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 In this thesis, the conductance spectra of 3 types of junctions containing two-

dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC): 

2DEG/metal (2DEG/M), 2DEG/s-wave superconductor (2DEG/S), 2DEG/ 22 -ba
d -wave 

superconductor (2DEG/D) are theoretically studied. The scattering method is applied 

to obtain reflection and transmission probabilities, which are used to obtain the zero-

temperature conductance spectrum.  In 2DEG/M junction, there is a difference 

between the conductance of electron with up spin and that of with down spin. This 

difference is maximum at the voltage corresponding to the crossing of the two energy 

branches of 2DEG. The total conductance of 2DEG/M junction contains 2 

distinguished features, the distance between which is equal to the Rashba energy.  

In 2DEG/S junction, the effect of RSOC is different for different Fermi levels 

of 2DEG. When the Fermi level lies above the crossing between the two energy 

branches of 2DEG, the conductance below the energy gap is suppressed with 

increasing RSOC strength. When the Fermi level is located at or below the crossing, 

increasing RSOC strength enhances the conductance below the energy gap up to a 

critical value, but suppresses the conductance beyond this value. In all cases of the 
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CHAPTER I 

INTRODUCTION 

 

 

In the past decade, the advent of spintronics has motivated the study of spin 

transport in solid state systems (Žutić, Fabian and Das Sarma, 2004) and two-

dimensional electron gas (2DEG) with the Rashba spin-orbit coupling RSOC is 

among the systems of interest. RSOC is known to lift spin degeneracy of 2DEG. This 

system can be potentially used as a part of the spin-polarized field-effect transistor 

(Spin-FET) (Datta and Das, 1990), spin interference device (Aronov and Lyanda-

Geller, 1993), and spin filters (Koga, Nitta, Takayanagi and Datta, 2002; Cummings, 

Akis and Ferry, 2006). In general, RSOC is present in a system with structure 

inversion asymmetry (Bychkov and Rashba, 1984) as in III-V semiconductor 

heterostructure. For example, InGaAs/InAlAs, GaSb/InAs/GaSb, GaAs/AlGaAs, 

InAs/AlSb, InAl/ AlSb (Luo, Munekata, Fang and Stiles, 1988; Das, Miller, Datta, 

Reifenberger, Hong, Bhattacharya, Singh and Jaffe, 1989; Das and Datta, 1990; Luo, 

Munekata, Fang and Stiles, 1990; Nitta, Akazaki and Takayanagi, 1997; Miller, 

Zumbühl, Marcus, Lyanda-Geller, Goldhaber-Gordon, Campman and Gossard, 2003). 

The possibility of creating new devices made from 2DEG motivated this thesis 

work, which is a theoretical study of the tunneling spectroscopy of three types of 

junctions containing 2DEG with the RSOC, i.e. 2DEG/metal (2DEG/M), 2DEG/s-

wave superconductor (2DEG/S) and 2DEG/d-wave superconductor (2DEG/D). 

differential conductance spectrum 
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The effect of the RSOC on the differential conductance spectrum of each junction is 

the main focus of this thesis.  

 
 
1.1  Two-Dimensional Electron Gas with Rashba Spin-Orbit Coupling 

 The Hamiltonian that describes the RSOC in 2DEG can be written in terms of 

the 2D electron momentum ( )pv  and the Pauli matrices ( )σv  as (Bychkov and Rashba, 

1984), 

             
2

*

ˆˆ ˆ( ).
2e
pH y p
m

λσ= − ⋅ ×v v                                                       (1.1) 

Here, λ  represents the strength of RSOC, or known as Rashba parameter, *m  is 

effective mass of the electron in 2DEG and ŷ  is the direction perpendicular to the 2D 

plane. 

The eigenenergies of  2DEG with RSOC are   

2 2

*2
λ± = ±

h
h

kE k
m

                                                   (1.2) 

where 2 2
x zk k k k= = +

v
. The splitting eigenenergy in equation (1.2) can also be 

rewritten as  

2 22
2 0

0* *( )
2 2

± = ± −
hh qE k q

m m
 ,                                                  (1.3)          

where 
*

0
mq λ

=
h

 representing the RSOC strength in units of momentum. The 

eigenstates corresponding to the eigenenergy in equation (1.2) are 
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cos
2, ,

sin
2

k

ik r

k

k e

φ

φ

+

⋅

+

⎛ ⎞
⎜ ⎟
⎜ ⎟+ =
⎜ ⎟
−⎜ ⎟
⎝ ⎠

v vv
 and  

sin
2,

cos
2

k

ik r

k

k e

φ

φ

−

⋅

−

⎛ ⎞
⎜ ⎟
⎜ ⎟− =
⎜ ⎟
⎜ ⎟
⎝ ⎠

v vv
,                              (1.4) 

where ,
kφ
+ −  are the angles between the wave vector ,k + −

v
 and wave vector xk

v
 as shown 

in Fig. 2.1 (b). As can be seen in equation (1.4), the spin states in both plus and minus 

branches are not completely up or down, when ,
kφ
+ −  is away from zero.  

Figure 1.1 (a) The sketch of energy dispersion of the 2DEG with RSOC (b) The 

energy contours of the plus and minus branches. +
v
k and −

v
k are the wave vectors of the 

same zk . The thick arrows show the direction of the spins for each k
v

-state along the 

energy contours. 

 

 The density of states (DOS) of each branch for E > 0 is  

+
=± 2

0
2*

0
2

*

)/2(
1.

2
)(

qEm

qmLLED zx

h
m

hπ
0≥E ,                          (1.5) 

(a) (b) 

kE  

kx

- + -+

*

2
0

2

2m
qh

 

+
+
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xk  

zk  

+k
v

 −
v
k  

φ−
k  
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where D+  and D−  are DOS of plus and minus branches respectively, xL  and zL  are 

the dimensions  of 2DEG . The total DOS for E > 0 is  

  
*

2( ) ( ) ( ) .
π+ −= + =

h

x yL L mD E D E D E ,                                                 (1.6) 

which is a constant equal to the DOS of 2DEG without RSOC.  

For E < 0, there is only one branch (minus branch) and the DOS is  

*
0

2 * 2 2
0

( ) .
(2 / )

x zL L qmD E
m E qπ−

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠h h

    0<E                    (1.7), 

which becomes singular at 
2 2

0
*2

qE E
mλ= − ≡ −

h  or the bottom of the energy band. This 

singularity occurs due to the point-like energy spectrum for 2DEG with no RSOC 

becomes ring-like (see inset of Fig. 2.2). 

  

 

 

 

 

 

 

 

 

 

Figure 1.2 The plot of DOS of the 2DEG with RSOC. The solid line is the total DOS. 

The upper and lower dashed line are the DOS of the minus and plus branches for 

0>E respectively. The inset is the sketch of energy dispersions of the 2DEG with and 

without RSOC. 

E

k

0 0q ≠0 0q =
E

k
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The RSOC strength can be measured from the analysis of the beating pattern 

in the magnetoresistance oscillations in small magnetic field (Luo, Munekata, Fang 

and Stiles, 1988; 1990; Das, Miller, Datta, Reifenberger, Hong, Bhattacharya, Singh 

and Jaffe, 1989). It was found to be in the range of 10-12-10-7 eV.m. The strength of 

the spin-orbit coupling λ  was shown to be controlled by applying a gate voltage 

perpendicular to the 2D plane (Chen, Han, Huang, Datta and Janes, 1993; Knap, 

Skierbiszewski, Zduniak, Litwin-Staszewska, Bertho, Kobbi and Robert, 1996; Nitta, 

Akazaki, Takayanagi and Enoki, 1997).  

 

1.2  Methods and Assumptions 

        A simple method called the scattering method is used to study all the junctions. 

This method was first used by Griffin and Demer in 1971 in study of  quasiparticle 

transport of metal-insulator-superconductor (MIS) junction, where the insulator is 

represented by a square barrier potential (Griffin and Demer, 1971). Later, by 

modeling the insulating layer as a delta-function potential, Blonder, Tinkham and 

Klapwijk adopted this scattering method to calculate the current in MIS junction and 

predicted an excess current in the limit where the insulating potential is small 

(Blonder, Tinkham and Klapwijk, 1982).  Since then, this method has been used to 

study the tunneling spectroscopy of MIS junction and became well-known as the BTK 

formalism. In this approach, the junction of interest in this thesis are modeled as 2D 

infinite systems. The interface is at x = 0. The x < 0 region is occupied by the 2DEG.  

The metal or superconductor occupied the x > 0 region. The Hamiltonian of the 

system is written as 

                           ˆ ˆ ˆ= + +L RH H H ( )δSH x ,                         (1.8) 
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where ˆ
LH  is the Hamiltonian of the 2DEG with an adjustable Fermi level, RĤ  is the  

Hamiltonian of the metal and/or  the superconductor, and ( )δSH x  is the scattering 

potential at the interface ( SH  represents the strength of the barrier potential). In 

general, the effective masses of all regions are assumed to be different. Note that in 

the case of the junction containing the superconductor, one needs to consider both 

electron and hole states. Therefore, the Rashba Hamiltonian for holes is also 

considered: 

                                    
2

*

ˆˆ ˆ( ),
2

λσ−
= − ⋅ ×v v

h
pH y p
m

 

which lead to the following eigenenergies and eigenstates. 

                                    
2 2

*2
λ± = −

h
m h

kE k
m

, 

                  
sin

2, ,
cos

2

φ

φ

+

⋅

+

⎛ ⎞
−⎜ ⎟
⎜ ⎟+ =
⎜ ⎟
−⎜ ⎟
⎝ ⎠

v vv
k

ik r

k

k e  and  
cos

2,
sin

2

φ

φ

−

⋅

−

⎛ ⎞
⎜ ⎟
⎜ ⎟− =
⎜ ⎟
−⎜ ⎟
⎝ ⎠

v vv
k

ik r

k

k e .      

 
 From the Hamiltonian, one can obtain the eigenstates and eigenenergy for the 

electrons/holes in each region.  For the ballistic transport, the wave function of the 

electron in the 2DEG is the linear combination of the incoming and reflected 

eigenstates of the same energy and the momentum with the same component parallel 

to the interface. Similarly, the wave function of the electron or the quasiparticle in the 

metal or superconductor is a linear combination of all the suitable outgoing 

eigenstates. These wave functions are matched by the appropriate boundary 

conditions at the interface to obtain the reflection and transmission probabilities. 

These probabilities are then used to calculate the differential conductance of the 
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junction as a function of applied voltage. For simplicity, only the conductance spectra 

at zero temperature are considered in this thesis. The effect of finite temperature is 

expected to smear off the features in the spectra. For the junction with both kinds of 

superconductors, the effect of both the suppression of the superconducting gap near 

the interface and the proximity effect are ignored.  

 
1.3  Outline of Thesis 

Various types of junctions between these RSOC systems and other materials 

have been theoretically studied in many aspects. For instance, Matsuyama et al. 

investigated the ballistic spin transport in ferromagnet/2DEG with RSOC (F/2DEG) 

junction. They found that the spin-injection rate across the interface depends on the 

carrier density of the 2DEG (Matsuyama, Hu, Grundler, Meier and Merkt, 2001). 

Jiang and Jalil studied the heterostructure F/2DEG/F and found the insulating barrier 

at each F/2DEG interface enhances the spin-polarization of the system (Jiang and 

Jalil, 2003). They also found the spin-polarization has an almost linear dependence 

with the strength of RSOC (Jiang and Jalil, 2003). In addition to the junction with 

ferromagnetic metal, the junction with s-wave superconductor was also recently 

studied by Yokoyama et al. (Yokoyama, Tanaka and Inoue, 2006). They calculated 

the tunneling conductance of the junction in comparison with that of F/S junction. The 

main results of this work are related to the Andreev reflection, which is the process in 

which two electrons are transported across the metal/superconductor junction at a time 

(Andreev, 1964; Blonder, Tinkham and Klapwijk, 1982). It was found that in F/S 

junction, the Andreev reflection is suppressed by the exchange field causing both 

band splitting and the imbalance of up- and down-spin electrons in F. On the contrary, 
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in 2DEG/S such suppression does not occur, because the Rashba splitting never 

causes the imbalance (Yokoyama, Tanaka and Inoue, 2006). In these studies, the 

Fermi level of 2DEG is usually considered to be much higher than the Rashba energy. 

The main focus of this thesis is to theoretically study the tunneling 

spectroscopy of 3 types of junctions involving the 2DEG with RSOC, i. e., 

2DEG/metal (2DEG/M), 2DEG/S and 2DEG/d-wave superconductor (2DEG/D) 

junction. The mismatch effective mass, the insulating barrier potential at the interface 

and the level of the Fermi energy of the 2DEG are considered. 

The organization of this thesis is as follows. In Chapter II, tunneling 

conductance spectrum of 2DEG/M junction is examined. The effect of the RSOC and 

the interfacial scattering on the conductance spectrum is considered. In Chapter III, the 

tunneling conductance spectrum of 2DEG/S junction is investigated. The effect of the 

difference in effective mass is considered. Also, the effect of different Fermi levels of 

the 2DEG is included. The tunneling spectroscopy of 2DEG/D junction is addressed 

in Chapter IV. In addition to the effect of the interfacial scattering and the different 

Fermi levels of the 2DEG, the effect of the crystal orientation of the d-wave 

superconductor with respect to the normal interface is considered. Finally, the 

conclusions of this thesis are addressed in Chapter V. 

 



CHAPTER II 

2DEG/M JUNCTION 

 

In this chapter, the tunneling conductance spectrum of 2DEG/M junction is 

investigated. The energy levels of the 2DEG are assumed to be occupied up to the 

energy above the crossing of two energy branches. The effect of barrier potential and 

the RSOC on the differential conductance spectrum is examined. The work in this 

chapter is motivated by the previous work of Jiang and Jalil on the junction of 

F/I/2DEG/I/F, in which the barrier potential can greatly improves the spin-

polarization (Jiang and Jalil, 2003). 

 

2.1  Model and Method of Calculation 

The 2DEG/M junction is modeled as a 2D infinite system. The plane of the 

junction is on xz plane. The interface is at 0x = . The 0x <  region is occupied by the 

2DEG, and the 0x >  region by the metal. The insulating barrier at the interface is 

described by a delta function, )(xH Sδ , where HS  represents the strength barrier 

potential. 

The Hamiltonian of   the junction can be written as (Zulicke and Schroll,  2002) 

,2 ,
ˆ1ˆ ˆ ˆ [ ( )( ) ( ) ( )] ( ) ( ) ( )

2 ( ) 2 S F DEG F M
yH p p x p p x H x E x E x

m x
λ σ σ λ δ= − × + × + − Θ − − Θv v v v        

                                                                                                                                  (2.1) 

where *

1 1 1( ) ( )
( )

x x
m x m m

= Θ − + Θ  describing the mismatch of the effective mass (m* 

Heavside 
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is the electron mass in the 2DEG and m is the mass in the metal), )(xΘ is the 

Heaviside step function, )()( xx −Θ= λλ , and DEGFE 2,  and MFE ,  are the Fermi 

energies of the 2DEG and the metal respectively. 

 In the 0<x  (2DEG) region, the excitation energy dispersion relation is 
2 2

,2*2
λ± = ± −

h
hk F DEG

kE k E
m

               (2.2) 

The excitation energy dispersion of the system is depicted in Fig. 2.1. There are two 

equal possibilities for an incident electron: 

1) from the state with wave vector 1qv ,  where 

*
2

1 0 0 ,22

2 ( )F DEG
mq q q E E=− + + +
h

    for E > -EF,2DEG 

*
2

1 0 0 ,22

2 ( )F DEG
mq q q E E= − + +
h

            for E < -EF,2DEG 

2) from the state with wave vector 2qv ,  

*
2

2 0 0 ,22

2 ( )F DEG
mq q q E E= + + +
h

     for all E’s. 

When the incoming eigenstate is from the kE+  branch, the wave function of the 

electron from the 2DEG, for the energy above the crossing of the two branches is    

   zikxiqxiqxiq
DEG

zxxx eebebezx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=< −− 211

2

2
2

1

1
1

1

1
2 sin

cos
cos
sin

sin
cos

),0(
ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ψ ,     (2.3) 

where 
2

)2(1
)2(1

φ
ϕ = , )2(1φ  is the angle between the wave vector )2(1qv and xk as shown in 

Fig. 2.1, xq1  and xq2  are the x-components of wave vectors 1qv  and 2qv  respectively. 

b1 and b2 are the amplitudes of the two reflected eigenstates with the wave vectors 

1qv and 2qv .  
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Similarly, when the incoming eigenstate is from the kE−  branch, the wave 

function of the electron from the 2DEG for the energy above the crossing is written as 

  zikxiqxiqxiq
DEG

zxxx eebebezx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=< −− 212

2

2'
2

1

1'
1

2

2
2 sin

cos
cos
sin

cos
sin

),0(
ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ψ ,        (2.4) 

where '
1b  and '

2b  are the amplitudes of the reflected eigenstates with the wave vectors 

1qv and 2qv  respectively.  

For the energy below the crossing, both incoming eigenstates are from the kE−  

branch. Only the wave function of the electron with the incoming eigenstate 1qv  is 

modified to   

zikxiqxiqxiq
DEG

zeebebezx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=< −− 211

2

2
2

1

1
1

1

1
2 sin

cos
cos
sin

sin
cos

),0(
ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ψ .              (2.5)     

First consider the 0>x  (metal) region. In this region, the excitation energy 

dispersion relation is 
2 2

,2
= −
h

k F M
kE E
m

 and the wave function of the electron is the 

linear combination of the two transmitted eigenstates: one with spin up and the other 

with spin down. These two states have the same energy and kz.  

 

1 2

1 0
( 0, )

0 1
ψ

⎛ ⎞⎡ ⎤ ⎡ ⎤
> = +⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
x x zik x ik x ik z

M x z c e c e e ,                                         (2.6) 

where xk  and zk  are the x- and  z-component of the transmitted wave vector k
v

,  c1 

and c2 are the transmission amplitudes for  spin up and spin down eigenstates 

respectively. 

 



 
 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The upper panel shows the energy contours plot of the electron in 2DEG 

(left) and metal (right). The sketches of excitation energies of 2DEG and metal are 

shown in the lower panel. The dashed line is the line of the same E. The arrows show 

the k
v

 states of the electrons on each side with the same E.  

 

 The appropriate matching conditions for the wave functions are 

(i) Continuity of the wave function at the interface 

)0()0()0(2 ψψψ == MDEG ,                                                     (2.7) 

(ii) The discontinuity of the slope of the wave function at the interface are (Schnittler 

and Kirilov, 1993; Zulicke and Schroll,  2002)  

1q  
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x
DEG

x
M                 (2.8)      

where 2
F

mHz
k

=
h

 is the unitless parameter that characterizes the barrier strength, Fk  is 

the Fermi wave vector of the metal. 

 After the substitution of wave functions into the matching conditions, the 

following equations for incident state with wave vector 1qv  are obtained. 

 

1 2 11

1 2 12

1 1 2 2 0 1 11

1 1 2 2 0 1 12

sin cos 1 0 cos
cos sin 0 1 sin

sin cos 2 0 cos
cos sin 0 2 sin

x m x m x m x m

x m x m x m x m

b
b

q r q r k iz r q q rc
q r q r k iz r q q rc

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥+ −
⎢ ⎥ ⎢ ⎥⎢ ⎥− + + −⎣ ⎦⎣ ⎦ ⎣ ⎦

, 

                                                                                                                                  (2.9) 

1 2 21

1 2 22

1 1 2 2 0 1 11

1 1 2 2 0 1 12

sin cos 1 0 cos
cos sin 0 1 sin

sin cos 2 0 sin
cos sin 0 2 cos

x m x m x m x m

x m x m x m x m

b
b

q r q r k iz r q q rc
q r q r k iz r q q rc

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥− + − −
⎢ ⎥ ⎢ ⎥⎢ ⎥− + + −⎣ ⎦⎣ ⎦ ⎣ ⎦

,                              

                                                                                                                                (2.10)  

where 
*m

mrm = , equations (2.9) and (2.10) are for  E > -EF,2DEG and for E < -EF,2DEG 

respectively. In case of the incident state with wave vector 2qv , the following equation 

for E > -EF,2DEG and for E <  -EF,2DEG  are obtained respectively. 
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1 2 21

1 2 22

1 1 2 2 0 2 21

1 1 2 2 0 2 22

sin cos 1 0 sin
cos sin 0 1 cos

sin cos 2 0 sin
cos sin 0 2 cos

x m x m x m x m

x m x m x m x m

b
b

q r q r k iz r q q rc
q r q r k iz r q q rc

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥+ −
⎢ ⎥ ⎢ ⎥⎢ ⎥− + + ⎣ ⎦⎣ ⎦ ⎣ ⎦

,       

     (2.11) 

1 2 21

1 2 22

1 1 2 2 0 2 21

1 1 2 2 0 2 22

sin cos 1 0 sin
cos sin 0 1 cos

sin cos 2 0 sin
cos sin 0 2 cos

x m x m x m x m

x m x m x m x m

b
b

q r q r k iz r q q rc
q r q r k iz r q q rc

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥− + −
⎢ ⎥ ⎢ ⎥⎢ ⎥− + + ⎣ ⎦⎣ ⎦ ⎣ ⎦

,  

     (2.12) 

 These 44 ×  equations above are used to obtain the reflection and transmission 

coefficients and then the reflection and transmission probabilities which are defined as 

follows. 

1(2)

2

1(2)

1(2)

( , ) ( , )
r

in
B E kz

v
b E kz

v
=   ,                                             (2.13) 

                   1(2)

1(2)
2

1(2)( , ) ( , )
t

in
C E kz c E kz

v

v
=   ,                                             (2.14) 

where   
1 ( 2 )

( )
1(2) 1 ,

x x

in
x xq q

Ev
q

+ −

=

∂
=

∂h
 

1 ( 2 )

,( )
1(2) 1 + −

=−

∂
=

∂h
x x

r
x xq q

Ev
q

 are the group velocities of 

the incoming and reflected eigenstates in the 2DEG respectively, and  1
t

x kx

Ev
k
∂

=
∂h

 is 

the group velocity of transmitted eigenstates in the metal. The superscript 1(2) 

indicates the state with wave vector 1qv  ( 2qv ). The magnitude of these group velocities 

are defined as follows. 
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1
1 0 1* ( cos 2 ),in xv q q

m
ϕ= +

h    for  E > -EF,2DEG, 

1
1 0 1* ( cos 2 ),in xv q q

m
ϕ= − +

h  for  E < -EF,2DEG, 

2 2
2 0 2* ( cos 2 ) ,in x rv q q v

m
ϕ= − =

h  for all E, 

1
1 0 1* ( cos 2 ),r xv q q

m
ϕ= − −

h    for  E > -EF,2DEG, 

1
1 0 1* ( cos 2 ),r xv q q

m
ϕ= −

h    for  E < -EF,2DEG, 

1(2) x
t

kv
m

=
h , for all E. 

The conservation of probability requires   

 

               1),(),(),(),( 2121 =+++ zzzz kECkECkEBkEB                           (2.15) 

 

In the 2D system, the general expression for the current density in x-direction 

across the junction is given by          

                                                
,x z

k k
k k

J n v e= ∑                                                           (2.16) 

where kv  is the group velocities and e  is the electron charge, the electron 

concentration, 1 2( ( ) ( )) ( )kn C E C E f E= +   where ( )f E  is the Fermi Dirac distribution 

function. The current flowing to the right across junction from 2DEG to metal with 

applied voltage, V is 

                 2DEG MI →

2

1 22 ( ( , ) ( , )) ( ),
4π

= + −∫ ∫ x z k z z
L e dk dk v C E k C E k f E eV                     (2.17) 
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where L  represent the dimension of the interface. The current flowing to the left 

across junction from metal to 2DEG is  

                2M DEGI →

2

1 22 ( ( , ) ( , )) ( ),
4π

= +∫ ∫ x z k z z
L e dk dk v C E k C E k f E                              (2.18) 

Thus, the net current crossing the junction is 

                     2 2( ) → →= −DEG M M DEGI eV I I  

                         
2

2 (
4π

= ∫ ∫ x z k
L e dk dk v 1 2( , ) ( , ))[ ( ) ( )]z zC E k C E k f E eV f E+ − −       

                        
2

2 (
4 z
L e dk dE
π

= ∫ ∫h
1 2( , ) ( , ))[ ( ) ( )]z zC E k C E k f E eV f E+ − − .       

                                                                                                                          (2.19)  

The tunneling conductance of the 2DEG/M junction is the derivative of the 

current flows across junction with respect to the applied voltage  

                          2 /
2 /

( )( ) = DEG M
DEG M

dI eVG eV
dV

        .                                        (2.20)  

At zero temperature, the tunneling conductance becomes 

                         
2 2

1 22( ) ( ( , ) ( , ))
4π

= +∫h z z z
L eG eV dk C eV k C eV k ,     (2.21) 

 
2.2  Results and Discussion 

The tunneling probabilities (C1, C2) of up- and down-spin eigenstates of 

2DEG/M junction depend on the incident angle (or zk ) as shown in Fig. 2.2. It is 

found that for normal incident ( zk = 0), the transmission probabilities of spin up and 
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spin down states are equal due to the fact that for zk  = 0 the spin states in the plus and 

minus branches are completely up- and down-spin. However, when zk  is non-zero the 

tunneling probability of transmitted electron up- and down-spin are not equal and spin 

polarization can be generated. It is found that for each zk  within some energy range, 

the spin is strongly polarized as shown by the arrow-headed line in Fig. 2.2.  

The energy range where the spin polarization is large for each zk  consistent 

with the splitting of two branches at 0=xk , ),0( zkE ±  (see the inset of Fig. 2.2). This 

splitting, caused by the two dimensionality, is similar to the splitting due to magnetic 

field in the previous work by Středa and Šeba’s on the junction of two 2DEGs with 

RSOC in one dimension (Středa and Šeba, 2003).  

Fig. 2.3 contains the spectra of spin-up (G1), spin-down (G2) and the net 

conductance. The difference in G1 and G2 defines the spin polarization of the system. 

The spin polarization depends on the applied voltage. It is maximum at the bias 

voltage equal to the crossing of two energy branches. The spin polarization is not 

always increased with RSOC strength (q0) as one may expect. The difference between 

the conductance of electron spin up and spin down(G2 – G1) at eV=EF,2DEG is only 

increased with q0 until it reaches a maximum value and then steadily decreased as 

shown in Fig. 2.4.  

Fig. 2.5 shows the conductance spectra at eV= EF,2DEG as a function of barrier 

potential(z). It is found that the effect of the z on the spin-up and spin-down 

conductance at eV = EF,2DEG is different. For the spin down conductance z suppresses 

the conductance, while the spin-up is enhanced up to a critical value z* and is then 

decreased with z. Thus, the increase in the potential barrier decreases the difference 
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between the conductance of spin up and spin down electrons. These results are 

different from those of 2DEG/F junction previously studied by Jiang and Jalil (Jiang 

and Jalil, 2003).  

Fig. 2.6 shows the plots of conductance spectra at eV = EF,2DEG as a function 

of z at different values of q0. It is found that conductance is slightly enhanced within a 

range of small z and is then decreased with z.  

  The plot of conductance as a function of bias voltage for different values of 

q0 is shown in Fig. 2.7. It suggests that one can use the tunneling spectroscopy to 

measure the strength of RSOC. The distance of the two distinguished features as 

indicated in the Fig. 2.7 is equal to the Rashba energy.   
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Figure 2.2 The transmission probabilities of up-(C1) and down-(C2) spin states for 

different kz = 0 and 0.05 kF, */ mm  = 10. The horizontal arrow line indicates the 

energy range over which the spin polarization is large. The inset in the upper panel is 

the plot of the energy vs kx at a particular kz. The range of the energy between the two 

dashed line correspond to the energy range indicates by the arrow lines. 
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Figure 2.3 The tunneling conductance of up-(G1)and down-(G2) spin, the different 

between up-and down-spin conductance (G2-G1) and the total conductance (G1+G2), 

for  q0 = 0.2kF and */ mm  = 10 for z = 0 and 1. EF = EF,2DEG = EF,M for simplicity. 
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Figure 2.4 The difference of the conductance of spin-up and spin-down at eV = 

EF,2DEG as a function of  q0 for different z = 0, 0.5, 1, 2 and 3, m/m* = 10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The conductance spectra of 2DEG/M junction for a fixed q0 = 0.1kF, 0.2kF,  

0.3kF  and  0.4kF at eV = EF,2DEG. m/m* = 10  (G1, G2, G1+G2 and G2-G1 same as 

defined in Fig. 2.3) 
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Figure 2.6 The conductance as a function of z   for different q0 at eV = EF,2DEG. The 

inset shows the close up of the conductance near z = 0 where q0 = 0.6kF, m/m* = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 The conductance as a function of bias voltage   for different q0 = 0.1kF,  

0.15kF  and  0.2kF,  m/m* = 10. The arrows in the case of q0 = 0.2kF indicates the two 

features occurs at eV = EF,2DEG and EF,2DEG + λE . 
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2.3  Conclusion 

In this chapter, the tunneling conductance spectra of 2DEG/M junction are 

examined. It is found that the injection from 2DEG can generate the spin polarization 

in the metal which is caused by the two-dimensionality. The spin polarization depends 

on the applied voltage. It is maximum at the crossing of two energy branches. The 

increase in the barrier potential decreases the spin polarization and also suppress the 

conductance except in a range of small barrier, which the conductance is slightly 

enhanced. 

 The increase in RSOC strength enhances the conductance spectra. However, 

the difference between the conductance of spin up and spin down electrons is not 

increased with RSOC strength as one may expect. It is just enhanced over some range 

of RSOC strength and then steadily decreased. From the plot of conductance as a 

function of bias voltage, it suggests that one can use the tunneling spectroscopy to 

measure the strength of RSOC.  

 

 



CHAPTER III 

2DEG/S JUNCTION 

 

Recently, 2DEG/S junction was studied by Yokoyama et al. (Yokoyama, 

Tanaka and Inoue, 2006). They calculated the tunneling conductance of the junction 

in comparison with that of F/S junction. In their study, they considered only when the 

Fermi level of the 2DEG is much higher than the Rashba energy and they did not 

show explicitly the effect of the different effective mass of both sides. In general, one 

can control the Fermi level of the 2DEG by adjusting the number of carriers.  One can 

study how the lower Fermi level will affect the charge transport in 2DEG/S junctions.  

In this chapter, the tunneling spectroscopy of 2DEG/S junction is investigated. 

The Fermi level of the 2DEG will be set arbitrarily. The effect of RSOC strength, 

barrier potential and the mismatch of effective masses will be studied in details. 

 

3.1   Model and Method of Calculation 

The junction is modeled as a 2D infinite system in the xz plane. The interface 

is at 0x = . The 2DEG occupies the 0x <  region and the superconductor occupies the 

0x >  region as depicted in Fig. 3.1. The potential barrier at the interface is described 

by a delta function, ( ) ( )SHV x xδ=  where SH  represents the strength of barrier. The 

gap function is taken to be zero in the 2DEG and to be finite and independent of 

position on the superconductor, i.e. ( ) ( )k xΔ = ΔΘ  where ( )xΘ  is the Heaviside step 

function and Δ  is a constant.  
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Figure 3.1 The sketch of the 2DEG/S junction. 

In the study of 2DEG/M junction in Chapter II, only the Hamiltonian of 

electrons is used. However, in 2DEG/S junction, the Hamiltonian of hole needs to be 

included, because a quasiparticle in the superconductor is a combination of both 

electron and hole. Therefore, the SchrÖdinger equations describing the system is 

written as 

 

   

 
                                                                                                                   (3.1) 

 
  

where 0Ĥ  and ,
ˆ

RH ↑ ↓  are the Hamiltonian  of the free electron and Rashba Hamiltonian 

of electron and/or hole with spin up and spin down respectively. That is, 

0 , ,2
1ˆ ˆ ˆ ( ) ( )

2 ( ) F S F DEGH p p E x E x
m x

= − Θ − Θ − , 
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(11) (12) (11) (12)
ˆ ( ( )( ) ( ) ( ))

2
ˆ ˆ ˆ ˆR z x x z z x x zH x xp p p pλ

σ σ σ σ↑ = Θ − − + − Θ − ,   

(22) (12) (22) (12)
ˆ ( ( )( ) ( ) ( ))

2
ˆ ˆ ˆ ˆR z x x z z x x zH x xp p p pλ

σ σ σ σ↓ = Θ − + Θ −− − ,  

where p̂  is a momentum operator in 2D, *

1 1 1( ) ( )
( )

x x
m x m m

= Θ − + Θ  is the  effective 

mass of the system (m*  in 2DEG and m in the superconductor). ( , )x zψ  is a four-

component wave function ( , )

e

e

h

h

x z

ψ
ψ

ψ
ψ
ψ

↑

↓

↑

↓

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 In the superconductor, or the 0>x  region, the eigenenergies of  excitations  

are 

   22 Δ+= kkE ξ            (3.2) 

where 
2 2

,2k F S
k E
m

ξ = −
h .  The excitation energy dispersion is depicted in Fig. 3.2 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The sketch of the excitation energy of the quasipariticles in the 

superconductor 

kE

k +  
kΔ

xk
k −−
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The wave function of quasiparticle in the superconducting side is a linear combination 

of the four transmitted excitations: 

2 11

0

0 0
( 0, )

0 0

0

k k

kik x ik x ik x

S

k

k k

x x x

u u

u
x z c e c e d e

v

v v

ψ

+ −

+

+

+ −

−

−

−

+ + −

> = + +

− −

⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

0

0

kik x ik z

k

x zd e e
v

u −

−

−−

−

−

+

⎛ ⎞⎤
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥⎜ ⎟⎥⎝ ⎠⎦

,       (3.3)      

                         

where 1c , 2c , 1d and 2d  are the amplitudes of the four transmissions, and 

   2 2
2

2 ( )F
mk E E+ = + −Δ
h

, 

    2 2
2

2 ( )F
mk E E− = − −Δ
h

. 

ku  and kv  are the electron-like and hole-like quasiparticle amplitudes; and are defined 

as 

                              
2 2

k
k

k k

Eu
E

ξ

ξ

+
=

+ + Δ
,                                                             (3.4) 

                        
2 2
k

k

k k

v
E ξ

Δ
=

+ + Δ
,                                                             (3.5)                             

so that 2 2 1k ku v+ = .   

In the 2DEG or the 0<x  region, the excitation energy dispersion relation is  

2 22
2 0

0 ,2* *( )
2 2 F DEG

qE q q E
m m

± = ± − −
hh           for electrons 

and 

2 22
2 0

,2 0* *( )
2 2F DEG

qE E q q
m m

± = − ± +
hh          for holes. 
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The energy dispersion on 2DEG is depicted in Fig. 3.3(a). 

 

 

 

 

 

 

 

                                     (a)                                                           (b)   

Figure 3.3 (a) The sketch of energy dispersion of 2DEG with RSOC. (b) The energy 

contours of the electrons in 2DEG. ( +
1q and +

2q  are the x-component of wave vector 

1qv (plus branch) and 2qv (minus branch)) 

 

Unlike in 2DEG/M junction, the two-component eigenstates of the electron in 

2DEG  here the eigenstates of the 2DEG here are now four-component: 

 

          1.

1

1
1

cos
2

sin
2

0
0

iq rq e

φ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

v vv  and  2

2

2
2

sin
2
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2

0
0

iq rq e

φ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

v vv ,    for electron       (3.6) 

1qφ  
xk  

zk  

1qv  
2qv  

2qφ  

+
1qv  

kE  

xk  +
2qv  
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1.1
1

1

0
0

sin
2

cos
2

iq rq eφ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

v vv  and 2.1
2

1

0
0

cos
2

sin
2

iq rq eφ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

v vv ,   for hole         (3.7) 

where 1(2)φ  are the angle between wave vector 1(2)qv  and wave vector xk
v

 as in Fig. 

3.3(b).  

Most 2DEG systems are semiconductors and one can adjust the Fermi energy 

by adjusting the density of the carriers. In this chapter, the effect of the different 

Fermi levels in the 2DEG will be considered.  

Case 1: where EF is located above the crossing of the branches.  

Case 2: where EF is located at the crossing of the branches. 

Case 3: where EF is located below the crossing of the branches. 

In all cases, the Rashba energy is assumed to be more than the superconducting gap 

( Δ>
*

2
0

2

2m
qh ) and the gap is set to be 0.01EF.  The wave function of the excitation in the 

2DEG is different for each case. 

 

3.1.1 Case 1: EF is located above the crossing of the two branches 

In this case, the excitation energies of the 2DEG and the superconductor are as 

depicted in Fig. 3.4. The Fermi energy of the 2DEG is set to be equal to that of the 

superconductor, i. e. EF,2DEG = EF,S = EF. 
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 There are two possibilities for an incident state. 

1) From the plus branch with wave vector 1qv , where           

    
*

2
1 0 0 2

2 ( )F
mq q q E E=− + + +
h

.  

In this case, the wave function of the excitation in 2DEG can be written as  

            2 ( 0, )DEG x zψ =<

1

11
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0

0

iq xe

ϕ

ϕ
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+
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+

⎡ ⎛ ⎞
⎢ ⎜ ⎟
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⎢ ⎜ ⎟
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iq xiq x ik zzb e b e e

ϕ ϕ
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+
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−− +−

+
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⎝ ⎠ ⎝ ⎠ ⎦

,            (3.8) 

where 
2
φϕ = , 1a  and 2a  are the Andreev reflection amplitudes of the states from the 

plus and minus branch respectively, and b1 and b2 are the normal reflection 

2q+
2q−

1q+
1q−

1q+−2q+−  

kE  

xk  

kE

k +  
kΔ

xk
k −−

Figure 3.4 The sketch of excitation energy of  2DEG/S junction 
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amplitudes of the states from the plus and minus branch respectively. The x-

components of the momenta ,
1
+ −q  and ,

2
+ −q are defined as follows. 

*
2 2 2

1 0 0 2

2( ( ))F z
mq q q E E k+ = − + + + −
h

, 

*
2 2 2

2 0 0 2

2( ( ))F z
mq q q E E k+ = + + + −
h

, 

*
2 2 2

1 0 0 2

2( ( ))F z
mq q q E E k− = − + + − + −
h

 , 

*
2 2 2

2 0 0 2

2( ( ) )F z
mq q q E E k− = + + − + −
h

, 

2) From the minus branch with wave vector 2qv , where  

*
2

2 0 0 2

2 ( )F
mq q q E E= + + +
h

.  

 The wave function of the excitation in this case is  
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 (3.9)                           
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 1 'a  and  2 'a  are  the Andreev  reflection amplitudes of  the states from the plus and 

minus branch respectively and 1 'b and 2 'b   are the normal reflection amplitudes  of the 

states from the plus and minus branch respectively. 

 

3.1.2 Case 2: EF is located  at the crossing of the two branches 

The excitation energy dispersion of the 2DEG in this case is shown in Fig. 3.5 

 

 

 

 

 

 

 

 

 

Figure 3.5 The sketch of excitation energy on   2DEG side 

 

 
In this case the incident electrons are from only minus branch. The two possibilities of 

the electron wave function of the 2DEG are: 

1) (The incident is the state with the momentum 1qv ,  
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  (3.10) 

2) (The incident state is the state with the momentum 2qv ,  
*

2
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)  
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                                                                          (3.11) 
 

 

The x-components of the momenta ,
1
+ −q  and ,

2
+ −q in this case are as follows. 

*
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2 2 2
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2( ) z
m Eq q q k+ = + + −
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*
2 2 2

1 0 0 2

2( ) z
m Eq q q k− = − + − −
h

 

*
2 2 2

2 0 0 2

2( ) z
m Eq q q k− = + − −
h

 

 

3.1.3 Case 3: EF is located below the crossing of the two branches 

The excitation energy dispersion of the 2DEG in this case is shown in Fig. 3.6. 

 

 

 

 

 

 

 

 

 

Figure 3.6 The sketch of excitation energy on 2DEG side when voltage V is applied 

 

Similar to the previous case, in this case the incident electrons are also from only 

minus branch. However, the AR with wave vector 1
vq  comes from different energy 

branch for the energy above and below the crossing.  The two possibilities of the 

electron wave function of the 2DEG are: 

kx 

Ek 

1q−−  2q+− 1q+−  1q+  2q−  2q+  
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1) (The incident state is the state with momentum - 1qv ,  
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                (3.12), 

 

2) (The incident state is the state with momentum 2qv ,  
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Note that equations (3.12) and (3.13) are satisfied the energy higher than the crossing, 

while below the crossing, only the AR term with momentum 1
vq  in equations (3.12) 

and (3.13) is modified to be 
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The x-components of the momenta ,
1
+ −q  and ,

2
+ −q in this case are as follows. 

*
2 2 2

1 0 0 2

2 ( )( )c
z

m E Eq q q k+ −
= − + −

h
      for all E’s, 

*
2 2 2

2 0 0 2

2 ( )( )c
z

m E Eq q q k+ −
= + + −

h
         for all E’s, 

*
2 2 2

1 0 0 2

2 ( )( )c
z

m E Eq q q k− +
= − + − −

h
      for E> Ec  

*
2 2 2

1 0 0 2

2 ( )( )c
z

m E Eq q q k− +
= − − −

h
         for E< Ec , 

*
2 2 2

2 0 0 2

2 ( )( )c
z

m E Eq q q k− +
= + − −

h
      for all E’s. 

The appropriate boundary conditions at the interface are: 

(i) Continuity of the wave function at the interface 

     2( 0 ) ( 0 ) (0 )S D E Gx x ψψ ψ= = ==  ,                                           (3.14) 

(ii) The discontinuity of the slope of  the wave function at  the interface are 

          , 2 ,
0* *0 0

| | (2 ) (0)s e DEG e
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m mk z i q
x m x m

ψ ψ
σ ψ+ −= =

∂ ∂
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∂ ∂
 ,       (3.15)           

            , 2 ,
0* *0 0

| | (2 ) (0)s h DEG h
F z hx x

m mk z i q
x m x m

ψ ψ
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∂ ∂
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∂ ∂
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where 
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s

F S
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k

=
h

 is  the unitless 

parameter  that characterizes the strength of the barrier potential, Fk  is the Fermi 

wave vector of the superconductor.  

 As in Chapter II, substitution of the wave functions of each case, now the 88 ×  

equations (see appendix A) are obtained.  

These 88 ×  equation are used to obtain all the transmission and reflection 

amplitudes. The Andreev and normal reflection probabilities are defined as  

                1(2)

1(2)
2

1(2)( , ) ( , )
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in
A E kz E kz
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v
=  ,                                            (3.17) 

             1(2)

1(2)
2

1(2)( , ) ( , )

e
r

in
B E kz

v
b E kz

v
=   ,                                           (3.18) 

Similarly, the transmission probabilities are equal to  

                1(2)

1(2)
2

1(2)( , ) ( , )
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C E kz c E kz

v

v
=   ,                                           (3.19) 

             1(2)

1(2)
2
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D E kz d
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E kz
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=   ,                                          (3.20) 

where     
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   is the group velocity of injection electron,     
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r
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q q
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=

∂
= −

∂h
      is the group velocity of reflected hole, 
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1(2)

,( )
1,(2) 1

r
x x

e

q q

Ev
q +

+ −

=−

∂
=

∂h
     is the group velocity of reflected electron,     

1
t

x k kx

lh Ev
k −=−

∂
=

∂h
    is the group velocity of transmitted hole-like excitation, and       

1
t

x k kx

le Ev
k +=

∂
=

∂h
is the group velocity of transmitted electron-like excitation.  

The superscript 1(2) indicates the state with wave vector 1qv  ( 2qv ). The magnitude of 

these group velocities are different for each case as follows. 

1) Case1: 
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3) Case3: 
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The conservation of probability requires 1 2 1( , ) ( , ) ( , )z z zA E k A E k B E k+ +  

2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) 1z z z z zB E k C E k C E k D E k D E k+ + + + + = . 

 In the 2D system, the general relation for current density in x-direction across 

the junction is given by  

                                            
,x z

k k
k k

J n v e= ∑   ,                                                   (3.21)                          

where kv  is the group velocities a long the x-direction, e  is the electron charge and 

the electron concentration, 1 2 1 2(1 ( ) ( ) ( ) ( )) ( )kn A E A E B E B E f E= + + − − , ( )f E  is the 
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Fermi Dirac distribution function. The current flowing across junction from 2DEG to 

superconductor with applied voltage V is therefore 

2DEG SI →

2

1 2 1 22 (1 ( , ) ( , ) ( , ) ( , )) ( ).
4π

= + + − − −∫ ∫ x z k z z z z
L e dk dk v A E k A E k B E k B E k f E eV  (3.22) 

And similarly the current flowing across junction from superconductor to 2DEG is  

2S DEGI →

2

1 2 1 22 (1 ( , ) ( , ) ( , ) ( , )) ( ),
4π

= + + − −∫ ∫ x z k z z z z
L e dk dk v A E k A E k B E k B E k f E          

(3.23) Thus, the net current crossing the junction is 

                  2 2( ) → →= −DEG S S DEGI eV I I  

                          
2

1 22 (1 ( , ) ( , )
4π

= + + −∫ ∫ x z k z z
L e dk dk v A E k A E k  

                                               1 2( , ) ( , ))[ ( ) ( )]z zB E k B E k f E eV f E− − −     
  

         
2

1 22 (1 ( , ) ( , )
4π

= + + −∫ ∫h
z k z z

L e dk dEv A E k A E k    

1 2( , ) ( , ))[ ( ) ( )]z zB E k B E k f E eV f E− − −               (3.24).
   

The tunneling conductance of the 2DEG/S junction is the derivative of the current 

flows across junction with respect to the applied voltage  

                          2 /
2 /

( )( ) ,= DEG S
DEG S

dI eVG eV
dV

                                                 (3.25)  

At zero temperature, the tunneling conductance becomes 

2 2

1 2 1 22( ) (1 ( , ) ( , ) ( , ) ( , ))
4π

= + + − −∫h z z z z z
L eG eV dk A eV k A eV k B eV k B eV k ,     (3.26) 
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3.2  Results and Discussion 

 3.2.1 Case 1: EF lies above the crossing of the two energy branches    

Figs. 3.7 (rm = 1) and 3.8 (rm =10), the plots of the tunneling conductance 

spectra for different values of RSOC strength ( 0q ) are shown in the different limit. In 

the Andreev limit (low z) (Figs. 3.7, 3.8 (a)), all the spectra for finite 0q  contain peaks 

at the applied voltage equal to the superconducting gap and these peaks are enhanced 

with the increase in 0q . The conductance below the energy gap, which is mostly 

influenced by the Andreev reflection process, is suppressed as 0q  is increased. In 

tunneling limit (high z) (Figs. 3.7, 3.8 (b)), the conductance below the energy gap are 

enhanced as 0q is increased up to a critical value and one q0 is higher than this value, 

the increase in q0 suppresses the conductance. Moreover, there occurs a feature at the 

voltage less than the energy gap for mismatch effective mass is big (Fig. 3.8), it is 

obviously in Fig. 3.9 (b) when the potential barrier get bigger. The position of this 

feature depends on the magnitude of the RSOC. In fact, it slowly moves towards the 

peak at the energy gap as the strength of RSOC is increased.  

The potential barrier does not affect the peak at the energy gap. This peak is 

completely independent on potential as shown in Fig. 3.9. 
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                                                                 (b)  

Figure 3.7 The conductance spectra (normalized by hLe π2/22 ) as a function of bias 

voltage for different q0 = 0, 0.3kF, 0.5kF and  0.7kF where  rm = 1  (a) z = 0, (b) z = 1. 

 



 
 

43

 

 

 

 

 

 

 

 

                                                         

                                                                (a) 

 

 

 

 

 

 

 

 

 

 

                              (b)  

Figure 3.8 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction: 

rm = 10, (a) z = 0, (b) z = 1. The arrows indicate the feature at the voltage below the 

superconducting gap. 
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  (a) 

 

 

 

 

 

 

 

 

 

                (b) 

Figure 3.9 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

for different value of z ,  q0 = 0.2kF: (a) rm = 1 (b) rm = 10. The arrows indicate the 

feature at the voltage below the superconducting gap. 

 

In order to understand the line shapes of the conductance, one considers the 

angle averaged of normal and Andreev reflection probabilities as a function of voltage 

(see Appendix B) It is found that the conductance spectra at the voltage less than the 
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gap are influenced mostly by the AR probabilities, which involves the states with the 

same wave number as the injected electron as mentioned in the previous work of T. 

Yokoyama and coworker’s work (Yokoyama, Tanaka and Inoue, 2006)  

To clarify the effect of 0q  on the conductance, consider the conductance as a 

function of 0q  for different values of z and rm at eV = 0 (Fig. 3.10) and eV =Δ  (Fig. 

3.11). It is found that the conductance at eV = 0 is affected by both barrier potential 

and the mismatch of effective mass. As seen in Fig. 3.10 (a), when the insulating 

barrier potential is low, the conductance at eV = 0 is decreased with 0q ,  but when the 

barrier potential is high, the conductance is increased with 0q . When there is a 

mismatch in effective mass, the conductance at eV = 0 can be increased with 0q  up to 

a critical value and is decreased as 0q  gets bigger (see Fig. 3.10 (c)).  

The conductance at Δ=eV  is increased with 0q . This behavior makes it 

possible for this feature to be used to measure the RSOC strength.  

The effect of the mismatch in the effective mass and the potential barrier on 

the conductance spectra seems similar. That is, both suppress the conductance at most 

of the energies except at the energy gap, where only the mismatch suppress the 

conductance but the barrier potential has no effect on. In order to further investigate 

the effect of both factors, the conductance at zero bias voltage and at the energy gap 

as a function of barrier strength and the mismatch are shown in Figs. 3.12 and 3.13 for 

a fixed value of 0q . The ratio of the effective mass affects the conductance at both 

voltages in the same way, whereas the barrier potential only affects on the 

conductance a zero voltage but does not affect the conductance at the energy gap at 

all. 
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Figure  3.10 The 0q dependence conductance (normalized by hLe π2/22 ) at eV = 0 

where rm  = 1 (a) z = 0, 0.1 and 0.5  (b) z = 1 and 2  (c ) rm = 10, z = 0 and 1. 

(b) 

(c) 

(a) 
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Figure 3.11 The 0q dependence conductance(normalized by hLe π2/22 ) at eV = Δ   

where  rm = 1 and 10. 

. 

 

 

                                                                                               

 

 

 

 

 

Figure 3.12 The z dependence conductance (normalized by hLe π2/22 ) for               

q0 = 0.2kF, rm  = 1 and 10 at eV = 0 and  Δ . 
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Figure 3.13 The rm dependence conductance (normalized by hLe π2/22 ) for 0q  = 

0.2kF, z = 0, at  eV = 0  and Δ . 

 

    3.2.2 Case 2: EF lies at the crossing of the two energy branches    

When EF is located at the crossing of the two energy branches of the 2DEG on 

2DEG, the effect of q0 differs from when EF lies above the crossing. When the 

effective masses are the same on both sides, the increase in q0 enhances the 

conductance spectrum at all energy (see Fig. 3.14). When there is a mismatch in the 

effective mass, the conductance at the eV =Δ  is increased with q0 in both Andreev 

and tunneling limit (see Fig. 3.15). However, the conductance at eV = 0 is suppressed 

with q0 in case of Andreev limit (see Fig. 3.15(a)), while in the tunneling limit, 

conductance at eV = 0 is enhanced up to a critical value and then is suppressed with 

q0 (see Fig. 3.15(b)). 
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                                                                  (b) 

Figure 3.14 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

for different value of q0 ,  rm = 1 (a) z = 0 (b) z = 1. 
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              (a) 

 

 

 

 

 

 

 

 

 

 

                                                                                                                        (b) 

Figure 3.15 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

for rm = 10 and different value of q0  (a) z = 0 (b) z = 1 

 

To clarify more the effect of 0q  on the conductance at eV = 0, consider the 

conductance as a function of 0q  for different values of z for rm = 1 (see Fig. 3.16) and 

rm = 10 (see Fig. 3.17). It is found that in both rm = 1 and 10, the conductance at eV = 

0 is enhanced with q0 up to a critical value of each z. When q0 is higher than that 
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value, the conductance at eV = 0 is depressed with q0. For rm = 1 this critical value of 

0q  is very different for different value of z. For rm = 10, this critical value lies around 

q0 = 0.2kF-0.3kF.  

 

 

 

 

 

 

 

 

 

Figure 3.16 The conductance (normalized by hLe π2/22 ) as a function of 0q  for 

different z = 0, 0.5 , 1 and 2 at eV = 0  for  rm  = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 The conductance (normalized by hLe π2/22 )  as a function of 0q  for 

different z = 0, 0.5, 1 and  2 at eV = 0 for  rm  = 10  
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                                                        (a)                                                                                                                                     

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                       (b)        

Figure 3.18 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

for different value of z, where  q0 = 0.4kF   (a) rm = 1 (b) rm = 10    

 

 The conductance at the energy gap in this case is independent of the barrier 

potential (see Fig. 3.18). Also, it is almost independent of the ratio of the effective 

mass as shown in Fig. 3.19. Comparing Fig. 3.19 and Fig. 3.11, one can see that the 
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conductances at the energy gap as a function of q0 in both cases are different. In this 

case the dependence of the conductance at the gap on q0 is linear over a large range of 

q0. Therefore, the conductance at the energy gap can be used to measure the strength 

of RSOC more accurately in this case 

 

 

 

 

 

 

 

 

 

Figure 3.19 The conductance (normalized by hLe π2/22 ) as a function of 0q  at             

eV = Δ and different z = 0,0.5, 1, rm = 1 and 10 .  

 

 Fig. 3.20 contain the plots of conductances at eV = 0 and eV = Δ  as a function 

of barrier potential with different ratios of the effective mass for a fixed value of q0. 

The effect of potential barrier on the conductance at eV = Δ  is nil, the same as in case 

1.  The conductance at zero bias voltage is decreased with the barrier potential.  

In Fig. 3.21, the plots of conductance at eV = 0 and eV = Δ  as a function of 

the ratio of the effective mass for a fixed q0 in the Andreev limit are shown. The 

increase in the ratio of the effective mass does not affect the conductance at the 

energy gap, but at zero bias voltage, the increase in the ratio of the effective mass 
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enhance and then suppress the conductance. When comparing this case and the 

previous case, one can see that the ratio of the effective mass affects the conductance 

at eV = 0 in a different way. 

 

 

  

 

 

 

 

 

 

 

Figure 3.20 The conductance (normalized by hLe π2/22 ) as a function of z, q0 = 0.2,   

rm = 1 and 10,  at  eV = 0 and  Δ . 

 

 

 

 

    

 

     

 

 

 

 

 

 

 

Figure 3.21 The conductance (normalized by hLe π2/22 ) as a function of  rm  where  

z = 0 and 0q  = 0.2  at eV = 0  and Δ . 
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     3.2.3 Case 3: EF lie below the crossing of the two energy branches  

  The tunneling conductance spectrum in this case is similar to when EF lies at 

the crossing. That is the effect of the ratio of the effective mass and the potential 

barrier on the conductance spectrum is the same as in the previous case.  However, the 

conductance spectrum at voltages below the crossing has a feature at the crossing (see 

Figs. 3.22 and 3.23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

: for different q0 = 0.2kF,  0.3kF and 0.4kF  (a) z = 0 and  (b) z = 1. The arrows indicate 

the feature at the crossing of the two energy branches. 

(a) 

(b) 
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                                                                                                           (b) 

Figure 3.23 The conductance spectra (normalized by hLe π2/22 ) of 2DEG/S junction 

: rm = 10, q0 = 0.2, 0.3, 0.4    (a) z = 0, (b) z = 1. The arrows indicate the feature at the 

crossing of the two energy branches. 
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Figure 3.24 The conductance (normalized by hLe π2/22 ) as a function of q0 at        

eV = Δ , rm = 1 and 10. 

 

 

 

 

 

 

 

 

Figure 3.25 The conductance (normalized by hLe π2/22 ) as a function of z  for fix          

q0 = 0.2kF, rm = 1 and 10,  at eV =  0 and Δ .  
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Figure 3.26 The conductance (normalized by hLe π2/22 ) as a function of  rm  where  

z = 0 and  q0 = 0.2 at eV = 0  and Δ .     

     

3.3   Conclusions 

In this chapter, the tunneling conductance spectroscopy of 2DEG/S junction is 

investigated. The effects of RSOC strength, potential barrier, the ratio of the effective 

masses of the two sides and the different Fermi level of the 2DEG are studied. It is 

found that the effects of RSOC strength, potential barrier, and the ratio of the effective 

masses of the two sides on the tunneling conductance are different for different Fermi 

levels of the 2DEG. 

 When the Fermi level lies above the crossing of the two branches, the 

conductance over the range of the applied voltage less than the superconducting gap is 

decreased with the RSOC. The conductance over this range can be increased with the 

RSOC when a mismatch in effective mass exists and in the tunneling limit. The 
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conductance peak at the energy gap is increased with the RSOC but independent on 

the potential barrier.  

In the case where the Fermi level of the 2DEG lies at the crossing, the 

conductance spectrum below the energy gap is increased with the RSOC up to a 

critical value and then is decreased with the RSOC. The effect of potential barrier is 

similar to case 1. The effect of the ratio of the effective mass on the conductance at 

zero voltage in this case is similar to that of RSOC, but the effect on the conductance 

at the energy gap is similar to that of potential barrier. 

For the Fermi level of the 2DEG is below the crossing, the effect of RSOC, 

barrier strength and mismatch effective mass are similar to that in case where the 

Fermi level is at the crossing. The only difference is that in this case the conductance 

spectrum below the crossing and there exists a feature at the crossing. 

In all cases of Fermi levels, the conductance peak at the energy gap is 

increased with the strength of RSOC and independent on potential barrier. One can 

use the height of this peak to measure the strength of RSOC. Also, it is shown that the 

effects of the mismatch effective mass and the barrier potential are not equivalent as it 

was believed (Yokoyama, Tanaka and Inoue, 2006).  

 

 



CHAPTER IV 

2DEG/D JUNCTION 

   

In the previous chapter, the tunneling spectroscopy of the junction between 

2DEG and s-wave superconductor was considered. The s-wave superconducting gap is 

independent of direction. In this chapter, 2DEG/d-wave superconductor junctions will 

be considered. The d-wave superconducting gap has four-fold symmetry, dependent on 

the direction of the momentum.  

The crystal structures of most high temperature superconductors are tetragonal 

and their physical properties are quasi-two-dimensional. These superconductors have a 

22 ba
d

−
-wave paring symmetry (Tsuei and Kirtley, 2000). The energy gap of such a 

paring state, θ2cos0Δ  (θ  is the angle between wave vector k
v

 and the interface 

normal vector, 0Δ  is the gap maximum) depend strongly on wave vector and has a 

sign change at 
4
πθ =  and 

4
3πθ = . Due to this sign change, the existence of the 

midgap surface states, were predicted (Hu, 1994). These midgap states cause the 

presence of a peak at zero-bias voltage in the conductance spectrum of a metal/d-wave 

superconductor junction (Walsh, Moreland, Ono and Kalkur, 1991; Cucolo and Di 

Leo, 1993; Kashiwaya, Tanaka, Koyanagi, Takashima and Kajimura, 1995; Alff, 

Takashima, Kashiwaya, Terada, Ihara, Tanaka, Koyanagi and Kajimura, 1997; Wei1, 

Yeh, Garrigus and Strasik, 1998; Wei, Tsuei, van Bentum, Xiong and Chu and Wu, 

,.l;k                                          
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1998; Iguchi1, Wang, Yamazaki, Tanaka and Kashiwaya, 2000; Aubin, Greene, Sha 

Jian and Hinks, 2002). 

In this chapter, the a-b plane tunneling spectroscopy of 2DEG/d-wave 

superconductor junction will be investigated. The effect of RSOC, potential barrier, 

different Fermi levels of the 2DEG, and the junction orientation will be examined. 

 

4.1 Assumption and Method of Calculation 

The 2DEG/d-wave superconductor (2DEG/D) junction is modeled as an 

infinite 2D system. The geometry of the junction is depicted in Fig. 4.1. The potential 

barrier of 2DEG/D junction is represented by a delta-function potential of strength Hs. 

The superconducting gap is assumed to be zero in the 2DEG and to be spatially 

constant with a 
22 ba

d
−

-wave symmetry in the superconductor. That is, the 

superconducting gap depends on wave vector k
v

 as follows: 

0( ) cos[2( )]kkθ θ αΔ = Δ −v , 

where kθ  is the angle between wave vector k
v

 and the interface normal vector, and α  

is the angle between the a -axis of the 
22 ba

d
−

-wave superconductor and the interface 

normal vector. This angle specifies the orientation of the junction, for example, {100} 

junction is equivalent to 0α = . The sketch of the 
22 ba

d
−

 gap function of the 

superconductor of {100} junction is displayed in Fig. 4.2. 
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Figure 4.2 The sketch of 2 2x yd
−

- wave superconducting  gap function. Plus and minus 

sign represent the phase of the gap 

 

Figure 4.1 The sketch of the 2DEG/D junction 
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Similar to 2DEG/S junction, the Hamiltonian of 2DEG/D junction is 

 

             

                                                                                                                                  (4.1) 

where 0Ĥ  and ,
ˆ

RH ↑ ↓  are the Hamiltonian  of the free electron and Rashba Hamiltonian 

of electron and/or hole with spin up and spin down respectively. That is, 

0 , ,2
1ˆ ˆ ˆ ( ) ( )

2 ( ) F S F DEGH p p E x E x
m x

= − Θ − Θ − , 

(11) (12) (11) (12)
ˆ ( ( )( ) ( ) ( ))

2
ˆ ˆ ˆ ˆR z x x z z x x zH x xp p p pλ

σ σ σ σ↑ = Θ − − + − Θ − ,   

(22) (12) (22) (12)
ˆ ( ( )( ) ( ) ( ))

2
ˆ ˆ ˆ ˆR z x x z z x x zH x xp p p pλ

σ σ σ σ↓ = Θ − + Θ −− − ,  

where p̂  is a momentum operator in 2D, *

1 1 1( ) ( )
( )

x x
m x m m

= Θ − + Θ  is the effective 

mass of the system (m*  in 2DEG and m in the superconductor). ( , )x zψ  is a four-

component wave function ( , )

e

e

h

h

x z

ψ
ψ

ψ
ψ
ψ

↑

↓

↑

↓

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The wave function of the superconducting side is the combination of the four 

transmitted excitations. That is, 
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 ,         

                                                                                                                             (4.2)                             

where 1c , 2c , 1d and 2d  are the amplitudes of the four transmissions.  ku  and kv  are 

the electron-like and hole-like quasiparticle  amplitudes and are difined as 

                                        
2 2

k
k

k k

Eu
E

ξ

ξ

+
=

+ + Δ
,                                                  (4.3) 

                                       
2 2
k

k

k k

v
E ξ

Δ
=

+ + Δ
 ,                                                   (4.4)                              

 
so that 2 2 1k ku v+ = . E  is  the quasiparticle energy and kξ  is the electron  energy of 

state k
v

 in normal state. The relation between E ,  kξ  and ( )k θΔ   is 

 
                              )(22 θξ kkkE Δ+=                                                              (4.5) 

Since the energy range of interest is in order of meV, which is the order of the 

maximum superconducting gap and is usually smaller than the Fermi energy of the 

superconductor, so the approximation cosFk k k θ+ −= =  is used. Also, 
k k

θ π θ− +−
= − . 

 In the previous chapter, 2DEG/S junction was considered in 3 cases of different 

Fermi levels of the 2DEG, i.e., the Fermi level is (1) above the crossing of the two 

branches, (2) at the crossing, and (3) below the crossing. It was found that the last two 

cases lead to the similar results. Therefore, in this chapter only the first two cases will 



 
 

65

be examined. Also, the effect of the ratio of the effective mass on the conductance 

spectrum will not be considered. The ratio will be set to 10 throughout this chapter.  

 

4.2 Results and Discussion  

The conductance spectrum of 2DEG/D junction is dependent on the orientation of 

the junction as that of metal/D junction (Tanaka and Kashiwaya, 1995; Pairor and 

Walker, 2002). In all the following plots the conductance spectra is normalized by the 

conductance at FEeV 02.0= . This section is divided into 2 parts according to the 

Fermi levels of the 2DEG. 

4.2.1 Case 1: EF is located above the crossing    

Fig. 4.3 shows the tunneling conductance spectra of {100} junction ( 0=α ). 

Unlike 2DEG/S and metal/D junction, there occurs a feature at the voltage less than 

the maximum gap of the d-wave superconductor. The position of this feature depends 

on the magnitude of the RSOC. In fact, it moves towards the peak at the maximum gap 

as the strength of RSOC is increased. This feature is not robust against the potential 

barrier, i.e., it gets smeared out as the potential barrier is larger. This feature also exists 

in the conductance spectrum of the junction small with non-zero α (see Figs. 4.4(b) 

and 4.5). Its position moves toward zero energy as α  is increased (see Fig.4.5).  The 

shape of this feature is different from that of 2DEG/S junction due to the dependence 

on wave vector of the d-wave superconducting gap which different from that of s-wave 

superconductor. 
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Figure 4.3 The conductance spectra of 2DEG/D junction with various 0q  where 

0α = , rm =10  (a).z = 0, (b) z = 0.3 (c) z = 2. The arrows indicate the feature at eV<Δ  

(a) 

(b) 

(c) 
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Figure 4.4 The conductance spectra of 2DEG/D junction with various z , rm = 10     

(a). 0α =  (b) 
16
πα = . 

 

 

(a) 

(b) 
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Figure 4.5 The conductance spectra of 2DEG/D junction with variousα , z = 0,         

rm = 10 and 0 0.3 Fq k=   

 

As shown in Fig. 4.6, the potential barrier decreases the normalized 

conductance at the bias voltage below the maximum gap similar to that in the spectrum 

of M/D junction (Tanaka and Kashiwaya, 1995).  

 

 

 

 

 

 

 

 

 

Figure 4.6 The conductance spectra of 2DEG/D junction with various z = 0, 0.3, 1 and 

2, α  = 0, rm =10 (a) 0 0.1= Fq k . (b) 0 0.4= Fq k . 

(a) (b) 
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In the spectrum of junctions with α  away from zero, there occurs a zero-bias 

conductance peak (ZBCP), which is the signature of the surface bound states of the d-

wave superconductor (Hu, 1994). Fig. 4.7 shows the plots of normalized conductance 

vs bias voltage of the {110} (
4
πα = ) junction with various values of RSOC strength 

(q0). It is found that in the Andreev limit q0 enhances the height but decreases the 

width of ZBCP (Fig. 4.7(a)). In the tunneling limit, q0 reduces the height of the peak 

but does not affect its width (Fig. 4.7(b)). Fig. 4.8 contains the plot of normalized 

conductance for different value of potential barrier. It is found that the height of ZBCP 

is increased with z, whereas its width is decreased for small q0. When q0 is big, the 

potential barrier does not affect the width of ZBCP. 

The effect of the RSOC and the potential barrier on ZBCP in the conductance 

spectrum of junction with 
8
πα =  is the same as in that of {110} junction (see Figs. 4.9 

and 4.10). There is a peak occurring at 0 cos 2eV α= Δ , where
8
πα =  as also seen in 

M/D junction (Tanaka and Kashiwaya, 1995; Pairor and Walker, 2002). 
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Figure 4.7 The conductance spectra with various RSOC, 
4
πα = , (a) z = 0 (b). z = 2. 

The inset is the close up plot of the conductance spectra near eV = 0 

 

 

(a) 

(b) 
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     (a) 

 

 

 

 

 

 

 

   

             (b)           

Figure 4.8 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 and 

2, 
4
πα = , rm = 10 (a) 0 0.1= Fq k . (b) 0 0.4= Fq k . 
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     (a) 

 

 

                                                     

 

 

 

 

 

 

 

 

                                                             (b) 

Figure 4.9 The conductance spectra with various RSOC,  
8
πα = , (a) z = 0 (b). z = 2. 

The arrows indicate the feature at α2cos0Δ=eV . The inset is the close up plot of the 

conductance spectra near eV = 0 
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                                                                                             (a) 

 

 

 

 

 

 

 

 

 

        (b)          

Figure 4.10 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 

and 2,  
8
πα =  ,  rm = 10 (a) 0 0.1= Fq k . (b) 0 0.4= Fq k . The inset is the close up plot of 

the conductance spectra near eV = 0 
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    4.2.2 Case 2:  EF is located at the crossing 

 For the {100} junction, in the Andreev limit the normalized conductance at 

zero bias voltage is decreased with q0 (see Fig. 4.11(a)). In the tunneling limit, the 

conductance at zero voltage is increased with q0 and then later is decreased with q0 

(see Fig. 4.11(b)). Fig. 4.12 contains the plots of normalized conductance for different 

values of potential barrier for a fixed q0. It is found that for small q0, potential barrier 

suppresses the conductance at zero voltage, while for big q0, the potential barrier can 

enhance it. 

The conductance spectra for different values of q0 of junctions with 
4
πα =   

and 
8
πα =  are shown in Figs. 4.13 and 4.14. In the Andreev limit, the effect of q0 on 

ZBCP is the same as in the previous case where EF is located above the crossing, that 

is, it enhances the height of ZBCP. However, in the tunneling limit, the increase in q0 

can cause the height of ZBCP to decrease and after a critical value of q0 the height start 

to increase.  

Figs. 4.15 and 4.16 contains the plots of conductance spectra of the junction 

with 
4
πα =  and 

8
πα =  for different values of z. It is found in junction with both 

orientations that as the potential barrier is increased, the height of ZBCP is increased 

for small q0, while for big q0 the height of ZBCP is almost unchanged. 
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          (b) 

 

Figure 4.11 The conductance spectra with various RSOC, 0α = , (a) z = 0 (b). z = 1 
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   (b) 

Figure 4.12 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 

and 2, 0α = , rm =10 (a) 0 0.1= Fq k . (b) 0 0.4= Fq k  
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Figure  4.13 The conductance spectra with various RSOC,  
4
πα = , (a) z = 0 (b) z = 1            

(c) z = 2 

(a) 

(b) 

(c) 
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Figure 4.14 The conductance spectra with various RSOC,  
8
πα = , (a) z = 0 (b) z = 1 

(c) z = 2 

(b) 

(c) 

(a) 
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         (b) 

Figure 4.15 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1 

and 2, 
4
πα =  = 0, rm = 10 (a) 0 0.1= Fq k  (b) 0 0.4= Fq k  
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Figure 4.16 The conductance spectra of 2DEG/D junction with various z = 0, 0.5, 1    

and 2, 
8
πα =  = 0, rm = 10 (a) 0 0.1= Fq k . (b) 0 0.4= Fq k  The inset is the close up plot 

of the conductance spectra near eV = 0 
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4.3 Conclusions 

The tunneling conductance spectra of 2DEG/D junction show strong 

dependence on junction orientation. In junction with {100} orientation, a peak near the 

maximum gap of the d-wave superconductor is present in the conductance spectra. In 

junction away from {100}, there occurs a ZBCP, which is the signature of the surface 

bound states of d-wave superconductor (Hu, 1994; Tanaka and Kashiwaya, 1995). 

Like in 2DEG/S junction, it is found that the effects of RSOC strength and potential 

barrier on the tunneling conductance are different for different Fermi levels of the 

2DEG. 

When the Fermi level lies above the crossing of the two branches, there occurs 

a peak at finite bias voltage but less than the maximum gap in {100} junction. The 

position of this feature depends on the magnitude of the RSOC. However, this feature 

is not robust against the barrier potential, i. e. it disappear when the barrier potential is 

in the tunneling limit. The normalized conductance at the bias voltage below the 

maximum gap is decreased by the potential barrier. In the junction with 
4
πα =  and 

8
πα = , RSOC enhance the height but decrease the width of ZBCP in Andreev limit. In 

the tunneling limit, RSOC reduce the height of the peak but does not affect its width. It 

is found that the height of ZBCP is increased with the barrier potential, whereas its 

width is decreased for small RSOC. When RSOC is big, the barrier potential does not 

affect the width of  ZBCP. 

 In the case where the Fermi level of the 2DEG lies at the crossing, for the 

{100} junction, the normalized conductance at zero bias voltage is decreased with 
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RSOC in the Andreev limit. In the tunneling limit, the conductance at zero bias voltage 

is increased with RSOC and then later is decreased with RSOC. It is found that for 

small RSOC, potential barrier suppress the conductance at zero bias voltage, while for 

big RSOC, the potential barrier can enhance it. In the junction with 
4
πα =  and 

8
πα = ,  

the effect of RSOC on ZBCP in Andreev limit is the same as in the case where Fermi 

level lies above the crossing, that is, it enhances the height of ZBCP. However, in the 

tunneling limit, the increase in RSOC strength can cause the height of ZBCP to 

decrease and after a critical value of RSOC the height start to increase. It is found in 

the junction with both 
4
πα =  and 

8
πα =  orientations that the barrier potential 

increases the height of ZBCP for small RSOC, while for RSOC is big the height of 

ZBCP is almost not affected. 

 



CHAPTER V 

CONCLUSIONS 

 

 In this thesis, the tunneling conductance spectra of 2DEG/M, 2DEG/S and 

2DEG/D junctions are theoretically investigated. The effect of RSOC and the 

potential barrier on the conductance spectrum are examined in detail. For the 

conductance spectra of 2DEG/S and 2DEG/D junctions, the effect of Fermi level of 

2DEG is also considered. 

For 2DEG/M junction, it is assumed that the Fermi level of 2DEG is much 

higher than the Rashba energy.  The results for the lower Fermi level can also be 

obtained by be shifting the zero voltage according to the Fermi level. It is found in 

2DEG/M junction that the injection from 2DEG can generate the spin polarization in 

the metal. The spin polarization depends on the applied voltage. It is maximum at the 

crossing of two energy branches. The increase in the barrier potential decreases the 

spin polarization and also generally suppresses the conductance. As for the RSOC 

strength, it enhance the conductance, but does not generally enhance the spin 

polarization. From the plot of conductance as a function of bias voltage, it suggests 

that one can use the tunneling spectroscopy to measure the strength of RSOC.  

For 2DEG/S junction, the effect of RSOC, the mismatch effective mass, the 

barrier strength and the Fermi level of the 2DEG on the tunneling conductance is 

investigated. It is found that the effect of RSOC strength, potential barrier, and the 

ratio of the effective masses on the tunneling conductance are different for different    

Fermi levels. When the Fermi level lies above the crossing of the two branches, the 
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Fermi levels. When the Fermi level lies above the crossing of the two branches, the 

conductance over the range of the applied voltage less than the superconducting gap is 

decreased with the RSOC. The conductance over this range can be increased with the 

RSOC when the mismatch in effective mass exists and the potential barrier is in the 

tunneling limit. The conductance peak at the energy gap is increased with the RSOC 

but independent on the potential barrier.  

In the case where the Fermi level of the 2DEG lies at the crossing, the 

conductance spectrum below the energy gap is increased with the RSOC up to a 

critical value and then is decreased with the RSOC. The effect of the potential barrier 

is similar to that in the previous case. The effect of the ratio of the effective mass on 

the conductance at zero voltage in this case is similar to that of the RSOC, but the 

effect of the ratio on the conductance at the energy gap is similar to that of the 

potential barrier. 

For the Fermi level of the 2DEG is below the crossing, the effect of RSOC, 

barrier strength and mismatch effective mass are similar to that in case where the 

Fermi level is at the crossing. The only difference is that in this case there exists a 

feature in the conductance spectra at the crossing. 

In all cases of Fermi levels, the conductance peak at the energy gap is 

increased with the strength of RSOC and independent on barrier potential. One can 

use the height of this peak to measure the strength of RSOC.  

The tunneling conductance spectra of 2DEG/D junction show strong 

dependence on junction orientation, which is characterized by the angle α  between 

the a-axis of the superconductor and the direction normal to the interface. In junction 
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with {100} orientation )0( =α , a peak near the maximum gap of the d-wave 

superconductor is present in the conductance spectrum. In junction away from {100}, 

there occurs a ZBCP, which is the signature of the surface bound states of d-wave 

superconductor (Hu, 1994; Tanaka and Kashiwaya, 1995). Like in 2DEG/S junctions, 

it is found that the effect of RSOC strength and potential barrier on the tunneling 

conductance are different for different Fermi levels of the 2DEG. 

When the Fermi level lies above the crossing of the two branches, there occurs 

a peak at finite bias voltage but less than the maximum gap in {100} junction. The 

position of this feature depends on the magnitude of the RSOC. However, this feature 

is not robust against the barrier potential, i.e. it disappears when the potential barrier is 

in the tunneling limit. The normalized conductance at the bias voltage below the 

maximum gap is decreased by the potential barrier. In the {110} junction, RSOC 

enhance the height but decrease the width of ZBCP in the Andreev limit. In the 

tunneling limit, RSOC reduces the height of the peak but does not affect its width. It is 

found that the height of ZBCP is increased with the potential barrier, whereas its 

width is decreased for small RSOC. When RSOC is big, the potential barrier does not 

affect the width of ZBCP. 

 In the case where the Fermi level of the 2DEG lies at the crossing, for the 

{100} junction, the normalized conductance at zero bias voltage is decreased with 

RSOC in the Andreev limit. In the tunneling limit, the conductance at zero bias 

voltage is first increased with RSOC and then later decreased with RSOC. It is found 

that for small RSOC, barrier strength suppresses the conductance at zero bias voltage, 

while for big RSOC, the barrier strength can enhance it. In the {110} junction, the 

effect of RSOC on ZBCP in Andreev limit is the same as in the case where Fermi 
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level lies above the crossing; that is, it enhances the height of ZBCP. However, in the 

tunneling limit, the increase in RSOC strength can cause the height of ZBCP to 

decrease and after a critical value of RSOC the height start to increase. It is found in 

the {110} junction that the barrier strength increases the height of ZBCP for small 

RSOC, while for RSOC is big the height of ZBCP is almost not affected. 
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APPENDICES    
 



APPENDIX A 

8 × 8 EQUATIONS OF 2DEG/S JUNCTION 

In this appendix, the 88 ×  equations for the reflection and transmission 

amplitudes of each case of the 2DEG/S junction are written in details. 

1) case1: EF is located  above Ec 

1 1 2 2 1 1 1

1 1 2 2 2 2 1

1 1 2 2 2 2

1 1 2 2 1 1

sin cos cos

cos sin sin

sin cos 0

cos sin 0

k k

k k

k k

k k

b b c u d v

b b c u d v

a a c v d u

a a c v d u

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

+ + +

+ + +

− −

− −

+ − − = −

− + − − =

− + − − =

− − + + =

 

1 1 1 2 2 2 0 1 0 1 1 1

1 1 1 2 2 2 0 2 0 2 1 1

1 1 1 2 2 2 0

sin cos ( 2 ) ( 2 ) cos

cos sin ( 2 ) ( 2 ) sin

sin cos ( 2

m m F m k F m k m

m m F m k F m k m

m m F

q r b q r b k ik z q r c u k ik z q r d v q r

q r b q r b k ik z q r c u k ik z q r d v q r

q r a q r a k ik z q

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

+ + + + + − + +

+ + + + + − + +

− − − − +

+ + + − − − + =

− + + + + − − − = −

− + + + 2 0 2

1 1 1 2 2 2 0 1 0 1

) ( 2 ) 0

cos sin ( 2 ) ( 2 ) 0
m k F m k

m m F m k F m k

r c v k ik z q r d u

q r a q r a k ik z q r c v k ik z q r d uϕ ϕ

−

− − − − + −

− − − =

+ − + − + − + =
 

The above 88 ×  equations are defined for the incident states from the plus branch.  In 

case of incident states from the minus branch, only inhomogeneous term of the above 

equations is modified. That is, the right hand side of 88 ×  equations 

become ( )2 2 2 2 2 2sin , cos , 0, 0, sin , cos , 0, 0m mq r q rϕ ϕ ϕ ϕ+ + + + + +− − . 

2) case2 : EF is located  at Ec 

1 1 2 2 1 1 1

1 1 2 2 2 2 1

1 1 2 2 2 2

1 1 2 2 1 1
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− + − − =

− − + + =
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sin cos ( 2 ) ( 2 ) cos
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In the same way, these equations are defined for the incident states from plus branch.  

For incident states are from the minus branch, only inhomogeneous terms are 

modified. That is, the right hand side of 88 × equations become  

( )2 2 2 2 2 2sin , cos , 0, 0, sin , cos , 0, 0m mq r q rϕ ϕ ϕ ϕ+ + + + + +− −  

1) case3:  EF is located  below Ec 

3.1. For  E < Ec 

  

1 1 2 2 1 1 1

1 1 2 2 2 2 1

1 1 2 2 2 2

1 1 2 2 1 1
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cos sin sin

sin cos 0

cos sin 0

k k

k k

k k

k k

b b c u d v

b b c u d v

a a c v d u

a a c v d u

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

+ + +

+ + +

− −

− −

+ − − = −

+ − − = −

+ − − =

− − + + =

 

1 1 1 2 2 2 0 1 0 1 1 1

1 1 1 2 2 2 0 2 0 2 1 1

1 1 1 2 2 2
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− + − + − + − + =
 

The above 88 ×  equations are for the incident states with momentum - 1qv .  For the 

incident states with momentum 2qv , inhomogeneous term of the above equations is 

modified. That is the right hand side of 88 ×  equations become  

( )2 2 2 2 2 2sin , cos , 0, 0, sin , cos , 0, 0m mq r q rϕ ϕ ϕ ϕ+ + + + + +− −  

3.2. For E > Ec 
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The above 88 ×  equations are for the incident states with momentum 1qv . For the 

incident states with momentum 2qv , inhomogeneous term of the above equations is 

modified. That is the right hand side of 88 ×  equations become  

( )2 2 2 2 2 2sin , cos , 0, 0, sin , cos , 0, 0m mq r q rϕ ϕ ϕ ϕ+ + + + + +− − . 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX B 

AVERAGE TUNNELING PROBABILITIES  

In this appendix, the plots of the angle average of the Andreev reflection (A1, 

'
1A  A2 and '

2A ) and normal reflection (B1, '
1B , B2 and '

2B ) probabilities of 2DEG/S and 

2DEG/D junctions as a function of energy are shown. The left (A1, A2, B1 and B2) and 

right ( '
1A , '

2A , '
1B  and '

2B ) panels are the reflection of an incoming electron from plus 

and minus branches respectively. Note that the energy is in unit of the Fermi energy of 

the superconductor. The s-wave energy gap and the energy gap maximum of d-wave 

superconductor are set to be one hundredth of the Fermi energy. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure A1 Average tunneling probabilities of 2DEG/S junction (case1) for rm = 1,      

z = 0,Δ= 0.01EF 
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Figure A2 Average tunneling probabilities of 2DEG/S junction(case1)  where rm = 1,       

z = 1, Δ  = 0.01EF. 
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Figure A3 Average tunneling probabilities of 2DEG/S junction (case1) where rm = 

10, z = 0, Δ  = 0.01EF. 
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Figure A4 Average tunneling probabilities of 2DEG/S junction (case1) where rm = 

10, z = 10, Δ= 0.01EF. 
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Figure A5 Average tunneling probabilities of 2DEG/S junction (case2) where rm = 1,      

z = 0, Δ  = 0.01EF. 
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Figure A6 Average tunneling probabilities of 2DEG/S junction (case2) where rm = 1,      

z = 1, Δ  = 0.01EF. 
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Figure A7 Average tunneling probabilities of 2DEG/S junction (case3) where rm = 1,      

z = 0, Δ  = 0.01EF. 
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Figure A8 Average tunneling probabilities of 2DEG/S junction (case3) where rm = 1,      

z = 1, Δ= 0.01EF. 
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Figure A9 Average tunneling probabilities of 2DEG/D junction (case1) where rm = 

10, z = 0, α  = 0, Δ= 0.01EF. 
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Figure A10 Average tunneling probabilities of 2DEG/D junction (case1) where rm = 

10, z = 1, α  = 0,Δ= 0.01EF. 
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Figure A11 Average tunneling probabilities of 2DEG/D junction (case1) where rm = 

10,  z =  0, α  = 
4
π , Δ  = 0.01EF. 
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Figure A12 Average tunneling probabilities of 2DEG/D junction (case1) where rm = 

10, z = 1, α  = 
4
π , Δ  = 0.01EF. 
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Figure A13 Average tunneling probabilities of 2DEG/D junction (case2) where rm = 

10, z = 0, α  = 0,Δ= 0.01EF.  
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Figure A14 Average tunneling probabilities of 2DEG/D junction (case2) where rm = 

10, z = 1, α  = 0,Δ= 0.01EF. 
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Figure A15 Average tunneling probabilities of 2DEG/D junction (case2) where rm = 

10, z = 0, α  = 
4
π , Δ  = 0.01EF. 
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Figure A16 Average tunneling probabilities of 2DEG/D junction (case2) where rm = 

10, z = 1, α  = 
4
π , Δ  = 0.01EF. 
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