation
Wippp(cr — c15) = c15pWipp = 0

Choosing W = pr, the last equation gives c¢15 = 0. then ¢; = 0. Thus, ¢ =
0, ¢ =0, ¢z =0, c¢15=0. In this case all equations (4.2)-(4.5) are satisfied and

the generator X is
X = oYy + c3Ys + Yy + Y1 + cgYio + c11Y7 + ci12Ys + ci3Ys + ci6Ys + c17Y5.

The kernel of admitted Lie algebras consists of the generators

Yi =0y, Yo =04, Y3 =0y, Yio =20,
Yi =0y, + Oy, Ys = 0y, + Oy, Yg = 0y, + Ouy,
Y7 = 290z, — 1305, + U204, — u30y,,
Ys = 230, — 21055 + 30y, — U104,

Yo = 210y, — 204, + U100y, — U0y, .

Extensions of the kernel depend on the value of the function W (p, p). They can

only be operators of the form
61X1 + C6X6 + C7X7 + 615X14,

where

X1 = :cl&rl + ’U/iaui,
X6 = t(tat + x,@xl — uzaul - 3p6p) + xzﬁul
X7 = xl&cz + t@t, Xg = l‘gagw + uz(?uz, X14 = pap

Relations between the constants ¢, ¢g, ¢7, ¢15 depend on the function W (p, p).
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4.3.1 Case ¢5 # 0
Let ¢g # 0, then equation (4.5) gives
SWippp + 3Wisppp + 5Wp, = 0.

The general solution of this equation is W, = p~>/2g(pp~>/%), where the function
g is an arbitrary function of integration. Substitution of W, into equation (4.3)

shows that the function g = 2¢q, is constant. Hence,

W = qop?p~""> + p1(p)p + ©2(p),

where the functions o(p) and ¢;(p) are arbitrary. Substituting this potential

function in the other equations (4.2)-(4.4), one obtains
3py 5 =0, (c7+2c1)p3 = 0.

If 5 = 0, then the extension of the kernel of admitted Lie algebras is given
by the generators

Xe, X7 —3Xy4, X7—3Xu.

If @ = Cop™'/3 # 0, then the extension of the kernel is given by the

generators

Xo, X1 —2X7 43X,

4.3.2 Case ¢ =0

Let ¢g = 0, then equation (4.3) becomes
—c15a + (e1 + ¢7)b+ cre = 0, (4.6)

where

a = pWpp + pWpp + Wisp, b =2Wps, ¢ = pWppp.
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Further analysis of the determining equations (4.2)-(4.4) is similar to the group
classification of the gas dynamics equations (Ovsiannikov, 1978).

Let us analyze the vector space Span(V'), where the set V consists of
vectors (a,b,c) with p and p are changed. If the function W (p,p) is such that

dim(Span(V')) = 3, then equation (4.6) is only satisfied for
€ = 0707 = 07015 = 07

which does not give extensions of the kernel of admitted Lie algebras. Hence, one

needs to study dim(Span(V)) < 2.

Case dim(Span(V)) =2

Let dim(Span(V')) = 2. There exists a constant vector («, 3,7) # 0, which
is orthogonal to the set V:

aa + b+ vyec = 0. (4.7)
This means that the function W (p, p) satisfies the equation
(@ +7)pWipp + apWppp = —(a + 28)Wp,. (4.8)

The characteristic system of this equation is

dp  dp AWy
(a4+7)p ap —(a+28)W,;

The general solution of equation (4.8) depends on the values of the constants «, (3

and 7.

Case o = 0. Because of equation (4.7) and the condition W,, # 0, one has

v # 0. The general solution of equation (4.8) is

Win(p, p) = 28" (4.9)
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where k = —23/~, and @ is an arbitrary function of integration. Substitution of

(4.9) into (4.6) leads to
Cl5p§5/ — @(p) (261 — (k’ + 1)615 + (k + 2)07) =0. (410)

If ¢15 # 0, the dimension dim(Span(V')) = 1, which contradicts to the assumption.
Hence, ¢;5 = 0 and from (4.10) one obtains ¢ = —(k + 2)c¢7/2. The extension of

the kernel in this case is given by the generator
—pXi1 + 2X7,

where p = k + 2.

If (k4 2)(k+ 1) # 0, then integrating (4.9), one finds

Wip,p) = ¢(p)p" +¢1(p)p + @2(p),

where 1(p) and po(p) are arbitrary functions. Substituting this function W into
(4.2)-(4.4) one has ¢} = 0.

If £ = —2, then

Wp, p) = w(p) In(p) + pe1(p) + wa2(p),

and ¢} = 0, similar to the previous case.

If k= —1, then

Wip, p) = w(p)pn(p) + pe1(p) + ¢2(p),

and also @5 = 0.

Case o # 0. The general solution of equation (4.9) is

Wep(p, p) = 0(pp™)p’, (4.11)
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where k = —(1 4+ v/a), A = —(1 4 20/«a) and ¢ is an arbitrary function. Substi-

tution of this function into (4.6) leads to
koo'z + k1p = 0,

where

z=ppF, ko=cr—cis(k+1), ki =2c; —ci5(A+1) + 2c7.
Since dim(Span(V')) = 2, one obtains that kg = 0 and k; = 0 or
cr=ci5(k+1), ca=c15(p—1)/2,
where p = XA — 2k. Integrating (4.11), one finds
W(p.p) = p"e(pp") + pp1(p) + #2(p)- (4.12)
Substitution of (4.12) into (4.2)-(4.4) gives
oy + (2k — X+ 2)¢h = 0. (4.13)
Solving this equation, one has
phy = Cop”2,

where () is an arbitrary constant. The extension of the kernel is given by the
generator

(p— DX +2(k + 1) X7 + 2X 1.

Case dim(Span(V)) =1

Let dim(Span(V')) = 1. There exists a constant vector (a, 3, k) # 0 such
that

(a,b,c) = (a, 5,k)B
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with some function B(p, p) # 0. Because W,, # 0, one has that § # 0. Hence,

the function W (p, p) satisfies the equations
PWopp + pPWopp + (1 = 20)Wy; = 0, pWipp — 29Wpy = 0.

The general solution of the last equation is

Wis(p, p) = (p)p"

with arbitrary function ¢(p). Substituting this solution into the first equation,

one obtains
pe'(p) + (1 =24+ k)p(p) = 0.

Thus,

Wis = —a0p"p’, (4.14)

where A = —(1 — 2a + k), ¢, is an arbitrary constant. Since dim(Span(V)) = 1,
then ¢, # 0, A and k are such that \? + k? # 0.

Substituting (4.14) into (4.6), it becomes
—015(k’+>\+1) +C7(l€+2) —|—201 =0. (415)

Integration of (4.14) depends on the quantity of k.

If (k+2)(k+1)#0, then integrating (4.14), one obtains

W(p,p) = —aop* " + pei(p) + w2(p), (p(p—1) #0), (4.16)

where p = k + 2. Substituting this W into equations (4.2)-(4.4), one obtains

&1 = (as(p+A—1) —cmp)) /2,

with the function yy(p) satisfying the condition

cispy + w5 (—cis(p+ A —2) + e7p) = 0.
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If i = Cyp™ # 0, the extension of the kernel is given by the generator
(1= )Xy +2(X4 + 0X7),
where ¢ = (u+ A+ p — 2)/p. If ¢ = 0, the extension is given by the generators
pX1 —2X7, (p+A—1)X; +2Xq4.
If k = —2, then integrating (4.14), one obtains
W(p, ) = =aop” (p) + po1(p) + @2(p), (g0 # 0).
Substituting this into equations (4.2)-(4.4), we obtain
c1 = ci5(A —1)/2,
and the condition
ca1s(ppy — ¢y (A+2)) + goA(A = 1) (c15 — ¢7)p* 7 = 0.

If A(A—1) =0 and ¢ is arbitrary, then the extension is given only by the

generator

X7.

If A\(A—1) =0 and ¢ = Cop**?, then the extension of the kernel consists

of the generators

()\ — 1)X1 + 2X14, X7.

If A(XA— 1) # 0 and @} = Cyp**? — LX(X — 1)pp* 2, then the extension is
A=DX; +2(Xuu+ (n+1)X7)

where ¢ = (u+ 1)cys.

If k = —1, then integrating (4.14), one obtains

W(p, p) = —=aop*pIn(p) + ppr(p) + ¢2(p),
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and substituting it into equations (4.2)-(4.4), we obtain
Cc1 = (615)\ — C7)/2,

and the condition

c15ppy + @h(—cisA + c15 + ¢7) = 0.

One needs to study two cases. If @3 # 0, then the extension is possible only for
g = Cop™ #£ 0, where up = —X + 1 + ¢7/¢y5. The extension of the kernel is given
by the generator

(1= X1 +2(n+A—1)Xx.

If ¢ = 0, then the extension of the kernel consists of the generators

Xl - 2X7, X14 + /\X7

Case dim(Span(V)) =0
Let dim(Span(V')) = 0. The vector (a,b, ) is constant:

(a,b,¢) = (o, B, k)

with some constant values «, 3 and k. This leads to
Wsp = —2q,,
where g, # 0 is constant. Integrating this equation, one obtains
W(p, p) = —op” + ppr(p) + ¢2(p)- (4.17)

Substituting (4.17) into equations (4.2)-(4.4), we obtain

¢ = (e15 — 2¢7) /2,

and the condition

5Py + 2¢7p5 = 0.
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If o # 0, then g = Cop™#, where u = 2¢7/c¢y5. The extension of the kernel

consists of the generator

(1 —p) X1 +2X14 + pXy.

If i =0, then the extension of the kernel is given by the generators

Xy +2Xq4, Xi— X7

The result of group classification of equations (4.1) is summarized in Table 4.1.
The linear part with respect to p of the function W(p, p) is omitted. Notice also
that the change t — —t has to conserve the potential function W, this leads to
¢1(p) = 0.

Remark. The Green-Naghdi model belongs to the class M7 in Table 4.1
with A =1, p = 2 and g = 0. Invariant solutions of the one-dimensional Green-
Naghdi model completely studied in (Bagderina and Chupakhin, 2005).

Remark. The one-velocity dissipation-free Iordanski-Kogarko-
Wijngaarden model has an extension of the kernel of admitted Lie algebras
only for a special internal energy of the gas phase (class M3 (p = 2) in Table 4.1),
which corresponds to a Chaplygin gas €29 (p20) = 71/p20 + 70, where 7 and 7 are

constants.
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Table 4.1 Group classification of equations (4.1)

W(p, p) Extensions Remarks

My —qop 0" + ¢a(p)  Xo, X1 —2X7+3Xy oy = Cop™' P £0

My —q,p 307 Xo, X1 —3Xu, X7 —3Xu

Mz o(p)p® —pX1 + 2X;

My o(p)Inp X7

Ms  pp(p)Inp Xy —2X7

Mg pPo(pp*) + ¢ (p— X1+ 2(X7(k + 1) + Xua) @5 = Cop??

Mz —qop™pP + 3 (1= ) X1 +2(Xu + 9X7) @y = Cop™" £ 0,
pp—1) #0,
¢=(+A+p—2)/p

Ms  —qop*p? pX1 —2X, )

(p+A—1)X: +2X14 plp—1)#0
My —qop*Inp+ @y X7 (2(p) arbitrary,
AA—1)=0
My —qopInp+ o (A —1)X;1 + 2Xq4, oy = Copt2,
X7 AA=1)=0
My —gop*Inp+ @ A=1)Xy @y = Cop™t?
+2(Xug + (1 +1)X7) — AN = Dpp* 2,
AA—=1)#0
Mz —qop™pInp+ @3 (I =) X1 +2(p+A—-1)Xy 2 = Cop™ #0
Mz —qp*plnp X1 —2X7, Xy + A X5
My —Gop® + 3 (1 — )Xy +2X 14 + pX57 2 =Cop ™ #0
M5 —gop? X1 +2Xyy, X1 — Xy




CHAPTER V

SPECIAL VORTEX SOLUTION OF FLUIDS

WITH INTERNAL INERTIA

This chapter is devoted to the special vortex solution. This solution was
introduced by L.V.Ovsiannikov (Ovsiannikov, 1995) for ideal compressible and
incompressible fluids. This is a partially invariant solution, generated by the Lie
group of all rotations. L.V.Ovsyannikov called it a “singular vortex”. It is related
with the special choice of non-invariant function. He also gave complete analy-
sis of the overdetermined system corresponding to this type of partially invariant
solutions: all invariant functions satisfy the well-defined system of partial differ-
ential equations with two independent variables. The main features of the fluid
flow, governed by the obtained solution, were pointed out in (Ovsiannikov, 1995).
It was shown that trajectories of particles are flat curves in three-dimensional
space. The position and orientation of the plane which contains the trajectory
depends on the particle’s initial location. Later particular solutions of this system
of partial differential equations for invariant functions were studied in (Popovych,
2000), (Chupakhin, 2003), (Cherevko and Chupakhin, 2004), (Pavlenko, 2005) .
For some other models this type of partially invariant solutions was considered
in (Hematulin and Meleshko, 2002), (Golovin, 2005). Exact solutions in fluid dy-
namics generated by a rotation group are of great interest by virtue of their high
symmetry. The classical spherically symmetric solution is one of particular cases
of such solutions.

In this chapter a singular vortex of the mathematical model of fluids with
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internal inertia is studied. Complete group classification of the system of equa-
tions for invariant functions is given. All invariant solutions for this system are

presented.

5.1 Equations of a special vortex solution

Using spherical coordinates

x =rsinfcosyp, y =rsinfsinp, z =rcosb,

U = usinf cos ¢ + vsin @ sin ¢ + w cos 0,
Us = ucost cosp + vcosfsinp —wsin b,
Us = —usin e + v cos ¢,
the generators X7, Xg, X9 are
X7 = —sinpdy — cos p cot 89, + cos p(sin 0) " (U20y, — Usdy,)
Xg = — cos pdy — sin p cot 89, + sin @(sin 0) " (U20y, — Uz, ),
Xg = 0,.
Introducing cylindrical coordinates (H,w) into the two-dimensional space of vec-
tors (Us, Us)

Uy = Hcosw, Uz = Hsinw,
the first two generators become

X7 = —sinpdy — cos ¢ cot 09, + cos p(sinf)~19,,
Xg = —cos dp — sin p cot 09, + sin p(sin 0)~14,,.

The singular vortex solution (Ovsiannikov, 1995) is defined by the representation
U=U(t,r), H=H(t,r), p=p(t,r), w=w(t,r0,p). (5.1)

The function w(t,r, 0, ) is “superfluous”: it depends on all independent variables.

If H = 0, then the tangent component of the velocity vector is equal to zero.



43

This corresponds to the spherically symmetric flows. For a singular vortex, it is
assumed that H # 0.

In a manner similar to (Ovsiannikov, 1995) one finds that for system (1.1)-
(1.4), the invariant functions U(¢,r), H(t,r) and p(t,r) have to satisfy the system

of partial differential equations with the two independent variables ¢t and r:

r2D,p + p(r*U), = pah, DU + p~1p, = r=3a?,
D,h = r2a(h*+1), Dya =0, (5.2)
p=pWy = pWps — Wy Dop) + Wip — W,
where « = rH, D, = 0,+U0,, and the function h(t, r) is introduced for convenience

during the compatibility analysis.
5.2 Admitted Lie group of equation
The equivalence Lie group of equations (5.2) corresponds to the generator

Xy =0, X§5=2t0, —Udy — 3p0, — 5p0, — 3W 0w,
Xi=p0+p0,+ Wow, X{=2x0,+U0y+2a0,+2Woy.
An admitted generator X of equations (5.2) is sought in the form
X =80, 4+ 0 4 "0y + ("0, + ("3 0y, + "0y + ("0,

where the coefficients of the generator are functions of the variables 7, t, p, v, p, h, a.
Extensions of the kernel depend on the value of the function W (p, p). They

can only be operators of the form
X - ]ﬁXl + k2X2 + ngg + k4X4

where

X1 = —Oéaa — p(9p — v@v + t@t,
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X2 = —5pt8p — vt@v — 3pt8p — 3p8p + t28t + t:c&,; + x@v,
X3 = —5p0, — v0, + 2t0; + x0; — 3p0,,
Xy = pap + pap
satisfy the conditions
ka(5pWispp + 30Wppp + 5Wpp) = 0, (5.3)

5(ko — k10) 0> Wipp + (—5pphiro — 90%k2) Wiz,
+5(2k3 — klO)prp' — 15/€2,0prprp = O,
25k100°(=300Wisppp + LLAW 555 — 30 Wippp + 5pWss + 11W55)
+3kap(2TH0° Wi + 9pp* Wi + 2005° W5 — 270 W, — 9p* W) (5.5)
+50k3,0'3(3pW,5,-,p + 11pr) + 25]€0p4(3pr’p‘p‘p — 11Wp'p'p') = 0,
k1030 Wppp + 300Wipp + 50°Wisspp + 80 pWpppp + 100* Wy,
=3p*Wopp — 30W,,) + 2ks(=3ppWppp — 50 W0 + 3pWpp) (5.6)

+ko(60pW ppp — 5p3Wﬁﬁﬁp - Sprprpp — 6pW,p,) = 0.
where ko = kl + 2]€3 and klO = k4 — 3k — 3.

5.2.1 Case ky #0
Let ks # 0, then equation (5.3) gives
5 Wissp + 3Wisy + 5W;5 = 0.

The general solution of this equation is

-5/3

W =qop™""" + ©1(p)p + w2(p),

If 5 = 0, then the extension of the kernel of admitted Lie algebras is given by the
generators

X17X27X3'
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If ¢ # 0, then the extension of the kernel of admitted Lie algebras is given
by the generators

Xy, X

5.2.2 Case ky =10

Let ko = 0, then equation (5.3) becomes
kla —+ kgb —+ k’4C = O, (57)

where
a = pWppp,
b= 5pWppp + 3pWppp + 5Wy;,
¢ = —(PWepp + pWpp + Wp).
Let us analyze the vector space Span(V), where the set V' consists of

vectors (a,b,c) with p and p are changed. If the function W (p,p) is such that

dim(Span(V')) = 3, then equation (5.4) is only satisfied for
ki =0,k3 =0,ky, =0
which does not give extensions of the kernel of admitted subalgebras. Hence, one
needs to study dim(Span(V)) < 2.
Case dim(Span(V)) =2

Let dim(Span(V')) = 2. There exists a constant vector («a, 3,7) # 0, which
is orthogonal to the set V'

aa + Bb+ e = 0. (5.8)

This means that the function W (p, p) satisfies the equation

(@ + 58 +7)pWips + (38 + 1) pWpp = — (58 +7) W (5.9)
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The characteristic system of this equation is

o dp AWy

@G@+3)p _ap  —(a+20W,,’ (5.10)

where

G=30+7 f=0 F=a+20
Case @ = 0. Assume that & = 0. Because of equation (5.10) and the condition
W;; # 0, one has ¥ # 0. The general solution of equation

dp_ AWy (5.11)
6 —26W;,
1s

Wi = ¢(p)F, (5.12)
where k = —2(3/7, and $(p) is an arbitrary function. Substitution of (5.12) into
(5.4) leads to

(3ks — ka)p@' + @lk(k1 + Bks — ka) + ks — ka) (5.13)

If (3ks — k4) # 0 the dimension dim(Span(V')) = 1, it contradicts to the assump-
tion. Hence, (3k3 — ky) = 0 and from (5.13) one obtains 3k; = k4.

If (k+2)(k+1)# 0, then integrating (5.12), one finds

Wip, p) = @(p)p" + ¢1(p)p + w2(p), (5.14)

where p = k + 2, ¢1(p) and ¢s(p) are arbitrary functions. Substituting (5.14)

into (5.3)-(5.6), one obtains ¢j = 0 and k3 = 75(11)(21)2) and k4 = 732]2;(7”;)2) . An

extension of the kernel in this case is given by the generator

2(p— DX, — (p—2)(X3+ 3Xy).

where p(p — 1) # 0.
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If £ = —2, then
Wip, p) = #(p) In(p) + per(p) + #2(p), (5.15)
and similar to the previous case @5 = 0. The extension of the kernel is
X7+ X3+ 3X,.
If £k = —1, then
Wi(p,p) = @(p)pIn(p) + pe1(p) + e2(p), (5.16)
and ¢5 = 0. The extension of the kernel is
X3+ 3Xy.
Assume that & # 0. The general solution of equation (5.10) is
Wip(p, ) = @(pp")p", (5.17)

where k = —(1 4 7/a), A = —(1 + 23/a), and ¢ is an arbitrary function. Substi-

tution of the function W into (5.8) leads to
P oo’ ko + ok =0, (5.18)
where
ko = ki + ks(5+3k) —ka(1+ k), k= A3ks — ky) — ky + 5ks.

If kg # 0, then the dimension dim(Span(V')) = 1. It contradicts to the
assumption. Hence, ky = 0, which gives k3(6k +3p+5) — ks(2k +2p+1) = 0, and
ki = (k+ 1)ky — (3k + 5)k3, where p = 2k + 5/3.

If 6k +3p+5 =0, then k4 = 0, and

3¢h' p+ o5 (6k + 11) = 0.
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The general solution of this equation is ¢§ = Cp~* where u = 2k + 11/3. The

extension of the kernel is defined by the generator
—(3k+5)X; + Xs.

If 6k + 3p + 5 # 0, then k3 = (G5h=)ks, and

"

03— ¢h(p—2) =0.

The general solution of the last equation is ¢fj = CpP~2. The extension of the

kernel is given by the generator

—2(k+p)Xi + 2k +p+1)X5+ (6k + 3p+5) X,

Case dim(Span(V)) =1
There exists a constant vector (o, 3, k) # 0 such that
(a,b,c) = (o, 8,7)B (5.19)

Equation (5.19) are linear algebraic equations with respect to W,,;, W, and W,.

These equations give that (5 + 2y — 2a) # 0 and
PWipp — kWi = 0,
PWppp — AW = 0,

where
20 B+ 5y

[ N A
B+ 3y —2a’ B+ 3y — 2

The general solution of these equations is
Wi = Cptp, (5.20)

where C' # 0 is constant.
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If (k4 2)(k+ 1) # 0, then integrating (5.20) one obtains

W (p, p) = —qop™ " + p1(p) + ©2(p), (5.21)

where p(p—1) #20, p=k+2,and ¢y = zﬁ' Substituting (5.21) into equations

(5.3)-(5.6), one has

k_
1 p_2

and
2 p(p = 2) (ks — ka) + @5 ((3ks — ka) (2A — 4+ 3p) + 2pks) = 0.
Consider p # 2.

If i =0, then ks, k4 are arbitrary constants. The extensions of the kernel

are given by the generators.
(=3A=5p+5) X1+ (p—2)X3, A+p—1DXi+(p—2)Xs

If pff = Cp~# # 0, then in this case 3k3 — k4 # 0. Let us introduce

2pl{?3 1
=2X+3p—4) —
= p—4) 3k3_k4](p_2)
The last relation can be rewritten as
2]9]{?3
— = (22 +3p—4) — —2). 5.22
B — ) ( p—4) — pu(p—2) (5.22)

We will solve this equation either with respect to k3 or k4. This leads us to the

study of two cases. In the first case we assume that
(2A+3p—4) —pu(p—2) =0. (5.23)

Equation (5.22) gives that k3 = 0. This defines the extension of the kernel, which

is defined by the generator

A +p—4)X1 + (p— 2)X,. (5.24)
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In the second case, we assume that

(2A+3p—4) —p(p—2) #0.
Equation (5.22) gives
ky=—(2p+3((2A +3p —4) — p(p — 2)))ks.
The extension of the kernel becomes

2(=A+(p— D) p—2p+2) X1+ (2 \+(p+2)p+3p—4) X5+ (6A—(3p—6) u+11p—12) X,.
(5.25)
Notice that (5.25) is reduced by (5.24) to (5.23). Thus these two cases can be
defined in one case which is given by (5.25).
Consider p = 2. This case is separated into subcases, either A # —1 or
A= —1.

Let us study A # —1. Substituting (5.21) into equations (5.3)-(5.6) gives

by = k3(3A\45)

s and

o pks + [(ki(A + 1) + k3(A + 2)] = 0.
If ¢ = 0 then the extension of the kernel is combined by the generators
X1, BA+D)Xys+ (A +1)X5.
Let us assume that A = —1. Equations (5.3)-(5.6) give that k3 = 0 and
kapy + (2ky + kq)py = 0.
If pf = 0, then the extension of kernel are given by the generators

X, X,
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If @4 = Cp™" # 0, we have k; = (51 )ky and the extension of the kernel is
given by the generator

If K = —2, then integrating (5.20), one obtains

W(p,p) = —qop* n(p) + pip1(p) + 2(p), (a0 # 0). (5.26)

Substituting (5.26) into equations (5.3)-(5.6), we have

b — ks(3A —5) 4+ ka(=A + 1)
1 — )
2

and the condition
2(3ks — ky)(poy — (A —2)@h) = —qop™ 2 A\ — 1)(A(3ks — ky) + ks — ky). (5.27)
Let A(A — 1) = 0. Equation (5.27) becomes
(3kz — k) (pps” — (A = 2)¢3) = 0.
If @9 is arbitrary, then k3 = 3k4, and the extension is only given by the generator
—X1 + X3+ 3X,.

If Y = Cop*~2 # 0, then the extension of the kernel consists of the gener-
ators
(BA=5)X1 +2X3, (1—-XM)X; +2X,.

Let A(A — 1) # 0, then ¢f = pAfQ(—QOw,ulnp + ¢2), and the extension

of the kernel is
(p=20)X1+ (AN —p+1)X5+ (3N —3u+ 5) Xy.
If k = —1, then integrating (5.8), one finds

W(p, p) = c1p*pIn(p) + per(p) + 2(p), (5.28)
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and substituting (5.28) into equations (5.3)-(5.6), we obtain
k= (3ks — k),
and the condition
Py (ks — ka) + @5 (2A(=3ks + ka) + k3 — ka) = 0.

One needs to study two cases. If ¢§ = 0, then ks, k4 are arbitrary, and the

extension of the kernel consists of the generator
3IANX1 + X5, —AXy+ X,

If of = cop™ # 0, then 3k3 — kg # 0, and substituting (5.28) into equations

(5.3)-(5.6), we obtained
L ks(6A =1+ 30)
) N

In this case, the extension of kernel consists of the generator

—20X1 + 2N\ =14 0)X3 + (6A — 1+ 30) X4

Case dim(Span(V)) =0
The vector (a, b, ¢) is constant:
(a,b,¢) = (a, B, k)
with some constant values «, 3 and k. This leads to
Wip = —2qo,

where —2qp = ﬁ —a— % # 0 is constant. Integrating this equation, one obtains

W (p, p) = —2q0p* + pp1(p) + wa(p). (5.29)
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Substituting (5.29) into equations (5.3)-(5.6), we have
ky = ks
and the condition
5 ks + @3 (k1 + 2ks).

If ¢ = 0, then the extension of the kernel is given by the generators
Xy, X3+5X4.

If i # 0, then k3 # 0 ans py = Cyp~#, where p = ky + % The extension

of the kernel consist of the generator
(,u - 2)X1 + X3 + 5X4

These extensions are presented in Table 5.1.

5.2.3 Steady-state special vortex

Let us consider the invariant solution corresponding to the kernel {Xj}.
This type of solution for the gas dynamics equations was studied in (Chupakhin,

2003). The representation of the solution is
p=pr), U=U(r), h="h(r), a=ar).
Equations (5.2) become

Up' + p(r?U)' = pah, UU' + p~'p/ = r~%a?,
Ul =r—2a(h®+1), Ud =0,
(5.30)
D= p(W, = UpWys = WysU(UpY) + WyUp =W,
p=Up.
In (Chupakhin, 2003) it is shown that for the gas dynamics equations all dependent

variables can be represented through the function h(r), which satisfies a first-order
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W(p,p) Extensions Remarks
My —qop?p P + B(p)*? Xy, Xs p#0
My —qop~® X1, Xo, X3
Ms  @(p)plnp X3+ 3Xy
My @(p)p” 2= 1)X1 = (p—2)(X3+3Xy)  plp—1)#0
Ms @(p)Inp - X1+ X3+ 3X,
Mg pPp(pp") + pa(p) =2k +p) X1+ 2k +p+1)Xs  @f = cop?
+(6k + 3p + 5) X4
Mz —qop*plnp IAXy + X3, —AX; + Xy
Mg —qop’plnp+@a(p)  —2Xi+(2A - 1+4+0)X; ph =cop” #0
H(6) — 1+ 30) X,
My —qop*lnp+ea(p)  —X1+ X3+ 3X, AA—1)=0
Mo (BX —5)X; + 2X3, O = cop2,
(1—=XN)X; +2X,4 AA=1)=0
M (h=20)X1+ (A= p+1)X; AA=1)#0
+(BA —3u+5)X, © = Px
My —qop’p? %Xl + X3, /\ngle + X4 p#2
Mis  —qop*p? (n=A=2)X1 + (A +1)X3 py = Cop™ #0
(BA+5) X,
My —qop” + @2(p) (n—2)X1 + X3+ 5X,y @y = Cop™ # 0
M5 —qop? X1, X3+5Xy
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ordinary differential equation. Here also all dependent variables can be defined
through the function A(r), but the equation for h(r) is a fourth-order ordinary
differential equation. In fact, since H # 0, from (5.30) one obtains that U # 0.
Hence, o = «,, where a, is constant. From the first and third equations of (5.30),

one finds
' a(h? +1)
=R———, U= ——F-—=.
P vVh?+1 n

In this case

N/ 1)’
h/

p=—a,R,N (
and after substituting p and p into the formula for the pressure, one has
p — F(h, h/, h//, h,//),

where the function F' is defined by the potential function W. Substituting rep-
resentations of p, U and p into the second equation of (5.2), one obtains the

fourth-order ordinary differential equation for the function h(r).

5.2.4 Invariant solutions of (5.2) with W = —g,p2p 53+ 5"/

The system of equations (5.2) with the potential function
W = —q,p°p " + Bp*/®

admit the Lie group corresponding to the Lie algebra L = { Xy, Xs, X3}.
If 3 = 0, then there is one more admitted generator X;. The four-
dimensional Lie algebra with the generators { Xy, X1, Xo, X3} is denoted by Ly.

The structural constants of the Lie algebra L, are defined by the table of
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commutators:

Xo Xi Xo X3

X, 0 Xo 0
X, 0 —2X,
X 0

Solving the Lie equations for the automorphisms, one obtains:

:’1?0 = X9+ ao(l’l -+ 21’3) —+ a%xQ, 50 = $0€_a1,
AO . Al :
T3 = I3+ agra, Ty = 19€™,
fg = X9 + CLQ(ZEl + 2ZE3) + (I%QZQ, 50 = ZE()@%,
A2 . Ag .
T3 = X3+ asxy, Ty = X9€%.

Construction of the optimal system of one-dimensional admitted subalgebras con-
sists of using the automorphisms A;, (i = 0,1,2,3) for simplifications of the

coordinates (xg, x1, 2, x3) of the generator

3
j=0
Here k is the dimension of the Lie algebra L, (k = 3,4). In the case L3 one has
to assume that the coordinate x5 = 0.
Besides automorphisms for constructing optimal system of subalgebras one
can use involutions. Equations (5.2) posses the involutions E, corresponding to

the change t — —t. The involution E acts on the generator

by transforming the generator X into the generator X with the changed coordi-

nates:

Ty = —Xo,

E:

To = —X9.

Here only the changed coordinates are presented.
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5.2.5 One-dimensional subalgebras

One can decompose the Lie algebra L, as Ly = [ & N, where [ = Lj is
an ideal and N = {X;} is a subalgebra of L,. Classification of the subalgebra

N = {X;} is simple: it consists of the subalgebras:
Ny ={0}, No={Xi}.

According to the algorithm (Ovsiannikov, 1993) for constructing an optimal system
of one-dimensional subalgebras one has to consider two types of generators: (a)
X = 20X + 22Xy + 23X3, (b) X = Xj + 20Xo + 22 X5 + 23X3. Notice that case
(a) corresponds to the Lie algebra Ls. Hence, classifying the Lie algebra L,, one

also obtains classification of the Lie algebra Ls.

Case (a)

Assuming that xo # 0, choosing ay = —x3/7(, one maps x3 into zero. This
means that 3 = 0. For simplicity of explanation, we write it as z3(A) — 0. In
this case w9(As) — To = zo — w32 /mg. If Ty # 0, then applying x9(A;) — 1,

hence, the generator X becomes
X2 + O./Xo, (O[ = j:].)

If 7o = 0, then one has the subalgebra: {Xj}.

In the case o = 0, if x3 # 0 or x5 # 0, then applying Ay, one can obtain
xg # 0, which leads to the previous case. Hence, without loss of generality one
also assumes that 3 = 0, x5 = 0. Thus, the optimal system of one-dimensional

subalgebras in case (a) consists of the subalgebras
{Xo+ Xo}, {Xo}. (5.31)

This set of subalgebras also composes an optimal system of one-dimensional sub-

algebras of the algebra Ls.
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Case (b)

Assuming that zq # 0, choosing as = —x3/7(, one maps x3 into zero. In
this case x9(Ay) — Ty = x9 — x3(1 — x3)/x¢. If T3 # 0, then applying Ay, and Es

(if necessary), one maps the generator X into
X1 + Xo + v Xo,

where v # 0 is an arbitrary constant. If 75 = 0, then z¢(4g) — 0, and the
generator X becomes X;.

In the case xg = 0, if 2z3 + 1 # 0 or x5 # 0, then, applying Ay, one can
obtain xy # 0, which leads to the previous case. Hence, without loss of generality
one also assumes that 3 = —1/2, x5 = 0, and the generator X becomes X3 —2X.

Thus, the optimal system of one-dimensional subalgebras of the Lie algebra

L4 consists of the subalgebras

{Xo+ X0}, {Xo}, {Xi+Xo+vXo}, {X5-—2X1}, {Xi}, (5.32)

where v # 0 is an arbitrary constant.
Remark 1. An optimal system of subalgebras for W = —q,p3p? + 3p*
with arbitrary 3 consists of the subalgebras (5.31).

Remark 2. The subalgebra {X; — Xy} is equivalent to the subalgebra

{Xs}

5.2.6 Invariant solutions of X; + X, + v.Xj

The generator of this Lie group is

X=9Xo+ X1+ Xo= (2 +t+7)0 + trd, — 3tpd, + (r — U(t + 1))0y — al,.
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To find invariants, one needs to solve the equation
XJ =0,

where J = J(t,r, p,U,a, h). The solution of this equation depends on the value of
.
Let v = % + 1/4. In this case invariants of the Lie group are

1 (2t+1

y=rs, V=s(((t+1/2°+p)U—rt), R=ps> A=aex") p,

where
s = ((t+1/2)2 4 p2) 77 eznoretonCD),
The representation of an invariant solution is

2t+1

s((t+1/22+p12)U—1rt) =V(y), p=s"R(y), a= Ae w55 - p = h(y).

Substituting the representation of a solution into (5.2), one obtains the system of

four ordinary differential equations

R’ A(R*+1) A
r_ v . 2 r_ B r_ B

R" = (—((8((3(4(44V + 5y)y — 19Ah)R + 308R'Vy*)R’ 2
—3(88R'Vy? — 9IARR + 12(6V + y)Ry)R"R)V qoyy — IR*3(4(4(2V + )V — (4 + 1)y)y?
+(A — 4hVy)A)R3)y — 18(8(R¥3Vy? + 4Ahq,)Vy — (2h% + 1)A%q,
—AB((5V +y)V — (4p® + 1)y*)qoy®) R'R?)) /(288 R*V?q,y").

Let v = —u? + 1/4. A representation of a solution is

S(((t+1/2)2 = U —7t) = V(y), alt +1/2 — p) 2 (¢ +1/2 + p1) "2 = A(y),
p(t+1/2 = p)*@(t+1/2+ p)**> = R(y), h = h(y),
where

o 2u—1 2+ 1

4/,L , Qg = .

y=rs, s=t+1/2—p) " (t+1/24+p)", I
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In this case

R Ah—2Vy) (h2 +1) A
A v Sy avd) r_ r_
Vi =Vt " . h AVyQ,A 7

R" = (528R"R'RV?q,y* + T2R"R*V q,3*(—3Ah + 6Vy + 4?) — 616 R 3V 2q "
+24R' 2RV qoy?(19Ah — 44Vy — 5y?) + 18R’ R*(2R*3V2y* — 8A*h?q,
—4Aq, + 32ARV qoy — 40V2qoy® — 8V qoy® — 4p* oy + qoy”)
HIR?BR3y(4A? — 4NRVy + 8V 2% + 4V + 4py* — y*)) /(T2R*V 2 qyt).

Let v = 1/4. A representation of an invariant solution is

s((t+1/2°U = rt) = V(y), p=5"R(y), a=e’®*VA(y), h=h(y),

where
_ _ 1 —1/(2t+1)
A VO '
In this case
R (Ah—2Vy) A (h2 +1) A
V/ — —V— _— h/ _ — A/ —_ —
R * Y2 ’ |72 T ’

R" = (528R"R'RV?q,y* + T2R"R?V q,y*(—3Ah + 6Vy + 3?) — 616 R 3V 2q,y*
+24R' 2RV qoy?(19Ah — 44Vy — 5y2) + 18R’ R*(2R?*/*V?y* — 8A%h%q, — 4A%q,
+32AKV oy — 40V2q,y% — 8V ot + qoy*) + IR?PR3y(4A? — 4ARVy + 8V 2y? + 4V y?
—y")/(T2R*V?q,y*).

These equations were obtained assuming that V' # 0. The case V = 0 leads
to

A=0, 2¢,R —yR®=0.

5.2.7 Invariant solutions of X3 — 2.X;

Invariants of the generator

X3 —2Xy =10, — 3p0, + Udy + 220,
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are

U=rV(y), p=r"R(y), a=1rAly), h=h(y),

where y = t. Substitution into equations (5.2) gives that the functions V (y), R(y),

A(y) and h(y) have to satisfy the equations
W=AR*+1), N =—20V, R =AhR,

B(RY? +6go) (V! + V%) = A? (4go(h? = 3) + 3(R** + 6g,)) .

5.2.8 Invariant solutions of X;

Invariants of the generator X;
X1 =10, — U0y — a0,

are

x, Ut, p, h, ot.

An invariant solution has the representation
U=t"V(y), p=R(y), a=t"aly), h=h(y)

where y = x. Substituting into equations (5.2), one obtains

R Ah—2Vy AR+ 1)
Vo y ATV, 2 N =
R * y2 |2 T2

A
V7

R" = (132R"R'RV?qy* + 18R"R*V q,y*(—3ah + 6Vy + 3?) — 154R>3V2q,y*
+6R2RV q,y*(19ah — 44Vy — 5y?) + OR'R*(R*3V?y* — 402h?q, — 2a%q, + 16ahV q,y

—20V2qy% — 4V qo®) + ORYPR3y(a? — ahVy 4+ 2V + Vi) /(18R2V2q,y?).

Here it is assumed that V' # 0. The case V = 0 only leads to the condition A = 0.
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5.2.9 Invariant solutions of X, + X

X2 = t(tat + r@r — U@U — 3p8p) + r@U,

Invariants of the generator
Xy + Xo= (> 4+ 1)0; + trd, — 3tpd, + (r — tU)dy

are

r(t? + 1)_1/2, U(t? + 1)1/2 —rt(t* + 1)_1/2, p(t* + 132 a, h.

An invariant solution has the representation
U+ =t + 1) =V(y), p=+1)" Ry), a=aly), h="hy).

where y = 7(t> + 1)~'/2. Substituting into equations (5.2), one has to study two
cases: (a) V' =0, and (b) V # 0.

Assuming V' = 0, one obtains that A = 0, and the function R satisfies the
equation

2(58RY? — 9¢,)R' + 9yR*/® = 0.
If V' # 0, then one obtains

! Ah —2 A(R2+1
V/:_V%+( y2 Vy)7 h/:V( y—; )7 A/ZO,

R" = (132R"R'RV?q,y* + 54R" R*V q,y*(—Ah + 2Vy) — 154 R’ 3V2q,y*
+6R 2RV q,y*(19Ah — 44Vy) — 10RY3R'R3By* 4+ OR' R2(R?3V2y* — 4A2h3q,
—2A2%q, + 16ARV qoy — 20V 2q,y2 4 2qoy") + OR?PR3y(A? — ARV y + 2V%y?

—y"))/(18R*V2q,y")
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5.2.10 Invariant solutions of X, — X

Since the Lie algebra {X, — X} is equivalent to the Lie algebra with the
generator { X3}, then for the sake of simplicity an invariant solution with respect

to

X3 = 2t0; + r0, — Uy — 3p0,

is considered here. Invariants of the generator X3 are
rtV2, U2, pt3/2, h, a.
An invariant solution has the representation

U=t""*V(y), p=t"’R(y), a=aly), h=nh(y)

where y = rt~/2.

Substituting into equations (5.2), one has to study two cases: (a) V —y/2 =
0, and (b) V —y/2 # 0.

Assuming V —y/2 = 0, one obtains that A = 0, and the function R satisfies
the equation

2(206RY3 + 9¢,)R' — 9yR®/® = 0.
If V—y/2 # 0, then one obtains

R 2Ah — (4V — 3y)y A (h* +1)
V' = (y/2 — V)~ B =
Z 7T 2> ’ (V—=y/2) ¥

9 A,:O’



R/l/ —

(132R"R'Rq,y* (4V? — 4Vy + y?) + 108 R"aR*hq,y*(—2V + y)
+108R"R2q,y3(4V? — 4Vy + 4?) + 154 RBqy* (—4V?2 + 4Vy — ?)
+228 R?aRhq,y?(2V — y) + 264R"?Rq,y®(—4V? + 4Vy — y?)
+72R' a?R?*q,(—2h* — 1) 4+ 288 R'aR*hq,y(2V — y)

—40RY3R' R3bey* + OR' R*y?*(4R*PV?y? — ARV 4+ R¥3y*
—80V2q, + 80V qoy — 22¢,y?) + 36 R?/3a’R3y
+I8RYBaR3hy?(—2V +y) + IR R3y*(8V2 — 8Vy + 3y?))

J(18R2qy* (4V?% — 4Vy + 1?))
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CHAPTER VI
INVARIANT SOLUTIONS OF ONE OF

MODELS

This chapter is focused on obtaining invariant solutions of the equations of

fluid with the potential function
W = —ap3p* + Bp°. (6.1)

where a # 0 and [ are constant. The fluid dynamics equations corresponding
to this model admit Lie algebra of the maximally dimension. These Lie algebras
include the generator X corresponding to projective transformations. The moti-
vation of the study of this model is that for the gas dynamics equations, existence

of the projective transformation corresponds to a gas with a special structure.

6.1 Optimal system of admitted subalgebras

6.1.1 Admitted Lie algebra

The one-dimensional equations

p(uy +uuy) + P, =0, p+ pu, =0,
' ‘ (6.2)
P =2ap™*(p+ p+p~'p?) + 28p°
with the potential function (6.1) admit the Lie group corresponding to the Lie

algebra Ls with the generators (Hematulin, Meleshko and Gavrilyuk, 2007)

Yi=0, Yo=0, Ys=10,+ 0, Yi=p0,+ud,—x0, — 2t0;,

Y5 = t(x0, + t0, — p0, — ud,) + x0,.
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If 3 =0, then there is one more admitted generator,

The six-dimensional Lie algebra with the generators {Y7, Y5, ..., Y5} is denoted by

Lg.
The structural constants of the Lie algebra are defined by the table of
commutators:
i Yo ¥ Y, Y5 Y
Y110 0 Y, 27 -V, Y,
Ys 0 0 —-Y, Y 0
Y; 0 Y 0 -Y
Y, 0 -=2Y; O
Ys 0 —Y;
Ys 0

Solving the Lie equations (3.22) for the automorphisms, one obtains:

Ui =1+ 711(Ye — 2ya) + TLYs, Us = Y3 — T5Ya,
Ay Yo = Y2+ T1Y3, As Yo = Ya+ T5Y1,
Ys = Y4 — T1Ys, Ys =y5+T5(2y4—y6)+T52y1,
372 = Y2 — T2Y4, 3]2 = Y2 — T3Y1,
A2 : Ag .
Ys = Y3+ Toys, Us =ys+ 13(Ys — Ys),
( (
y~1 == y16274’ g/l = yle_Tﬁa
52 = y26T47 % = y36T67
A4 . AG .
ys =yse ™, Ys = Yse™.
g/5 = 3/56_2T47
\ \

Construction of the optimal system of one-dimensional admitted subalgebras con-

sists of using the automorphisms A;, (i = 1,2, ..., k) for simplifications coordinates
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(y1, Y2, ..., yx) of the generator

k
Y = Z Y Yk
j=1

Here k is the dimension of the Lie algebra Ly, (k = 5,6). In the case Lj one has
to assume that the coordinate ys = 0.

Besides automorphisms for constructing optimal system of subalgebras one
can use involutions. Equations (6.2) posses two involutions. The first involution
E; corresponds to the change x — —x. The second involution F, is related with

the change t — —t. These involutions act on the generator

k
Y =) uYi
j=1

by transforming the generator Y into the generator Y with the changed coordi-

nates:
172 = Yo, gl = —,
Ey:oq gs =—ys, L2190 43 = —ys,
gs = —Ys.

Here only the changed coordinates are presented.

6.1.2 One-dimensional subalgebras

One can decompose the Lie algebra Lg as Lg = I & N, where I = Ly is
an ideal and N = {Yg} is a subalgebra of Lg. Classification of the subalgebra

N = {Ys} is simple: it consists of the subalgebras:
Ny ={0}, N, ={Ys}.

According to the algorithm (Ovsiannikov,1993) for constructing an optimal system
of one-dimensional subalgebras one has to consider two types of generators: (a)

Y = 25:1 Y, (b) X = Y5+ Z?Zl yrYy. Notice that case (a) corresponds to the
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Lie algebra Ls. Hence, classifying the Lie algebra Lg, one also obtains classification

of the Lie algebra Ls.

Case (a)

Assuming that y; # 0, choosing 75 = —y4/y1, one maps y, into zero. This
means that y; = 0. For simplicity of explanation we write it as y4(As) — 0. In
this case y5(A4s) — Us = ys — y2/y1. If g5 # 0, then sequentially applying Az, A,

and Ay: ya(As) — 0, y3(Az) — 0, and then using Ay, the generator Y becomes

Ys +aY, (o= =£1).

If y5 = 0, then yo(A3) — 0, and using Ay, one obtains two subalgebras:

M +Ys}, {vi}

In the case y; = 0, if y4 # 0 or y5 # 0, then, applying A;, one can obtain
y1 # 0, which leads to the previous case. Hence, without loss of generality one
also assumes that y4 = 0, y5 = 0. The generator Y becomes y,Ys +y3Y3. If yo # 0,

then y3(As) — 0, and if y5 # 0, then y5(A;) — 0. One obtains the subalgebras

{Ya}, {Ys}.

Thus, the optimal system of one-dimensional subalgebras in case (a) consists

of the subalgebras

{s £}, (M+Ys), {Mi), {Ya}, {¥s} (6.3)

This set of subalgebras also composes an optimal system of one-dimensional sub-

algebras of the algebra Ls.
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Case (b)

Assuming that y; # 0, choosing 75 = —y4/y1, one maps y, into zero. This
means that gy = 0. which is written as y4(As) — 0. In this case y5(A5) — U5 =
ys+ys(1—y4)/y1. If g5 # 0, then sequentially applying Az, As and Ay: yo(Az) — 0,
y3(Az) — 0, and then using A, and FEs (if necessary), one maps the generator Y
to

Y + Y5 + aYi,

where a # 0 is an arbitrary constant. If y; = 0, then, sequentially applying
y1(A1) — 0, and y3(A3) — 0, the generator Y becomes y,Ys + Y. If 5 # 0, then,

using the automorphisms A4 and the involution E7, one comes to the subalgebra

{Yy + Y5}

The case y, = 0 gives the subalgebra:

{¥s}.

In the case y; = 0, if 2y;—1 # 0 or y5 # 0, then, applying A;, one can obtain
y1 # 0, which leads to the previous case. Hence, without loss of generality one also
assumes that y4 = 1/2, y5 = 0, and the generator Y becomes yoYo+y3Y5+ Yy +2Y5.

Sequential application of A3 and then A, leads to the subalgebra

{Yi+2Ys}.

Thus, the optimal system of one-dimensional subalgebras of the Lie algebra

Lg consists of the subalgebras
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Subalgebra
1 Ys+Y Subalgebra
2 Y14V 6 aY1+Ys+Y5
3 Yi 7 Ys + aYs
4 Ys 8 2Ys + Y,
5 Y;

Here v # 0 is an arbitrary constant.

Remark 1. Since the automorphism A, for W = —ap=3p? differs from the
automorphism A, for the Green-Naghdi model, the subalgebras Y; +~Y3, (v # 0)
considered in (Bagderina and Chupakhin, 2005) are equivalent here to Y; + V3.

Remark 2. Because of the automorphism A4 the subalgebras {Y5 + 5Y1}
are equivalent to one of the subalgebras: {Y; + Y1}, {Ys — Y1} or {Y5}. The
subalgebra {Y5 — Y;} is equivalent to {Y;}. The subalgebra {Y5} is equivalent to
{Y1}. Notice also that the subalgebra {Ys + Y5} is equivalent to {Y5}.

Remark 3. An optimal system of subalgebras for W = —ap=3p% + 3p?

with arbitrary 3 consists of the subalgebras (6.3).

6.2 Invariant solutions

6.2.1 Invariant solutions of aY; + Y; + Ys

The generator of this Lie group is
Y =aY, + Y5+ Y5 = (® +t+ )0, + tzd, — tpd, + (z — u(t + 1))d,.
For finding invariants one needs to solve the equation
YJ=0,

where J = J(t,x, p,u). A solution of this equation depends on the value of «.
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Let a = 1/4 +~?%, v # 0. In this case, invariants of the Lie group are
U=s(((t+1/2°+~*)u—=xt), R=uzp,

where

1

s = ((t+1/2)2+42) 7 e,

The representation of an invariant solution is

s((E+1/22+)u—at) =U(y), p=a 'Rly), y=us.

Substituting the representation of a solution into (4.1), one obtains two ordinary
differential equations. The general solution of the first equation (conservation of
mass) is
U=FkyR™.
The second equation becomes a third-order ordinary differential equation for the
function R:
8R"ak*R*y® — 8R"akRy*(10R'ky — R(7k — R)) + 120(R')3ak?y?
+8(R')?akRy?(3R — 25k) + 2R' R?y(R?*(a + 4a~? — 2k?) + 4ak(11k — 4R))

—R3((2k — R)* + 4y°R?)(2a — R?) = 0.

(6.4)
If « =1/4 —~2, ~v# 0. A representation of an invariant solution is
s((t+1/2)* =9*)u—at) =Uly), p=2""R(y),
where
2y — 1 2y + 1

s=({t+1/2—7)" " (t+1/24+7), y=xs, 11 =

Y2 = .

4~ 7’ 4y

In this case

U=kyR™*,
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and the function R satisfies the third-order ordinary differential equation
8R"ak*R*y® — 8R"akRy*(10R'ky — R(Tk — R)) + 120(R')3ak?y?
+8(R')*akRy*(3R — 25k) + 2R'R*y(R*(a — 4av* — 2k*) + 4ak(11k — 4R))

“R¥((2k — R)? — 47°R?)(2a — R?) = 0.
(6.5)

Let a = 1/4. A representation of an invariant solution is
s((t+1/2)*u—at) =U(y), p=a""R(y),

where

s=(t+ 1/2)71671/(27#1), Y = Ts.

In this case
U=kyR™",
and the function R satisfies the third-order ordinary differential equation
2R"ak*R?y3 — 2R"akRy*(10R'ky — R(Tk — 4R)) + 30(R')3ak?y?
+2(R)2akRy*(12R — 25k) + R' R%y(R*(8a — k?) — 32akR + 22ak?)  (6.6)
—R3(2a — R*)(k — 2R)? = 0.

Since equations (6.4), (6.5) and (6.6) are homogeneous, their order can
be reduced. Using the substitution R’ = R(2a — R?)f(R)/(2ay) these equations
become

F+(f—1)a*(R—2k)*+4y*R?) =0,

F+(f—1)a*((R—2k)>—49’R?) =0,
and

F+4(f —1)a® (6fkR+ (2R — k)?) =0,
respectively. Here

F = (2a—R)kfR((2a — R*)kR(ff" + f*) = 2f'(R(kfR + a) + 2ak(3f — 2)))
+(f = Da (4f%k*(6a — R?) + 2fk(kR? + 4aR — 10ak)) .
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One can easily see that these equations have the constant solution f = 1.

This solution corresponds to the relation

R R(2a — R?)
2ay
or after integrating it
R
=4 (6.7)
R?>—2a vy

where ¢ is an arbitrary constant.

6.2.2 Invariant solutions of Y; + aYs, (o =0,1)
Invariants of the generator
Ys + aYsy =t + a0, — ud,, (a=0,1)
are
r—alnt, ut, p.

Hence, the invariant solution has the representation
u=t"'U(y), p=R(y), y=r—aht

Solving the conservation of mass equation, one obtains U = «a + k/R. Then the

second equation becomes
2R"ak*R* — 2R"akR(10R'k + R?) 4+ 30(R')3ak? + 6(R')*ak R?
—R'K*R* — R%(k + aR) = 0.

Using the substitution R = f(R), this equation is also can be reduced to a second-

order ordinary differential equation.
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6.2.3 Invariant solutions of 2Y; + Y,
Invariants of the generator
2Ys + Yy = —20, + p0, — ud,

are

t, u/x, pz.
Hence, the invariant solution has the representation
u=2zU(t), p=a'R(t).
Substitution into equations (6.2) gives the trivial equations

R =0, (U +U?*(2a—R* =0.

6.2.4 Invariant solutions of Y; 4+ Y

Invariants of the generator
Vs + Yy = (* + )0 + txd, — tpd, + (v — ut)d,

are

(B + 1)V w( + DY — w2+ 1)7V2 pa

An invariant solution has the representation
u(t®+ )Y =2t + 1) =Uly), p=a"'R(y),
where y = 2(t? + 1)~!/2. Substitution into equations (6.2) gives U = ky/R and

2R"ak*R?y" — 2R"ak*RyS(10R'y — TR) + 30(R')3ak?y’
—50(R')?ak*Ry’ + R' R*y(y*(22ak? + 2aR? — k* R?) + 6 R")

YRy (K? + R?)(R? — 2a) — 68R%) = 0
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In the case § = 0 this equation is reduced by the substitution R’ = f(R)/y

to the second-order ordinary differential equation
2f f"ak?R? 4 30 f3ak?® — 2012 f'ak®R — 30 f?ak®R + 2f f' 2ak®R? + 10f f'ak®R?
+fR*(10ak* + 2aR? — k*R?) + R3*(k? + R*)(R? — 2a) = 0.
6.2.5 Invariant solutions of Y; — Y]

Since the Lie algebra {Y5 — Y;} is equivalent to the Lie algebra with the
basis generator Y}, then for the sake of simplicity an invariant solution with respect

to

Y, = p0, + u0, — x0, — 2t0,

is considered here. Invariants of the generator Y, are
z/Vt, ux, px.
An invariant solution has the representation
u=z"U(y), p=a""R(y),

where y = x/+/t. Substitution into equations (6.2) gives U = y?(k/R + 1/2) and
SR"ak?R?y" — 8ak?Ry*(10R"R'y — TR) + 120(R")3ak?y"
—200(R')?ak*Ry® + 2R R?y(y*(44ak® — aR* — 2k*R?) + 128R?)
+R3(y*(4k? — R?)(R? — 2a) — 248R5) = 0.
In the case § = 0 this equation is reduced by the substitution R’ = f(R)/y
to the second-order ordinary differential equation
8ff"ak?R? + 120 f3ak® — 80f2f'ak®*R — 120 f2ak®*R + Sf f' 2ak’R? + 40f f'ak®R?

+2fR*(20ak? — aR? — 2k2R?) + R3(4k? — R%)(R% — 2a) = 0.
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6.2.6 Invariant solutions of Y] + Y3
Invariants of the generator
Yi+Ys=0+1t0,+ 0y

are

x—1t2/2, u—t, p.

An invariant solution has the representation
u—t=Uly), p=Ry),
where y = z — t?/2. Substitution into equations (6.2) gives U = k/R and
2ak*(R"R* — 10R"R' R+ 15(R)*) + R'R*(6BR* —k*) + R" =0

This equation is also homogeneous, and, the it is easily reduced by the substitution
R’ = f(R) to a second-order ordinary differential equation.

Remark 4. Using the criteria of linearization, obtained in (Ibragimov and
Meleshko, 2005), (NeutPetitot, 2002), (Euler, WolfLeach and Euler, 2003), one
can check that all previous third-order ordinary differential equations cannot be
linearized by point, contact or the generalized Sundman transformations. The
reduced second-order ordinary differential equations also do not satisfy the Lie

criteria (Lie, 1883) of linearization.

6.2.7 Invariant solutions of Y5

Invariants of the generator Y, = 0, are



7
Substitution into equations (6.2) gives

R =0, RU =0.

6.2.8 Invariant solutions of Yj

Invariants of the generator Y3 = t0, + 0, are
t, u—=x/t, p.
An invariant solution has the representation
u—zx/t=U(t), p=R(t).
Substitution into equations (6.2) gives

Rt+R=0, R({Ut+U)=0.

6.2.9 Invariant solutions of Y}
Invariants of the generator Y; = 0, are
x? ’U/, p'

An invariant solution has the representation

Substitution into equations (6.2) gives U = k/R and
2ak*(R"R? — 10R"R'R + 15(R)*) + R'R*(63R* — k*) = 0.

Assuming that R’ = f(R), the last equation is reduced to the second-order equa-

tion
L2
f(f)

10, 15f R
R T

ﬁR‘* —1)=0. (6.8)

1 - .
Fo TRAE
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This equation is transformed to the free particle equation z”(7) = 0 by the change

2

k
z=ak?R°f*(R) + BR® — ER_I, T =R.

Thus, one obtains the general solution of equation (6.8)

R4

J(B) = 2ak?

(k* + 20, R + 2C,R* — 2B8R") |

where C and Cy are arbitrary constants. After that the function R(y) is found
by quadrature R’ = f(R). Analysis of this solution is similar to the analysis of

the soliton solution of the KdV equation.



CHAPTER VII

CONCLUSIONS

This thesis is devoted to an application of the group analysis method to

the equations of fluids with internal inertia
pt + div(pu) = 0,

pu+ Vp =0,

where p is the pressure, and “dot” denotes the material time derivative: f = % =
ft + uV f. The thesis is focused on group classification of a class of dispersive
models which are defined by the Lagrangean L = 1p|u|®> — W (p, p), where W (p, p)

is a potential function. For these models the pressure is

ow ow o0 (oW . (OW
r=r =W =r(G - a (a5 - () ) -

This type of models includes Iordanski-Kogarko-Wijngaarden and Green-Naghdi
models.

The first result of the thesis is group classification of the three-dimensional
equations. Complete group classification of the equations is given. The group
classification is considered with respect to the function W(p, p). The equivalence
Lie group is obtained on this step. The group classification separates all models
with respect to admitted Lie group into 15 different classes. The result of this
group classification is presented in Table (4.1).

The second part of the thesis is devoted to the special vortex solution. In
contrast to the Navier-Stokes equations, the existence of solutions for this class

of equations and fluids with internal inertia has been shown. For this class, the
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original three-dimensional system of equations is reduced to a system with two
independent variables. Group classification of the reduced system is obtained.
All invariant solutions of the reduced system with the potential function W =
—qop 3 p? + Bp/3 are studied.

The last part of the thesis deals with the one-dimensional equations. All
invariant solutions of fluids with the potential function W = —ap=3p? + Bp® are
considered in this part. All representations of invariant solutions are obtained
by using the optimal system of admitted subalgebras. Analysis of the reduced
equations is provided.

In the future work, analyze the fluids with internal inertia depending on

W(p, p,S), where S is the entropy will be analyzed.



REFERENCES



REFERENCES

Bagderina, Yu. Yu. and Chupakhin A. P. (2005). Invariant and partially invariant
solutions of the Green-Naghdi equations. Journal of Applied Mechan-

ics and Technical Physics. 46: 791-799.

Cherevko A. A. and Chupakhin A. P. (2004). Homogeneous Singular Vortex. J.

Appl. Mech. Tech. Phys. 45: 209-221.

Chupakhin A. P. (2003). Invariant submodels of special vortex. Journal of Ap-

plied Mechanics and Technical Physics. 67: 351-364.

Euler N. and Wolf T. and Leach P. G. L. and Euler M. (2003). Linearizable third-
order ordinary differential equations and generalized Sundman transfor-

mations. Acta Applicandae Mathematicae. 76: 89-115.

Gavrilyuk, S. L. and Shugrin, S. M. (1996). Media with equations of state that
depend on derivatives. Communications in Nonlinear Science and

Numerical Simulation. 37: 177-189.

Gavrilyuk S. L. and Teshukov V.M. (2001). Generalized vorticity for bubbly liquid
and dispersive shallow water equations. Continuum Mech. Thermo-

dyn. 13: 365-382.

Golovin S. V. (2004). Applications of the differential invariants of infinite dimen-
sional groups in hydrodynamics. Communications in nonlinear sci-

ence and numerical simulations. 9: 35-51.

Green, A. E. and Naghdi, P. M. 1976. A derivation of equations for wave propa-

gation in water of variable depth. J. Fluid Mech. 78: 237-246.



83

Hearn A. C.(1987). REDUCE Users Manual. Santa Monica: The Rand Cor-

poration CP T78.

Hematulin A. and Meleshko S. V. and Gavrilyuk S. G. (2007). Group classification
of one-dimensional equations of fluids with internal inertia. Mathemat-

ical Methods in the Applied Sciences. 30: 2101-2120.

Hematulin A. and Siriwat P. (2008).Invariant solutions of the special model of
fluids with internal inertia. Communications in Nonlinear Science

and Numerical Simulation. 4: 1-19.

Ibragimov N. H. (1994). Handbook of Lie Group Analysis of Differential Equations.

CRC Press. 1.

Ibragimov N. H. (1995). Handbook of Lie Group Analysis of Differential Equations.

CRC Press. 2.

Ibragimov N. H. (1996). Handbook of Lie Group Analysis of Differential Equations.

CRC Press. 3.

Ibragimov N. H. and Meleshko S. V. (2005). Linearization of third-order or-
dinary differential equations by point and contact transformations.

J.Math.Anal.Appl. vol 308: 266—289.

Tordanski S. V. (1960). On the equations of motion of the liquid containing gas
bubbles. Zhurnal Prikladnoj Mekhaniki i Tekhnitheskoj Fiziki.

3: 102-111.

Kogarko B. S. (1961). On the model of cavitating liquid. Dokl. AS USSR. 137:

1331-1333.



84

Lie S. (1883). Klassifikation und Integration von gew6hnlichen Differentialgleichun-
gen zwischen z,y, die eine Gruppe von Transformationen gestatten. III.

Archiv for Matematik og Naturvidenskab. 8: 371-427.

Neut S. and Petitot M. (2002). La géométrie de 1’équation vy = f(x,y,y,y"). C.

R. Acad. Sci. Paris. 335: 515-518.

Ovsiannikov L. V. (1964). Partially invariant solutions of the equations admitting

a group. Proceedings of 11-th Int. Congr. Appl. Mech. 868-870.

Pavlenko A. S. (2005). Projective submodels of the Ovsyannikov vortex. J. Appl.

Mech. Tech. Phys. 46: 459-470.

Popovych R. O. (1995). On Lie reduction of the Navier—Stokes equations. Non-

linear Mathematical Physics. 2: 301-311.

Salmon R. (1998). Lectures on Geophysical Fluid Dynamics. New York:

Oxford University Press.

Wijngaarden van L. (1968). On the equations of motion for mixtures of liquid and

gas bubbles. J. Fluid Mech. 33: 465-474.



CURRICULUM VITAE

NAME: Piyanuch Siriwat.

NATIONALITY: Thai. GENDER: Female.

DATE OF BIRTH: October 23, 1976.

EDUCATIONAL BACKGROUND

- B.Ed. in Mathematics, Chiang Mai University, Chiang Mai, Thailand, 1998.

- M.Sc. in Mathematics, Chiang Mai University, Chiang Mai, Thailand, 2001.
PUBLICATIONS:

- P. Siriwat and S.V. Meleshko. “Applications of Group Analysis to The Three-
dimensional Equations of Fluids with Internal Inertia”, Symmetry, Integrability
and Geometry: Methods and Appications, (SIGMA) 4. (2008), 027, 19 pp.

- A. Hematulin and P. Siriwat. “Invariant Solutions of The Special Model of Flu-
ids with Internal Inertia”, Communications in Nonlinear Science and Numerical
Simulations, Accepted 5 July 2008.

- Piyanuch Siriwat. “Application of Group Classification of Three-dimensional
Equations of Fluids with Internal Inertia”, The 8th National Graduate Research
Conference 2007, Nakornpathom, Thailand.

- Piyanuch Siriwat. “Group Classification of Three-dimensional Equations of
Fluids with Internal Inertia”, The 1st SUT Graduate Conference 2007, Nakhon
Ratchasima, Thailand.

SCHOLARSHIPS:

- The Ministry of University Affairs of Thailand (MUA), 2004-2007.



