เอกสารประกอบการสอน

Optical Electronics: 107611

Written By

Sukanya T., Ph. D.
Faculty Member
of
School of Laser and Photonics
Suranaree University of Technology
2008

เอกสารประกอบการสอน

Optical Electronics: 107611

Topics to Be Covered:

- 1. Introduction of Laser
- 2. Nonlinear Optical Susceptibility: Introduction of Nonlinear Optics,
 Descriptions of Nonlinear Optics Interactions, Definitions of Properties of
 Nonlinear Susceptibility
- 3. Maxell's Equations and Wave Propagation in Nonlinear Media: Optical Harmonic Generation, Four-Wave Mixing, Phase Matching
- 4. Review of Density Matrix Formulation
- 5. Nonlinear Optics Effect in Quantized Media

(Used to Be)Topics to Be Covered:

- 6. Introduction of Atoms and Radiation
- 7. Review of Electromagnetics Theory: Gaussian Beam; Coherence
- 8. Gain and Optical Amplification
- 9. Optical Resonators
- 10. Laser Oscillations
- 11. Laser Pumping and Some Common Laser Systems, Q-switching, modelocking
- 12. Diode Laser

Grade Breakdown:

Problem set: 20%

Midterm Exam: 30% Final Exam: 30% Presentation: 20%

Text Books:

- 1. Robert W. Boyd, "Nonlinear Optics"
- 2. A. Yariv, "Quantum Electronics"
- 3. Pantell and Puthoff, "Fundamentals of Quantum Electronics"
- 4. Bloembergen, "Nonlinear Optics"
- 5. Zernike and Midwinter, "Applied Nonlinear Optics"
- 6. A. Yariv, "Introduction to Electronics"
- 7. Shen, "Nonlinear Infrared Generation"
- 8. Shen, "Principle of Nonlinear Optics"
- 9. Reintjes, "Nonlinear Optical Parametric Process in Liquids and Gases"
- 10. G. P. Agarwal and R. W. Boyd, "Contemporary Nonlinear Optics"
- 11. Siegman, "Laser"

Written By: Dr. Sukanya Tachatraiphop

1. Energy Levels in Atoms and Molecules

1.1 Introduction

- Laser is inherently by Q.M. device.
 - ✓ Einstein referred to Plank constant.
 - ✓ Spectral distribution
 - ✓ Stimulated emission
 - ✓ Amplification
 - ✓ Population inversion
- First Laser

1960: Ruby Laser

- Bt. 1927-1960, we needed
 - optics
 - combination of Q.M. and optics
 - technology problem
- Stationary state
- Absorption
- Spectral line

• Rate equation
$$\frac{dn}{dt} = C(N_2 - N_1)$$

 $N_2 > N_1 \rightarrow n$ will grow with time

i.e. the beam irradiance will be increased or amplified as it pass through the collection of atoms.

"Laser"

- Stimulated Emission Process
- Laser Cavity

Single Pass: The beam irradiance will not be particular strong.

Multi Passes: Using Mirrors

• Optical Feedback & wave front propagation.

Spontaneous Emission:

There is a finite probability per unit time A_{ul} that the e^- "jump" from $u \longrightarrow l$.

Repeatedly prepare a single atom in the upper state u. Do N trails to see if the photon is emitted before time t.

Probability that atom have made a spontaneous transition $u \longrightarrow l$ by elapse time t, $P_{ul}(t)$

$$P_{ul}(t) = \frac{N_{trail}}{N} = 1 - e^{-A_{ul}t}$$
Spontaneous transition probability
"Just An Individual Atom"

Now expand this idea/concepts to many atoms. An average no. of atom remaining in state u after time t, $N_u(t)$ is described as

$$\begin{aligned} N_u(t) &= N_{u0} - N_{0u} P_{ul}(t) \\ &= N_{u0} e^{-A_{ul}t} \end{aligned}$$

Rate Equation:

$$\frac{dN_{u}(t)}{dt} = -A_{ul}N_{u0}e^{-A_{ul}}$$

$$= -A_{ul}N_{u}(t)$$

$$= -\frac{N_{u}(t)}{(t_{sp})_{ul}},$$
Spontaneous life time

An average survival time in upper level before $u \longrightarrow l$ transition

where
$$\left(t_{sp}\right)_{ul} = \frac{1}{A_{ul}}$$
.

2. Spectral Line Shape

Use spectrometer to observe the transition $u \longrightarrow l$.

⇒ One would expect that the field has this frequency distribution given discrete transition.

Frequency distribution about v_{ul} has a finite width (or non-zero bandwidth)

Finite bandwidth?

is due to a number of different things

- 1) Finite duration of signal
- 2) Diff. broadening mechanism

Define: g(v)dv = Probability that a spontaneous emitted photon will appear at a frequency between v and v+dv.

g(v) is normalized so that

$$\int_{0}^{\infty} g(v) dv = 1$$

Origin of g(v)

a) Homogeneous Broadening

g(v) is characteristic of a single emitter $\begin{pmatrix} atom \\ molecule \\ ion \end{pmatrix}$

"Natural Broadening"

The Q.M. of a single atom can be modeled as producing the field

$$E(t) = E_0 e^{-t/\tau} e^{-i\omega_{ul}t}.$$

Probability of measuring photon at time t,

$$P(t) \propto \left| E(t) \right|^2 = E_0^2 e^{-2t/\tau}$$

same way,

Spectral case:

$$\begin{split} \tilde{E}(\omega) &= \int dt e^{-i\omega t} E_0 e^{-t/\tau} e^{-\omega_{ul}t} \\ &= E_0 \int_0^\infty dt e^{i\left(\omega - \omega_{ul} + \frac{i}{\tau}\right)t} \\ &= \frac{E_0}{i\left(\omega - \omega_{ul} + \frac{i}{\tau}\right)} \end{split}$$

From spectrometer, we see $\propto \left| \tilde{E}(\omega) \right|^2$

$$\left|\tilde{E}(\omega)\right|^2 \propto \frac{E_0^2}{\left(\omega - \omega_{ul}\right)^2 + \frac{1}{\tau^2}}$$

i) Lorentzian Distribution

$$\frac{\tau^2}{2} = \frac{1}{\left(\omega - \omega_0\right)^2 + \frac{1}{\tau^2}} \implies \omega - \omega_0 = \pm \frac{1}{\tau}$$

$$\omega_{\pm 1/2} = \omega_0 \pm \frac{1}{\tau}$$

$$\Delta \omega = \omega_{+1/2} - \omega_{-1/2} = \frac{2}{\tau} = A_{ul} = \frac{1}{t_{sp}}$$

$$\Delta \nu = \frac{\Delta \omega}{2\pi} = \frac{A_{ul}}{2\pi} = \frac{1}{2\pi t_{sp}}$$

In general, for natural broadening

$$\Delta v = \frac{1}{2\pi} \left(\sum_{k} A_{uk} + \sum_{m} A_{lm} \right)$$

Homogeneous broadening = single emitter all emitter repeat single emission.

ii) Collision Broadening

During the emission of a single atom/molecule/ion often particles collide with it.

Imagine the duration of an individual collision to be short compare to $\frac{2\pi}{\omega}$

$$t_{\rm collision} < t_{\rm period}$$

$$\langle \Delta t \rangle_{\text{collision}} = \lim_{N \to \infty} \sum_{i=1}^{N} \frac{1}{N} \Delta t_i$$

or collision $\equiv \langle \Delta t_0 \rangle = \tau_0$

Recall:

$$\left|\tilde{E}(\omega)\right|^{2} = \frac{E_{0}^{2}}{\left(\omega - \omega_{0}\right)^{2} + \left(1/\tau\right)^{2}}$$

$$\Delta\omega = \frac{2}{\tau}$$

$$\tau = \frac{2}{\Delta\omega}$$

$$\left|\tilde{E}(\omega)\right|^{2} \propto \frac{1}{\left(\omega - \omega_{0}\right)^{2} + \left(\Delta\omega/2\right)^{2}}$$

$$\propto \frac{1}{\left(\nu - \nu_{0}\right)^{2} + \left(\Delta\nu/2\right)^{2}}$$

where $\Delta \nu = \frac{1}{\tau_c}$.

Total homogeneous line width

Natural broad collision
$$\frac{\sum_{A_{uk}} \sum_{A_{uk}} A_{uk}}{\sum_{A_{uk}} A_{uk}} + v_{cu} + v_{cl} + v_{cu} + v_{cu} + v_{cu} + v_{cl} + v_{cu} + v_{cu} + v_{cu} + v_{cl} + v_{cu} + v_{c$$

B) Inhomogeneous Broad ~ Doppler

Here g(v) results from a distribution of emission frequency from a group of atoms.

⇒ supports of the sample emit at diff. frequency giving rise to spectral distribution

i) Doppler Broad.

Consider a box of gas at temperature T

The detector is sensitive only the x-component of atom velocity.

Atoms obeys Maxwell-Boltzmann velocity distribution of particle (atom)

$$f(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{m}{2kT}(v_x^2 + v_y^2 + v_z^2)}$$
Boltzmann constant
$$T \uparrow \vec{v} \uparrow$$

Then, the probability distribution becomes

$$\iiint dv_x dv_y dv_z f(v_x, v_y, v_z) = 1$$

Probability of finding a particle with

$$v_x$$
 in $\left[v_x, v_x + dv_x\right]$
 v_y in $\left[v_y, v_y + dv_y\right]$
 v_z in $\left[v_z, v_z + dv_z\right]$

Let relate it to g(v):

Probability of increasing emission with frequency ν in

$$[v, v + dv] \equiv g(v)dv$$

$$\equiv f(v_x, v_y, v_z)dv_xdv_ydv_z$$
Probability of finding a particle with

appropriate velocity v_x so that v is in the range

$$[v, v + dv]$$

$$(v_y, v_z \text{ are arbitrary})$$

B.T.W

$$v = v_0 + \frac{v}{c}v_0$$

only v_x

$$v_{x} = \left(\frac{v - v_{0}}{v_{0}}\right) c$$

$$dv_{x} = \frac{c}{v_{0}} dv$$

$$g(v)dv = \int_{-\infty}^{\infty} \iint \left[f(v_x, v_y, v_z) dv_y dv_z \right] dv_x$$

$$= \frac{c}{v_0} dv \iint dv_y dv_z f \left[\left(\frac{v - v_0}{v_0} \right) c, v_y, v_z \right]$$

$$= \left(\frac{m}{2\pi kT} \right)^{3/2} \left[\iint e^{-\frac{m}{2kT} (v_y^2 + v_z^2)} dv_y dv_z \right] \times \int e^{\frac{mc^2}{2kT} \left(\frac{v - v_0}{v_0} \right)^2} \frac{c}{v_0} dv$$

$$\text{Note} : \int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\pi/a}$$

Note:
$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\pi/a}$$

$$g(v)dv = \int \frac{c}{v_0} \left(\frac{m}{2\pi kT}\right)^{1/2} e^{\frac{-mc^2}{2kT}\left(\frac{v-v_0}{v_0}\right)^2} dv$$

Then, probability distribution of the Doppler broad:

$$g(v) = \frac{c}{v_0} \left(\frac{m}{2\pi kT}\right)^{1/2} e^{\frac{mc^2}{2kT} \left(\frac{v-v_0}{v_0}\right)^2}$$

$$\frac{g(\nu \pm 1/2)}{g(\nu_0)} = \frac{1}{2}$$

$$= \exp\left(-\frac{mc^2}{2kT} \left(\frac{\nu \pm \nu_2 - \nu_0}{\nu_0}\right)^2\right)$$

$$\Delta \nu_{\text{doppler}} = \nu_{+1/2} - \nu_{-1/2}$$

$$= \left(\frac{2kT}{mc^2} \ln 2\right)^{1/2} 2\nu_0$$

$$= \Delta \nu_D$$

$$g_{\rm D} = \frac{2(\ln 2)^{1/2}}{\sqrt{\pi}\Delta\nu_{\rm D}} \exp \left[-4\ln\left(\frac{\nu - \nu_0}{\Delta\nu_{\rm D}}\right)^2 \right]$$

Comparison of Different types of Line Broadenning:

Gas Laser Medium : $\Delta v_{\text{natural}} < \Delta v_{\text{doppler}}$

At Low Pressure : $\Delta v_{\rm D} > \Delta v_{\rm collision}$

High Pressure : $\Delta v_{\text{coll}} > \Delta v_{\text{D}}$

$$\Delta
u_{
m coll} > \Delta
u_{
m nat}$$

$$\Delta
u_{
m nat} \, \Box \, \frac{1}{2\pi} \, 2\Delta
u_{
m C}$$

$$\Box \, \frac{1}{2\pi} \, \Delta
u_{
m C}$$

⇒ cooling

Ex: He-Ne laser

$$\lambda = 6328 \text{ A}^{0}$$

$$\Delta v_{\text{nat}} = 3 \times 10^{6} \text{ sec}^{-1}$$

$$t_{\text{sp}} = \frac{1}{A} = \frac{1}{\Delta v_{\text{nat}}} = \frac{10^{-6}}{3} \text{ sec}$$
= 300 ns

At room temperature (300°K)

$$m_{\text{Ne}} = 1.67 \times 10^{-27} \text{ kg} \times 20 \text{ kg}$$

$$\Delta \nu_{\text{D}} = \left(\frac{2kT}{mc^2} \ln 2\right)^{1/2} 2\nu_0$$

$$= \left(\frac{2 \times 1.38 \times 10^{-23} (300) \ln 2}{20 \times 1.67 \times 10^{-27} (3 \times 10^8)^2}\right)^{1/2} \frac{2 \times 3 \times 10^8}{6328 \times 10^{-10}}$$

$$= 1.3 \times 10^9 \text{ sec}^{-1}$$

$$\square \nu_{\text{nal}}$$

Solid medium: Doppler

Inhomogeneous or Gaussian

Typical order: $\Delta v_{\rm col} > \Delta v_{\rm nal} > \Delta v_{\rm dop}$

vibration of atom called photon

Convolution

In gas, the net broadening is a convolution between natural / collision and doppler broadening Homogeneous or Lorentzian

Absorption and Stimulated Emission:

Spontaneous Emission : $\frac{dN_2}{dt} = -A_{21}N_2$

occupied —

1 empty — occupied

Stimulated Emission:

Interactions of atom and radiation

Consider the radiation field described by $\rho(v)$ where $\rho(v)dv$ is radiation field energy density in $\frac{\text{Joule}}{\text{m}^2}$ in $\left[v,v+dv\right]$

- \Rightarrow Absorption and stimulated emission rate for a single atom (or per atom) is proportional to $\rho(\nu)$.
- ⇒ The stimulated emission prob. or absorption prob. is proportional to the photon density or the number of photons.

Consider: The absorption rate for a single atom

$$W_{12} = B_{12}\rho(\nu) \qquad \left\langle \frac{1}{\text{sec}} \right\rangle$$

Transition rate:

$$W_{21} = \underbrace{B_{21}\rho(\nu)}_{\text{stimu.}} + \underbrace{A_{21}}_{\text{spor}}$$

For radiative process:
$$\begin{array}{c|c}
N_1 = \# \text{ of atoms/m}^3 \\
\text{in state 1} \\
N_2 = \# \text{ of atoms/m}^3 \\
\text{in state 2}
\end{array}$$

$$\begin{array}{c|c}
\frac{dN_2}{dt} \text{ total} & = -\left(B_{21}\rho(\nu) + A_{21}\right)N_2 \\
& + B_{12}N_1\rho(\nu) \\
& = -\frac{dN_1}{dt}
\end{array}$$

$$\frac{d}{dt}(N_1 + N_2) = 0$$

Assume that the atom and the radiation field in equilibrium

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = 0$$
 Steady State

For steady state, $\frac{dN_2}{dt}$ in \bigcirc = 0, then

Let consider "particular kind of equilibrium"

⇒ Thermal equilibrium

 $T \square T_0$
final $T_0 \to T_0$

no heat transfer from heat bath

$$\bigcirc - \frac{N_2}{N_1} = e^{-h\nu/kT}$$
 Boltzman's factor

In thermal equilibrium more energetic level are less populated than lower level $(N_2 < N_1)$

$$^{\circ}$$
B = $^{\circ}$ C

$$e^{-h\nu/kT} = \frac{B_{12}\rho(\nu)}{B_{21}\rho(\nu) + A_{21}}$$

$$\bigcirc \rho(\nu) = \frac{A_{21}/B_{21}}{\left(\frac{B_{12}}{B_{21}}\right)}e^{-h\nu/kT} - 1$$
"Thermal equilibrium"

We know that the energy density for EM field inside the cavity at the center frequency of interest is

$$(2) - \rho(v) = \frac{8\pi n^3 h v}{c^3} \left(\frac{1}{e^{-hv/kT} - 1} \right)$$
 n = index of refraction

"Plank Formular"

$$\frac{A_{21}}{B_{21}} = \frac{8\pi n^3 h v^3}{c^3}$$

$$\frac{B_{12}}{B_{21}} = 1$$

These relationships are purely atomic in nature and independent of any assumption about "steady state" or "equilibrium"

Recall: g(v) has finite width

$$W_{12}(\nu) = \int_{-\infty}^{\infty} W_{12}(\nu) d\nu$$

What is $W_{12}(\nu)$? Recall, absorp + spon emiss and inverse process

 \Rightarrow Absorp and spon emiss have frequency depended and this is given by $g(\nu)$

$$W_{12}(v) = B_{12}g(v)\rho(v)$$

$$W_{12}(v) = \int_{-\infty}^{\infty} B_{12}g(v)\rho(v)dv$$

$$= B_{12}^{(0)}g(v_0)\int_{-\infty}^{\infty} g(v)dv$$

$$W_{21}(\nu) = \int_{-\infty}^{\infty} B_{21}g(\nu)\rho(\nu)d\nu + A_{21}$$
$$= B_{21}\rho(\nu_0) + A_{21}$$
$$\neq W_{12}$$

Consider radiation distribution $\rho(v)$

$$\frac{d\rho(v)}{dt} = W_{21}(v)N_{2}hv - W_{12}(v)N_{1}hv + N_{2}(v)A_{21}hv$$

Photon radiation in

$$W_{21}(\nu) = B_{21}^{(0)} g(\nu) \rho(\nu)$$

random direction

$$B_{21} = B_{12}$$

 $W_{12}(\nu) = B_{12}g(\nu)\rho(\nu)$

$$W_{12}(\nu) = W_{21}$$
 \Rightarrow rate of stim. emiss. per atom = rate of ab. per atom

$$\frac{d\rho(v)}{dt} = B_{21}g(v)\rho(v)h\nu(N_2 - N_1)$$

$$= \frac{c^3}{8\pi n^3 h v^3} A_{21}(v)g(v)\rho(v)h\nu(N_2 - N_1)$$

$$= \frac{c^3}{8\pi n^3 v^2 t_{sp}} g(v)\rho(v)(N_2 - N_1)$$

I(v)dv = energy per unit area per unit time in [v, v+dv]

Relation between $\rho(\nu)+I(\nu)$ rate at which energy leaves vol.

$$= IA$$

$$= \frac{\rho(\nu)A_{\Delta x}}{\frac{\Delta x}{cn}}$$

$$= \frac{\rho c}{n}A$$

Rate of change of energy density:

$$\frac{d\rho}{dt} \to \frac{\Delta\rho}{\Delta t} = \frac{\frac{n}{c}\Delta I}{\frac{n}{c}\Delta x} = \frac{\Delta I}{\Delta x} \to \frac{dI}{dx}$$

Therefore,

$$\frac{dI(v)}{dx} = \frac{c^2}{8\pi n^2 v^2 t_{sp}} g(v) (N_2 - N_1) I(v)$$
$$= \gamma(v) I(v)$$

Where,

$$I_{\nu}(x) = I_{\nu}(0)e^{\gamma(\nu)x}$$

 $\gamma(\nu)$ is called the "Gain" or "Loss"

Loss (or absorption) occurs for $N_2 < N_1$.

Gain (or amplification) occurs for $N_2 > N_1$.

 $N_2 > N_1$ is not the natural situation, it's called "population inversion"

Like X-ray laser, it is hard to produce.

Again, at thermal equilibrium, there is

$$\frac{N_2}{N_1} = e^{-\Delta E/kT} < 1$$

"Non population Inversion"

Simple model for atom:

Some facts about atoms

- 1. fixed the nucleus surrounded by e charge
- 2. shape emission & absorption resonance
- 3. an external E field can introduced a dipole moment in the atom

Equate motion for electron

$$m\frac{d^2x}{dt^2} = -\mathbf{k}x - e\mathbf{E}$$

(CL) Resonance frequency of spring arrangement:

$$\omega_0 = \sqrt{\frac{\mathbf{k}}{m}}$$

O.M.Correspondence with a real atom, it will be

$$\omega_0 = \frac{E_2 - E_1}{\overline{h}} \qquad \left(\overline{h} = \frac{h}{2\pi}\right)$$

We know that real Q.M. "oscillation" decays at a rate A. We also want our spring model to decay or damp

$$m\frac{d^2x}{dt^2} = -kx - eE - m\sigma\frac{dx}{dt}$$
$$\frac{d^2x}{dt^2} + \omega_0^2x + \gamma\frac{dx}{dt} = -\frac{eE(t)}{m}$$

 ω is important?

If E(t) have ω not matching with spring resonance, spring doesn't affect much

$$E(t) \to \tilde{E}(\omega)$$

$$-\omega^{2} \tilde{\chi}(\omega) + \omega_{0}^{2} \tilde{\chi}(\omega) - i\omega \sigma \tilde{\chi}(\omega) = -\frac{e}{n} \tilde{E}(\omega)$$

$$\tilde{\chi}(\omega) = \frac{-\frac{e}{m} \tilde{E}(\omega)}{\omega_{0}^{2} - \omega^{2} - i\omega \sigma}$$

Dipole moment of a single oscillator

$$p(t) = e\chi(t) = -e\chi(t)$$

$$\tilde{p}(\omega) = e\chi(\omega) = -e\chi(\omega)\hat{x}$$

$$\tilde{p}(\omega) = \frac{e^2}{m}\tilde{E}(\omega)$$

$$\tilde{p}(\omega) = \frac{e^2}{\omega_0^2 - \omega^2 - i\omega\sigma}$$

Dipole moment per unit volume :
$$p(t) = Np(t)$$

$$\tilde{p}(\omega) = N\tilde{p}(\omega)$$

$$\tilde{p}(\omega) = \frac{Ne^2}{m}\tilde{E}(\omega)$$

$$\tilde{p}(\omega) = \frac{m}{\omega_0^2 - \omega^2 - i\omega\sigma}$$

Recall:

$$p = \varepsilon_0 \chi E$$

$$\varepsilon_0 = 8.85 \times 10^{-12}$$

$$\tilde{p}(\omega) = \varepsilon_0 \chi(\omega) \tilde{E}(\omega)$$

$$\chi(\omega) = \frac{Ne^2}{\omega_0^2 - \omega^2 - i\omega\sigma}$$

Frequency dependent of susceptibility can invite

$$\chi(\omega) = \frac{1}{\varepsilon_0} \frac{N_0^2}{m} \frac{\left(\omega_0^2 - \omega^2\right) - i\omega\sigma}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\sigma^2}$$

$$= \chi'(\omega) + i\chi''(\omega)$$

$$\chi'(\omega) = \frac{1}{\varepsilon_0} \frac{Ne^2}{m} \frac{\omega_0^2 + \omega^2}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\sigma^2}$$

$$\chi''(\omega) = \frac{1}{\varepsilon_0} \frac{Ne^2}{m} \frac{\omega\sigma}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\sigma^2}$$

If the frequency of external field is near resonance i.e. $\omega = \omega_{0}$, $\tilde{\chi}(\omega)$ will become

$$\chi'(\omega) \cong \frac{Ne^2}{2\omega_0 m\varepsilon_0} \frac{\omega_0 - \omega}{(\omega_0 - \omega)^2 + \frac{1}{4}\sigma^2}$$
$$\chi''(\omega) \cong \frac{Ne^2\sigma}{4\omega_0 m\varepsilon_0} \frac{1}{(\omega_0 - \omega)^2 + \frac{1}{4}\sigma^2}$$

Extra point to note

$$\int g(v)dv = 1$$
If $g(v)$ were on stim, then

$$\int_{-\infty}^{\infty} g(v)dv = 1 = g(v_0)\Delta v_v$$
$$g(v_0) = \frac{1}{\Delta v}$$

For general g(v), the proper expansion is

$$g(\nu) \cong \frac{1}{\Delta \nu} \qquad \langle \gamma \propto g(\nu)(N_2 - N_1) \rangle$$

"Wave number" units is cm⁻¹

$$v\lambda = \frac{c}{n}; \quad v = \frac{c}{n\lambda}$$

Since energy = $h\nu$; $\nu \propto \text{Energy and E} \propto \frac{1}{\lambda}$

If the energy in wave number is "y" then the frequency corresponding to this "energy" is

$$v_1 = \frac{c}{n} \cdot y$$

Review Electromagnetic Theory:

Maxwell's equation:

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial B}{\partial t}$$

$$\nabla \times \vec{\mathbf{H}} = J_{\text{free}} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$

$$\nabla \cdot \mathbf{D} = \rho_{\text{free}}$$

$$\nabla \cdot \mathbf{B} = 0$$

where

$$\begin{split} \underline{\mathbf{D}} &= \varepsilon_0 \underline{\mathbf{E}} + \underline{\mathbf{P}} = \varepsilon_0 \left(1 + \chi \right) \underline{\mathbf{E}} \\ \underline{\mathbf{B}} &= \mu_0 \left(\overline{\mathbf{H}} + \overline{\mathbf{M}} \right) \\ &= \mu_0 \left(1 + \chi_m \right) \underline{\mathbf{H}} = \mu \underline{\mathbf{H}} \\ \underline{\mathbf{M}} &= N \underline{\mathbf{m}} \\ & \qquad \qquad \mu \approx \mu_0 \text{, non magnetic} \\ &\Rightarrow \chi_n \text{ is very much} \end{split}$$

$$\nabla \times (\nabla \times \underline{\mathbf{E}}) = \nabla \times -\frac{\partial B}{\partial t}$$

$$\nabla \cdot (\nabla \cdot \underline{\mathbf{E}}) - \nabla^2 \underline{\mathbf{E}} = -\frac{\partial}{\partial t} (\nabla \times \underline{\mathbf{B}})$$

$$\rho / \varepsilon_0$$

$$\rho_{\text{free}} = 0$$

$$-\nabla^2 \underline{\mathbf{E}} = -\mu \frac{\partial}{\partial t} (\nabla \times \underline{\mathbf{H}})$$

$$= -\mu \left(\frac{\partial}{\partial t} J_f + \frac{\partial^2 D}{\partial t^2} \right); \quad \text{no free current}$$

For most non metallic material $\mu \approx \mu_0$

$$\begin{split} -\nabla^2 \underline{\mathbf{E}} &= -\mu_0 \frac{\partial^2}{\partial t^2} \left(\boldsymbol{\varepsilon}_0 \underline{\mathbf{E}} \times \underline{\mathbf{P}} \right) \\ \nabla^2 \underline{\mathbf{E}} &= \mu_0 \boldsymbol{\varepsilon}_0 \frac{\partial^2}{\partial t^2} \overline{\mathbf{E}} = \mu \frac{\partial^2 \vec{P}}{\partial t^2} (r, t) \end{split}$$

Apply Fourier transform $\overline{E}(r,t) \rightarrow \tilde{E}(r,\omega)$

$$\nabla^{2} \tilde{E}(r,\omega) - \frac{\omega^{2}}{c^{2}} \tilde{E}(r,\omega) = -\mu_{0} \omega^{2} \tilde{P}(\vec{r},\omega)$$
$$= -\mu_{0} \omega^{2} \varepsilon_{0} \chi_{T}(\omega) \tilde{E}(r,\omega)$$

where

$$\chi_{T}(\omega) = \chi_{0} + \chi(\omega)$$

$$\nabla^{2}\tilde{E}(\vec{r},\omega) + \frac{\omega^{2}}{c^{2}}(1 + (\chi_{0} + \chi))\tilde{E}(r,\omega) = 0 \quad ; \quad v = \frac{c}{n} = \frac{1}{\sqrt{\varepsilon\mu}}$$

$$\nabla^{2}\tilde{E} + \frac{\omega^{2}}{c}(1 + \chi_{0})\left[1 + \frac{\chi}{1 + \chi_{0}}\right]\tilde{E} = 0 \quad 1 + \chi = \varepsilon$$

$$\nabla^{2}\tilde{E} + \frac{\omega^{2}}{c}n^{2}\left[1 + \frac{\chi}{n^{2}}\right]\tilde{E} = 0$$

For plane wave propagation along
$$z: \nabla^2 \rightarrow \left(\frac{\partial^2}{\partial z^2}\right)$$

$$\frac{\partial^2}{\partial z^2} \tilde{E} + \frac{\omega^2}{c^2} n^2 \left[1 + \frac{\chi}{n^2} \right] \tilde{E} = 0$$

$$\tilde{E}(z, \omega) = \tilde{E}(0, \omega) e^{\pm i\beta(\omega)z}$$

$$\beta(\omega) = \frac{\omega}{c} n \left[1 + \frac{\chi}{n^2} \right]^{1/2}$$

$$\frac{\chi}{n^2} = \frac{\chi}{1 + \chi_0} = \frac{\chi/\chi_0}{1 + 1/\chi_0} < \frac{\chi}{\chi_0}; \text{ for } \chi \text{ small}$$

$$\propto \frac{\text{No. of active molecule}}{\text{No. of background molecule}}$$

□ 1 (order of %)

Using Taylor's expansion

$$\beta(\omega) \approx \frac{\omega}{c} n \left[1 + \frac{1}{2} \frac{\chi}{n^2} \right] : \left(1 + u \right)^q = 1 + qu + q \frac{\left(q - 1 \right) u^2}{2!}$$

Thus,

$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{i\frac{\omega}{c}n\left[1+\frac{1}{2}\frac{\chi}{n^2}\right]z}$$

Recall for our medium of spring we have

$$\chi(\omega) = \chi'(\omega) + j\chi''(\omega)$$
$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{i(k+\Delta k)z}e^{\frac{1}{2}\gamma(\omega)z}$$

wave no. in the host or background mat.

where
$$k = \frac{\omega}{c}n$$
; $\Delta k = \frac{\omega}{c}n\frac{\chi'}{2n^2} = \frac{k\chi'}{2n^2}$

$$\frac{1}{2}\gamma(\omega) = -\frac{k\chi''(\omega)}{2n^2}$$

gain or absorption coefficient

Note that !! $I(\omega,z) \propto |\tilde{E}(\omega,z)| \propto e^{\gamma(\omega)z}$

Atomic susceptibility:

Recall: Classical electron oscillator (when $\omega = \omega_0$)

$$\gamma(\omega) = \frac{-k\chi''(\omega)}{n^2}$$

$$= \frac{-k}{n^2} \frac{Ne^2 \sigma}{4\omega_0 m\varepsilon_0} \frac{1}{(\omega - \omega_0)^2 + \frac{\sigma}{4}}$$

Let $\Delta v = \frac{\sigma}{2\pi} < 0$, absorption

Lorenzian
$$\frac{1}{\left(\nu - \nu_0\right)^2 + \left(\frac{\sigma^2}{4 \cdot 4\pi^2}\right)} \longrightarrow \left(\frac{\sigma}{2\pi}\right)^2 \frac{1}{4} \Rightarrow \frac{\Delta \nu^2}{4}$$

Recall : Q.M. expression for γ

$$\gamma_{\text{Q.M.}}(v) = \frac{c^2}{8\pi n^2 v^2 t_{\text{sp}}} g(v) (N_2 - N_1) \qquad \left\langle \frac{1}{\text{cm}} \right\rangle$$

Assume that we also have

$$\gamma_{Q.M.}(v) = \frac{-k}{n^2} \chi_{Q.M.}''(v)$$

$$(CL = Q.M)$$

$$(D = Q.M)$$

$$\chi_{Q.M.}''(v) = \frac{-n^2}{k} \gamma_{Q.M.}(v) = \frac{-n^2}{k} \frac{c^2}{8\pi n^2 v^2 t_{sp}} g(v) (N_2 - N_1)$$

$$= -\frac{1}{16\pi^2} \frac{\lambda^3}{n t_{cp}} g(v) (N_2 - N_1)$$

If g(v) is Lorntzian, then

$$\chi_{Q.M.}''(v) = -\frac{1}{16\pi^2} \frac{\lambda^3}{n t_{sp}} g(v) (N_1 - N_2)$$
$$= \frac{(N_1 - N_2)\lambda^3}{8\pi^3 t_{sp} \Delta v n} \frac{1}{1 + \frac{4(v - v_0)^2}{\Delta v^2}}$$

(What's about a Q.M. cally correct expression for χ' i.e. $\chi'_{Q.M.}$?)

For the spring model, note that

$$\frac{\chi'}{\chi''} = \frac{2}{\sigma} (\omega_0 - \omega) = \frac{4\pi}{\sigma} (\nu_0 - \nu)$$
$$= \frac{2}{\Delta \nu} (\nu_0 - \nu)$$

We will assume that also

$$\frac{\chi'_{\text{Q.M.}}}{\chi''_{\text{Q.M.}}} = \frac{2}{\Delta \nu} (\nu_0 - \nu)$$

$$\chi'_{\text{Q.M.}} = \chi''_{\text{Q.M.}} (\nu) * \frac{2}{\Delta \nu} (\nu_0 - \nu)$$

Cross section for Absorption or stimulated Emission

$$\gamma(v) = \frac{c^2}{8\pi n^2 v^2 t_{sp}} g(v) (N_2 - N_1)$$

$$\gamma(v) = \sigma(v) (N_2 - N_1)$$

$$\downarrow cross section for cm^2, Area$$

Gaussian Beams:

Laser system has been propagating that a beam implies that insufficient ray is far from the axis of prop. The field die away

→ It's not a plane wave :

Because properties ① finite in transverse extent

2 prop. \perp To transverse region

For free space or uniform medium,

$$\nabla \cdot \vec{E} = 0$$

$$\nabla = \nabla_{t} + \hat{z} \frac{d}{dz}$$

$$\text{transverse } \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$

$$\vec{E} = \nabla_{t} \cdot E_{t} + \frac{\partial E_{z}}{\partial z} = 0$$

$$E_{z} \Box e^{ikz} E_{z0}$$

$$\frac{\partial E_{z}}{\partial z} = ikE_{z0}e^{ikz}$$

$$\vec{E} = \vec{E}_{t} + \hat{z}\vec{E}_{z} \longrightarrow \text{longitudinal transverse}$$

If the beam diameter is D then,

$$\nabla_{\mathbf{t}} \cdot \vec{E}_{t} \, \Box \, \frac{E_{t}}{D}$$

$$\frac{1}{D} E_{t} + ik E_{z0} \, \Box \, 0$$

$$\left| \frac{E_{z0}}{E_{t}} \right| \approx \frac{1}{kD} = \frac{\lambda}{2\pi D} \, \Box \, 1$$

He-Ne:
$$\lambda \Box 6000 A^{\circ} = 6\mu = 0.6 \times 10^{-3} \text{ mm}$$

$$D \Box 1 \text{ mm}$$
If $D \downarrow \downarrow \qquad \left| \frac{E_{z0}}{E} \right| \Box 1 \qquad \left| \frac{E_{z}}{E} \right| = 10^{-3} \Box 1$

In the case of the beam (D finite), there is always a field component along the prop. direction.

$$\left(\frac{\partial}{\partial z}\right)_{\text{envel}} \Box \frac{1}{L}$$
 (scale length)⁻¹ for envol.

$$\left(\frac{\partial}{\partial z}\right)_{\text{oscill}} \Box k$$
 (scale length)⁻¹ oscillator

$$\tilde{E}(\vec{r},\omega) = \tilde{E}_0 \psi(\vec{r}_t,z) e^{jkz}$$
 fast space variation slow space variation $\tilde{E}(\vec{r},\omega) = \tilde{E}_0 \psi(\vec{r}_t,z) e^{jkz}$ fast space variation slow variation along z

 \vec{r}_t = transverse coor.

Recall:
$$\nabla^2 \tilde{E} + \frac{\omega^2 n^2}{c^2} \tilde{E}(\omega) = 0$$
 \bigcirc

Substitute
$$\tilde{E}$$
 into $\nabla^2 \tilde{E} + \frac{\omega^2 n^2}{j} \tilde{E}(\omega) = 0$,

then

Case has low divergence and k of optical wave is $\nabla_t^2 \psi + 2ik \frac{\partial \psi}{\partial z} + \frac{\partial^2 \psi}{\partial z^2} = 0$

$$\left(\nabla_t^2 E_t + \frac{\partial^2 E_t}{\partial z^2} + k^2 E_t = 0\right); k = \frac{2\pi}{\lambda}$$

$$\nabla_{t}^{2}\psi + 2ik\frac{\partial\psi}{\partial z} = 0$$
 Paraxial wave Equation SVEA

Intensity distribution

$$EE^* = |E|^2 |\psi|^2$$

$$\psi = e^{i\left[p(z) + \frac{kr^2}{2q(z)}\right]}$$

$$\frac{\partial \psi}{\partial r} = \frac{ikr}{q} e^{i\left[p(z) + \frac{kr^2}{2q(z)}\right]}$$

$$r\frac{\partial \psi}{\partial r} = \frac{ikr^2}{q} e^{i\left[p(z) + \frac{kr^2}{2q(z)}\right]}$$

In cylindrical coordinate:
$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right)$$

$$= \frac{1}{r} \left[\frac{2ikr}{q} e^{\left[p(z) + \frac{kr^2}{2q(z)} \right]} + \frac{ikr^2}{q} e^{\left[p(z) + \frac{kr^2}{2q(z)} \right]} + \frac{ikr}{q} e^{\left[p(z) + \frac{kr^2}{2q(z)} \right]} \right]$$

$$\frac{\partial \psi}{\partial z} = i \left[p' - \frac{kr^2}{2q} q' \right] e^{i \left[p(z) + \frac{kr^2}{2q(z)} \right]}$$

substitute back to SVEA, we get

$$\frac{2ik}{q} - \frac{k^2r^2}{q^2} - 2k \left[p' - \frac{kr^2}{2q} q' \right] = 0$$

$$\frac{k^2}{q^2(z)} (q'(z) - 1)r^2 - 2k \left[p'(z) - \frac{i}{q(z)} \right] = 0$$

Power function : $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$

$$q'(z)-1=0 \Rightarrow q(z)=z+q_0$$

$$p'(z)-\frac{i}{q(z)}=0$$

$$\Rightarrow q(z) = \text{"complex number"}$$

$$q(z) = z - iz_0 \qquad \qquad \qquad \boxed{1}$$

$$\text{At } z = 0 : \psi(r, z = 0) = e^{\frac{kr^2}{2z_0}} e^{ip(z=0)}$$

For
$$z \neq 0$$
:
$$\frac{1}{q(z)} = \frac{1}{z - iz_0} = \frac{z + iz_0}{z^2 + z_0^2}$$

$$\psi \Box e^{\frac{-kz_0r^2}{2(z^2+z_0^2)}} e^{i\frac{kzr^2}{2(z^2+z_0^2)}} e^{ip(z)}$$

Define,

$$\omega^{2}(z) = \frac{2}{kz_{0}}(z^{2} + z_{0}^{2})$$
$$= \omega_{0}^{2}(1 + z^{2}/z_{0}^{2})$$

Define

Define
$$R(z) = \frac{z^2 + z_0^2}{z}$$

$$\psi = e^{-r^2} / \omega^2(z) e^{ikr^2/2R(z)} e^{ip(z)}$$
Recall (ii)
$$p'(z) = i/q(z) = \frac{i}{z - iz_0}$$

$$p(z) = i \ln(z - iz_0) + A$$

But A just contribute to a constant phase, so we define

$$p(z=0) = 0$$

$$p(z) = i \ln(z - iz_0) - i \ln(iz_0)$$

$$= i \ln\left(1 - \frac{z}{iz_0}\right)$$

$$= i \ln\left(1 + \frac{iz}{z_0}\right)$$

$$\exp(iP(z)) = \frac{1}{1 + iz/z_0} = \frac{1 - iz/z_0}{1 + (z/z_0)^2}$$
So,
$$= \frac{1}{1 + (z/z_0)^2} \left[1 + (z/z_0)^2 \right]^{1/2} e^{-i\tan^{-1}z/z_0}$$

$$= \frac{1}{\sqrt{1 + (z/z_0)^2}} e^{-i\tan^{-1}z/z_0}$$

Full sol:

$$E(r,z) = \psi(r,z)e^{ikz}$$

$$E(r,z) = E_0 \frac{\omega_0}{\omega(z)} e^{-r^2/\omega(z)} e^{ikr^2/2R(z)} e^{i(kz-\tan^{-1}(z/z_0))}$$

We get solution by using
$$\frac{1}{r} \left(r \frac{\partial \psi}{\partial r} \right) + 2ik \frac{\partial \psi}{\partial z} = 0$$

(i) + (ii) by assuming $\frac{\partial}{\partial \psi} = 0$

to get this it is quite completely $e^{i\left(p(z) + \frac{kr^2}{2q(z)}\right)}$
& solve by B.C. where $E(z \to \infty) = 0$

(i) + (ii) by assuming
$$\frac{\partial}{\partial \psi} = 0$$

& solve by B.C. where $E(z \rightarrow \infty) = 0$

Since this solution satisfy the wave equation and B.C. it is the unique solution (for case $\frac{\partial}{\partial w} = 0$).

Interpretation of Fundamental Gaussian Beam Solution:

Radial dependence i) Field Amplitude ÷

$$\omega^{2}(z) = \omega_{0}^{2} \left(1 + \frac{z^{2}}{z_{0}}\right)$$

$$\frac{\left|E(z = z_{0})\right|}{E_{0}^{2}} = \frac{1}{2}$$

$$\frac{r^{2}}{\omega^{2}(0)} = \frac{r^{2}}{\omega_{0}^{2}}$$

Interpretation:

z = 0 is a place of min spot size ω_0 .

What is z_0 ?

For
$$r = 0$$
, $\frac{|E(r = 0, z)|}{E_0} \Box \frac{\omega_0}{\omega(z)} = \frac{1}{(1 + z^2/z_0^2)^{1/2}}$

At
$$z = z_0$$
; $\frac{\left| E(r = 0, z = z_0) \right|^2}{E_0^2} = \frac{1}{2}$

 \Rightarrow z_0 is the distance from the focus at which the intensity has dropped approx. by a factor of 2.

$$\left(\omega_0^2 = \frac{2z_0}{k} \; ; \; z_0 = \frac{k\omega_0^2}{2}\right)$$

ii) Beam Divergence

We can use the focal of $\frac{1}{e}$ field point to define a measurement of beam divergence.

$$\tan\left(\frac{1}{2}\theta_{\text{DIV}}\right) = \frac{\omega(z)}{z}$$

For small angle:

$$\frac{1}{2}\theta_{\text{DIV}} \approx \frac{\omega(z)}{z}$$

For
$$\frac{z}{z_0} \Box 1$$
,

$$\frac{\omega(z)}{z} = \frac{\omega_0 \left(1 + z^2/z_0^2\right)^{1/2}}{z}$$

$$\Rightarrow \theta_{\text{DIV}} \quad \Box \frac{2\omega_0}{z_0} \quad ; \quad z_0 = \frac{k\omega_0^2}{2}$$

$$\approx \frac{2\omega_0}{\frac{\pi\omega_0^2}{2\pi/k}} = \frac{2\omega_0}{\frac{k\omega_0^2}{2}} = \frac{4}{k\omega_0}$$

$$\theta_{\text{DIV}} = \frac{2\lambda}{\pi\omega_0}$$

Since
$$\omega_{\scriptscriptstyle 0}$$
 for diff lasers : \Rightarrow $\lambda \uparrow \rightarrow \theta_{\scriptscriptstyle {\rm DIV}} \uparrow$

Same
$$\lambda$$
 \Rightarrow $\omega_0 \downarrow$ \rightarrow θ_{DIV} 1

longer λ , the beam diverge faster (for fixed spot size)

Photon View of Beam Divergence:

It comes from uncertainly principle

Divergent angle : $\frac{\Delta p}{p_z} \Box \frac{\overline{h}/a}{\overline{h}k} \Box \frac{\lambda}{a}$

iii) Longitudinal Phase

Behavior of plane wave:

Intensity never fall off

$$e^{i\underline{k}\cdot\underline{r}} = e^{ik\hat{z}\cdot\underline{r}}$$
$$= e^{ikz}$$

In going through the waist the wave picks up a phase change of

$$\pi/2-(-\pi/2)=\pi$$

- This phase change is due to change in direction of phase front curvature.
- $\tan \theta = z/z_0$, at $z \square z_0$; $\theta \square z/z_0$ $e^{i(kz+\tan^{-1}z/z_0)} \square e^{i(kz+z/z_0)}$

iv) Phase front curvature and radial dependence of phase

$$e^{ikr^2/2R(z)}$$
 : $R(z) = z(1+z_0^2/z^2)$

The phase fronts for the beam are curved. R(z) is radius of curvature of these phase fronts.

- + For fixed z, as we move off axis phase increase.
- For fixed z, as we move off axis phase decrease.

Phase
$$\downarrow \rightarrow R$$
"-" $+/-$ is the behavior of $e^{ikr^2/2R(z)}$ $+/-$

$$\Omega = (r^2 + z^2)^{1/2}$$

$$= z(1 + r^2/z^2)^{1/2}$$

$$= z(1 + r^2/2z^2) \quad \text{for } \frac{r}{z} \square 1$$

$$E(r,z) \Box \frac{1}{\omega(z)} e^{ikz} e^{ikr^2/2R(z)} e^{i\tan^{-1}(z/z_0)}$$

For large

$$z: E(r,z) \Box \frac{1}{z} e^{ikz} e^{ikr^2/2z_0}$$

$$\Box \frac{1}{\Omega} e^{ik\Omega} \qquad ; \qquad \omega(z) = \omega_0 \left(1 + z^2/z_0\right)^{1/2}$$

$$\Omega = 1 + \frac{r^2}{2z}$$
 Far from beam waist, the phase fronts resemble those form a spherical wave.

$$\left(E(r,z)\Box\frac{1}{r}e^{ikr}\right)$$

Close to the beam waist, phase fronts are parabolic.

Ex: (i) He-Ne Laser $\lambda = 6328 A^{\circ}$ spot size 1 mm. Aim laser at the moon. How big is the beam at moon?

$$\omega_0 = 1 \text{ mm} = 0.1 \text{ cm}$$

$$z_0 = \frac{\pi n \omega_0^2}{\lambda} = \frac{\pi (0.1)^2}{6328 \times 10^{-8}} \frac{\text{cm}^2}{\text{cm}} = 492 \text{ cm}$$

$$\omega(z) = \omega_0 \left(1 + \frac{z^2}{z_0} \right)^{1/2} \left(\text{at } z = z_0 \quad \omega(z_0) = \sqrt{2}\omega_0 \right)$$

$$z_{\text{moon}} = 240,000 \times 5280 \times 12 \times 2.84 \text{ cm} = 3.86 \times 10^{10} \text{ cm}$$

$$\omega_{\text{moon}}(z_{\text{moon}}) 0.1 \left(1 + \left(\frac{3.86 \times 10^{10}}{496} \right)^2 \right)^{1/2} = 78 \times 10 \text{ cm} = 78 \text{ km}$$

If we use lens or mirror to increase beam diameter to $\omega_0 = 5$ cm,

$$\Rightarrow z_0 = \frac{\pi (5)^2}{6328 \times 10^8} = 1.29 \times 10^6 \text{ cm}$$

$$\omega(z) = 1.6 \text{ km}$$

ω_0	$\omega(z_{\mathrm{moon}})$
1 mm	78 km
5 cm	1.6 km

(ii) Power in beam crossing a plane at z

$$\langle s \rangle_t = \frac{1}{2} c \varepsilon \left(\mathbf{E} \times \mathbf{H}^* \right)$$

Intensity:

$$I = \frac{1}{2}c\varepsilon \left| \tilde{E} \right|^2$$

Power:

$$P = \int Ids \quad ds = dr 2\pi r$$

$$= \int_{0}^{\infty} dr 2\pi r \frac{1}{2} c \varepsilon E_{0}^{2} \frac{\omega_{0}^{2}}{\omega^{2}(z)} e^{-2r^{2}/\omega^{2}(z)}$$

$$= \frac{1}{2} c \varepsilon E_{0}^{2} \frac{\omega_{0}^{2}}{\omega^{2}(z)} 2\pi \int_{0}^{\infty} dr r e^{-2r^{2}/\omega^{2}(z)}$$

$$= \frac{1}{2} c \varepsilon E_{0}^{2} \frac{\omega_{0}^{2}}{\omega^{2}(z)} 2\pi \frac{\omega^{2}(z)}{4}$$

$$= \frac{1}{2} c \varepsilon E_{0}^{2} \left(\frac{\pi \omega_{0}^{2}}{2}\right)$$
Power
$$= \frac{1}{2} c \varepsilon E_{0}^{2} \left(\frac{\pi \omega_{0}^{2}}{2}\right)$$

independence of $z \Rightarrow$ since we must conserve the energy or power

Higher Order Gaussian Modes:

Our previous calculation assumed azimuthal sys $\left(\frac{\partial}{\partial \psi} = 0\right)$. Now, remove this

requirement, and still require

$$E \to 0$$
 as $r \to \infty$

We get for

(i) Rectangular coordinate:

modulation in transverse plane
$$\frac{E(x, y, z)}{E_0} = H_m \left(\frac{\sqrt{2}n}{\omega(z)}\right) H_p \left(\frac{\sqrt{2}y}{\omega(z)}\right) \frac{\omega_0}{\omega(z)} e^{\left[-x^2 + y^2/\omega^2(z)\right]} e^{i(kz - (m+p+1)\tan^{-1}(z/z_0))} e^{ikr^2/2R(z)}$$
order

m

Hermit Polynomial represents

$$H_{m}(u) = (-1)^{m} e^{u^{2}} \frac{d^{2m}}{du^{m}} e^{-u^{2}}$$

$$H_{0}(u) = 1$$

$$H_{1}(u) = 2u$$

$$H_{2}(u) = 2(2u^{2} - 1)$$

These mode are called TEM_{mp} modes:

$$\begin{pmatrix}
E_z = H_z = 0 \\
\text{Actually,} \frac{E_z}{E_t} \Box 1
\end{pmatrix}$$

These is a total of (m+1)(p+1) spot in the intensity distribution

(ii) Cylindrical Coordinate:

$$\frac{E(r, y, z)}{E_0} = \left(\frac{\sqrt{2}r}{\omega_0}\right)^{ilp} \int_{0}^{ilp} e^{ilp} L_p^l \left(\frac{2r^2}{\omega^2(z)}\right) e^{-r^2/\omega^2(z)} e^{i(kz-2(p+l+1)\tan^{-1}z/z_0)} e^{ikr^2/2R(z)}$$
get curl l

l = azimuthal index

p = radial index

 $\theta_{\rm BR} = \text{Brewster angle}$

$$\left(\begin{array}{c} \bot \\ \top \\ \end{array} \text{hole} \right) \text{ so we kill the outer} \qquad \left(\begin{array}{c} Gaussian \\ \bullet \end{array}\right)$$

Divergence of High Order Modes:

For higher modes, must consider extra beam radius due to Hermite Polynomial Effect beam radius \Box $\lambda_{\max} = \sqrt{m}\omega(z)$

$$\frac{1}{2}\theta_{\text{DIV}} = \frac{x_{\text{max}}}{2}$$

$$= \frac{\sqrt{m\omega(z)}}{z}$$

$$\frac{1}{2}\theta_{\text{DIV}} \Box \sqrt{m} \frac{\omega_0}{z_0} \qquad \text{for } \frac{z}{z_0} \Box 1.$$

Divergence of n^{th} mode is \sqrt{n} times larger than a zero-order mode.

$$\frac{1}{2}\theta_{\text{DIV}} = \frac{\omega_0}{z_0}, \frac{z}{z_0} \square 1$$

Coherence:

Temporal or Longitudinal coherence : nice predicable wave with phase memory $\tau_0 \equiv$ coherence time : "duration of phase memory" over which average time wave phase is predicable.

≡ average time between phase change

$$l_c \equiv \text{coherence length} = \frac{c}{n} \tau_c$$

$$\tau_c = \frac{2}{\Delta \omega}$$
: claim $\Delta \omega$ is FWHM due to any kind to line broadening.

Transverse coherence:

Degree to which the phase changes as you move transverse to propagate direction.

has a "perfect" transverse coherence

No phase change in ⊥ direction

Divergence: Maxwell Eq. tell \underline{k} vector is locally $\underline{\perp}$ to phase fronts

Contrast laser beam vs. Flashlight beam:

phase front follows the contour of mirror

Flash Light: Temporal coherence is poor-random emission from incandescent filament.

$$\left(\frac{1}{2}\theta_{\text{DIV}}\right) = \left|\frac{\Delta k_{\text{max}}}{k}\right|$$

large divergence

Measurement of coherent:

i) Longitudinal (or Temporal coherence)

Michelson Interferometer:

Fully Coherence: $\tau_c \rightarrow \infty$

Noisy coherence: $\tau_c \approx 0$

Max:
$$d_1 = d_2, \delta(d_1 - d_2)$$

got peak

In case of partial coherence:

$$\left\langle \left(E_{1}+E_{2}\right)^{2}\right\rangle = \left\langle \left|\underline{E}_{1}\right|^{2}\right\rangle + \left\langle \left|\underline{E}_{2}\right|^{2}\right\rangle + \left\langle 2\underline{E}_{1}\cdot\underline{E}_{2}\right\rangle$$
Background Fringe
$$\int_{0}^{L2\pi/\omega} dt \sin\left(\omega t + \varphi(t)\right) \sin \omega t$$
Outside curve
$$\varphi \text{ random} \rightarrow \text{ take time} = 0$$

$$\Rightarrow \text{ Flat background} = 0$$

$$\Rightarrow \text{ In side curve} = 1$$

For $\frac{2|d_2-d_1|}{c} > \tau_c$; fringes go away and just background is left

Measuring Transverse Coherence: Using Double Slits

$$\langle |E_1| \rangle^2 + \langle |E_2|^2 \rangle + 2 \langle E_1 \cdot E_2 \rangle$$

Gain and

Optical Amplification and Gain Saturation

$$I_{\nu}(0)$$

$$I_{\nu}(L) = I_{\nu}(0)e^{\gamma(\nu)L}$$

$$\pm \text{ depending on } N_{2}, N_{1}$$

$$\gamma(\nu) = \frac{c^2}{8\pi n^2 v^2 t_{sp}} g(v) (N_2 - N_1)$$

Population N_1 and N_2 are affect by the photon field.

Rate Eq.:

$$\frac{dN_2}{dt} = -B_{21}^{(0)}g(v)\rho(v)N_2 - \frac{N_2}{t_{sp}} + B_{12}^{(0)}g(v)\rho(v)N_1$$

Consider a homogeneous broadened 4-level system:

pumping process
$$\frac{ R_1 \left(\frac{R_2 \text{ pumping rate into upper level}}{\frac{A_{21} = \frac{1}{\tau_{sp}}}{\left(\frac{1}{\tau_1}\right)} \frac{1}{\tau}} \frac{1}{\tau} = \frac{1}{t_{sp}} + r_2$$
 rate of depopulation method

$$\frac{dN_2}{dt} = R_2 - \frac{N_2}{\tau_2} - (N_2 - N_1) \underline{B}^{(0)} g(v) \rho(v)$$

$$\omega(v) = \text{ rate per atom}$$
of stimulated absorption

where

$$\omega(v) = \frac{c^2 g(v) I_v}{8\pi n^2 h v^3 t_{sp}}$$

$$\frac{dN_1}{dt} = R_1 - \frac{N_1}{\tau_1} + \frac{N_2}{t_{sp}} + (N_2 - N_1)\omega(v)$$
pump
non-stimulated
depopulation. rate
Spontaneous
Fill up from level 2

S.S. approximation
$$\left(\frac{d}{dt} = 0\right)$$
 to describe behavior of N_1, N_2 for $t \square$ time of slowest rate in system.

 $R_1, R_2, \frac{1}{\tau}, \dots$

Then,

$$0 = R_2 - \frac{N_2}{\tau_2} - (N_2 - N_1)\omega(\nu)$$
$$0 = R_1 - \frac{N_1}{\tau_1} - (N_2 - N_1)\omega(\nu)$$

Solve for N_1, N_2

$$0 = (R_1 + R_2) + N_2 \left(\frac{1}{t_{sp}} - \frac{1}{\tau_2}\right) - \frac{N_1}{\tau_1}$$

$$N_1 = (R_1 + R_2) + N_2 \left(\frac{1}{t_{sp}} - \frac{1}{\tau_2}\right) \tau_1$$

$$0 = R_2 - \frac{N_2}{\tau_2} - N_2 \omega(\nu) + \omega \tau_1 \left[(R_1 + R_2) + N_2 \left(\frac{1}{t_{sp}} - \frac{1}{\tau_2}\right) \right]$$

$$0 = R_2 - N_2 \left(\frac{1}{\tau_2} - \frac{\omega t_1}{t_{sp}} + \frac{\omega t_1}{\tau_2} + \omega\right) \omega t_1 (R_1 + R_2)$$

$$N_2 = \frac{R_2 + \omega \tau_1 (R_1 + R_2)}{\frac{1}{\tau_2} - \omega \left(\frac{t_1}{t_{sp}} - \frac{t_1}{\tau_2} - 1\right)}$$

$$(N_2 - N_1) = \frac{R_2 \tau_2 - (R_1 - \delta R_2) \tau_1}{1 + [\tau_2 + (1 - \delta) \tau_1] W(v)}; \qquad \delta = \frac{\tau_2}{t_{sp}}$$

In the absent of optical intensity:
$$I = 0$$

$$\Rightarrow \omega(\nu) = 0$$

$$N_{2} - N_{1} = R_{2}t_{2} - (R_{1} - \delta R_{2})\tau_{1}$$

$$= (N_{2} - N_{1})_{I=0} = \Delta N^{\circ}$$

$$N_{2} - N_{1} = \frac{\Delta N^{\circ}}{1 + \phi t_{sp}\omega(\nu)},$$

where

$$\phi = \delta \left[1 + \left(1 - \delta \right) \tau_1 / \tau_2 \right]$$

Now consider efficient laser system

We also want to deplete level 1 as fast as possible in order to keep the inversion high (or to avoid absorption upper level)

$$\frac{1}{t_{\rm sp}} \Box \frac{1}{\tau_{\rm l}}$$

$$\Rightarrow \frac{t_1}{\tau_2} \Box \frac{t_1}{\tau_{sp}} \Box 1$$

$$\Rightarrow (1 - \delta) \frac{\tau_1}{\tau_2} \Box 1 \text{ and so } \phi = 1$$

$$N_2 - N_1 = \frac{\Delta N^{\circ}}{1 + \phi \tau_{\rm sp} \omega(\nu)}$$

Recall:

$$\phi t_{sp} \omega(v) = \phi \tau_{sp} B^{(0)} g(v) \rho(v)$$

$$= \phi t_{sp} \frac{c^3}{8\pi n^3 h v^3} Ag(v) \frac{I}{c/n}$$

$$= \phi \frac{c^2 g(v) I}{8\pi n^2 h v^2} = \frac{I}{I_s},$$

where, $I_s = \frac{I8\pi n^2 h v^3}{\phi c^2 g(v)}$ "saturation intensity"

So

$$N_2 - N_1 = \frac{\Delta N^{\circ}}{1 + I/I_s}$$

when $I = I_s$, the population inversion drops to $\frac{1}{2}$ its maximum value.

The gain is saturate when the rate of stimulated emission (per atom) is equal to the rate of spontaneous emission (per atom).

Gain becomes

$$\gamma(\nu) = \frac{c^2 g(\nu)}{8\pi n^2 \nu^2 t_{\rm sp}} (N_2 - N_1)$$
$$= \frac{c^2 g(\nu)}{8\pi n^2 \nu^2 t_{\rm sp}} \frac{\Delta N^{\circ}}{1 + I(\nu)/I_{\rm s}}$$

Inhomogeneous: $\gamma(\nu) = \frac{\gamma_0(\nu)}{\left(1 + I_{\nu}/I_{\rm s}\right)^{1/2}} \rightarrow \text{saturation more weakly than homogeneous case}$

Homogeneous: $\gamma(\nu) = \frac{\gamma_0(\nu)}{(1+I_{\nu}/I_{\rm s})}$

Doppler : If we operate at ν_0 it doesn't affect $\gamma(\nu)$ much.

Homogeneous : $g(v) \approx$ every atom

Affect one, affect all $\Rightarrow \gamma(\nu)$ change much

Optical Resonator

Single optical resonator: 2 flat, parallel optical surfaces

Ratio of field not intensity

Transmission coefficient: from $n' \rightarrow n \square t_1$

Reflection coefficient: from $n \rightarrow n \square r$ (or $n' \rightarrow n$)

Reflection coefficient: from
$$n \to n \square r_0$$

$$(\text{or } n \to n')$$
Transmission coefficient: from $n \to n' \square t_2$

$$r_0 = \frac{n' - n}{n' + n} = -r$$

Reflected wave:

$$re^{2ikl}t_{1}t_{2}\left(\frac{1}{1-re^{2ikl}}\right)$$

$$E_{r} = E_{0}\left(r_{0} + t_{1}t_{2}re^{i2kl} + t_{1}t_{2}r^{3}e^{i4kl} + ...\right)$$

$$= E_{0}\left(r_{0} + \frac{t_{1}t_{2}re^{i2kl}}{1-r^{2}e^{i2kl}}\right)$$

$$\frac{a}{1-x} = a + ax + ax^2 + ax^3 + ...; |x| < 1$$
or
$$(1+x)^{-1} = 1 - x + x^2 - x^3 + ...; -1 < x < 1$$

$$E_{t} = \left(t_{1}t_{2}e^{ikl} + t_{1}t_{2}r^{2}e^{3ikl} + t_{1}t_{2}r^{4}e^{5ikl} + ...\right)E_{0}$$

$$= \left(\frac{t_{1}t_{2}e^{ikl}}{1 - r^{2}e^{2ikl}}\right)E_{0}$$

Recall:

$$t_{1} = \frac{2n'}{n+n'} = 1-r_{0}$$

$$t_{2} = \frac{2n}{n+n'} = 1-r$$

$$r = \frac{n-n'}{n'+n}, \quad r^{2} = \frac{n^{2} + (n')^{2} - 2nn'}{(n+n')^{2}}$$

$$= 1 - \frac{4nn'}{(n+n')^{2}} = 1 - t_{1}t_{2}$$

$$\begin{split} \frac{E_r}{E_0} &= -r + \frac{\left(1 - r^2\right) r e^{2ikl}}{1 - r^2 e^{i2kl}} \\ &= r \frac{\left[-1 + e^{2ikl}\right]}{1 - r^2 e^{i2kl}} \qquad r \equiv \text{ real number no absorption} \\ \frac{I_r}{I_0} &= \left|\frac{E_r}{E_0}\right|^2 \qquad = \frac{r^2 \left(-1 + e^{2ikl}\right) \left(-1 + e^{-2ikl}\right)}{\left(1 - r^2 e^{i2kl}\right) \left(1 - r^2 e^{-i2kl}\right)} \\ &= \frac{r^2 \left(1 - e^{2ikl} - e^{-2ikl}\right)}{1 + r^4 - r^2 e^{i2kl} + r^2 e^{-i2kl}} \\ &= \frac{r^2 \left(2 - 2\cos 2kl\right)}{1 + r^4 - 2r^2 \cos 2kl} \\ &= \frac{2R \left(1 - \cos \delta\right)}{1 - R^2 - 2R\cos \delta} \end{split}$$

$$1 - R^{2} - 2R \cos \delta$$

$$R = r^{2} \text{ "reflectivity"}$$

$$\delta = 2kl \text{ "round trip phase advance"}$$

$$\cos \delta = \cos^{2} \frac{\delta}{2} - \sin^{2} \frac{\delta}{2}$$

$$\frac{I_{r}}{I_{0}} = \frac{2R\left(1 - \cos^{2} \frac{\delta}{2} + \sin^{2} \frac{\delta}{2}\right)}{1 + R^{2} - 2R\left(1 - 2\sin^{2} \frac{\delta}{2}\right)}$$

$$= \frac{4R \sin^{2} \frac{\delta}{2}}{\left(1 - R\right)^{2} + 4R \sin^{2} \frac{\delta}{2}}$$

Similarity,

$$\frac{I_t}{I_0} = \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2\frac{\delta}{2}} = 1 - \frac{I_r}{I_0}$$

$$\frac{I_t}{I_0} + \frac{I_r}{I_0} = 1$$

"Fabry-Perot problem foe off-normal light"

Note: Laser is not a plane wave, but we use plane wave to understand Fabry-Perot.

Transmission Characteristic of Fabry-Perot Etalon:

For
$$\sin^2 \frac{\delta}{2} = 0$$

 $\frac{\delta}{2} = q\pi \text{ for } q = 1, 2, 3$ $\Rightarrow \frac{I_t}{I_0} = 1$

Round-trip phase advance : $2kl = 2q\pi$

$$l = \frac{q\pi}{k}$$
; $k = nk_0 = \frac{n2\pi}{\lambda_0}$
 $l = \frac{q\lambda}{2n}$; $l \propto \text{half wave length}$

Separation l is integral # of half wavelength "standing wave condition"

Frequency separation between resonances:

$$\frac{kl = q\pi}{\frac{\omega nl}{c} = q\pi}$$

$$\frac{2\pi vnl}{c} = q\pi$$

$$v_q = \frac{qc}{2nl}$$

"resonance frequency" within the resonator not the spring, atom,...

$$\Delta v = v_{q+1} - v_q = \frac{c}{2nl}$$
 "Free spectral range"

$$v_q = qc/2nl$$

$$dv_q = -\frac{qc}{2nl^2}dl$$

change of resonance frequency due to the change in dl

$$\frac{dv_q}{\Delta v} = \frac{-qc/2nl^2dl}{c}$$
to change the resonant frequency by one free space range the etalon must be tuned through one-half wavelength
$$= \frac{-ql}{l}$$

$$= \frac{-dl}{\lambda/2n}$$

When $R \rightarrow 1$, the resonance sharper

Field and Energy Inside Etalon:

$$E_{0} \Rightarrow E_{0}e^{ikz} \qquad E_{0}e^{ikl}$$

$$\Rightarrow r^{2}E_{0}e^{ik(2l-z)}$$

$$\Rightarrow r^{2}E_{0}e^{ik(2l+z)}$$

$$\Rightarrow r^{3}E_{0}e^{ik(4l-z)}$$

$$\Rightarrow r^{4}E_{0}e^{ik(4l+z)}$$

$$\Rightarrow E^{(+)} = E_{0}e^{ikz} + r^{2}E_{0}e^{ik(2l+z)}$$

$$+ r^{4}E_{0}e^{ik(4l+z)} + \dots$$

$$= E_{0}e^{ikz} \left(1 + r^{2}e^{ik2l} + r^{4}e^{i4kl} + \dots\right)$$

$$= \frac{E_{0}e^{ikz}}{1 - r^{2}e^{i2kl}}$$

Right going field:

$$E^{(+)} = E_0 e^{ikz} + r^2 E_0 e^{ik(2l+z)}$$

$$+ r^4 E_0 e^{ik(4l+z)} + \dots$$

$$= E_0 e^{ikz} \left(1 + r^2 e^{ik2l} + r^4 e^{i4kl} + \dots \right)$$

$$= \frac{E_0 e^{ikz}}{1 - r^2 e^{i2kl}}$$

$$\frac{a}{1-x} = a + ax + ax^2$$
 : if $-1 < x < 1$

Left going field:

$$E^{(-)}(z) = rE_{0}e^{ik(2l-z)} + r^{3}E_{0}e^{ik(4l-z)} + \dots$$

$$= rE_{0}e^{-ikz}e^{i2kl} \left[1 + r^{2}e^{i2kl} + r^{4}e^{i4kl} + \dots \right]$$

$$= \frac{rE_{0}e^{ikz}e^{i2kl}}{1 - r^{2}e^{i2kl}}$$

$$E_{\text{inside}}(z) = E^{+}(z) + E^{-}(z)$$

$$I_{\text{inside}} \propto |E_{\text{inside}}|^{2}$$

$$= |E^{+}(z) + E^{-}(z)|^{2}$$

$$= (E^{+}(z) + E^{-}(z))(E^{+}(z)^{*} + E^{-}(z)^{*})$$

$$= |E^{+}(z)|^{2} + |E^{-}(z)|^{2} + E^{+}(z)^{*}E^{-}(z) + E^{+}(z)E^{-}(z)^{*}$$

$$= \frac{E_{0}^{2}(1 + r^{2} + re^{-2ikz}e^{2ikl} + re^{2ikz}e^{-2ikl})}{1 + r^{4} - 2r^{2}\cos 2kl}$$

$$\frac{|E_{\text{inside}}|^{2}}{|E_{0}^{*}|^{2}} = \frac{1 + r^{2} + 2r\cos 2k(l-z)}{1 + r^{4} - 2r^{2}\cos 2kl}$$

$$= \frac{1 + R + 2\sqrt{R}\cos(\delta - 2kz)}{(1 - R)^{2} + 4R\sin^{2}\delta/2}$$

The intensity inside resonator is also maximized for $\sin \delta/2 = 0$

$$E_{\rm in} \ \ {\rm related \ to} \ E_{\rm out} \ \ {\rm via} \ t.$$
 Thus, $E_{\rm inside} \ {\rm max \ at} \ {\rm sin} \ \delta/2 = 0$
$$E_{\rm out} \ \ {\rm max \ at} \ {\rm sin} \ \delta/2 = 0 \ {\rm also}.$$

Resonance Peak for Resonator: Outside resonator

$$\frac{I_{t}}{I_{0}} = \frac{(1-R)^{2}}{(1-R)^{2} + 4R\sin^{2}\delta/2}$$
$$= \frac{1}{1 + \frac{4R}{(1-R)^{2}}\sin^{2}\delta/2}$$

At
$$\frac{I_t}{I_0} = 0.5$$
 if $\sin^2 \delta / 2 = \frac{(1-R)^2}{4R}$

or
$$\sin^2 \delta/2 = \pm \frac{1-R}{2\sqrt{R}}$$

(If know $\delta \rightarrow 2kl \Rightarrow$ so one can find $\Delta \delta_{1/2}$)

$$\begin{array}{l}
\left(\begin{array}{l}
\sin \frac{\delta_{\text{right}}}{2} = +\frac{1-R}{2\sqrt{R}} \\
\delta_{\text{right}} = 2q\pi + \frac{1}{2}\Delta\delta_{1/2} \\
\sin \frac{1}{2} \left(2q\pi + \frac{1}{2}\Delta\delta_{1/2}\right) = \frac{1-R}{2\sqrt{R}} \\
\left(\begin{array}{l}
\end{array}\right) = \sin q\pi \cos \frac{\Delta\delta_{1/2}}{4} + \cos q\pi \sin \frac{\Delta\delta_{1/2}}{4} = \frac{1-R}{2\sqrt{R}} \\
\left(\begin{array}{l}
2 & \delta_{\text{left}} = 2q\pi - \frac{1}{2}\Delta\delta_{1/2} \\
\sin \frac{\delta_{\text{left}}}{2} = -\frac{1-R}{2\sqrt{R}} = \sin \left(q\pi - \frac{\Delta\delta_{1/2}}{4}\right) \\
= \sin q\pi \cos \frac{\Delta\delta_{1/2}}{4} - \cos q\pi \sin \frac{\Delta\delta_{1/2}}{4} \\
\end{array}\right) \\
= -\cos q\pi \sin \frac{\Delta\delta_{1/2}}{4}$$

(1) - (2) :
$$2\cos q\pi \sin \frac{\Delta \delta_{1/2}}{4} = \frac{1-R}{\sqrt{R}}$$
$$\frac{1-R}{\sqrt{R}} = 2\sin \frac{\Delta \delta_{1/2}}{4} \approx \frac{\Delta \delta_{1/2}}{2} \text{ for } \delta \text{ small}$$

$$\left|\Delta \delta_{1/2}\right| = \frac{2}{\sqrt{R}} (1 - R)$$

$$R \rightarrow 1 \Rightarrow \Delta \delta_{1/2}$$
 small

But
$$\delta = 2kl = 2l \frac{2\pi nv}{c} = \Delta \delta_{1/2} = \frac{4\pi nl}{c} \Delta v_{1/2}$$
$$= \frac{2}{\sqrt{R}} (1 - R)$$

$$\Delta v_{1/2} = \frac{c}{2\pi nl} \frac{1-R}{\sqrt{R}}$$

Measuring Quality of Resonator:

Resonator quality factor $Q = \frac{v}{\Delta v_{1/2}}$

Better definition is "finesse"

$$F = \frac{\Delta v}{\Delta v_{1/2}} \qquad \Box \text{ free spectral range}$$

$$= \frac{\frac{c}{2nl}}{\frac{c}{2\pi nl} \frac{1-R}{\sqrt{R}}} = \frac{\pi\sqrt{R}}{1-R} \quad \begin{array}{c} R \to 1 \\ F \to \infty \end{array}$$

Cavity Resonance for Gaussian Mode:

Previously analyze resonance for plane waves between 2 planar reflecting surfaces.

Now consider beams with curved phase fronts and cavities with curved mirror Recall:

$$\frac{E(x,y,z)}{E_0} = H_m \left(\frac{\sqrt{2}x}{\omega(z)}\right) H_p \left(\frac{\sqrt{2}y}{\omega(z)}\right) \frac{\omega_0}{\omega_z} e^{-r^2/\omega^2(z)} \times e^{ikz} e^{-i(m+p+1)\tan^{-1}\frac{z}{z_0}} e^{ikr^2/2R(z)}$$

Intrinsic property of plane wave

$$R(z) \to \infty : e^{ikr^2/2R(z)} \to 1$$

$$z_0 \to \infty : e^{-i\alpha \tan^{-1} z/z_0} \to 1$$

$$e^{i\phi(z)}$$

 \Rightarrow because plane wave have $I(z) = \frac{I_0}{2}$ at $z \to \infty$, i.e. $z_0 \to \infty$,

$$R(z) = z(1+z_0^2/z^2)$$
For $z^- \to R_1 = "-"$

$$z^+ \to R_2 = "+"$$

Plane back-forth:

Resonator condition = round trip phase delay is equal to integral $\times 2\pi$

Phase shift:
$$2(\phi(z_r) - \phi(z_1)) = 2q\pi$$

 $\phi(z_r) - \phi(z_1) = q\pi$
 $q\pi = k(z_2 - z_1) - (m + p + 1) \times$
 $\left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} \right\}$
 $+ \frac{kr^2}{2} \left(\frac{1}{R(z_2)} - \frac{1}{R(z_1)} \right)$

 $\begin{cases} k(z_2 - z_1) - (m + p + 1) \times \\ \left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} \right\} \end{cases}$ Different value of q, m, and p satisfy resonance condition. $m + p \equiv \text{transverse mode index}$ $q \equiv \text{longitudinal mode index}$

To simplify the problem, let r = 0

 \Rightarrow this resonator is true every where on r.

$$q\pi = k(z_2 - z_1) - (m+p+1) \left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} \right\}$$

ase: Plane-convex

$$z_{1} = 0$$

$$q\pi = kz_{2} - (m+p+1)\tan^{-1}\frac{z_{2}}{z_{0}}$$
From $R_{2} = z_{2}\left[1 + \frac{z_{2}^{2}}{z_{0}}\right]$

$$R \to \infty \quad R_{2}$$

$$R = 2\pi v_{m,n,p\frac{n}{c}}$$

$$z_{1} = 0$$

$$q\pi = kz_{2} - (m+p+1)\tan^{-1}\frac{z_{2}}{z_{0}}$$

$$z_{2} = \sqrt{lR_{2}}\left[1 - \frac{l}{R_{2}}\right]^{1/2}$$

And,

$$v_{m,q,p} = \frac{c}{2nl} \left\{ q + \frac{(m+p+1)}{\pi} \tan^{-1} \left[\frac{(l/R_2)^{1/2}}{(1-l/R_2)^{1/2}} \right] \right\}$$
$$= \frac{c}{2nl} \left\{ q + \frac{(m+p+1)}{\pi} \cos^{-1} \left(1 - \frac{l}{R_2} \right)^{1/2} \right\}$$

Case: Confocal Resonator

General solution for ν is

$$v_{m,p,q} = \frac{qc}{2n(z_2 - z_1)} + \frac{c(m+p+1)}{2\pi n(z_2 - z_1)} \left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} \right\}$$

(i) Longitudinal mode separation

For a given TEM_{mp} mode (m, p fixed), we have

①
$$-$$
 ②
$$(k_{q+1} - k_q)l = \pi$$
 or
$$\Delta v_q = v_{q+1} - v_q = \frac{c}{2nl}$$

(ii) Transverse mode separation

Here, q is fixed.

$$k_{2}l - (m+p+1)_{2} \left\{ \tan^{-1} \frac{z_{2}}{z_{0}} - \tan^{-1} \frac{z_{1}}{z_{0}} \right\} = q\pi$$

$$\text{n charge + p fixed} \implies \text{like wise}$$

$$k_{1}l - (m+p+1)_{1} \left\{ \tan^{-1} \frac{z_{2}}{z_{0}} - \tan^{-1} \frac{z_{1}}{z_{0}} \right\} = q\pi$$

(A) - (B)
$$(k_2 - k_1)l = \Delta(m+p) \left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} - \right\}$$

So,

$$\Delta v_{\text{mp}} = v_2 - v_1$$

$$\Delta v_{\text{mp}} = \frac{c}{2\pi n l} \Delta (m + p) \left\{ \tan^{-1} \frac{z_2}{z_0} - \tan^{-1} \frac{z_1}{z_0} - \right\}$$

Generally,

$$l = z_2 - z_1 z_0 = n\pi\omega_0^2/\lambda$$

$$R_1 = z_1 \left(1 + \frac{z_0^2}{z_1^2}\right) R_2 = z_2 \left(1 + \frac{z_0^2}{z_2^2}\right)$$

Solve for z_1, z_2 :

$$z_1 = \frac{R_1}{2} \pm \frac{1}{2} \sqrt{R_1^2 - 4z_0^2}$$
$$z_1 = \frac{R_2}{2} \pm \frac{1}{2} \sqrt{R_2^2 - 4z_0^2}$$

 \Rightarrow For given ω_0 and λ (and therefore z_0), the positions of mirrors and determined, (z_1, z_2) .

Problem 2: Given R_1, R_2 , and l what is $\omega_0(z_0)$?

Solve: Algebra problem

$$z_{1} = \frac{l(l - R_{2})}{R_{2} - R_{1} - 2l}$$

$$z_{2} = \frac{-l(R_{1} + l)}{R_{2} - R_{1} - 2l}$$

$$z_{0}^{2} = \frac{l(l - R_{2})(l + R_{1})(R_{2} - R_{1} - l)}{(R_{2} - R_{1} - 2l)^{2}}$$

Examples:

1) Cavity with plan mirror

$$R_1=\infty$$
,

$$R_2 = R$$
, and $z_2 - l_1 = l$

Then,

$$z_{2} = l$$

$$R(z_{2}) = R = l\left(1 + \frac{z_{0}^{2}}{l^{2}}\right)$$

$$\frac{R}{l} = 1 + \left(z_{0}^{2}/l^{2}\right)$$

$$z_{0} = l\left(\frac{R}{l} - 1\right)^{1/2}$$

$$= \frac{\pi\omega_{0}^{2}}{\lambda}$$

$$\Rightarrow \omega_{0}^{2} = \frac{\lambda l}{\pi} \left(\frac{R}{l} - 1\right)^{1/2}$$

spot size at the flat mirror
$$\omega_0 = \left(\frac{\lambda l}{\pi}\right)^{1/2} \left(\frac{R}{l} - 1\right)^{1/4}$$

Note: If $\frac{R}{l} < 1$, ω_0 is complex number.

⇒ can't find a node to fit cavity.

2) Symmetric resonator : $|R_1| = |R_2| = R$

$$z = -\frac{l}{2}$$

$$z = -\frac{l}{2}$$

$$z = \frac{l}{2}$$

$$z = \frac{l}{2}$$

$$z_{0}^{2} = \frac{l(l - R_{2})(l + R_{1})(R_{2} - R_{1} - l)}{(R_{2} - R_{1} - 2l)^{2}}$$

$$= \frac{l(l - R)(l - R)(2R - l)}{(2R - 2l)^{2}}$$

$$= \frac{l}{4}(2R - l)$$

$$\frac{\pi\omega_{0}^{2}}{\lambda} = z_{0} = \left(\frac{l}{4}\right)^{1/2} (2R - l)^{1/2}$$

$$\omega_{0} = \left(\frac{\lambda z_{0}}{\pi}\right)^{1/2} = \left(\frac{\lambda}{\pi}\right)^{1/2} \left(\frac{l}{4}\right)^{1/4} (2R - l)^{1/2}$$

$$z_{0}^{2} = \frac{l(l-R_{2})(l+R_{1})(R_{2}-R_{1}-l)}{(R_{2}-R_{1}-2l)^{2}}$$

$$= \frac{l(l-R)(l-R)(2R-l)}{(2R-2l)^{2}}$$

$$= \frac{l}{4}(2R-l)$$

$$\frac{\pi\omega_{0}^{2}}{\lambda} = z_{0} = \left(\frac{l}{4}\right)^{1/2}(2R-l)^{1/2}$$

$$\omega_{0} = \left(\frac{\lambda z_{0}}{\pi}\right)^{1/2} = \left(\frac{\lambda}{\pi}\right)^{1/2}\left(\frac{l}{4}\right)^{1/4}(2R-l)^{1/4}$$

$$\omega(z = \pm l/2) = \omega_{0}\left(1 + \frac{l^{2}/4}{z_{0}^{2}}\right)^{1/2}$$

$$= \left(\frac{\lambda l}{2\pi}\right)^{1/2}\left(\frac{2R^{2}}{l(R-l/2)}\right)^{1/4}$$

 \Rightarrow Need $R > \frac{l}{2}$ for stability

If $R < \frac{l}{2}$, it means we can not find a Gaussian mode to fix into this resonator.

We want self-repetition or ability to "self-retrace"

⇒ i.e. modes don't exist in resonator.

For nearly flat mirror $R \square l$,

$$\omega_{\text{mirror}} = \omega \left(z \pm l/2 \right)$$

$$= \left(\frac{\lambda l}{\pi} \right) \left(\frac{2R}{l} \right)^{1/4}$$

$$\square \omega_0$$

$$\omega_0 = \left(\frac{\lambda}{\pi} \right)^{1/4} \left(\frac{l}{4} \right) (2R)^{1/4}$$

for nearly flat mirrors, there's very little beam divergence. Not surprise because flat mirror has beam divergence $\downarrow\downarrow$.

c) Confocal Resonator

$$\begin{array}{ccc}
R_1 & R_2 \\
-R & & \\
& & \\
& & \\
& & \\
& & \\
R/2 & R/2 \\
& & \\
\hline
R/2 & R/2
\end{array}$$

$$z_0^2 = \frac{l}{4}(2R - l)$$

$$= \frac{R}{4}(2R - R)$$

$$= \frac{1}{4}R^2; z_0 = \frac{R}{2}$$

$$\omega_0 = \left(\frac{\lambda z_0}{\pi}\right)^{1/2} = \left(\frac{\lambda R}{2\pi}\right)^{1/2}$$

$$\omega(z = \pm l/2) = \sqrt{2}\omega_0$$

$$\lambda = 6328 A^{\circ}$$

Example : He-Ne, l = 50 cm

Confocal resonator $\Rightarrow R = 50$

$$\omega_{\text{at mirror}} = \sqrt{2}\omega_0 = \sqrt{2} \left(\frac{\lambda R}{2\pi}\right)^{1/2}$$

$$= 0.032 \text{ cm}$$

$$= 350 \ \mu\text{m}$$

Stability Condition for Resonator

Suppose we have mirrors of radius R_1, R_2 separated by l. Stable or "self retracting" cavity modes can be supported if

$$0 \le \left(1 - \frac{l}{|R_1|}\right) \left(1 - \frac{l}{|R_2|}\right) \le 1$$

$$g_1 \qquad g_2$$

Example : Confocal resonator $|R_1| = |R_2| = R = l$

a)
$$g_1g_2 = 0$$

"At the edge of stability"

(In practical I is slightly adjusted below R)

b) Parallel flat mirror $|R_1| = |R_2| = \infty$

$$g_1g_2 = 1$$
 "At the edge of stability"

Unstable resonators are not necessarily to be avoid → They are useful in pulsed

laser system when the stored

energy is extracted after a few
round trip.

Optical Resonator Losses:

Suppose we turn off:

How long does it take the field inside

the resonator to decay?

$$E \propto e^{-t/\tau}$$

Consider "Bulk" Losses

• Attenuation Coefficient : α (unit = length)

$$I_0 \rightarrow R_1 R_2 e^{-2\alpha l} I_0$$

$$= I_0 e^{-2\beta l} \qquad \text{all losses impulsed into}$$

$$e^{-2\beta l} = R_1 R_2 e^{-2\alpha l} \qquad \text{coeff. } \beta$$

$$\beta \qquad = \alpha - \frac{1}{2l} \ln \left(R_1 R_2 \right)$$

• Time

If x is the distance covered after many round trips after time $t, x = \frac{ct}{n}$

$$I(x) = I_0 e^{-\beta x}$$

$$I(t) = I_0 e^{-\beta \frac{c}{n}t}$$

$$= I_0 e^{-t/\tau},$$

where $\tau = \frac{n}{\beta c}$ "Photon Lifetime or Cavity energy decay time"

i.e. at $t = \tau \rightarrow$ The field inside the resonator disappears by going through mirror.

This can be related to Q and F
$$\longrightarrow$$
 Finess $\frac{\Delta v}{\Delta v_{1/2}}$

Quality factor $\frac{v}{\Delta v_{1/2}}$

Recall EM:

$$Q = \left| \frac{\text{Cavity stored energy}}{\text{Energy dissipated per cycle}} \right| 2\pi$$

$$= \left| \frac{2\pi\varepsilon}{p/f} \right|^{\star} \frac{\text{Cavity stored energy}}{\text{cycle}}$$

$$= \left| \frac{\omega\varepsilon}{p} \right|^{\star} \frac{\text{Area}}{\text{Area}}$$

$$= \left| \frac{\omega I}{\frac{dI}{dt}} \right|^{\star}$$

$$= \frac{\omega I_0 e^{-t/\tau}}{-\frac{1}{\tau} I_0 e^{-t/\tau}}$$

$$= \omega \tau$$

$$\frac{\text{Energy}}{\text{time}}$$

$$Power = \int I ds$$

$$I = \frac{1}{2} c \varepsilon |E|^2$$

$$\frac{\varepsilon}{p} = \frac{\frac{\text{Energy}}{\text{area}}}{\frac{\text{Energy}}{\text{area time}}}$$

$$= \frac{I}{\frac{dI}{dt}}$$

Recall:
$$Q = \frac{v}{\Delta v_{1/2}}$$

Therefore,

$$\Delta v_{1/2} = \frac{v}{Q} = \frac{v}{\omega \tau} = \frac{1}{2\pi \tau}$$

$$\Delta v_{1/2} = \frac{c}{2\pi n} \left[\alpha - \frac{1}{2l} \ln(R_1 R_2) \right]$$

Laser Oscillator: | Put all the pieces to make a laser

i) Medium with a population inversion, obtaining by pumping

Stimulated emission

Rate ∞ I inside resonator

$$\propto |E_{\rm inside}|^2$$

ii) Resonant optical cavity

$$(i) + (ii) \rightarrow (iii)$$

If have overlap between gain and cavity longitudinal modes get strong stimulated emission at cavity mode.

Recall: gain,
$$\gamma(\nu) = \frac{c^2}{8\pi n^2 v^2 t_{\rm sp}} g(\nu) \Delta N$$
,

Where,
$$\Delta N = \frac{\Delta N^{(0)}}{\left(1 + I_{\nu}/I_{s}\right)^{p}}$$

$$p = 1$$
; homogeneous
$$= \frac{1}{\sigma}$$
; inhomogeneous
$$\Delta N^{(0)} = (N_0 - N_1)_{I=0}$$

$$\Delta N^{(0)} = (N_0 - N_1)_{I=0}$$

(absent of optical field)

Implication:

- 1. $\Delta v_{\text{resonance}} \Box \Delta v_{\text{gain,medium}}$
- 2. Light generated is coherent
 - ⇒ because it is consistant with cavity modes

Time
$$\propto \frac{1}{\Delta \nu_{\text{gain}}} \left| n \frac{\lambda}{2} \right|$$

3. Output has "nice" divergence properties due to transverse coherence of resonator modes

Oscillation Condition:

Put a medium with population inversion into an optical cavity what is the condition for cavity modes to build up near the gain frequency?

Recall: resonator

Use β instead of k because we have (gain materail)

Recall:

$$\beta \cong \frac{\omega n}{c} \left[1 + \frac{1}{2n^2} \chi(\omega) \right] + \frac{1}{2} i\alpha$$
Active susceptibility of active (Nd:) which are "enbedded" in background

 $\alpha = \text{Bulk loss coefficien}$

$$\chi = \chi' + \chi''$$
dispersion gain/abs.

$$\beta = k + \Delta k - i\frac{1}{2}\gamma(\omega) + i\frac{1}{\sigma}\alpha$$

$$\frac{\omega n}{c}\frac{\chi'}{2n^2} = \frac{k\chi'}{2n^2} \qquad \left[\frac{1}{2}\gamma(\omega) = \frac{-k\chi''(\omega)}{2n^2}\right]$$

$$\gamma(\nu) = \frac{c^2}{8\pi n^2 \nu^2 t_{sp}} g(\nu) \frac{\Delta N^{(0)}}{\left[1 + \frac{I_{\nu}}{I_s}\right]^p}$$

So, for the right-going wave:

$$\frac{E^{+}(z)}{E_{0}} = \frac{t_{1}e^{i\beta z}}{1 - r_{1}r_{2}e^{2i(k+\Delta k)l}e^{(\gamma-\alpha)l}}$$

$$\frac{E^{+}}{E_{0}} \to \infty \text{ Self regenerate because } E_{0} \text{ finite}$$

$$0 = 1 - r_{1}r_{2}e^{2i(k+\Delta k)l}e^{(\gamma-\alpha)l}$$

$$\Rightarrow \text{ Condition for S.S} \begin{pmatrix} E_0 = 0 \\ E_{inside, finite} \end{pmatrix}$$

$$\Rightarrow \qquad 1 = r_1 r_2 e^{2i(k + \Delta k)l} e^{(\gamma - \alpha)l}$$

A) Amp. Condition: $1 = r_1 r_2 e^{(\gamma - \alpha)t}$

i.e.
$$\gamma = \alpha$$
| loss gain

(If gain > loss, Intensity keeps going up

$$s.s \Rightarrow I_{cont} \Rightarrow \gamma = \alpha$$

B) Phase condition:

 α fixed

 γ is controlled by pumping.

$$0 = \ln r_1 r_2 + (\gamma - \alpha) l$$

$$\gamma_{\text{threshold}} = \alpha - \frac{1}{l} \ln r_1 r_2$$

$$= \alpha - \frac{1}{2l} \ln R_1 R_2$$

$$= \frac{2\pi n}{c} \Delta v_{1/2}$$

$$= \frac{n}{c\tau}$$

For $\gamma < \gamma_{\text{threshold}}$

$$r_1 r_2 e^{(\gamma - \alpha)l} < 1$$

and there will be a decrease in field amplitude in each pass

⇒ Oscillation can't build up

Photon-lifetime

$$\tau = \frac{n}{c \left[\alpha - \frac{1}{2l} \ln R_1 R_2\right]}$$

$$\gamma_{\text{threshold}} = \frac{c^2}{8\pi n^2 v^2 t_{\text{sp}}} g(v) \Delta N_{\text{threshold}}$$

$$\Delta N_{\text{threshold}} = \frac{8\pi n^3 v^2 t_{\text{sp}}}{c^3 g(v) \tau}$$

Example: He-Ne laser $\lambda = 6328 A^{\circ}$

$$t_{\rm sp} = 10^{-7} \, {\rm sec}$$
 $n = 1$
 $R_1 = R_2 = 0.98$
 $\alpha = 0$
 $l = 10 \, {\rm cm}$
 $\Delta \nu = 10^9 \, {\rm sec}^{-1}$
 $\tau = \frac{1}{3 \times 10^{10} \left[-\frac{1}{20} \ln \left(0.98 \right)^{\circ} \right]}$
 $= 1.6 \times 10^{-8} \, {\rm sec}$

So
$$\Delta N_{\text{th}} = \frac{8\pi (1)^3 \left(\frac{3\times 10^{10}}{6328\times 10^{-8}}\right) 10^{-7}}{\left(3\times 10^{10}\right)^3 10^{-9} 1.6\times 10^{-8}}$$
$$= 1.3\times 10^{-9} \text{ cm}^{-3}$$

Oscillation Frequency:

$$(k + \Delta k)l = q\pi$$

$$/ kl \left(1 + \frac{\Delta k}{k}\right) = q\pi$$
of laser
$$v\left(1 + \frac{\chi'}{2n^2}\right) = \frac{qc}{2nl} = v_q$$
cavity resonance

$$\Rightarrow$$
 If $\chi' \to 0$ (no mat.) $\nu = \nu_q$

Recall:
$$\frac{\chi'(\omega)}{\chi''(\omega)} = \frac{2}{\Delta \nu} (\nu_0 - \nu)$$

$$v\left(1 - \frac{1}{\Delta v}(v_0 - v) \frac{c}{2\pi v n} \gamma(v)\right) = v_q$$

$$\chi''(\omega) = -\frac{n^2}{R} \gamma(v)$$

$$v_q = v\left[1 - \left(\frac{v_0 - v}{\Delta v}\right) \frac{\gamma(v)c}{2\pi nc}\right]$$

First, assume=me that
$$\frac{v_0 - v}{\Delta v} \Box 1$$

Oscillation that occur close to the peak of the gain

Then,

$$v = v_0 \left[1 - \left(\frac{v_0 - v}{\Delta v} \right) \frac{\gamma(v)c}{2\pi n v} \right]^{-1}$$

$$\Box v_q \left[1 + \left(\frac{v_0 - v}{\Delta v} \right) \frac{\gamma(v)c}{2\pi n v} \right] \qquad [1 + x]^{-1} = 1 - x + x^2$$

$$= v_q + \frac{v_q}{v} \left(\frac{v_0 - v}{\Delta v} \right) \frac{\gamma(v)c}{2\pi n} \qquad \text{when } |x| \le 1$$

The oscillation occurs close to a cavity resonance, or $v = v_q$, so we put

$$\gamma(v) = \gamma(v_q)$$

$$v = v_q + \frac{(v_0 - v_q)}{\Delta v} \frac{\gamma(v_q)c}{2\pi n}$$

Recall: in S.S Gain = Loss

We represented the loss in terms of photon lifetime τ :

$$\tau = \frac{n}{c \left[\alpha - \frac{1}{2l} \ln R_1 R_2 \right]}$$
$$= \frac{n}{c \gamma_{\text{threshold}}},$$

where

$$\gamma_{\text{threshold}} = \frac{n}{c\tau} = \frac{c^2}{8\pi n^2 v^2 t_{\text{sp}}} g(v) \Delta N_{\text{th}}$$

$$\Delta N_{\rm th} = \frac{8\pi n^2 v^2 t_{\rm sp}}{c^3 g(v) \tau}$$

At threshold:

$$\gamma \left(v_q \right) = \frac{n}{c\tau}$$
$$= \frac{n}{c} 2\pi \Delta v_{\frac{1}{2}}$$

This give
$$v = v_q + (v_0 - v_q) \frac{\Delta v_{1/2}}{\Delta v}$$

Usually
$$\frac{\Delta v_{\frac{1}{2}}}{\Delta v} \Box$$
 1, so

Initially, we have $\gamma \square \gamma_{\text{threshold}}$

Recall:
$$\gamma = \frac{\gamma_0}{\left(1 + I_r/I_s\right)^p}$$

through this expression the gain will eventually adjust itself so that $\gamma = \gamma_{\rm th}$

 $\Rightarrow I_{\nu}$ is increasing then γ is $\downarrow \downarrow$ until $\gamma = \gamma_{th}$

Laser Pumping: What are the power requirements for the population inversion and gain?

Define: two kinds of laser systems

- 4 level
- 3 level

4 level system:

Old Tech: Pump to \bigcirc by flash lamp, so hv_R is high because big gap

→ it needs water cooling system.

New Tech: near to (2)

In case of thermal equilibrium:

$$\frac{N_1}{N_0} = e^{-E_1/kT}$$

$$E_1/kT \square \quad 1 \Longrightarrow N_1 \square \quad N_0$$

1. If $E_1/kT \Box 1$

Lower level population is mainly determined via the pumping process and

$$\frac{N_1}{N_0}$$
 \Box 1.

Lower level is far from ground state.

2. Also, want
$$t_1 \Box t_2$$
 $\Rightarrow N_2 - N_1 \approx N_2$ check by rate equation $\Delta N_{\text{thermal}} \approx N_0$

3 level system

the lower level (1) close to

GND state.

Same as 4 level except
$$\underbrace{\frac{N_1}{N_0}}_{\text{same as 4 level except}} \approx 1$$

$$\Rightarrow -E_1/kT \Box 1$$

Needs

1.
$$N_2 - N_1 = \Delta N^{th}$$

 $N_2 + N_1 = N_0$

Then,
$$N_2 = \frac{1}{2} \left(N_0 + \Delta N^{th} \right)$$
$$= \frac{1}{2} N_0 \left(1 + \frac{\Delta N^{th}}{N_0} \right)$$

2.
$$N_2 \ge \frac{1}{2}N_0$$
 at a minimum

At least 50% of GND state population must be "pumped" into the upper level.

$$\frac{\left(N_2^{\text{th}}\right)_{3-\text{level}}}{\left(N_2^{\text{th}}\right)_{4-\text{level}}} = \frac{\frac{1}{2}N_0}{\Delta N_{\text{th}}} \square \quad 1$$

Minimum power requires to achieve threshold

$$p^{\text{th}} = N_2 \frac{h\nu_{\text{laser}}}{t_2} V - \text{volume occupied by gain material}$$

$$p_3^{\text{th}} = \frac{1}{2} N_0 V \frac{h\nu}{t_2}$$

$$p_4^{\text{th}} = N_2^{\text{th}} V \frac{h\nu}{t_2}$$

If level 2 depopulation is due to spontaneous emission alone, put $t_2 = t_{sp}$.

In general, t_2 includes a downward rates

In 4-level system:

$$\Delta N_{\text{th}} \approx N_2^{\text{th}} = \frac{8\pi n^3 v^2 t_{\text{sp}}}{c^3 g(v) \tau}$$

$$p_4^{\text{th}} = \frac{8\pi n^3 v^2 t_{\text{sp}}}{c^3 g(v) \tau} V \frac{hv}{t_2}$$

Ex: What is the minimum power required to set up steady state oscillation in a 4-level

Nd³⁺: glass laser system?

Cavity length : l = 10 cm

$$t_2 = t_{\rm sp}$$

$$\lambda = 1.05 \ \mu m$$

$$R = R_1 = R_2 = 0.95$$

 $\alpha = 0 \Rightarrow$ so loss have only the end of the mirror

$$V = 10 \text{ cm}^3$$

$$n = 1.5$$

 $\Delta v = 3 \times 10^{12} \text{ sec}^{-1} \Rightarrow \text{ phonon process not Doppler broadening}$

$$\tau = \frac{n}{c \left[\alpha - \frac{1}{2l} \ln R_1 R_2\right]}$$

$$= \frac{1.5}{3 \left[0 - \frac{1}{2(10)} \ln (0.95)^2\right]} = 9.7 \times 10^{-9} \text{ sec}$$

$$p_4^{\text{th}} = \frac{8\pi (1.5)^3 6.6 \times 10^{-27} \times 3 \times 10^{12} \times 10}{(1.5 \times 10^{-4})^3 (9.7 \times 10^{-9})}$$

$$= 1.45 \times 10^9 \frac{erg}{\text{sec}} = 145 \text{ W}$$

$$\Delta N_{\text{th}} (\gamma_{\text{th}}) \to R_{\text{th}} : \Delta N < \Delta N_{\text{th}}$$

Steady state under $\frac{dN}{dt} = 0$

Laser O/P power vs Pumping Power:

As we increase the pump power upto and beyond threshold, what happen to laser output power?

 R_1 we don't want \Rightarrow "deterious pumping"

good pumping rate
$$\frac{dN_2}{dt} = R_2' - \frac{N_2}{t_2} - W(N_2 - N_1)$$
depopulation rate

Stim. Emiss. Rate per atom

$$\underbrace{\frac{dN_1}{dt}} = R_1 - \frac{N_1}{t_1} + W(N_2 - N_1) + N_2/t_2$$

$$B_g^{(0)}(v)\rho(v)$$

These equations describe a homogeneous broadened system.

We don't beak N_2 into subset \Rightarrow all atom in upper level are the same

 \Rightarrow one represents all

Consider steady system situation: Transients have die down for

$$t > \max \left\{ t_1, t_2, \frac{1}{W}, \frac{N_1}{R_1}, \frac{\langle N_2 \rangle}{R_2} \right\}$$

$$\frac{dN_1}{dt} = 0 = \frac{dN_2}{dt}$$

Add 1+2:

Substitute
$$0 = R_1 + R_2 - \frac{N_1}{t_1}$$

$$0 = R_1 - (R_1 + R_2)t_1 \text{ into } 2$$

$$0 = R_1 - (R_1 + R_2) + W(N_2 - (R_1 + R_2)t) + \frac{N_2}{t_2}$$
Or
$$N_2 = \frac{R_2 + (R_1 + R_2)Wt_1}{W + \frac{1}{t_2}}$$

$$\begin{split} N_2 - N_1 &= \frac{R_2 + \left(R_1 + R_2\right)Wt_1 - \left(R_1 + R_2\right)t_1\left(W + \frac{1}{t_2}\right)}{W + \frac{1}{t_2}} \\ &= \frac{R_2\left[1 - \left(1 + \frac{R_1}{R_2}\right)\frac{t_1}{t_2}\right]}{W + \frac{1}{t_2}} \\ N_2 - N_1 &> 0 \Rightarrow 1 - \left(1 + \frac{R_1}{R_2}\right)\frac{t_1}{t_2} > 0 \\ \text{or} &\qquad \frac{t_1}{t_2} < \frac{1}{1 + \frac{R_1}{R_2}} < 1 \end{split}$$

 \Rightarrow Because we want $t_1 \downarrow \downarrow$ when compare to t_2

Ideal Situation: $\frac{t_1}{t_2} \rightarrow 0$ and $N_1 \rightarrow 0$

$$N_2 - N_1 = \frac{R_2}{W + \frac{1}{t_2}}$$

So define effective pumping rate for non-ideal situation

$$R_{\text{eff}} = R_2 \left[1 - \left(1 + \frac{R_1}{R_2} \right) \frac{t_1}{t_2} \right] \equiv R$$

So:

Recall:

$$\Delta N_{\text{th}} = (N_0 - N_1)_{\text{th}} = \frac{8\pi n^3 v^2 t_{\text{sp}}}{c^3 g(v) \tau}$$
photon lifetime

Basically, for pumping rates from zero ups to threshold

$$\boxed{1} \qquad 0 \le R \le R_{\rm th}$$

Assume: R is "+"

&
$$0 < \Delta N \le N_{\text{th}}$$

& $W = 0$ (No stim. emiss when)

$$\Rightarrow \qquad (N_2 - N_1)_{th} = R_{th} t_2$$

$$R_{th} = \frac{(N_2 - N_1)_{th}}{t_2}$$

$$= \frac{8\pi n^3 v^2}{c^3 g(v) \tau} \underbrace{t_{sp}}_{t_2} - \text{Atomic group}$$

$$R \ge R_{\rm th}$$

Then $W \neq 0$

And $\Delta N = \Delta N_{\text{th}}$ (steady state condition)

A becomes

$$\Delta N_{\text{th}} = \frac{R}{W + \frac{1}{t_2}}$$

$$W = \frac{R}{\Delta N_{\text{th}}} - \frac{1}{t_2}$$

- 1. The atom in upper level state is fallen to the lower level state. And then, the stimulated emission is happening. Thus ΔN decreases $\rightarrow \gamma \downarrow$
- 2. $\gamma < \gamma_{th}$: because the decrease # of atoms by stimulated emission is greater than the increase # of atoms by pumping conditions.
- 3. γ increase: because it has R', so γ is increased.
- 4. Same reason as "1"
- 5. After t^* ; Atom is in the steady state which $\gamma = \gamma_{th}$. But it can reach γ_{th} suddenly.

Specific Laser System:

i) Quantum Efficiency

$$=\frac{hv_{21}}{\Delta E}$$

- ii) Transfer Efficiency
 - ⇒ Fraction of atoms

pumped to 3 which

makes transition to 2.

iii) Pump Efficiency:

 \equiv Fraction of pump power efficiency in populating level 3.

Over all laser efficient = η = (i) (ii) (iii)

Example: CO_2 laser $\eta \approx 30\%$ (Quite high)

 Nd^{3+} YAG $\eta \approx 1\%$ (for flash lamp)

Pump Visible & Laser IR \Rightarrow Loss \uparrow

He-Ne Laser:

 \Rightarrow Smaller distance tubes show higher gain due to buffer wall collision of N_e is level

$$\gamma^{\text{th}} = \frac{c^2 g(v)}{8\pi n^2 v^2 t_{\text{sp}}} (N_2 - N_1)_{\text{th}}$$

 $N_1 \downarrow \downarrow \rightarrow \gamma^{\text{th}} \uparrow \uparrow$

 ϕ of tube \downarrow

Normally $\gamma_{3.39}$ & $\gamma_{1.115} > \gamma_{0.6328}$

b) Ruby Laser - First demonstrated lose (1960)

Ruby: Sapphire Al₂O₃

 \Rightarrow Replace 1% of Al³⁺ ion with Cr³⁺ ions.

 ${\rm Cr}^{3+}$ give ruby its pink / red colors

c) Nd: YAG

Neodenium Yttrium Aluminium Ganet

 \Rightarrow Al ions are replaced at a level of \sqcup 1% by Nd.

Get higher than 1% ⇒

- Crystal strain
- Light donut
- Hand to grow x'tal

$$\frac{N_1}{N_0} = e^{-\Delta E/kT} \approx 10^{-10}$$

$$\gamma(\nu) = \sigma_{\text{stim}} N$$

$$\frac{\text{YAG}}{\sigma_{\text{YAG}}} \approx 70 \quad \Rightarrow \quad N_t \quad < \quad \frac{N}{70}$$

$$\text{Pumping} \quad P_t \quad < \quad \frac{P_t}{70}$$

 $\sigma_{\mbox{\tiny stim}}$ is large, cw or s.s. operation of Nd: YAG is possible

Principle of Laser: Orazio Svelto

$$dI = \frac{c}{n} \left(\frac{\gamma L}{l} - \beta \right) I$$

$$= \frac{c}{n} \left(\frac{\gamma L}{l} - \frac{1}{\tau} \right) I : \frac{1}{\tau} = \frac{\beta c}{n}$$

$$\frac{dI}{d(t/\tau)} = \left(\frac{c}{n} \frac{\gamma L}{l} \tau - 1 \right) : t/\tau = T$$

$$\gamma_{th} = \frac{c}{n\tau} \frac{l}{L}$$

Method of Q-switching:

- 1) Mechanical
 - i) Fast shutter in cavity
 - ii) Rotating mirror
- 2) Saturable Absorber
 - ⇒ high Intensity ⇒ Fraction absent ↓.

 Loss remain high (Low Q) until absorption is saturated ⇒ become high Q