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AUMT
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Wuaums ﬁﬂJﬂﬁLﬂf&@HWHﬁﬂ@ﬂ%Hﬂﬂi&i’N (delay partial differential equations) NUANYUL

(x,t)+u(x,t)%l-(x,t) =G(u(x,t),u(x,t—r)) (1)
X

L% [+%) ( -
TndiReaRuduaums aumsveauesines (Burger equation) Haza@un1s KdV (Korteweg-de
. . 2 g P o 22 s A qu a ¢
Vries equation) Fuilugumshgnihmdnmlasass uaz dszgna iiveldlumsianed
4 a a aa o 3 do o { <
UnngmseisssunaluFaidndvatedn esdesilanduia ¢ fdsingluaumaiiulyl
9 v
1 Ay A o a 4 . .
ldedranarnvats nuiseguil IdinmsminamasTing 12y (analytical solutions) VYIENMS
o :/l 1 o v w v A o
1) wazgdwunlszaniavuaiiulu 1dueailadduia ¢ ualesdieanududouvese
4
ms3 o ldmmz lunsdifendu ¢ Juegiudnls ux,r—7) Wosdunlsiden waznsdl
G (u(z,t — 7),u(z,t — 7)) = glu(z,t — 7) — u(®,t — 7)) + H(w(z,t — 7))

4 o @ Y] [ o o o
die g Wuilsndntales ¥es ulx,r—1)—u(x,n) waz H duiledsuiialag vos ulxr)



Abstract
Equation

%(x,t)+u(x,t)%(x,t)=G(u(x,t),u(x,t—r)) €]

is a delay partial differential equation with arbitrary functional G . The equation is similar to
Burger’s equation and KdV (Korteweg-de Vries equation) which are studied in many fields of
Physics. By the arbitrariness of he functional &, its solutions and the classification of them are
presented in this report. However, the complexity of problem restricts to be able to show only the
case G depends on only u(x,f—7) and the case

G (u(z,t — 7),u(z,t — 7)) = g(u(z,t — 7) — u(z,t — 7)) + H(u(z,t — 7)),
where ¢ is an arbitrary functional of u(x,z—7)—u(x,7) and H is an arbitrary functional of

u(x,t).
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1. iNuazvianms

a o d =) 2 . . . . & a
ﬁumsmaqwuﬁﬂ@wuﬂﬂimq (delay partial differential equation - DPDE) &43a1n151s5239 7 > 0 [2]
ou

Ju
(1.1 —(z,t) + u(z,t) —(x,t) = G (u(®,t ~ 7), u(z,t))
at Ox
Huaumsiidnvaz IndiRsaiuiuaumsveaussiaes (Burger equation) Laza1A1s KV (Korteweg-de
. . & =iq 9 a o o o . A

Vries equation) FutlugumsnidlumseFunelsingnissinsuensdivedms (rarefaction gas) [1] 1o
AnuazaIn izasadeuaums (1.1) ik 1dlug
(1.2) u, +uu, = G(u",u),
A r =2 =< A v g1 o A
o u” WINeta u(z,t —7), u MaNeds u(z,t) uaz u,, u, NMYtEYNUTIosueIAus lidase u
Weuduaulsdase z uag ¢ Al

A Y @ 1 [ o 4 a ) Y o - a 4

iesngaumsaInauuaunmisninailsziy Milvdumssinissinamasiingizv

: : o o a 4 a
(analytical solution) HUINNWHIRE TN NNYTZYRA 1T luMTIHamasIATIZHYDIaUMTIT
s < ot =Y d . a A 1A
oyiut lanae Mylszynald ngudmsze (group analysis) [8,9,10] TasuulAanee 1¥nguinnzinma
=) v & a ~ ] a W 3 qgj a, =
magvoaumMsFeywusaial sz Il liuu uazgnsiusmunaauazianuiutuaeudd il wa.
v
=1 v a Qs o o ° . .

2546 [5,6,71 uenvninguimszHisaunsogninmlszgnd 199 wunszian (classification) Yo aau

nstBeRus lagRnsanangluuuvewaman 1

Y ¥ oa d a w d
2. matszgnalingudiinseiinamasvesaum sy WS

Taonquivesngquinsizd  iseziingen  @enas  (symmetry) Gefmemaulas  (wansformation)
0 UxA = Q fidwamasvosaumsSaeyius i onamasniwosaumadenty Tas 0
Uiglvesdunls (z,t,v) uaz A ¢ R uvnaumnasseuyagud tdmualddunls ¢ dumaines
vosmsulas @ Fudegadauls (ztu) lfeedudsing (7,7,7) @udslnifnsedluaady)
wlddanse o(z,t,ue) = @,4,u) 150 o, (3,t,v) = (Z,1,T) UNUANUHINLRINAT

way

wavesilatdu o, axliguaniadiu ntjum5uﬂm‘mi"|ﬁma§a?;mmmﬂ%g§i Q (a one-parameter
transformation group of space Q) 51ama’?ﬂsluL%@@T@ﬂdnﬁﬂmﬁuﬁﬁ@iawﬁ [7,8,9,10]

1) ¢o(z,t,u) = (z,t,u) dwmiunne (z,t,u) € Q;

2) @, (gpaz (z,t, u)) =, .. (z,t,u) SMIVNDY €,6,,6 + &, € A wag (z,t,u) € Q;

3) 8 @, (z,t,u) = (z,t,u) SWsuNNY (2,t,u) € Q,ud2 e =0.
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@ g =1 —_ - —_ u °
dynsaiae Uil T = o%(z,t,u;6),t = ' (z,t,u;¢),T = 0" (z, tuze)  aansosiunlyldlasian
NNEREINUT @, (2,t,u) = (T,%,7)
NnuRaTeAY ensaiiumsulasiunls o AnaddseIuazeyiug Mdegluztuuuvesdunls
Tn'ldfe ©° = w(z,t — 7) waz Uz = 0u /9T, u: = Ou /It MWAIAY
d‘ 1 =Y a o o o 9 a 1 dy
ms¥ou Teaszninduinas uay aumsFeyiuseialsslnssi lamunuifade 11
fnsanaumsieyiusdesriiailszislag
(2.1) F(z,t,u,u”,u,,u,) =0
A @ o'civ a o o Y & o a [ 4 o o
aumsFeyiuttvzidhusadmiugaduls (z,t,u) FuiluramasvosaumsiFeoyiug vazdmiy
(Y —_— T — & 4 @ ' 9/ & a o J
waduls (z,4,7) 3 19anmsulainamasdina nAIeauuIns FEINAIRaguoIa NN 1IE0 YIS
@ a o A a A \ & = @ a o d
.1) Tlfwamasvesaumsifeain wie Fendnod1anilad auanasBegnsessulagaunsid yWHE
(2.1) (symmetries admitted by equation (2.1) ) iilaunumgadinlsdinanasluaumsFeyius fagi
a @ o o 7 A v —_ T — s R —
Taums 2.1) dussede unlfewiutvesaums 2.1) Adwls 7,7, uag oywus s, u thoy
o/ a I'd 9 =] I'd
fuwisiimes ¢ doatinuilugud

8F(§’E’E’T’EE’EE)I = XF(z,t,uu ,u_,u )l =0
86 [ I ? Y e t (21)
e=0,(2.1)

daduiiums X gatowdsll X = (¢ —u, & —un)d, + (" —u & —un")d, +¢*0, +¢"0,,

(2.2)

&
o

x t U
(1) = 225 (a1, 030), m(e by 0) = 22 (2,8,50), (b w) = 22 (3, 1,250),
Oe Oe Oe

=¢zt—mu)n =nlzt—7u),( =zt —7,u"),
¢* =D, (¢ —ué—un),¢" =D, (¢ —wg—un),
D,=09,+u0, +v0d,+u,0, +u,0, +...,
D, =0, +u0,+u/0, + unaw +u,0, +..y
Sendmsuiiums ¥ 1 Mnesudandiniiudvesd-uinnduduuutiald (¢ canonical Lie-Bicklund
infinitesimal generator) [3] 1aZISENANNS (2.2) NANMINYUA (a determining equation (DME)) Lﬁmﬁ'w

k4 — o .
XF(z,t,u, uT,uz,ut)Lz , =0, auiusznanMdnemmua X gnsedsy (admitted) Iagaums (2.1)
W30 AU (2.1) 59950 (admits) AIAUTUNT X
nguRvesd (89,101  nanihdduiiunmsdinanszautisnuuniadeniis  (one-to-one
v Y, o o a = Y, o Y 0
correspondence) MUANINAT HuAsd A UTUMS X 18 ifwawnsomauinas1d vazluiues

s v 9 9 [~ w o A = Y v ow
LﬂEJ’JﬂLlﬂ'lﬁ'lﬁ'lﬂﬂﬁﬂ‘ﬁ1ﬁﬁllﬂﬁiblﬂ 15103 ANTOVINIAUUUNT X vlﬂlclfuﬂu



a 1 A EL =Y W o 1
ummmmmmmjnmmwwiumamwamawmﬁuﬂﬁmauwu'ﬁ (2.1) a2 i lémmamasuod
a o & ar ] 1 ' g @ 1 1 A o
ﬁ‘JJﬂﬁL"]Nﬂ‘ngu‘ﬁﬂ\iﬂm’ﬂﬂWﬁfl umzmmmmﬂm%u“bmamm Enuas & mﬂﬁwﬂgiuﬁuﬂwiﬂwwuﬂ
d' £y [ o = o~ w Y -] ~a LY
(2.2) HAZIUBIAIY AIAUUUNT X ANYANUAAUUUMTLUURVY (a classical infinitesimal generator)[9]
o EL - a Y L4 ~ 4 =
m‘lﬁ’mmmﬂizqm%ﬁmymmﬁumimauwuﬁ LAY N15UATIZY (analysis) VINAMABVDITUNTILIN

v a A
DUNUT (2.1) TagN 1T RIHAMAIYDITUNTUALTNINDTIAAN

o do_dt _du

& m C
3. wamammaumiﬁaauﬁuﬁ p» Z (%0 +ulx, f) (x £)=G(u(x,1-7))

o roAa [
Tﬂﬂmiﬂszqﬂﬁﬁl%’ﬂqmmﬂwmwamaﬂﬂlmaumﬁmauwu‘ﬁ Sl ansavgumInvue

YDAV
ou ou

3.1) —&—(x,t) +u(x, t)—a—x(x,t) = G(u(x,t—z'))
1aTagN1521910 Y[ut +uu, —G(”T’”)L,zc(um_uux = 0 wazaumsimuai idAe
. WG (w [n—n )= +& ) ru i +uln +nG-E]-66 =6 +c),

+6'(G" [ —n]~¢") =G, ~Gun, +n, () +ul +G =0
i
€ = £(x,1,u), & = E(x,t —T,u"),n=n(x1u),10" —TI(Xf Tu'),C= C(xtu)( =((x,t—T,u"),
=2 et = Lot & = G, =2 = L., = Gt
¢, :—C(xtu)c ——£(xtu)§ ——Q(xtu)uawG G(u(x,t—zT))

°lumimmﬂaﬂw'lummm Epuaz £ 19198 N X, 2,0, u” U, U, Fugaalsdaselan i
ainsoaanougvesduns (3.2) aDINY
(3.3) §I(G'uT—G>EO,
Y ﬂ ] o

wagldn € =Ex+&,n=mn,¢ = §u vwag £,6m b ua1nIdalas
3.1 1AR31MA (kernel)

' 1< o @ =) o A dau o =& ddy
nosua Wuaueduasdmiuaumssoynunie G Hansutalas salunsaill daums (3.3) W

Fursel@idomacdy ¢ Henfugud Fohldldh & waz Sunaialan waz ¢ Sauilugud



° i a a a o v odx dt dut o
fmuald £=C, uazy = C, oRnsanaumsuausame’aaniliid Yoy Tagngui
1 2

unveanguims iz ifidn faidutalan ves (u,Cyz — Cit) wlpuamiaiiumacdiineldid
TWda (manifold) FagnsmualasaumaFiewius G.1) uaz Taengufunuesmsdnsizdilin
awnsadoudunls u Weglugivesiladdulan ves Gz — Ot 18 ufe w = f(Cyz — Cyt) uaz
mdt I ugliunvesnamasvosaums (.0 Fuilounuasluaumsdandnn sziludasaunsds
aufusesyinllszis duaumsdeywusasiaflsdduiia (Functional Ordinary Differential Equation -

FODE)
vy GO+ C))
rO==ro-c

o 6 = Cyx —Ct
3.2 mmmmmmma%ma (Extension of Kernel)
AMAVIBUDARDTIUA ﬂmsﬁqwmmﬁummié’{m%”uauﬂm%muﬁuﬁxﬁa G duilnfniammeuns
Harduia
wund G(u’) = ku” Tas k dumasdalaq agiifaums 3.3) duads dwmiunsdi ildisn
arduinswm'1dfe € =&x 6, n=n.¢=Eu o &.6,n, Hutasnlan dmiunsdd mee
AuNsomamaseIauMIFeyius 14 2 suuuudio
32,1030 77, =0

ﬁWﬂ%Uﬂ’iﬁﬁ%Lﬁ@ﬁ1Nﬁma8J"U’ENZ‘TIJﬂTiLLﬂLLSﬂL%ﬂ?ﬁaﬂLLaxﬁlﬂgﬂﬁuﬂWi vz 1471
u=(z+O)f(t) o C Fumasialan uaz £ Huilitsulan vewtuds ¢ Wunamasvesaruns
(.1) wazwlasagums 3.1) WeglugilvesaumaFeoyiusanianlsy3s (Delay Ordinary Differential
Equation - DODE)

£1(0) = kf(t = 7) ~ [FO

3220308 73, 20

f‘?m%’uﬂﬁﬂﬁyxﬁamwamaﬂmmaum'suﬂuﬁmma?aﬁmmz%’@gﬂaums vz 1471
u=e"f((x+C,)e ™) o C,,C, dumnsialan waz £ duiladdulan Puramasvosaunts
3.1) uazmtlasauns 3.1) Wegluglvesaumadioyius auigilanduia
C.f(¢) K (e7"9)

f(¢) - 71¢

()=

o ¢ = (z + C,)e



4. Namaﬂmmaumsﬁaaqﬁuﬁ %(z,t) + u(a:,t)gy—(x, t) = G (u(z,t — 7),u(=,t))
T

AUNTNIRUAVDIAUNT

Ju Ju
4.1) —5;(:@15) + u(m,t)-a—m—(m,t) = G (w(z,t — 7),u(z,1))

aunsam IdTaewnsanan X (u, + uu, — G (v, u)) =0 wazvoaannuiinaluns

u,=G(u" u)~uu,

A wimuald  w, =G —uy, Sedawald  u, = u,C, +u G, — (u,) — uu,,
u, = u,G, +u/G —uu, —uu, Hazu =G —u'u], e ¢ = G uwm),u" = u(z,t—27),
u, =u(z,t—7), u, =u,(r,t—7)
aumsimuaf idainnisfunw fie

w Gy [~ ")+ & —&]+u, [uln, +nu+0,6) - (& + Eu+ EG) + (]

~G(n, +nu+nG)+ G [T —n)— (] -GL+ ¢ +CGu+(G=0
MMIANAmRamas lasnanmsReItudlecadeduy Mldla

4.2)

4.1 ne51ua
) @ ddy as 3 4 1 o 4
dwsunsaill namasinailu u = f(C,z — Cit) e C, waz C, Wumnsialag uazilioumuasly

aums (4.1) Mldulasaumsananideglugdaumsdeyiuiadyilsddusia

f|(9> _ G(f(@ + Cﬂ"),f(@))
CQf(e) - Cl

?

e 0 = Gz — Cit.

4.2 MAVNBVDIUADIIUA

A 4 @ 9/ ° Y a k4 Y = d o a

WieedlenusuFouvetaums midawisadmisiminamas ldamwizlunsdiveadladvuria
4 I Su w IS dou w

Gu'u)=g(u—u")+ H(u) Wo g dhuflsnduniales vos u—u way H duilsnduiialas

U3 U

421050 G (u",u) = g(u —u") + H(u)
o @ ddy A 3 ' W <
dmiunstiil u = f(Cyz — Cit) e C, wag C, dumawinlag dunamasvesaums 4.1) uazila

aums (4.1) Weglugl

9(f(0) — f(0 + C)) + H (f(6))
sz(g) - Cl

J'(0)=

?

iilo 0 = C,x—Cit.



422058 G (u”,u) = C,(u— v ) + Hu® + Hyu + H, (il C,,H,,H, uaz H, ilumnadalag

AR Aoy lugy

u = e_fp “ {fqefp " dt + F(z — (t))

Lf;ﬂ =2 C, cos At — C, sin At = C cos At — C, sin At G, +C, cos At + C,sin \t
C, + C,cos At + Cy sin Xt Cy +C,cos At + O, sin At ()-Af03+04cos)\t+ossin/\t 4
o @ < ' o
g Wuileddulan c,,C,,C,,C,,Cq, H, H,, H, Wumasdalan, H =0,
HC, +)C H
N=4H,(C, + H) — () ¢, = -2 26 o B0+ AC,

2H, % 2H,

423038 G(u”,u) = Cyu + Cyu” 1ile C, uaz C, iHumnsialan
namavvesaunegdlugl u = (2 4+ &)F (nIn(Ez + &) — £¢t) e § dluiladdulan &,&,,7 10
masddlan wazulasaums @.1) IWeglugl
F0)MS () =1+ [F 00 = CF () + G (x + &7)
(ife x =nln(¢z+&)— &t

424036 G(u',u) = Cy(u— ") + H, iilo C, uaz H, =0 Wudnadalan

ANTONINAMAY 1A INANNTUALTNNDS AR
dx dt du

£x+Cycospt+Cysinpt 1 &u—C,psin pt + C,pcos pt
e ¢,C,,C, Humaialan uas p = JIT,E,

425058 G (v, u) = C,(u — ) + Hu® dio C, uag H, =0 dudrasdalan

) A
UHANAYAD

o Hyz U §1eHlm .
u=(se “2)%[52}111“[&@“%2] t]

do § duilsdsulan &, &, 7 dumasilan uazialasaums @.1) Weglugl

FO)-FO + 1)+ HE[FO)
n§(©)-1

S'(@) = 01

y Hz
ilo © = 1 ln[ %i ] —t
§2H1 §1e Ut €2




42.6 036 G(u”,u) = C,(u — ") + Hu? + H, ile C, wag H, #0,H, 0 Jusasilan
AWTOMIHAIRAY IGNINANNISUALTANDT AAN

dz _dt du
e (Cycospt + Cysinpt)+& €™ [Hlu (C, cos pt + C, sin pt) + p(—C, sin pt + C, cos pt)]

e &,C,,C, iludnadalan ez p = JHH,

4.2.7 nsdiouq
dmfuam G (v, u) = g(u—u") + H(u) lunsdivenileninnsdl 4.2.2-42.7 qums (4.1) seiing

waslugy u = f(Cyz ~ Ct) die ¢ uaz C, Wumasdalag
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SYMMETRY ANALYSIS ON —(1 ) A ufx, z‘)—(r, t) = G (u(e,t — 7))

Jessada Tanthanuch

Schoeol of Mathematics, Institute of Sclence, Suranaree University of Technology, Thailand
Jjessada@math. sut.ac.th

Abstract. Equation 7—(3” £ + ufx, t)——f ) = G{ulz.t~ 7)) is a delay partial differential equation with
or

an arbitrary functional & Group analysis method 1s applied to find symmetries of the equation and to make group

classification. Representations of analytical solutions and reduced equations are obtained trom the symmetries.

1. Introduction

Consider delay partial differential equation with delay v > 0
Su

—{x, t) + -u{;s,t}%(;v, t) = Glufe, t —1)).

1.1
(D at

For simplicity, notation 47 will be used to denote u{=,t — 7), w denote w{x, ¢} and u,,w; mean first partial
derivatives of u with respect to .« and 4, respectively. Equation (1.1) can be simply written as

{1.2) g A ur, = G ).

Equation (1.2) is similar to Hopf or inviscid Burgers’ equation [1]. However, (1.2) has a delay term, which
makes the equation difficult to be solved [2]. Applications of delay differential equations can be found in [2, 3, 4,
51

One of the powerful methods for finding anatytical solutions of differential equations is group anafysis. Group
analysis was introdaced by Shopus Lie in 1895 [6, 7, 8]. Group analysis is applied for finding analytical solutions
of many types of ODEs and PDEs [8]. Later, it was developed to apply to integro-differential equations [8], delay
differential equations [3]. functional differential equations {4, 5] and stochastic differential equations [9].

In this manuscript, group analysis is applied to find symmetries of equation (1.2). Classification of (1.2) with
respect to groups of symumetries admitted by the equation is done. Representations of analytical solutions and
reduced equations are also presented.

2. Applications of group analysis to delay differential equations

Let ¢ : O x A — € be atransformation where € is a set of variables {, ¢, u) and A ¢ R is a symmetric interval
with respect to zero. Vartable ¢ is considered as a parameter of transformation ¢, which transforms variable
(a.f,u) to {Z,£,T) of the same space. Let (2, t, us ) be denoted by . (2, 1, u). The set of fanctions ¢, forms a
one-parameter transformation group of space 1 if the following pl.opemes hold [6, 7, &]:

p +e,,{:1 t u,) tm an) £1.89,81 + 29 € Hand {z, 1, u) € €
t,2) for any (o, t,u) € O, thene = 0

The other notations # = " (z,t,u3e), T = ™ {w,t.u;2), U = ™z, t,w; &) are used as the same meaning as
w(a .t u) = (#,1,%). The transformed variable v with delay term and it’s derivatives are defined by 4" =
- — 7y and iy = QU/OF, iz = Ot/ 0L, respectively. Suppose that the transformations map a solution w(x, t}
ot d]ffuentml equation

20 Fla touu ueu) =0
into a solution of the same equation. These transformations are called symmerries. In [5]. it is shown that for a
symmetry

OF (z,t, 4,47, g, 2tr)

2.2) — : = X F(z, touw,u Uy =0.
(2.2 A e=D), (2.1) \ b o ) (2.1
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The operator X is defined by
X = (¢ — upl —um)Fu + (7 — ule” — U B A (O, + O 2
where

Fo®
{gn (w0, nlx,tu) =

St
iy_,“ tou; 0},
) ('f)_./,\u
T Oe
=gt -ra)
DJ» (C — Tl:rg — ut]]} \ Cuz
L)‘)’ = (91« Uy au B LL_:G:: b Uy a’li;r 4 ’llrx;t“:)u, d- .

Dt = E)f -+ U{g)u -+ fl:a; -+ uﬁi’)um -+ '1.1«“8,“ + ...

{z,tu 0), & =&at—ru’),

Lzt —ru ),
Dy (¢ —u & —um) .

(he

The aperator X is called a canonical Lie-Biicklund infinitesimal generator of a symmetry. Equation {2.2) is
called a defermining equation. Lie’s theory [6,7, 8] shows that there is a one-to-one correspondence between the
generator and a symmetry. This generator is also equivalent to an infinitesimal generator [7]

(2.3) X o= £8, 4 Dy 4 (e

By the theory of existence of a solution of a delay differential equation, the initial value problem has a particular
solution corresponding to a particular initial value. Because initial values are arbitrary, variables w, u” and their
derivatives can be considered as arbitrary elements. Since every transformed-solution @{,#) is a solution of
equation (2.1), the determining equation mast be identical to zero. Thus, if determining equation (2.2) is written
as a polynomial of variables and their derivatives, the coefficients of these variables in the equations must vanish.
In order to solve a determining equation, one solves the several equations of these coefficients. This method is
called splitting the determining equation. Unknown functions &, 7 and ¢ can be obtained from this process.

3. Symmetries of (1.2)
We define determining equation for uy -+ uu, = G{u™) by letting F = w + utty — G(u™), then

3.1 X (g 4w, — GuT)) =0,

e =Gy

Splitting determining equation (3.1) with respect to uj,u, and later with respect to u7, u, the equation is
simptified to
3.2 G —GY =0,
where the unknown function £, 7 and ¢ are

E=Ga+, n=m, (=4

Here, &1, &o, 71 are constants.
3.1. Kernel. The set of symmetries, which are admitted for any functional appeared in the equation is called a

kernel of admitted generators. In this case. G'y” and ¢ are arbitrary. This implies that coefficients of G'u” and
(2 vanish, & = 0. Unknown functions .o, ¢ are

€= Eo, n=11, (=0

For the sake of convenience, let arbitrary constants &, m be denoted by Y, Ca, respectively. The obtained
infinitesimal generator is

(3.3) X = 10, + Cady.

This generator is admitted for any functional . By Lie’s theory, synunetry is derived from the infinitesimal
generator [7, 8]:

(3.4 F=ax -+ Chs, L=t 4 Che, §
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3.2. Extensions of the kernel. Extwensions are symmetries for the particular functional G only. In this case, there
exists G(u) satisfying equation (3.2). Here, the extension of kernel (3.3) will be considered. Since £ = &, 5 =
171, ¢ = O are considered in the case of kernel, then functions £, n and ¢ for this case are
=&z, =0, {=%u

For the nontrivial case, £; $# 0 and a sotution of equation (3.2) is

Glu™) = ku™,
where k is a nonzero arbitrary constant. For the sake of convenience, let & be denoted by Cs. The extension of
kernel (3.3) is

(3.5) X = C3 (20, + udu).
The symmetry derived from X is
(36) T ow .’U(;GS{;, F W t, i == uec’f’e"

4. Representations of solutions

Invariants are functions such that their values do not change by symmetries [6, 7, 8], i.e.

where ¥ is an invariant for a symmetry {2, t.u) = (2. 5,@). B X = £8, + nd; + (I, is an infinitesimal
generator for a symmetry ., then

4.1y XU{x, t,u) = 0.

Invariants of symmetries are found by solving differential equation (4.1) [7]. The systemn of characteristic equa-
tions for the infinitesimal generator (2.3) is

da _ dt _du
€

Representations of solutions are obtained from the invariants.

4.1. Representations of solntions for equation (1.2) with arbitrary functional . For infinitesimal generator
{3.3), the system of characteristic equations is

de dt du

¢y Gy 0"
Solving the system of equations, the invariants are v and Cox — Ct. For constructing a representation of solution
[6, 71, the relation between these two invariants is
(4.2) w = fi{Cow — Cyt),
where fy is an arbitrary function. We call w in equation (4.2} a representarion of solution of equation (1.2) for the
infinitesimal generator (3.3},

4.2. Representations of solutions for & = ku™. The infinitesimal generator for equation
{4.3) Uy 4wty = ku”
is the linear combination of kernel (3.3) and extension (3.3) :
(4.4) X = {Cy + Cqx) 0y + Coby + Caud,.
Thus, the system of characteristic equations for infinitesimal generator (4.4) is
dx dt  du

Cy + C'g:l? c’g C«‘g’u. )

. . . . . u
Let C5 = 0. In this case, the invariants are ¢ and —————.
x4+ /0

Since C; and Cy are arbitrary and Cy # 0, for the sake of convenience, we denote Cy = Cy /C3. The repre-
sentation of a solurion for equation (1.2} with the functional G = ku™ is

(4.5) w == {2+ Cyq) folt),
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where fo is an arbitrary function and €'y 18 an arbitrary constant.

Let Cs 5 0. In this case, the invariants are {2z + Cy) e~ (C8/C yp e (Co/C2)E

solution for equation (1.2) with the functional G = ku™ is

The representation of a

(4.6) = (I gy ((z + gy et %'Cnf)

!

where f3 is an arbitrary function. Let C5 == ('3 /Ca, equation (4.6) is simply written as

w = O fo (o 4+ Cy) ™95

. Reduced equations

Representations of solutions obtained in section 4 simplify equation (1.2). They reduce the number of independent
variables appearing in the equation. Substituting the representations into the equation, equation {1.2} is reduced to
an ordinary differential equation, which is called a reduced equation.

5.1, u= fi(Cox — Cyt). Substituting « into equation (1.2), the equation is transformed (o
~CLA(0) + Cru(0) £1(0) = G(f5 (8 + Cr7))
where § = Chz — Cyt. This equation may be written in the other form,

(‘;{jl {f:} 4 C'ﬁ‘)\}

(5” ,Ifg' B
F1(0) Caf1(8) — Cy

8.2, s {4+ C4) f2{t). Substituting « into equation (4.3), the equation is transformed to
(@ + C) F3(8) + (2 4+ Ca) [fa(D)] = k(e + Ca) falt = 7).
It can be simplified 1o

(5.2) )y =kt —7) — [0 .

5.3. w== e“ot fy ((m+ C4) 9%, Substitute « into equation (4.3), the equation is transform to

Ca f3(0) — Cs014(&) + fa{d) fo(o) = ke™ 7 fa (e Car 6),
where ¢ = (2 4+ Cy) e~ 5. The other form of the equation is

Cs fa(0) — ke f3 ( ec‘,’ﬁré))
fa(6) = Cs0 :

Note that equation (5.1), (5.2) and (5.3) are not typical ODEs, they are functional ODEs [5].

(3.3) f3(@) =

6. Conclusion

Symmetries, representation of solufions of equation (1.2) and reduced equations are presented in section 3.4 and 5,
respectively, Equation (1.2) is classified with respect to the symmetries into the case of G{u”) == ku” (symmetry

is (3.6)) and otherwise (symmetry is (3.4)). By the review literatare, there are not many examples of applications

of group analysis to delay differential equations. This manuscript presents another example.
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Abstract.  Equation in(r £+ ulz t}f?}i@f) = G(u(a,t —7),ulz,t)) is o delay partiai differential
8 " yu iR 2 E}/) L 3 H s¥])
equation with an arbitrary fimetional G . This delay partial differentinl equation is move general thaw

.@fﬁ (1) + u(z, 1) @i (2.t) = G{ulz,t — 7—)) which has been applied group analysis fo find represeniations
ot Vag T T
of analvtical solusions [3). Application of group analysis to the equuation and group classification of representations
aof solutions where GG = g{ ulz, t) — ulz,t — T}) + H (u} g and H are arbitrary finetions, aie presented in

the article.
1 Introduction

Counsider delay partial differential equation (DPDE) with delay 7 > 0
¢ s du . Ju , o
1D (2.t} + ulz, ) —{x, 1) = G {u(z,t — ), w2, 1)
57 &t B5ole) = G lulzt =), u(x.t)
For the simplicity, notation «” will be used to denote u(z,t — 7), u denotes u(2,?) and %, U, mean first
partial derivatives of % withrespect to @ and 1, respectively. Equation (1.1) can be simply written as
(12 u +un, = G{u,u)
Equation (1.2) is similar to Hopf or inviscid Burgers' equation [1]. However, equation (1.2) has a delay term,
which makes the equation difficult to be solved [2]. Applications of delay differential equations can be found in
[2.3,4,5,6]. The representations of solutions for the particular case of equation (1.2},
(1.3) U+, = Gu" ).
has been found [3]. These solutions were obtained by applying group analysis method [7.8,9] to the equation.
Group analysis also classifies equation (1.3) wrt symmetries into two cases, arbitrary functional ¢ and
G =ky
- For arbitrary functional G{u")
The solution 18 4 =— F(Cox — Cit), where £ is an arbitrary function, C,,C,are arbitrary constants. The
solution reduces equation (1.3) into a functional ordinary differential equation (FODE) £16) = GAB+C)
' A6 —C,
where § = Cz — Ct.
- For particular functional G’( w" ) = ku” , where k is an arbitrary constant.
For this case, equation (1.3) has two possible forms of representation of solutions, i.e.
lou= (¢ +C,)f(t). where f is an arbitrary function, ¢ is an arbitrary constant.
This solution reduces the equation into delay ordinary differential equation (DODE) LU = kLt —7)— 4{t }f .

2. =%y, ((;ZT +C,)e¢ ‘} , where f£ is an arbitrary function, ¢, C,are arbitrary constants.

By this solution, equation (1.3) can be smmplified to FODE L) = ok (é}_ ks (<*9) . where
N h(0)=Cio
& = (z+Ce™.
In this article, group analysis is applied to find synumetries of equation {1.2) which is more general
than (1.3). However, for the sake of simplicity, equation (1.2) is considered for the case
G = glulz,t)— w(z,t — 7))+ H(u) only, where ¢ and H are arbitrary functions. Classification of the

equation with respect to groups of symmetries admitted by the equation are presented in the following sections.



2 Applications of group analysis to delay differential equations

By the theory of group analysis, a symmetry of equation (1.2) 1s defined as the transformation - O x A —
which transforms a solution of the differential equation to a solution of the same equation, where Q is a set of
variables (2t 4) and A C R 15 a symmetric inferval with respect to zero. Variable £ is considered as a
parameter of transformation , which transforms variable (2 ¢ u) to new variable (7 7 #) of the same space.
Let oz ¢ u) be denoted by o (.t u). The set of functions o forms a one-parameter transformation group
of space O 1f the following properties hold [7,8.9]:

1) pyfatw) = (2.t,u) forany (z.t.u) € Q:

@ o, (v

(z.tw)) = Popn (T, 1,0) forany ¢, ¢ +¢, € A and (z.f,u) € Q3

() if ¢ (ot u) = (w,¢,u) forany (2 ¢ u) £ Q. then ¢ =
The other notations 7 = o (x.fwe).t = ¢ (2 tuz), i =¢"(2,tuws) are used as the same meaning as
odetu)=(%,7.7). The transformed variable u with delay termn and its derivatives are defined by
T =@zt -1 and % = U/ 9%, % = du/ O, respectively. Consider DPDE
2.1 Fletuu u,,u)=0.
[6] shows the derivative of an equation, with the transformed variables 715 and derivatives 7; %, with
respect to parmmeter ¢ vamishes if the transformation is symmetry

2.2 IF(Z, 10,7 ,ZLE‘U?}[ = XPe.tuu uu) =0
gz 50421 v ' ey
The operator X is definedby X = ({—uf—un)d, +({ —wl& —un")d, +¢%8, +(%8, . where
; \ D" \ O o s . 8" .
E(.‘z‘?r {‘ ?};) = ().Y {‘:C,t 1‘{;0}: 7?{$3t> é‘L} = (8’* (&"3 tt {i{}}.g{&l&a} = (fj (‘r!ir U 0)‘
% € Be

£ = fat—ra"y oy =qglet—7,u ), = ot -0},
¢* =D, (¢ —wg —wn).¢* =D {{~u& —un),
D, =08, +u0, +ud, +u,0, +ub, +..,
D,=08,+u0, + 4]0, +u,d, +u,0, +...,
The operator X is is called a canonical Lie-Bécklund infinitesimal generator of a symmetry. Equation (2.2) is

called g determining equation {DME). Since XF(z,t,uu”u,,u,)| =0, we say that the operator X is
; U W),

admitted by equation (2.1) or equation (2.1} admits the operator X . Lie's theory [7,8,9] shows the generator is
one-to-one correspondent to the symumetry. This generator is also equivalent to ax infinitesimal generator 8]
2.3 X =80, +n0, -,

3 Finding and solving the determining equation

The DME for o, + uu, = G (v",u) can be found by letting F = 4, + vy, — G{v’,u) and substitute it mnto
equation {2.2),
B.1) X, + ws, — G u)) =0

=0 by,

By letting w =G —uu, 50 1w, =u0, +ulG,. —(u ) — v, 1, = 0G, + G, — uu —wi, and
, where
where @ = G‘(\’a"}u”}; v o= w(a,t - 2r), ) = ulzt— 1), =u (et —T1). Thus DME (3.1) becomes

WG [ =)+ € =+ w fuly +nu+0,6) - (6 + Eu+6G) +(]

—Gn +nu+ G+ G G )~ T1=GL+ ¢ +Gu+(G=0
By the theory of existence of a solution of a delay differential equation, the initial value problem has a particular
solution corresponding to a particular initial vaine. Because initial values ave arbitrary, variables «, 4" and
their derivatives can be considered as arbitrary elements. Since every transformed-solution 7(Z §) is a solution

of equation (2.1), the DME musst be identical to zero. Thus, if DME (2.2) is written as a polynomial of variables
and their derivatives, the coefficients of these variables in the equations mmst vanish. In order to solve a DME,

=G — vy

&

3.2



one solves the several equations of these coefficients. This method is called splitting the DME. Unknown
functions ¢, p and ¢ can be obtained from this process.

By splitting equation (3.2} with respect to ¢, one obtains . gu' (n—u")+€& — g} = 0. Since equation
(1.2) is considered as a DPDE, it is assumed G, = 0. The equation is simplified to
(3.3) Win—n)+&-£=0
By the assumnption ¢ and 5 depend on variables » ¢y while ¢7 and 5™ depend on ¢ ¢y, if one differentiates
equation (3.3) w.r.t. u, the derivative becomes ™y, — &, = 0. Splitting the equation w.r.t 3 tmplies £ = 0
and 4, = 0, which means ¢ and » donot depend on u. By the sunilar structwre of ¢7 and £, and 5" and p,
both ¢ and 57 depend on only variables » and ¢. Equation (3.3) can be split again w.r.t. «* which mplies
£{z,t) = &z,t) and 57 (z,£) = n{x,t). The conditions obtained mean ¢ and 5 are periodic functions w.r.t. ¢

with peried 7, Le.

3.4) Hat— 1y = &at), nlat—7)=nlat)
Again, splitting the DME w.r.t. u_, one gets
(3.5) (=& +&u—uln +nu), ¢ =&+ —u (n+nu")

Substitute ¢ 5, ¢ and ¢* into the DME and differentiate it with respectto «”,

(G . N (=G u+0. u )+
(36) gi(\ {w '(’aw;} 51{ ;‘Cwlé‘{*%%?}!;}

n: (Gdd"u + G«"u"uy - sz ) + s (Gw"%g + Gu"z:’ {u_ )‘Y - SG;:"H’ + 2(;;;.’“7 ) = O
Here if we consider equation (3.6) as £A + £.B + 5,C +#,D = 0, which may be written m a vector form as
(3.7 .8, m.m,) (R.BCD)=0,
where A=-1G. +Gpp, B= G u+Gppu, C=G,u+G. u —G, and

=G 0+ G (0 )2 — 3G u + 2G -u", we are able to classify equation {1.2) as the followings.

3.1 The kernel of admitted Lie groups

The set of symmetries, which are aduitted for any functional appeared in the equation is called a kernel of
admitted generators. Assume equation (3.6) is valid for any functional & . Since G,
G..G,..G,, varyarbitrarily, the set spanned by (A, B,C,D) has dimension 4. Thus (¢, £ .5, n,} mustbea

wTy” Sof Y wpt
zero vector, i.e. all of & ¢ 5, n, vanish. This implies ¢ and 5 are constants and ¢ is zero. Let ¢ and 5 be

denoted by (¢, and (,, respectively. The infinitesimal generator admitted by equation (1.2) is

X =C8, +(,,. By the theory from group analysis, the characteristic equations do _dt _du
: - -
> ?7 (’.\

mply

u= f{C,x — Ct) is a representation of a solution. It reduces equation (1.2) into FODE

. G{fey e +0m)
1 9 Py )
f { ) sz(f}) - Ci;

where § = Co ~ Ct.
3.2 Extension of the kernel

Extensions are symmetries for the particular fimetional & . Here, for the sake of simplicity, case A=0 is
cousidered only. For this case, it implies
(3.8} Glu,u )= glu —u" )+ H{w).

where ¢ is an arbifrary function of 4 — o such that 99 =0 {or g'=0)and H is an arbitrary function of
) Ju”

variable u. Equation (3.6) is reduced imnto the form

(3.9 Eu—u g+ g—u—ulg" -+, (-—Euz - ga’;gig"w Bu—2u" g =0

Equation (3.9} can be considered as a vector form {&,,0,.1 }.('*‘,.4‘ B(}’) =0, where A ={(y—u")g"
= 1 iy kY bl >

B=g-lu-ulgmand 0 = __ia“ - (uf}?%’gr; [3u—2u7]g'- Let V be the set spanned by vector <A> B,CY.

All possible cases which make equation (3.9) valid are considered according to the dimension of V.



3.2.1 dim WV =3. This condition means vector <€@;'ﬂ:ﬁ?}'$> must be a zero vector, i.e. £ p,,n, vanish. Thus
the DME is simplified to —H '(w)é'(#) + £"(¢) = 0. The derivative of the DME wrt. u 18 —H "(w)}¢'(#) = 0.
- Case H"(u) = 0. Here H(u) = Hu + H, is a solution of the equation, where F, H, are arbitrary constants.
However, by the arbitrariness of function ¢, H, can be omitted. The DME is —H,£'(¢) + £"(#) = 0., which has
&= Cc™ + ¢, as a solution, where €|, (, are arbitrary constants. The periodic condition (3.4) of ¢ unplies
e + 0, = 0™ + ¢, The condition is valid for H, = 0 or ¢, = 0. For this case ¢ must be a constant.
- Case H"(u) = 0. The equation immediately implies £ isa constant,

Both two cases show equation G(u,u") = g(u —u” )+ H(u) admits X = £3, + nd,, where ¢ and 5 are
arbitrary constants and g, H are arbitrary functions. For dim V=3, it has the same solution with the kernel case.

3.2.2 dim v =2. This condition means there exists a constant vector (a 3, > = ) which is orthogonal to set
V. ie {a, ;3_»«‘,;3‘{,\4, Bsﬁ:‘; = aA +« 3B +~C = 0. By changing of variable z = (u—v"). the equation is
derived t0 z{q — F + v2)g"+ (3 + 3vz)g'+ uTy (—2zg"+ ¢') = 0 Splitting the equation w.r.t. u”, we have
(3.10) v(=22"+g")=10.
(3.1D Hoa— B8 +~v2)g"+ (8 + 320" = 0.
- Case ~ = 0. Solving equation (3.10) makes g(z) = € ,z** + 0, ,

where ¢, C, are arbitrary constants. Equation (3.11) is simplified to :_g.gi {;a + AE + 5v272) = - By the
; gl POyt

arbitrariness of 2. « + 3 and - st vanish. This case contradicts to the assumption ~ = 0.

- Case ~ = 0. Equation (3.15) 1s reduced to
(B.12) Ho— B9+ 8g'=0
Ifa—2=0(or a=3)itmakes 3¢' = 0. This case contradicts to the condition (o, 3, vy =0 1s not zero and
g¢'=0.Condition o — 8= 0 (0 @ == 3) will be considered only.
For the conditions ~ = 0, o = 3, equation (3.12) is considered into two cases :
Case 3
o -3
t0 z¢"+ g' = 0, which has a solution g{z) = C,Inz + C,, where ¢, is a nonzero arbitrary constants, (', 1s
a constant. However, the constant 7, can be omitted because of the arbitrariness of H . Substitute ¢ into
03
- u
Since ¢, = 0 and unknown functions ¢ and 5 depend ou (z,7), the equation can be split wr.t. u and u”
which implies 5 = n(8) and £(z,) = 2n'(#)z + &(¢), where & is an arbitrary fonction of ¢. Substitute
both obtained functions mto the DME :
(3.13) 2™ E - p"OH (Wi + By — ' OH (wu - Cn'(t) + &) — H'{w)E'(6) = 0.
Since unknown functions ¢,y H do not depend on 2, then »™()—y"(H)IH (w)=0. This can be

=1 .1e o =23. The above condition o = 3 implies « = 0. The equation can be reduced

the DME and differentiate it wr.t. %, the equation calculated is

[Qng —& +dnu+nu =0

considered into subcases H'(u) =0 and H'{u) = 0.

(1) H{u)=0.1e. H is a constant. Then »™{#} = 0. The periodic condition implies 5 is only a constant.
The DME is simplified to £ %(t) = 0. &, is also a constant by the periodic condition. This subcase shows
U, +uu, = C; In(u —u") + H admits the generator €8, + nd, where H, £,y are arbitrary constants.

(2) H'(u) = 0. The mixed derivative of DME (3.13) wa.t. 2 and u shows —2y"(£)H "(u) = 0. This can
be considered into two subcases H "(u) = 0 and H"(u) = 0.

- H'u)=0. It implies H = Hu + H,. where H, H, are arbitrary constants and H, = 0. The
derivative of equation (3.13) wrt 2 is 2(np"{#)— Hn"{#))=0. Thus its  solution 18
n=C, +C,i + C,e™. By the periodic condition, ¢, and ¢, must identical to zero, i.e. 5 1s a constant.
The DME is reduced to & "(¢) — H.&, () = 0, which has a solution ¢ = ¢, + C,¢™ . Also the periodic

condition of ¢ unplies ¢, = 0. Then u, +uu, = ¢, In{u—u") + Hu + H, admits the generator



- H"(u) = 0. The equation unplies 5"(t) = 0. i.e. with the periodic condition 5 15 a constant only.
The DME 1s reduced to &, "(¢) — H "(u)g, '(¢) = 0. Differentiate the equation wrt. u, —H"( w)E, (1) =0, 1t
implies ¢ is a constant.

All above cases shows y = f(nz — &¢t). where &,y are arbitrary constants and f is arbitrary function,
is solution of v, + uu, = C, In{u — v™) + H(u), where (' is a nonzero arbitrary constant and H is an
arbitrary function of u.

3 =1 Let s — 3 . Hence the solution of equation (3.12) 18 g = Ci(u— u” Y + ¢, . where

a—3 a—3

Case

C, 1s a nonzero arbitrary constants, C, 18 a constant. However, the constant (¢, can be omitted because of

the arbitrariness of H . Splitting the DME equation wa.t. u” shows

(3.14) Clé+ D —w Y [8, +(1—8m +(Bu—2u" = 6u+u))n,]=0.

Since ¢ and 5 depend on (z,¢) then equation (3.14) can be split w.r.t. « and u”. It implies (3 — §) n, =0
and —(2 + &)y, = 0. The arbitrariness of § implies n, =0, 1e. n=n(t) Equation (3.14) 1s simplified to

k-3

(3.13) S, +(1—=6m't)y=0.
Case § = 0.

P=2A

(DIf 6 =1, equation (3.15) shows £, = 0.1.e. £ = &(¢). The DME 1s reduced to

') — "t — 2" (0 H(u) + &f(f}u - E'(f)H'(a) =0.
"u)=0.

If H"(u)=0.then n'(Hu — £'(t) = 0. Sphitting the equation w.r.t. « shows £ and y are constants.
Thus the solution of equation u, + wu, = C, In(u — v”) + H(v) is also u = f{nz — &t).

The second derivative of DME w.r.t. « implies [p'(¢ju — £

Suppose H"(u)= 0. This means # = Hu’ + H,u + H,. where H, H, H, are arbitrary constants.
The derivative of the DME wort. u is
—2H ) + " (B~ Hy'(t) =0
(@) H =0 and H, =0. The periodic condition imphes 5 i1s a constant. The DME is reduced to
£"(#) = 0. So ¢ isalsoa constant.
(b) H =0 but H, = 0. The equation shows n=C, + O, . The periodic condition reduces term
C,c™® which makes 5 a constant. The DME is reduced to ¢"(¢) — H,£(t) = 0, also ¢ must be a constant.
() H =0. Then )= — n"t) :‘HHE'”‘“) . The DME 1s simplified to »™(#)+ M'(t) = 0, where
=4ty
A=4H,(C, + H,)—(H,).
It A = 0. this shows y"(¢) = 0. & can be only a constant and ¢ is a constant also.
IXN<0,p=0C,+ 0¥ + . The periadic property of 5 implies ¢, and ¢, vanish and ¢ nust
be also a constant.
IfA>0.7=C,+C,cos At + C, sin At. By the periodic condition, it is considered into two cases :

2 . . L. .
- 7 = =" Inthis case, ¢, and ¢, must vanish and it inplies ¢ to be a constant.

T =

A
- = 3_7 Here ¢ 1s equal to 5 = C, + C. cos M\t + C sin At where (¢, 1is an arbitrary constant,
A R a
o= H,C, + AL, o= H,C, + 20, By the condition (3.5),
' 2H, : 2H,

¢ = MN[0, — Cuujcos Mt + (—C + Cu)sin M)

The solution of equation u, + vu, = C,{u —u" ) + H, w’ + H,u+ H, can be found from the characteristic

" dt + F(z — v(t)) - Where

equations, 1.e. ; — C‘.f o chf ¥ |
! i

dt-

C, cos At — C, sin M _\ Cy cos At — C, sin At o) = f Cs + ' cos Mt + C sin At

Cy +Cycos At + C,sin At ’ Cy +C,cos At + Csin Mt Cy + C, cos At + Gy sin At



¥ is an arbitrary function, C,C;,C,C;,Cy, H,, H,, H, are arbitrary constauts, H, = 0.\ +.C,,C,

are the constants which were defined m this section.

(DI & =1, equation (3.15) mplies ¢ — [6 -1 } n'(t)z + &,(t) Where &(1) is an arbitrary function of ¢.
p ) 2 {1,
¢ ;

Substitute ¢ into the DME and differentiate it waxt. both z and u. we obtan

>

PR
[L l}H"(u)n"(t) =0
&

This may be considered mito two subcases.
(a) H"(u) = 0. This implies »"(t) = 0. Similar to the previous case. 5 is a constant. The DME is reduced

o LMt — H' ()&t =0. The derivative of the equation w.r.t. u shows H"u)E,'(£) = 0. which means
¢, is a constant. This shows both ¢ and y are constants.
® H"u)y=0. Then H =Hu+H,. where H H, are arbitrary constants. Derivative of the DME

w.rl. u1s[ }77 ()= Hyy'(#) = 0-

If 6§ =2, the dertvative of the DME wrt. ¢ gives us »"(t) — Hn"(¢) = 0. Similar to the previous
case, y is a constant. The DME 1s also g, "(t) — HeE') =0 and its solution 1s a constant.

If &=2. For arbittary constant H, and periodic property.  mwst be a constant. The DME is
"N - HE(H=0 and 1ts solution 15 a.constant.
Both subcases show equation w, + uu, = C\(u — """ + H(u). for & = ~1, has the same solution with

the kemnel case.
Case 6=0. Equation (3.15) shows y'f)=0, ie p is a constaut. The DME is reduced to

H{wE, — H'(ulE, + ug, )+ u'e, + 2w, + £, =0. In order to classify a solution of DPDE, we have to
analyze by the followmng cases :
(1) &, = 0. The DME is simplified to £"(¢) — H '(u)¢'(t) = 0. Its derivative wur.t. v 1s —H "(u)£'(t) = 0
If H"u)=0. then H=Hu-+H, where H_ H, are arbittary constants. The DME 1s
't - HeE(H=0. With the periodic condition, £ can be only a constant.
If H*(u)=0.then £'() = 0 which show ¢ is also a constant.
(2) €, = 0. The third derivative of the DME w.r.t. ucan be rewritten as
o £ Voo
(316) [—‘lr"f‘U;Hul‘(U)“—QH (U):O

Sz

The derivatives of equation (3.16) wrt. r and ¢ give f{,{ _f_
dt

=0 ma L[Sy =0
de g, |

consider the problem into two subcases :
- H¥w) =0 then H"(u)=0 which makes H = H, uf + H,u -+ H, satisfying equation (3.16). The

second derivative of the DME wrt. u 18 2(&, — H¢, )=
If 7 =0 then gz,t) = &(t)x + &) The derivative ofthe DME w.rt. u shows 2¢'(#) =0, ie. ¢ isa
constant. The DME is &, "(t) — H,&,'(t)+ H,&, = 0. Let \ = (H, ) ~4H,¢, . With the pertodic condition.

function ¢, can be found according to ) :
(8 A>0. ¢ must be a constant. Then the DME i1s H¢ =0. If H =0 then ¢ =0. Thus
u, + wu, = C,(u — v )+ H, admits the same generator and has the same solution with the kemnel case.
However, if H, = 0 and & = 0 then y, + wy, = Cyu + Cyu” . where ¢, C, are arbitrary constants. admits
(6 +£6)0, +nd, +£ud, ad has a solution u = (£z + &)F (nln(§e + &) — &¢). where § is an
arbitrary function. This solution reduces the eqnatiou (3.17) to an FODE,

FOOF 01U+ [F00T = CF 0+ GF (X + &7)
where ¢ = 0, p are arbirary constants and y = pln(gz + &) — &1

H.
D) A< 0.Let p=+/—)\/2.Then ¢ = cT C, cos pt + C, sin pt}. With the periodic condition, F, must
£ / S2 ( 2 4 f

be identical to zero, H.£ » 0 and - — Z*. Then equation w +uw, =C(u—u )+ H,, H, =0, admits

\
(£a + Cyconpt + O, sinpt)8, + 98, +{&u — Cypsinpt + O poospt) .

3%y -



where p = \f}]:g; C,,C, are arbitrary constants. This case is too complicated to find an exact form of a
solution.

¥ H =0 then £(z,¢) = & f.)g*“ﬁ + & (t). The derivative of DME wrt o 18 —9 HE'®) =10 which means
ty=0 or ¢ 1s a constant. DME is sumplified to ™ (g "(t)~ H,¢ '(t)+ HH L) =0.
N = (H,Y — 4H H,. With the periodic condition, function ¢ can be found according to X :

(a) A > 0. ¢ must be a constant.

HH >0 theng =0 and DME vanishes, 1.e. the solution form 1s not different to the kernel case.

If H, = 0. then ¢, 1is any constant. The DME 15 HH 351:3"’1‘ =0.If H, =0, the equation has the similar

solution with the previous case. On the other hand, #, = 0 mplies 4, + yu, = Cylu—u")+ H{u? admits

He
Hr Y , k. \ o H oo 4, s . Yo £t e
(.fzﬁ‘ —rf‘z‘;é’xw-?}a, + EHue™ 9. This means a:(g(z‘l)x WAk n ].n{c <1 ]«t} is a
L

g T2
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solution of the equation and reduces the FPDE to g = ¢ §(0) -3 + 7]+ H§ FO)] , where
o n§e-1

0=

Hyx . .
n { £e } _; and ¢, is an arbitrary constant.
&H, £ + &,
Hey
(b) Let p=+-2/2. Then & =¢? (C;cospt + C, sin pt). With the periodic condition. #, must be

identical to zero, HH, >0 and 5 = 27 Then equation w +uy, = Clu—uw )+ Hu' + H,, Hy =0,
A & L B i

admits

(%2 (C, cos pt + O, sin pt) + &0, + 08, + ™[ Hu{C, cos pt + ¢, sin pt) + p{~Cysinpt + O, cos pt) .,

{ 3 : 2]V $ Uity 1 LB 4 7Y%
where p = fH H, and ¢, ¢, are arbitrary constants. This case is too complicated to find an exact form of

a solution.
- H®(y) = 0.t means £ /¢ is a constant which has a solution ¢ = ¢z + Kt), where K is a constant

and ¢ is an arbitrary function. Substitute ¢ into equation (3.16), then (K + «)H™(u)} + 2H "(u) = 0. The
equation has a solution H(u)= H,(K + uw)la(K + )+ Hu' + Hu + H,. where H _H, H, H are
constants. The DME is simplified to
uw’ [y~ Hy |+ u[2ky "= (H, + 2H Ky |+ Ky "+ [H,-K(H, +H)w'=0.
Splitting the equation wr.t. «’ and « shows ¢ is a constant. This case has the same solution with the
kernel case.
3.23 dimV=1. Here <A, Bﬁ(ff} can be represented by { A B:G>:<&”{i’,’;f}¢(u‘ w). where o, 3,y are
arbitrary constants which (\aj} ﬂ[} = {0,0,0) and ¢ is a nonconstant function. The system of equations

corresponding to the vector 1s

(3.17) (u—u )g" = adluu’).
(3.18) g'—{u—u")g" = Félu,u" ).
{3.19) —[ug —{u’ )3:*;g“—;- Sug'— 2Tyt = volu,u")-

- Case (¢ = 0. Equation (3.19) can be derived from equation (3.17) and (3.18) into
(20 + 33 +(-3a - 28" ~vo=0

Since ¢ is not identical to zero then its coefficient must vanish and implies o = 8=~ = 0. This
contradicts to the assumption.
- Case ¢¢ = 0. Here g" = (. which implies g = C\{v —u )+ (,, where (,,C, are arbitrary constants.
Substitute g into equation (3.18), C, = Fo(u,u”) is obtained. If J =0, it implies ¢, =0 and ¢ s a
constant which is invalid. Also if 3 does not vanish, the equation implies ¢ is a constant function which
also contradicts to the assumption.

This proves that case dim V=1 15 invalid.

3.2.4 dimvy =0, < A B, C?> can be consider as a constant vector (C\;: .4 e

(3.20) (t—u jg" =,

(Bz2h g=lu—u" " =3,



(3.22) —[#* = )"+ Bug'— 29’ =,
where v, 3,y are arbifrary constants. Substitute equation (3.20) mto equation (3.21), itleads to g' = + 3
and g'" = (. Substitute both values mto equation (3.22), the equation is reduced to

Ho+Hu—-Hoa+ 8w =~
By the arbitrariness of u and ™. o + 3 vanishes which makes o' = 0. It contradicts to the assumption. This
case 1s invalid also.

4 Conclusion

Solutions of  equation u, +uu, = Cfu—w F +Hy' + Hu+ Hy, u, + uu, = Cu+ Cyu’
4, +wu, = Cy(u—uw )+ Hu' and u + uy, = C\{u—u")+ Hu' + H, are presented 1 the article. For other
forms of equation w -+ uu, = g{u —u")+ H(u), where ¢ H are arbitary functions, the solution is
v = f{nz— ¢£t) where f is an arbitrary function and ¢ 5; are arbitrary constants.
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