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Optical Electronics: 107611

Topics to Be Covered:

Introduction of Laser

2. Nonlinear Optical Susceptibility: Introduction of Nonlinear Optics,
Descriptions of Nonlinear Optics Interactions, Definitions of Properties of
Nonlinear Susceptibility

3. Maxell’s Equations and Wave Propagation in Nonlinear Media: Optical
Harmonic Generation, Four-Wave Mixing, Phase Matching

4. Review of Density Matrix Formulation

Nonlinear Optics Effect in Quantized Media
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(Used to Be)Topics to Be Covered:
Introduction of Atoms and Radiation
Review of Electromagnetics Theory: Gaussian Beam; Coherence
Gain and Optical Amplification
Optical Resonators
0 Laser Oscillations
1. Laser Pumping and Some Common Laser Systems Q-switching, mode-
locking
12. Diode Laser
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Grade Breakdown: Problem set: 20%
Midterm Exam: 30%
Final Exam: 30%
Presentation: 20%
Text Books:
Robert W. Boyd, “Nonlinear Optics”
A. Yariv, “Quantum Electronics”
Pantell and Puthoff, “Fundamentals of Quantum Electronics”
Bloembergen, “Nonlinear Optics”
Zernike and Midwinter, “Applied Nonlinear Optics”
A. Yariv, “Introduction to Electronics”
Shen, “Nonlinear Infrared Generation”
Shen, “Principle of Nonlinear Optics”
Reintjes, “Nonlinear Optical Parametric Process in Liquids and Gases”
10 G. P. Agarwal and R. W. Boyd, “Contemporary Nonlinear Optics”
11. Siegman, “Laser”
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1. Energy Levels in Atoms and Molecules

1.1 Introduction

e Laser is inherently by Q.M. device.

v

v

Einstein referred to Plank constant.
Spectral distribution

Stimulated emission
Amplification

Population inversion

o First Laser

1960 : Ruby Laser

e Bt. 1927-1960, we needed

- optics
- combination of Q.M. and optics

- technology problem

e Stationary state

e Absorption

e Spectral line

dn

e Rate equation = C(N,-N,)

N, >N, — nwill grow with time

i.e. the beam irradiance will be increased or amplified as it pass

through the collection of atoms.



“Laser”

e Stimulated Emission Process

e Laser Cavity

Single Pass: The beam irradiance will not be particular strong,.

Multi Passes : Using Mirrors

Medium E —»  Reflectivity 100% at 4,

i.e. no radiation from the

~
Laser Cavity cavity.

e Optical Feedback & wave front propagation.



Spontaneous Emission :

photon E,
h=E -E,
Ee
El
Bohr Atom
EO

There is a finite probability per unit time 4, that the ¢~ “jump” from u —/.
Repeatedly prepare a single atom in the upper state #. Do N trails to see if

the photon is emitted before time .

N Nyw=N (1 —e M )
4 4

# of atom at / states by spontaneous

transition from u —> /.

Probability that atom have made a spontaneous transition u — [ by elapse
time ¢, P, (¢)

P,(t)= —‘N;\r;” =1-e"

Spontaneous transition probability
“Just An Individual Atom”



Now expand this idea/concepts to many atoms. An average no. of atom remaining in

state u after time £, N, (¢) is described as

Nu(t) =Nu0—~N0u‘Rll(t)

= qu_A"lt
Rate Equation:
dn (¢ B
dt( ) =_Aul]Vqu A
= —AuIN u (t)
N, (1)
B (tp) >’ Spontaneous life time
P Jul
An average survival time in
upper level before u— [
| transition
where (tsp) = Z
2. Spectral Line Shape

Use spectrometer to observe the transition u — 1.

Intensity

A hv,=E, ~E,

1(v) < |E()[ n(v)

l

no. of photon

= One would expect that the field has this frequency distribution given discrete

transition.



t0 freq.: E(t) = I%a—)—e““’ﬁ‘(w)

E(o) = j.dtei“"E(t)
Here E(w) xd(0-0,),0=27v,
d —~iot
E(t) ocjfe J(a)—a)u,)

oc g~

Frequency distribution about v,, has a finite width (or non-zero bandwidth)

1(v) Finite bandwidth ?

A

is due to a number of different things

1) Finite duration of signal

> 2) Diff. broadening mechanism
Define: g(v)dv = Probability that a spontaneous emitted photon will appear
at a frequency between v and v +dv .

g(v) is normalized so that

“j‘g(v)dv =1

Origin of g(v)

a) Homogeneous Broadening

atom
g(v) is characteristic of a single emitter | molecule

0on

“Natural Broadening”



The Q.M. of a single atom can be modeled as producing the field

E(t)=Ee e

Probability of measuring photon at time ¢,

P(r)o|E(t) = E2e™"

same way,

Prob. Atom made

P (t) o et =g Mo

spontaneous u —»/
P,(t)=1-*

Prob. Still at the upper
=1-F, (t )
— e‘Aulf

Spectral case:
E () = _[dte”"‘" e e
=E, ?dtei(m‘wﬂ %)t
0

Ey

. ]
z(w—a}u,+~J
T

From spectrometer, we see o IE (0))|2

Ey

lE(a))|2 oc -
(0-a,) t



i) Lorentzian Distribution

2

B)f 1
E, | |-
i o
2 U 2
a)o
2
1
—T—2~— ! = 0-0, =t—
(w_a)o) t 3 ‘
T
1
Dy =0t —
T
2 1
Aw S0y =0y, =— = =t—
v P
Ao 4
2z 2z 2mt,

In general, for natural broadening

1
Av:E;(;A“;A,m)

Homogeneous broadening = single emitter all emitter repeat single emission.



ii) Collision Broadening
During the emission of a single atom/molecule/ion often particles collide with
it.

Imagine the duration of an individual collision to be short compare to i
o

tco}lision < tperiod

N
. 1
<At>oo]h'sion = }}E}o ZH FAt,

or collision = (At0> =7,

Recall:
~ 2 E2
E(o) = 20 2
FON = ey <)
Ao =%
_2
4 " Ao
~ 2 1
Elw
l ( )l (@ wo)2+(A /2)2

where Av = —1—
TC

Total homogeneous line width

A, DA
) 1 .\ |
Av), =—2—~(Au+Ae)+vcu+Vc,
T
— )

Natural broad collision

spon. collision
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B) Inhomogeneous Broad ~ Doppler

Here g(v) results from a distribution of emission frequency from a group of
atoms.

= supports of the sample emit at diff. frequency giving rise to spectral
distribution

i) Doppler Broad.

Detector v, Detector
NN
1% ‘ 1%
V=v,——V, V=Vv,+—-V,
¢ c
at frequency v,
: queney o =V, (1 + Yi)
v c
v=yv, (1 - —i)
¢
red shift blue shift
“Low frequency” “High frequency”

Consider a box of gas at temperature T

The detector is sensitive only the x-

component of atom velocity.

Atoms obeys Maxwell-Boltzmann

Detector In thermal

cror - velocity distribution of particle (atom)
equilibrium

m 32 *—m—(vz+v2+v2)
V.,V v =|——— | e 77
(A

- Boltzmann constant

Tttt
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Then, the probability distribution becomes

j.ﬂ.dedVdezf(vx, V,,V, ) =1

Probability of finding a particle with

v, in [v,,v, +dv,]
v, in [vy,vy+dvy]

v, in [v,,v, +dv,]

Letrelate it to g(v):

Probability of increasing emission with frequency v in
[V,V+dv] = g(v)dv
=f (Vx,vy,vz)dvxdvydvz
\ ?
Probability of finding a particle with
appropriate velocity v, so that v is in the range

[v,v+dv]

(v,,v, are arbitrary)

B.T.W
v
V=V, +—V,
c
only v,
v, =(V—V0Jc
Yo
dv, =—-dv
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g0)v= [ [L7(vovv.)avav, v,
= ;co—dv Hdvydvzf[(v;ov" ]C,Vy,Vz:!
) (*@_)3/2 [ fje_%(V§+V3)dVydvz]x I ;'_:T{v;:o ]’ <,

2xkT ‘

Note : J-ewzdx= z/a

-0

2xkT

g(v)dv _“*(___._)]/2 Z;T(M"szv

Then, probability distribution of the Doppler broad:

e

Vo \27mkT
g(vtl2) 1
g (VO) 5
? 2
mc v+ v,—V,
= exp| —
(2]
AVdoppler = +1/2 . —1/2
(ZkT ) »
mc
= AVD

el



Comparison of Different types of Line Broadenning :

Gas Laser Medium : Ay, <A Y goppler

At Low Pressure : Av, >Av,

collision

High Pressure : Ay, >Av,

V4
1
0—Avy
2r ¢
= cooling
Ex : He-Ne laser
A=6328 A
Av,, 03x10%sec™
1 1 107
" = — = = e SEC
P 4 Av, 3
=300 ns
At room temperature (300°K)
- Atomic no.
my, =1.67x107" kgx20 kg
/ 12
Av, = 2k€ an) 2v,
mc

12

2x138x107(300)In2 | 2x3x10°

20x1.67x10“27(3x108)2 6328x107"

=1.3x10° sec™

D Vnﬂl

13
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e Solid medium : Doppler

Typical order : Av_, >Av,, >Av,

vibration of atom called photon

e Convolution

In gas, the net broadening is a convolution between natural / collision and

- .
~"

Homogeneous or Lorentzian

doppler broadening

N J
Y ,

Inhomogeneous or Gaussian

Absorption and Stimulated Emission :
Absorb coef. |

Absorption : —7

dt
dN. No. of atoms
=——L at statel
dt
T 2 empty 2 © occupied

Ol 1 occupied 1

Initial state final state
N empty 2 © occupied
I\/\J‘\//—P
hv
hV AN
(oW o O s
O occupied 1
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Spontaneous Emission : dj;;z =-A,N,

&, occupied
1 empty S, occupied
Stimulated Emission :
1 ™, occupied 1 empty
hv
hv AnA—>
h
v
LV W,
2 empty 2 o occupied

Interactions of atom and radiation

Consider the radiation field described by p(v) where p(v)dv is radiation

Joule
m2

field energy density in in [v,v+dv]

= Absorption and stimulated emission rate for a single atom (or per atom) is
proportional to p(v).
= The stimulated emission prob. or absorption prob. is proportional to the photon

density or the number of photons.

Consider : The absorption rate for a single atom

(« 2 W, =B,0(v) <'§3§E>

1

Transition rate :

W, = lep(V)+A21
\_Y—} LYJ

stimu. spon
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N, = # of atoms/m’ For radiative process :
in state 1
dN, 3
N, = # of atoms/m’ ®A— dt total = —(lep (v)+A, )N2
. 5 .
in state +B,N,p (v) <;n3_s>
_aN,
dt

d
— (N+N,)=0

Assume that the atom and the radiation field in equilibrium

dN, _dN,

Steady State
dt dt

For steady state, é;—z in &) =0, then

. N, _ Bl2p(V)
N, anp(") +4,

Let consider “particular kind of equilibrium”

= Thermal equilibrium

P heat transfer from heat bath

@ —_ N, = g T Boltzman’s factor
N

/

1

heat bath box
(T,fixed) o )
In thermal equilibrium more energetic level
TO T,
final T, — T, are less populated than lower level (N, <N|)

®=0
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e—hv/kT et M
B2,p (V) + A21
O— p(v) = An/By, “Thermal equilibrium”

E&} e-—hv/kT _ 1

BZI

We know that the energy density for EM field inside the cavity at the center

frequency of interest is

} 1
Q— p(v)= 87m3hv ( s 1) n = index of refraction
c e -

“Plank Formulaf”
A, Szrh’
B,, c ‘
By _,

B

21

These relationships are purely atomic in nature and independent of any assumption

about “steady state” or “equilibrium”

Recall : g(v) has finite width

W, (v)= Z[“’u (v)dv

What is W,, (v) ? Recall, absorp + spon emiss and inverse process

= Absorp and spon emiss have frequency depended and this is given by g(v)

S
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W, (v)=Bng(v)p(v)
W, (v)= IBlzg(v)p(v) dv

=BDg(v,) J.g(v) dv

k_.....v.._...J
1

W, (v)= :[leg(v)p(v)dv +Ay

= lep(Vo)+A21
=W,

Consider radiation distribution p(v)

d’; g") = W, (V) Ny = W, (v) Ny + N, (V) A v
Photon radiation in W, (v)=B{g(v)p(v)
random direction B, =By

W (V) =B,,g (V)p(V)

W, (v)=W,, = rate of stim. emiss.
per atom = rate of
ab. per atom

dp(v
dg ) =B, g(v)p(v)(N,-N))
3
- A, (8PN, N
3
= Wg(V)P(V)(Nz -N,)

sp

I(v)dv = energy per unit area per unit time in [v,v+dv]

Area A

x
e

— Ax >



Relation between p(v)+1(v) rate at which energy leaves vol.

=1A

_pP()A,
Ax

(677
_pe
n

Rate of change of energy density :

n
dp Ao _ A 4
dt " A nm, o Ak
c
Therefore,
dI(V) c2 |
= N,-N, )/
i = G B N)I)
=r(v)1(v)
Where,

1,(x)=1,(0)™"

7(v) is called the “Gain” or “Loss”
Loss (or absorption) occurs for N,<N,.

Gain (or amplification) occurs for N,>N,.

A~ WA Thermal Eq.

N,<N,.

:>Iout<1i’

19



N,>N, is not the natural situation, it’s called “population inversion”

20 =#2@—t;g(v)m~m>

Vi

/

viy(v)?T
vTy(v)I=N,0 N,

Like X-ray laser, it is hard to produce.
Again, at thermal equilibrium, there is

N, _ s

N,

<1

“Non population Inversion”

Simple model for atom :

Some facts about atoms
1. fixed the nucleus surrounded by e charge

2. shape emission & absorption resonance

3. an external E field can introduced a dipole moment in the atom

—

E - ~
_ p=ezz

(&) O00©

Equate motion for electron

(CL) Resonance frequency of spring arrangement :

k
a)0= ;

20
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Q,M.Correspondence with a real atom, it will be

E,-E r_h
%= ('“52)

We know that real Q.M. “oscillation” decays at a rate A. We also want our spring

model to decay or damp

2
m—~d f=—kx~—eE—m0'£lx—
dt dt
d*x  , _dx_ eE(t)
—t Y —=——
dr? QXY dt m

@ is important?
If £(¢) have @ not matching with spring resonance, spring doesn’t affect much
E(t)—> E(o)
—0* 7 (0)+ a7 (0)-ivck(w)= —EE‘(a))
n
e ~
_fE
“ ()

Z(@)= o} —0’ —ivo
0

Dipole moment of a single oscillator

p(r)=ex(t) =—ex(r)
B(0)=eg(w)=-ex(0)%

e -
+—E(o)
S N__m
p() o} -0’ —ioo
. t) =Np(t
Dipole moment per unit volume : If( ) f( ) ' Ne? =
p(0)=Np(o) —E(0)
i p(o)=—"

W) — @ —ioc
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Recall :
p=¢&xE
£, =8.85x 1072

p(e)=¢6.1(0)E(o)
Né’

()= 2 e
0

Frequency dependent of susceptibility can invite

1 N2 (@ -0°)-ioc
o) - L2 i e
& m (a)o—a) ) +o'c
=7 (0)+ix" (o)
(o) _ 1 N& o -o

- 2
& m (wg—a)z) +o°c”

o y_ 1 Ne 0o
(w) T e 22\, 2 2
& m (a)o—a) ) +o° o
If the frequency of external field is near resonance i.e. @ =@, 7(®) will become

oo\ . Né W, — @
%) = 2myms, (

2 1 2
a,—~0) +—0
-a) 1
Née*c 1

day,me, (@, - o)’ +% o

7'(0) =
Extra point to note

g(v) 4 fe(v)av=1

| . If g(v) were on stim, then

0.5 bommmmmmme Zg(v)dt/:l:g(vo)Avv

1
g(V0)=X;

A L
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For general g(v), the proper expansion is
g(v);——l (yocg(v)(N —-N)>
Av 2 1

“Wave number” units is cm’!

Since energy = hv; v o« Energy and E Oc:l?,.

If the energy in wave number is “y” then the frequency corresponding to this “energy”

is

Review Electromagnetic Theory :

Maxwell’s equation :

VxE=——~a~B—
ot
_ oD
VxH=J, +—
e ot
V-D=p;,
V-B=0
where D=gE+P=¢,(1+7)E
B =ﬂ0(ﬁ+M)
=ﬂ0(1+l,,,)1;1=/1ﬂ
M= Nm [ = i, non magnetic

= ¥, is very much



Vx(VxE)=Vx-28
ot
V‘(V-E)—VZI_E'—‘—E(Vx}_B)
N’ ot
7
80
pﬁee =0

0
~V?E=-pu—(VxH
E ”at( x H)

o, 0D
=—yu| —J,+—|; no free current
”(at ! atz)

For most non metallic material u = 1,

2 o
VE =4y Z(5ExE)

0 = o*P
VE = —sE=pl(rt
=4 :uOEO at2 H atZ (r )

Apply Fourier transform E(r,t) — E(r,0)

2
V2E(r,0) -2 E(r,0)= -0 P (F,0)
C

=—p,0° €, 2 (0) E (r,0)

where

Xr (w) =X +Z(w)

2 1 f — w2 fnd _ . _C_ 1
\% E(r,a))+—;2—(l+(;(0+Z))E(r,a))—0 ; V—;—u;,u_
2
V2E+%(1+;(0)[1+1+Z 0:|E=0 l+y=¢

2
v2E+ 2 p [l+lz}l73 =0
C n

24
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2
For plane wave propagation along z : Vi (—;——2—)
z

2 2
9 5 2 p [1+15-]E=o
oz* ¢’ n

E(z,a)) = E(O,a))eﬁﬂ(w)z
@ V4 V2
=Zal1+4
pla)=2a1+4]

—Z—z—: X__ X% <, forzsmall

wolvy 1+lx, %,

No. of actlve molecule

oC
No. of background molecule
01 (order of %)

Using Taylor’s expansion

ﬂ(m)zgn[l-y%%] (1+u) "1+qu+q(q l)u

Thus,

E(z,0)=E(0,0) eigﬂ[ké”%]z

Recall for our medium of spring we have

x(@)=7'(0)+j1" (@)

1 7(0)z

E(z,m)= E(O,a))e'v("““‘)"e2

wave no. in the host or background mat.

Where k:g)—n ; 22’1__&,_,_:](/’('
c c 2n* 247
1 ky'(o
Lyw)=-12 )

\ 2n2

gain or absorption coefficient



Note that 1! 1 (a),z) o lE(m’Z)l o e}'(w)z

Atomic susceptibility :

Recall : Classical electron oscillator (when o = @)

Let Av= A 0, absorption
2r

1

TN

Lorenzian i |
2
(V VO) [RRER— _g. l - Av

@ ( 2r ] 4 4

Recall : Q.M. expression for y

You (V)= g(v)(N,-N,)

87r Vt

Assume that we also have

-k
® o (V) =5 220 (V)
( CL

O

il

QM )
@

Zone (1)=" zmm ;Wz-zrg(v)m -N)

1
167r nt,,

(

cm

;

26
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If g(v) is Lorntzian, then

” 1
Xom (V)=— 167 2———g(v)(N -N,)
=(N,—N2)/13 1
87z3tspAvn 1+ﬁ""‘2’0)2
Av

(What’s about a Q.M. cally correct expression for 3’ ie. x;, ?)

For the spring model, note that

’

2 4
%zg(“’o—a’) ZF”(VO_V)

We will assume that also

14 n 2
Xom = Xom (V)*E(Vo -v)

Cross section for Absorption or stimulated Emission

()’ 2.2 g(V)(N N)

87[ nvt,
r(v)=a(v)(N,-N,)

cross section for cm?, Area



Gaussian Beams :

28

Laser system has been propagating that a beam implies that insufficient ray is

far from the axis of prop. The field die away

—— It’s not a plane wave :

Because properties

(D finite in transverse extent

@ prop. L To transverse region

For free space or uniform medium,

t

V=V +2—‘—i-
dz

0

transverse —— 4 —
Ox

If the beam diameter is D then,
V.-E —l-)‘-
%E +ikE,, [ 0

1

E, ~_1__ A
E | kD 27D
He-Ne:

D1 mm

IfDll — E.q 01

V-E=V,-E +

O, _,
oz

E,0E"E,
OE,
Z

E = If‘ +2E~ longitudinal

= ikEzoemz

transverse

A06000 4° =64 =0.6x10" mm

=1020 1
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In the case of the beam (D finite), there is always a field component along the prop.

direction.
[3@.) 0 1 (scale length)™ for envol.

62 envel

0 1.

—| Dk (scale length)™ oscillator

52 oscill

@ E (F » @ ) = Eo‘// (7} 4 )ejkz__, fast space variation
\_?..___J i

slow space . .
variation —> gives radial to fall off and

slow variation along z

7, = transverse coor.

e
Recall : V’E+ = E(0)=0 @
~ ~ a)znz ~
Substitute £ into V’E+——E(@)=0,
then
O—— Vi =ESVYy
ok E, (a—wei’“ +ikei"zl//)
Oz 1574

2 2
9L lf‘ =E, 0 sz e” +ike™ o _ K*e®y +ike™ o
0z oz 0z oz

Case has low divergence and k of optical wave is
9 o4y 2 large no.
Vi +2ik L+ ~=0
oz 0z

O’E,

622

+K’E, =0];k _2z
A

(VfE, +

Vi +2ik W _g Paraxial wave Equation
z SVEA




Intensity distribution
=|Ef I
v el{P(z)+£@:'
oy _ikr [p( )+2q(2)]
or q
Oy _ikr e"[”(z’* 5
or q

In cylindrical coordinate : 1 9 (r oy J
or

r or

_ 1| 2ikr [”” 2 ()} ik’ [”“ ) Lk {rerargs)
r| q q q

kl‘2
ov_ [ b ] )
0z 2q

substitute back to SVEA, we get

. 2.2 2
2k _kr —21{;; —?—q'}zo
g ¢ 2q

L 2 "(z)- .
2 @-1) Zk[pu q(z)j 0

Power function : a x" +a_x""'+...+ax+a, =0
n n—1 1 0

=¢(z)= "complex number"

‘I(Z)= z—iz,

©
d
AtZ.:O:(//(r’Z:()):e ZZoeip(zzo)

For z#0: 11 z+iz

q(z) z-iz, 2 +2z}

30



kg | ket
2 2

w 0 eZ(z +zo)el (z +zo) lp(l)

2
Define, o’ (z)= ;Z:(zz + zg)
= a)(f (1+22/z§)
2 2
Define R(z)= Z 1%
z
v = _r2 /wz (Z)eila‘z/ZR(z)eip(z)

Recall @  P'(2)=i/9(z)=—- =
p(z) =iln(z-izy)+ 4
But A just contribute to a constant phase, so we define

p(z=0)=0
p(z) =iln(z-iz,)—iln(iz,)

exp(iP(z))= 1 __1-2/7,

1+tz/zo 1+(Z/Zo)2

© g T

1 e—i tan~! zf2,

@y

Full sol :

E(r,z)=y(r, z)e”‘z
-rl/m(z)eihZ/zR(z)ei(lrz-m" (#/2))

(Z)

E(r,z)=E,—~

31



We get solution by using l(r Q—‘/f-) + 2ik§—l"i =0
r\ or oz
@) + @ | by assuming 9. 0
oy
. i’
t(p(z)fr—zq—(zj)

to get this it is quite completely e

& solve by B.C. where E(z —>®)=0

Since this solution satisfy the wave equation and B.C. it is the unique solution (for

case ——a—=0).
oy

Interpretation of Fundamental Gaussian Beam Solution :

Radial dependence
i) Field Amplitude +

z dependence

o(z) =t (1+_Z.2.)

2y
IE (z =z, )l 1
E} 2
r2 r2
0) o

Interpretation :
z =0 is a place of min spot size a,.

What is z,?
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]E(r = 0,z)| @, 1
=0, - il =
For ¥ E, o (Z) (1+22/ zg )1/2
2
At z=2); ‘E(r_O,Z—ZO)I :-1—

E; 2
= z, is the distance from the focus at which the intensity has dropped approx.

by a factor of 2.

ii) Beam Divergence

We can use the focal of ! field point to define a measurement of beam

e
divergence.
. =
\::T\T
=G z
A
z=0

For small angle :
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FOI‘ '—Z"D 1,
Zy
2/ _2\V?
o(z) a)o(1+z /ZO)
z z
0 %o
Zy
2
= by 20y 5 Zy= kay
Z, 2
20, _ 20, _ 4
o, ko, ko,
2x/k 2
24
Oy =——
e,
Since @, for difflasers: = AT o> 6, T
Same A4 =  ov - 6,7

longer A, the beam diverge faster (for fixed spot size)
Photon View of Beam Divergence :

It comes from uncertainly principle

— ApArTlh ;5 ArDa
ar > Z h
— T —
Divergent angle : S‘—BD h_ﬁ 0 4
hk a

z

iii) Longitudinal Phase

e elw)) _ )
~——

AplJ h spread in radial photon momentum
a

Behavior of plane wave :
— k,
2 .
—> kz Intensity never fall off
/—_ _\
ik-r
e~ =

eilé-r
eikz

Il
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i

* k is locally_| to phase surface
—
for z—>—® Surface of constant face
tan™' = - —7/2
Zy

for z-—>+® phase shift by 7z
tan™ = > +7/2
Zy
In going through the waist the wave picks up a phase change of
n[2-(-x[2)==
e This phase change is due to change in direction of phase front
curvature.

o tanf=z/z, atz0 z, ; O0z/z

ei(kz+tan' Z/Zo) 0 ei(kz+z/zo)

iv) Phase front curvature and radial dependence of phase

eikrz/zR(Z) . R( Z) - Z(l + Zg / Zz)

The phase fronts for the beam are curved. R(z) is radius of curvature of these phase

fronts.
@ For fixed z, as we move off axis
@ m_ ) ) ) @ phase increase.
N —— @ For fixed z, as we move off axis

phase decrease.
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@ : Phase { — R"-" @/@ is the behavior of & /%)

R(z<0)="-"

IM Q= (r2 +2° )1/2

| z / = z(l+r2/zz)v2
z=0

0z(1+7/222)  for 20 1
Lz

E(r, Z) 0 1 efl,zeikrz/ZR(z)eitan‘l(z/zo)

o(2) 3
For large
2:E(r,z)0 éeikzei"'z/22°
0 le—e'm . o(z)=0,(1+2%/z,)"
Q=1+ i

. z .
Far from beam waist, the phase fronts resemble those form a spherical wave.

(E(nzﬂ]%ew)

Close to the beam waist, phase fronts are parabolic.

Ex : (i) He-Ne Laser 1 =63284" spot size 1 mm. Aim laser at the moon. How big is

the beam at moon?

®,=1mm=0.1cm

2
z _znay _ 7(01) em’ =492 cm
1 6328x10°% cm

2

12
o(z)= a)O(l+Z—) (atz =z, 0(z)= \/Ea)o)

2y
z . =240,000x5280x12x2.84 cm =3.86x10" cm

' 10 \2 I/
wmoon(zmoon)o'l(l+(3_.8—%g_6}—()—_)J =78%10 cm =78 km



If we use lens or mirror to increase beam diameter to @, =5 cm,

52
R AC) T
632810

@(z)=1.6 km

wo w(zmoon)

1 mm 78 km
5¢cm 1.6 km

(iiy Power in beam crossing a plane at z

(s), =%ca(ExH*)

Intensity :

1=teslif
2

37



Power :

P = J'Ids ds = drazr

over plane

a)o —Zr /m2(z)
o (2)

ceE} 2 Idrre o)

I r2r —1—c¢¢:E2
V]
1
2

@ (Z)

independence of z => since we must conserve the energy or power

Higher Order Gaussian Modes :

38

Our previous calculation assumed azimuthal sys (—ai = O). Now, remove this
14

requirement, and still require

E—>Oasr—>

We get for

(i) Rectangular coordinate :

Hermit Polynomial represents
modulation in transverse plane
A

r
E ( X, ¥, z) _H ( \/-in }H ( \/— y ] a, [~x2+y2/(o2(z)]ei(kz—(m+p+1)tan‘1(z/zo))eila-z/2R(z)
E, o \0(2)) "\e(2))e(2)

order
m
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2m
H,(u)=(-1)"e" =™
m(u) ( ) € dume
Ho(u)zl
H (u)=2u

H, (u)=2(20"-1)

These mode are called TEMy,, modes :

E,=H, =0

Actually, E, 01
E

1

These is a total of (m+1)(p+1) spot in the intensity distribution

(i) Cylindrical Coordinate :

ilp
E(r’ Vs Z) _ ‘\[ir ip 71 27'2 —r*a?(z) i(kz—Z(p+I+l)tan“lz/zo) ikr?[2R(z)
= evL | —-— ¢ e e
E, @, l o’ (z)
get curl /

| = azimuthal index

p =radial index

O = Brewster angle

Gaussian
hole . .
so we kill the outer ‘@) —> @



Divergence of High Order Modes :

For higher modes, must consider extra beam radius due to Hermite Polynomial

Effect beam radius [ 4, = Vmo(z)

1 X,

— 103X

59"” 2

_ \/—i;a)(z)

lHDND\/EQ"— for =0 1.
2 z, z,

Divergence of n” mode is Jn times larger than a zero-order mode.
——
1 o, z

— Oy =—>,—1 1
2z g,

Coherence :

Temporal or Longitudinal coherence : nice predicable wave with phase memory

7, = coherence time : “duration of phase memory” over which average time wave

phase is predicable.

= average time between phase change

_ c
I, = coherence length =—7,
n

2
T, = v : claim Aw is FWHM due to any kind to line broadening.
1)

Transverse coherence :
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Degree to which the phase changes as you move transverse to propagate

direction.
phase change
k
k “inperfect transverse
k coherence”

plane wave

has a “perfect” transverse coherence

e No phase change in | direction

Divergence: Maxwell Eq. tell £ vector is locally _Ltb phase fronts

1 Ak
2o
(HDW )max 0 ZAII?MX

/\/\/\ The uglier the phase front

Ak —> the more the divergence

Contrast laser beam vs. Flashlight beam :

phase front follows the contour of mirror

Flash Light: Temporal coherence is poor-random emission from incandescent

o)

large divergence

filament.

Ak

max

k




. Measurement of coherent:
) Longitudinal (or Temporal coherence)

Michelson Interferometer:

Fully Coherence: 7, — o
Noisy coherence: 7, =0
Max: d, =d,,6(d, - d,)

got peak

In case of partial coherence:

((B+EY)=( B+ (£ )+ (26 E)
| SO RE——— [—
Background Fringe
L2xzje

j dt sin(a)t +¢(t))sinot

0

Qutside curve

< ¢ random — take time =0
= Flat background = 0
=> In side curve = 1

2id, -d
For —~————I 24 > 7, ; fringes go away and just background is left
c

Measuring Transverse Coherence: Using Double Slits

(B +(E[)+2(B E)

42
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Gain and Optical Amplification and Gain Saturation
jo— L —
1,(0) 1,(L)=1I,(0)eY*
+ depending on N,, N,

7()= (V) (N, )

nvtsp

Population N, and N, are affect by the photon field.
Rate Eq.:

dN. N
- -Bg(v)p(v)N, —72“+Bl(§)g(V)P(V)N !
sp

Consider a homogeneous broadened 4-level system:

\R2 pumping rate into upper level

. R,
pumping Azi& &1
pI'OCGSS l Tsp v .l = _L +r.
= 2
T 1 -
4 rate of depopulation
method
B R~ (1, -N) B8 (1) (%) =
27N g\v)p
dt 7, — sec

o(v)= rate per atom

of stimulated absorption

where

cg(v)l,
mwkm;l
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dN, N, N
ZU R -4+ 224 (N, - N o(v)
dt T, I,
pump \
non-stimulated Spontaneous
depopulation. rate Fill up from level 2

S.S. approximation (% = 0) to describe behavior of N, N, for t[1 time of slowest

|

rate in system. | R, RZ,_}_’ .
T
Then,
N ,
0=R, ——T—2~——(N2—N1)a)(v)
2

0=R -1 (N,-N)o(v)
- ‘

1

Solve for N, N,

sp 2 Tl

0 =(R1+R2)+N2(.t1__;1_)_&

sp 2

1 1
N, —(R1+R2)+N2[t——~r—}rl

0 =R;—%—N2w(v)+a)rl{(R,+R2)+N2(tl-.__1_1\

2 sp 3}
1 ¢
0 =R2—N2(;———a;-t—‘+%—‘+a)}a)tl(Rl+R2)
2 sp 2

i R2+an'1(R1+R2)
J__w(i__fx__l}
T, t, T,

_ R212—(R1—5R2)11 .
e o P Py 7 s

N,




In the absent of optical intensity : /= 0
= o(v)=0

N,—-N, =Rt,—(R-6R)7,
=(N2_Nl)1=o:AN

AN®
N,—N
S 1+¢ a)(v)

where

¢=5[l+(l—-5)rl/12]

Now consider efficient laser system

1 11

rnl —=>—0—=4601
@ ’ sp TZ Tsp
U
t,, small — fall fast :
No!!
@ t,0 t,=(N,~-N,) ™ easier

We also want to deplete level 1 as fast as possible in order to keep the

inversion high (or to avoid absorption upper level)

LT
tsp Tl

-LO- W 01
2-2 Tsp
:>(1—5)Z‘—D land so ¢ =1

2

45



AN
N,—N, S
2 1+g7,0(v)
Recall:
,0(v)=4r, B“”g(v)p(v)
=4, Sarh g( )c/ n
c g(v)I 1
8xhv I
2 3
where, I, = % “saturation intensity”
So
AN
N, —N, =
2 1+1/1,

when I = I, the population inversion drops to % its maximum value.

The gain is saturate when the rate of stimulated emission (per atom) is equal to the
rate of spontaneous emission (per atom).

Gain becomes

()= 250 (.-

8zn’v
_ czg (V) AN°®
Brn®ve, 1+1(v)/1,
% (v)

(1+1,/1,)"

70(")
+1,/1,)

Inhomogeneous : ¥ (V) = —> saturation more weakly than homogeneous case

Homogeneous : y(v)= i+

Doppler : If we operate at v, it doesn’t affect y(v) much.
Homogeneous : g(v)~ every atom

Affect one, affect all = y(v) change much

46
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Optical Resonator

Single optical resonator : 2 flat, parallel optical surfaces

rE, ; LE, 1, Eye™ ; tt,Ee”
Z'rl/ 2k ikl /
ttrEe”L trke trEe” | “Fabry-perot Etalon”
e L~
L~ ’
- L7 Ee™ > 1, Ee™
i l #}
n n n
!
on on
ky=— k=—
c c

/Ratio of field not intensity

Transmission coefficient : from »' > nll ¢,
‘r_n—ﬁ
Reflection coefficient : from n—>nl 7, T W +n
(orn—>n') ,
n'-—n
E 1t . v, = = —
Transmission coefficient : from n—>n' ¢, " Wan
Reflection coefficient : from n —>nl r
(orn' —>n)
re’ it —~—1-—
. "2 7
Reflected wave : 1—re?™

s A ™
E =E, (r0 +tt,re™ 1t + )

r
tt re™
= Eo (1‘0 + -1—1——2;2—?;;

a 2 3 .
1———a+ax+ax +ax’ +..
- X

or

x|<l

(l+x)_] =l-x+x’-x +.5-1<x<l1



E, =(tt,e" +10,r%e™ +ttr'e™ + ) By

[ tt,e” E
I G R

Recall :
2n'
"= n+n =11
2n
= =1-
2 n+n !
_n-n' 5 _ n2+(n')2—2nn’
n+n (n+n')
I L s=1-1t,
(n+n’
1_ 2 2ik
EO 1_r2812kl
= r[_—l_ﬂ r = real number
1-r2e™ no absorption
L [ r(aee)(-1ee™)
1, - E, B (1_r2ei2k1)(1_r2e-i2kl)
72 (1 —PM e~2ik1)
a2 4 pe M
_ r*(2-2cos24)
1+ -2r% cos 2kl
_ 2R(1-co0s9)
" 1-R*-2Rcosd

R=r" "reflectivity”

& = 2ki"round trip phase advance"

cosJ = cos’ % —sin’ %
I _2R(1—cos2%+sin2 A

I, 1+R2—2R(1—Zsin2%)

4Rsin® %

= 5 :
(1-RY’ +4Rsin” 5/

48
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Similarity,
L__ (-R L
I, (1-RY +4Rsin*%, 1,
_I_t._*__]_’.:l
IO IO

“Fabry-Perot problem foe off-normal light”

Note : Laser is not a plane wave, but we use plane wave to understand Fabry-Perot.

Transmission Characteristic of Fabry-Perot Etalon :

.2 5 _
For  smn /2 =0 I |
6 = f = = T T
h=qn for q 1,2,3 0
Round-trip phase advance : 2kl =2gx
[ k=nk, = niz
k z
I= %& ; [ oc half wave length
n
/ e
v ; Separation / is integral # of half wavelength
d
‘ v
; Ve “standing wave condition”
L~
/ 34
A == -2 V7

fe— [ —
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Frequency separation between resonances :

ki =qr
2nvnl
wnl ¢
c
gc
Vv, o=
7 2nl

“resonance frequency” within the resonator not the spring, atom,...

c (13 } 2
Av=v, , -V, = 5 Free spectral range

v, =qc/2nl

dv, =~ ch
! 2nl”

change of resonance frequency due to the change in d/
dv, —qc;2nl *dl

dl

Av .
to change the resonant 2nl
frequency by one free - _{{{
space range the etalon q ]
must be tuned through —dl

one-half wavelength -
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When R — 1, the resonance sharper

We must get very close v, to get the signal or

Ey y

e
resonance pattern.

Field and Energy Inside Etalon :

> E, > E e Ee Right going field :
6'2 rEoeik(ZI-l) 0 ) ' )
i ' y R ARPRLE 2y z
s 2 E, &M > 2 Eoetk(21+z) E Eoe +r ILOE
! 4 3 SETET:
< PEM +r! li,Ue’“” by
i
V4 ik(Al4z Vi . 4
> ke ) = Ee" (1 +rle®t gt )
]
i
r—)E(+) -~ ks
EO = mlfﬁﬁw__
' FINEY]
0 , ! 1 e
a 2 .
——=qg+ax+ax : if —l<x<l1

1-x

Left going field :



E(—)( ) il‘()e"‘ (2-z ‘}r?»Eneik(M»:) +

z 2k [ 2 !
:rlle”‘e’”‘ [1+rc Trrte'™ 4. ]

- V} ngtk E’IZU

T e

[ﬁmwh( ) [{ (Z)}ﬁ ( }

] 2

inside o l l‘e'inxidm

;1; )+E (z )I)
=(E(2)+E (2))(E () +E (2))
!1(:’)'2

2
E(; (]+rz+’e 2ike 21k1+’e z:k/)

E () +

1+ =21 cos 2kl
: RE r*+2rcos2k(l~z)
1+t =207 cos 2kl

E,

“mside
«12
()

] 24
_1+R+ 2JR cos(6 —24z)

(1-RY’ +4Rsin* 52

The intensity inside resonator is also maximized for sin§/2 =0

E, related to E , via t.
in out
Thus, E.

g Max at sind/2=0

E,, max at sin§/2=0 also.

Resonance Peak for Resonator : Outside resonator

L (R
1, (1- R)’ +4Rsin® §/2
_ 1
1+ 4R

sin® §/2

(1-R)

FE () E ()4 E(2)E(2)

52



1-RY)
At L 205 if sin? 672 = URL
I, 4R

or sin’ §/2 = 12k

2\R

(If know & — 2kl = so one can find Ad,,)

@ S “}'@L = 4 }. ,fi
2 2JR
51'@}&1 2(]” + ”!2* A()l ”
sim 1(21171“ + 1 A8, ) = l:‘.’ﬁ
2 27 ) 2JR
O—sin ‘7zcos~é§ﬁ + oS g sin é—ajl_?» _I-R
O T T R
1 !

@ O =297 —‘;);Acsl/z

Lo

sin S __1-R _ sinl a7 — é’é‘l},
W TR T

. Ad, . Ad,,
= sin g7 COS ——— — COS ¢ 77 SiN —
. Ad,
— = —COS g7 Sin~——=
@ gmsin—
O-@ - 2cosqgrsin ~A~—§‘-2-u =R
) T4 IR
- Ab,, Ad,
1=R = 28in —= & — 2"'1 for & small
2
AS,|=—2=(1-R
8= 21 R)

R —>1= A6, small

53



But S=2k=2 2y _

c

4znl
A6y, = T Avy,

2

=—E(1—R)

¢ 1-R
Avpp = 2znl /R

Measuring Quality of Resonator :
Resonator quality factor Q=

Vi
Better definition is “finesse”

Fe Av U free spectral range
A Vip LI FWHM of resonator
c

oml _mJR R-1
¢ 1-R 1-R F-ow

2znl R

Cavity Resonance for Gaussian Mode :

Previously analyze resonance for plane waves between 2 planar reflecting

surfaces.

Now consider beams with curved phase fronts and cavities with curved mirror

Recall :

E(x’ Y Z) =H ( \/ix ]H ( \/—Z_y }_%_e—rz/wz(z) Xeikzeﬁi(m+wl)mvl—Zz;eikrz/2R(z)
r

E, "\ o(z2) o(z) ),

54
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Intrinsic property of plane wave
. ikt [2R(2)
R(z)—>w:e -1 } S#)

Zy —> 0 P LI |

I .
=> because plane wave have /(z)= 3" at z—> o, Le. z, > o,

R(z)= z(1+z§/zz)
For z >R ="-"

Z+__)R2="+"

Plane back-forth :

Resonator condition = round trip phase delay is equal to integral x 2z

Phase shift :  2(¢(z,)-¢(z))=2gr
#z,)-9#(z) =qr

q7l'=k(22 -—Zl)——(m+p+l)x Different value of ¢, m, and p
satisfy resonance condition.
1 Z 1 Z = i
tan' 22 —tan' 2L m+p .trar.lsverse mo.de index
Z, Z, ¢ = longitudinal mode index

%(R(lzz)‘ze(lz])]

To simplify the problem, let| r =0

= this resonator is true every where on 7.

qﬂ':k(22 -—ZI)——(m+p+1){1:an“‘Z—2—taln"1 ﬁ}

0 Zy



ase: Plane-convex

&« | —>
z,=0
! q;z_—_kz;z—(m+p+1)tan_‘Z—2
2 2
From R, =z, [1+£{|
ZO Zz ZO
12
~> 00
k R, zy =+[IR, (1-——1—)
R=2nv R,
m,n,p;
AIldg

oyt {q+(m+p+1>m-{ (/r)" }}
4P 2nl T (1_I/R2)1/2

12
1
=2 q+(m+p+ )cos”1 -1
2nl 4 R,

Case: Confocal Resonator

c 1+m+ _
( ) v = {q+ ~ pcos‘w/glgz},

m.q.p 271[

R #ow

[
where g,, =1-——
N R1,2

General solution for v is

|4

P " o (z,-2) 2an(z,~z) z,

qc c(m+p+1) {tan_l—z—z——-tan_l—z—l—

Zy

}
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() Longitudinal mode separation

For a given TEMp,, mode (m, p fixed), we have

O— kq+,z—(m+p+1){tan—*§—z-m—lj_:}z(qﬂ),,

0

O—— qu-(m+p+1){tan-lﬁ—mn~lﬂ} =qr

Zy Zy

D-O (kpu—k, ) =7

Ay = _ €
or Vq-—VqH“‘Vq—‘ﬁ

(ii) Transverse mode separation

Here, g is fixed.

A—— ky—(m+ p+1), {tan"liz——tan’l El~}=q7r

Zy Zy
n charge + p fixed = like wise

®—— kl—(m+p+1), {tan”1 i—"‘— tan™ i} =qr

0 Zy

®-®

()1 = 8 2 - 2}

Zy 2y

So,

Av,, =V,—V

C 12,

Av_ = A(m+p){tan’ —~——tan'1i——}
Zy Zy

mp

27znl



Generally,

Solve for z,,z,:

= For given o, and A (and therefore z,), the positions of mirrors and determined,

(zl’zz)-

Av,, <Av,

transverse mode

—M

g+1 qg+2

—

longitudinal mode
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Problem 2 : Given R,,R,, and / what is ,(z,)?

Solve : Algebra problem

__(-R)
" R, —-R -2
_ -(R+])
> R,-R -2
_I(1=R)(+R)(Ry =R 1)
ch (R,—R-2IY
Examples :
1) Cavity with plan mirror
R, =0,
R, =R, and z,-/[, =1
Then,
20, z,=1
z
m m, R(ZZ)—‘—'R 1(14—72’*)
Rlzoo R, =R af_ 2
— ] —> 1+(zo/l)
12
zozl(!;—-—l)
nw;
A

spot size at the (Al (R
flat mirror @y =

59
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Note : If _Il_l_ <1, @, is complex number.

=> can’t find a node to fit cavity.

2) Symmetric resonator : |R,|= |R,|=R
o _HI=R)(I+R)(R,~R -1)

=3 ><)Z=i ) (R, — R =21)
2 _I(I=R)(I-R)(2R~1)

(2R-21Y’

l
=—(2R-1
L(a-1)
o} 1
Zf:zo::(z) (ZR__I)!/2

o (T e

AN
o(z=%1[2)= 0)0(1+l /24]
Zy

(&) ()

= Need R >% for stability

[ . . . .
If R< P% it means we can not find a Gaussian mode to fix into this resonator.

:(:3 We want self-repetition or ability to “self-retrace”

= i.e. modes don’t exist in resonator.

For nearly flat mirror RO 1,

=w(z£l/2)

()

U o,

wmirror

RO
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for nearly flat mirrors, there’s very little beam divergence. Not surprise because flat

mirror has beam divergence ¥4 .

¢) Confocal Resonator

e— ] —
R/2 R/2
"

2 =5(2R-1)

R
=—(2R—-R

X (2r-R)

1 R

2.,
=—R"zy=—

4 2

o o izo_)‘” _(ﬂ_R)‘”
0 4 27

o(z=+1/2)=2a,

A=63284°
Example : He-Ne, / =50 cm

Confocal resonator => R =350

AR
walmirmr = ‘/Ewo = \/5(—2_—)

/4
=0.032 cm
=350 um

Stability Condition for Resonator



62

Suppose we have mirrors of radius R, R, separated by /. Stable or “self retracting”

cavity modes can be supported if

e

— e

& g,
g,
/
Stable
tab ?T\ gl
Confocal resonator

Example : Confocal resonator |R |=|R,|=R =1

a) g,.8,=0 “At the edge of stability”
(In practical 1 is slightly adjusted below R)

b) Parallel flat mirror |R|=|R,| =0
&8, =1 “At the edge of stability”

Unstable resonators are not necessarily to be avoid —> They are useful in pulsed
laser system when the stored
energy is extracted after a few

round trip.
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Optical Resonator Losses :

' Suppose we turn off :
— —_— E, How long does it take the field inside
— the resonator to decay?
Standing e
Wave Ecce
R R
I 0
le— | —d

Consider “Bulk” Losses
e Attenuation Coefficient : & (unit = length)

I, > RR,e™]I,

=1,e”®— 4]l losses impulsed into
e—Zﬂl = Rlee—Za[ coeff_ ﬁ

1
B = a_‘z‘l‘ln(Rle)
e Time

. . . . ct
If x is the distance covered after many round trips after time f,x =—
n

I(x)=1e"

I(t) =Ie "

_ IO e—t/r

where 7 = ﬂ_ “Photon Lifetime or Cavity energy decay time”
c

i.e. at t =7 — The field inside the resonator disappears by going

through mirror.



This can be related to Qand F — Finess

l Av
Quality factor Avy,
v
Av, 2

Recall EM:
0= Cavrq.r st.ored energy o
Energy dissipated per cycle
) e Cavity stored energy
p/ fL
kﬂc—l‘?———— power dissipated Energy
— |21, Area / time
pl| Area 7
Power = jlds
ol 1 2
=lar 1 = ECSIE |
dt Energy
& ___area
3 ol,e™” p Energy
_l Ioe”’/’ area time
T _ L
=T g!.
dt
Recall: 0= Y
Vi
Therefore,
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Laser Oscillator : u Put all the pieces to make a laser

i) Medium with a population inversion, obtaining by pumping

Stimulated emission

Rate o | inside resonator

2

E

o Lo
“inside

ii) Resonant optical cavity

@) + (i) — (iii)
If have overlap between gain and cavity longitudinal modes get strong

stimulated emission at cavity mode.

2
Recall : gain, y(v)=—s——2g(v)AN,
ecall : gain, ¥ (v) r—y g(v)
(©)
Where, __AN
(1+1,/1,)

p =1; homogeneous
AN® =(N,~N,),_,

= /0_ ; inhomogeneous
(absent of optical field)

It Tﬂ
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~ Implication :

1. Av 0 Av,

resonance gain,medium

2. Light generated is coherent

— because it is consistant with cavity modes

. A
Time oc n—
AVl 2
3. Output has “nice” divergence properties due to transverse coherence of
resonator modes

Oscillation Condition :

Put a medium with population inversion into an optical cavity what is the
condition for cavity modes to build up near the gain frequency?

Recall : resonator

Ay . hoh Prop. Const. in presence of
V E (2) gain and background)internal
[R—
E > :
° E E* (z) te- 7
: - —i2pt
‘ — EE- (Z) E() 1- hre

—-iffiz _i2 Bl
E(z) ntee
- Y

E, 1-nre

Use B instead of k because we have (gain materail) <
Recall :

B ;—aﬂ[l+—l~x(m)]+}2—ia
c

2n*

Active susceptibility of active (Nd:) which
are “enbedded” in background



a = Bulk loss coefficien

x=x+x
dispersion gain/abs.

So, for the right-going wave :

E+ (Z) _ tleiﬂz

2i(fe-+Ak) e( r-a)l

E, l-nne

E+

—— > o0 Self regenerate
‘\ 0 because E finite
Spectral situation : If
0 = 1 _ rirzeZi(k'}Ak)Ie(r«a)l
.. E,= 0
= Condition for S.S
Emslde finite

= 1= l"]rze2i(k+Ak)l e(y—a)l

A) Amp. Condition: 1=7rr, Jr-a)
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ie. y=«a
I N

. loss
gain

If gain > loss, Intensity keeps going up
ss=>1 . =2r=a

B) Phase condition:

2(k+Ak)I=2qn frequency res. condition cavity mode
Dispersion effect of active medinm

\t/ ae=22250 (a;)
' ¢ 2n

z

«a fixed

y is controlled by pumping.

O0=Inrp+(yr—a)l

1
Vthreshold = a_‘l‘ln’irz

=a——mR
a 2l R,

27n
—_ A VI/Z

For ¥ < ¥ restola
rre" ™ <1
and there will be a decrease in field amplitude in each pass

= Oscillation can’t build up

68



69

Photon-lifetime

n

T =
c[a ——llanRz]
21
c2
Vitweshold = Wsp— g (V) AN yeshoud
AN ~ 87zn31/?‘tsp
threshold ™ C3g (V)T
Example : He-Ne laser 4 =6328 4°
-7
t, = 107 sec
n = ‘ 1
T = .
R =R,=098 3x101°[—~w1n(0.98)°]
a =0 20
! =10cm =1.6x10" sec
Av =10° sec

3x10"
8x(1 107
_ ()(6328 10—8)
(3x10‘°) 10°1.6x10°%
1.3x10”° ¢m?




Oscillation Frequency:

(k+Ak)l=qn

kl(l+ék——)=q7r
/ k AN

of laser ' ity re ce
(14. ¥ ): gc cavity resonan

27 ) 2nl !

= Ify—>0Mmomat)v=y,

Recall : (( )) ( Vo—V)

v(l—r(vo v) 7(1/)):

75"(“’)=—%7(v)
]

-V

01 Oscillation that occur close
to the peak of the gain

. v,
First, assume=me that —°
Av

Then,

v =V, 1—("0 “")-7—-(—")5_

L Av ) 2zny | [1+x]" =1-x+x"

1] Vq 1+(.V_0A.:1/_)Z£V_)_E. [1-—_x]_l =1+x,
| 4

27zny
when lxl <1
Vo=V (v)c
=y +
9 Av ) 2zn

The oscillation occurs close to a cavity resonance, or v =V,, so We put

r()=r(v,)
(a=va) (v )e

? Av 2xn
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Recall : in S.S Gain = Loss

We represented the loss in terms of photon lifetime 7 :

n
T = .
a——InR
“'[ 21 ‘Rz}
_n
c}/threshold,
n 2
=—=————g(V)AN,
where 7 threshold ot SV’ ‘, g ( ) th
8rn’v’e,
AN, =— ()
cgl(v)r
At threshold : £
n
vV j=—
r(v.)=—
n
=—27A
AV%

This give v =v, +(v0 -V )

Avy
Usually —20 1, so
Av
Initially, we have y U %, 004

7o

Recall Y= m

through this expression the gain will eventually adjust itself so that y =y,

= I, is increasing then y is 44 until y =y,



72

Laser Pumping : What are the power requirements for the population inversion and

gain?
Define : two kinds of laser systems

- 4level

- 3level
4 level system :

Pumping band

NV

1

\R Pumping rate

Laser § ~£t2 (Include everything) } hv,

2
1’1 E,/kT0O 1

Old Tech: Pumpto @ by flash lamp, so hv, is high because big gap

—» it needs water cooling system.

New Tech : nearto @
In case of thermal equilibrium :

_]X]_ze—d':,/kT
NO
E/kTU 1= N,0 N,

1. If E,/kT0 1

Lower level population is mainly determined via the pumping process and

—]—VlD 1.

0

Lower level is far from ground state.

2. Also, want # [ t,
= N,—N,~ N, — checkbyrate equation

AN perma = No



73

3 level system
the lower level @ close to

Pumping band
NS GND state.
4 \l Pumping rate _-Same as 4 level except
2 _ BT
Laser i 1 t, =€ ~1
= =—FE[kT0 1
Needs

1. N,—-N,=AN"
N,+N, =N,

Then, N, = —;—(No +AN"')

th
=1N0 1+ AN
2 N,

2. N, Z—I—NO at a minimum
2

At least 50% of GND state population must be “pumped” into the upper level.

1
(N;h )3—level — ENO 11
(N;h )4‘leve1 ANﬂl

Minimum power requires to achieve threshold

hv,
pth = N, —2 J— volume occupied by gain material
2

m 1 hv
=—NJV—
P 5o :,
hv

Py =NV —

L



If level 2 depopulation is due to spontaneous emission alone, put £, =7, .

In general, ¢, includes a downward rates

In 4-level system :

8zn’v’t

AN, ~N;' = 2

" Pg(v)r
8zn’v’t

Ps 3 5P V.hl

cg(v)r t,
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Ex : What is the minimum power required to set up steady state oscillation in a 4-level

Nd* : glass laser system ?
Cavity length : /=10 cm

L =1,

A=1.05 ym

R=R =R, =095

a =0=> so loss have only the end of the mirror

V=10 cm’

n=1.5

Av =3x10"? sec’ = phonon process not Doppler broadening

n
T =-—F 1
C a—ﬂlanRz]

= 1.5 =9.7x107° sec

0— L _

n(0.95)°

°72(10) ( 5)]

o 87(1.5) 6.6x10% x3x10” x10

p4 = _a\3 9
(1.5x10 )(9.7x1o )

U

=145x10°ZE 145 W
se€C

ANth(}’th)_)Rm :AN <AN,
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cavity

) Steady state under a _ 0
linear dt

AN <AN,,

R, R

Laser O/P power vs Pumping Power :
As we increase the pump power upto and beyond threshold, what happen to laser
output power ?

R, we don’t want = “deterious pumping”

good pumping rate

dN. /N
@ 2=R2"_2—W(N2_N1)
dt Lo
depopulation rate Stim. Emiss. Rate per atom

Q—— dN, =R1—£V—l+W(N2—Nl)+N2/t2
G BI)e)
b4

These equations describe a homogeneous broadened system.

We don’t beak N, into subset = all atom in upper level are the same

= one represents all



Consider steady system situation : Transients have die down for

N
t> max tl,tz,—l——,—]\—,‘—,< 2)
W R, R,
aN, _,_4aN,
dt dt
Add ®+@ :
O=R1+R2—£:7~‘—

1

Substitute 0=R —(R +R,)t, into (2)
0=R —(R +R)+W(N,—(R, +R2)t)+—]j—2~

_ R, +(RAR)W,

W+~1—

)

Or N,

1

R, +(R +R,)Wt,—(R +R,)t, (W+7

)

W+—

NZ—N1>O:>1—(1+—II:—:)£L>O

2}

or ——<-—1———<1

— Because we want £, | when compare to ,
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Ideal Situation: —:’——) 0and N, >0
2

So define effective pumping rate for non-ideal situation
<&ﬁ=R4}—@+£&}Q]ER
R, )1,

So: N,-N,=

8an'v't,
c’g(v) N

photon lifetime

Recall : AN, =(Ny—N,), =

Basically, for pumping rates from zero ups to threshold

1 0<R<R,

Assume: R is“+7”

& W =0 (No stim. emiss when )
= (N, —N,),, =Rt
R, = (N, - N, )th
12

_ 8xn’v? / Atomic group
- 3
c g(v)r.
N

cavity
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R
AN, = i
W+—
L
R 1
W =—
AN, ¢,
R
1
RI
~sle— Ar: faster than ¢ 2,.,;_,,...
R,
>t

1. The atom in upper level state is fallen to the lower level state. And then, the
stimulated emission is happening. Thus AN decreases — y \

2. y <y, : because the decrease # of atoms by stimulated emission is greater than the
increase # of atoms by pumping conditions.

3. y increase : because it has R', so y is increased.

4. Same reason as “1”

5. After '; Atom is in the steady state which y = y,,. But it can reach y,, suddenly.
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Specific Laser System:

A

i) Quantum Efficiency

~\ll{ Pumping rate _hvy
1 AE
AE h l §h"212 ii ) Transfer Efficiency
‘£ h - = Fraction of atoms
pumped to 3 which

makes transition to 2.
iii ) Pump Efficiency :
= Fraction of pump power efficiency in populating level 3.
Over all laser efficient =7 = (i) (ii) (iii)
Example : CO; laser 77 = 30% (Quite high)

Nd** YAG 75 1% (for flash lamp)

Pump Visible & Laser IR = Loss 0
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He-Ne Laser :

t=5x107° sec

1 3.39
2's=3s \/}m pm 3
P
1t
t-l()ﬂ\ sec g = 3s Ay 0-6328 m
Arpeer 115 ppm
—72p
Fast radiative decay
26.4leV 19.81 eV s / through wall collision
i Depopulation } Big
GND
He Ne = 4 level

— Smaller distance tubes show higher gain due to buffer wall collision of N, is level

2
wn_ €& (V)
=27 (N,—N,
87zn2v2tSp (¥, a

N >
¢oftube¢

Normally 7,5, & 71115 > Yosss

b) Ruby Laser — First demonstrated lose (1960)
Ruby : Sapphire ALO;
—  Replace 1% of AI’" ion with Cr*" ions.

Cr** give ruby its pink / red colors

Y —

7 } @Pumping band “3 level”
AF [: l nonradiativcglgfoﬁeat transfer
’ 50 ns (tran eff. 20%) ————— 24
Blue E 2scm’ = 0.003 eV
Abs Green E
0.42jum | Abs 0.6943fur /0,6923 um
0.55 pm t, =3 ms

4A
AP crt



¢) Nd: YAG
Neodenium Yttrium Aluminium Ganet
=> Al ions are replaced at a level of U 1% by Nd.
Get higher than 1% = - Crystal strain
- Light donut

- Hand to grow x’tal

81

“4 level”

Ab.
Bnd [ [] ®
| / lw)diative decay
Q) 'Fy,
Blue t, 260l,um i Ay, =1.064 um
Grden |UV _— ‘1, E
t,130ns
Nonradiative
._.]._V_l_ :e~AE/kT zlo—lo
N 0
y(v) =04N
YAG Ruby
%wme n70 = N o< N
Ouby 70
P
Pumping P, < —L
pmg I 70

o, is large, cw or s.s. operation of Nd: YAG is possible

stim




Principle of Laser : Orazio Svelto

n\ [
_f_(z_L___l), 1_pe
n\! T n
dl =(ELL~7-— ): tjr=T
d(t/r) \n I
c !
O

Method of Q-switching :
1) Mechanical
i) Fast shutter in cavity

ii) Rotating mirror

2) Saturable Absorber

= high Intensity = Fraction absent 4 .
cavity

Loss remain high (Low Q) until absorption is saturated = become

high Q
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